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1

1 Introduction

In 1981, Unruh [1, 2] suggested the possibility of simulating the dynamics of quantum
fields in curved spacetimes through the propagation of sound-waves in moving fluids.
Imagine a fish emitting sound while plunging down a waterfall (see Fig.1.1): if the
velocity of the fluid exceeds the sound speed, the emitted waves are not able to reach
the river at the top of the waterfall. This behaviour is qualitatively analogous to that
of radiation emitted inside a black hole. In other words, a supersonic flow in a fluid
would influence the dynamics of sound similarly to what happens to light when it’s
dragged by the spacetime geometry in strong gravity environments. This simple yet
groundbreaking observation has lead to the beginning of a whole new field of research,
nowadays known as Analog Gravity [3].

Figure 1.1: A fish plunging down a waterfall emits sound waves
which cannot reach the river at the top, similarly to light trapped
inside a black hole. Credits: Olena Shmahalo (Quanta Magazine).

In quantitative terms, the hydrodynamic equations for a perfect fluid can be cast
in the form of the Klein-Gordon equation for a massless scalar field on a curved
spacetime, provided the identification of an acoustic metric tensor, which depends
on the properties of the fluid. In its original derivation, the analogy is therefore
exploited to simulate gravitational processes involving a non-interacting field in a
fixed background geometry. Over the years, proposals have been made to take into
account effects coming from interactions between the fields and backreaction [4, 5],
or even to gain insight on modified theories of gravity, where, for instance, Lorentz
invariance is broken or quantum effects cannot be neglected [6, 7].

Although the analogy can be pushed only up to some limit, analog models provide
an experimentally accessible platform to study the dynamics of quantum fields and
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to gain insight on physical phenomena that escape direct astrophysical investigation,
as those occurring in the vicinity of a black hole or during the fast expansion of the
early universe.

Curved space-time geometries have been realized in a large variety of systems,
including surface waves on classical fluids [8, 9], ultra-cold atoms [10], polariton fluids
[11, 12] and optical systems [13]. Thanks to their impressive experimental tunability
and superfluid character, atomic Bose-Einstein condensates (BECs) [14, 15] represent
one of the most promising analogs. The effective metric associated to a condensate
is fully determined by its irrotational velocity flow and by the sound speed for low-
frequency elementary excitations, which depends on its density; both these quantities
are controlled in space and time via manipulations of the trapping potential and/or
of some externally applied electromagnetic fields. It is therefore possible to generate
analog black-hole geometries with horizons and ergoregions [10, 12, 16], as well as time-
dependent spacetimes, analog to an oscillating [17–20] or expanding [21–23] universe.

In the last decades, the technological advances in the field of ultracold gases have
made it possible to experimentally realize and control multicomponent BECs [24].
It is natural to ask whether such mixtures can be exploited as analogs [25–27]: the
availability of various branches of elementary excitations with different sound speed
and effective mass may in fact lead to advantages in the implementations of inter-
esting geometries and, eventually, thanks to the possibility of coupling the different
components, to the exploration of a broader spectrum of physical processes. This
Thesis aims to address this question, focusing specifically on coherently-coupled two-
component BEC mixtures. We first consider analog geometries that have already
been analysed with single-component systems, generalising the results to mixtures
and pointing out the differences; we then proceed to tackle problems which instead
require the additional degrees of freedom that only a mixture displays.

1.1 Structure of the Thesis

The Thesis is structured as follows: in Chapters 2 and 3 we review the main theo-
retical tools which are typically used to describe Bose-Einstein condensates (Gross-
Pitaevskii and Bogoliubov theories) and use them to derive the most relevant prop-
erties of coherently-coupled superfluid mixtures; we also briefly discuss the numerical
techniques we exploited to obtain the results of this work.

Chapter 4 is devoted to analog Hawking radiation. First predicted by Hawking in
1974 [28, 29], thermal emission from astrophysical black-holes (and their subsequent
evaporation) remains one of the most fascinating yet untested phenomena stemming
from quantum effects in curved spacetime geometries. Its experimental observation,
at least in the analog context, was the main subject of interest for the analog grav-
ity community for many years [30–37]. Curved spacetime configurations mimicking
the properties of an event horizon have been realized with a variety of platform [8–
13]. The simplest (one-dimensional) analog black-hole configuration for a BEC is ob-
tained by moving a step-like potential through an elongated atomic cloud [10]: the
step position marks the location of the analog horizon, namely an interface separating
two regions with supersonic and subsonic fluid flow, which represent the interior and
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exterior of the black-hole, respectively. Within this setup, it has been shown that
spontaneous Hawking radiation can be detected through equal-time correlations of
density perturbations emitted on the two sides of the horizon [38, 39]: a first experi-
mental measurement was performed in 2016 [40], and then improved in the following
years [41, 42]. So far, Hawking emission has escaped observation in any other ana-
log system, as well as in the astrophysical context. Its elusive nature resides in the
weakness of the signal with respect to any source of noise.

We analyse Hawking radiation emitted from a spin-sonic horizon in an unpolar-
ized binary mixture in the simplest one-dimensional geometry considered in previous
literature [43–45]. Our purpose is twofold: from a conceptual point of view, contrary
to the case of a single-component systems, spin excitations in binary mixtures can be
made massive in the presence of a coherent coupling, with the mass being tunable
through the Rabi frequency; moreover, the experimental accessibility of additional
degrees of freedom, such as the relative phase between the two components, opens
the possibility of identifying observables in which the intensity of the Hawking signal
overcomes by orders of magnitude that of the typical mustache observed in density
correlations, thus potentially facilitating experimental measurements.

In Chapter 5 we consider two-dimensional analog black-hole geometries, which
can be realised through draining vortices [12]. With respect to the one-dimensional
configuration discussed above, vortices allow to analyse the effect of rotation: in
formal terms, the analog metric of the system can display both an horizon and an
ergoregion. In the gravitational context, spacetimes with an ergoregion (such as Kerr
black-holes) are predicted to superradiate [46, 47], namely to lose rotational energy
via the amplified reflection of incoming radiation, similarly to what happens with
electromagnetic waves impinging on a rotating cylinder [48]. Although pioneering
experiments have lead to the experimental measurement of superradiant amplification
on several classical platforms [49–51], other superradiance-related phenomena still
remain untested.

In the presence of reflecting boundaries on either side of the ergosurface, self-
stimulated superradiance gives rise to dynamical instabilities [52–54]: from a micro-
scopic perspective, these can be interpreted as the excitation of exponentially growing
modes either inside or outside the ergoregion. For astrophysical black-holes, instabil-
ities might arise if the horizon does not behave as a perfectly absorbing surface, or if
the black-hole is surrounded by an accretion disk. In the analog context, this trans-
lates into the absence of a drain term or the confinement of the condensate by some
trapping potential. Both these conditions are naturally realized in atomic BECs, that
indeed represent, at least in principle, the ideal platform to study analog superradiant
instabilities [55].

Numerical studies [56] on the stability of vortex configurations in single-component
condensates have shown that analog ergoregion instabilities are always associated to
high-frequency modes that evolve into splitting or displacement of the vortex itself.
The development of such instabilities is however challenging to observe experimentally,
due to the small size of the vortex, typically comparable with the imaging resolution,
and to the vanishing atomic density in the vortex core.
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In this Thesis we extend the same numerical analysis to binary mixtures. Two-
component condensates have two independent branches of elementary excitations,
associated to perturbations of the total density and of the relative density, featuring
with different values of the speed of sound and of the healing length [57]. Thanks
to this additional degree of freedom, as well as to the availability of interferometric
techniques based on a coherent mixing of the two components which allow to image
all quadratures of the quantum field, we expect both conceptual and practical ad-
vantages with respect to the single-component case. Indeed, within some parameters’
range, we find anomalous low-frequency modes that not only are associated with a
much larger ergoregion and thus easier to access in experiments, but also involve, at
long times, phononic emission from the ergosurface rather that vortex deformation,
in closer analogy with the expected behaviour in the astrophysical context.

Chapter 6 is devoted to a prediction of quantum field theory with relevant applica-
tions to cosmology, known as false vacuum decay (FVD), that has recently attracted
the attention of the analog gravity community [58–68]. The term false vacuum decay
refers to the decay of a quantum field from a metastable state (or false vacuum) to its
ground state (or true vacuum), triggered by quantum or thermal fluctuations [69–71].
In an extended system the tunnelling process is expected to occur locally through the
formation of one or more bubbles of true vacuum, which then expand in time while
releasing energy.

According to the latest measurements of the Higgs boson mass, the standard model
predicts the Higgs field to be in a metastable state of the Higgs potential [72–74], so our
Universe could (and eventually will) be annihilated by a FVD process. While the decay
rate is believed to be extremely small at present times, the metastability of electroweak
vacuum has strong implications on cosmological models describing the inflationary
and post-inflationary phases, due to the presence of additional mechanisms that could
have triggered FVD in the Early Universe [75], such as high temperatures and fast
accelerated expansion. Inflation itself might have been the the result of a false vacuum
decay process: if this was the case, signatures of it might be found in the cosmic
microwave background (CMB) spectrum [76]. In general however, an experimental
observation of FVD in the astrophysical context seems extremely challenging.

Here, we discuss the realization of thermally-induced false vacuum decay with
a coherently-coupled two-component mixture. The project was carried on within a
collaboration with the experimental group at the Pitaevskii BEC Center and Ian Moss
(and collaborators), from the University of Newcastle; in this Thesis we will focus on
the numerical analysis of the problem, which was our main contribution to this work.

One of the basic ingredients to observe false vacuum decay is a mean-field energy
landscape with an asymmetric double-well profile: absolute and relative minimum of
the potential represent the true and false vacuum states, respectively. The most nat-
ural way to achieve this is to exploit spontaneous symmetry-breaking in a system in
the vicinity of a phase transition. Coherently-coupled BEC mixtures display a mag-
netic quantum phase transition [77]: hence their mean-field energy can be engineered
to have a double well profile, whose shape is controllable by changing the strength
and detuning of the coherent coupling. The tunability of the double-well potential
makes it possible to determine how the tunnelling time depends on the height of the



1.1. Structure of the Thesis 5

potential barrier between the two minima, and compare the numerical results both
with the theoretical prediction and the experimental data.

The last Chapter 7 is devoted to concluding remarks and to a brief discussion of
future perspectives in the field.
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2 Bose-Einstein condensates as
gravitational analogs

Bose-Einstein condensation was first predicted by Einstein in 1925, building upon
an idea of Bose: when a dilute and non-interacting gas of bosons is cooled down
to temperatures close to the absolute zero, a phase transition takes place, with the
ordered phase being characterized by a macroscopic occupation of the lowest-energy
single-particle state. The resulting phase coherence and long-range order make BECs
the ideal platform to study quantum effects on a macroscopic scale.

Over the years the theoretical description of Bose-Einstein condensation has been
extended to include the presence of interactions and confinement, as well as to mix-
tures and photonic systems [14, 78]. The first experimental observation of an atomic
BEC dates back to 1995 [79, 80]; since then the technological advances in the field
have allowed to realize condensation with various atomic species, molecules and pho-
tons, to manipulate both the strength and range of interactions, and to accurately
control the confining potentials to engineer arbitrary geometries and configurations.

The relatively simple theoretical description of these systems, together with the
remarkable level of control in experiments, make Bose-Einstein condensates a powerful
platform in the study or simulation of a wide variety of physical phenomena.

2.1 The Gross-Pitaevskii equation

The main theoretical tools we will be using throughout the Thesis are Gross-Pitaevskii
and Bogoliubov theory, that is, the mean-field description of a BECs and its lowest-
order quantum correction. All the results that we present in this section can be found
in Refs. [14, 15]. Both Gross-Pitaevskii and Bogoliubov theory rely on the same set
of assumptions, that we list and discuss in the following:

(a) Since Bose-Einstein condensation, as all phase transitions, occurs only in the
thermodynamic limit, the number of atoms N has to be macroscopically large;

(b) We consider dilute and weakly interacting gases: this condition guarantees that
only contact two-body interactions take place and that the only relevant param-
eter describing such interactions is the s-wave scattering length a. Hence, the
full quantum Hamiltonian of the system reads:

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + V (r) +

g

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r) (2.1)

where Ψ̂(r) is a complex quantum field, g ≡ 4π~2a/m is referred to as interaction
constant, m is the atomic mass and V (r) the confining external potential. From
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(2.1) one can easily derive an Heisenberg equation for the field:

i~
∂Ψ̂

∂t
= [Ψ̂(r), Ĥ] =

[
− ~2

2m
∇2 + V (r) + gΨ̂†(r)Ψ̂(r)

]
Ψ̂(r) (2.2)

by exploiting the canonical commutation relation [Ψ̂(r), Ψ̂†(r′)] = δ(r− r′).

(c) Temperature T is much lower than the condensation temperature, so that the
number of condensed particles N0 = 〈â†0â0〉 (â0 being the annihilation operator
for the lowest-energy single-particle state) is much larger than the number of
non-condensed particles δN = N −N0 � N0.

(d) The crucial point in the theoretical derivation is the so-called Bogoliubov pre-
scription, namely the substitution of â0 with a complex number

√
N0e

iα, where
N0 is the (macroscopic) occupation of the lowest-energy single-particle state
and α is an arbitrary phase. Such a replacement is justified as follows: the
operatorial nature of â0, â

†
0 stands in their commutator being non-zero, that is

〈â†0a0〉 = N0 6= N0 + 1 = 〈â0â
†
0〉; however, in the limit of macroscopic occupa-

tion of the lowest-energy state N0 →∞, the difference between the two averages
becomes negligible and â0 can be treated as a number.

More rigorously, we are assuming that the average value of the annihilator oper-
ator 〈â0〉 over the state of the system is non-zero below the critical temperature:
this is straightforwardly verified if the condensate is in a coherent state, charac-
terized by a well-defined phase rather than a well-defined particle number. Such
phase locking is responsible for the spontaneous symmetry breaking of Gauge
symmetry at the BEC phase transition.

Based on the above assumptions, let us separate the condensed and non-condensed
components of the field: Ψ̂(r) =

√
N0ψ(r) + ˆδΨ(r), where ψ(r) is the lowest-energy

single particle wavefunction, orthogonal to ˆδΨ. Expansion of the full Hamiltonian
(2.1) up to second order in ˆδΨ leads to the result:

Ĥ = E + δE(2) + Ĥ(1) + Ĥ(2) +O
(δN
N

)
(2.3)

The first term of the expansion is the Gross-Pitaevskii mean-field energy contribution:

E = N

∫
dr
[
~2

2m
|~∇ψ|2 + V |ψ|2 +

N

2
g|ψ|4

]
(2.4)

It can be obtained directly by replacing the field operator with a classical wavefunction,
thus neglecting both thermal and quantum depletion of the condensate. A second
order correction δE(2) to this mean field energy can be computed, but is typically
discarded since it is neither dependent on the field perturbation ˆδΨ nor extensive
with respect to N . With the same replacement of the field Ψ̂ with the wavefunction√
Nψ, one derives, from Eq.(2.2), the Gross-Pitaevskii (GP) equation:

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + V + gN |ψ|2

]
ψ := Hψ (2.5)
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Stationary solutions fulfil Hψ = µψ, where µ is the chemical potential of the system:

µ =
∂E

∂N
=

∫
dr
[
~2

2m
|∇ψ|2 + V |ψ|2 + gN |ψ|4

]
=

∫
drψ∗Hψ (2.6)

As expected, stationary solutions are also minima of the energy functional: indeed,
if we assume the time-independent Gross-Pitaevskii equation is fulfilled, the linear
contribution Ĥ(1) vanishes due to the orthogonality of ψ and ˆδΨ:

Ĥ(1) =
√
N

∫
dr
(
Hψ
)

ˆδΨ
†

+ h.c. =
√
Nµ

∫
drψ ˆδΨ

†
+ h.c. = 0 (2.7)

2.2 Bogoliubov theory

Bogoliubov theory builds up on the next order of approximation, which coincides with
the quadratic terms in the field perturbation:

Ĥ(2) =
1

2

∫
dr
(

ˆδΨ
†
, ˆδΨ

)
σ3L[ψ]

( ˆδΨ
ˆδΨ
†

)
(2.8)

where σ3 = diag(1,−1) is the third Pauli matrix and the L is the Bogoliubov matrix :

L[ψ] =

(
H+ gN |ψ|2 − µ gNψ2

−gNψ∗2 −(H+ gN |ψ|2 − µ)

)
(2.9)

It is worth noticing that the Bogoliubov matrix is pseudo-hermitian, since L† = σ3Lσ3.
This has interesting implications on its spectrum, which will be discussed later. More-
over, it guarantees that the Hamiltonian is hermitian, σ3L = L†σ3.

The equation of motion for the field perturbations is derived either by linearizing
(2.2) or as the Heisenberg equation associated to the Hamiltonian Ĥ(2) in Eq. (2.8):

i~
∂

∂t

( ˆδΨ
ˆδΨ
†

)
= L[ψ]

( ˆδΨ
ˆδΨ
†

)
(2.10)

Stationary solutions of this equation coincide with the eigenstates of the Bogoli-
ubov matrix and therefore diagonalize the Bogoliubov Hamiltonian Ĥ(2). To prove
this, it is convenient to write the field perturbations in terms of single-particle cre-
ation/annihilation operators âλ, â

†
λ: let λ be a set of quantum numbers labelling

single-particle states, and λ = 0 indicate the lowest-energy one. Moreover, let us ex-
pand the field perturbation in terms of quasi-particle creation/annihilation operators:

ˆδΨ(r, t) =
∑
λ 6=0

ψλ(r, t)âλ :=
∑
λ 6=0

[
uλ(r, t)b̂λ + v∗λ(r, t)b̂†−λ

]
(2.11)

where uλ, vλ are usually referred to as the particle and antiparticle components of the
mode. With this expansion, we transfer the space and time dependence of ˆδΨ to the
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spinor (uλ, vλ)>, so that Eq.(2.10) translates to:

i~
∂

∂t

(
uλ
vλ

)
= L[ψ]

(
uλ
vλ

)
(2.12)

These are known as Bogoliubov-de Gennes equations. They can also be obtained from
a linearization of the Gross-Pitaevskii equations by expanding the order parameter as
ψ → ψ + δψ, with

δψ(r, t) =
∑
λ 6=0

[
uλ(r, t) + v∗λ(r, t)

]
e−iµt/~ (2.13)

Moreover, if we expand the Gross-Pitaevskii energy functional keeping only up to
quadratic terms in δψ, we get the same expression as (2.8), provided the substitution
of the field perturbation with the wave-function variation, ˆδΨ→

√
Nδψ.

Note that the expansion of the field perturbation as in (2.11), or equivalently
(2.13), allows to transfer the normalization and orthogonality condition from the field
to the spinor (uλ, vλ). In particular, if:

〈ψλ|σ3|ψλ′〉 :=

∫
dr
[
u∗λ(r)uλ′(r)− v∗−λ(r)v−λ′(r)

]
(2.14)

is the Bogoliubov inner product, the spinor components must satisfy 〈ψλ|σ3|ψλ′〉 =

0 for all λ 6= λ′ and 〈ψλ|σ3|ψλ〉[b̂λ, b̂†λ] = 1. Despite being a conserved quantity
during the time evolution, the Bogoliubov product is not positive-definite; collective
excitations can therefore be classified into positive- and negative-norm modes: while
the former fulfil canonical commutation relations, for the latter the role of creation
and annihilation operators is exchanged. In physical terms, this means that creating
a quasi-particle with positive energy is equivalent to destroying one with negative
energy, and vice-versa.

The quadratic hamiltonian Ĥ(2) can be expressed in terms of creation/annihilation
operators for quasi-particle excitations:

Ĥ(2) =
1

2

∑
λ,λ′ 6=0

(
b̂†λ, b̂λ

)(ελλ′ f∗λλ′
fλλ′ ε∗λλ′

)(
b̂λ′

b̂†λ′

)
(2.15)

where the diagonal and off-diagonal coefficients are:

ελλ′ = i~
∫

dr
(
u∗λ
∂uλ′

∂t
− v∗−λ

∂v−λ′

∂t

)
(2.16)

fλλ′ = i~
∫

dr
(
v−λ

∂uλ′

∂t
− uλ

∂v−λ′

∂t

)
(2.17)

Let us now assume the spinor (uλ, vλ) is an eigenstate of the Bogoliubov matrix L
with eigenvalue ~ωλ; the off-diagonal contributions due to fλλ′ , after being summed
over λ, λ′ vanish, while the diagonal coefficients simplify to ελλ′ = ~ωλ〈ψλ|σ3|ψλ〉δλλ′ .
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Hence, eigenstates of the Bogoliubov matrix diagonalize the Bogoliubov Hamiltonian:

Ĥ(2) =
∑
λ 6=0

~ωλ〈ψλ|σ3|ψλ〉
(
b̂†λb̂λ +

1

2

)
:=
∑
λ 6=0

Eλ

(
b̂†λb̂λ +

1

2

)
(2.18)

Notice how the energy Eλ of a mode is given by the product between its norm and
its frequency. Therefore, the nature of elementary excitations over a stationary BEC
depends on the spectral properties of the Bogoliubov matrix L. As already mentioned,
it is not hermitian: as a consequence, its eigenvalues are not necessarily real. However
pseudo-hermiticity guarantees that, for each eigenmode:

(ωλ − ω∗λ)〈ψλ|σ3|ψλ〉 = 0 (2.19)

Modes with positive or negative norm are necessarily associated to a real eigenvalue.
For each positive-norm mode (uλ, vλ)> with frequency ωλ there exist a negative-
norm mode (v∗λ, u

∗
λ)> with frequency −ωλ: the two correspond to the same physical

oscillation and have the same energy Eλ. Such redundancy, also referred to as particle-
hole symmetry, is due to the expansion (2.11) and is easily cured by either including
in the sum only modes with positive frequency, but both norm signs, or vice-versa
(only positive norm, but both frequency signs).

According to (2.18), the energy of each eigenmode is given by the product between
its eigenfrequency ~ωλ and its norm. If ψ is the ground state, all excitations on top
of it must have positive energy: the class of positive (negative) norm modes coincides
with the class of positive (negative) frequency modes. The presence of an excitation
with negative energy (that is, norm and frequency of different signs) is the signal of
an energetic or thermodynamical instability: these modes cannot be excited in an
energy-conserving setup, but would destabilize the system if dissipation was included
in the GP equation and the system let to thermalize.

Remarkably, Eq.(2.19) suggests that modes with complex frequency can exist if
they have zero norm. Due to the pseudo-hermiticity of L, these modes come in
pseudo-degenerate pairs with complex-conjugates frequencies: such excitations are
either exponentially growing or suppressed in time. Hence, their existance signals a
dynamical instability of the system in the state ψ. Dynamically unstable modes can be
populated even in the absence of dissipation, since they carry zero energy. Physically,
they correspond to the simultaneous excitation of modes with opposite energy.

2.2.1 The homogeneous condensate

The simplest configuration that can be discussed using the above formalism is the
uniform condensate in a box of volume V . The ground state of the system is described
by ψ(r, t) = e−iµt/~/

√
V , where µ = gn is the chemical potential and n = N/V is the

condensate density. The mean field energy is E = gNn/2. Elementary excitations
are plane waves with wavevector k, so that (uλ, vλ)> = (Uk, Vk)

>eik·r/
√
V . Notice

that Uk, Vk are now constants in both space and time and depend only on k = |k|.
Since the kinetic energy operator becomes a multiplicative factor, −∇2 = k2, the
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Bogoliubov matrix takes the simple form:

L =

[
~2k2/2m+ µ µ

−µ −
(
~2k2/2m+ µ

)] (2.20)

Its diagonalization is straightforward and gives the well-known Bogoliubov dispersion:

(~ωk)2 =
~2k2

2m

(~2k2

2m
+ 2µ

)
(2.21)

There exist a positive- and a negative-frequency eigenvalue, whose associated Bogoli-
ubov spinors (Uk, Vk)

> have positive and negative norm, respectively. Each branch
has phononic behaviour at low momenta, with speed of sound c =

√
µ/m, and a

particle-like behaviour at high momenta. The threshold between the two regimes is
found at k ∼ 1/ξ, where ξ = ~/mc is the healing length of the condensate.

The Bogoliubov norm simplifies to 〈ψk|σ3|ψk〉 = |Uk|2 − |Vk|2 = ±1: the Bogoli-
ubov transformations, which relate particle to quasi-particle operators:

âk = Uk b̂k + V ∗k b̂
†
−k (2.22)

are therefore hyperbolic rotations or, equivalently, squeezing transformations. The
diagonal and off-diagonal terms appearing in the expansion (2.15) of Ĥ(2) are:

εkk′ =

[
~2k2

2m

(
|Uk|2 + |Vk|2

)
+ µ|Uk + Vk|2

]
δkk′ := εk δkk′ (2.23)

fkk′ =

[
~2k2

m
UkVk + µ(Uk + Vk)

2

]
δk,−k′ := fk δk,−k′ (2.24)

As expected, only terms fulfilling momentum conservation survive, leading to:

Ĥ(2) =
1

2

∑
k 6=0

(
b̂†k, b̂−k

)(εk f∗k
fk εk

)(
b̂k

b̂†−k

)
(2.25)

In order to diagonalize this Hamiltonian, we choose the spinor components such that
fk = 0 and εk = ~ωk. Such requirements are satisfied if 2UkVk = −µ/~ωk and:

S(k) := (Uk + Vk)
2 =

~2k2

2m~ωk
=

√
~2k2/2m

~2k2/2m+ µ
(2.26)

The quantity S(k) is called structure factor of the condensate, and it describes the
response of the system to density perturbations: it vanishes linearly with k at small
momenta (k < 1/ξ), while it tends to a unit constant value for high-momentum modes.

The Heisenberg equations associated to (2.25), governing the dynamics of quasi-
particle creation/annihilation operators, are:

i~
∂

∂t

(
b̂k

b̂†−k

)
=

(
εk f∗k
−fk −εk

)(
b̂k

b̂†−k

)
(2.27)
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If the Hamiltonian is diagonalized by the choice of {Uk, Vk}, the result is trivially an
oscillation at frequency ω+

k .

2.3 The gravitational analogy

All the results derived in the previous Section can be expressed in terms of density
and phase of the condensate and their perturbations [14, 15]. This will allow to
describe a condensate in terms of generalized hydrodynamic equations, which are at
the basis of the gravitational analogy. If we write the order parameter in the Madelung
representation as

√
Nψ =

√
n exp(iφ), the mean field energy of the condensate reads:

E =

∫
dr
[
~2

2m

(
~∇
√
n
)2

+
~2n

2m

(
~∇φ
)2

+ V n+
1

2
gn2

]
(2.28)

and the real and imaginary parts of the Gross-Pitaevskii equations translate to:

∂n

∂t
+ ~∇

(
n

~
m
~∇φ
)

= 0 (2.29)

~
∂φ

∂t
+

~2

2m

(
~∇φ
)2

+ V + gn =
~2

2m

∇2√n√
n

(2.30)

It is worth mentioning that, if we treat the quantity in squared brackets of (2.28) as
a classical Hamiltonian density, n and ~φ behave as canonically conjugated variables:
Eqs.(2.29), (2.30) can indeed be derived as Lagrange equations from (2.28).

Eq.(2.29) is a continuity equation for the total density if we define the (irrotational)
velocity flow of the condensate as v = (~/m)~∇φ. Consistently, nv is the quantum
mechanical current associated to the state ψ. Eq.(2.30) can be written as:

m
[
∂t + v · ~∇

]
v + ~∇

(
V + gn

)
=

~2

2m
~∇
(
∇2√n√

n

)
:= P (2.31)

and is analogous to the Euler equation for a perfect fluid subject to an external force.
The additional term P is typically called quantum pressure since it is the only term
in which ~ appears explicitly. The limit in which quantum pressure can be ignored is
referred to as hydrodynamic regime.

At linear order, small perturbations of density and phase represent the real and
imaginary part of the wave-function perturbation δψ:

δψ = ψ

(
δn

2n
+ iδφ

)
:= ψ

(
ε1 + iε2

)
(2.32)

The Bogoliubov-de Gennes equations (2.12) translate to:(
∂t + v · ~∇ −D
2gn/~ +D ∂t + v · ~∇

)(
ε1

ε2

)
= 0 (2.33)



14 Chapter 2. Bose-Einstein condensates as gravitational analogs

where the operator appearing on the off-diagonal terms is:

D(·) = − ~
2mn

~∇
[
n~∇(·)

]
(2.34)

In the case of a uniform background (~∇n = 0), ~D coincides with the kinetic energy
operator. Moreover, since the perturbations ε1, ε2 can be expanded in plane waves,
Eqs.(2.33) become algebraic: ∂t → −iωk, ~∇ → ik, D → ~k2/2m. Their solution
gives the Bogoliubov dispersion relation for a condensate moving at velocity v: as
expected, the only difference with respect to (2.21) is a Doppler shift of the frequencies:
ωk → ωk − k · v.

The second equation of the system (2.33) is, once again, an Euler equation for
a perfect fluid provided the term Dε1, coming from the linearization of quantum
pressure, is negligible, that is, ~Dε1 � 2gnε1. Such condition is satisfied if δn varies
over length scales larger than the healing lenght of the condensate ξ, namely for long-
wavelength perturbations. In what follows we show that, within this hydrodynamic
regime, the Bogoliubov equations (2.33) can be cast in the form of Klein-Gordon
equations for a scalar massless field in a curved spacetime, with the speed of light
replaced by the speed of sound in the condensate c =

√
gn/m.

The proof of the gravitational analogy starts from the definition of a four dimen-
sional tensor and its inverse [3]:

fµν =
1

n

(
−(c2 − |v|2) −v>
−v I

)
fµν =

n

c2

(
−1 −v>
−v c2I− vv>

)
(2.35)

where (vv>)ij = vivj . Let us then compute the following quantity:

∂µ
[
fµν∂νε2

]
= −

(
∂t + ~∇ · v

) [ n
c2

(
∂t + v · ~∇

)
ε2

]
+ ~∇ ·

[
n~∇ε2

]
(2.36)

where (~∇·v)(x) = ~∇(vx) = v·~∇x+x(~∇·v). According to the Bogoliubov equation for
the phase perturbation, we can replace (∂t + v · ∇)ε2 = −(2gn/~)ε1 = −(2mc2/~)ε1:

∂µ
[
fµν∂νε2

]
=

2m

~

[(
∂t + ~∇ · v

)
(nε1)− nDε2

]
= (2.37)

=
2m

~
ε1

[
∂tn+ ~∇ · (nv)

]
+

2m

~
n
[(
∂t + v · ~∇

)
ε1 −Dε2

]
(2.38)

The first square bracket vanishes thanks to the continuity equation (2.29) for the total
density, while the second one is zero due to the Bogoliubov equation for ε1:

∂µ
[
fµν∂νε2

]
= 0 (2.39)

The final result is therefore a Klein-Gordon equation for a massive field in a curved
spacetime if we define the analog inverse metric so that

√
−ggµν = fµν , g being the

determinant of gµν =
√
−gfµν . The value of g can be easily determined by solving:

det(fµν) =
(√
−g
)4
g−1 = −

(√
−g
)2

= −n4/c2 (2.40)
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which implies
√
−g = n2/c. The analog metric takes then the form:

gµν =
n

c

(
−(c2 − |v|2) −v>
−v I

)
(2.41)

and the Klein-Gordon equation reads:

1√
−g

∂µ

[√
−ggµν∂νε2

]
= 0 (2.42)

The phase perturbation ε2 := δφ plays the role of a massless (possibly quantum)
field propagating on a curved spacetime, whose geometry is fully determined by the
velocity of the condensate flow and by the speed of sound.

The analogy between Eq. (2.33) and Eq. (2.42) is the core idea behind Analog
Gravity: the density and phase of the order parameter, which determine the speed of
sound and velocity flow of the condensate, can be manipulated in space and time to
simulate geometries of interest. However, it is worth pointing out that the gravita-
tional analogy has limitations. The major one resides evidently in the validity of the
hydrodynamic approximation: the quantum pressure term is safely neglected only for
perturbations whose wavelength is larger than the healing length ξ, that is, phononic
excitations. Strictly speaking, we are restricted to the analysis of physical phenomena
in which the dynamics is dominated by low-frequency modes.

Another assumption that was made to get to Eq. (2.33) is the linearization of the
Gross-Pitaevskii equations: we considered perturbations which are small enough to
not perturb the background order parameter of the condensate. In other words, we
can simulate the dynamics of fields on top of a fixed spacetime geometry, not the full
Einstein’s equations.

Even when the above requirements are fulfilled, it is not possible to engineer arbi-
trary spacetimes, due to the limited number of degrees of freedom of the analog metric
(2.41), but rather toy models [81] that reproduce the main features of geometries of
interest, such as the presence of an event horizon, for instance.

Despite these limitations might appear as major drawbacks in the field, they could
also be seen as an occasion to exploit analog systems to go beyond the dynamics of
scalar fields propagating in curved spacetimes: for instance, deviations from a linear
dispersion can be seen as Lorentz symmetry breaking at length scales below the healing
length ξ, which plays the role of the Planck length [6, 7]; indeed analog models appear
particularly suited to investigate the so-called transplankian problem associated to
Hawking emission from black-holes [82, 83]. Moreover, if the perturbation amplitude
exceeds the linear regime and acts on the background metric, one could analyse the
backreaction of quantum fields on the geometry [5].

Throughout this Thesis, we analyse the analog counterpart of astrophysical phe-
nomena in configurations that violate at least one of the above assumptions, and to
which, as a consequence, the gravitational analogy cannot be straightforwardly ap-
plied; this is the reason why we use theoretical tools and methods which come from
the physics of ultracold gases, rather than from quantum field theories on curved
spacetimes. Remarkably, even though we mostly consider regimes that do not prop-
erly fulfill the hydrodynamic approximation, the main features of the astrophysical
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phenomenon of interest are preserved.

As already mentioned, this Thesis is focused on coherently-coupled binary mix-
tures of Bose-Einstein condensates; before proceeding to the study of a few analog
phenomena in these systems, it is therefore necessary to review their main properties
and understand how and when the gravitational analogy applies to them. This will
be the subject of next Chapter.
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3 Coherently-coupled
two-component mixtures

This Chapter is devoted to a summary of the relevant properties of two-component
BEC mixtures: we review the main theoretical tools that will be employed throughout
the Thesis, that is Gross-Pitaevskii and Bogoliubov theories. The last two Sections
are dedicated to a brief discussion of numerical techniques and experimental protocols
that have been used to produce some of the results we show in the next Chapters.

Multicomponent Bose-Einstein condensates can be obtained by either condensing
different atomic species (heterospecies mixtures) or by exploiting the internal level
structure of a single atomic species. We focus on the latter case, so that atoms
belonging to the two components have equal masses m1 = m2 ≡ m, are subject to
the same external potential V (r, t) and can be interconverted using an external field.
Contact inter-species and intra-species interactions are described by the constants g12

and {g11 > 0, g22 > 0}, respectively, proportional to the s-wave scattering length
associated to the interaction potentials [14]. The values of these interaction constants
depends on the internal levels of the atomic structures which are chosen to produce
the mixture.

Two-component condensates are either miscible if |g12| <
√
g11g22 or immiscible, if

vice-versa [14]. The physics becomes much richer if we allow atoms to be transferred
from one component to the other by means of a coherent coupling of Rabi strength
Ω ≥ 0, possibly detuned with respect to the atomic transition by a frequency δ. As
we will see, this further degree of freedom affects the magnetic properties of the BEC,
as well as the nature of its elementary excitations.

3.1 Gross-Pitaevskii theory

The mean field dynamics of a two-component BECmixture is described by two coupled
Gross-Pitaevskii equations [14], that, in the reference frame rotating with the coherent
coupling, read:

i~
∂

∂t

(
ψ1

ψ2

)
=

(
H1 −~Ω/2
−~Ω/2 H2

)(
ψ1

ψ2

)
(3.1)

where the two diagonal operators are defined as:

Hj := −~2∇2

2m
+ V +

~δ
2

(−1)3−j + gjjN |ψj |2 + g12N |ψ3−j |2 (3.2)

The order parameters ψ1, ψ2 associated to the two species are normalized to Nj/N ,
where Nj is the number of atoms in the j-th component and N = N1 + N2. In the
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presence of the coupling (Ω 6= 0), N1, N2 are not necessarily conserved separately,
but the total number of atoms N is. The two atomic densities are n1 = N |ψ1|2 and
n2 = N |ψ2|2. The energy functional of the system, from which it is possible to derive
equations (3.1), takes the form:

E = N

∫
dr
[
~2

2m

(
|~∇ψ1|2 + |~∇ψ2|2

)
+ V

(
|ψ1|2 + |ψ2|2

)
+

~δ
2

(
|ψ1|2 − |ψ2|2

)
+

+
N

2
g11|ψ1|4 +

N

2
g22|ψ2|4 +Ng12|ψ1|2|ψ2|2 − ~ΩRe(ψ∗1ψ2)

] (3.3)

Energetic arguments based on (3.3) show that, if Ω = 0 and |g12| >
√
g11g22, it is

convenient for the two components to occupy different volumes and do not interact,
rather than stay mixed [14]. Moreover, given the dependence of the energy functional
on the relative phase ϕ := arg(ψ1ψ

∗
2), which only appears in the last term of (3.3)

as −~Ω|ψ1||ψ2| cosϕ, the ground state is characterized by ϕ = 0: in other words,
the relative phase must be counter-aligned with the Rabi field in order to minimize
the energy of the system. In the absence of coherent coupling, the energy is instead
independent on ϕ, which can arbitrarily change without energy cost. This gauge
freedom reflects the conservation of the relative number of particles N1 −N2, which,
in the presence of a coherent coupling, is not fulfilled due to the possibility of transfer
atoms from one component to the other. The gauge freedom in the choice of the
global phase is instead associated to the conservation of the total number of particles
N , which is always satisfied.

Total density n n1 + n2

Magnetization Z (n2 − n1)/n
Relative phase ϕ arg(ψ1ψ

∗
2)

Average intraspecies interactions g (g11 + g22)/2
Intraspecies interaction imbalance ∆ (g11 − g22)/2
Density interaction strength G g + g12

Spin interaction strength κ g − g12

Effective detuning δeff δ + ∆n/~

Table 3.1: Definitions of the relevant physical quantities.

3.2 Spin vector formalism

At the mean-field level, the state of a two-component mixture is fully determined by
the total density n = n1 +n2, polarization Z ≡ (n2−n1)/n and relative phase ϕ; the
one-body density matrix ρ of the system:

ρ = N

(
|ψ2|2 ψ∗1ψ2

ψ1ψ
∗
2 |ψ1|2

)
=

1

2

[
nI + S · ~σ

]
(3.4)
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can be expanded in the basis of Pauli matrices provided the definition of a spin vector:

S = Tr(~σρ) = n
(√

1− Z2 cosϕ,
√

1− Z2 sinϕ,Z
)

(3.5)

If θ = arccos(Z), the state of a mixture can be locally represented as a point (θ, ϕ)
on the surface of a Bloch sphere of radius n = Tr(ρ).

The equation of motion for the one-body density matrix is obtained by direct
calculation from (3.1). The kinetic term can be expressed as the divergence of a
2 × 2 × d quantum-mechanical current tensor J (d being the dimensionality of the
system):

J µab =
N~
2mi

[
(∂µψa)ψ

∗
b − ψa(∂µψ∗b )

]
(3.6)

The decomposition of J in the basis of Pauli matrices requires the definition of the
total current vector Kµ and of a spin current matrix Fµν :

Kµ := Tr(J µ••) = J µ11 + J µ22 (3.7)
Fµν := Tr(σνJ µ••) (3.8)

(along the rows we span the spin space coordinates ν = 1, 2, 3, while along the columns
we span the real space coordinates µ = x, y, z).

By direct computation, exploiting the definitions of S,J ,Kµ, Fµν , one also finds
that the total and spin currents are related through the identity:

nFµν = KµSν +
~

2m
(∂µS× S)ν (3.9)

With these definitions, the equation of motion for the density matrix takes the form:

∂tρ+ ~∇ · J =
1

2i

[
ρ,H · ~σ

]
=

1

2
(S×H) · ~σ (3.10)

where the notation stands for (~∇·J )ab = ∂µJ µab and the last equality is a consequence
of the following property of Pauli matrices: [a · ~σ,b · ~σ] = 2i(a× b) · ~σ. Moreover, we
have defined the (spin-dependent) external field [77, 84, 85]:

H =
(
Ω, 0, δeff − κS3/~

)
(3.11)

whose components depend on the coherent coupling and on the interaction constants
through the quantities defined in Table 3.1.

It is sufficient to exploit the Pauli decomposition and separate the terms propor-
tional to I from those proportional to ~σ to obtain a continuity equation for the total
density and the equation of motion for the spin vector [77, 84, 85]:

∂tn+ ∂µK
µ = 0 (3.12)

∂tS + ~∇ · F = S×H (3.13)

where the notation stands for (~∇ · F )ν = ∂µF
µ
ν . The continuity equation (3.12) is as-

sociated to the conservation of the total number of particles; Eq. (3.13) implies that a
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conservative spin dynamics can only be observed in the absence of the external field H
(that is, without coherent coupling and in a perfectly symmetric configuration) or, in
general, if the spin vector is aligned with the field. If this is true, the Noether currents
F are associated to the conservation of the three components of the spin vector, or,
equivalently, magnetization (relative number of particles) and relative phase.

3.3 Bogoliubov theory of collective excitations

A deep insight on the physical properties of the system is given by the Bogoliubov
theory of small excitations over a stationary state. As for a single BEC, this pertur-
bative approach consists in the linearization of the Gross-Pitaevskii equations (3.1),
and can be easily quantized to include the lowest order corrections to the mean field
hamiltonian [14]. If (ψ1, ψ2) is a stationary solution of (3.1) with chemical potential
µ, and (δψ1, δψ2) are small perturbations of such stationary state, the Bogoliubov-de
Gennes equations take the form:

i~
∂

∂t


δψ1

δψ∗1
δψ2

δψ∗2

 = L


δψ1

δψ∗1
δψ2

δψ∗2

 :=

(
L11 L12

L21 L22

)
δψ1

δψ∗1
δψ2

δψ∗2

 (3.14)

where the 2× 2 blocks of the Bogoliubov matrix L are defined as:

Ljj =

[
Hj + gjjN |ψj |2 − µ gjjNψ

2
j

−gjjNψ∗2j −
(
Hj + gjjN |ψj |2 − µ

)] (3.15)

L12 =

[
g12Nψ1ψ

∗
2 − ~Ω/2 g12Nψ1ψ2

−g12Nψ
∗
1ψ
∗
2 −g12Nψ

∗
1ψ2 + ~Ω/2

]
(3.16)

and L21 = L12[ψ1 ↔ ψ2]. Notice that the two diagonal blocks have the same general
structure of (2.9). The matrix L12 contains instead terms arising from interspecies
interaction and from the coherent coupling.

As for a single-component BEC, the spectrum of the Bogoliubov matrix gives the
dispersion relation for elementary excitations over the stationary state, and allows to
study the stability of such configuration. Once again, the Bogoliubov matrix is not
hermitian, but pseudo-hermitian, that is L = η−1L†η for η = diag(1,−1, 1,−1). This
implies that the standard norm is not a conserved quantity in the dynamics described
by (3.14); on the other hand, the conserved Bogoliubov pseudo-norm is not positive
definite. The energy of an eigenmode is given by the product between its norm and its
eigenfrequency. Eigenstates of the Bogoliubov matrix L are therefore classified into
three groups:

1. Stable modes with positive (negative) norm and positive (negative) frequency,
so that their energy is positive.

2. Energetically unstable modes with positive (negative) norm and negative (posi-
tive) frequency, and consequently, negative energy. The existance of these modes
signals that the considered stationary state is not the ground state of the system.



3.4. Unpolarized mixtures 21

However, they can only be excited in the presence of a dissipation mechanism,
leaving the mixture dynamically stable in an energy-conserving setup.

3. Dynamically unstable modes with complex frequency and zero norm. They come
in pseudo-degenerate pairs: one is evanescent, while the other is exponentially
growing in time; moreover, can be populated even in the absence of dissipation,
since they carry zero energy. Physically, they correspond to the simultaneous
excitation of modes with opposite energy.

In order to avoid double-counting of the modes, throughout this Thesis we will only
considered positive and complex frequency solutions, but keep both norm signs.

A solution to both the mean-field dynamics and the Bogoliubov problem is hardly
found in the most general case. Hence, in the following Sections we focus on two
specific cases of interest:

(a) Resonantly-coupled unpolarized mixtures, defined by g11 = g22 := g, δ = 0 and
N1 = N2; stationary states are characterized by the two components being
associated to the same order parameter ψ1 = ψ2 := ψ. As we prove in Section
3.4, there exist two independent branches of collective modes, and an analog
metric can be defined for both.

(b) Polarized uniform mixtures: the most generic case δ 6= 0, g11 6= g22 can be
treated semi-analytically for uniform mixtures (see Section 3.5), whose total
density and global phase dynamics is assumed to be trivial.

3.4 Unpolarized mixtures

Let us first focus on the peculiar case of a resonantly coupled balanced mixture, that
is, let us assume g11 = g22 := g and δ = 0 [14, 86]. We will show that there exist
some parameters’ range in which the two components are described by the same order
parameter ψ and N1 = N2 = N/2. Stationary states satisfy the time-independent
Gross-Pitaevskii equation for some chemical potential µ:

µψ =

[
−~2∇2

2m
+ V +GN |ψ|2 − ~Ω

2

]
ψ := Hψ (3.17)

Notice that, in contrast to the case of a single condensate considered in the previous
Chapter, ψ is now normalized to 1/2, or, equivalently, that the total density is n =
2N |ψ|2. The energy of a generic configuration is given by:

E = 2N

∫
dr
[
~2

2m
|~∇ψ|2 + V |ψ|2 +

N

2
G|ψ|4 − ~Ω

2
|ψ|2

]
(3.18)

In terms of the spin analogy [see Eq.(3.5)], balanced mixtures live on the equator of
the Bloch sphere (Z = 0): if Ω = 0 the relative phase is undetermined, while in the
presence of the coupling, the spin vector is forced to remain aligned with the external
field H = −Ωê1, that is, S = nê1. Spin currents can all be trivially written in terms
of Kµ = nvµ [see Eq.(3.7)], with v = (~/m)~∇arg(ψ) being the global (irrotational)
velocity of the BEC.



22 Chapter 3. Coherently-coupled two-component mixtures

Collective excitations of the mixture can be classified into density (d) and spin (s)
modes, namely perturbations of the total density and global phase, and perturbations
of the relative density and relative phase. Indeed if we perform a π/4-rotation of the
Bogoliubov spinor (and, consequently, of its u, v components):

δψd
δψ∗d
δψs
δψ∗s

 = M


δψ1

δψ∗1
δψ2

δψ∗2

 M =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 (3.19)

the transformed Bogoliubov matrix takes a block-diagonal form:

MLM−1 =

(
Ld 0

0 Ls

)
(3.20)

where the two diagonal blocks are:

Ld =

[
H+GN |ψ|2 − µ GNψ2

−GNψ∗2 −
(
H+GN |ψ|2 − µ

)] (3.21)

Ls =

[
H+ κN |ψ|2 − µ+ ~Ω κNψ2

−κNψ∗2 −
(
H+ κN |ψ|2 − µ+ ~Ω

)] (3.22)

The 4 × 4 Bogoliubov problem for a symmetric mixture reduces therefore to two
independent 2× 2 Bogoliubov problems for density and spin modes, both completely
analogous to that of a single-component Bose-Einstein condensate. In formal terms,
the quadratic correction to the energy of the system can be written as the sum of two
independent contributions H(2) = H

(2)
d +H

(2)
s , where:

H
(2)
j =

N

2

∫
dr(δψ∗j , δψj)σ3Lj

(
δψj
δψ∗j

)
(3.23)

Each of the two terms is diagonalized by the eigenmodes of the associated Bogoli-
ubov matrix. Both Ld and Ls have the same structure of (2.9), thus they share the
same spectral properties. More specifically, results for density and spin modes can be
obtained from those of a single BEC by making some substitutions

(d) g → G/2 := (g + g12)/2 (3.24)

(s)
g → κ/2 := (g − g12)/2
(H− µ)→ (H− µ) + ~Ω

(3.25)

The factors 2 come from the different normalization of ψ with respect to the case of a
single-component condensate. Notice that the presence of the coherent coupling only
affects spin excitations.

Uniform unpolarized mixture Let us discuss more in detail the differences between
the two branches of collective excitations by analysing the simplest case of a uniform
mixture of total density n. For plane wave excitations H − µ is simply the kinetic
energy, thus the substitution H−µ→ H−µ+~Ω translates to ~2k2/2m→ ~2k2/2m+
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~Ω. Hence, the Bogoliubov dispersion relation for density and spin modes are:

~ω±d (k) = ±

√
~2k2

2m

(
~2k2

2m
+Gn

)
(3.26)

~ω±s (k) = ±

√(
~2k2

2m
+ ~Ω

)(
~2k2

2m
+ ~Ω + κn

)
(3.27)

By analogy with the single-component case, let us define µd := Gn/2 and µs := κn/2.
There exist both positive and negative frequency modes, whose norm has the same

sign as the frequency. Dynamically unstable density modes appear if G < 0, namely
g12 < −g: indeed the system becomes unstable against collapse. Similarly, the sym-
metric state ψ1 = ψ2 is unstable in the spin channel if κn + ~Ω < 0. Without the
coherent coupling, this condition reads g12 > g: the mixture is unstable against sepa-
ration of the two components; immiscible mixtures with κ < 0 are instead stabilized
by a sufficiently strong coupling ~Ω > |κ|n. As we will see in Section 3.5, dynamical
instabilities arise if ~Ω < |κ|n, because the ground state of the system is a polarized
state with non-zero magnetization, while the stationary state with Z = 0 becomes a
maximum of the energy functional (see Sec. 3.5).

0 0.2 0.4
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0.1
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0.3

(a)

0 0.2 0.4

(b)

Figure 3.1: Bogoliubov dispersion relation for density (blue solid
line) and spin (red solid line) modes. Obtained with κ/G = 0.1 (dotted
horizontal line) and different values of the coherent coupling ~Ω/κn =
0, 0.1. The dashed line indicates the value of µs. In the absence of
a coherent coupling [panel (a)], both dispersion relations are gapless
and phononic at small momenta, with different sound speeds. The
coherent coupling only affects the spin dispersion, opening a gap at
k = 0 [panel (b)]. Notice that the same dispersion relations could
be obtained by changing the sign of κ to negative and tuning the
Rabi frequency ~Ω > |κ|n such that the spin gap ωp is unchanged.
For panels (a) and (b) this is achieved by setting κ/G = −0.1 and

~Ω/κn = −1,−10, respectively.

Examples of the two dispersion relations both for Ω = 0 and Ω 6= 0 are given
in panels (a) and (b) of Fig.3.1, respectively. Density modes are unaffected by the
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coupling and long wavelength excitations are phononic, with speed of sound cd =√
Gn/2m =

√
µd/m. The threshold momentum defining the phononic vs. particle

behaviour of density modes is k ∼ 1/ξd, where ξd = ~/mcd. The gapless nature of
the dispersion is associated, through the Goldstone theorem, to the conservation of
the total number of particles, which holds regardless of the value of Ω. The static
structure factor for density modes is analogous to that of a single-component system
and vanishes linearly with k at small momenta:

Sd(k) =

√
~2k2/2m

~2k2/2m+ 2µd
(3.28)

The nature of long-wavelength spin modes depends instead on Ω: indeed a gap of
size ~ωp =

√
~Ω(~Ω + κn) opens in the presence of the coherent coupling, due to the

broken U(1) symmetry associated to the conservation of N1−N2. This reflects on the
static structure factor for spin modes, which is also gapped at k = 0:

Ss(k) =

√
~2k2/2m+ ~Ω

~2k2/2m+ ~Ω + κn
(3.29)

If |κ|n � ~ωp, spin modes behave like free particles, with a gapped (ωp ∼ Ω) almost
quadratic dispersion and an almost unitary static structure factor for all k. The
phononic nature of long-wavelength spin excitations is instead trivially recovered when
Ω = 0 (and κ > 0): the speed of spin-sound is cs =

√
κn/2m =

√
µs/m and the

hydrodynamic regime is reached for k < 1/ξs where ξs = ~/mcs. In this limit the
structure factor (3.29) is, once again, linear with k: the mixture responds very weakly
to small-frequency relative density perturbations, while relative phase fluctuations are
critical: this confirms that the gap closing at Ω = 0 is associated to a U(1) symmetry
for the relative phase, or, equivalently, to the conservation of the relative number of
particles N1 −N2, recovered in the absence of coherent coupling.

Remarkably, the gap in the spin dispersion ωp also closes if ~Ω + κn = 0; this
necessarily requires κ < 0. Similarly to the case Ω = 0, spin modes are phononic
with speed of sound cs =

√
|κ|n/2m =

√
|µs|/m; however, while the dispersion

relation is identical, the physical properties of the mixture are entirely different, due
to the different sign of κ. Such difference becomes appreciable when computing the
Bogoliubov amplitudes. In particular, the sign of the product UkVk is opposite with
respect to κ. A change of the sign of κ that leaves the frequency unaffected (this is
possible in the spin channel by properly modifying the Rabi strenght) is equivalent to
the transformation: (Uk+Vk)→ (Uk−Vk) = (Uk+Vk)

−1. In terms of static structure
factors, it is equivalent to the transformation Ss(k) → 1/Ss(k): if κ < 0 and ~Ω =
|κ|n, then Ss diverges as 1/k in the long-wavelength limit. This is shown in Fig. 3.2,
where we report the static structure factor of both density and spin excitations, for
different values of the parameters.

In other words, we can say that, if ~Ω+κn = 0, the mixture becomes extremely sen-
sitive to relative density perturbations. As we will prove in Section 3.5, this happens
because ~Ω + κn = 0 defines the critical point for a para-to-ferromagnetic quantum
phase transition: the gap closing is thus due to the spontaneous breaking of the Z2

symmetry for the exchange of the two components.



3.4. Unpolarized mixtures 25

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 3.2: Static structure factor associated to total density (blue
curves) and spin density (red curves) perturbations for different values
of the parameters. In particular: ~Ω/κn = 0 (dotted), −1 (solid), 0.1
(dashed), −10 (dash-dotted); in all cases |κ|/G = 0.1. The density
structure factor is not affected by the presence of a coherent coupling
(all four curves are superimposed). The parameters that give the solid
and dotted (dashed and dashdotted) curves are both associated to
the dispersion relation in panel (a) [(b)] of Fig. 3.1: a change of
sign in κ that leaves the dispersion unchanged is equivalent to the

transformation Ss(k)→ S−1s (k).

3.4.1 Measurement of the Bogoliubov dispersion relation through
the excitation of Faraday patterns

The Bogoliubov dispersion relation and structure factor of a single-component BEC
were first measured by means of Bragg spectroscopy [87]. Another experimental pro-
tocol that is widely used to excite modes in ultracold atoms is through parametric
resonance [18, 88–95]. In particular, such technique can be be exploited to measure the
Bogoliubov dispersion relation for elementary excitations in a spin-symmetric binary
mixture, both with and without a coherent coupling between the two components.
An exhaustive explanation of the experimental protocol and an analysis of the results
can be found in Refs. [57, 96]; we contributed to this work by providing theoretical
and numerical support.

In an intuitive way, one can understand the parametric excitation process as the
emission of pairs of phonons (of frequency ωM/2 and opposite wave vectors ±k) as
a response to a periodic modulation of the chemical potential of the mixture with
driving frequency ωM 1 (see the sketch in Fig. 3.3); the interference of the two emitted
waves with the underlying condensate leads to the development of a stationary pat-
tern, known as Faraday wave, whose spatial periodicity is 2π/k and whose visibility

1In experiments, this is achieved either through a modulation of the interaction constants or
through a periodic driving of the external trapping potential, which immediately transfers to the
total density.
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oscillates in time with frequency ωM [90, 94]. The frequency of the modulation is
therefore related to the periodicity of the Faraday wave through the Bogoliubov dis-
persion relation; moreover, since binary mixtures display two independent channels
of elementary excitations, Faraday patterns with different wave-vector, given by the
solutions of ωd,s(k) = ωM/2, will appear in both the total and relative density [57].

ω+
d,s(k)

k

ωM

−k k

ωM/2

Figure 3.3: Parametric excitations of two counter-propagating Bo-
goliubov modes due to a modulation of frequency ωM .

More rigorously, one can prove that the Heisenberg equations for creation and
annihilation operators of spin modes (2.27) can be cast in the form of a Mathieu
equation (see Ref.[57] for the complete calculation). A stability analysis of such equa-
tion reveals the presence of a series of instability bubbles centred around momenta
satisfying the condition ω(k) = lωM/2, with integer l. The largest lobe is the one
associated with l = 1, thus the mostly excited momentum is defined by ω(k) = ωM/2,
as expected. Nonetheless, higher harmonics (l > 1) might also be excited by the
periodic modulation.

The experimental data, obtained with a periodic driving the transverse trapping
frequency of a cigar-shaped two-component mixture, are reported in Fig. 3.4, which
shows the Fourier transform of the effectively-1D total [panel (a)] and relative [panel
(b)] density profiles of the mixture, against the modulation frequency. As expected,
the signal is peaked at specific momenta, which are related to ωM through the Bo-
goliubov dispersion relation: notice that the spin dispersion appears also in the total
density because of a small imbalance in the two populations n1, n2, which induces a
coupling between the two otherwise independent channels of excitations.

It is worth noticing that, since the growth rate of the unstable mode depends on
the structure factor [57], the same experimental protocol that lead to the measurement
of the Bogoliubov dispersion could also be used to measure Sd,s(k) through an analysis
of the visibility of the pattern in time.

The potential application of the parametric excitation of modes in the analog
gravity context has been highlighted in several works, see Refs. [4, 5, 17, 18, 97, 98].
More specifically, this technique could be used to investigate cosmological particle
creation during preheating ; this term refers indeed to a post-inflationary phase in
which the inflaton field oscillates near the minimum of its potential, and particles are
created in pairs due to a parametric resonance [99, 100].
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Figure 3.4: Measurement of the Bogoliubov dispersion relations in
a spin-symmetric binary mixture through the excitation of Faraday
patterns [57, 96]. Panels (a) and (b) show the Fourier transforms of the
effectively one-dimensional total density and relative density profiles,
respectively. Blue (red) lines indicate the expected dispersion relation
for density (spin) modes with µd/2π ' 3 kHz (µs/2π ' 145 Hz); these
values are computed from the measured peak 3D density by taking into
account the geometric renormalization of the interaction constants due

to the transverse harmonic trap, see Eqs.(3.78) and (3.82).

3.4.2 Quantization of the modes

As already mentioned, Bogoliubov theory can be easily quantized by promoting the
perturbations δψj to quantum fields ˆδΨj in the density and spin quadratic Hamilto-
nians (3.23): the Bogoliubov-de-Gennes equations are derived from these operators as
Heisenberg equations for the field perturbation.

Each of the field perturbation for density and spin modes can be expanded in
terms of single-particle or quasi-particle creation/annihilation operators:

ˆδΨj(r, t) =
∑
λ 6=0

ψjλ(r, t)âjλ :=
∑
λ 6=0

[
ujλ(r, t)b̂jλ + v∗jλ(r, t)b̂†j,−λ

]
(3.30)

where the Bogoliubov coefficients {ujλ, vjλ} can be chosen so to diagonalize the
quadratic Hamiltonians (3.23) and j = d, s.

The same decomposition can be applied to the components of the spin vector S,
which contains all the quadrature of the fields. As already mentioned, a symmetric
mixture is characterized, at the mean field level, by S = (n, 0, 0). It is therefore
interesting to look at the expansion of S2 ∼ nδϕ and S3 ∼ nδZ in terms of spin
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modes, in the regime of small perturbations of the relative phase ϕ and magnetization
Z. It is straightforward to show that, to the lowest order in the perturbations:

Ŝ2 ' i
√
n
(

ˆδΨs − ˆδΨ
†
s

)
=
√
n
∑
λ 6=0

[
i
(
usλ − vs,−λ

)
b̂sλ + h.c.

]
(3.31)

Ŝ3 '
√
n( ˆδΨs + ˆδΨ

†
s) =

√
n
∑
λ 6=0

[(
usλ + vs,−λ

)
b̂sλ + h.c.

]
(3.32)

The first component is perturbed instead by density modes: Ŝ1 = n+
√
n( ˆδΨd+ ˆδΨ

†
d).

As expected, all the components of the spin vector are hermitian operators.

Uniform unpolarized mixture Let us consider the simplest case of a uniform mixture:
once again, λ coincides with the momentum k of the modes; single-particle states are
ψk(r) = eik·r/

√
V , while the Bogoliubov spinor takes the simple form (ujλ, vjλ) →

(Ujk, Vjk)ψk(r), where the coefficients (Ujk, Vjk) are real constant in space and time
and only depend on k = |k|. The Bogoliubov transformations read:

âjk = Ujk b̂jk + Vjk b̂
†
j,−k (3.33)

with the constraint U2
jk−V 2

jk = 1 (we expect only positive energy modes, because the
uniform density profile is the ground state). The quadratic Bogoliubov Hamiltonians
only contain momentum-conserving terms:

Ĥ
(2)
j =

1

2

∑
k 6=0

(
b̂†jk, b̂j,−k

)(εjk fjk
fjk εjk

)(
b̂jk

b̂†j,−k

)
(3.34)

The diagonal and off-diagonal contributions are defined as:

εjk :=

(
~2k2

2m
+ ~Ωδjs

)(
U2
jk + V 2

jk

)
+ µj(Ujk + Vjk)

2 (3.35)

fjk :=

(
~2k2

2m
+ ~Ωδjs

)
2UjkVjk + µj(Ujk + Vjk)

2 (3.36)

Diagonalization of the two Bogoliubov Hamiltonians is straightforwardly obtained by
setting fjk = 0 and εjk = ~ω+

j (k), or equivalently, if (3.28) and (3.29) are fulfilled.

3.4.3 Hydrodynamic theory and the gravitational analogy

The hydrodynamic equations for density and spin perturbations are found, once again,
by straightforwardly generalizing those of a single-component condensate (2.33).

In particular, for density modes we have to replace 2g → G:(
∂t + v · ~∇ −D
Gn/~ +D ∂t + v · ~∇

)(
ε1

ε2

)
= 0 (3.37)

where ε1 = δnd/n := (δn1 + δn2)/n and ε2 = δφd := δφ1 + δφ2 are the real and
imaginary part of the wavefunction perturbation, defined in terms of the density and
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phase perturbations of the two components, δψj =
√
n/2 + δnj exp(iδφj).

As we already proved in Chapter 2, this is equivalent, within the hydrodynamic
approximation (~Dε1 � Gnε1), to a Klein-Gordon equation equation for the global
phase perturbation ε2, while the total density dynamics trivially follows the global
phase: ε1 = −(~/Gn)(∂t + v · ~∇)ε2. The analog spacetime is described by the metric
(2.41) with speed of sound cd =

√
Gn/2m.

For spin modes, the equations are found by replacing both 2g → κ and D → D+Ω:(
∂t + v · ~∇ −(Ω +D)

κn/~ + Ω +D ∂t + v · ~∇

)(
ε1

ε2

)
= 0 (3.38)

with ε1 = δns/n := (δn1 − δn2)/n and ε2 = δφs := δφ1 − δφ2. If Ω = 0, the system
of Eqs.(3.38) is analogous to (3.37): the hydrodynamic approximation, ~Dε1 � κnε1,
allows to rewrite it in the form of a Klein-Gordon equation for a massless scalar
field ε2 = δφs, provided the speed of light is replaced with the speed of spin sound
cs =

√
κn/2m.

In the presence of the coherent coupling, the system of Eqs.(3.38) can be cast in
the form of a Klein-Gordon equation for a massive scalar field in two limits:

(a)
~Ω

κn+ ~Ω
� 1, κ > 0 (b)

~Ω + κn

~Ω
� 1, κ < 0 (3.39)

Not surprisingly, these are the conditions under which the spin Bogoliubov dispersion,
despite being gapped, has a linear behaviour for intermediate k, and a speed of sound
cs '

√
|κ|n/2m can be identified. From a mathematical point of view, the gravita-

tional analogy relies on the possibility of neglecting the derivative D in either one of
the two equations (3.38). If the conditions (3.39)(a) and ~Dε1 � κnε1 are fulfilled,
the same derivation of Chapter 2 leads to:

(a)
1√
−g

∂µ

[√
−ggµν∂νε2

]
− 2mΩ

~

(cs
n

)
ε2 = 0 (3.40)

with cs =
√

(κn+ ~Ω)/2m '
√
κn/2m. The magnetization ε1 follows the dynamics

of the relative phase according to (κn/~ + Ω)ε1 = −(∂t + v · ~∇)ε2.
If instead we assume (3.39)(b) and ~Dε2 � ~Ωε2 ' |κ|nε2, by exchanging the

roles of the field perturbations ε1, ε2, we find:

(b)
1√
−g

∂µ

[√
−ggµν∂νε1

]
− 2m(~Ω + κn)

~2

(cs
n

)
ε1 = 0 (3.41)

where the speed of spin-sound is cs =
√
~Ω/2m '

√
|κ|n/2m, while the dynamics of

relative phase perturbations is trivially given by Ωε2 = (∂t + v · ~∇)ε1.
Both Eqs. (3.40), (3.41) are relativistic Klein-Gordon equations for a massive scalar

field subject to a curved spacetime geometry, and whose mass is tunable via the
strength Ω of the coherent coupling:

(a)
M

2m
=

√
~Ω

κn+ ~Ω
� 1 (b)

M

2m
=

√
~Ω + κn

~Ω
� 1 (3.42)
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More specifically, if ~Ω � κn (with κ > 0) the role of the scalar field is played by
long-wavelength relative phase perturbations, while if ~Ω ∼ |κ|n (with κ < 0), the
relevant dynamical variable is the magnetization ε1 ∼ δZ. The gravitational analogy
breaks down instead if |κ|n � ~Ω, for which neither of the two conditions (3.39) is
satisfied; consistently, in the same regime the Bogoliubov dispersion is quadratic for
all k and no speed of sound can be defined.

To summarize, the gravitational analogy can be exploited with symmetric mix-
tures, both for density and spin modes; the two branches of collective excitations are
subject to an analog metric with structure given by (2.41): while the velocity flow v
of the condensate is fixed by the total density profile and is therefore the same for
both channels, the speed of sound c is different. In certain limits [see Eq. (3.39)], a
coherent coupling allows to simulate the dynamics of massive fields, with the (possibly
position-dependent) mass being tunable through the value of the Rabi frequency Ω.
These results were first derived in Refs.[25–27] for the most general case of a coher-
ently coupled mixture of atoms with different masses and intraspecies interactions:
we have restricted here to our specific case of interest.

As a last observation, we point out that the diagonalization of (3.37), (3.38) allows
to find the Bogoliubov dispersion relations for density and spin modes in a frame
moving with velocity v. For uniform systems D coincides with the kinetic energy
and therefore acts as a multiplicative factor ~2k2/2m; hence the only difference with
respect to (3.26) and (3.27) is a Doppler shift of the mode frequencies: ω → ω−k ·v.

It is worth noticing that, if the velocity v of the condensate is sufficiently large,
positive norm modes can acquire a negative frequency (and vice-versa) in the labo-
ratory frame. The existance of negative energy modes is a key ingredient to observe
spontaneous or stimulated particle creation, allowing for the realization of the analog
version of gravitational processes (Hawking radiation from sonic black-holes, to cite
one). From the cold gases perspective, it is a manifestation of the Landau criterion for
superfluidity: if the speed of the condensate exceeds the Landau velocity (that, in our
case, coincides with the speed of sound), superfluidity breaks down and excitations
can be created.

3.5 Uniform polarized mixtures

Symmetric mixtures represent the only parameter configuration for which spin and
density channels decouple regardless of the total density profile. However, as an-
ticipated in Sec. 3.4, mixtures with non-vanishing magnetization Z show magnetic
properties. If combined with the superfluid character of the system, these allow to
investigate magnetism in a dissipationless and collisionless regime that is extremely
hard to achieve with other condensed matter platforms; examples range from the
dynamics of domain-walls [77] to the relaxation mechanism from a metastable state
[101]. We will discuss the latter in detail in Chapter 6.

In what follows, we analyse the stationary states and elementary excitations of
uniform binary mixtures. The results presented here were derived in [86] for a resonant
coherent coupling (δ = 0); here we generalize the treatment by allowing a non-zero
detuning of the coupling from the atomic transition.
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In order to simplify the calculations, we assume that there is no background veloc-
ity and the density is uniform in space (no external potentials). These requirements
allow to neglect the dynamics of total density and global phase and reduce the number
of dynamical variables to two: relative phase ϕ and magnetization Z.

The two order parameters can be expressed in terms of the (constant) total density
n, the global phase ϕtot, the magnetization Z and the relative phase ϕ:

√
N

(
ψ1

ψ2

)
=

√
n

2

(√
1 + Ze−i

ϕ
2

√
1− Zei

ϕ
2

)
ei
ϕtot

2 (3.43)

According to the continuity equation (3.12), the total density is constant if there is
no global background flow, namely if the total current, defined in Eq. (3.7),

Kµ =
~n
2m

[
∂µϕtot − Z∂µϕ

]
(3.44)

is vanishing. This condition imposes a constraint on the dynamics of the global phase:
~∇ϕtot = Z~∇ϕ, which can thus be eliminated from the equations of motion. Under
this assumption, the Gross Pitaevskii Hamiltonian density reads:

H =
n

2

{
~2

4m

[
|~∇Z|2

1− Z2
+ (1− Z2)|~∇ϕ|2

]
+ U(Z,ϕ)

}
(3.45)

where we have separated the kinetic energy contribution from the effective potential:

U(Z,ϕ) =
1

2
κnZ2 − ~δeffZ − ~Ω

√
1− Z2 cosϕ (3.46)

The equations of motion are derived from (3.13) or directly from the Hamiltonian
density (3.45) (indeed nZ/2 and ~ϕ behave as canonically conjugate variables):

~
∂Z

∂t
− ~2

2m
~∇
[
(1− Z2)~∇ϕ

]
= −

∂U

∂ϕ
= −~Ω

√
1− Z2 sinϕ (3.47)

~
∂ϕ

∂t
+

~2

2m

[
~∇2Z

1− Z2
+

Z |~∇Z|2

(1− Z2)2
+ Z|~∇ϕ|2

]
=
∂U

∂Z
= −δeff + Z

(
κn+

~Ω cosϕ√
1− Z2

)
(3.48)

Algebraic manipulation of (3.48),(3.47) leads to the following identity:

~∇

{
~2

4m

[
|~∇Z|2

1− Z2
+ (1− Z2)|~∇ϕ|2

]
− U(Z,ϕ)

}
= ~

∂Z

∂t
~∇ϕ− ~

∂ϕ

∂t
~∇Z (3.49)

according to which, if the right-hand-side is vanishing, the quantity appearing inside
the braces is position independent. This condition is satisfied for stationary configu-
rations (∂tZ = ∂tϕ = 0), or if the dynamics of one of the two fields is irrelevant (for
instance ∂tϕ = ~∇ϕ = 0) or for solitonic solutions (such that time derivatives and space
derivatives are proportional to one another, for both the fields). In all these cases,
estimating the kinetic energy contribution becomes trivial: the result only depends
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on the local value of the potential U .
Notice that, if both the fields and their variations are small and δeff = 0, expan-

sion to the first order of (3.48) and (3.47) leads to the spin Bogoliubov-de-Gennes
equations, that we derived in the previous section, in the peculiar case ~∇n = 0,v = 0.
In order words the Hamiltonian density (3.45) reduces to the Klein-Gordon one if we
consider only terms up to second order in both the fields. Instead, by assuming that
the mixture is unpolarized, Z ∼ 0, but relative phase variations are not negligible, the
potential reduces to U(Z ∼ 0, ϕ) = −~Ω cosϕ and one obtains a sine-Gordon field
theory [102].

3.5.1 Stationary states and the phase diagram

Let us first analyse the properties of uniform stationary states. This amounts to
assume all time and space derivatives are vanishing, namely that both magnetization
and relative phase are uniform and constant in time. The equations of motion (3.47),
(3.48) are therefore satisfied if the spin vector S is aligned with the effective external
field H, or equivalently:

∂U

∂Z
=
∂U

∂ϕ
= 0 (3.50)

The potential is trivially minimized with respect to ϕ: due to the presence of the
coherent coupling, the two components are forced to stay in phase, ϕ = 0.

The stationary condition for the magnetization then reads:

~δeff = Z

(
κn+

~Ω√
1− Z2

)
(3.51)

The phase diagram of the uniform mixture is visualized in Fig. 3.5: the central color
plot represents the value(s) of Z that correspond to minima of the potential U for each
point in the plane (−κn/~Ω, δeff/Ω); vertical and horizontal cuts of the surface plot
are shown on its left (κn/~Ω = 0.5), right (κn/~Ω = −3.5) and below it (δeff = 0);
panels A-H show the potential landscape, computed using (3.46), as a function of Z,
for some relevant points in the plane.

Let us analyse Fig. 3.5 more in detail: equation (3.51) has either a single solution,
corresponding to a minimum of the potential U and, thus, to the true ground state of
the mixture, or three different solutions, corresponding to an absolute minimum (the
ground state), a relative minimum (a metastable state) and an unstable maximum.
These features are easily proved in the simplest case δeff = 0, for which the energy
profile is symmetric with respect to Z = 0: if −κn/~Ω < 1 (that is either if κ > 0
or, for κ < 0, |κ|n < ~Ω) a single mininum exists at Z = 0 (see panel B); this is the
balanced mixture we considered in Section 3.4. For −κn/~Ω > 1 (that is |κ|n > ~Ω,
with κ < 0), the solution Z = 0 becomes an unstable maximum and two degenerate
ground states are found at ±Z0 (see panel F), with:

Z0 =

√
1−

(
~Ω

|κ|n

)2

(3.52)
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Figure 3.5: Phase diagram of a uniform superfluid mixture subject
to a non-resonant coherent coupling. The color scale refers to the
value(s) of magnetization Z associated to the minima of the potential
U(Z,ϕ = 0) as a function of the physical parameters Ω, δeff, κn. White
solid lines separate the regions of the phase diagram in which the
mixture shows different phases: paramagnetic (PM), ferromagnetic
(FM) and saturated-ferromagnetic (S-FM). Cuts of the surface plot
at fixed κn/~Ω and at fixed δeff/Ω are also shown. Panels A-H show
the profile of U(Z,ϕ = 0) for some relevant locations in the plane

(−κn/~Ω, δeff/Ω).

The phase transition between an unpolarized (paramagnetic, PM) mixture and a po-
larized (ferromagnetic, FM) one is signalled by the spontaneously broken Z2 symmetry,
as visible in the lower panel of Fig. 3.5: the parameter governing the transition is not
temperature, but the non-linearity κ, and the order parameter is the magnetization
Z which becomes non-zero in the ferromagnetic phase.

If the coherent coupling is off-resonant (δeff 6= 0), the energy profile is tilted and
becomes asymmetric with respect to Z = 0, the absolute minimum corresponding
always to a value of the polarization with the same sign as δeff. As for the resonant
case, a secondary minimum appears in the half-plane −κn/~Ω > 1 if δeff is sufficiently
small (see panels E, G); for very large detuning, the magnetization of the system will
simply align with δeff/Ω, showing a saturated-ferromagnet (S-FM) behaviour (panels
D,H). The boundary between the FM and S-FM regions (the white solid line in Fig.
3.5) is determined by the value of δeff for which the secondary minimum and the
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maximum merge into a saddle point; the condition

∂U

∂Z
=
∂2U

∂Z2
= 0 (3.53)

is fulfilled, only if κ < 0, for the critical magnetization:

Z∗ = −sign(δeff)

√
1−

(
~Ω

|κ|n

)2/3

(3.54)

at the critical detuning values δeff = ±δ∗eff, with:

δ∗eff = |κ|n

[
1−

(
~Ω

|κ|n

)2/3
]3/2

(3.55)

It is also interesting to look at vertical cuts of the phase diagram: while on the PM
side (left panel) the spin vector always remains aligned with δeff, in the FM regime
(right panel) the system remains trapped in the relative minimum of the potential
landscape, following an hysteresis cycle of size δhys = 2δ∗eff. The criticality of the point
(−κn/~Ω, δeff/Ω) = (1, 0) is confirmed by the divergence of the magnetic susceptibil-
ity: starting from (3.51) and recalling that the condition δeff = 0 coincides with Z = 0
in the PM phase and with 1−Z2 = (~Ω/κn)2 in the FM phase, the calculation gives:

1

χ
:=

1

Ω

∣∣∣∣ ∂Z∂δeff
∣∣∣∣−1

δeff=0

=


1 +

κn

~Ω
if − κn

~Ω
< 1

−κn
~Ω

[(κn
~Ω

)2
− 1

]
if − κn

~Ω
> 1

(3.56)

Remarkably, the critical exponent is different on the two sides of the critical point.

3.5.2 Experimental measurement of the phase diagram

The phase diagram in Fig. 3.5, as well as the hysteresis width and magnetic suscep-
tibility, has been recently measured experimentally in Ref. [77] using an immiscible
mixture with κ < 0; we contributed to this work by providing theoretical and numer-
ical support. More details on the experimental protocol and analysis of the results
can be found in [96].

The horizontal axis in 3.5 can be explored in space thanks to the inhomogeneous
density profile of the cloud in the harmonic trap: within a local density approximation,
each position x is associated to a different value of |κ|n(x)/~Ω; if |κ|n0/~Ω > 1 (where
n0 is the peak density), the central part of the cloud is FM or S-FM while the tails are
PM. The vertical axis of Fig. 3.5 is instead scanned by varying the physical detuning
δ in time: in order to guarantee that the system remains in a local minimum, the
evolution needs to be adiabatic at all times.

The experimental results are shown in Fig. 3.6: panel (a) shows the real-time
evolution starting from a single-component condensate in the |↓〉 state with large and
negative detuning, while panel (b) refers to the backward evolution starting from
a condensate in the |↑〉 state associated with a large and positive detuning. The
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difference between the two is imputed to the ferromagnetic nature of the mixture:
there exist an hysteretic region in which the state of the system depends on its history;
in particular, the mixture can reside in a minimum of the energy landscape which does
not coincide with the ground state. This is of crucial importance for the simulation
of false vacuum decay, as we will discuss in detail in Chapter 6.

Figure 3.6: Experimental measurement of the phase diagram in
Fig.3.5. The color-scale refers to the value of the magnetization Z.
Panels (a) and (b) refer to the time-evolution observed starting from
a polarized mixture in the |↓〉 (red) and |↑〉 (blue) states, respectively:
in the former case, the detuning is initially large and negative and
ramped up in time, while in the latter the initial detuning is large and
positive, and it is ramped down in time. Black lines mark the theoreti-
cally predicted boundaries of the different phases (PM, FM and S-FM);
in particular the solid line signals the expected location at which the
magnetization jump takes place (that is, the critical detuning ±δ∗eff):
discrepancies between the experimental data and the theoretical pre-
diction are mainly imputed to imperfect adiabaticity (impossible to
guarantee at the transition point) and dimensionality. More details

can be found in Refs. [77, 96].

3.5.3 The magnetic analogy

Given the results presented in the previous Sections, the analogy with a quantum
spin chain is evident: strenght and detuning of the coherent coupling play the role
of the transverse and longitudinal component of an effective external magnetic field
in spin space B = (B1, 0, B3) = (Ω, 0, δeff). The state of the system is determined
by the interplay between such external field and an effective spin-spin interaction
whose strength is given by κn. In the absence of the longitudinal field, if κ > 0 or
B1 dominates over |κ|n (with κ < 0), the spin vector S remains aligned with the
external field B, that is, on the equator of the Bloch sphere: the ground state of the
mixture is unpolarized (Z = 0); if instead spin-spin interactions dominate over B1, it
is energetically favourable for the spins to stay aligned either in the |↑〉 state or |↓〉
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state, and the system shows two degenerate vacua with opposite polarization. A finite
value of B3 has the effect of shifting the magnetization value associated to the PM
phase, and split the energy of the two vacua in the FM phase.

To stress the magnetic analogy, we could rewrite the Gross-Pitaevskii Hamiltonian
density (3.45) in terms of S: the first contribution is a quantum pressure term which
accounts for the tendency of having a spatially uniform magnetization and inhibits
short-wavelength modes; the second term describes spin-spin interactions; the third
one is due to the coupling of the spins with the external magnetic field:

H =
1

2

[
~2

4mn
|~∇S|2 +

1

2
κS2

3 − ~B · S
]

(3.57)

A FM phase can only be obtained if κ < 0, so that the spin-spin interaction term gives
a negative contribution. For uniform systems (constant n, Kµ = 0), the dynamics of
the spin vector Eq. (3.13) can be cast in the form of a (dissipationless) Landau-Lifshitz
equation [77]

∂tS = S× H̃ (3.58)

namely, a nonlinear precession around the effective field

H̃ = −2

~
∂H

∂S
=

~
2mn

∇2S− κS3

~
ê3 + B = H +

~
2mn

∇2S (3.59)

where H = (Ω, 0, δeff − κS3/~), as defined as in (3.11). Indeed, according to (3.8), if
the total current Kµ is vanishing, the divergence of the spin current matrix F can be
written as:

~∇ · F = − ~
2mn

(S×∇2S) (3.60)

If spin currents do not play a relevant role and H̃ ∼ H, the dynamics of the system can
be understood in terms of iso-energetic trajectories on the Bloch sphere: there exist
one or two attractors depending on the parameters, and the time evolution is described
either by an orbit around one of the minima or a two-lobe-shaped trajectory encircling
both. The correction term ∝ ∇2S, appearing in Eq. (3.59), is instead responsible for
a quantum torque effect [85] that significantly influences the dynamics of extended
non-uniform systems, especially when driven far away from equilibrium.

It is worth pointing out that, despite the many analogies with a quantum spin
chain, a few differences can be noticed as well: first, we are neglecting the dynamics
some of the degrees of freedom of our system (total density and global phase), which,
as we will discuss in the following Section, are not entirely independent on the spin
vector dynamics. Consequences of this approximation are further discussed in Chapter
6. Moreover, spin chain Hamiltonians describe discrete systems, while Bose-Einstein
condensates are associated to a continuous field theory and thus provide a larger
number of degrees of freedom [such as the quantum torque term in Eq.(3.60)].

3.5.4 Bogoliubov excitations

The Bogoliubov problem for a mixture (3.14) is in general complex enough to require
a numerical solution: for finite δeff, not even the values of magnetization Z associated
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to the stationary states can be found analytically. However, if the mixture is uni-
form, excitations can be expanded in terms of plane waves of momentum k and the
Bogoliubov matrix becomes algebraic. As shown in Sec. 3.4, the diagonalization of
the Bogoliubov matrix for an unpolarized mixture becomes much easier if the spinor
basis is rotated by θ/2 [see Eq.(3.19)], where θ = arccos(Z) = π/2 is the polar angle
in the Bloch sphere. For a polarized mixture, it is therefore convenient to apply the
following transformation to the Bogoliubov spinor:

M̃ =


cos(θ/2) 0 sin(θ/2) 0

0 cos(θ/2) 0 sin(θ/2)
− sin(θ/2) 0 cos(θ/2) 0

0 − sin(θ/2) 0 cos(θ/2)

 (3.61)

It is worth pointing our that this transformation is legitimate only if θ (that is, the
magnetization) is uniform in space.

The new spinor, whose elements are hereafter identified with the labels d (density)
and s (spin), involves combination of the original perturbations δψ1, δψ2 weighted
with the local fraction of atoms in each component: indeed cos(θ/2) =

√
n1/n and

sin(θ/2) =
√
n2/n. Unfortunately, the transformed Bogoliubov matrix does not have

a block diagonal structure, but simplifies to:

M̃LM̃−1 =

(
L̃d (σ3I)α/2

(σ3I)α/2 L̃s

)
(3.62)

where the two diagonal blocks have the usual Bogoliubov structure:

L̃d =

[
~2k2/2m+ µ̃d µ̃d

−µ̃d −
(
~2k2/2m+ µ̃d

)] (3.63)

L̃s =

[
~2k2/2m+ ~Ω̃ + µ̃s µ̃s

−µ̃s −
(
~2k2/2m+ ~Ω̃ + µ̃s

)] (3.64)

provided the definition of some effective parameters:

µ̃d = µd + µsZ
2 −∆nZ µ̃s = (1− Z2)µs Ω̃ =

Ω√
1− Z2

(3.65)

These quantities reduce to µd = Gn/2 = (g+ g12)n/2, µs = κn/2 = (g− g12)n/2 and
Ω once we set Z = 0, and we recover the results of Section 3.4.

The mixing between density and spin modes is encoded in a single parameter

α =
√

1− Z2(κZ −∆)n (3.66)

which vanishes only in the following cases:

(a) For the symmetric unpolarized mixtures considered in Section 3.4, characterized
by ∆ = (g11 − g22)/2 = 0 and Z = 0;

(b) If all interaction constants are identical, so that κ = ∆ = 0;
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(c) If the solution Z = ∆/κ corresponds to a stationary state of the system, that
is, satisfies Eq. (3.51).

The eigenvalues of the two diagonal blocks Ld,s of the Bogoliubov matrix lead to
the density and spin dispersion, which have the same structure of (3.26), (3.27):

~ω̃2
d(k) =

~2k2

2m

(
~2k2

2m
+ 2µ̃d

)
(3.67)

~ω̃2
s(k) =

(
~2k2

2m
+ ~Ω̃

)(
~2k2

2m
+ ~Ω̃ + 2µ̃s

)
(3.68)

We notice that the density dispersion does not depend directly on Ω, but only in-
directly through the value of Z appearing in the definition of µ̃d; moreover, such
dependence is weak as long as G � |κ|, |∆|. On the contrary, the spin dispersion
has a strong dependence on both Ω and Z: in particular, spin modes have entirely
different nature depending on which stationary state one is considering (the absolute
minimum, the local one or the maximum). For instance, dynamical instabilities ap-
pear in the spin sector if one considers the magnetization associated to a maximum
of the potential U , while the density branch remains stable.

The exact eigenvalues of the Bogoliubov problem have energies given by the
avoided crossing between the two branches ω̃d,s, namely:

ω2
±(k) =

ω̃2
d(k) + ω̃2

s(k)

2
±

√(
ω̃2
d(k)− ω̃2

s(k)

2

)2

+
α2

~2
· ~k

2

2m

(
~k2

2m
+ ~Ω̃

)
(3.69)

For small α, ω±(k) will deviate from ω̃d,s(k) close to the region where they cross [see,
as an example, panel (a) of Fig.3.7]. Hence the two eigenstates will have density
character for small momenta and spin character for high momenta or vice-versa.

Finally, it is worth pointing out that, even if the spin channel is dynamically stable
(ω̃2
s ≥ 0 for all k), the ω− branch might become unstable due to the presence of the

coupling α. This cannot happen if one is considering excitations over the ground
state of the mixture (which must be dynamically stable), but might occur if the
stationary state of interest corresponds to the relative minimum of the potential U in
the ferromagnetic sector (κ < 0); an example is shown in Fig. 3.7(b). In other words
the ferromagnetic metastable state with Z anti-aligned with respect to the external
field B3 might be dynamically unstable if the crossing point between ω̃d and ω̃s is at
very low k, or equivalently, when the gap in the spin dispersion

ω̃p =

√
Ω̃(Ω̃ + 2µ̃s/~) (3.70)

becomes small enough with respect to α. In formulas:

~ω̃p
2|µ̃s|

=
~Ω/|κ|n

(1− Z2)3/2

√
1− (1− Z2)3/2

~Ω/|κ|n
� 1 (3.71)

Since the condition ~Ω/|κ|n → 0 also implies
√

1− Z2 ∝ ~Ω/|κ|n → 0, the only
way to close the gap is to set the quantity under square root to zero. Recalling Eq.
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(3.54), we conclude that the gap in ω̃s closes only if Z = Z∗, or, equivalently, when
the detuning is close enough to the critical value defining the edge of the FM region:
hence, due to the non-zero coupling α with the density channel, the ω− branch of the
dispersion shows dynamical instabilities. In other words, at the edge of the hysteresis
region, the secondary minimum becomes unstable at the level of quantum fluctuations
and indeed the system jumps to the true ground state.

0 0.2 0.4
0

0.1

0.2

0.3

(a)

0 0.2 0.4

(b)

Figure 3.7: Dispersion relations ~ω±(k) obtained for a ferromagnetic
mixture with κ/G = −0.1, ∆ = κ and |κ|n/~Ω ' 1.5. The effective
detuning is set to δeff = 0.9δ∗eff. Panels (a) and (b) refer to the sta-
tionary states associated to the absolute (Z > 0) and relative (Z < 0)
minimum of the potential U(Z,ϕ = 0). Notice how the interaction
imbalance ∆ 6= 0 makes the coupling α between density and spin
channels asymmetric with respect to the sign of Z. The dashed black
line indicates the value of µ̃s. The dotted curves represent the uncou-
pled spin and density dispersions ω̃d,s(k); the color scale is associated

to the density/spin character of the modes.

3.6 Numerical details

Although the simplest configurations can be analysed analytically, most of those con-
sidered in this Thesis require a numerical solution. Simulations have been performed
in one and two dimensions, typically in the presence of a trapping potential. Both
physical (interactions, number of particles, temperature, etc...) and numeric (resolu-
tion, convergence threshold, etc...) parameters have been adapted to the various cases
of interest. The main routines we used are listed in the following:

(a) The first task we needed to implement is the initialization of the system in
the ground state or in a stationary state of the Gross-Pitaevskii equations. In
the case of one-dimensional simulations, this is easily obtained with imaginary
time evolution: the real time variable is replaced with an imaginary time t →
τ = it so that the time-evolution operator e−iHt → e−Hτ acts by lowering the
energy of the system. We then solve the Gross-Pitaevskii equations in imaginary
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time (by means of an Euler algorithm) until we converge in one of the minima
of the energy landscape. For higher dimensional simulations (2D and above),
imaginary-time evolution converges very slowly, thus it needs to be sped up
by a conjugate gradient algorithm [103]: each imaginary time-step is chosen to
minimize the energy of the state after the step itself.

As for all minimization algorithms, one must start sufficiently close to the sta-
tionary state of interest, to avoid getting stuck in a different minimum of the
energy landscape. We typically choose as initial state the Thomas-Fermi solution
of the stationary Gross-Pitaevskii equation and impose at every step eventual
symmetries of the considered configuration.

(b) The real-time evolution, in the absence of both quantum and thermal fluctu-
ations, is found by solving the time-dependent Gross-Pitaevskii equations by
means of a split-step algorithm. At each step the time evolution operator is split
into two parts: first the kinetic energy is applied in Fourier space, where it acts
as a diagonal operator; then the wavefunction is transformed back to real space,
where the potential acts trivially.

(c) The exact diagonalization of the Bogoliubov problem is performed using prede-
fined routines in one dimension and for two-dimensional systems with cylindrical
symmetry (so the problem could be reduced to an effectively one-dimensional
one for the radial direction).

(d) The simplest way to include fluctuations in the simulation of the dynamics of
BEC systems at low temperature T is via truncated-Wigner simulations: quan-
tum and thermal fluctuations are included by averaging many Gross-Piteavskii
time-evolutions obtained starting from different noisy initial configurations. The
initial noise is built as follows: given some stationary state described by nor-
malized wavefunctions (ψ1, ψ2), the associated Bogoliubov problem is solved
to determine the mode profiles {ujλ, vjλ}, their eigenfrequencies ωλ and their
thermal populations Nλ = 〈b̂†λb̂λ〉 = [exp(~ωλ/kBT )− 1]−1. The initial state is:

ψj(x) = β0φj(x) +
Λ∑
λ=1

[
βλuj,λ(x) + β∗λv

∗
jλ(x)

]
(3.72)

where all the coefficients βλ 6=0 are chosen so that |βλ| is a gaussian distributed
variable with zero mean and variance σ2

λ = Nλ + 1/2 = [2 tanh(~ωλ/2kBT )]−1,
and arg(βλ) is a random variable. The number of non-condensed particles asso-
ciated to a single sample is then computed as:

Nth =
Λ∑
λ=1

∑
j=1,2

∫ [(
|βλ|2 −

1

2

)
|ujλ|2 +

(
|βλ|2 +

1

2

)
|vjλ|2

]
dx (3.73)

and the first coefficient is set to β0 =
√
N −Nth, N being the total number of

atoms. Each sample is evolved classically using the Gross-Pitaevskii equation.
Finally, statistical averages of all the fields’ quadratures, namely of the elements
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of the spin vector, is made, and from those we compute all the relevant quantities
(total density, magnetization, relative phase, etc...)

Despite being commonly used to include the lowest quantum and thermal correc-
tions to the Gross-Pitaevskii equation, Truncated-Wigner simulations can have
implementation issues, especially for what concerns the long-time dynamics: it
has been shown [104] that Wigner noise quickly thermalizes to a classical field
distribution at a temperature TΛ that is always larger than the physical tem-
perature T and depends on the cutoff Λ on the number of Bogoliubov modes
included in the simulation (or, equivalently, on the grid spacing dx).

In Chapter 6 we discuss a physical phenomenon for which Truncated-Wigner
simulations have proven to be unreliable.

(e) The dynamics of the mixture at high temperature is computed with classical
field simulations: given some stationary state defined by (ψ1, ψ2), we inject
energy in the system by locally adding, independently to both components’
densities, random noise of amplitude εnj where nj is the local density of the
j-th component and ε � 1; the noise amplitude ε determines the amount of
injected energy per particle δE/N . We then let the system thermalize. Under
an ergodicity assumption, we can determine the dynamics of the system by
averaging over many repetitions of the same time-evolution, each one obtained
starting from a different noisy sample. In other words, we perform mean-field
simulations in which initial noise plays the role of an effective temperature. Of
course, these do not allow to investigate the role of quantum fluctuations: this
procedure is thus justified only if the temperature is high enough to guarantee
that the dynamics is driven by thermal noise.

Compared to other numerical techniques [105], our procedure does not allow to
fix a priori the thermalization temperature. However it is much well-suited to
reproduce experimental preparation procedures during which the system might
be driven out of thermal equilibrium, and could be readily extended to simulate
systems in more than one spatial dimension.

3.7 Experimental details

Chapter 6, as well as some of the results shown in this Chapter (see Figs. 3.4, 3.6)
is the results of a collaboration with the experimental team of the Pitaevskii Center
for Bose-Einstein condensation in Trento: despite the main focus of this Thesis will
be on analytical and numerical calculations, attention is given to the experimental
feasibility and/or limitations of the proposed set-ups.

The experiment starts from the preparation of a BEC ofN ∼ 106 Sodium-23 atoms
in the |F,mF 〉 = |1,−1〉 internal state, F being the total atomic angular momentum
and mF its projection on the quantization axis, set by a uniform magnetic field. The
BEC is held in a axially symmetric optical trap that can be described as an harmonic
external potential:

V (r) =
1

2
m(ω2

rr
2 + ω2

xx
2) (3.74)
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where r =
√
y2 + z2 is the radial coordinate. The trapping frequencies are chosen so to

have a much stronger confinement along the radial direction ωr � ωx: the condensate
is thus cigar-shaped and elongated along x. Nonetheless, the radial trapping frequency
is not large enough to make it a quasi-1D system: the ground state density is well
approximated by Thomas-Fermi (TF) profile in all three space directions with TF radii
L =

√
2µ/mω2

x and R =
√

2µ/mω2
r � L. In other words, the transverse dimension

of the cloud R is always larger than its healing length ξ or, equivalently, µ� ~ωr.
Binary mixtures can be obtained by transferring atoms to other hyperfine levels

by means of Rabi or Raman processes:

1. The mixture considered in Refs. [57, 106, 107] is characterized by g12 = 0.93g
(where g = g11 = g22) and is prepared by transferring half of the population to
the |1, 1〉 level. Since κ := g − g12 = 0.07g > 0, this mixture can only show a
paramagnetic phase, but is miscible even if Ω = 0.

2. The mixture considered in Chapter 6 and in Refs. [77, 85, 108] is characterized
by g12 ' g22 ' 1.2g11 and is obtained by transferring atoms to the |2,−2〉
hyperfine state. Since κ ' ∆ ' −0.08g < 0, the mixture is immiscible in the
absence of coherent coupling, while it can show both a paramagnetic and a
ferromagnetic phase depending on the value of Ω 6= 0.

The experimental apparatus allows to independently tune the (spatially uniform) val-
ues of Ω, δ, so to explore the whole phase diagram of Fig. 3.5. The stability of the
coherent coupling is guaranteed by a magnetic shield that suppresses fluctuations by
several orders of magnitude [109].

The setup gives direct access to the atomic densities of the two components: the
trapping potential is suddenly removed and the atoms in the two hyperfine states are
selectively imaged after a short time of flight (TOF). Due to the short duration of
the TOF stage and to the axial symmetry of the trapping potential, the elongated
condensate expands only in the transverse directions, leaving the axial distribution
practically unchanged. Integration of the absorption images along the transverse
direction allows to compute the effective 1D atomic densities of the two components.

3.7.1 Geometrical reduction

Given the elongated shape of the system, and that the relevant dynamics occurs
along the longitudinal direction x, it is convenient to treat the problem in a reduced
dimensionality by integrating out the transverse degrees of freedom; this will require
the definition of some effective parameters, to take into account the 3D geometry of
the cloud. More specifically, we are interested in the effective dispersion relation for
longitudinal Bogoliubov modes, whose frequency is expected to satisfy the condition
ωz � ω � ωr [110]. Let us restrict to the simplest case of an unpolarized mixture,
for which we can separately treat density and spin collective modes.

Our calculation starts from the Bogoliubov-de Gennes equations, with the assump-
tions v = 0 (that, in turn, implies that the total density n does not vary in time) and
δnj(r, t) = w(r)f(x, t); the dimensionless function f describes the (effective) longitu-
dinal mode, while w(r) is the time-independent radial profile of the perturbation. For
the sake of simplicity we neglect for the moment the presence of the longitudinal trap
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(ωx = 0), so that n(r) → n(r). Moreover, we assume that n(r) is well approximated
by the TF density profile associated to the harmonic potential (3.74): in formulas,
the density healing length is much smaller than the transverse size of the condensate,
ξd � R. The TF assumption guarantees that the hydrodynamic regime is satisfied in
the density channel and Eqs. (3.37) can be written as:

∂2
t (δnd) +

Gn(r)

~
D(δnd) = 0 (3.75)

When the operator D, defined as in (2.34), acts on a generic function that depends
both the longitudinal and transverse coordinate, it provides multiple terms:

D
[
w(r)f(x)

]
= − ~

2m

{
w(r)∂2

xf(x) +

[
∂2
rw(r) + ∂rw(r)

∂rn(r)

n(r)

]
f(x)

}
(3.76)

Of these, those involving derivatives along the transverse direction give a contribution
of the order of ~/mR2 ∝ ω2

r . Since we are looking for modes with frequencies well
below the transverse trapping frequency [110], it is natural to choose w(r) ∝ n0Θ(R−
r), where n0 = n(0) is the peak density; with this uniform radial profile, the operator
D reduces to the kinetic energy along x:

Θ(R− r)∂2
t f(x, t) =

Gn(r)

2m
∂2
xf(x, t) (3.77)

Integration along r on both sides leads to an effective wave equation for the longitu-
dinal profile of the mode, ∂2

t f = (µd/m)∂2
xf , with:

µd =
G

2πR2

∫
n(r)dr =

1

2
· Gn0

2
(3.78)

We conclude that the effective longitudinal speed of density-sound cd =
√
µd/m is

reduced by a factor
√

2 with respect to the peak one, due to the harmonic trapping
along the transverse direction [110].

Let us now repeat the same calculation for spin modes. Since the Thomas-Fermi
assumption does not guarantee the validity of the hydrodynamic approximation in
the spin channel, one must consider the full Bogoliubov-de Gennes equations:

∂2
t (δns) + n(r)(D + Ω)

[
κn(r)

~
+ Ω +D

]
δns
n(r)

= 0 (3.79)

If Ω = 0 and spin modes are also hydrodynamic (that is, R � ξs or µs � ωr), Eq.
(3.79) takes the same form as (3.75) apart from the substitution G→ κ: the effective
longitudinal speed of spin-sound cs =

√
µs/m is also reduced by a factor

√
2 with

respect to its peak value, since µs = (1/2)κn0/2.
On the contrary, if ξs & R, the operator D dominates over κn/~ in the square

bracket of Eq.(3.79); similarly, in the presence of a coherent coupling, the term Ω
dominates over κn/~ for sufficiently large r, where the derivative ∂rn/n [see Eq.
(3.76)] is largest. In both cases, modes with low frequency ω � ωr are found by
assuming w(r) = n(r), so that the magnetization δns/n = f(x, t) is independent on
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the transverse coordinate and almost all the derivatives with respect to r vanish:

n(r)∂2
t f +

(
Ω− ~

2m
∂2
x

)(
κn(r)

~
+ Ω− ~

2m
∂2
x

)
n(r)f =

κ

2m
~∇(n~∇n)f (3.80)

Integration along r makes the term on the right-hand-side vanish: indeed the density
vanishes at the Thomas-Fermi radius; the remaining contributions give:

∂2
t f(x, t) +

(
Ω− ~

2m
∂2
x

)(
2µs + Ω− ~

2m
∂2
x

)
f(x, t) = 0 (3.81)

where we have defined:

µs =
κ

2

∫
n2(r)dr∫
n(r)dr

=
2

3
· κn0

2
(3.82)

The same factor 2/3 was found, starting from the Landau-Lifshitz equation (3.58),
in Ref. [85]. This result implies that, in the absence of coherent coupling, the speed
of spin sound is renormalized by a factor

√
2/3 with respect to its peak value. In

other words, the hydrodynamic nature of spin excitations not only influences the
curvature of the Bogoliubov dispersion at high k, but has also a non-negligible effect
on the geometric renormalization of the value of the speed of sound. In particular,
if ξd � R . ξs, the ratio between the effective speeds of sound of density and spin
modes is cd/cs =

√
3G/4κ, roughly 15% smaller than the expected peak value

√
G/κ.

This result has been experimentally verified in [57] (see Fig.3.4).
The same calculation can be performed for two-dimensional systems (or, equiv-

alently, for radial collective modes of pancake-shaped condensates): since only one
transverse dimension has to be integrated out, the geometric renormalization coeffi-
cients in Eq. (3.78), (3.82) are 2/3 and 4/5, respectively.

3.8 Summary

Coherently-coupled binary mixtures of atomic Bose-Einstein condensates are char-
acterized by an extremely rich phase diagram, as shown in Fig. 3.5: in particular,
the magnetic properties of these systems can be accurately controlled by tuning the
strength and detuning of the external field coupling the two components [77]. In each
magnetic phase, the binary mixture shows specific features which can be exploited in
the context of analog gravity.

Paramagnetic unpolarized mixtures, both with and without a resonant coherent
coupling, have two independent channels of elementary excitations (that we refer to
as density and spin modes), associated to perturbations of the total and relative
density. Within certain parameters ranges, long-wavelength modes of both branches
show a phononic behaviour, with different speed of sound; hence, their dynamics is
analog to that of a scalar field in a curved spacetime, whose geometry is encoded in
a metric tensor with the same structure as (2.41). Moreover, the effective mass of
spin excitations is tunable via the Rabi frequency: this represents the first conceptual
advantage of working with binary mixtures rather than single-component condensates.
In addition to this, exploring the gravitational analogy in the spin channel of a two-
component BEC might be convenient in a practical sense, namely in the experimental
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implementation of configurations of interest: typical parameters lead to a much smaller
speed of sound for spin modes and thus to a much larger healing length; furthermore,
all the field quadratures, including the relative phase between the two components,
are experimentally accessible. In Chapters 4 and 5 we study the analog version of
two astrophysical phenomena (Hawking radiation and superradiance, respectively) for
which these properties of spin modes appear to be beneficial.

If spin interactions dominate over the coherent coupling, binary mixtures behave
instead as ferromagnetic superfluids; as anticipated, this rare combination of features
opens the possibility of studying magnetism in the absence of dissipation, defects and
decoherence. In Chapter 6, we analyse the relaxation mechanism of the mixture when
prepared in a metastable stationary state: this process, known as false vacuum decay,
has important applications in cosmology.
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4 Hawking radiation from
spin-sonic black-holes

4.1 Introduction

As mentioned in Chapter 2, the astrophysical phenomenon that has attracted the
most attention in the analog gravity community is Hawking emission: according to
Hawking prediction [28, 29], black holes of mass M are expected to radiate as black
bodies with temperature:

kBTH =
~c3

8πGM
(4.1)

as a result of the interplay between quantum fluctuations and the curvature of space-
time in the vicinity of the singularity. Without any accretion meccanism, Hawking
emission eventually leads to the evaporation of the black hole [28]. For typical black-
hole masses, the Hawking temperature (4.1) is orders of magnitude smaller than the
cosmic microwave background (CMB) temperature (∼ 2.7K) and the evaporation
time longer than the age of the Universe: these are among the reasons why Hawking
emission has so far escaped direct observation in the astrophysical context.

The kinematic nature of the Hawking effect [111] offers the possibility, through
the gravitational analogy [25], of observing this phenomenon (i.e. the spontaneous
creation of particles due to vacuum fluctuations in a curved-space field theory) on
experimentally accessible platforms, including classical fluids [8, 9], polaritons [11],
optical systems [13] and ultracold gases [10]. In the analog context, sonic horizons are
generated by engineering a steadily-flowing stationary state that features a point-of-
no-return for elementary excitations, at which the flow velocity v exceeds the speed
of sound c; for Bose-Einstein condensates in the hydrodynamic regime, the analog
Hawking temperature is given by [30, 111]:

kBTH =
~

2π

∂(c− v)

∂n
(4.2)

Despite the physical temperature of ultracold atomic gases being often larger than
the analog Hawking temperature characterizing the emission, its direct observation is
still possible by analysing the two-point correlations between excitations propagating
on the two sides of the horizon [38, 39, 112]; indeed, this obervable is robust against
temperature effects [38] and it has been exploited to claim the first experimental
observation of the Hawking effect in a single component condensate [40–42].

This Chapter is devoted to the theoretical study of the Hawking process for spin
modes in a binary mixture of Bose-Einstein condensates: after reviewing the spin-sonic
black-hole configuration considered in Ref. [43], we extend it to include a resonant
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coherent-coupling between the two components, in the spirit of Refs. [44, 45]. Our
purpose is two-fold: on the one hand, dealing with spin modes in a mixture allows
us to conceptually extend the analysis to massive excitations; on the other hand, we
aim to identify observables that, as density correlations, encode a recognizable signal
associated with Hawking emission, but might be more convenient or easier to measure
in an experiment.

Differently from [44, 45], we do not restrict our analysis to small values of the Rabi
frequency. All our calculations are based on zero-temperature Bogoliubov theory;
since we do not make use of the gravitational analogy (that is, we do not restrict
to the hydrodynamic regime), we can safely consider parameters regimes for which a
one-by-one correspondence with the astrophysical context cannot be made, but that
are closer to typical experimental conditions [57]. As we will see, the notion of analog
horizon can be straightforwardly extended to parameters ranges that do not allow
the definition of a speed of sound, and the features characterizing the emission are
preserved in such non-relativistic regime.

4.2 The spin-sonic black hole

The first ingredient one needs to study analog Hawking radiation in a Bose-Einstein
condensate is a fluid flow that mimics a black hole geometry. The simplest configu-
ration with this property involves a uniform one-dimensional system steadily flowing
with velocity v [38, 39, 112]; a step-like modulation of the interaction constant

g(x) = guΘ(−x) + gdΘ(x) (4.3)

where Θ is the Heaviside step function, separates the upstream region (for x < 0, la-
belled u) region, where the flow is subsonic, that is cu =

√
gun/m > v, from the down-

stream region (for x > 0, labelled d), which is instead supersonic, cd =
√
gdn/m < v.

The surface x = 0 plays thus the role of an analog sonic horizon. It is clear that the
interaction profile (4.3) breaks the hydrodynamic approximation and indeed Eq.(4.2)
would predict an infinite Hawking temperature. More realistic configurations involv-
ing a smoother horizon and/or inhomogeneous density profiles, which reproduce more
closely the experimental conditions [40], have also been considered in the literature
(see, for instance, [30, 112]), but, remarkably, the features of the Hawking signal are
qualitatively identical. In particular, the emission temperature TH is always finite and
of the order of µ/kB, where µ is the chemical potential of the system.

For the sake of simplicity, we will only analyse the simplest and analytically
tractable case of a step modulation of the interaction constants in a uniform sys-
tem. Our aim is, in particular, to generalize such configuration to the spin channel
of an unpolarized binary mixture with n1 = n2 = n/2: as we discussed in Chapter 3,
the Z2 symmetry of the system implies a complete decoupling between the dynamics
of excitations of the total and relative density. Let us then consider a uniform binary
mixture of total density n and assume that a spin-sonic horizon is generated by a step
modulation of the spin interaction constant:

κ(x) = κuΘ(−x) + κdΘ(x) (4.4)
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whereas the density interaction constant G = g + g12 is uniform in space, so that
no analog horizon is seen by density modes. A similar configuration was analysed in
[43]. In addition to a modulation of the interaction constant, we also assume that a
resonant Rabi field couples the two components:

Ω(x) = ΩuΘ(−x) + ΩdΘ(x) (4.5)

According to (3.17), there exists a stationary state of the mixture of the form

ψ1(x, t) = ψ2(x, t) =
√
n/2 eiqxe−iµt/~ (4.6)

where q = mv/~ is the momentum associated with the fluid flow and

µ =
~2q2

2m
+ V (x) +

1

2
Gn− ~Ω(x)

2
(4.7)

is the chemical potential. Notice that if Ωu 6= Ωd, the jump at x = 0 in the Rabi
frequency has to be compensated by an external potential, V (x) = ~Ω(x)/2, in order
to guarantee the stationarity of the state (4.6). If v does not exceed the speed of
density-sound, the stationary flow is everywhere subsonic with respect to density
excitations; in other words, it is possible to generate a spin-sonic horizon without
generating a density-sonic one.

It is worth pointing out that, in order to reproduce this toy model in the lab,
it is not necessary to realize quasi-onedimensional condensates: indeed, as discussed
in Chapter 3, the dynamics of spin modes can be effectively one-dimensional, even
though the density profile is well approximated by the Thomas-Fermi solution.

Since the dynamics of density modes is trivial, throughout this Chapter we will
exclusively consider spin excitations; let us then avoid using the index s associated
to quantities (dispersion relation, speed of sound, structure factor, etc...) in the spin
channel, for legibility; the indexes u, d will be instead used to distinguish parameters’
values in the upstream and downstream regions, respectively.

In the presence of a coherent coupling, the dispersion relation for spin modes in
the comoving frame (3.27) is gapped and a definition of the speed of sound is only
possible in a limited range of parameters’ values, that is, in the regimes of validity
of the gravitational analogy (3.40),(3.41). In any other case, the role of the speed of
sound is played by the Landau critical velocity, defined as

cd,u ≡ min
k

ω+(k, x ≷ 0)

|k|
(4.8)

In other words, in order to generate an analog horizon for spin modes, it is necessary
to fix the parameters (4.4), (4.5) so that the Landau critical speed is larger than the
flow velocity in the upstream region, cu > v, and smaller than the flow velocity in the
downstream region, cd < v. As already pointed out, only in the absence of a gap in
the spin dispersion, cu,d coincides with the sound-speed; however, by analogy with the
gapless case, in the following we will sometimes refer to the upstream and downstream
regions as subsonic and supersonic, respectively.

It is worth noticing that the condition cd < v is necessary to obtain an analog
horizon: negative norm modes in the downstream region, once Doppler-shifted, acquire



50 Chapter 4. Hawking radiation from spin-sonic black-holes

positive frequency and thus have negative energy in the lab frame. The existence of
these solutions is the key ingredient that enables the onset of Hawking physics: pairs
of particles with opposite energy can be emitted on the two sides of the horizon, while
conserving the total energy of the system.

A schematic drawing of the spin-sonic black hole configuration that we consider
throughout this Chapter is shown in Fig. 4.1. Typical examples of dispersion relations
in some regimes of interest are reported in Figs. 4.2 - 4.6.

Upstream

in-going

out-going out-going

in-going

Downstream

Figure 4.1: Schematic of the analog black-hole configuration con-
sidered in the text. The analog horizon, located at x = 0, separates
a subsonic (upstream, u) region where the Landau critical speed for
spin modes cu exceeds the flow velocity v, from a supersonic (down-
stream, d) region, where instead the opposite holds v > cd. This step
configuration can be realized while keeping the speed of density-sound
c0 =

√
Gn/2m uniform and larger than v, so that the density chan-

nel is everywhere subsonic. The red (blue) arrows indicate the group
velocity direction for in-going (out-going) modes.

Analog Hawking radiation of massive particles in a spin-sonic black-hole configu-
ration with homogeneous coherent coupling (Ωu = Ωd 6= 0) has been characterized in
Ref. [44, 45]: in this case the requirement cu > v > cd, necessary to have an horizon,
constraints the Rabi frequency in a limited range of extremely small values. In order
to be able to explore different regimes, we allow the coherent coupling to have different
intensities on the two sides of the horizon, Ωu 6= Ωd. Moreover, since the presence of a
gap in the upstream region reduces the intensity of particles emitted in the black-hole
exterior [44], we also set Ωu = 0. The absence of a gap in the upstream region allows
us to define a speed of sound cu =

√
κun/2m, interaction energy µu = κun/2 and

a healing length ξu = ~/mcu for spin modes propagating in the black-hole exterior,
whose frequency is given by a Doppler-shifted gapless Bogoliubov dispersion:

ω±u (k) = vk ± cu|k|
√

1 +
ξ2
uk

2

4
(4.9)

The condition cu > v guarantees that propagating modes with real wave-vector and
positive frequency necessarily have positive norm.

On the contrary, let us assume the coherent coupling is not necessarily vanishing
in the downstream region. We will focus on four regimes of conceptual interest:
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(a) The standard gapless case in the absence of coherent coupling (Ωd = 0, κd > 0),
already analysed in Ref.[43] and shown in Fig. 4.2.

(b) The relativistic gapped case, obtained with Ωd � κdn/~ and κd positive, shown
in Fig. 4.4. This regime was considered in Ref.[44] for a uniform Rabi frequency.
Notice that typical values of the interaction constants lead to κ � G, so this
relativistic regime is hardly accessible experimentally: as an example, for the
mixture in [57], κn ∼ 300 Hz, thus it would be necessary to control the Rabi
frequency at the level of a few Hz.

(c) The vicinity of the critical point for the para-to-ferromagnetic phase transition
(~Ωd + κdn ∼ 0, with κd negative, as in Fig. 4.5). Once again, an experimental
realization of this configuration seems hard to achieve, mostly due to the change
of sign of κ on the two sides of the horizon, which would necessarily require
the availability of a Feshbach resonance [113]; moreover, in the proximity of a
critical point the system is extremely sensitive to any source of noise. However,
it is interesting to compare the Hawking emission in cases (b) and (c), due to
the very different properties of spin modes in these two relativistic regimes.

(d) The non-relativistic case ~Ωd � |κd|n, to which the gravitational analogy does
not apply (shown in Fig. 4.6). Despite the absence of a one-by-one correspon-
dence with a curved spacetime geometry, this regime is the easiest to access in
a lab among the ones with Ωd 6= 0.

From the perspective of the gravitational analogy, varying the intensity of the coherent
coupling in the downstream region Ωd keeping Ωu = 0 amounts to changing the nature
of the analog black-hole (in particular its greybody factor, as we will see later on),
without affecting the spacetime geometry of the black-hole exterior.

For generic values of Ωd, the role of the speed of sound is replaced by the Landau
critical velocity. A direct calculation from (4.8) leads to:

mc2
d =

κdn

2
+ ~Ωd +

√
~Ωd(~Ωd + κdn) (4.10)

Notice that cd '
√
|κd|n/2m coincides with the speed of sound in the two relativistic

regimes Ωd ∼ 0 and Ωd + κdn/~ ∼ 0, while, in the opposite limit ~Ωd � |κd|n, in
which the gravitational analogy breaks, we find the density-independent value cd ∼√

2~Ωd/m. The supersonic condition cd < v is verified by choosing the parameters in
the downstream region such that:

1− κdn

2mv2
>

√
2~Ωd

mv2
(4.11)

As already pointed out, this requirement guarantees the existence of a range of positive
frequencies (0 < ω < ω∗) for which both positive and negative norm modes with real
momentum exist in the downstream region, with dispersion given by:

ω±d (k) = kv ±

√(
~k2

2m
+ Ωd

)(
~k2

2m
+ Ωd +

κdn

~

)
(4.12)
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The threshold frequency is ω∗ = max[ω−d (x)].

4.3 The scattering matrix formalism

As a first step towards the study of analog Hawking physics in BEC mixtures, we
analyse the scattering properties of the spin-sonic horizon. The formalism has been
first developed to characterize single component systems [38, 39], and then extended
to treat two-component mixtures in the absence of coherent coupling [43] or in the
relativistic regime ~Ω � κn [44, 45]. Since it does not rely on the gravitational
analogy but exclusively on the validity of Bogoliubov theory, it can be exploited in
any parameters’ range.

As already pointed out, we consider the analytically tractable case of a uniform
unpolarized mixture of total density n, so that field perturbations are easily written
as a sum of plane waves. However, given the stationarity of our configuration, it is
convenient to work in frequency rather than momentum space. Due to particle-hole
symmetry, we can restrict to positive frequencies provided we account for both signs
of the Bogoliubov norm. For each frequency ω > 0 in the laboratory frame, there
exist four solutions to the equation ω±u,d(k) = ω in both the subsonic and supersonic
regions. In the upstream region, we find two positive norm modes with real k (green
dots in Figs. 4.2 - 4.6, labelled u), in addition to two negative norm modes with complex
conjugate momenta R(k)± iI(k) (not shown): of these, one is exponentially growing
for x→ −∞, and thus represents an unphysical solution, while the other is evanescent
in the same limit and contributes to the perturbation only close to the horizon. The
same holds in the downstream region if ω > ω∗; if instead ω < ω∗ four propagating
solutions with real momentum exist, two with positive norm (red dots in Figs. 4.2 -
4.6, labelled d1) and two with negative norm (blue dots in Figs. 4.2 - 4.6, labelled d2).
Among all the real-k modes, some move towards the sonic horizon (in-going, labelled
in), while others propagate away from it (outgoing, labelled out), depending on the
sign of their group velocity wk ≡ ∂ω/∂k.

Table 4.1 summarizes all the main properties (wavevector, group velocity, norm) of
the available spin modes, including evanescent ones, in the upstream and downstream
regions, for all the different frequency ranges.

Mode Region Wave-vector Group velocity Frequency range Norm
u|in x < 0 kinu (ω) > 0 win

u (ω) > 0 ω > 0 +1
u|out x < 0 koutu (ω) < 0 wout

u (ω) < 0 ω > 0 +1
u|ev x < 0 I(kevu ) < 0 − ω > 0 −
d1|in x > 0 kind1(ω) < 0 win

d1(ω) < 0 ω > 0 +1
d1|out x > 0 koutd1 (ω) > 0 wout

d1 (ω) > 0 ω > 0 +1
d|ev x > 0 I(kevd ) > 0 − ω > ω∗ −
d2|in x > 0 kind2(ω) > 0 win

d2(ω) < 0 0 < ω < ω∗ −1
d2|out x > 0 koutd2 (ω) > 0 wout

d2 (ω) > 0 0 < ω < ω∗ −1

Table 4.1: Summary of the main properties of the available Bogoli-
ubov spin-modes for the analog black-hole configuration in Fig. 4.1.
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Far from the sonic horizon (|x| → ∞), the generic scattering solution at frequency
ω is a eigenfunction of the spin Bogoliubov operator (3.22) of the form:[

U (x, ω)
V (x, ω)

]
=
∑
r

αr

[
U in
r (ω)

V in
r (ω)

]
eik

in
r (ω)x√
|win
r (ω)|

Θr(x)

+
∑
r

βr

[
Uout
r (ω)

V out
r (ω)

]
eik

out
r (ω)x√
|wout
r (ω)|

Θr(x)

(4.13)

where the sum runs over the three branches and includes all the propagating modes
available at frequency ω, separated into ingoing and outgoing ones. In particular,
r ∈ {u, d1, d2} if ω < ω∗ and r ∈ {u, d1} if ω > ω∗.

In the vicinity of the horizon (x ∼ 0), one must include exponentially suppressed
modes in the expansion by adding to Eq.(4.13) a term of the form:

+
∑
r

γr

[
U ev
r (ω)

V ev
r (ω)

]
eik

ev
r (ω)xΘr(x) (4.14)

where r ∈ {u} if ω < ω∗ and r ∈ {u, d} if ω > ω∗.
The Heaviside Theta functions Θr(x) are necessary to ensure that the mode u (the

modes d1, d2) contributes to the solution only in the upstream (downstream) region
x < 0 (x > 0):

Θu(−x) = Θd1(x) = Θd2(x) =

{
0 if x < 0

1 if x > 0
(4.15)

The normalization involving the group velocity guarantees that the orthonormality
condition is fulfilled in frequency space. The particle and antiparticle components
(U, V ) are solutions of the Bogoliubov problem in the comoving frame; as such

|U in
r (ω)|2 − |V in

r (ω)|2 = |Uout
r (ω)|2 − |V out

r (ω)|2 = σr (4.16)

where σu = σd1 = −σd2 = +1 is the Bogoliubov norm of the mode.
In general the coefficients of in-going and out-going modes are related through a

scattering matrixM(ω) of dimension D×D, where D is the number of in-going and
out-going modes available at frequency ω. More specifically, if ω < ω∗ propagating
modes are available in all three branches:βuβd1

βd2

 =M(ω)

αuαd1

αd2

 (4.17)

while, if ω > ω∗ (or if neither of the two regions is supersonic), we find:[
βu
βd1

]
=M(ω)

[
αu
αd1

]
(4.18)

The coefficient Mrr′(ω) describes the scattering of the r′-th in-going mode onto the
r-th out-going one. The square modulus |Mrr′(ω)|2 represents therefore the reflec-
tivity/transmittivity of the in-going mode r′ into the out-going mode r. In order to
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guarantee energy conservation,M must satisfy the normalization condition:

M†ηM = η =MηM† (4.19)

where η is a diagonal square matrix of dimension D whose diagonal elements coincide
with the norm of the available modes, that is ηrr′ = σrδrr′ . If the d2 branch is not
available, η = diag(1, 1) coincides with the identity matrix and M is unitary: we
deal with a standard scattering problem in which only positive energy modes are
involved; each incoming packet is partially transmitted and partially reflected, and
the transmittivity and reflectivity sum up to 1:

|Mur|2 + |Md1r|2 = 1 r = u, d1 (4.20)

The unitarity of the scattering matrix also proves the equivalence of the basis of
in-going and out-going modes in the decomposition of the field perturbation.

All of this does not apply if propagating d2 modes are available, that is, for ω < ω∗;
energy conservation is satisfied with η = diag(1, 1,−1), thus:

|Mur|2 + |Md1r|2 − |Md2r|2 = σr r = u, d1, d2 (4.21)

As a consequence of the minus sign, reflectivities and transmittivities are not bound
to be smaller than 1. Also, the scattering matrix is not unitary, but pseudo-unitary,
signalling the inequivalence between the representation of the perturbation in terms
of in-going and out-going modes: this mathematical fact is at the basis of spontaneous
particle creation in quantum field theories on curved spacetimes.

Thanks to the relation between in-going and out-going modes coefficients αr, βr in
terms of the scattering matrix, the generic scattering solutions (4.13) can be written
as a linear combination of scattering modes rather than quasi-particle modes. We call
in-going scattering mode the solution of the Bogoliubov problem initiated by a single
in-going quasi-particle mode:[

Ur(x)
Vr(x)

]
=

[
U in
r

V in
r

]
eik

in
r x

|win
r |1/2

Θr(x) +
∑
r′

Mr′r

[
Uout
r′

V out
r′

]
eik

out
r′ x

|wout
r′ |1/2

Θr′(x) (4.22)

Similarly an out-going scattering mode is a solution of the Bogoliubov problem involv-
ing a single out-going quasi-particle mode:[

Ur(x)

Vr(x)

]
=

[
Uout
r

V out
r

]
eik

out
r x

|wout
r |1/2

Θr(x) +
∑
r′

(M−1)r′r

[
U in
r′

V in
r′

]
eik

in
r′x

|win
r′ |1/2

Θr′(x) (4.23)

Notice that the pseudo-unitarity (4.19) of the scattering matrix allows to write the
elements ofM−1 in terms of those ofM: in particular, sinceM−1 = ηM†η, one has
(M−1)r′r = σrσr′(M†)r′r = σrσr′M∗rr′ . Moreover, ifM is pseudo-unitary, alsoM−1

has the same property. The full scattering solution can thus be equivalently written
as a linear combination of in-going or out-going scattering modes:[

U (x, ω)
V (x, ω)

]
=
∑
r

αr

[
Ur(x, ω)
Vr(x, ω)

]
=
∑
r

βr

[
Ur(x, ω)

Vr(x, ω)

]
(4.24)
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with coefficients related by the scattering matrix as:

βr′ =
∑
r

Mr′rαr (4.25)

The computation of the scattering matrix coefficients typically requires to fully
solve the Bogoliubov problem, taking into account the exact profile of the sonic hori-
zon. A semi-analytical solution can be easily determined for the step-like configuration
in Fig. 4.1. Indeed, physical profiles for the Bogoliubov amplitudes (4.13) are found
by matching the solutions in the subsonic and supersonic regions at the location of
the horizon. In practice, the amplitudes αr of the in-going modes are fixed as ini-
tial conditions for the scattering problem, while those of the out-going modes βr are
computed by matching the x = 0 values of U ,V and of their first derivatives. This
amounts to solving a linear system of four equations for each in-going mode an for
each frequency ω. Since the matching is done at the position of the horizon, one
must include exponentially suppressed modes in the calculations; from a mathemat-
ical point of view, this is necessary to get unambiguous results, since the number of
unknown coefficients to be determined (βr and γr) needs to be equal to the number
of imposed constraints.

Despite the scattering problem analysed so far represents a (classical) stimulated
version of the Hawking process [114], the elements of the scattering matrix carry
important information about its spontaneous counterpart. In particular, as we will
discuss later on, the coefficient |Mud2(ω)|2 can be thought as the (zero-temperature)
Hawking emission spectrum [38, 39], since it is associated to the number of u particles,
that are spontaneously emitted by the analog horizon in the black-hole exterior, even
in the absence of any in-going mode. Moreover, the transmittivity of d modes into the
u mode (or, equivalently, the reflectivity of the horizon with respect to the u mode)

Γ(ω) = |Md1u(ω)|2 − |Md2u(ω)|2 = 1− |Muu(ω)|2 (4.26)

can be thought as a greybody factor of the analog black-hole.

4.4 The Hawking spectrum

Results of the semi-analytical calculation of the scattering coefficients as a function
of frequency are shown in Figs. 4.2 - 4.6 for various configurations. Before discussing
the single cases separately, let us point out some general properties of the scattering
matrix coefficients which are always satisfied:

(a) In contrast to the astrophysical case, the sonic horizon does not act as a perfect
black body: indeed the reflectivity of the u mode, |Muu(ω)|2, is non-vanishing.
In other words, the Hawking emission spectrum |Mud2(ω)|2 does not coin-
cide with a black-body thermal spectrum, but features a (possibly frequency-
dependent) grey-body factor Γ(ω).

(b) As expected for astrophysical non-rotating black-holes, no superradiant amplifi-
cation of the in-going u mode is observed, as |Muu(ω)|2 < 1 for all frequencies.
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(c) Superradiant amplification is instead observed for downstream modes d1, d2
inside the analog black-hole; for instance |Md2d2(ω)|2 > 1 for all frequencies.
This phenomenon has no counterpart in the gravitational context, since the
propagation of particles in the black-hole interior towards the event horizon is
not allowed, as it would be the results of a superluminal dispersion relation.

4.4.1 Uncoupled binary mixture

Fig. 4.2(c) shows the reflectivity/transmittivity of the sonic horizon with respect to
the d2 mode for the uncoupled mixture considered in Ref. [43], which is analogous to
the case of a single condensate [39]. The dispersion relation of spin modes is gapless
in both the subsonic and supersonic regions, as shown in panels (a) and (b) of Fig.
4.2. Due to the possibility of exciting modes with opposite energies, all the scattering
matrix coefficients are unbounded and indeed reflectivity and transmittivity diverge
as 1/ω in the low-frequency regime.

Figure 4.2: Dispersion relation for spin collective modes in the up-
stream (a) and downstream (b) regions; the positive (negative) norm
branch is represented as a solid (dashed) black line. The gray area in-
dicates the range of frequencies in which the d2 mode is available: all
the propagating solutions available within this range are highlighted in
green (u mode), red (d1 mode) and blue (d2 mode). Panel (c) reports
the trasmittivity/reflectivities of the horizon for an incoming d2 mode.
Parameters: cu/v = 4/3, κd/κu = 0.25,Ωu = Ωd = 0, corresponding

to the standard gapless case considered in [43].

Let us assume that the Hawking emission spectrum can be written as:

|Mud2(ω)|2 =
Γ(ω)

exp
[
~ω/kBTH(ω)]− 1

(4.27)
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where Γ(ω) = 1− |Muu(ω)|2 is the greybody factor and TH(ω) is the Hawking tem-
perature. A thermal spectrum would require a frequency-independent TH : however,
let us keep a frequency dependence to account for deviations from thermality.

Notice that the Hawking temperature TH is completely unrelated to the physical
temperature T of the BEC system under consideration: indeed all the results presented
in this Chapter are derived assuming T = 0.

Given the 1/ω dependence of |Mud2|2, in the low-frequency limit Eq.(4.27) holds
with constant TH and its value is uniquely determined by the ratios v/cu and v/cd [30,
43]. On the contrary, if ω ∼ ω∗, TH acquires a frequency dependence: in particular,
it must be vanishing for ω ≥ ω∗, since Mud2 is identically zero if the d2 mode is
not available. This is often considered a weak deviation from thermality due to non-
hydrodynamic effects, since the maximum intensity of emitted particles is found in
the ω → 0 regime, where TH is approximately constant, although it could in principle
be detected in experiments [115].

The numerically computed results for the Hawking temperature and for the grey-
body factor are shown in Fig.4.3. With the parameters in Fig. 4.2, we find Γ(ω →
0) ' 0.98 and kBTH(ω → 0)/~ω∗ ' 0.68; these values are in excellent agreement with
the analytical results of [43]. Typical experimental parameters for Sodium atoms [57]
give a Hawking temperature of the order of 1-10nK. A physical temperature much
lower than TH would be necessary to directly observe the Hawking effect: otherwise
thermal flutuations would hide it.
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Figure 4.3: Frequency dependence of the greybody factor (upper
panel) and Hawking temperature (lower panel) in the three configura-
tions of Figs. 4.2, 4.4 and 4.6 (dashed, solid and dotted lines, respec-
tively). The parameters were chosen so to have similar values of ω∗ ∼
0.1µu/~. The greybody factor is computed as Γ(ω) = 1− |Muu(ω)|2;
the Hawking temperature is then derived by inverting Eq. (4.27).
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4.4.2 Coupled binary mixture

As visible in Figs. 4.4 - 4.6, a finite value of Ω regularizes all the scattering matrix
elements, eliminating their infrared divergence [116]: zero-frequency u (d) modes can-
not be transmitted in the downstream (upstream) region, thus all the transmittivities
vanish in the limit ω → 0, while all the reflectivities tend to constant values [116]. In
particular, |Muu(ω → 0)|2 → 1 and |Mud2(ω → 0)|2 ∝ ω.

Figure 4.4: Same as Fig. 4.2. Parameters: cu/v = 4/3, Ωu = 0,
κd/κu = 0.25, Ωd = 0.001κun/~ = 0.004κdn/~, defining the relativis-

tic regime ~Ωd � κdn.

As shown in the upper panel of Fig. 4.3, this affects the greybody factor, which, for
finite gaps, acquires a quadratic frequency dependence in the low-frequency regime.
In the gravitational context, this behaviour has been found, for instance, for non-
minimally coupled massless scalar fields in a Schwarzschild spacetime [117, 118], where
the coupling with the curvature effectively acts as a mass term in the Klein-Gordon
equation. As long as Ωd � κdn/~ (see Fig.4.4), the greybody factor reaches an
asymptotic value close to unity at a frequency ω � ω∗, which also corresponds to
a maximum in the Hawking emission spectrum: above this frequency, the 1/ω de-
pendence of the Hawking emission spectrum is recovered. As the Rabi frequency Ωd

increases, ω approaches ω∗ (see Fig. 4.6) until, in the limit Ωd > κdn/~ and for κd < 0
(see Fig. 4.5), the greybody factor can be considered quadratic in almost the whole
range [0, ω∗]. Fig. 4.7 summarized how ω varies with the Rabi frequency: in the small
coupling limit, it grows linearly with ~Ωd/κdn.

Remarkably, the presence of a coherent coupling in the downstream region has
little effect on the Hawking temperature TH(ω) (see the lower panel of Fig. 4.3): the
degree of thermality in the emission spectrum is preserved, despite the inaccuracy of
the gravitational analogy if ~Ωd ∼ κdn.
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Figure 4.5: Same as Fig. 4.2. Parameters: cu/v = 4/3, Ωu = 0,
κd/κu = −0.25, Ωd = 0.251κun/~, defining the relativistic regime in
the vicinity of the critical point for the para-to-ferromagnetic phase
transition, ~Ωd + κdn & 0. Notice that, despite the different sign of
κd, the dispersion relation in the downstream region is identical to

that of Fig. 4.4.

Figure 4.6: Same as Fig. 4.2. Parameters: cu/v = 4/3, Ωu = 0,
κd/κu = 0.17, Ωd = 0.02κun/~ ' 0.12κdn/~, defining the non-

relativistic regime with ~Ωd ∼ µd ≡ κdn/2.
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Figure 4.7: Saturation frequency ω (computed as the frequency at
which the Hawking spectrum is maximum) as a function of the strenght
of the coherent coupling in the downstream region. The value of κ has
been tuned to have ω∗ ∼ 0.1µu/~ for all the points in the plot. The
dimensionless quantity on the horizontal axis allows to easily distin-
guish the various regimes we considered: f � 1 identifies the rela-
tivistic case ~Ω � κn, f → ∞ represents the critical point for the
para-to-ferromagnetic phase transition, while f ∼ 1 is related to the
non-relativistic regime ~Ω ∼ |κ|n. For the parameters in Fig. 4.4 - 4.6,

we have f = 0.06, 16, 0.32, respectively.

4.5 Quantization of the field

The spectral properties of the analog horizon we discussed so far can be probed in
a stimulated way: in other words, a classical version of the Hawking effect can be
observed in the scattering of plane waves in a purely mean field description [39, 114].
However, here we are mostly interested in the characterization of the spontaneously
emitted radiation and in determining which observables would allow to detect it ex-
perimentally. We therefore need to quantize the theory.

The standard quantization procedure consists in replacing the complex coefficients
αr, βr in the field expansion (4.24) with creation/annihilation operators. In terms of
in-going scattering modes, we have:

ˆδΨ(x, t) =

∫ ∞
0

dω√
2π

∑
r

[
Ur(x, ω)e−iωtâr + V∗r (x, ω)eiωtâ†r

]
(4.28)

where the sum runs over all the modes available at a given frequency, that is r ∈
{u, d1, d2} if ω < ω∗ and r ∈ {u, d1} if ω > ω∗. Analogously, one could expand the
field in terms of out-going scattering modes b̂r, b̂

†
r.

In principle, in order to expand δΨ over a complete basis set, one would need
to explicitly include two unconventional eigenstates of the Bogoliubov matrix L with
eigenvalue ω = 0 [115]. In a single component BEC, these zero-frequency modes
are due to the Gauge symmetry associated with the global phase of the system, or,
equivalently, to the conservation of the total number of particles. In the case of
the spin channel of a symmetric binary mixture, they exist only in the absence of a
coherent coupling, when the same Gauge freedom applies to the relative phase and
the relative number of particles is conserved. Within our framework, involving a
uniform density profile, the Bogoliubov coefficients of these two zero-frequency modes
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would also be position-independent. As a consequence, without coherent coupling,
they would contribute, at most, as a uniform shift to the observables we will define in
the following; if Ω 6= 0 in the downstream region, the continuity of the wavefunction
fixes the relative phase in the upstream region as well, effectively eliminating the
Goldstone mode. For these reasons, we avoid including the zero-frequency modes in
the field expansion (4.28) and in the following calculations.

Let us also point out that Eq.(4.28) is not exact in the vicinity of the analog
horizon (x 6= 0), since evanescent modes have not been included.

In the following, when unnecessary, we will omit the frequency dependence in the
Bogoliubov coefficients, momenta and group velocity of the modes, for legibility.

In Eq.(4.28) we have associated annihilation (creation) operators to the U (V )
component for all the modes; as discussed in Chapter 2, in order to guarantee the
proper commutation relations for the field, we have to treat negative norm modes
as anti-particles, for which the roles of creation and annihilation operators are ex-
changed1. This reflects on the commutation relations for âr, b̂r:

[âr(ω), â†r′(ω
′)] = σrδrr′δ(ω − ω′) (4.29)

[b̂r(ω), b̂†r′(ω
′)] = σrδrr′δ(ω − ω′) (4.30)

as well as on their expectation values. If the symbol 〈·〉 indicates the average value
over the vacuum of in-going particles, at zero physical temperature T = 0 we have:

〈â†r(ω)âr′(ω
′)〉 =

(1− σr
2

)
δrr′δ(ω − ω′) (4.31)

〈âr′(ω′)â†r(ω)〉 =
(1 + σr

2

)
δrr′δ(ω − ω′) (4.32)

Expectation values of out-going modes operators over the vacuum of in-going
modes can be determined starting from the input-output relation (4.17):

b̂r(ω) =
∑
r′

Mrr′(ω)âr′(ω) (4.33)

A direct calculation gives:

〈b̂†r(ω)b̂r′(ω
′)〉 =M∗rd2(ω)Mr′d2(ω)δ(ω − ω′) (4.34)

〈b̂r′(ω′)b̂†r(ω)〉 =
[
M∗rd2(ω)Mr′d2(ω) + σrδrr′

]
δ(ω − ω′) (4.35)

Notice that, as long as the d2 mode is available, the expectation values of in-going and
out-going modes do not coincide: this signals that a process of spontaneous particle
creation is taking place. In particular, the energy emitted by the sonic horizon in the

1An equivalent expansion for the field perturbation (4.28) is obtained by separating the sum
over positive norm and negative norm modes and associating annihilation (creation) operators to
the V (U) component for negative norm modes, as commonly done in previous literature [39, 112].
This replacement allows to treat all modes, including the negative norm ones, as particles fulfilling
canonical commutation relations.
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u out-going mode (that is, towards the black-hole exterior) is:

dIoutu

dt
=

∫ ω∗

0

dω
2π
〈b̂†u(ω)b̂u(ω)〉 =

∫ ω∗

0

dω
2π
|Mud2(ω)|2 (4.36)

Hence, as we anticipated, the scattering coefficient |Mud2(ω)|2 is typically referred to
as the Hawking emission spectrum of the analog black-hole.

With the chosen normalization in Eq.(4.28) , the field commutator is:

[ ˆδΨ(x), ˆδΨ
†
(x′)] =

∫ ∞
0

dω
2π

∑
r

σr

[
Ur(x)U∗r (x′)− V∗r (x)Vr(x′)

]
= (4.37)

=
∑

I∈{in,out}

∫ ∞
0

dω
2π

∑
r

eik
I
r(x−x′)

|wIr |
Θr(x)Θr(x

′) (4.38)

Notice that it does not coincide with a Dirac delta function because the zero-frequency
modes have not been included in the calculation.

The second and third spin vector components (3.31), (3.32) are expanded as:

Ŝ2(x, t) =
√
n

∫ ∞
0

dω√
2π

∑
r

[
iQr(x)e−iωtb̂r + h.c.

]
Θr(x) (4.39)

Ŝ3(x, t) =
√
n

∫ ∞
0

dω√
2π

∑
r

[
Rr(x)e−iωtb̂r + h.c.

]
Θr(x) (4.40)

where, to simplify the notation, we have defined the sum and difference of the Bo-
goliubov components describing the scattering modes as Rr(x) = Ur(x) + Vr(x) and
Qr(x) = Ur(x) − Vr(x). The same quantities can be defined for the Bogoliubov co-
efficients associated to each quasi-particle mode; moreover, if U Ir , V I

r are properly
normalized, they can be expressed in terms of the static structure factor for spin
modes as:

RIr = U Ir + V I
r =

[
S(kIr )

]1/2 (4.41)

QIr = U Ir − V I
r = σr

[
S(kIr )

]−1/2 (4.42)

where I ∈ {in, out} and r = u, d1, d2. In particular RIrQIr = σr.
The full expression for Rr,Qr for in-going scattering modes (4.22) is:

Rr(x) =
Rin
r e

ikinr x

|win
r |1/2

Θr(x) +
∑
r′

Mr′r
Rout
r′ e

ikout
r′ x

|wout
r′ |1/2

Θr′(x) (4.43)

Qr(x) =
Qin
r e

ikinr x

|win
r |1/2

Θr(x) +
∑
r′

Mr′r
Qout
r′ e

ikout
r′ x

|wout
r′ |1/2

Θr′(x) (4.44)
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4.6 Correlation functions

The observable which has typically been considered in previous works [38, 39, 43, 44,
112] is the equal-time density-density correlation function, which displays a charac-
teristic signal associated to the spontaneous creation of pairs of particles which travel
on opposite sides of the sonic horizon. Such signal has been observed experimentally
in a single-component condensate [40–42]. In the case of an unpolarized mixture, an
analogous signal is expected in relative density correlations [43], that is, in the equal
time correlations of the third component of the spin vector:

n2G33(x, x′) = 〈Ŝ3(x)Ŝ3(x′)〉 − n
[

ˆδΨ(x), ˆδΨ
†
(x′)

]
(4.45)

After expanding Ŝ3 in terms of scattering modes as in Eq.(4.40), we find:

G33(x, x′) =
1

n
R

{∫ ∞
0

dω
2π

∑
r

[
Rr(x)− σrQr(x)

]
R∗r(x′)

}
(4.46)

A further expansion of Rr,Qr in terms of quasi-particle modes as in Eqs.(4.43)-(4.44),
combined with the pseudo-unitarity of the scattering matrix, leads to the result:

G33(x, x′) = C3(x, x′) +
∑
rr′

G(rr′)
33 (x, x′) (4.47)

The first contribution:

C3(x, x′) =
1

n
R

 ∑
I∈{in,out}

∫ ∞
0

dω
2π

∑
r

|RIr |2 − 1

|wIr |
eik

I
r(x−x′)Θr(x)Θr(x

′)

 (4.48)

is present even in the absence of an analog horizon and represents an antibunching
(bunching) term resulting from repulsive (attractive) spin interactions [112]. When
written in momentum space rather than frequency space, C3(x, x′) coincides with
the Fourier transform of the structure factor reduced by 1, computed at x − x′: as
a consequence it diverges at the critical point for the para-to-ferromagnetic phase
transition, where S(k → 0) ∝ 1/k, while it vanishes in the absence of spin interactions,
κ = 0, since S(k) = 1. A typical example is given in Fig. 4.8(a,c): for κ > 0, C3(x, x′)
is a negative correlation peaked along the main diagonal x = x′; the difference in the
signal found in the two sectors x, x′ > 0 and x, x′ < 0 is due to the different value of
spin interaction energy κ in the upstream and downstream regions.

The additional correlation term in Eq.(4.47) contributes only if the d2 mode is
available, that is, only in the presence of a sonic horizon. For this reason, it can be
directly associated to the analog of the Hawking effect in a BEC system. We can
distinguish between self-correlation terms (r = r′):

G(rr)
33 (x, x′) =

1

n
R

{∫ ω∗

0

dω
2π

[
|Rout

r |2eik
out
r (x−x′)

|wout
r |

(
|Mrd2|2 +

σr − 1

2

)]
Θr(x)Θr(x

′)

}
+ (x↔ x′) (4.49)
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Figure 4.8: Trivial contribution to the relative density (4.48) [panels
(a) and (c)] and relative phase (4.54) [panels (b) and (d)] correlation
signal due to spin interactions. Parameters: κd/κu = 0.1, Ωu = 0 and
~Ωd/κdn = 0.1. Panels (b) and (d) represents cuts of the 2D plots at
x+ x′ ∼ 120ξu. Notice that relative phase correlations diverge in the
upstream region (x, x′ < 0) due to the 1/ω behaviour of |QIu|2 (both

for I = in, out) in the absence of coupling.

and cross correlation terms (r 6= r′):

G(r 6=r′)
33 (x, x′) =

1

n
R

{∫ ω∗

0

dω
2π

[
Rout
r Rout

r′ e
i(koutr x−kout

r′ x
′)

|wout
r wout

r′ |1/2
Mrd2M∗r′d2

]
Θr(x)Θr′(x

′)

}
+ (x↔ x′) (4.50)

While the former gives, once again, a signal along the main diagonal x = x′, the latter
might contribute away from it, producing a signal which is clearly distinguishable from
the usual bunching/antibunching term (4.48). In particular cross-correlations are non-
vanishing in the quadrants xx′ < 0: physically such correlation signal is interpreted
as due to pairs of quasi-particles which are spontanously emitted on the two sides of
the sonic horizon, in close analogy with what is expected in gravitational context.

According to (3.31), (3.32), the spin field perturbation not only affects the relative
density S3(x) but also the second component of the spin vector S2(x), related to the
relative phase between the two components of the mixture. It is therefore natural to
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define relative phase correlations as:

n2G22(x, x′) = 〈Ŝ2(x)Ŝ2(x′)〉 − n
[

ˆδΨ(x), ˆδΨ
†
(x′)

]
(4.51)

Notice that S2(x) is accessible in experiments by applying a π/2 pulse before measur-
ing the spin density S3(x).

By expanding the second component of the spin vector as in Eq.(4.39) we obtain:

G22(x, x′) =
1

n
R

{∫ ∞
0

dω
2π

∑
r

[
Qr(x)− σrRr(x)

]
Q∗r(x′)

}
(4.52)

= C2(x, x′) +
∑
rr′

G(rr′)
22 (x, x′) (4.53)

Analogously to density correlations, also phase correlations can be written as the sum
of various contributions, including a trivial term due to spin interactions:

C2(x, x′) =
1

n

R
∑

I∈{in,out}

∫ ∞
0

dω
2π

∑
r

|QIr |2 − 1

|wIr |
eik

I
r(x−x′)Θr(x)Θr(x

′)

 (4.54)

It consists in a positive (negative) contribution for κ > 0 (κ < 0), localized around
the main diagonal x = x′. When written in momentum space, it coincides with the
Fourier transform of the inverse of the structure factor reduced by 1: therefore it
diverges in the absence of a coherent coupling, while it vanishes in the absence of spin
interactions. A typical example is given in Fig.4.8(b,d).

The additional contributions, which are only found if an analog horizon is present,
can be distinguished between self-correlations (r = r′)

G(rr)
22 (x, x′) =

1

n
R

{∫ ω∗

0

dω
2π

[
|Qout

r |2eik
out
r (x−x′)

|wout
r |

(
|Mrd2|2 +

σr − 1

2

)]
Θr(x)Θr(x

′)

}
+ (x↔ x′) (4.55)

and cross correlations (r 6= r′)

G(r 6=r′)
22 (x, x′) =

1

n
R

{∫ ω∗

0

dω
2π

[
Qout
r Qout

r′ e
i(koutr x−kout

r′ x
′)

|wout
r wout

r′ |1/2
Mrd2M∗r′d2

]
Θr(x)Θr′(x

′)

}
+ (x↔ x′) (4.56)

Once again, only the latter are expected to produce a signal that is clearly distin-
guishable from the trivial contribution along the main diagonal. In particular, the
(ud) contributions in the sectors with xx′ < 0 are associated to correlations between
the Hawking particles emitted in the black-hole exterior and their partners.

As a last observable, let us define a symmetrized density-phase correlation:

n2G23(x, x′) =
1

2

[
〈Ŝ2(x)Ŝ3(x′)〉+ 〈Ŝ3(x)Ŝ2(x′)〉

]
(4.57)
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Once expressed in terms of quasi-particle modes using Eqs.(4.39),(4.40) and, subse-
quently, Eqs.(4.43),(4.44), it reads:

G23(x, x′) =
1

n
I

{∫ ∞
0

dω
2π

∑
r

[
Rr(x)Q∗r(x′)−Qr(x)R∗r(x′)

]}
(4.58)

=
∑
r 6=r′
G(rr′)

23 (x, x′) (4.59)

where the contribution coming from each pair (r 6= r′) is:

G(rr′)
23 (x, x′) =

1

n
I

{∫ ω∗

0

dω
2π

[
Rout
r Qout

r′ e
i(koutr x−kout

r′ x
′)

|wout
r wout

r′ |1/2
Mrd2M∗r′d2

]
Θr(x)Θr′(x

′)

}
+ (x↔ x′) (4.60)

The real part appearing in Eq. (4.55), (4.49) is replaced by an imaginary part for
density-phase correlations due to the imaginary unit in the expansion of S2, see
Eq. (4.39). As a consequence, all self-correlation terms vanish and G23(x, x′) is ex-
clusively given by the cross-correlations. In other words, this mixed correlation signal
is entirely due to the Hawking process and would be absent without an horizon.

In the following Sections, we report the results of our semi-analytical calculation
for the correlation signals in several cases of interest. Let us point out that, since
we are considering a stationary configuration, our results can be considered valid at
infinitely long times after the creation of the analog horizon. In a realistic experimental
setup, it is only possible to observe the Hawking emission for a limited time after
initializing the analog black-hole, and this might lead to different patterns or signals
in the correlations. An approximate yet straightforward way of estimating Gνν′(x, x′)
(ν, ν ′ = 2, 3) at a time t after the creation of the horizon, consists in setting an infrared
cutoff, namely replacing the lower bound (0) of the integrals in Eqs. (4.46), (4.52),
(4.58) with a small frequency ε ∼ 1/t [119]. For instance, the trivial contribution
C2(x, x′) to phase correlations in Eq.(4.54) diverges in the standard uncoupled case
because the inverse of the structure factor goes as 1/ω; hence in a time-dependent
setup it should grow logarithmically with time, as ∝ log(1/ε) ∼ log(t).

4.6.1 Uncoupled binary mixture

Let us start from the straightforward generalization of a black-hole configuration for
an uncoupled symmetric mixture, already considered in Ref. [43]: in the absence
of coherent coupling, the dispersion relation for spin modes is gapless both in the
subsonic and supersonic region (see an example in Fig. 4.2) and the sonic horizon is
generated by a step in the spin interaction constant κ, which also translates into a
step-like behaviour of the speed of spin-sound c =

√
κn/2m.

All the main features appearing in the two-point correlation functions, shown in
Fig. 4.9, can be explained through approximated analytical calculations of the integrals
defined in the previous Section: since they run over the frequency range [0, ω∗] in which
the d2 mode is available and typically ~ω∗ � µu, we can Taylor expand the quantities
appearing in the formulas around ω = 0, up to first order in ω. For instance, the
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momenta of the out-going modes can be considered linear with respect to ω:

koutr (ω → 0) ' ω/wout
r (0) (4.61)

As a consequence, the phase factor

Φrr′(x, x
′, ω) ≡ koutr (ω)x− koutr′ (ω)x′ (4.62)

is also approximatively linear in ω:

Φrr′(x, x
′, ω → 0) ' ω

(
x

wout
r (0)

− x′

wout
r′ (0)

)
≡ ωΠrr′(x, x

′) (4.63)

The proportionality factor Πrr′(x, x
′) is defined as the difference between the time

that a low-frequency r|out and r′|out modes take, after being emitted at the sonic
horizon, to reach positions x and x′.

The linear behaviour of momenta also affects the structure factor for spin modes,
which is also linear in frequency: S(koutr ) ∝ ω; therefore we have:

Rout
r (ω → 0) ∝

√
ω (4.64)

Qout
r (ω → 0) ∝ σr/

√
ω (4.65)

Moreover, in the low-frequency regime, the solution of the scattering problem gives
the following results for the scattering matrix elements:

R
[
Mrd2(ω → 0)M∗r′d2(ω → 0)

]
∝ 1/ω (4.66)

I
[
Mrd2(ω → 0)M∗r′d2(ω → 0)

]
' const (4.67)

so that we can safely neglect their imaginary part in the following calculation.
Putting all together, we find that the main contribution to the density correlation

signal G33(x, x′) is a sum of oscillating functions, one for each pair of modes:

G(rr′)
33 (x, x′) ∝

∫ ω∗

0
cos
[
ωΠrr′(x, x

′)
]
dω = ω∗ sinc

[
ω∗Πrr′(x, x

′)
]

(4.68)

where sinc(z) ≡ sin(z)/z. Each of these terms is peaked at the locus of points fulfilling
Πrr′(x, x

′) = 0, that is, on the straight lines defined by:

x′ =
wout
r′ (0)

wout
r (0)

x (4.69)

Self-correlations (r = r′) contribute, as expected, on the main diagonal, whereas cross-
correlations (r 6= r′) produce additional signals away from the diagonal, due to the
different group velocities of the modes. The expected location of these mustaches is
represented with dashed lines in Fig. 4.9(a), where we report the exact correlation
signal, numerically computed from (4.49), (4.50). Our results are analogous to those
shown in previous works on single-component [38, 39, 112] and two-component BECs
[43]. In particular, the strongest contribution is due to a negative correlation between
the Hawking particle emitted outside the analog black hole and its anti-particle partner
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Figure 4.9: Density correlations G33(x, x′) [panel (a)] and density-
phase correlations G23(x, x′) [panel (b)] for a symmetric uncou-
pled mixture, computed numerically using Eqs. (4.49), (4.50) and
Eq. (4.60), respectively; same parameters as in Fig. 4.2. Dashed lines
indicate the expected position of the cross-correlation signals, given by

Eq. (4.69).

emitted in its interior (see the u-d2 signal in Fig.4.9).
Following the same procedure, we can also compute mixed density-phase correla-

tions G23(x, x′) and phase correlations G22(x, x′). The main contribution to the former
is given by terms of the form:

G(rr′)
23 (x, x′) ∝

∫ ω∗

0

sin[ωΠrr′(x, x
′)]

ω
dω = Si

[
ω∗Πrr′(x, x

′)
]

(4.70)

where Si(z) =
∫ z

0 sinc(z′)dz′ is the sine integral function: its asymptotic values at
±∞ are ±π/2, respectively, and it crosses zero when z = 0. The full correlation,
shown in Fig. 4.9(b), is therefore a collection of patches in which G23 has different,
almost constant values, separated by smooth jumps whose location is determined,
once again, by the solution of Πrr′(x, x

′) = 0. In other words, jumps in G23(x, x′)
correspond to peaks in G33(x, x′): the higher the jump in density-phase correlations,
the more intense the signal in density-density correlations. More specifically, for each
pair of modes r 6= r′:

G(rr′)
33 (x, x′) ∝ ∂

∂x
G(rr′)

23 (x, x′) (4.71)

Lastly, phase-phase correlations G22 show an infrared divergence: indeed the 1/ω
behaviour of the scattering matrix coefficients is not compensated and even worsened
by the Qout

r coefficients, which provide a factor which is also inversely proportional to
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the frequency. Given some infrared cut-off ε, the most relevant contribution is:

G(rr′)
22 (x, x′) ∝

∫ ω∗

ε

cos[ωΠrr′(x, x
′)]

ω2
dω (4.72)

and diverges as 1/ε; hence, in a time-dependent setup, it should grow approximately
linearly with time. Recall that the trivial phase correlations C2(x, x′) in Eq.(4.54) also
diverge in the absence of coherent coupling, but as log(1/ε). From a physical point
of view, we interpret the infrared divergence of relative phase correlations as due to
the Gauge symmetry of the system, or, equivalently, to the presence of a Goldstone
mode associated to the relative phase: in each statistical sample (or experimental
realization) the phase of both components at any given point x is chosen randomly.
Indeed, as we will see in the following Sections, phase correlations are regularized by
the presence of a coherent coupling, which fixes the relative phase between the two
components to be ϕ = 0 in the ground state.

Alternatively, the divergence can be cured by replacing, in the definition of phase
correlations (4.51), Ŝ2(x, t)→ Ŝ2(x, t)−Ŝ2(0, t), namely, by measuring Ŝ2 with respect
to some reference point (the sonic horizon x = 0 is the most natural choice). This
amounts to substituting, in formulas (4.54), (4.55), (4.56):

ei(k
out
r x−kout

r′ x
′) −→

(
eik

out
r x − 1

)(
eik

out
r′ x

′
− 1
)

(4.73)

Notice that, in principle, Eq. (4.39) is only valid away from the sonic horizon because
it does not include evanescent modes. However, these are damped out over distances
of a few healing lengths, and long range coherence in BEC system guarantees that the
error we make by estimating the phase at x = 0 with Eq.(4.39) is negligible.

In the low-frequency limit, the complex exponentials (4.73) can be expanded at
first order in ω and the phase factor eiωΠ(x,x′) is replaced by koutr koutr′ xx

′ ∝ ω2xx′: the
ω2 dependence cancels the denominator in Eq.(4.72), leaving a finite correlation signal
G22(x, x′) ∝ xx′, that only diverges at infinite distance from the two axis x = 0, x′ = 0,
where instead it vanishes, by definition.

An example is reported in Fig. 4.10(a); although the signal might appear feature-
less, the typical Hawking mustaches are recovered by eliminating the linear depen-
dence of G22 on the coordinates x, x′, namely, by taking its first derivative with respect
to both x and x′. The result is shown in Fig. 4.10(b): notice that, despite phase cor-
relations are orders of magnitude larger than density correlations, the amplitude of
the signal in Fig. 4.10(b) is comparable to the one of Fig. 4.9(a), being roughly twice
as large. Similarly, a single derivative of G22 with respect to either x or x′, followed
by a symmetrization of the signal, would produce a correlation pattern similar to
Fig. 4.9(b), with slightly larger amplitude (not shown).

While considering the phase degree of freedom might not be of great practical
advantage in the experimental measurement of analog Hawking emission for an un-
coupled binary mixture, our results show that phase correlations carry the same infor-
mation of density correlations; hence, once regularized by the presence of a coherent
coupling, they represent a promising observable to detect Hawking emission. Exam-
ples are discussed in the next Section.



70 Chapter 4. Hawking radiation from spin-sonic black-holes

Figure 4.10: (a) Phase correlations G22(x, x′) computed using (4.54),
(4.56) after replacing the phase factors as in (4.73). (b) Double deriva-
tive of G22(x, x′) with respect to both x and x′ revealing the standard
Hawking mustaches that appear in density correlations G33(x, x′), see

Fig. 4.9(a). Same parameters as in Fig. 4.2.

4.6.2 Coupled binary mixture

Let us now analyse the effects of a non-vanishing coherent coupling in the downstream
region. The main consequences of having Ωd 6= 0 can be summarized as follows:

(a) There exist, in the downstream region, zero-frequency out-going modes with
non-zero wavevector; in particular koutd1 (0) = −k0 and koutd2 (0) = +k0. As we
will see, the existence of such modes produces oscillations in the correlations
pattern, since modes with non-zero momentum can be excited without paying
energy; this phenomenon is sometimes referred to as undulation [116].

(b) The group velocity of the two zero-frequency modes is identical:

wout
d1 (0)

v
=
wout
d2 (0)

v
≡ w0

v
=

√(
1− µd

mv2

)2
− 2~Ωd

mv2
(4.74)

therefore, oscillations with momentum k0 appear in the correlation signal, paral-
lel to either of the two diagonals, x+x′ = 0 or x−x′ = 0. A combination of the
two gives a checkerboard pattern, analogous to the one observed for white-hole
configurations [119].

(c) The Gauge symmetry associated to the conservation of the relative number of
particles is broken, thus relative phase correlations G22(x, x′) are regularized.

In the following we repeat the analytical calculations of the previous Section, with the
aim of analysing the various contributions to the correlation signals in the presence
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of a coherent coupling. Since the gap is only present in the downstream region, we
have to treat separately the u mode and the d1, d2 modes. A Taylor expansion of the
out-going momenta in the low-frequency limit (up to linear terms in ω) leads to:

koutu (ω → 0) ' ω/wout
u (0) (4.75)

koutd (ω → 0) ' −σdk0 + ω/w0 d = d1, d2 (4.76)

while the structure factors are approximately given by:

S(koutu (ω → 0)) ' 1

2
ξu

ω

|wout
u (0)|

(4.77)

S(koutd (ω → 0)) ' S0 ≡ S(k0) d = d1, d2 (4.78)

This translates on the phase factors as follows:

Φuu(x, x′, ω → 0) = ωΠuu(x, x′) = ω
(x− x′)
wout
u (0)

(4.79)

Φud(x, x
′, ω → 0) = ωΠud(x, x

′) + σdk0x
′ d = d1, d2 (4.80)

Φdd′(x, x
′, ω → 0) = −σdk0x+ σd′k0x

′ + ωΠdd′(x, x
′)

= −k0(σdx− σd′x′) + ω
(x− x′)
w0

d, d′ = d1, d2
(4.81)

where Πrr′(x, x
′) is defined as in (4.63). In general, the phase factor Φrr′(x, x

′, ω)
contains a frequency-independent contribution, which, as we will see, produces an
oscillating correlation signal with momentum k0, as well as a term proportional to ω,
that determines the locus of points in the (x, x′) plane in which the signal is peaked:
self-correlations contribute only close to the main diagonal, since Πrr(x, x

′) ∝ (x−x′).
The same holds for (d1-d2) cross-correlations, due to the identical group velocity for
the two modes. On the contrary, (u-d1) and (u-d2) correlations are expected to be
superimposed on a line defined by:

Πud(x, x
′) =

x

wout
u (0)

− x′

w0
= 0 (4.82)

The solution of the scattering problem gives the following results for the scattering
matrix coefficients: those involving d modes tend to a constant value, while Mud2

tends to zero in the zero-frequency limit. More specifically, we find:

|Mud2(ω → 0)|2 ∝ ω
Mud2(ω → 0)M∗dd2(ω → 0) ∝

√
ω d = d1, d2 (4.83)

Mdd2(ω → 0)M∗d′d2(ω → 0) ' const d, d′ = d1, d2

Notice that, while the asymptotic behaviour at ω → 0 we just discussed is valid for
any finite value of Ωd, in the relativistic regimes (see Figs. 4.4 and 4.5) it is reached at
extremely small frequencies: in other words, the saturation frequency ω can be much
smaller than the threshold value ω∗ (see Fig. 4.7). If this is the case, correlations
might be not entirely determined by the asymptotic behaviour at ω → 0. Moreover,
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in realistic experimental setups (or time-dependent numerical simulations) such small
frequencies might not be resolved, since they require extremely long time-scales.

Non relativistic regime For these reasons, let us first consider the non-relativistic
case ~Ωd ∼ |κd|n, shown in Fig. 4.6, for which the above Taylor expansions (for
momenta, structure factors and scattering matrix coefficients) are approximately valid
in the whole range [0, ω∗]. We can therefore easily derive approximate results for the
different contributions to the correlation signals, which are shown in Fig. 4.11. We
will not discuss the self-correlation terms due to the u-mode, G(uu)

νν (x, x′), since it
always gives a trivial signal peaked on the main diagonal x = x′, sometimes hidden
by the infrared divergence of C2, unless the latter is regularized by considering phase
differences, as we already discussed.

Let us start our calculation from density-density correlations; cross terms in the
(ud) sector (characterized by xx′ < 0), give:∑

d=d1,d2

G(ud)
33 (x, x′) ∝ sin

(
k0x
′) ∫ ω∗

0
ω sin

[
ωΠud(x, x

′)
]
dω + (x↔ x′) (4.84)

The signal is not peaked, but rather vanishing along the correlation line (4.82), because
the above integral is anti-symmetric with respect to a change of sign of Πud; moreover,
it is accompanied by an oscillation with wavelength 2π/k0. A similar feature is present
for density correlations in the analog black-hole interior: the signal consists indeed in
a checkerboard pattern with wavelength 2π/k0 whose amplitude is maximum along
the main diagonal x = x′:∑

d,d′=d1,d2

G(dd′)
33 (x, x′) ∝ sin(k0x) sin

(
k0x
′)sinc [ω∗ (x− x′)

w0

]
(4.85)

Notice that, in contrast with the case of an acoustic white-hole [119], this checkerboard
pattern is not infrared divergent. The numerical calculations shown in Fig. 4.11(a)
confirm these results.

Analogous calculations can be performed to compute phase correlations G22(x, x′)
and density-phase correlations G23(x, x′). The general result is a sinc contribution,
peaked along either the main diagonal x = x′ or along the straight lines defined by
Πud(x, x

′) = 0, multiplied by an oscillating term with characteristic wavelength 2π/k0,
due to the zero-frequency modes.

Cross correlations between u and d modes in the xx′ < 0 quadrants give:∑
d=d1,d2

G(ud)
22 (x, x′) ∝ cos(k0x)sinc

[
ω∗Πud(x, x

′)
]

+ (x↔ x′) (4.86)

Notice that the signal is symmetric with respect to a change of sign in Πud(x, x
′),

contrary to what happens to density correlations. In the (dd) quadrant (x, x′ > 0) we
find a checkerboard pattern analogous to (4.85), apart from a π/2 phase shift:∑

d,d′=d1,d2

G(dd′)
22 (x, x′) ∝ cos(k0x) cos

(
k0x
′)sinc [ω∗ (x− x′)

w0

]
(4.87)
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Figure 4.11: Density-density (a) and phase-phase (b) correlations in
the non-relativistic gapped case, numerically computed using (4.49),
(4.50) and (4.55), (4.56), respectively; the parameters are the same
as in Fig. 4.6: the dispersion relation for modes in the downstream
region is almost parabolic. The momentum of zero-frequency modes
is approximatively k0ξu ∼ 0.2, leading to oscillating patterns with
characteristic wavelength 2π/k0 ∼ 30ξu. Cyan dashed lines identify
the solution of (4.82), on which the (ud) cross-correlation is peaked.
In panel (a), the (dd) correlation signal in the x, x′ > 0 quadrant
(within the black square) has been reduced by a factor 10, in order to

show it on the same scale as the (ud) contribution.

Once again, these results are consistent with numerical results shown in Fig. 4.11(b): in
particular, the signal is two orders of magnitude stronger than the standard mustache
visible in density correlations for the uncoupled case [see Fig. 4.9(a)]; moreover, phase
correlations between the interior and exterior of the analog black-hole appear as an
oscillating Hawking mustache, which carries information about the massive nature of
the emitted particles in the downstream region.

We obtain similar results for density-phase correlations (not shown):∑
d=d1,d2

G(du)
23 (x, x′) ∝ sin(k0x)sinc

[
ω∗Πud(x, x

′)
]

+ (x↔ x′) (4.88)

∑
d,d′=d1,d2

G(d6=d′)
23 (x, x′) ∝ sin[k0(x+ x′)]sinc

[
ω∗

(x− x′)
w0

]
(4.89)

Since only cross-correlations contribute to the signal, the checkerboard pattern in the
(dd) sector is replaced by an oscillation orthogonal to the main diagonal.

Relativistic regimes As anticipated, the analytical calculations done so far might not
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Figure 4.12: Relative density correlations G33(x, x′) in the two rela-
tivistic regimes ~Ωd � κdn [panel (a)] and ~Ωd + κdn ∼ 0 [panel (b)].
The (dd) correlation signal in the x, x′ > 0 quadrant (within the black
square) has been reduced by a factor 30 (100) in panel (a) [panel (b)],
in order to show it on the same scale as the (ud) contribution. Param-
eters are chosen as in Fig. 4.4. In both cases k0ξu ' 0.057, which leads

to π/k0 ' 55ξu.

be valid for the two relativistic regimes Ωd ∼ 0 and ~Ωd + κdn ∼ 0, for which the
asymptotic low-frequency behaviour is only reached at extremely small frequencies
ω � ω∗ (or, equivalently, long time-scales). This is particularly true for density
correlations in the (ud) sectors, since the main contribution to the integral in Eq.
(4.84) does not come from the ω → 0 limit. Even when this is not the case, in a time-
dependent setup, the correlation signal might converge to the stationary result only
at extremely long times and have completely different features prior to convergence;
in particular, regular undulations, such as those predicted by Eqs. (4.85), (4.87) or
(4.86), are expected to appear only at times of the order of 1/ω.

Let us consider, for instance, the relativistic regime Ωd ∼ 0 of Fig. 4.4: in the
frequency range [ω, ω∗] wavevectors of all the propagating out-going modes can be
considered approximatively linear with frequency [see Eq. (4.61)], as in the uncoupled
case. This implies a linear dependence on ω of the structure factor as well. As for the
scattering matrix coefficients, we find approximately:

R
[
M∗rd2(ω)Mr′d2(ω)

]
∝ 1

ωα
α =


1 if r = r′ = u

3/2 if r = u, r′ = d1, d2

2 if r, r′ = d1, d2

(4.90)

while imaginary parts have much weaker dependence on frequency. The completely
different behaviour of these quantities with respect to that in the zero-frequency limit
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can manifest in the correlation signal, as visible in the (ud) sector of the density-density
correlation plot reported in Fig.4.12(a): in particular (u-d1) and (u-d2) correlations
are not superimposed, due to the different group velocities of the downstream modes,
and undulations, although slightly visible, are not dominating the signal. On the
contrary, in the (dd) sector of G33, as well as for G22 and G23, reported in Fig. 4.14(a)
and 4.13(a), correlations are entirely given by undulations: this is due to the extremely
high asymptotic values of the scattering coefficients involving the d modes as ω → 0
[see Fig. 4.4(c)].

The situation is slightly different in the vicinity of the critical point, see Fig. 4.5: at
intermediate frequencies ω . ω∗, the wavevectors of all the out-going modes are linear
with ω, but the structure factor in the downstream region is inversely proportional
to ω, thus the roles of Rout

d and Qout
d (d = d1, d2) coefficients are exchanged with

respect to the standard gapless case. The scattering matrix elements are instead
well approximated by the zero frequency results of Eqs.(4.83) [see Fig. 4.5]. As a
consequence, density correlations in the (ud) channel are, once again, dominated by
the standard mustaches, rather than undulations, as shown in Fig. 4.12(b). In the
(dd) sector, as well as in phase correlations [shown in Fig. 4.14(b)] and mixed density-
phase ones [reported in Fig. 4.13(b)], the two contributions compete and both features
(the mustaches along the correlation lines (4.69) and undulations with wavevector
k0) are visible. In particular the (u-d2) cross correlation between the positive energy
Hawking particle propagating in the black-hole exterior and its negative energy partner
propagating in the black-hole interior is not only present in the signal for G33, but also
in phase correlations G22, where its amplitude is larger by an order of magnitude.

Figure 4.13: Density-phase correlations G23(x, x′) in the two rela-
tivistic regimes ~Ωd � κdn [panel (a)] and ~Ωd + κdn ∼ 0 [panel (b)].
Parameters are chosen as in Fig. 4.4. In both cases k0ξu ' 0.057, which

leads to π/k0 ' 55ξu.
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Figure 4.14: Relative phase correlations G22(x, x′) in the two rel-
ativistic regimes ~Ωd � κdn [panel (a)] and ~Ωd + κdn ∼ 0 [panel
(b)]. Parameters are chosen as in Fig. 4.4. In both cases k0ξu ' 0.057,

which leads to π/k0 ' 55ξu.

Let us, once again, stress that the results we just discussed are valid, strictly
speaking, at infinitely long time after the creation of the sonic horizon. A more
rigorous study of the development of the signal through time-dependent numerical
simulation will be the subject of future work.

4.7 Conclusions and future perspectives

In this Chapter we have studied analog Hawking emission of spin modes from a sonic
horizon in a binary mixture of Bose-Einstein condensates, both with and without a
coherent-coupling between the two components.

We started from an analysis of the scattering properties of the analog horizon,
which carry information about the Hawking emission spectrum: we have interpreted
the presence of a coherent coupling in the downstream region as a modification of
the grey-body factor of the analog black-hole, which acquires a quadratic frequency
dependence in the limit ω → 0; moreover, we have verified that the thermal character
of the emission is not affected by the value of the Rabi frequency: this is remarkable
considering that both the step configuration and the parameters regime we considered
break the hydrodynamic approximation, and thus prevent a straightforward applica-
tion of the gravitational analogy.

We have also exploited the scattering matrix formalism to compute two-point cor-
relation functions; in addition to density-density correlations, previously considered in
the literature, we have computed phase-phase and density-phase correlation functions,
with the aim of finding an observable in which Hawking radiation manifests through
a signal with larger intensity and, as such, easier to measure in a lab. In particular,
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we found that in the limit of a large Rabi frequency (~Ωd � |κd|n), phase correla-
tions show an oscillating Hawking mustache, characterized by the typical undulation
expected when massive particles are involved in the emission process; the signal is
orders of magnitude stronger than the one observed in density correlations and the
parameters we consider seem within reach of currently available experiments [57].

Our results are not only relevant for atomic Bose-Einstein condensates, but also
for polariton systems: in the latter case, mixtures are generated by exploiting the
polarization degree of freedom and the gap in the dispersion relation opens if the
pump laser is detuned with respect to the polariton interaction energy [32].

A natural extension of our work concerns the analysis of more realistic configu-
rations, involving a (smooth) jump in the density profile and/or in the flow velocity,
rather than in the spin interaction constant [45, 112]. Given that typical values of
the interaction constants lead to κ � G [57, 77], an analog horizon for spin modes
can be generated by leaving the density channel subsonic everywhere; nonetheless,
having different densities on the two sides of the horizon might affect the signal in
the correlations. In addition to this, time-dependent numerical simulations based
on Gross-Pitaevskii or Bogoliubov theory would be necessary to support our semi-
analytical results: it would be useful to identify the most convenient initialization
procedure to generate the analog horizon, expecially in the presence of the coherent
coupling, and to analyse the robustness of the Hawking mustache to a finite temper-
ature. Along the same lines, a further development of our work could be the study of
the effect of a small imbalance between the number of atoms in each component, that
would lead to a weak coupling between density and spin modes [57].

Simple one-dimensional configurations similar to the one we considered throughout
this Chapter are also suited, in principle, to analyse black-hole related phenomena
other than Hawking radiation. For instance, the addition of a finite coherent coupling
in the upstream region, might allow to observe a phenomenon known as boomerang
effect [120]: modes with frequency smaller than the gap in the upstream region are
emitted by the analog horizon but, instead of propagating to infinity, they bounce
and are dragged back in the black-hole interior.

Another phenomenon that is expected to occur in black-hole spacetimes is rota-
tional superradiance [47]: as already pointed out, the toy model of Fig. 4.1 does not
allow to observe superradiant amplification of upstream modes because its analog
geometry does not account for rotation. However, as suggested in Refs. [81, 121],
superradiance-related phenomena could be analysed in a planar configuration if ro-
tation was mimicked through a synthetic vector potential. Alternatively, one must
consider stationary states whose analog metric shares the same features of a rotating
spacetime, such as two-dimensional quantized vortices. This will be the main subject
of the following Chapter.
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5 Superradiant instabilities in
analog rotating spacetimes

5.1 Introduction

In the previous Chapter we discussed Hawking emission in an analog spacetime with
a sonic horizon. This Chapter is devoted to another astrophysical phenomenon which
instead relies on the presence of a so-called ergoregion, known as superradiance.

The term rotational superradiance refers to the amplified scattering of waves from
a rotating object at the expenses of the rotational energy of the object itself [47].
It is a fully classical phenomenon, that was first predicted for elecromagnetic waves
impinging on a rotating cylinder [48]; it has been experimentally observed for surface
waves in a classical fluid [49], acoustic waves scattered by a rotating disk [50] and in
optical systems [51]. Rotational superradiance relies on the possibility of extracting
energy from the rotating object, so that the excess energy of the amplified reflected
wave is compensated by such energy loss [47]; from a different perspective, one could
argue that superradiant amplification can occur whenever there exist negative energy
states that can store the extra energy associated to the amplification [81].

In the gravitational context, superradiance is predicted to occur in a variety of
spacetime geometries, in particular in the surroundings of massive rotating objects,
such as Kerr black holes [46]: the dragging of spacetime by the rotating object gives
rise to an ergoregion, namely a spatial region supporting negative-energy light and
matter modes. In this case, the process of superradiance can be microscopically ex-
plained as the amplified reflection of a positive-energy wave impinging onto the bound-
ary of the ergoregion, accompanied by the transmission of a negative-energy wave
inside the ergoregion. In the presence of some reflecting element, self-amplification
of one of the outgoing modes may take place, leading to an exponentially growing
perturbation (see the sketch in Fig. 5.1). Depending on the location of the reflecting
element on either the inner or the outer side of the ergosurface, the instability takes
the name of ergoregion instability [52, 53, 122–124] or black hole-bomb instability [54,
125, 126].

For what concerns the specific case of rotating black holes in an asymptotically flat
spacetime, dynamical stability is guaranteed by the possibility of amplified reflected
radiation to propagate away to infinity and by the presence of an event horizon,
which, being a one-way membrane, provides a dissipation mechanism that suppresses
self-amplification of negative norm modes inside the ergoregion. A reflecting boundary
outside the ergoregion might be provided by asymptotically anti-de-Sitter spacetime
geometries [54] or by the boomerang effect if the amplified field is massive [127, 128].
Ergoregion instabilities, instead, are likely to develop in rotating spacetimes which
feature an ergoregion but not an event horizon [47].
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Figure 5.1: Illustrative sketch of the development of a black-hole
bomb [panel (a)] and of an ergoregion [panel (b)] instability: in the
former case, negative energy states inside the ergoregion are absorbed
or dissipated while positive energy ones are reflected and amplified; in
the latter, positive energy modes can propagate away, while negative
energy ones, bound inside the ergoregion, are self-amplified due to the
absence of an absorption or dissipation mechanism. Image adapted

from [81].

Rotating Bose-Einstein condensates are promising platforms to study superradiant
phenomena [47, 129]. A number of theoretical studies have investigated superradiance
in configurations featuring a single vortex located at the center of a cylindrically sym-
metric trap. In particular, the analog gravity perspective has offered transparent
physical explanations for the hydrodynamic instability of multiply-charged single vor-
tex configurations [130–133] by connecting them to ergoregion instabilities of rotating
massive objects in gravitation [56].

Within this general framework, in this Chapter, we explore ergoregion instability
phenomena in two-component BECs displaying a single quantized vortex in both
components. Thanks to the very different value of the density- and spin-sound speeds,
the ergosurface for spin waves is no longer bound to sit inside or in the close vicinity of
the vortex core as it instead happens in single component BECs, but can be pushed far
away from the vortex core into the external region where the density is approximately
constant. This is of great interest for analog gravity as it leaves a wider space to
investigate the dynamics of the quantum field in the ergoregion and disentangle the
different effects at play.

Beyond analog gravity, an active interest for this physics is also coming from
a purely quantum gas perspective: a recent numerical work [134] has pointed out
the rich phenomenology of vortex splitting in harmonically trapped two-component
BECs: singly-charged vortices are dynamically unstable for sufficiently strong repul-
sive inter-component interactions, whereas doubly-charged vortices dispose of several
decay channels. Experimentally, the splitting of a singly-charged vortex into a pair of
half-quantized vortices has been observed in spinor exciton-polariton superfluids [135]
and antiferromagnetic spinor BECs [136].

Here, we take advantage of the analog gravity point of view to develop a trans-
parent physical interpretation of vortex physics in two-component BECs in terms of
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superradiance effects. Use of this formalism allows us to highlight a number of features
that are specific to two-components BECs and characterize them in view of forthcom-
ing experimental studies. In addition to recovering the main predictions of previous
works, e.g. on vortex splitting instabilities, we identify regimes where a clean analog
of the ergoregion instability of massive rotating objects is visible.

5.2 Draining vortices as analogs of rotating black holes

The simplest configuration which reproduces the main features of a rotating black-hole
geometry in an analog system is the two-dimensional draining vortex [3, 47], whose
fluid flow is characterized by a drain and a circulation term:

v = −A
r
r̂ +

B

r
θ̂ ≡ −vrr̂ + vθθ̂ (5.1)

where (r, θ) are polar coordinates and A > 0. The analog metric (2.41) associated to
this vortical flow, when written in polar coordinates, leads to the line element:

ds2 = −
(
c2 − A2 +B2

r2

)
dt2 +

2A

r
dtdr − 2Bdtdθ + dr2 + r2dθ2 (5.2)

The following coordinate transformation [3, 47, 137]:

c dt′ ≡ c dt+
vr/c

1− (vr/c)2
dr (5.3)

r dθ′ ≡ r dθ +
vrvθ/c

2

1− (vr/c)2
dr (5.4)

allows to write the line element (5.2) in a form that resembles the equatorial slice of
the Kerr black-hole line element:

ds2 = −
(
c2 − |v|2

)
dt2 +

dr2

1− (vr/c)2
− 2Bdtdθ + r2dθ2 (5.5)

and that facilitates the identification of an ergoregion and an event horizon: the
former is located at the radius rE at which the first component of the metric vanishes
(gtt = 0), while the position of the analog horizon rH is signalled by a singularity of
the coordinate system (more specifically of grr):

rH =
A

c
rE =

√
A2 +B2

c
(5.6)

Moreover, if ΩH ≡ B/r2
H is the angular velocity of the analog horizon, modes with

azimuthal number M undergo superradiant amplification if their frequency is low
enough, that is ω < MΩH = MBc2/A2 [137].

As expected, rH and rE coincide with the locations at which the modulus |v| and
the radial component vr of the velocity flow exceed the speed of sound, respectively.
Moreover, in order for the analog metric to display an horizon, it is necessary to
engineer a flow with drain, A 6= 0. It is possible to do so with classical fluids [49],
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through a physical drainage hole, or with polaritons [138] and optical systems [12],
which naturally possess dissipation channels. On the contrary, thanks to particle-
number conservation, atomic Bose-Einstein condensates support quantized vortices
with non-zero circulation but vanishing drain [55], whose analog metric displays an
ergoregion but no horizon, and are therefore the ideal background to study analogs
of the ergoregion instabilities of rotating spacetimes. From a different perspective,
if A = 0 the superradiance condition translates to ω < ∞, therefore all modes are
amplified at the ergoregion: any small perturbation of the system triggers superradiant
scattering, which, due to self-amplification, leads to a dynamical instability.

5.3 Quantized vortices in atomic BECs

Let us consider a two-dimensional BEC. Even though condensation is strictly speaking
not possible in 2D, effectively two-dimensional atomic superfluids can be realized
experimentally by tightly confining the condensate along one direction, say z, imposing
a much weaker confinement in the orthogonal plane (x, y); the main effect of the
transverse confinement is a geometrical renormalization of the interaction strength,
while the dynamics of the order parameter can be described with an effectively two-
dimensional Gross-Pitaevskii equation [14].

More specifically we are interested in an unpolarized binary mixture with equal
intraspecies interactions g11 = g22 = g. For the sake of simplicity, let us assume
there is no coherent coupling between the two components, Ω = 0; we will briefly
discuss the effect of a coupling later on. We also assume κ ≡ g − g12 > 0 so that
the mixture is miscible. The system is subject to an external potential V (r) that
only depends on the radial coordinate r =

√
x2 + y2 and not on the polar angle

θ = arctan(y/x). Stationary states are characterized by identical order parameters
for the two components satisfying the time-independent GP equation:

µψ(r) =

[
−~2∇2

2m
+ V (r) +G

n(r)

2

]
ψ(r) (5.7)

where µ is the oscillation frequency of the matter field and G = g + g12. Of course µ
takes the meaning of chemical potential when we consider the lowest-order stationary
state of (5.7) corresponding to the ground state of the condensate.

Spin-symmetric quantized vortices are factorizable solutions of (5.7) the form [14]:

ψ(r, θ) = f(r)eiLθe−iµt/~ (5.8)

where the integer-valued parameter L is referred to as the charge of the vortex and
the vortex profile f(r) is a solution of:

− ~2

2m

∂

∂r

(
r
∂f

∂r

)
+

[
V (r) +

~2L2

2mr2
− µ

]
f +Gf3 = 0 (5.9)

In the limit r → 0, where only the kinetic energy contribution is relevant, Eq.(5.9)
is solved by f(r → 0) ∝ r|L|, thus the density of atoms vanishes at r = 0. On the
contrary, far from the vortex line, the density profile is well approximated by the
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Thomas-Fermi solution for the ground state:

f2(r →∞) ' nTF(r)

2
≡ µTF − V (r)

G
(5.10)

where µTF is determined through the normalization condition for the total particle
number N . For instance, for a uniform mixture in a box of radius R, one has:

µTF =
GN

2πR2
(5.11)

while, in the case of a system in an harmonic trap with frequency ω0 and of TF radius
R, we find:

µTF =
1

2
mω2

0R
2 =

GN

πR2
(5.12)

The exact solution for f(r) has to be found numerically by either solving (5.9) or
the time-dependent Gross-Pitaevskii equation in imaginary-time. In the former case,
Eq.(5.1) has to be solved self-consistently so to determine the proper value of µ, while
in the latter µ can be computed as an integral over space [see Eq.(2.6)], once the
profile f(r) has been determined.

The velocity flow associated to the quantized vortex (5.8) is purely tangential

v(r) =
~L
mr

θ̂ (5.13)

and coincides with (5.1) if A = 0 and B = ~L/m. As we already pointed out, the
associated analog metric displays an ergoregion but not an horizon, and this makes
quantized vortices the ideal configuration to analyse the development of ergoregion
instabilities. Strictly speaking, the ergosurface position rE is well defined only if all
modes move at the same speed: for a quantized vortex in a BEC this assumption is
not only violated by the quadratic dispersion of high-frequency modes, but also by
the inhomogeneity of the density profile, and in particular by the density drop in the
vortex core, that breaks the hydrodynamic approximation.

As a consequence, we deal, once again, with a configuration to which we cannot
straightforwardly apply the gravitational analogy: however, as in Chapter 4, we will
see that the main features of superradiance-related instabilities are preserved and that
dynamical instabilities of vortex configurations in BECs can be intrepreted as due to
self-amplification of negative norm modes at an analog ergoregion.

Although the analogy can be exploited for single component condensates [56],
working with symmetric binary mixtures might lead to practical advantages in the
experimental observation of the development of analog ergoregion instabilities: as
already discussed in Chapter 3, there exists two classes of elementary excitations of
a binary mixture, density and spin modes; both are subject to an analog metric with
the same structure as (2.41), but with different sound speed. For an inhomogeneous
density profile, these acquire a radial dependence as well:

cd,s(r) =

√
g ± g12

2m
f(r) (5.14)
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Figure 5.2: Comparison between the density and spin sound speed
(red and blue line respectively), and the flow velocity (dashed black
line) in a vortex configuration. The location of the ergosurface for
density (spin) excitations, indicated by the dotted red (blue) line, is
found as the intersection between |v(r)| and cd(r) [cs(r)]. All veloci-
ties are normalized to the large-distance value of the speed of density
sound, c∞d ≡ cd(r → ∞). The plot is obtained using the numeri-
cally calculated density profile of a vortex of charge L = 2; interac-
tions are set to the experimentally relevant value g12 = 0.93g, giving

cd/cs = ξs/ξd ∼ 5.25 [57].

The local sound velocities for an L = 2 vortex configuration are shown in Fig. 5.2 (red
and blue solid lines, respectively). Since f(r) must vanish at the vortex line r = 0,
while the velocity flow (dashed black line) diverges as 1/r in the same limit, there
exist two different positions, that roughly coincide with the ergosurface location rE ,
at which the fluid becomes supersonic with respect to density and spin modes (red
and blue dotted lines, respectively). If the system is asymptotically homogeneous
with density n∞ ≡ n(r → ∞), it is possible to define asymptotic sound speeds
c∞d,s ≡ cd,s(r →∞) and healing lengths ξd,s ≡ ~/mc∞d,s; the two analog ergoregions are
thus approximately found at rE ∼ Lξd,s. It is clear that, for mixtures with κ � G
(that is g12 . g), spin modes are subject to an analog spacetime featuring a much
larger ergoregion than density ones, since ξs � ξd (see Fig. 5.2); in particular, while
density ergoregion instabilities are bound to develop inside the vortex core, which is
typically characterized by very small size and low atomic density, the development of
dynamically unstable spin modes might be much more accessible in a lab.

Notice that, in contrast to the spin-sonic black-hole configuration analized in Chap-
ter 4, the analog spacetime associated to a quantized vortex necessarily features an
ergoregion for both spin and density modes: in principle, it could be possible to gen-
erate an analog spacetime featuring only a spin ergoregion through the stabilization
of the vortex, either by pinning it or filling it with atoms of an additional component.
This will be the subject of future work.

5.3.1 Bogoliubov modes on top of a quantized vortex

In this work we exploit the analysis of the Bogoliubov spectrum [15] to study the
stability of spin-symmetric vortex configurations in two-component BECs. In stable
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configurations, all frequencies are real-valued and, for each excitation mode, have the
same sign as the norm. Modes with positive (real) frequency and negative norm,
or vice versa, have instead a negative energy and their existence is a signature of
an energetic (or thermodynamic) instability: these modes cannot be excited in an
energy-conserving setup, but would destabilize the system if dissipation was included
in the GP equation and the system let to thermalize.

The appearance of modes with complex frequency implies instead dynamical in-
stability for the considered configuration: indeed these zero-norm, zero-energy modes
always come in pairs, whose frequencies share the same real part and have opposite
imaginary parts, ω = η± iΓ. The imaginary part Γ represents the rate of exponential
growth of the dynamically unstable mode. Such mode can develop in an energy-
conserving problem because it physically corresponds to the simultaneous creation of
particles and antiparticles, a process that leaves the total energy unchanged.

Taking advantage of the radial symmetry, the Bogoliubov excitations of frequency
ω and angular momentum M on top of a charge-L vortex can be written in the
factorized form (j = d, s)

uj(r) = Uj(r)e
i(M+L)θ (5.15)

vj(r) = Vj(r)e
i(M−L)θ (5.16)

and the stability of the vortex configuration can be assessed by solving the effectively
1D radial Bogoliubov problem. The frequencies and spatial profile of the collective
excitation modes on top of the vortex are computed as the eigenvalues and eigenvectors
of the Bogoliubov operators (3.21), (3.22) in the density d and spin s sectors. Notice
that the kinetic energy operator, written in polar coordinates, acts differently on the
particle and antiparticle component of the mode:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
− (L±M)2

r2
(5.17)

where the + (−) sign must be chosen when applying the operator to U (V ).

5.4 Local density approximation

In general, the Bogoliubov problem on top of a spatially inhomogeneous vortex con-
figuration can hardly be solved analytically. Before proceeding with the numerical
diagonalization of the Bogoliubov matrices which will be the subject of the next Sec-
tion, we start here with an intuitive discussion of the physics on the basis of a local
density approximation (LDA).

Let us assume that the condensate is enclosed in a large box trap, so that the
density can be considered approximately uniform far from the vortex core, n(r �
Lξd) ' n∞. Within a small spatial region around r, excitations of angular momentum
M can be approximated as plane waves with wavevector k = kur + (M/r)uθ, so that
the Bogoliubov wavefunctions are u(r), v(r) ∝ eikreiMθ. By exploiting the LDA,
the k-dependent Bogoliubov dispersion relation in the radial direction is obtained by
taking the uniform result (3.27) and replacing k2 → k2 + M2/r2. The effect of the
finite M is thus to open a gap in the dispersion relation and is equivalent to having
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Figure 5.3: Properties of the dispersion relation in the LDA (5.18)
(obtained with L = 2,M = 1, g12/g = 0.93,Ω = 0, µd/µs = 27.5). (a-
c) Plot of the dispersion at different radii, showing the availability of
positive and negative norm modes at a generic frequency ω, indicated
by the red horizontal line: solid (dotted) black lines refer to the upper
(lower) branch. (d) Plot of the maximum frequency of the lower branch
(black line) and minimum frequency of the upper branch (red line);
the red (gray) area indicates the region of the plot where positive
(negative) energy modes are available. The white area represents the
centrifugal gap. The dashed black line indicates the spin ergosurface

location, given by (5.19).

a space-dependent coherent coupling Ω(r) = ~M2/2mr2. On top of this, one needs
to include the overall M -dependent Doppler shift δ(r) ≡ k · v = ~LM/mr2 due to
the tangential velocity flow. Due to the absence of in-going flow, this Doppler term
does not tilt the dispersion relation as a function of the radial wavevector k, but
only rigidly shifts it vertically along the frequency axis. This shift is crucial to bring
negative-norm (positive-norm) modes up (down) to positive (negative) frequencies.

Combining all these elements together, we obtain the final formula

ω±s (k) =
~LM
mr2

±

√(
~k2

2m
+

~M2

2mr2

)(
~k2

2m
+

~M2

2mr2
+ κn∞

)
(5.18)

where the sign ± refers to the positive and negative branches, respectively. From
this formula, the space-dependent centrifugal gap is ∆(r) ≡

√
Ω(r)[Ω(r) + κn∞]. It

is worth noticing that in the perfect hydrodynamic limit of a sonic dispersion, the
centrifugal gap would instead depend linearly onM as the Doppler shift: ∆hydro(r) =
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√
Ω(r) =

√
~/2mr2M . Also notice that including a finite physical coherent coupling

would simply result in a larger centrifugal gap for all r.
Because of the Doppler shift and the centrifugal gap, for a generic positive fre-

quency ω, there can be positive norm, negative norm or no modes available depending
on the radial position r. Three specific examples for different radial positions r are
shown in Fig. 5.3(a-c). A summary of the results for generic (r, ω > 0) is displayed
in panel (d): here, the red and gray shaded areas indicate the (r, ω) regions where
positive and negative norm modes are available, respectively. The boundaries of these
regions identify two frequency-dependent positions in real space, r±(ω), indicated by
the red and black solid lines in Fig. 5.3(d). In particular, r−(ω) can be thought as an
effective frequency-dependent ergosurface position.

An ergoregion instability occurs when a negative norm mode in the inner part of
the system is coupled to a positive norm mode living in the outer region, so that the
two combine into a pair of zero-norm modes with complex frequencies ω± iΓ [56]. In
other words, the dynamical instability can be thought as resulting from a tunnelling
process between the red- and gray-shaded regions in Fig. 5.3(d), with a tunneling-
mediated instability rate determined by the real-space width of the forbidden white
region separating them. According to this interpretation, modes with smaller fre-
quency, that is, hydrodynamic excitations, have a more extended antiparticle compo-
nent, but also a smaller instability rate since they have to cross a much wider forbidden
region.

In general, a necessary (but not sufficient) requirement for the occurrence of an
ergoregion instability is the presence of negative norm modes in the inner region, which
translates in the condition δ(r) ≥ ∆(r) between the Doppler shift and the centrifugal
gap. The limiting radius rE for which such condition is satisfied can be thought as
the boundary of the ergoregion:

rE = Lξs

√
1− M2

4L2
. (5.19)

This value is slightly reduced with respect to the hydrodynamic prediction Lξs, which
is recovered in the M/L → 0 limit, with the correction being due to the non-linear
behaviour of the dispersion relation; since the centrifugal gap ∆ grows with M faster
than the Doppler shift δ, as M increases the ergoregion shrinks in space and eventu-
ally disappears for angular momentum modes with M ≥ 2L. This simple reasoning
explains the disagreement of our results with respect to previous works studying er-
goregion instabilities with hydrodynamic vortices [55] and in horizonless gravitational
spacetimes [124].

As mentioned above, the presence of a physical coherent coupling results in a
larger centrifugal gap [white region in Fig. 5.3(d)], so the matching between the exter-
nal positive-norm modes (red-shading) and the negative-norm ones in the ergoregion
(grey-shading) modes is harder to obtain and the unstable modes, if present, are more
localized and display a weaker instability rate.

While this discussion based on the LDA provides an intuitive understanding of
the microscopic process underlying the ergoregion instability, it completely misses all
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those features that stem from the quantization of the radial wavevector k in a finite-
size system1. Since the radial wavevector is associated to the radial kinetic energy
contribution ~2k2/2m, we expect that for tight enough ergoregions, the minimum
value of the kinetic energy set by the quantization of the negative norm mode may
increase the size of the effective gap so much that it prevents the development of the
instability. Assessing all these features in a quantitative way requires going beyond
the LDA and solving the full Bogoliubov problem with numerical tools. This will be
the subject of the next Section.

5.5 Bogoliubov spectra

The numerical solution of the Bogoliubov problem is performed as follows. For the
chosen value of the vortex charge L, we first find the radial function f(r) that describes
the density profile of the stationary vortex and the associated oscillation frequency
µ. This is achieved by means of an imaginary-time evolution of the radial Gross-
Pitaevskii equation.

We consider two experimentally relevant cases: the harmonic trap and the asymp-
totically uniform system in a box. The free parameters of the simulation are the
interaction constants ratio g12/g, the radial size of the system R and the expected
chemical potential in the TF regime (i.e. without vortices) µTF. The remaining pa-
rameters, i.e. the number of particles N and the trapping frequency ω0, are chosen to
satisfy the normalization condition (5.11), (5.12). For all the numerical results shown
in the rest of this Chapter, the system size R is much larger than the vortex size
∼ Lξd, which implies µ ' µTF.

Once the vortex profile f(r) is known, for each value of angular momentum 1 ≤
M < 2L, we build the density and spin Bogoliubov matrices and diagonalize them:
the eigenvalues form the Bogoliubov spectrum of the vortex, while the eigenvectors
give the real-space profiles of the modes.

In order to assess the dependence of dynamical instabilities on the size of the
system and on the external potential applied to the atoms, we performed a calculation
of the Bogoliubov spectra as a function of R: the value of g is tuned to keep µTF
constant. The spectrum of M = 1 spin modes over an L = 1 vortex are shown in
Fig. 5.4, both for a system in an harmonic trap [panels (a)-(c)] and in a box [panels (d)-
(f)]. Results are in agreement with Ref. [56]: we find alternate intervals of dynamical
stability and instability; in correspondence of the crossing points between a positive
and a negative energy mode, we observe the appearance of dynamically unstable
modes (red dots) with an associated imaginary frequency bubble. The insets (panels
c, f) show examples of the spatial profiles of the particle and antiparticle components
of the dynamically unstable modes: the common feature consists in the localization of
the antiparticle component (red solid line) in the inner portion of the system, while the
particle component (black solid line) is spread throughout the whole volume occupied
by the fluid. Notice that there is no qualitative difference in the real-space profiles of

1Differently from the planar configurations with synthetic vector potentials considered in [121], in
our vortex configuration the irrotational nature of the superfluid flow fixes the characteristic spatial
length on which the variation of v(r) can occur. As a result, it is not possible to find a rigorous
limiting procedure in which the LDA is exactly verified.
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Figure 5.4: Bogoliubov spectra for M = 1 spin excitations over a
vortex of charge L = 1 with g12 = 0.93g. Panels (a-c) refer to an
harmonically trapped system of TF radius R, while panels (d-f) refer
to a uniform mixture in a box of radius R. Panels (c) and (f) show the
real-space profile of the particle (black solid line) and antiparticle (red
solid line) components of the dynamically unstable mode for R = 23ξd;

the dashed line represents the rescaled vortex profile f(r).

the unstable modes for the two examined external potentials. We verified that this is
true also for other values of vortex charge L and angular momentum M (not shown).
Therefore, in the rest of this Chapter we focus on results obtained with an harmonic
trapping potential.

As shown in panels (b) and (e), the instability bubbles acquire a larger width but
smaller amplitude as R increases. It is therefore convenient, if possible, to simulate
the real-time dynamics of systems with relatively small size (R ∼ 20ξd): in addition
to the advantage of allowing for a better resolution in space, such configurations also
feature a faster development of the instabilities.

Fig. 5.5 and Fig. 5.6 show the Bogoliubov spectra in the spin channel for different
angular momenta M as a function of the interaction strength ratio g12/g for vortices
of charge L = 1, 2. For singly-charged L = 1 vortices, in the density channel a
negative energy density mode is always present, but its frequency remains below that
of positive norm modes (not shown); hence a dynamical instability never develops,
in agreement with previous works [56]. On the other hand, the spin channel shows
energetic stability for attractive interspecies interactions g12 < 0 (not shown) and
alternated intervals of dynamical stability and instability for repulsive interactions
g12 > 0 [see Fig. 5.5(a-b)]. Similarly to what happens for density fluctuations of
multiple-charged vortices in single-component BECs, this originates from the crossing
of a spectrally isolated negative norm mode with the band of positive norm ones; the
discreteness of the band, due to the finite size of the cloud, explains the existence
of instability bubbles separated by intervals of dynamical stability. Note that this is
in contrast to the case of an infinitely large system, where a dynamical instability
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Figure 5.5: Bogoliubov spectrum for M = 1 spin excitations on
top of a L = 1 (panels a-c) or L = 2 (panels d-f) vortex located at
the center of a harmonically trapped mixture of TF radius R = 30ξd.
Panels (c) and (f) show, together with the radial profile of the BEC
density (grey dashed line), an example of the real-space profile of the
particle |u(x)| (black solid line) and antiparticle |v(x)| (red solid line)

components of the dynamically unstable mode for g12 = 0.75g.

is found for all values of the interactions [56]. Moreover, since the frequency of the
isolated mode can be arbitrarily high, the associated instabilities are typically well
localized in the vortex core [see Fig. 5.3(d)].

As it is well known [130], when multiply-charged L > 1 vortices are considered,
dynamical instabilities of the same nature appear in the density channel too: since
the energy of a vortex with charge L is larger than that of L singly-charged vortices,
multiply charged vortices may be unstable against splitting into several lower-charge
vortices. For instance, for L = 2 vortices, we find, as a function of the interparticle
interaction, alternate intervals of dynamical stability and instability in the M = 2
channel of the density Bogoliubov problem (not shown), again in agreement with
previous works [56].

An additional class of dynamical instabilities occur in the spin channel: be-
sides the high-frequency isolated modes crossing the positive energy band discussed
above, which are present for all angular momenta 1 ≤ M < 2L [see Fig. 5.5(d) and
Fig. 5.6(a,e)] and which are related to the deformation of the vortex core and/or its
splitting, low-frequency and spatially extended instabilities may also appear. As visi-
ble in Fig. 5.6(a), such an instability may originate from the crossing of the two bands
of closely spaced positive and negative norm modes that extend throughout the er-
goregion. As such it belongs to the class of superradiant ergoregion instabilities closer
to the hydrodynamic regime. The possibility of observing instabilities of this super-
radiant kind is one of the main interests of replacing single-component systems with
spin mixtures with a much wider ergoregion.
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Figure 5.6: Bogoliubov spectrum forM = 2 (panels a-d) andM = 3
(panels e-g) spin excitations on top of an L = 2 vortex in a har-
monically trapped mixture of TF radius R = 30ξd. Two dynamical
instabilities are present in theM = 2 channel: the real-space profile of
the particle (black solid line) and antiparticle (red solid line) compo-
nents of these modes is shown in panels (c) and (d) for g12 = 0.75g and
g12 = 0.95, respectively. The main difference between the two modes
is in the localization of the antiparticle component, which dominates
up to r− ∼ 3ξd for the former, and up to r− ∼ 14ξd for the latter;
indeed, according to our LDA treatment, lower frequency modes are
more extended. Remarkably, the low frequency mode is only present
for g12 ∼ g. The M = 3 channel shows a single instability: an ex-
ample of the real-space profile of the mode is shown in panel (g) for

g12 = 0.81g.

Due to their different origin, these additional modes appear only around zero fre-
quency for g12 . g close to the demixing point: most importantly, their antiparticle
component extends well outside the vortex core [see Fig. 5.6(d) as compared with
Fig. 5.6(c)]. Physically, this means that long-wavelength spin waves are involved in
the instability mechanism. From a quantum gas perspective, the instability can be
understood as a demixing instability whose appearance is facilitated by the presence
of a vortex which lowers its threshold. From the point of view of the gravitational
analogy, this instability is of superradiant nature: as it happens for ergoregion insta-
bilities around massive rotating objects, the positive energy of the wave in the outer
region is compensated by the negative energy of the wave inside the ergoregion.

Analogously, in the presence of a coherent coupling, low-frequency instabilities
are expected to appear close to the ferromagnetic phase transition point g12 . g +
2Ω/n, where the massive gap in the spin dispersion closes and the spin healing length
diverges. This will be the subject of future work.

In general, depending on the parameters’ values, multiple dynamically unstable
modes can be found for the same configuration. When observing the time evolution of
the system starting from an unperturbed L-charged vortex, after a short transient in
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which all the unstable modes compete, the mode with the largest imaginary frequency
will eventually win over the others and dominate the intermediate-time evolution. In
most cases, the dominating mode is a high-frequency localized one. However, it is
possible to play with the system size R and with the interaction constants ratio g12/g
to make all localized modes dynamically stable, while keeping a spatially extended
mode unstable via superradiant mechanisms. In this case the dynamical instability
is associated to the generation of long-wavelength phonon within the ergoregion, as
expected from the gravitational analogy with ergoregion instabilities of massive ro-
tating objects [47]. At very long times, nonlinear effects set in, resulting in complex
mode mixing phenomena and additional instabilities. A study of this physics will be
the subject of the next Section.

5.6 Long-time dynamics

It is well-known that the linearized Bogoliubov theory holds as long as the the excited
modes are small perturbations on top of the stationary vortex state. When dealing
with a dynamical instability, this approximation is valid for a limited amount of time,
roughly given by the inverse of the growth rate Γ of the unstable mode. After that, the
radial symmetry of the problem is likely to be broken by complex non-linear processes,
and mixing phenomena start occurring. Therefore, while we can take advantage of
the axial symmetry of the system to compute the Bogoliubov spectra, in order to
access the long-time dynamics of the spin mixture, it is necessary to simulate the full
Gross-Pitaevskii equations in two dimensions.

The numerical protocol is the following: we first identify, thanks to the Bogoli-
ubov spectra, a set of parameters (L, g12/g,R) leading to a dynamical instability;
we calculate the 2D profile of a stationary vortex of charge L sitting at r = 0 via a
conjugate gradient algorithm [103], where the azymuthal profile of the wavefunction
phase is enforced at every step. The stationary state is perturbed with some weak
random noise, applied independently on the total and relative density, to trigger the
instability. We then simulate the time evolution of the system given by the GPE using
a split-step method.

Examples of the simulated time-evolution are presented in Figs. 5.7 - 5.10 for vor-
tices of charge L = 1, 2. As already discussed, L = 1 vortices have a single M = 1
potentially unstable mode in the spin channel. On the other hand, L = 2 vortices can
feature up to five unstable modes, four of which in the spin channel (one for M = 1,
two for M = 2, one for M = 3). For the sake of simplicity, the simulation param-
eters are chosen in a way to have a single dynamical instability in the spin channel:
in practice, this is done by keeping the interaction ratio g12/g fixed and tuning the
system size R to select the desired mode.

In all these figures, the short- and intermediate-time dynamics is consistent with
our expectations based on the Bogoliubov theory: the instability develops initially as a
well visible perturbation characterized by 2M lobes in the azymuthal direction, where
M is the angular momentum of the unstable mode. For high-frequency instabilities,
this excitation has a larger-amplitude part localized around r = 0 and a smaller-
amplitude one visible as interference fringes at larger radii [see panel (b2) of Figs. 5.7 -
5.9]; for low-frequencies instabilities instead, the localized part of the mode is itself
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Figure 5.7: Dynamics of the vortex splitting instability. Real time
evolution of a L = 1 vortex with R = 21ξd and g12 = 0.8g. Panel
(c) shows, together with the radial profile of the BEC density (grey
dashed line), the real-space profile of the particle |u(x)| (black solid
line) and antiparticle |v(x)| (red solid line) components of the M = 1
dynamically unstable mode, whose growth rate, for these parameters,
is ~Γ/µ ' 0.014. Panels (a1-a6): total density n = n1 + n2, measured
in units of the peak Thomas-Fermi density 2nTF(r = 0) = 2µ/(g +
g12). Panels (b1-b6): polarization, Z = (n1 − n2)/n. Each column is
computed at the time indicated by one of red dots in panel (d), which
shows the temporal evolution of the standard deviation of the spin
density δn = n1 − n2 (black solid line), compared with the analytical

exponential growth exp(Γt) (blue dashed line).

spread over a larger portion of the system [see panel (b2) of Fig. 5.10].
In panel (d) of Figs. 5.7 - 5.10, we show the standard deviation (STD) of the spin

density δn = n1 − n2 from its ground state vanishing value, defined as

std(δn) =

√√√√ 1

Q2 − 1

Q∑
i,j=1

δn2(xi, yj) (5.20)

where Q × Q is the number of points in the 2D numerical grid. As expected, this
quantity is exponentially growing at a rate equal to the imaginary part Γ of the
frequency of the dynamically unstable mode, whereas the total density remains almost
unperturbed.

At longer times, tΓ� 1, for the intermediate values of g12/g considered in Figs. 5.7
and 5.8, the high-frequency dynamically unstable modes lead to the splitting of the
original vortex into smaller vortices and/or pairs of coreless vortices2. Two examples

2With the term coreless vortex we indicate a singly-charged vortex in one component, filled with
atoms belonging to the other component.
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Figure 5.8: Dynamics of the vortex splitting instability. Same plots
as in Fig. 5.7 for an L = 2 vortex with R = 20ξd and g12 = 0.52g. For
these parameters, the instability rate of the M = 1 unstable mode,

whose real-space profile is shown in panel (c), is ~Γ/µ = 0.018.

are shown in Figs. 5.7 and 5.8 for L = 1 and L = 2 vortices, respectively, and closely
resemble the results of Ref. [134]. Interestingly, the splitting is often followed by a
recombination process; similar dynamics was predicted for multiply-charged vortices
in a single-component BEC in [139]. We attribute this phenomenon to energy conser-
vation and to the finite size of the system: once the vortex is split, the excess of energy
is released in the form of spin excitations, whose interference, after bouncing on the
trap walls, reverses the splitting process. This typically occurs multiple times, before,
in the absence of a dissipation mechanism, the evolution becomes turbulent, with
additional vortices being nucleated from the boundaries and/or deformation of the
(otherwise circular) cloud [see panels (a6-b6) of Fig. 5.8]. All these complex nonlinear
features go beyond this work and will be the subject of future studies.

The physics is more intriguing in the g12 . g regime close to the demixing point,
where vortex splitting is much harder to observe and, if it does so, only occurs at
much longer times scales: in addition to the reduced value of the instability rate Γ,
the softness of spin modes prevents in fact the cloud from absorbing the excess energy
that would derive from vortex splitting. This result is confirmed by looking at the
Bogoliubov spectra in Figs. 5.5 and 5.6: for g12/g . 1, the instability bubbles dis-
appear or become tiny, and instability rates drop by roughly an order of magnitude.
As a consequence, when approaching the demixing point, vortices in condensate mix-
tures remain stable for a very long time, while their spin dynamics is ruled by linear
Bogoliubov theory.

Two examples of the real-time dynamics in this regime are shown in Figs. 5.9 and
5.10 for L = 1, 2 vortices, respectively, and g12/g = 0.97. In the former case, the
unstable Bogoliubov mode is spatially localized around the vortex and corresponds to
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Figure 5.9: Real time evolution of a L = 1 vortex with R = 22ξd
and g12 = 0.97g. For these parameters, the growth rate of the M =
1 unstable mode, whose real-space profile is shown in panel (c), is

~Γ/µ ' 0.0016. Same plots as in Fig. 5.7.

a displacement of the cores in the two components, with the consequent appearance
of a net polarization. This process, however, does not lead to a full splitting of the
vortex. We rather observe a sequence of intervals of suppression and revival of the
instability, as witnessed by the oscillation in time of the standard deviation (STD)
of the relative density. The underlying mechanism is rooted in the finite-size of the
system and is analogous to the one leading to the sequence of vortex splitting and
recombination events seen above.

The temporal evolution associated to a superradiant instability is finally visible in
Fig. 5.10. At intermediate times [panel (b2)], a spatially extended M = 2 modulation
is clearly visible in association to the vortex core deformation. Its characteristic size
corresponds to the spatial profile of the unstable mode shown in panel (c) and, in
particular, its antiparticle component matches the extension of the ergoregion. This
is the smoking gun of the superradiant nature of the instability.

At later times, the dynamics develops instead a more complicated behaviour that
involves strong nonlinear mode-mixing effects: the perturbation of the spin density,
due to the development of the instability, is large enough to excite the M = 2 waves
with higher radial momentum and several radial nodes that are visible in panel (b3).
These different excitation patterns are in competition, eventually leading to a marked
deformation of the vortex and a significant modulation also of the total density [see
panel (a6)]. Once again, the accurate analysis of these complex mode-mixing processes
goes beyond the scope of the present work.
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Figure 5.10: Real time evolution of a L = 2 vortex with R = 23ξd
and g12 = 0.97g. For these parameters, the growth rate of the M =
2 unstable mode, whose real-space profile is shown in panel (c), is
~Γ/µ ' 0.0019. Same plots as in Fig. 5.7; the dotted black line in panel
(b2) indicates the size of the region where the antiparticle component

of the unstable mode dominates.

5.7 Conclusions and perspectives

In this Chapter, we have theoretically analysed the stability of quantized vortices
in symmetric two-component atomic Bose-Einstein condensates (BEC) and we have
interpreted the results within an analog gravity context in terms of ergoregion in-
stabilities. In addition to instabilities related to high-frequency Bogoliubov modes
localized in the vortex core and associated to the distortion or the splitting of the
vortex core like in single-component BECs [56], suitable regimes are found where the
physics is determined by low-frequency and long-wavelength spin excitations. In this
case, the superradiant scattering process underlying the ergoregion instability involves
the excitation of a Doppler-shifted, negative-energy spin-sound wave spread over the
ergoregion and the simultaneous emission of positive-energy spin waves into the outer
part of the BEC, in close analogy with the ergoregion instability of space-time around
a rotating massive object.

On the theoretical side, the most challenging open questions concern the late
time dynamics of unstable configurations. First studies of this physics focused on
the simpler case of black hole laser instabilities [140] and first hints of the remarkable
complexity of the superradiant case are visible in the simulations reported in this work.
In this long-term adventure, a special attention has to be paid to the role of nonlinear
processes in saturating the instability, in analogy with related phenomena predicted
in the gravitational context and with potential application to particle physics: more
specifically, numerical simulations in this context have predicted the growth, near
the unstable object, of a bosonic cloud, usually referred to as black hole hair [122,
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125, 126, 141], that extracts energy and angular momentum from the black hole and
subsequently slowly dissipates them through emission of gravitational waves [47].

On the experimental side, two-component condensates can be obtained in fluids of
atoms and of light. In the atomic case, vortices can be generated by means of suitably
chosen stirring potential [131, 142] and the different components can be chosen within
the atomic hyperfine structure in a way to obtain slow spin-sound waves [57]. In the
optical case, the polarization degree of freedom can be used to obtain two-component
condensates and arbitrary velocity patterns can be imprinted onto the fluid by suitably
designing the phase profile of the pump beam so to generate rotating configurations
[78]. In both cases, the control of the coherent coupling strength via either an external
electromagnetic dressing of the atoms or the optical birefringence of the cavity material
may be used to tune the mass of the quantum field.

The remarkable experimental advances in both fields make us confident that it will
be soon possible to validate our conclusions using state-of-the-art set-ups. As a more
ambitious challenge, the analysis of correlations in the spirit of [38–40], will allow
to investigate superradiant processes at the quantum level, so to prove superradiant
amplification is intrinsically connected to the spontaneous creation of correlated pairs
of Bogoliubov modes with opposite energy at the ergosurface.





99

6 False vacuum decay in a
ferromagnetic superfluid

6.1 Introduction

Up to now, we have discussed astrophysical phenomena that are expected to occur
in black-hole geometries, or, more specifically, in spacetimes with an event horizon
or an ergoregion. In addition to black-hole related phenomena, analog systems pro-
vide a platform to investigate cosmological processes: examples include cosmological
particle creation during preheating [4, 5, 17, 18, 97, 98] or in asymptotically curved
spacetimes [23, 143]. This Chapter is devoted to the realization, with a ferromagnetic
binary mixture, of the analog version of another phenomenon which has applications
to cosmology, known as false vacuum decay [101]. The project was carried on in col-
laboration with the experimental group of the Pitaevskii BEC Center in Trento and
with Ian Moss (and collaborators) from the University of Newcastle, which provided
theoretical support.

False vaccum decay (FVD) can be thought of as the relaxation process of a quan-
tum field from a metastable state. Metastability is a well known phenomenon in
physics: it occurs when a system is in a local mininum (also referred to as false vac-
uum, FV) of its free energy landscape that is not its ground state (or true vacuum,
TV). Typical examples are supercooled liquids or ferromagnets misaligned with re-
spect to an externally applied magnetic field. In order to reach its ground state,
a metastable system needs to overcome or tunnel through a potential barrier. The
generalization of this process to a quantum field has attracted extensive attention in
cosmology, due to its consequences on the stability of the Higgs vacuum and its appli-
cation to inflationary models describing the early Universe [72–75]. In its purest form,
false vacuum decay would take place through quantum fluctuations [69, 70]; however
in realistic scenarios it is likely to be boosted by thermal fluctuations [71] or seeded
by the presence of "impurities" in the system [144], such as black holes.

In an energy conserving setup, false vacuum decay is believed to take place via
the probabilistic formation of resonant bubbles of true vacuum, when the energy gain
provided by the bulk is compensated by the surface tension of the walls. Each bubble
then grows in size with time and the whole system ends up in the ground state as
the energy of the false vacuum is released in the form of excitations around the true
vacuum. A complete analysis of the decay from a false vacuum requires therefore the
calculation of the bubble nucleation rate, as well as an analysis of the dynamics of
bubbles after they are formed.

The analytical computation of the tunnelling times is non-trivial due to the highly
non-perturbative nature of the process; the stardard approach is a semiclassical cal-
culation based on an instanton solution, first proposed by Coleman in [69]. According
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to it, the rate of bubble formation is expected to be exponentially small with the
system’s parameters. This makes numerical and experimental studies extremely chal-
lenging, due to the long-time scales on which the decay occurs. So far, there have
been proposals to realize an analog version of false vacuum decay with quantum spin
chains [145] and with unpolarized binary BEC mixtures with a periodically modu-
lated coherent coupling [58]. In the former case, the double well potential is due to
the system being just across a first-order phase transition (the para-to-ferromagnetic
one), while in the latter it is engineered through a fast periodic driving of the Rabi fre-
quency. The main drawbacks of the two proposals are discretization of space, which
could affect the results, and the excitation of parametric instabilities on the same
time-scales of bubble nucleation, respectively. We propose here an alternative and
much more straightforward approach which exploits the ferromagnetic properties of
polarized coherently-coupled binary mixtures, and does not require a fast modulation
of the Rabi frequency in order to generate the double well potential [101].

We first briefly summarize the magnetic properties of a coherently-coupled binary
mixture, that we already discussed in detail in Chapter 3, focusing on how the profile of
the double-well potential can be arbitrarily engineered by tuning the Rabi frequency Ω
and detuning δ of the coupling. We then review the instanton theory, first developed
by Coleman in [69], that is often used to predict the bubble nucleation rates, and
we report the results of the application of such theory to our specific system [101].
Lastly, we focus on our contribution to the project, that is, a numerical analysis of
the bubble nucleation process and of the decay rates: we compare our results both
with the instanton analytical prediction and with the experimental data of Ref. [101].

6.2 False vacuum decay with a ferromagnetic superfluid

Let us consider a uniform one-dimensional two-component condensate: as we already
saw in Chapter 3, it is possible to identify an effective potential, which, if κ < 0,
naturally has a double-well profile with respect to the magnetization Z. Let us define,
for the sake of simplicity, the dimensionless parameters:

h1 :=
~Ω

|κ|n
> 0 h3 :=

~δeff
|κ|n

(6.1)

so that the potential (3.46) can be written as:

U(Z,ϕ = 0)

|κ|n
= −

(
1

2
Z2 + h3Z + h1

√
1− Z2

)
(6.2)

The phase diagram of the mixture is summarized again in Fig. 6.1: the system is
ferromagnetic if h1 < 1 and |h3| < h∗3 = [1−h2/3

1 ]3/2 [see Eq. (3.55)]. The longitudinal
field h3 determines the symmetry of the potential: at resonance, h3 = 0, the energy
landscape is symmetric, so the system has two degenerate ground states with opposite
magnetization ±Z0, Z0 =

√
1− h2

1 [see Eq. (3.52)]. As the value of h3 is increased, the
potential gets linearly tilted: while the absolute minimum ZTV represents the ground
state (or true vacuum, TV) of the mixture, the local one at ZFV is a metastable
false vacuum (FV). At the edge of the ferromagnetic region, defined by |h3| = h∗3,
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Figure 6.1: Phase diagram of a ferromagnetic mixture as a function
of the external field components h1, h3. The colored area identifies the
parameters’ values for which the potential has a double-well profile,
whose boundary is defined by |h3| = h∗3. Examples of the potential
profile in some points of interest are shown in panels A-E. Panels A-C
are obtained with |h3| = 0.03 � 1 (solid black lines refer to h3 = 0,
for comparison): in the almost resonant regime, |h3| � 1, changing
h1 has effect on the height of the potential barrier. Panels C-E are
obtained with h∗3−|h3| = 0.03� 1 (solid black lines refer to |h3| = h∗3,
for comparison): in the vicinity of the critical detuning, h∗3−|h3| � 1,
changing h1 has effect on the energy imbalance between false and true
vacuum. The color scale refers to the (numerically-computed) value of

the integral I in Eq. (6.11).

the secondary minimum becomes a saddle point, located at Z∗ = −sign(h3)h
∗1/3
3 [see

Eq. (3.54)], and metastability is lost.
Without loss of generality, in the following we will assume h3 ∝ δeff < 0, so that

ZTV < 0 and ZFV > 0 (results for h3 > 0 are easily get through Z → −Z). Let
us consider two regimes of interest, which allow to perform approximate analytical
calculations (results are summarized in Table 6.1):

(a) |h3| � 1. Close to resonance, an expansion keeping only linear terms in the
longitudinal field can be performed: both the potential barrier width (given
by ZFV − ZTV ) and the energy imbalance between the two minima depend on
Z0 ∝ (1 − h1)1/2, while the barrier height has a much stronger dependence
on (1 − h1)2 ∝ Z4

0 (see the difference between panels A-C of Fig. 6.1). Given
some value of |h3| � 1, we therefore expect the false vacuum decay to be more
and more suppressed as h1 → 0, since the potential barrier to tunnel through
becomes larger and larger in the same limit. On the other hand, the dynamics
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after the nucleation, which is determined by the amount of energy to be released
during the bubble growth, is likely to depend only weakly on h1.

Spin collective modes on top of either one of the two minima are approximately
described by the following (dynamically stable) dispersion relation:

(~ω̃s)2 '
(
~2k2

2m
+ |κ|n

)(
~2k2

2m
+ |κ|nZ2

0

)
(6.3)

Hence they have free particle character in the limit h1 → 0 (for which Z0 ∼ 1)
and phononic character in the proximity of the critical point h1 ∼ 1 (Z0 ∼ 0).
However the coupling between the density and spin branches (3.66) is given by
α ∝

√
1− Z2

0 = h1; thus spin modes are more likely to become dynamically
unstable in the proximity of the critical point h1 → 1, due to the interplay
between the closing gap and the coupling with the total density dynamics.

(b) h∗3 − |h3| � 1. Close to the critical detuning that defines the edge of the FM
region, we can expand the potential profile around the saddle point Z∗:

U(ZFV + ζ)− U(ZFV )

|κ|n
=

√
3Z∗

2h
2/3
1

(
h∗3 − |h3|

)1/2
ζ2 +

Z∗

2h
2/3
1

ζ3 (6.4)

As visible in panels C-E of Fig. 6.1, given some value of h∗3 − |h3| � 1, the
height of the potential barrier has a weak dependence on h1, whereas the energy
difference between true and false vacua increases significantly as h1 → 0: an
approximate estimate is given by 2|κ|nh∗3Z∗ = 2|κ|nZ4

∗ = 2|κ|n(1 − h
2/3
1 )2.

Hence, we expect the bubble nucleation rate to be almost independent on h1

and the dynamics after the decay to be highly influenced by the value of the
transverse field.

Spin collective modes on top of the false vacuum have the following dispersion:

(~ω̃s)2 '
(
~2k2

2m
+ |κ|nh2/3

1

)(
~2k2

2m
+ 3|κ|nh1/3

1

√
3Z∗

2

(
h∗3 − |h3|

)1/2) (6.5)

If h∗3 − |h3| is sufficiently small, these have phononic character with speed of
sound c̃s = h

1/3
1

√
|κ|n/2m. However, dynamical instabilities might arise from

the coupling with density modes (3.66), given by α ∝
√

1− Z2
∗ = h

1/3
1 ; once

again, this is more likely to happen in the vicinity of the critical point, h1 ∼ 1.

It is worth mentioning that the two regimes (that is |h3| � 1 and h∗3 − |h3| � 1)
become indistinguishable in the proximity of the critical point h1 → 1, since the size
of the FM region h∗3 shrinks. In view of numerical and experimental studies of false
vacuum decay, the condition h1 ∼ 1 might be convenient since it allows to explore
the whole FM region without having to deal with extremely long time-scales. On the
other hand, being close to a critical point magnifies any source of noise or fluctuations,
possibly affecting the accuracy of the measurements or even the decay process itself.
For instance, we have just shown that dynamical instabilities might arise due the
non-negligible coupling with the total density dynamics.
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|h3| � 1 h∗3 − |h3| � 1

ZTV −Z0 −
h2

1

Z2
0

|h3| −

ZFV Z0 −
h2

1

Z2
0

|h3| Z∗ +

√
2h

2/3
1

3Z∗

(
h∗3 − |h3|

)1/2
Zmax

|h3|
1− h1

Z∗ −

√
2h

2/3
1

3Z∗

(
h∗3 − |h3|

)1/2
U(ZFV )− U(ZTV )

|κ|n
2Z0|h3| −

U(Zmax)− U(ZFV )

|κ|n
1

2
(1− h1)2 − Z0|h3|

4

3

√
2h

2/3
1

3Z∗

(
h∗3 − |h3|

)3/2
Table 6.1: Approximate values for magnetization corresponding to
false and true vacuum and to the maximum, for the barrier height and

for the energy imbalance between true and false vacuum.

6.3 Analytical results for the bubble nucleation rate: the
instanton solution

Given the applications of false vacuum decay to cosmological models, bubble nucle-
ation rates are usually computed [69, 71] for field theories described by relativistic
Lagrangian densities of the form L = 1

2∂µφ∂
µφ− U(φ), where φ is a scalar field and

the potential U(φ) has an asymmetric double-well profile. For the sake of simplic-
ity, let us assume the potential is shifted such that the false vacuum state φFV has
U(φFV ) = 0.

In principle, the decay rate can be computed exactly as the transition amplitude
from the false vacuum to a bubble state in a path integral formulation [146]. However
the calculation is notably simplified by performing a Wick rotation to Euclidean time
(it→ τ): this amounts to a change of sign of the potential U(φ)→ −U(φ). Since the
false vacuum becomes an unstable maximum of the inverted potential, there exists
a classical trajectory (called instanton) from it to a resonant bubble state, that is, a
configuration such that the bulk energy gain is compensated by the presence of walls
separating the two vacua.

The path integral can be approximated with its most relevant contribution, that
is, the one coming from the classical path that minimizes the (d+1)-Euclidean action
(d being the number of space dimensions):

S
(d+1)
E =

∫
dτdxLE :=

∫
dτdx

[
1

2
∂µφ∂

µφ+ U(φ)

]
(6.6)

where LE is the Euclidean Lagrangian density. The general result for the decay
rate is therefore Γ = Aexp(−S(d+1)

E /~), where S(d+1)
E is the minimum action and A

is a typically unknown prefactor that includes the first quantum corrections to the
classical instanton solution [70]. Being non-trivial to compute, it is generally neglected
assuming that the main dependence on the systems’ parameters is in the exponential
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factor. In other words, the simplest estimation of the nucleation rates can be obtained
by minimizing the Euclidean action (6.6), that is, computing the action associated to
the (classical) instanton solution.

Figure 6.2: Sketch showing how the instanton solution changes as
a function of temperature [71]. For T = 0 one can assume the in-
stanton is invariant under rotations in Euclidean spacetime (a), while
at finite temperature T 6= 0 the solution is symmetric in space, but
periodic in Euclidean time with period β = 1/kBT . In the limit of
high temperatures, when the periodic copies are highly superimposed,
the derivative ∂τφ can be neglected and one gets a thermal instanton

solution (d).

The calculation proceeds differently depending on the temperature T of the system.
At zero temperature, where only quantum fluctuations matter, one generally assumes
that the field φ only depends on ρ =

√
x2 + τ2 [69], based on the Lorentz invariant

form of the Lagrangian density [see panel (a) of Fig. 6.2]. Let ρ0 be the size of the
bubble solution that minimizes the action.

At finite temperature T , one must integrate the decay rates over all possible ini-
tial excited states of energy ε > 0 above the false vacuum, with weights given by the
Boltzmann factor exp(−βε), where β = 1/kBT [147]. This amounts to assume that
the instanton solution is periodic in Euclidean time, with period β given by the tem-
perature [71]. As long as β is much larger than the typical bubble size ρ0 [see panel
(b) of Fig.6.2], the decay rate coincides with the T = 0 one, that is, quantum fluctu-
ations dominate. The thermal-to-quantum threshold temperature T ∗ can be defined
as the one for which the periodic copies start overlapping [see panel (c) of Fig. 6.2].
In the high-temperature regime T � T∗ [panel (d) of Fig. 6.2], one gets a cylindrically
symmetric thermal instanton solution: the derivative with respect to Euclidean time
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∂τφ is negligible and the Euclidean action simplifies to:

S
(d+1)
E = βS

(d)
E := β

∫
dx
[

1

2
(∇φ)2 + U(φ, T )

]
(6.7)

where we assume that temperature not only influences the bubble shape in Euclidean
spacetime, but might also potentially affect the landscape of the potential U . The
minimal reduced action S(d)

E is sometimes referred to as instanton energy and repre-
sents the many-body barrier that the system needs to overcome to decay.

Despite the instanton solution is typically used to compute false vacuum decay
rates in the cosmological context, the procedure does not rely on the relativistic na-
ture of the Lagrangian density. Therefore the same calculation can be performed,
in principle, also for our case of interest, starting from the Lagrangian density of a
uniform coherently-coupled BEC mixture:

L = −n
2

{
~ϕ

∂Z

∂t
+

~2

4m

[
|~∇Z|2

1− Z2
+ (1− Z2)|~∇ϕ|2

]
+ U(Z,ϕ)

}
(6.8)

However, the non-relativistic nature of the system, as well as the presence of two
dynamical fields (Z and ϕ) instead of only one, make calculations cumbersome. A
simplified analytical results is only available [101] if a certain number of approxima-
tions and assumptions are made:

(a) The relative phase dynamics is negligible, that is |~∇ϕ|2 � ϕ2 � 1. This allows
to derive an effectively reduced field theory for the magnetization Z only, with
potential U(Z) := U(Z,ϕ = 0).

(b) The temperature T is high enough to ensure that the decay is thermally-induced
but smaller than the energy barrier that the system needs to overcome to decay,
so that the Euclidean action takes the simple form in Eq. (6.7), with βS(d)

E > 1.

(c) The potential U(Z) is not affected in a relevant way by the temperature.

(d) The system is one-dimensional: together with (a), this assumption allows to use
identity (3.49) both to express the kinetic energy contribution in terms of the
potential and to change integration variable from x to Z.

Putting all together, the minimum thermal instanton action can be written as [101]:

S
(1+1)
E = βS

(1)
E = ~

|κ|n
kBT

QI(h1, h3) (6.9)

where Q is a dilution parameter that determines its order of magnitude:

Q := nξκ ξκ :=
~√

m|κ|n/2
(6.10)
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and I is a WKB-type integral which encodes its dependence on the external field
components h1 := ~Ω/|κ|n, h3 := ~δeff/|κ|n:

I(h1, h3) =
1

2

∫ ZFV

ZTP

√
2U(Z)

|κ|n
dZ√

1− Z2
(6.11)

Here, ZTP is the magnetization of the turning point in the inverted potential −U(Z),
that is the point defined by the condition U(ZTP ) = U(ZFV ).

Typical values of the parameters for Sodium-23 atoms [77, 101] are |κ|n ∼ 2π~×
1.1kHz and n ∼ 4000 atoms/µm, which give Q ∼ 3400. The (dimensionless) integral
I in (6.11) can be computed numerically for all values of the parameters (see Fig. 6.1)
and its value ranges from 0 (when |h3| = h∗3) to 1 (for h1 = h3 = 0). An analytical
result is easily found in the critical regime h∗3 − |h3| � 1, since the potential around
the false vacuum state can be approximated as (6.4):

I(h1, h3) ∼ 1.25h
1/6
1 (h∗3)−1/4

(
h∗3 − |h3|

)5/4 (6.12)

The nucleation rate is thus expected to depend exponentially on the distance from
the edge of the FM region, that is h∗3 − |h3|. The exponential suppression of the
tunnelling leading to bubble formation as a function of the system’s parameters is a
typical feature of the decay from the false vacuum (see, for instance [69, 145]) and
what makes it an extremely hard problem to simulate and study experimentally, due
to the involved time-scales. In particular, for values of Q of the order of 103, we expect
to be able to observe the decay from the false vacuum only if either the temperature
is high, |κ|n/kBT � 1, or the potential barrier is small, I � 1.

6.4 The role of inhomogeneity

So far, we have considered the simplest case of a uniform infinite system. However, in
most experimental setups, condensed atoms are confined in space through a trapping
potential, so the atomic density is a function of the position, n→ n(x). As a straight-
forward consenquence, both the transverse and longitudinal fields h1, h3 also depend
on x. Within a local density approximation (LDA), we can associate to each position
x a different point in the phase diagram of Fig. 3.5 and a different bubble nucleation
rate Γ(x): bubbles nucleate stochastically, but appear with a higher probability in the
positions associated to the highest Γ.

For the sake of simplicity, let us focus on the experimental setup of the Pitaevskii
BEC Center in Trento [77, 96, 101]: the coherent coupling is uniformly applied to the
whole cloud, so δ and Ω do not depend on x; atoms are harmonically trapped, thus
their integrated density profile is parabolic:

n(x) = n0

(
1− x2

L2

)
(6.13)

where n0 ∼ 4000µm−1 is the effective 1D peak density and L ∼ 200µm the Thomas-
Fermi radius. Moreover, the interaction constants for Sodium give ∆ = κ < 0, so the
effective detuning is δeff(x) = δ− |κ|n(x). In other words, a single, spatially extended
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sample is represented on the phase diagram by a line with slope −∆/κ = −1 [see the
yellow line in Fig. 6.3(a)]:

h3(x)

h1(x)
=
δ

Ω
− 1

h1(x)
(6.14)

By changing the physical detuning δ (which amounts to a vertical shift of such line)
in time, one can probe the entire phase diagram of the mixture [77].

More specifically, by properly choosing the values of the δ,Ω, all the different
phases (PM, S-FM and FM) can coexist in the same sample: an example is given
in Fig. 6.3(b). The tails of the cloud are always paramagnetic (PM), due to the
low atomic density. The condition h1(x) = 1 defines the separation between the
paramagnetic region and a saturated-ferromagnetic (S-FM) region, which extends
up to the position satisfying h3(x) = h∗3(x). The central part of the cloud is instead
ferromagnetic (FM): within this region the mixture can occupy, locally in space, either
the absolute or the relative minimum of the potential. In the former case the system is
in its ground state: the local magnetization has everywhere the same sign as h3, thus
two domain-walls are present at the positions ±x∗ satisfying the identity h3(x∗) = 0
[see upper plot of Fig. 6.3(b)]. In the latter case, a false vacuum region of size 2x∗ is
present in the central part of the cloud, where Z is positive but h3 is negative [solid
black line in Fig. 6.3(a)]; moreover, since the magnetization is everywhere positive,
the state of the mixture shows no domain-walls.

The absence of domain-wall in the false vacuum state, as well as the paramag-
netic nature of the tails, is a fundamental ingredient to observe spontaneous bubble
nucleation: indeed, it has been proven [63] that trap edges and topological defects
act as seeds for the false vacuum decay process. In other words, if the false vacuum
configuration features domain-walls, the system reaches the ground state by simply
moving them, rather than nucleating true vacuum bubbles.

The false vacuum configuration in the lower plot of Fig. 6.3(b) can be initialized
by preparing the mixture in the ground state associated to a large and positive δ, and
then adiabatically lowering the detuning until the central part of the cloud is on the
wrong side of the hysteresis cycle [77]. With reference to Fig. 6.3(a), this corresponds
to starting from a configuration in which the yellow line is entirely in the upper half-
plane and shifting it downwards until part of it (the solid portion, associated to the
highest densities) falls below the h3 = 0 line.

Let us point out that, for ∆ < 0, an analogous configuration with a false vacuum
region with negative magnetization and no domain-walls does not exist; in other words,
even though the physics of uniform systems is invariant under the transformation
h3 → −h3, spontaneous generation of bubbles can be observed in trapped clouds only
if h3 has the same sign of ∆ in the false vacuum region. More specifically, it would
not be possible to perform the same study with a perfectly symmetric mixture with
∆ = 0, since false vacuum configurations would always present domain-walls.

The interaction imbalance is therefore necessary to be able to observe sponta-
neous bubble nucleation in non-uniform systems: this given, inhomogeneity has two
additional consequences on the decay process itself:

(a) We already mentioned that the central region of false vacuum has size 2x∗,
where x∗ satisfies h3(x∗) = 0. For an harmonic trapping potential, this gives
x∗/L =

√
|h3(x = 0)|. This quantity shrinks to zero close to resonance and in
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Figure 6.3: Effects of inhomogeneity. (a) Phase diagram of the
mixture: colors refer to the magnetization Z of stationary states as
a function of the parameters h1, h3. The yellow line represents an
harmonically trapped cloud with |κ|n0/~Ω = 3.5, δ/Ω = 2.5 and
κ = ∆ < 0. Panels A-D show the profile of the potential U(Z)
along the cloud: while the low-density tails are paramagnetic (A) or
saturated-ferromagnetic (B), the high-density central part of the sys-
tem (C,D) can be characterized by both signs of magnetization. (b)
Real space density profiles of stationary states for the harmonically
trapped mixture represented by the yellow line in panel (a). The dot-
ted and solid lines represent |κ|n/~Ω for the two spin components,
respectively. The upper plot shows the ground state of the system: Z
has everywhere the same sign as h3. The lower plot is a stationary
state with Z > 0 for all x: the central part of the cloud (yellow region)
is therefore in a false vacuum state, namely it is locally in a relative
minimum of U(Z). Bubble nucleation can only occur within this re-
gion, which is represented as the solid part of the yellow line in panel
(a). Panel (c) shows the probability distribution Γ(x) of the position in
which true vacuum bubbles appear, normalized by Γ(x = 0). Obtained
using the thermal instanton solution (6.9), after setting kBT = 20|κ|n.
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proximity of the critical point (where h∗3 → 0), preventing the observation of
bubble nucleation or, at least, introducing finite size effects.

Nevertheless, both these regimes are difficult to access due to the extremely long
time scales and the enhancement of noise at the critical point, respectively.

(b) Since n, h1, h3, depend on x, the nucleation rate depends on x, as well: bubbles
are more likely to appear at certain positions. According to the thermal instan-
ton prediction (6.9), if ∆ = κ, the probability distribution of the position at
which bubbles appear is approximately a gaussian centered at x = 0 and width
proportional to the temperature [see Fig. 6.3(c)]:

Γ(x� L) ' Γ0 exp

[
|κ|n0

kBT
Q0

(
3

2
I0 + n0

∂I

∂n

∣∣∣∣
n0

)
x2

L2

]
(6.15)

Notice that this is a non-trivial consequence of how the integral I in Eq. (6.11) de-
pends on the effective external field components: indeed, if h1, h3 were constant
over the whole cloud, one would expect the decay to take place in low-density
regions, where the effect of fluctuations is the largest.

6.5 Numerical simulations

Given the estimates in the previous sections, we performed most of the numerical
simulations in the critical regime h∗3 − |h3| < 0.08. The physical parameters (inter-
action constants, peak density, number of particles, etc...) are those of the available
immiscible mixture at the Pitaevskii BEC Center in Trento [77, 85, 108]. In particular
κ = ∆ in all that follows.

The mixture is initialized in the false vacuum state and subsequently evolved in
real time without changing any parameter in the Hamiltonian. We look at both single
realizations and statistical averages, that we indicate with the symbol 〈·〉. It has been
proven [145] that there exists a time interval in which the following quantity

P (t) =
〈Z(t)〉 − ZTV
ZFV − ZTV

, (6.16)

that represents the probability that no bubbles nucleate up to time t, decays expo-
nentially to zero with rate given by the false vacuum decay rate Γ. We will therefore
use this quantity to determine how Γ depends on the parameters h1, h3, and compare
the results with the instanton prediction (6.9).

As an alternative observable, we also compute the tunnelling time τ defined as
P (τ) = 1/2 (which is more easily accessible experimentally) and compare it with 1/Γ.

6.5.1 The validity of the Truncated-Wigner approach

With the aim of seeing quantum effects at play, we started performing Truncated-
Wigner simulations at small temperature (kBT < |κ|n); the mixture has uniform
density over a box of length L with periodic boundary conditions. This strategy is
usually carried on when studying false vacuum decay in BEC mixtures [58, 60, 63]:
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the uniform density allows to easily populate the Bogoliubov modes so to reproduce
both quantum and thermal fluctuations.

Physical parameters are chosen to reproduce realistic experimental conditions for
a Sodium mixture [77]: in particular n ' 4000 atoms/µm, |κ|n ' 2π~ × 1.1kHz
and L ' 250µm, so to have a total of N = 106 atoms. A typical example of a
single realization showing bubble nucleation is reported in Fig. 6.4(a): we observe that
bubbles nucleate stochastically both in space and time, as expected. The dynamics
after bubble nucleation is a complicated subject that goes beyond the scope of this
work; a brief discussion, accompanied by some preliminary results, can be found in
the Conclusions of this Chapter (Sec. 6.7). For the parameters of Fig. 6.4(a), bubbles
grow at approximatively constant speed until the whole mixture is in the true vacuum;
the eccess of energy is released in the form of small perturbations of the ground state.

While the dynamics observed in single numerical realizations is consistent with
the expectations and with previous works on the subject [58, 60], statistical averages
lead to inconsistent results: in particular, bubble nucleation rates are cut-off depen-
dent, especially at the smallest temperatures [148, 149]. Moreover, thermalization of
Wigner noise to a classical distribution [104] occurs on time scales shorter than those
characterizing the false vacuum decay, making the results inconclusive on the role
of quantum fluctuations. Truncated-Wigner simulations seem thus not reliable when
used to compute the bubble nucleation rates, due to the extremely long time-scales
that characterize the decay process.

Figure 6.4: Bubble nucleation in a ferromagnetic mixture. Colors
refer to the magnetization Z. (a) Obtained with Truncated-Wigner
simulations at T = 22nK, corresponding to |κ|n/kBT = 2.5. Physical
parameters: h1 ' 0.73, h∗3 − |h3| ' 0.017. (b) Obtained with classical
field simulations. Physical parameters: h1 ' 0.73, h∗3 − |h3| ' 0.058.
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6.5.2 Classical field simulations at finite temperature

Given the inconsistencies, we decided to abandon the Truncated-Wigner approach
and perform classical field simulations at finite temperature (see Chapter 3 for more
details). This implies working in a classical regime where the false vacuum decay is
driven by thermal fluctuations. Our goal is to compute the decay rate through the
function P (t) in (6.16) and compare it to the thermal instanton prediction:

Γ ∝ exp

[
− |κ|n
kBT

QI(h1, h3)

]
(6.17)

We started from the simulation of a uniform mixture in a box. The parameters are
chosen to reproduce the experimental ones; in particular n ∼ 4000µm−1 and |κ|n/~ ∼
2π × 1.1 kHz, which give Q ∼ 3400. In order to obtain a total number of particle of
N ∼ 106, we set the box length to L ' 250µm. We inject energy in the system
by adding, independently to both components’ densities, random noise of amplitude
εn, where n is the total density and ε � 1. We then let the system thermalize for
1.5s. We verified that the results of the simulations do not vary if we double this
thermalization time, proving that the system has indeed reached equilibrium. The
mixture is initialized in the false vacuum state following the experimental preparation
procedure of [77]: starting from the (noisy) ground state associated with a large and
positive δ = 2π × 1 kHz, we ramp the detuning down in time at a speed of 50Hz/ms
so that, at the end of the ramp, h3 is negative and the cloud is in a metastable state
with positive magnetization. We verified that the results shown in the following do
not change if we initialize the false vacuum state with a slower (more adiabatic) ramp,
proving that the formation of bubbles is not triggered by the ramp itself.

Estimation of the temperature As already pointed out in Chapter 3, our numerical
simulations do not allow to fix a priori the temperature of the system in the false
vacuum state at the end of the detuning ramp. Assuming the system is at thermal
equilibrium and such temperature exists, a rough estimation of it is obtained by
exploiting the fluctuation-dissipation theorem as explained in the following.

Let us first point out that, since false vacuum decay occurs for the magnetization
degree of freedom, we expect the nucleation rate to depend from an effective temper-
ature associated to the occupation of spin modes, or, equivalently, to the fluctuations
of the magnetization σZ . This quantity is computed by dividing the cloud, of total
lenght L, into windows of lenght Wdx, dx being the resolution of the simulation; the
variance of the magnetization Z is calculated in each window and then averaged:

σ2
Z(W ) =

〈
i+W∑
j=i

Z(xj)−
1

W

i+W∑
j′=i

Z(xj′)

2〉
i=1,...,

L
dx−W

(6.18)

For one-dimensional system of large size L → ∞ and uniform density n = N/L,
assuming the temperature T is small enough to guarantee the validity of Bogoliubov
theory, σZ and T are related according to the identity [86]:

N2 lim
W→∞

σ2
Z(W ) = Ss(k = 0, T ) (6.19)
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where Ss(k, T ) is the static structure factor associated to the system’s respons to per-
turbations of the relative density n2 − n1. The analytical computation of Ss(k, T )
is cumbersome as it requires the eigenvectors of the Bogoliubov matrix (3.14) in the
basis defined by (δψ1, δψ2) [86]. At high temperature T � |κ|n/kB ' 50nK a nu-
merical diagonalization of the Bogoliubov problem leads to a structure factor with
an approximately Lorentzian shape, with its peak value at k = 0 proportional to the
temperature T . The large window limit appearing in Eq.(6.19) is therefore extracted
through a fit of σ2

Z(W ) with a Lorentzian function.
Eq. (6.19) provides a protocol to measure the effective temperature of spin modes

starting from the fluctuations of Z after the detuning ramp. Also it suggests that,
given some preparation protocol, such temperature is different depending on the
parameters h1, h3. For most of the simulations presented in the following we find
T ∈ [250, 500]µK [see Fig. 6.7(c)]. Let us however stress that these values have to be
taken as an indication of the order of magnitude rather than precise numbers, since
the just described protocol relies on strong assumptions, such as the system being
at thermal equiliubrium after the detuning ramp and the validity of Bogoliubov the-
ory. A more accurate analysis would require the calculation of the density-density
correlation function and will be the subject of future work.

Numerical results An example of single realization in which a bubble nucleates is
shown in Fig. 6.4(b). A comparison with Fig. 6.4(a) reveals no qualitative difference
with respect to Truncated-Wigner simulations: bubbles form stocastically both in
space and time and their size grows in time. Increasing the amount of fluctuations
allows to investigate larger values of h∗3 − |h3|, thus probing the FM region close to
resonance, at least in the limit h1 . 1. As an unwanted additional effect, we observe
that, if the energy difference between true and false vacua is small enough, fluctua-
tions do not only cause small perturbations of the ground state after the decay has
taken place, but they might generate bubbles of false vacuum, too [clearly visible in
Fig. 6.4(b)]. Despite such bubbles are short lived, their presence affects the measure-
ment of P (t) and, consequently, the calculation of the nucleation rate Γ. To avoid
this effect, in what follows we avoid the regime h1 ∼ 1 and set h1 < 0.5.

Fig. 6.5 shows a statistical average of the magnetization Z(x, t) obtained from 1000
different realization with different initial (thermalized) noise. As expected, it smoothly
decreases from the false vacuum value ZFV ∼ +1 to the true vacuum value ZTV ∼ −1.
This happens uniformly in space, due to the uniform total density within the box. The
probability P (t) in Eq.(6.16) can thus be computed after averaging 〈Z(x, t)〉 in space
over the whole numerical box: the result is shown in the lower panel of Fig. 6.5.
Consistently with recent results of [145], obtained for a quantum spin chain, P (t)
shows an initial plateau, followed by an interval of exponential decay. The associated
nucleation rate Γ is obtained from a linear fit of logP (dashed red line) in such time
interval, whose extremes are typically defined by the condition P (t) ∈ [0.3, 0.7]. The
tunnelling time τ is also easily computed by solving P (τ) = 1/2. The two analysed
observables Γ−1 and τ have the same order of magnitude but do not coincide due to
the presence of the initial plateau, whose length depends in a non-trivial way on the
system’s parameters. Despite this feature is commonly found in numerical studies on
false vacuum decay [145, 150], it is not predicted by the theory of instantons and has
not been fully understood yet.
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Figure 6.5: (Upper panel) Statistical average of the magnetization
Z(x, t) obtained from 1000 different realizations with different initial
noise. Parameters: h1 = 0.27 (which gives h∗3 = 0.44) and h∗3 − |h3| ∼
0.04. The temperature in the spin channel, estimated by exploiting
the fluctuation-dissipation theorem (6.19), is T ∼ 320nK. (Lower
panel) Probability P (t) computed as in Eq.(6.16) where Z(t) is also
averaged in space over the whole numerical box. The dashed black line
represents a linear fit of logP in the interval defined by P ∈ [0.3, 0.7].
The dotted line indicates the tunnelling time τ , satisfying P (τ) = 1/2.

Depencence on the temperature As a first step in the analysis of false vacuum decay
rates, we report in Fig. 6.6 its dependence on the effective spin temperature, which
is varied by changing the initial noise amplitude between 4% and 15% of the total
density. The numerical results show an exponential trend of Γ as a function of 1/T ,
as expected for a thermally induced decay process. According to instanton theory, a
linear fit of − log Γ as a function of β = 1/kBT would allow to compute the many-body
energy barrier that the system needs to overcome to undergo false vacuum decay: for
the parameters in Fig.6.6, we find S

(1)
E ' kB × 750nK. The instanton prediction

(6.9) gives instead, for the same parameters, S(1)
E = ~|κ|nQI(h1, h3) ' kB × 3.8µK,

roughly 5 times larger than the one extracted from the simulation.

Dependence on the effective detuning The smoking gun of a decay from a metastable
state is the exponential dependence of the time-scales on the barrier height, which,
for our system of interest, is controlled through the parameter h∗3−|h3|. Figure 6.7(a)
summarizes the numerical results obtained by varying the effective detuning h3 at
fixed h1 = 0.27: as expected, the decay rate shows an exponential dependence on
h∗3 − |h3|. In order to quantitatively compare the numerical data with the analytical
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Figure 6.6: Tunnelling times as a function of the effective spin tem-
perature [which is estimated using Eq. (6.19) and varied by changing
the amount of initial noise] for h1 = 0.27 and h∗3 − h3 = 0.04. Nucle-
ation times are computed by averaging over 1000 different realization
of the dynamics. The shaded area represents the maximum dispersion
of the FVD rate values Γ−1 computed from 10 different sets of 100
samples each. The solid line is a linear fit of Γ−1 in logarithmic scale:
according to instanton theory, its slope S

(1)

E ' kB × 750nK (0.07 on
the horizontal axis) represents the height of many-body energy barrier

that the system needs to overcome in order to decay.

instanton result we performed a three-parameter fit with the formula:

log Γ−1 = A(h∗3 − |h3|)ν + log Γ−1
0 (6.20)

According to Eq.(6.9), ν = 1.25 and A should encode the dependence on h1, T . The
fit gives instead ν > 1.75, the exact value depending on how many points are included
in the fit: remarkably, as the points associated to the largest decay times are added
to the fit, the exponent ν becomes larger, reaching ν > 2 when all the data are
used (dotted black line). Such discrepancy with the instanton result is imputed to a
residual dependence of the effective spin temperature from h3 [see the inset in panel
(c) of Fig. 6.7]: at larger h∗3− |h3|, the occupation of spin modes is smaller due to the
larger gap in the dispersion relation; the nucleation rate therefore not only decreases
because of the increasing height of the many-body barrier, but also due to the lower
spin temperature, resulting in a stronger dependence of Γ on h∗3 − |h3|.

After correcting the nucleation rates to account for the different spin temperatures,
the results become perfectly compatible with a power-law dependence with exponent
5/4; the two-parameter fit with the formula:

kBT

|κ|n
log

(
Γ

Γ0

)−1

= A(h∗3 − |h3|)5/4 (6.21)

gives Γ−1
0 ∼ 7ms and A = 790. According to the instanton result (6.9), the former

is related to the unknown prefactor, while the latter only depends on Ω, |κ|n through
A = 1.25Qh

1/6
1 (h∗3)−1/4 ' 4164; once again, this value is roughly a factor 5 larger than

the one resulting from the fitted numerical data. The instanton theory, thus, would
predict either higher temperatures or smaller decay rates. A possible explanation for
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Figure 6.7: (a) Inverse of the nucleation rates Γ−1 (black dots) and
tunnelling times τ (empty triangles), computed by averaging over 1000
different realization of the dynamics, as a function of h3 for fixed h1 =
0.27. The shaded area represents the maximum dispersion of the FVD
rate values computed from 10 different sets of 100 samples each. The
dotted black line represents a three-parameter fit with formula (6.20),
which gives ν = 2.04. (b) Nucleation rates Γ−1 corrected to account
for the different spin temperatures, which are estimated by exploiting
the fluctuation-dissipation theorem (6.19) and whose dependence on
h3 is reported in inset (c). The solid black line represents a fit using

formula (6.21).

such discrepancy is discussed in the conclusions.

Effect of an harmonic trap As a last point in the analysis, we included the harmonic
trapping potential in our numerical simulations; the longitudinal trapping frequency
is set to 16Hz, so to obtain a Thomas-Fermi radius of L ' 200µm and a peak density
of n0 ∼ 3680µm−1 with a total of N = 106 atoms. The amount of noise injected in
the system before letting it thermalize is chosen to approximately match the decay
rates obtained for the uniform mixture with the same parameters; in the central part
of the cloud, it amounts to roughly 10% of the peak density.

The results of the simulations are analogous to those obtained in the uniform
case; as already discussed, the main effect of the trapping potential can be seen in
the probability distribution of the position in which bubbles appear: in particular
the nucleation rate is higher where the density is higher, which causes bubbles to
appear more likely around x = 0. Nonetheless, the process remains stochastic and
unseeded, as proven by the histogram in Fig. 6.8, showing that bubbles appear as far
as 60µm from the center, only with much lower probability. As shown in the upper
panel of Fig. 6.9, once formed, bubbles grow in size until they fill the central region of
the cloud that was originally in the false vacuum state; the magnetization at the tails
remains instead positive. The final size of the bubble perfectly matches the theoretical
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expectation 2x∗ = 2L
√
|h3|, which, for the parameters of Fig. 6.9, gives ' 250µm.

In order to avoid effects arising from the inhomogeneous density, the function P (t),
reported in the lower panel of Fig.6.9, is computed by averaging the magnetization
only over the central 20µm of the cloud, where the density is approximatively constant.
Once again, it shows an initial plateau followed by an interval of exponential decay;
the latter can be fitted to determine the decay rate.
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Figure 6.8: Statistical distribution of the position in which the
bubble appears for a total of 1000 different realization. Parameters:
h1 = 0.27 (which gives h∗3 = 0.44) and h∗3 − |h3| ∼ 0.04. The temper-

ature, estimated with Eq. (6.19), is T ∼ 370nK.
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Figure 6.9: (Upper panel) Statistical average of the magnetization
Z(x, t) obtained from 1000 different realization with different initial
noise. Same simulation as in Fig. 6.8. (Lower panel) Probability P (t)
computed as in Eq. (6.16) where Z(t) is also averaged in space over the
central 20µm of the cloud. The dashed black line represents a linear
fit of logP in the interval defined by P ∈ [0.3, 0.7]. The dotted line

indicates the tunnelling time τ , satisfying P (τ) = 1/2.
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6.6 Comparison with experimental results

Numerical simulations in the presence of the harmonic trap have been performed for
different values of the physical detuning and of the Rabi frequency, in order to compare
them with experimental data. The results are summarized in Fig. 6.10; more details
about the experimental procedure, measurements and data analysis can be found in
Refs. [96, 101].

We find the same qualitative behaviour in numerical results and experimental
data: for both, the dependence on h3 can be fitted with the formula (6.20) after
setting ν = 5/4 (solid lines in the plot). As we already pointed out earlier, the
parameters extracted from the fit are not compatible with the instanton prediction:
in particular, if they were used to estimate the system’s temperature, the result would
be Ω-dependent and higher than the condensation temperature for the experimental
system. Additionally, both the numerical results and experimental data suggest that,
for fixed detuning h∗3−|h3|, the bubble nucleation time decreases as the Rabi frequency
Ω approaches the critical value |κ|n/~ = 2π×1.1 kHz (above which the system becomes
paramagnetic); the instanton theory would instead predict the opposite behaviour. A
possible explanation of these discrepancies is given in the Conclusions.
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Figure 6.10: Comparison between numerical simulations (red trian-
gles) and experimental data (black dots), for different Rabi frequencies:
the values of Ω/2π are indicated in the various panels; for the numer-
ical points, the horizontal axis has been rescaled by a factor 0.64 (see
text). Solid lines represents two-parameter fits with formula (6.20)

after setting ν = 5/4.
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Quantitative agreement between simulations and experimental data is recovered,
for all the four values of Ω we considered, with a rescaling of the horizontal axis
in Fig. 6.10 by a factor 0.64 (the numerical points shown in the plot are already
rescaled). The discrepancy is believed to be caused by the different dimensionality
(1D in the simulations, 3D for the experiment): it has indeed been proved in Ref.
[77] that dimensionality can significantly affect the phase diagram of the mixture
(see also Fig. 3.6); it could have an even stronger effect on the FVD rates, since the
ratio between surface and volume of a bubble is different according to its shape and
dimensionality. Another element that might explain the need of a rescaling factor
to match simulations and experimental data is an discrepancy in the temperature,
which, unfortunately, cannot be accurately controlled in neither of the two.

6.7 Conclusions

In this Chapter, we have numerically studied the process of relaxation of a ferromag-
netic binary mixture from a metastable state to its ground state; we have shown that
the decay occurs through the spontaneous nucleation of bubbles of true vacuum which
then expand in time, in agreement with expectations and with previous works on the
subject. We have first attemped to analyse the phenomenon in the quantum regime,
but, given the extremely long time-scales and the unreliability of Wigner simulations,
we have restricted to a regime in which thermal noise dominates over quantum fluc-
tuations, but temperature is still smaller than the many-body energy barrier that the
system needs to overcome in order to decay.

We have identified an observable P (t) in Eq. (6.16) which, after a transient, de-
cays exponentially in time; the decay rate Γ shows an evident exponential dependence
both on the system’s temperature and on the many-body barrier, which is controlled
through the quantity h∗3−|h3|. Such dependence is qualitatively captured by a simpli-
fied instanton model based on a reduced energy functional for the magnetization only.
We also investigated the role of an harmonic trapping potential and found remarkable
agreement between numerical simulation and experimental data [101].

To summarize, our results present all the main features of false vacuum decay at
finite temperature [71], that is, of a thermally-induced macroscopic tunnelling from a
metastable state in a spatially extended system. Our work thus confirms the poten-
tial of ferromagnetic coherently-coupled binary BEC mixtures as an experimentally
accessible and highly-tunable platform to reach a better understanding of the early
Universe, as well as of the physics of dissipationless magnetic materials across a first-
order phase transition.

Future research directions are diverse and include:

(a) a better understanding of the discrepancy between numerical results and the
instanton prediction: on one side, working at fixed temperature, by means of
stochastic-GPE simulations [105], would facilitate a quantitative comparison
with analytical results; on the other side, the instanton solution (6.9) relies on
strong assumptions which need to be relaxed, such as neglecting the relative
phase dynamics and the coupling with the density channel. While the latter
is likely to have a secondary effect on the decay rates, especially for uniform
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Figure 6.11: Contour plot (in gray scale) of the inverted poten-
tial −U(Z,ϕ)/|κ|n that is solved to determine the instanton solu-
tion (6.9); green arrows indicate the gradient of the potential; the
dotted black line represents the locus of turning points for which
U(Z,ϕ) = U(ZFV , 0). Red dots indicate the four stationary points:
the FV and TV states are maxima in the inverted potential; there
exist a saddle point (a minimum along Z, but a maximum along ϕ)
at ϕ = 0, Z = Zmax and a global minimum at ϕ = π. The dashed
red line represents the instanton solution considered up to now, which
passes through the saddle point (ϕ = 0 at all times), while the solid
red curve represents an alternative path which, by allowing a non-zero

relative phase, is possibly associated to a lower action.

systems, the former might be significant both for what concerns the absolute
values of Γ and their dependence on the Rabi frequency h1.

As shown in Fig. 6.11, allowing for a non-zero relative phase enlarges dramati-
cally the space of possible paths in the inverted potential −U(Z,ϕ); an example
is shown as a solid red line. A more rigorous calculation is necessary to deter-
mine if some of such paths lead to a smaller action, and thus to a reduction
of the tunnelling times; if this is the case, since the relative phase enters in
the potential through a term proportional to Ω, we expect that relaxing the
assumption ϕ ∼ 0 would mostly affect the dependence of Γ on h1.

(b) an analysis of the effect of dimensionality on the false vacuum decay rates: since
the process occurs through the formation of a resonant bubble, whose size is
such that the bulk energy gain is compensated by the tension at the walls,
we expect Γ to depend on the ratio between surface and volume of the bubble,
which, in turn, depends on the dimensionality of the bubble itself. In particular,
we expect the decay to be favoured in higher dimension.

The role of dimensionality could be investigated, for instance, with an axially
symmetric harmonically trapped mixture by measuring how the decay rate varies
with the ratio between the trapping frequencies ω⊥/ω|| at fixed peak density.

(c) an analysis of the role of temperature and of the quantum-to-thermal threshold,
in the spirit of [61]. Approaching the regime in which quantum fluctuations
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play a relevant is however challenging, since it requires the development of more
sophisticated numerical techniques and/or an improvement of the experimen-
tal apparatus accuracy. In general, it might be helpful to work with smaller
densities, so to avoid impossibly long time-scales.

In addition to a deeper analysis of the decay rates Γ, a natural extension of our
work would be a study of the dynamics of the bubble after the nucleation: while in
the cosmological context bubbles of true vacuum are expected to grow indefinitely at
the speed of light, studies on the nature of elementary excitations in magnetic systems
have proven the existence of mesonic-like kink-antikink bound states, suggesting that
domain-walls should be confined to stay close to each other. We expect the dynamics
after the decay to stem from a complicated interplay between energy conservation and
the available "dissipation" channels: as a bubble grows in size, the energy difference
between the true and false vacuum states can be either stored as kinetic energy in the
domain-walls, or released in the form of Bogoliubov modes and thermal noise, or even
generate other excitations, such as solitons.

As visible in Fig. 6.1 (panels C-E), in our platform the energy imbalance between
the false and true vacuum states depends strongly on Ω: we thus expect the domain-
wall dynamics after the formation of the bubble to vary significantly with the Rabi
frequency. Preliminary numerical results seem to confirm this prediction: while for
the parameters of Fig. 6.4(a), for which the energy difference between true and false
vacuum is δU ∼ 0.03|κ|n, after an initial acceleration the size of the bubble grows at
constant speed, for those in Fig. 6.12, giving δU ∼ 0.17|κ|n, the dynamics is much
more complicated: the bubble size initially oscillates rather than increasing, as if the
two domain-walls were bound; in the meanwhile, Bogoliubov excitations are emitted
(visible as a cone of waves around the bubble); these trigger the formation of additional
bubbles leading to a cascade effect that eventually flips the magnetization of the
whole cloud. A deeper study of the dynamics of domain-walls, including confinement
and scattering, and of how such dynamics depends on the physical parameters (Rabi
frequency, detuning, temperature) will be the subject of future works.
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Figure 6.12: Bubble nucleation in an harmonically trapped ferro-
magnetic mixture. Colors refer to the magnetization Z. Obtained with
truncated-Wigner simulations at T = 22nK; Parameters: h1 ' 0.36,

h∗3 − |h3| ' 0.01.
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7 Conclusions and future
perspectives

In this Thesis we discussed the possibility of exploiting two-component mixtures of
atomic Bose-Einstein condensates to investigate astrophysical and cosmological phe-
nomena, in the context of analog gravity [3]: this research field is based on the use
of table-top set-ups to simulate the physics of quantum fields on curved spacetimes,
based on the formal equivalence of the equations of motion governing the dynamics of
the two systems under suitable conditions. The strength of this approach resides in
the possibility of experimentally observe gravitational phenomena which would oth-
erwise escape direct investigation, as those occurring in the vicinity of a black hole or
during the fast expansion of the early universe.

Due to their superfluid character, intrinsic quantum nature and impressive ex-
perimental tunability, Bose-Einstein condensates represent one of the most promising
platforms to realize analog spacetimes and emulate gravitational phenomena, poten-
tially even those stemming from the interplay between the effectively curved geometry
and quantum fluctuations. In this Thesis we go beyond the standard single-component
BEC and focus on binary mixtures of atomic condensates, possibly in the presence of
a coherent coupling between the two-components [14, 86]. Our goal is to exploit the
additional degrees of freedom that such systems display in order to explore a broader
spectrum of gravitational phenomena, as well as to potentially facilitate their experi-
mental observation.

In Chapter 3 we discussed all the relevant features of binary BEC mixtures, which
are characterized by an extremely rich phase diagram, and whose properties are ac-
curately controlled by tuning the strength and detuning of the external field coupling
the two components [77]. Without such coupling, the system has two independent
branches of elementary excitations, associated to perturbations of the total and rela-
tive density, that we referred to as density and spin modes; both are phononic in the
low-frequency regime, but with very different sound-speed [57]. Hence, the availability
of both density and spin modes allows to simulate the dynamics of a massless scalar
field subject to two different spacetime geometries, despite the total density profile of
the background atomic condensate is fixed. When a non-vanishing coherent coupling
is switched on, it affects the dispersion relation of spin modes by opening a gap, thus
allowing, within certain parameters’ regimes, to conceptually extend the analysis to
massive scalar fields.

In Chapters 4 and 5 we discussed two configurations of gravitational interest whose
realization with unpolarized binary mixtures makes full use of their novel features
listed above.
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Specifically, in Chapter 4 we considered a one-dimensional analog black-hole space-
time featuring a sonic horizon for spin modes and analysed its stimulated and sponta-
neous Hawking radiation at zero temperature; the background flow of the condensate
can be engineered so that the analog geometry felt by density modes is trivial, making
the configuration robust against total density perturbations. The much larger value of
the healing length for spin modes ξs (with respect to that of density modes ξd) allows
to obtain an effectively one-dimensional dynamics without the need to work with a
quasi-1D condensate and even to generate an horizon that is steeper than ξs.

A finite Rabi frequency in the black-hole interior modifies its grey-body factor,
without affecting the thermal character of the (relativistic) Hawking particles emitted
in the black-hole exterior. The different nature of excitations on the two sides of the
analog horizon significantly changes instead the spectral properties of the emission,
and, as a consequence, the typical mustache observed in density-density correlations
[38–40], which shows characteristic features known as undulations. A non-vanishing
coherent coupling also fixes the relative phase between the two components and reg-
ularizes its perturbations, making phase-phase correlations an equivalently powerful
observable, in which the Hawking signal potentially appears with much larger inten-
sity, thus facilitating its experimental observation.

In Chapter 5 we focused on a two-dimensional rotating spacetime featuring an
analog ergoregion, which is obtained with quantized vortices, and analysed dynamical
instabilities arising from self-stimulated superradiance. While the size of the non-
hydrodynamic vortex core is fixed by the density healing length ξd, the dimension of
the analog ergoregion for spin modes depends on ξs � ξd: this will significantly fa-
cilitate the experimental observation of the development of ergoregion instabilities in
Bose-Einstein condensates. A remarkable consequence of the existence of dynamically
unstable modes which extend outside of the vortex core is their property of having
extremely low frequencies. Their hydrodynamic nature influences their long-time fate:
instead of being associated with vortex splitting, they cause phononic emission from
the ergosurface, in closer analogy with the astrophysical context.

While unpolarized Z2 symmetric mixture offer the possibility of straightforwardly
apply the gravitational analogy to the dynamics of both density and spin modes, such
one-by-one correspondence with the relativistic context cannot be found for polarized
mixtures. However, the coexistence of superfluidity and ferromagnetic character make
it possible, for instance, to initialize the system in a metastable state and study the
relaxation process to the ground state. When occurring to a field, this phenomenon
takes the name of false vacuum decay and has relevant applications to cosmology,
being associated to the stability of the electroweak vacuum.

In Chapter 6 we reported a numerical analysis of thermally-induced false vacuum
decay in a ferromagnetic binary BEC mixture, whose results are in agreement with the
first experimental observation of the phenomenon [101]; the experiment, to which we
provided numerical support, was performed at the Pitaevskii BEC Center in Trento.
Despite the observed nucleation rates and bubble dynamics are not sufficient to di-
rectly draw conclusions on cosmological false vacuum decay and the stability of the
Higgs field, an accurate comparison of the numerical and experimental data with the
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theoretical prediction of the instanton model would allow to validate or disprove it;
indeed, this theory is commonly used to study false vacuum decay in cosmology and
to put constraints on models describing the early universe, but its application is not
restricted to relativistic scenarios.

In general, our results confirm the potential of atomic Bose-Einstein condensates as
gravitational analogs and highlight the practical and conceptual advantages brought
by coherently-coupled binary mixtures over single-component systems, even for con-
figurations in which the gravitational analogy is not directly applicable. Future work
will focus on more realistic implementations of the ideal configurations considered in
the Thesis, taking into account, for instance, the effects of a small asymmetry in the
number of particles, finite temperature, external potentials, and transverse dimen-
sions. For what concerns Hawking emission, time-dependent numerical simulations
are necessary to support the simple semi-analytical results we discussed in Chapter
4, and analyse the correlation features that appear at short and intermediate times
after the creation of the analog horizon.

A more ambitious challenge consists in reaching a regime that would allow to see
quantum fluctuations at play. In particular, with reference to the vortex geometry
considered in Chapter 5, an analysis of correlations will allow to investigate superra-
diant processes at the quantum level, so to prove that the amplification is intrinsically
connected to the spontaneous creation of correlated pairs of Bogoliubov modes with
opposite energy at the ergosurface. Similarly, the development of more sophisticated
numerical techniques is necessary to investigate false vacuum decay from vacuum ini-
tial conditions, in order to determine the thermal-to-quantum threshold temperature
and identify potential limitations in the experimental observation of this phenomenon
in the quantum limit with our platform.

Besides the realization of processes of astrophysical and cosmological interest, the
richness of the phase diagram of two-component condensates (see Fig. 3.5) suggests
the possibility of exploiting them in the study of magnetism in the absence of dissi-
pation, decoherence and defects, conditions that are challenging to achieve in other
condensed matter platforms [77]. As briefly mentioned in Chapter 6, examples in-
clude the dynamics of domain walls and their scattering properties, or the study of
kink-antikink bound states and domain-wall confinement.
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