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Abstract

A convexity theorem for the period function 7" of Hamiltonian systems
with separable variables is proved. We are intersted in systems with a
non-monotone 7T'. The result is applied to prove the uniqueness of critical
orbits in second order ODE’s. °

1 Introduction
Let us consider a planar Hamiltonian system with separable variables,
(1) ' =F'(y), ¢ =-G(a),

defined on a open connected set Q C IR?. If its Hamiltonian H(z,y) = F(y) +
G(z) has an extremum at the origin O, then O has a punctured neighbourhood
covered with non-trivial cycles. We denote by No the largest connected punc-
tured neighbourhood of O covered with non-trivial cycles, not assuming O to
belong to No. We define the period function T : No — IR of (1) as the function
assigning to every point (z,y) € No the minimal period of the cycle passing
through (x,y). We say that the period function T is increasing if, for every cou-
ple of cycles 71, v2, with v, enclosed by 72, one has T (1) < T'(v2). When T is
constant, we say that O is isochronous. Let 6(s), s € (0«,0™*), be a curve of class
C! meeting transversally the cycles of No. Assume that lim_ Lot 0(s) = 0.
We can consider the function T'(s) = T'(6(s)). Then T is increasing if and only if
T'(s) is one-variable increasing function. Let 5 be the unique cycle met by § at
the point 6(3). We say that T has an extremum at 75 if 7'(s) has an extremum
at s = 5. We say that v is a critical cycle if [4£T(s)],_. = 0. It is possible to
prove that such a definition does not depend on the particular transversal curve
& chosen.

Studying the period function is essential in some stability, bifurcation, bound-
ary value problems related to Hamiltonian systems, or to systems reducible to
Hamiltonian ones, as Lotka-Volterra systems. The period function’s monotonic-
ity for systems of type (1) was studied by several authors ([1], [4]-[6], [8]-[11],
[13]), not considering here papers devoted to isochronicity. In some cases the
monotonicity was proved together with the convexity of T' ([10]). Systems with
a non-monotone period function were studied in [2] and [3].
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The monotonicity ensures that a typical boundary value problem, z(0) =
z(T), has a unique solution for T belonging to some interval. Similarly, when
F'(y) =y,

ml =Y, yl = _Gl(m)a

the uniqueness of Neumann-like problems, z'(0) = z'(T"), may be reduced to
the study of T’s monotonicity, as in [1].

A different situation has to be taken into account, when looking for multiple
solutions of boundary value problems. If z(0) = z(7) has more than a single
solution, then 7'(s) has different monotonicity properties in distinct intervals.
Such intervals, corresponding to distinct subsets of N, are separated by values
of s where T reaches a local extremum. The problem of counting the exact num-
ber of solutions to z(0) = z(T") is related to the problem of counting such local
extrema. The simplest way to estimate the number of such extrema consists in
studying the convexity of T'(s), which ensures the uniqueness of the extremum.
If T'(s) is convex, there exists an interval [T1,T2] such that the BVP z(0) = z(T")
has exactly two solutions, for T € [T1,T3].

In this paper we give sufficient conditions for the existence of a transversal
curve §(s) such that T'(6(s)) be convex on some interval. The main tool applied
is a theorem proved in [6], where T' was studied by means of a suitable auxiliary
system,

@) o=@ y = Fw

G'(z) F'(y)
Such a system is a normalizer of (1), that is a system whose local flow takes
orbits of (1) into orbits of (1). Denoting by V(z,y) the vector field of (1), and
by W(z,y) the vector field of (2), this is equivalent to say that there exists a
function p : No — IR such that

[V,W] = uV.
If 6(s) is a solution to (2), then one has, as proved in [6],

T(s)
® T'(s) = ZTOE) = [ u)

In the case of the couple of systems (1) and (2), one has

Hay) = (g'(é)))I * (f:'(é))y -

Hence, proving the convexity of T'(s) reduces to proving that the integral in (3)
has larger values on outer cycles. This can be done, on a suitable subset A of
No, by adapting a technique used to study the uniqueness of limit cycles in
Liénard systems (see [7], [12], [14]).

In theorem (1) we show that under suitable assumptions on the sign of some
functions depeding on F', G, and their derivatives up to the third order, T"(s) is
increasing on A, hence T'(s) is convex on A. As a consequence, (1) has at most
one critical orbit in A. Conditions for the existence and uniqueness of critical
orbits are given for some classes of second order conservative O.D.E.’s. It is
maybe noticeable that the function N(z) introduced in [1],

N(z) = 6G(2)G"?(z) — 3G"(2)2G" (z) — 2G(z)G' (x)G"" ().



plays a role also in the study of convexity. On the other hand, we find an
example of degenerate planar center with 7' strictly decreasing at the origin,
such that N(z) > 0 in a neighbourhood of O. This shows that theorem A in [1]
cannot be extended to degenerate centers.

2 Results

Let G € C3(I,R), F € C3(J,R), I, J open intervals containing 0, possibly
unbounded. We consider the system (1), assuming F' and G to have minima at
the origin. We do not assume such minima to be non-degenerate, because the
results proved in [6] hold under the only assumption that H(z,y) = G(z)+ F(y)
has a minimum at O. Also, we assume zG'(z) > 0 on I \ {0}, yF'(y) > 0 on

J\ {0}.
We say that (1) satisfies the conditions (L) if there exist a € C°(I,R),
BeCJ,R)and a,be I,a<0<b,c,deJ,c<0<d, such that:

1) a(2) +80) = (§2) + (£5) -1,
Ly) alz
Ls) B(y

!
L) (8%) >0fora ¢ o],

) 2 0 for z ¢ [a,b], a(z) F" (y) < 0 for z € [a,b], y & [¢,d];
) 2 0fory ¢ [e,d], G"(2)B(y) <0 for z & [a,b], y € [c,d];

!
Ls) (£) >0fory ¢ [e.d|

The above conditions are considered even in the case of intervals reducing
to a single point, as it occurs when a = 0 = b.

We denote by O, ., the family of cycles contained in Np, enclosing the
rectangle [a, b] X [¢, d], by O, ., the family of cycles contained in NoNla, b] x [c, d].
In general, No # Oly,q U044 If ¢ =0 =d, a <0 < b, we denote by O, the
family of cycles meeting both the lines = a and z = b; by O, the family of
cycles contained in the strip a < z < b. Similarly for a =0=10, c <0 < d.

Convexity is not necessarily strict. Since there is one-to-one correspondence
between the parameters s and the orbits v;, we say equivalently that T is
(strictly) convex at s or at «y,. Similarly, we say that T is (strictly) convex
on O, ,,oron O, .

The main result of this paper is the following theorem.

Theorem 1 Assume that (1) satisfies the conditions (L). Then the function T
is convez on OF, ..

Proof. Tt is sufficient to prove that 7”(s) is increasing O¢,.,. By lemma 7 in [6],
the derivative of T'(s) is given by the formula (3), where

e = (565) + (74

Let us consider two cycles, vs,, Vs,, With s; < s2. 7, is contained in the
bounded region having v,, as boundary. In order to prove that T'(s1) < T'(s2),

)'—1=a<w>+5<y).



we have to show that

T(s1) T(s2)
/ p(vs, (1)) dt < / (s, (1)) dt.
0 0

The orbits will be decomposed into arcs over which the integration will be
performed with respect to x or y.

Let us first compare only the terms fOT(Sl) a(vs, (t)) dt and fOT(”) a(ys, (1)) dt.

Since 71 encloses the rectangle [a, b] X [, d], it meets the line z = b at points
(b,c"), (b,d"), with ¢/ < 0 < d'. Also, it meets the line z = a at points (a,c"),
(a,d"), with ¢’ < 0 < d".

The curve v, is the union of four arcs, ¥;, contained in {a < z < b,y > 0},
72, contained in {x > b}, 7}, contained in {a < z < b,y < 0}, 74, contained
in {z < a}. The curve 7, is the union of eight arcs, 73, contained in {a <
z < b,y > 0}, 73, contained in {z > b}, 73, contained in {a < z < b,y < 0},
73, contained in {x < a}; 74, contained in {x > b,y > d'}, v4!, contained
in {z > b,,y < ¢}, v, contained in {z < a,y < "}, 74V, contained in
{z <a,y > d"} (see figure 1).

Since a > 0 out of [a, b], one has

/aZO, / a >0, / a >0, / a > 0.
¥ 3! I 7Y

In order to prove that fOT(sl) a(vs, (1)) dt < fOT(SZ) a(vs, (1)) dt, it is sufficient to

prove that
/‘ag/a, ji=1...,4
¥ gl

J J
1 2

I
2

We write details only for the arcs 71, vZ, 74, 73, since the other four arcs can

be treated in a similar way. Since for a < z < b one has ‘;—f = F'(y) > 0,

along 71 (t) one can express t as a function of z and integrate with respect to .
Writing F'(y) for F(y(t(z))), one has
/ b o(z)dx
« F'(y)

Since a(z) <0 on [a,b], F"'(y) > 0 out of (¢,d), then

0 o) a@F'W)
WFW PR SV

so that 1?,(—(”;)) is an increasing function of y. 2 is external with respect to 1,

hence
b a(x)de b a(x)de
[ o L | .,

= [ et d
1 ’Yzl

Now let us consider the arcs 77, 73, along which one has % = —G'(z) < 0, so

that one can express ¢ as a function of y, and integrate with respect to y,

' d
[, atu®) at = [ | = [

/ (e (1)) dt =

1
1

71

[, at®) at =

73 7;



By L4, one has

= (é@)) =0
a(z)

hence & @) is an increasing function, and as above

/7 fa(Wsl(t)) dt = l / ig,)(‘iy) . < “ / fg,)(‘iy)

The same argument, works as well for the arcs 7}, v{, 73, 73. Summing up, one
has

] = [ abu ) d.

71 72

T(s1) T(s2)
/0 (e (1)) dt < / (s (1)) .

Now let us consider the integrals involving 8. We can work as we did for a, with
the lines y = ¢, y = d playing the role of the lines z = a, £ = b. Computations
are similar, and lead to a similar conclusion,

T(s1) T(s2)
| st as [ st a
0 0



The term —1 appearing in u can be adsorbed in different ways by a and 3.
In general, for a given k£ € IR, we may write

) = [(82) +o] + [(58) -1 4] =) + 500

Let us denote by —L;, j = 2,...,5, the conditions obtained from L;,
j = 1,...,5, by reversing the inequalities. We have the following analogue
of theorem 1 for the concavity of the period function.

Theorem 2 Assume that (1) satisfies the conditions Ly, —Lj, j = 2,...,5.
Then the function T is concave on OF, ..

Proof. As in theorem 1, reversing the integral inequalities. &

Next four corollaries are concerned with the strict convexity on 0%, ;. Such
a property implies the uniqueness of critical orbits on Of, ., if they exist.

Corollary 1 Assume that the hypotheses of theorem 1 hold. If the cycle ¥
passes through a point (Z,4y) such that at least one of the inequalities contained
in Lj, j=2,...,5 holds strictly. Then T is strictly convex in a neighbourhood

of 7.

Proof. At least one of the integral inequalities of the proof of theorem 1 is strict
at (Z,7). By continuity, this holds in a neighbourhood of (z,y), hence T"(s) is
strictly increasing in a neighbourhood of 7. &

For instance, if there exists Z > b such that «(Z) > 0, then T is strictly
convex at every orbit cutting the line z = Z. As a consequence, one has at most
one critical orbit cutting the line x = Z. A similar statement can be proved
about strict concavity.

Corollary 2 Assume that the hypotheses of theorem 1 hold. If one of the fol-
lowing holds

i) there erist x,, Ty > b, lim, ooz, = b, such that a(zy,) > 0 (z, < a,
lim,, 400 Tn, = a, such that a(z,) > 0);

ii) there exist Yyn, yn > d, limy_ 400 yn = d, such that B(yn) > 0 (yn < ¢,
limy, s o0 Yn = ¢, such that B(yn) > 0);

then the function T is strictly conver on OF, ;.

Proof. Tt is an immediate consequence of corollary 1, since every cycle in OF, .,
has to meet at least one of the lines x = z,, (y = yn). &

Corollary 3 Assume that the hypotheses of theorem 1 hold. If one of the fol-
lowing holds
i) there ezists T € [a,b], such that a(Z) < 0, F"'(y) > 0 fory > d (F"(y) >0
fory <c);



ii) there exists § € [c,d], such that 3(j) < 0, G"(z) > 0 forx >b (G"(z) >0
for x < a);

then the function T is strictly convex on O, ;.

Proof. i). It is an immediate consequence of corollary 1, since every cycle in
O¢,.q has to meet the half-line z =z, y > d (xr = Z, y < ¢). Point ii) can be
proved similarly. &

Strict convexity (concavity) can be also proved for analytic systems. We
recall that monotonicity is not strict monotonicity, so that a constant period
function is monotone.

Corollary 4 Assume that the hypotheses of theorem 1 hold. If F and G are
analytic functions, and T is not monotone on OF, ,, then T is strictly convex
on O .-

Proof. T(s) = T(6(s)) is an analytic function. By theorem 1, T' is convex
on 0¢,.;, hence T"(s) > 0. Moreover, T"(s) is not identically zero, otherwise
there would exist x1,k2 € IR, such that T'(s) = k15 + k2, that would imply
monotonicity. By the analyticity, the zeroes of T"(s) are isolated, so that T"(s)
is strictly increasing, that gives the strictly convexity of T'. &

Next corollary is concerned with conservative second order differential equa-
tions,

(4) 2"+ G'(z) = 0.
As in [1], we set
N(z) = 6G(z)G"*(z) — 3G (z)*°G" (z) — 2G(z)G' (z)G"" ().
In what follows, we choose ¢ = 0 = d.

Corollary 5 Let G € C3(I,R), zG'(z) > 0 for x # 0. If there exist a,b € I,
a < 0<b, such that
i) G'(z)? — 2G(x)G" (x) < 0 for z € [a,b], G'(x)? — 2G(z)G"(z) > O for
z & [a,b],
i) N(@) >0 for z & [a, 8],

then the period function T(s) is convex on O%,,.
Reversing the above inequalities implies the concavity of T(s) on O%.q-

Proof. The equation (4) is a special case of (1), taking F(y) = %, c=0=d,

B(y) = 0. Then one has a(z) = %, and

a\' 6GG" -3G"?G" -2GG'G" N
(@) - 2G" bTeC
The conditions i), ii), ensure that the hypotheses of theorem 1 hold. &
A simple additional condition allows to prove the uniqueness of critical orbits

of (4) on all of No. In the situation considered in next corollary, one has
No = Ogp00 U Op00-



Corollary 6 Let (4) be a non-linear equation. Under the hypotheses of corol-
lary 5, assume additionally that G(a) = G(b). If the hypotheses of one of the
corollaries 2 or 4 hold, then (/) has at most a critical orbit in No, contained in

the set G(z) + % > G(a).

Proof. The cycles are contained in level sets of the first integral G(z) + % If
G(a) = G(b), then there exists a cycle ~y,; passing through (a,0) and (b,0). All
the other cycles either meet both the lines z = @ and x = b, or are contained in
the strip a < z < b, hence No = 0%, U 0%, One has T'(s) < 0 for every
cycle 75 € Oy, because a(z) < 0 on [a,b]. We claim that actually 77(s) < 0
on 0!, In fact, assume by absurd that a = 0 on [a,b]. Then G"? —2GG" =0
on [a,b], so that, on the interval (0,b), where both G and G’ are positive, one

has

GI GII

G 2 G
Integrating, this gives InG = 2InG’ + kg, ko € IR, hence G = k1G'%, k1 > 0.
Integrating the equation G = kG'? gives G(z) = (ko + Kk3)?. Since G(z)
vanishes at 0, one has k3 = 0, so that G(z) = (k2x)?, contradicting the non-
linearity of (4). This proves that a(z) cannot vanish identically on any interval
[0,b1) contained in [0,b). As a consequence, T" is strictly negative on O, .
In particular, T" is strictly negative on the orbit 7,5, and, by continuity, on a
neighbourhood of v,;. Hence a critical orbit cannot be contained in the sublevel
set G(z) + % < G(a), but, if it exists, it has to belong to O¢,,, where T is
strictly convex, by corollary 2 or 4. This gives the uniqueness. &

Example 1 The potential G(z) = 22 + 2* — 2° generates the system
(5) ' =y, y' = —2x — 42 + 62°,

We take I = [-1,1], J = IR. The system (5) has a center at the origin, with
central region contained in the rectangle [—1,1] x [—v/2,v/2].
One has

G"? - 2GG" = —4z*(3 — 82? — 9z* + 629)
N = —24z*(1 — 1822 + 34z* — 522° — 5928 + 30z10).

Applying Sturm procedure, one can show that in the interval [-1, 1], G'* —2GG"
has exactly two zeroes —x; < 0 < z1, as well as IV, which vanishes at —zs <
0 < 3. One has —z; < —29 < 0 < z2 < x1, so that taking a = —ux,
b = x, the system (5) satisfies all the hypotheses of corollary 6. Its period
function is strictly decreasing in a neighbourhood of the origin, it is strictly
convex on O_ 4, .00, it tends to +00 approaching the boundary dNp and there
exists exactly one critical orbit. A numerical approximation shows that z; is
approximatively 0.544, while z- is approximatively 0.249.

Example 2 The potential G(z) = zf—:—l generates the system

43
! !



We take I = R, J = (—v/2,v/2). The system (6) has a center at the origin,
with central region contained in the strip I x J. One has

88 (521 — 1)

2 _ 9 " _
G = 266" = =

Such a function is negative for z € (—=z, 517z), positive for & & [— =7, =iz
Moreover, one has
N =962%(152° +1)/((z* + 1)7),

which is positive for £ # 0. Also in this example T'(s) < 0 on the cycles

contained in the strip # € [z, z17]. T is strictly convex on the cycles

meeting both the lines z = i#. As a consequence, the system (6) has exactly

one critical cycle, meeting both the lines z = + .

Remark 1 The previous example shows that the theorem A in [1] cannot be
extended to non-degenerate centers. In fact, the function N(x) is positive ev-
erywhere but at 0 zhile T is strictly decreasing in a neighbourhood of the origin.
The proof of theorem A in [1] does not apply because the center of (6) is degen-
erate, and the change of variables on which the proof is based cannot be defined.
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