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Abstract. We introduce and investigate superdensity and the density
degree of sets with respect to a Radon measure on R

n. Some applications
are provided. In particular, we prove a result on the approximability of
a set by closed subsets of small density degree and a generalization of
Schwarz’s theorem on cross derivatives.
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1. Introduction

Let us consider a Radon outer measure μ on R
n and a μ measurable set

E ⊂ R
n. Then, a celebrated result (cf. [17, Cor.2.14]) states that for μ almost

all x ∈ E the set E is μ-dense at x, i.e.,

lim
r→0+

μ(Br(x) ∩ E)
μ(Br(x))

= 1, which is equivalent to lim
r→0+

μ(Br(x)\E)
μ(Br(x))

= 0,

(1.1)

where Br(x) denotes the open ball in R
n, with center x and radius r. If the

condition (1.1) is verified, then we can pose the problem of defining a number
dμ

E(x) that exactly quantifies the density of E (w.r.t. μ) at x. A natural way
(not the only way, certainly!) to solve this problem is as follows:

• First we say that x is an h-superdensity point of E (w.r.t. μ) if h ∈
[0,+∞) and μ(Br(x)\E)

μ(Br(x)) = o(rh), as r → 0+;
• Then, we define the density degree of E (w.r.t. μ) at x, denoted by

dμ
E(x), as the supremum of all h ∈ [0,+∞) such that x is an h-

superdensity point of E.
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In our previous work, we have obtained a number of results concerning su-
perdensity with respect to the Lebesgue outer measure Ln and the purpose
of the present paper is to generalize some of these results.

In this introduction, we want to summarize the most significant parts
of the paper. Section 4 is devoted to prove some properties of the operator
bμ,h : 2R

n → 2R
n

(with h ∈ [0,+∞)) defined as follows:

bμ,h(A) :=
{

x ∈ spt μ

∣∣∣∣ lim sup
r→0+

μ(Br(x) ∩ A)
μ(Br(x))rh

> 0
}

(A ⊂ R
n).

Roughly speaking, bμ,h(A) is the set of all x ∈ spt μ such that the relative size
of A in Br(x) is asymptotically larger than rh (as r → 0+). In Proposition
4.1, we find that bμ,h is a base operator, i.e., bμ,h(∅) = ∅ and

bμ,h(A ∪ B) = bμ,h(A) ∪ bμ,h(B)

for all A,B ∈ 2R
n

. Moreover, if Aμ,h denotes the set of all h-superdensity
points of A (w.r.t. μ), then

Aμ,h ∪ (spt μ)c = [bμ,h(Ac)]c.

Hence, bμ,h determines a topology τbμ,h on R
n which is finer than the ordinary

Euclidean topology and such that

A ∈ τbμ,h if and only if A ∩ spt μ ⊂ Aμ,h,

cf. Proposition 4.2. There are two main results in this paper. The first one,
Theorem 4.1, generalizes Ref. [8, Prop.3.2]. It provides assumptions under
which, in particular, the following property occurs (for any open set Ω ⊂ R

n):
For every ε > 0, there exists an open set A ⊂ Ω such that μ(A) < ε and
A is so “scattered” that the inclusion Ω ∩ sptμ ⊂ bμ,h(A) holds whenever h
exceeds a certain value which does not depend on ε. Here is the full statement:

Theorem 4.1. Let μ be non-trivial, i.e., sptμ 	= ∅. Suppose that there exist
C, p, q, r̄ ∈ (0,+∞) such that q ≤ min{n, p} and

rp

C
≤ μ(Br(x)) ≤ Crq

for all x ∈ sptμ and r ∈ (0, r̄). The following properties hold for all ε > 0
and h > np

q − q (note that np
q − q is non-negative):

1. If Ω ⊂ R
n is a non-empty bounded open set, then there exists an open

set A ⊂ Ω such that

μ(A) < ε, Ω ∩ spt μ ⊂ bμ,h(A) ⊂ Ω ∩ sptμ.

In the special case, when

∂Ω ∩ spt μ ⊂ bμ,h(Ω),

the set A can be chosen so that we have

bμ,h(A) = Ω ∩ spt μ.

2. There is an open set U ⊂ R
n satisfying

μ(U) < ε, bμ,h(U) = spt μ.
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An example of application of Theorem 4.1 to the Radon measure car-
ried by a regular surface in R

n is given in Sect. 5.2. Another application is
Proposition 6.3, which generalizes a property stated in Ref. [9, Prop.5.4]. It
provides a result on the approximability of a set by closed subsets of small
density degree (w.r.t. μ):

Proposition 6.3. Let μ be non-trivial and assume that:
(i) There exist C, p, q, r̄ ∈ (0,+∞) such that q ≤ min{n, p} and

rp

C
≤ μ(Br(x)) ≤ Crq

for all x ∈ sptμ and r ∈ (0, r̄);
(ii) It is given a non-empty bounded open set Ω ⊂ R

n with the following
property: there exists an open bounded set Ω′ ⊂ R

n such that Ω ⊂ Ω′

and ∂Ω′ ∩ sptμ ⊂ bμ,h(Ω′) for all h > m := np
q − q.

Then, for all H ∈ (0, μ
(
Ω
))

there exists a closed subset F of Ω such that
μ(F ) > H and dμ

F (x) ≤ m at μ-a.e. x.

The second main result generalizes the classical Schwarz theorem on
cross derivatives (cf. Remark 7.1 below). Here is the statement:

Theorem 7.1. Let us consider an open set Ω ⊂ R
n, f,G,H ∈ C1(Ω), a couple

of integers p, q such that 1 ≤ p < q ≤ n and x ∈ R
n. Assume that:

(i) For i = p, q, the i-th distributional derivative of μ is a Borel real measure
on R

n also denoted Diμ, so that we have Diμ(ϕ) = − ∫ Diϕ dμ =∫
ϕd(Diμ), for all ϕ ∈ C1

c (Rn);
(ii) x ∈ Ω ∩ Aμ,1, where A := {y ∈ Ω | (Dpf(y),Dqf(y)) = (G(y),H(y))}

(in particular x ∈ spt μ);
(iii) limρ→1− σ(ρ) = 1, where σ(ρ) := lim infr→0+

μ(Br(x))
μ(Bρr(x)) (note that σ is

decreasing);
(iv) For i = p, q, one has limr→0+

|Diμ|(Br(x))
rμ(Br(x)) = 0 (where |Diμ| denotes the

total variation of Diμ).
Then, DpH(x) = DqG(x).

Among the results obtained in our previous work are several of the same
kind as Theorem 7.1, in the special case μ = Ln. They were then applied to
describe the fine properties of sets of solutions of differential identities under
assumptions of non-integrability. The simplest example that we can mention
is Df = F , with f ∈ C1(R2) and F = (F1, F2) ∈ C1(R2,R2) such that
D1F2(x) 	= D2F1(x) for every x ∈ R

3. If we recall that D1L2 = D2L2 = 0
and apply Theorem 7.1 with

n = 2, Ω = R
2, G = F1, H = F2, p = 1, q = 2, μ = L2,

then we conclude that AL2,1 = ∅, regardless of f , even though there are
functions f such that L2(A) > 0 (cf. [6, Theorem 2.1]). In particular, the
density degree of A (w.r.t. L2) is less than or equal to 1 everywhere and this
gives us fairly accurate information about the fine structure of A. Similar
arguments have been used, for example:
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• In Ref. [10], to prove that, given a C1 smooth n-dimensional submanifold
M of Rn+m and a non-involutive C1 distribution D of rank n on R

n+m,
the tangency set of M with respect to D can never be too dense.

• In Ref. [11,12], to obtain results about low density of the set of solutions
of the differential identity G(D)f = F , for certain classes of linear par-
tial differential operators G(D), under assumptions of non-integrability
on F .

In connection with the results in Refs. [6] and [10], we would like to mention
the paper [1] on the structure of tangent currents to smooth distributions.
The application of superdensity used in Ref. [4] is a first successful attempt to
extend the theory developed so far for the Lebesgue measure to other contexts
(tangency of generalized surfaces as considered in Ref. [1]). At the same
time, it gives us reason to believe that it is interesting to continue working
on generalization. It is in this sense that the present work, which provides
a superdensity theory for Radon measures on R

n, should be understood.
In addition, promising research about measures on metric spaces is already
underway and the results will almost certainly be the subject of future papers.

2. Basic Notation and Notions

2.1. Basic Notation

The Lebesgue outer measure on R
n and the s-dimensional Hausdorff outer

measure on R
n are denoted by Ln and Hs, respectively. The i-th partial

derivative, either classical or distributional, will be denoted by Di. The ordi-
nary topology of Rn is denoted by τ(Rn). The σ-algebra generated by τ(Rn)
is denoted by B(Rn). A member of B(Rn) is called Borel set. Br(x) is the
open ball in R

k, with center x and radius r (k does not appear in the notation
as its value will be made clear from the context). The family of all Radon
outer measures on R

n is denoted by R. If μ ∈ R, then Mμ is the σ-algebra
of all μ measurable sets. When two subsets A and B of R

n are equivalent
with respect to μ ∈ R, i.e., μ(A\B) = μ(B\A) = 0, we write A =

μ

B. Observe
that if A =

μ

B and B ∈ Mμ, then A ∈ Mμ. If μ ∈ R, then sptμ denotes the
support of μ, that is the smallest closed set F ⊂ R

n such that μ(Rn\F ) = 0.
Hence,

μ(Rn\ sptμ) = 0 (2.1)

and

R
n\ spt μ = {x ∈ R

n |μ(Br(x)) = 0 for some r > 0}, (2.2)

cf. [17, Def.1.12]. The total variation of a Borel real measure λ on R
n is

denoted by |λ| (cf. [3, Def.1.4]).

2.2. Superdensity

The following definition has been introduced in Ref. [4] and generalizes the
notion of m-density point (cf. [5–7]).
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Definition 2.1. Let μ ∈ R, h ∈ [0,+∞) and E ⊂ R
n. Then, x ∈ R

n is said
to be an h-superdensity point of E w.r.t. μ if x ∈ spt μ and μ(Br(x)\E) =
μ(Br(x)) o(rh), as r → 0+. The set of all h-superdensity points of E w.r.t. μ
is denoted by Eμ,h.

Remark 2.1. Let μ ∈ R, h ∈ [0,+∞) and E,F ⊂ R
n. Then, it can easily be

verified that the following properties hold true:
1. If μ = Ln, then the set of all h-superdensity points of E w.r.t. μ coincides

with the set of all (n + h)-density points of E, i.e., ELn,h = E(n+h).
2. Eμ,h2 ⊂ Eμ,h1 , whenever 0 ≤ h1 ≤ h2 < +∞.
3. (E ∩ F )μ,h = Eμ,h ∩ Fμ,h.
4. If E,F ∈ Mμ and E =

μ

F , then Eμ,h = Fμ,h. In particular, this equality
occurs whenever E ∈ Mμ has finite measure and F is a “Borel envelope”
of E (that is F ∈ B(Rn), F ⊃ E and μ(F ) = μ(E)).

5. If E ∈ Mμ, then Eμ,0 =
μ

E (cf. [17, Cor.2.14]).
6. Let E be open. Then, E ⊂ Eμ,h and the inclusion can be strict, e.g.,

for μ = Ln and E = Br(x)\{x} one has Eμ,h = Br(x).
7. Eμ,h ⊂ sptμ ∩ E. In particular, if E is closed then Eμ,h ⊂ sptμ ∩ E.
8. Eμ�E,h = spt μ.

Remark 2.2. Recall from Ref. [6, Lemma 4.1] that if E is a locally finite
perimeter subset of Rn (cf. [3, Sect.3.3]), then Ln(E\ELn, n

n−1 ) = 0.

2.3. Base Operators

Let us recall from Ref. [16, Ch.1] that a base operator on a set X is a map
b : 2X → 2X such that b(∅) = ∅ and b(A∪B) = b(A)∪b(B) for all A,B ∈ 2X .
Any base operator b is obviously monotone and determines a topology on X
that is defined as follows:

τb :=
{
A ∈ 2X

∣∣ b(X\A) ⊂ X\A
}

.

It turns out that τb is the finest topology τ on X such that, for all A ⊂ X, the
closure of A w.r.t. τ contains b(A). If X = R

n and b(A) denotes the ordinary
closure of A ⊂ R

n, then b is a base operator and τb = τ(Rn).

3. Superdensity w.r.t. the Measure Carried by a Regular
Surface

Let G be a bounded open subset of Rk and consider ϕ ∈ C1(Rk,Rn) such
that ϕ|G is an imbedding (k ≤ n). In particular,

Jϕ(y) :=
[
det[(Dϕ)t × (Dϕ)](y)

]1/2
> 0 (3.1)

for all y ∈ G. We observe that Hk�ϕ(G) ∈ R.
We will prove:

Proposition 3.1. If E ⊂ R
n and h ∈ [0,+∞), then

EHk�ϕ(G),h ∩ ϕ(G) = ϕ
(
[ϕ−1(E)](k+h) ∩ G

)
.



4 Page 6 of 26 S. Delladio MJOM

Remark 3.1. From (3) and (6) in Remark 2.1, it follows that

[ϕ−1(E)](k+h) ∩ G = [ϕ−1(E) ∩ G](k+h) ∩ G = [(ϕ|G)−1(E)](k+h) ∩ G.

In the proof of Proposition 3.1, we will need the following easy corollary
of Ref. [15, Ch.VIII, Th.3.3].

Lemma 3.1. Let L be a real symmetric matrix of order k such that det L 	= 0
and (Lv) · v ≥ 0 for all v ∈ R

k. Then, min{(Lu) · u |u ∈ R
k, |u| = 1} > 0.

Proof of Proposition 3.1. Let us consider an arbitrary y ∈ G. We have to
prove that

ϕ(y) ∈ EHk�ϕ(G),h if and only if y ∈ [ϕ−1(E)](k+h)

namely, setting for simplicity μ := Hk�ϕ(G),

lim
r→0+

μ(Br(ϕ(y)) ∩ Ec)

μ(Br(ϕ(y)))rh
= 0 if and only if lim

r→0+

Lk(Br(y) ∩ [ϕ−1(E)]c)

rk+h
= 0.

(3.2)

To this end, we observe that

ϕ(z) − ϕ(y) =
∫ 1

0

(Dϕ)(y + t(z − y))(z − y) dt (3.3)

for all z ∈ R
k. If ‖ · ‖ denotes the Hilbert–Schmidt norm of matrices and we

define

K := {z ∈ R
k |dist(z,G) ≤ 1}, m1 := max

z∈K
‖(Dϕ)(z)‖ > 0 (3.4)

then (3.3) yields

|ϕ(z) − ϕ(y)| ≤ r

∫ 1

0

‖(Dϕ)(y + t(z − y))‖dt ≤ m1r (3.5)

for all z ∈ Br(y) with r ∈ (0, 1]. Furthermore, by (3.3), we have

ϕ(z) − ϕ(y) = (Dϕ)(y)(z − y)+
∫ 1

0

[(Dϕ)(y + t(z−y)) − (Dϕ)(y)](z−y) dt

for all z ∈ R
k. Hence, for all r > 0 and z ∈ ∂Br(y), we obtain

|ϕ(z) − ϕ(y)| ≥ [([(Dϕ)t × (Dϕ)](y)(z − y)
) · (z − y)

]1/2

− r

∫ 1

0

‖(Dϕ)(y + t(z − y)) − (Dϕ)(y)‖dt

≥ 2m0r − σrr

(3.6)

where

m0 :=
1
2
[
min

{(
[(Dϕ)t × (Dϕ)](y)u

) · u |u ∈ R
k, |u| = 1

}]1/2

and

σr := max
z∈Br(y)

‖(Dϕ)(z) − (Dϕ)(y)‖.

Observe that:
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• Since ϕ is of class C1, then

lim
r→0+

σr = 0; (3.7)

• (3.1) and Lemma 3.1 with L = [(Dϕ)t × (Dϕ)](y), yield

m0 > 0. (3.8)

From (3.6), (3.7) and (3.8), it follows that

|ϕ(z) − ϕ(y)| ≥ m0r, for all z ∈ ∂Br(y), (3.9)

provided r is small enough. Now, by (3.5) and (3.9), we obtain

ϕ(G) ∩ Bm0r(ϕ(y)) ⊂ ϕ(Br(y)) ⊂ ϕ(G) ∩ Bm1r(ϕ(y)),

provided r is small enough. Recalling also the area formula (cf. [14, Cor.
5.1.13]), it follows that this set of inequalities holds for r small enough:

μ
(
ϕ(Br/m1(y))

) ≤ μ (Br(ϕ(y))) ≤ μ
(
ϕ(Br/m0(y))

)
μ
(
ϕ(Br/m1(y)) ∩ Ec) ≤ μ (Br(ϕ(y)) ∩ Ec) ≤ μ

(
ϕ(Br/m0(y)) ∩ Ec)

Jϕ(y)

2
Lk(Br(y)) ≤ μ (ϕ(Br(y))) =

∫
Br(y)

Jϕ dLk ≤ 2Jϕ(y)Lk(Br(y))

Jϕ(y)

2
Lk(Br(y) ∩ [ϕ−1(E)]c) ≤ μ (ϕ(Br(y)) ∩ Ec) =

∫
Br(y)∩ϕ−1(E)c

Jϕ dLk

≤ 2Jϕ(y)Lk(Br(y) ∩ [ϕ−1(E)]c).

Hence, the statement (3.2) follows easily. �

4. Base Operators Associated to a Radon Measure

Proposition 4.1. Let μ ∈ R, h ∈ [0,+∞) and consider the operator bμ,h :
2R

n → 2R
n

defined as follows (recall (2.2)):

bμ,h(A) :=
{

x ∈ sptμ

∣∣∣∣ lim sup
r→0+

μ(Br(x) ∩ A)
μ(Br(x))rh

> 0
}

(A ⊂ R
n).

Then,

1. bμ,h(A) ⊂ spt μ, for all A ∈ 2R
n

;
2. Aμ,h ∪ (spt μ)c = [bμ,h(Ac)]c, for all A ∈ 2R

n

;
3. A ∩ spt μ ⊂ bμ,h(A), for all A ∈ τ(Rn).

Moreover, bμ,h is a base operator, that is:

4. bμ,h(∅) = ∅;
5. bμ,h(A ∪ B) = bμ,h(A) ∪ bμ,h(B), for all A,B ∈ 2R

n

.

Proof. Statements (1), (2), (3) and (4) are trivial, while (5) follows easily by
combining property (3) in Remark 2.1 and (2). �
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Example 4.1. Given x̄ ∈ R
n, let δx̄ be the Dirac outer measure (on R

n) at x̄.
Then, δx̄ ∈ R, spt δx̄ = {x̄} and

bδx̄,h(A) =

{
{x̄} if x̄ ∈ A

∅ if x̄ 	∈ A

for all h ∈ [0,+∞) and A ⊂ R
n. Hence and recalling (2) of Proposition 4.1

(or also simply by Definition 2.1), we obtain

Aδx̄,h = [bδx̄,h(Ac)]c ∩ {x̄} =

{
{x̄} if x̄ ∈ A

∅ if x̄ 	∈ A

for all h ∈ [0,+∞) and A ⊂ R
n. Moreover, it is very easy to verify that

τbδx̄,h = 2R
n

, for all h ∈ [0,+∞).

The same arguments used in Ref. [8, Prop.3.1] yield the following propo-
sition.

Proposition 4.2. Let μ ∈ R and h ∈ [0,+∞). The following facts hold:
1. bμ,h(A) ∈ Mμ, for all A ∈ 2R

n

. Hence, Aμ,h ∈ Mμ, for all A ∈ 2R
n

.
2. A ∈ τbμ,h if and only if A ∩ spt μ ⊂ Aμ,h. In particular τ(Rn) ⊂ τbμ,h .
3. If l ∈ [h,+∞), then bμ,h(A) ⊂ bμ,l(A), for all A ∈ 2R

n

. Hence, τbμ,l ⊂
τbμ,h .

The proof of Theorem 4.1 below is a non-trivial adaptation of the ar-
gument used to prove Ref. [8, Prop.3.2]. We need to make a premise about
lattices, which we include in the following remark.

Remark 4.1. We consider three positive integers R, β, k and set Lk :=
(2Rβk)n. Let P

(k)
1 , . . . , P

(k)
Lk

be the points of the lattice Λk := (β−k
Z

n) ∩
[−R,R)n and define the corresponding cells (which we will simply call k-
cells) as

Q(k)
j := P

(k)
j + [0, β−k)n (j = 1, . . . , Lk).

Observe that the k-cells form a partition of [−R,R)n. Now, let S be an infinite
subset of [−R,R)n and denote by Nk the number of k-cells intersecting S.
Obviously, one has Nk ≤ Nk+1 (for all k ≥ 1) and Nk → +∞ (as k → +∞).
Then, we can easily find a countable family {Pj} ⊂ S such that the following
property holds, for all k ≥ 1: Each one of the k-cells intersecting S contains
one and only one point of {P1, P2, . . . , PNk

}.
Under the assumptions above, we finally define Λ := ∪+∞

k=1Λk and we
say that {Pj} is a Λ-distribution of S.

Theorem 4.1. Let μ ∈ R be non-trivial, i.e., sptμ 	= ∅. Suppose that there
exist C, p, q, r̄ ∈ (0,+∞) such that q ≤ min{n, p} and

rp

C
≤ μ(Br(x)) ≤ Crq (4.1)

for all x ∈ spt μ and r ∈ (0, r̄). The following properties hold for all ε > 0
and h > np

q − q (note that np
q − q is non-negative):
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1. If Ω ⊂ R
n is a non-empty bounded open set, then there exists an open

set A ⊂ Ω such that

μ(A) < ε, Ω ∩ sptμ ⊂ bμ,h(A) ⊂ Ω ∩ spt μ. (4.2)

In the special case when

∂Ω ∩ spt μ ⊂ bμ,h(Ω), (4.3)

the set A can be chosen so that we have

bμ,h(A) = Ω ∩ spt μ. (4.4)

2. There is an open set U ⊂ R
n satisfying

μ(U) < ε, bμ,h(U) = sptμ.

Proof. First, observe that, by (2.1) and (4.1), we have μ(spt μ) > 0 and

μ({x}) = 0, for all x ∈ spt μ. (4.5)

Hence, spt μ is a non-countable set. That said, we can proceed to prove (1)
and (2).

Proof of (1). If

Ω ∩ sptμ = ∅ (4.6)

holds, then:
• The first statement is trivially verified with A = ∅.
• We have

bμ,h(Ω) = ∅, for all h ∈ (0,+∞). (4.7)

For if this were not true, x ∈ bμ,h(Ω) would exist for a certain h ∈
(0,+∞) and this would imply μ((Br(x)\{x}) ∩ Ω) > 0 for all r > 0
(by (4.5)), which contradicts (4.6). Now, in the special case when (4.3)
holds, the equality (4.7) yields ∂Ω∩spt μ = ∅ and it follows immediately
from this that the second statement is also true.

Thus, we can assume that

Ω ∩ spt μ 	= ∅.

This assumption and (2.2) (or (4.1)) imply that there exists an open
ball B ⊂ Ω such that μ(B) > 0, hence

μ(Ω ∩ sptμ) ≥ μ(B ∩ spt μ) = μ(B) > 0.

From this fact and (4.5), it follows that Ω∩ sptμ is a non-countable set.
Now, consider ε > 0 and h > np

q − q. Define

m :=
(h + q)q

p
.

and observe that

m > n, hence also
m

q
> 1. (4.8)

Moreover, let R and β be positive integers such that

Ω ⊂ [−R,R]n
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and

β > max
{

(2nRn + 1)
1

m−n ;
( ε

C

)1/q

+ n1/2 ;
( ε

Cr̄q

)1/m
}

. (4.9)

For k = 1, 2, . . ., we define

ρk :=
(

ε

Cβkm

)1/q

, Λk := (β−k
Z

n) ∩ [−R,R)n

and note that

ρk < r̄ (4.10)

by (4.9). Then, by recalling Remark 4.1 and the notation therein, we can find
a Λ-distribution {Pj}∞

j=1 of sptμ ∩ Ω. We set (for k = 1, 2, . . .)

Γk := {Pj | 1 ≤ j ≤ Nk, Bρk
(Pj) ⊂ Ω}, Ak :=

⋃
P∈Γk

Bρk
(P ), A :=

+∞⋃
k=1

Ak

and observe that

#(Γk) ≤ Nk ≤ Lk = 2nRnβkn. (4.11)

By (4.9), (4.10), (4.11) and assumption (4.1), we get

μ(A) ≤
+∞∑
k=1

μ(Ak) ≤
+∞∑
k=1

∑
P∈Γk

μ(Bρk
(P )) ≤ C

+∞∑
k=1

#(Γk)ρq
k ≤ 2nRnε

βm−n − 1
< ε.

Let us prove that

Ω ∩ spt μ ⊂ bμ,h(A). (4.12)

To this end, consider x ∈ Ω ∩ spt μ and chose Kx > 0 such that

Bβ−Kx (x) ⊂ Ω.

Obviously, for every k ≥ Kx +1, there exists a k-cell containing x. This k-cell
must also contain a point of {P1, P2, . . . , PNk

}, which we denote by Qk (cf.
Remark 4.1). Observe that

|Qk − x| ≤ β−kn1/2.

Then, for all k ≥ Kx + 1 and y ∈ Bρk
(Qk), we find (recalling (4.9) and (4.8)

too)

|y − x| ≤ |y − Qk| + |Qk − x| < ρk + β−kn1/2 =
(

ε

Cβkm

)1/q

+ β−kn1/2

<

[( ε

C

)1/q

+ n1/2

]
β−k < β−k+1 ≤ β−Kx .

Thus,

Bρk
(Qk) ⊂ Bβ−k+1(x) ⊂ Bβ−Kx (x) ⊂ Ω. (4.13)

In particular

Qk ∈ Γk
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and hence

Bρk
(Qk) ⊂ Ak ⊂ A. (4.14)

From (4.13) and (4.14), recalling (4.10) and (4.1) too, we obtain

μ
(
A ∩ Bβ−k+1(x)

) ≥ μ (Bρk
(Qk)) ≥ ρp

k

C
=

εp/qβ−kmp/q

C1+p/q
.

Hence, by (4.1) and recalling the definition of m, we obtain (for k large
enough)

μ
(
A ∩ Bβ−k+1(x)

)
μ
(
Bβ−k+1(x)

)
(β−k+1)h

≥ εp/qβ−kmp/q

C2+p/qβ(−k+1)qβ(−k+1)h
=

εp/q

C2+p/qβq+h

which shows that x ∈ bμ,h(A) and concludes the proof of (4.12). By recalling
that

• A ⊂ Ω ⊂ Ω,
• bμ,h(Ω) ⊂ spt μ (cf.(1) in Proposition 4.1),
• Ω is closed with respect to τbμ,h (cf.(2) in Proposition 4.2),

we can now complete the proof of (4.2):

bμ,h(A) ⊂ bμ,h(Ω) = bμ,h(Ω) ∩ spt μ ⊂ Ω ∩ spt μ. (4.15)

Now, assume that (4.3) holds. Then, consider an open set A′ ⊂ R
n satisfying

A′ ⊃ [−R,R]n\Ω, μ (A′\([−R,R]n\Ω)) < ε − μ(A). (4.16)

Observe that

A′ ∩ Ω ⊂ A′\([−R,R]n\Ω) (4.17)

and define

A′′ := A ∪ (A′ ∩ Ω), (4.18)

which is an open subset of Ω. We shall prove that A′′ satisfies (4.2) and (4.4),
that is

μ(A′′) < ε (4.19)

and

bμ,h(A′′) = Ω ∩ spt μ. (4.20)

Regarding (4.19), we notice that it trivially follows from (4.16), (4.17) and
(4.18). As far as (4.20) is concerned, the inclusion bμ,h(A′′) ⊂ Ω ∩ sptμ is
immediately obtained as in (4.15). Moreover, since bμ,h(A′′) ⊃ bμ,h(A) ⊃
Ω ∩ spt μ, we only need to show that

bμ,h(A′′) ⊃ ∂Ω ∩ spt μ (4.21)

to complete the proof of (4.20). Therefore, let us consider x ∈ ∂Ω∩ spt μ and
observe that ∂Ω ⊂ A′. Then, Br(x) ⊂ A′, provided r is small enough, hence

Ω ∩ Br(x) ⊃ A′′ ∩ Br(x) ⊃ A′ ∩ Ω ∩ Br(x) = Ω ∩ Br(x).

But we have also x ∈ bμ,h(Ω) (by (4.3)) and thus we obtain x ∈ bμ,h(A′′),
which proves (4.21).
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Proof of (2). This statement is proved by the same argument used to
prove (2) of Ref. [8, Prop.3.2], with some trivial adaptations. �

Remark 4.2. Obviously, condition (4.1) only makes sense if q ≤ p. Moreover,
if q > n this condition implies that sptμ is empty. In fact, if we assume
sptμ 	= ∅ (and q > n), then we obtain the following contradiction:

• On the one hand, as observed at the beginning of the proof of Theo-
rem 4.1, one would have μ(spt μ) > 0;

• On the other hand, by Ref. [17, Th.6.9], we have μ(spt μ) = 0.

These considerations make it clear why we assumed q ≤ min{n, p} in Theo-
rem 4.1.

Remark 4.3. Let p, q be as in Theorem 4.1. Then, it is easy to verify that
np
q − q = 0 if and only if p = q = n.

Remark 4.4. We observe that:

1. If μ = Ln, then condition (4.3) is verified whenever ∂Ω is Lipschitz
(for all h ∈ [0,+∞)). Hence, Theorem 4.1 yields immediately Ref. [8,
Prop.3.2].

2. No regularity assumption on ∂Ω will suffice to ensure that condition
(4.3) is verified for all μ ∈ R. For example, if Ω is a ball and μ :=
Hn−1�∂Ω, then ∂Ω ∩ sptμ = ∂Ω and bμ,h(Ω) = ∅ (for all h ∈ [0,+∞)).

Remark 4.5. Let μ := Hk�S, where S is an open imbedded k-submanifold of
R

n of class C1 with k ≤ n − 1. Moreover, let ∂Ω be of class C1 and assume
that S and ∂Ω meet transversely at x, namely

x ∈ ∂Ω ∩ S, dim(TxS + Tx(∂Ω)) = n,

where TxS and Tx(∂Ω)) are the tangent space of S at x and the tangent
space of ∂Ω at x, respectively. We observe that then we also have dim(TxS ∩
Tx(∂Ω)) = k−1 and this fact implies that near x the set ∂Ω∩S is an imbedded
(k−1)-submanifold of Rn of class C1. Then, with a standard argument based
on the area formula, we can prove that x ∈ bμ,0(Ω) (hence x ∈ bμ,h(Ω) for all
h ∈ [0,+∞)). Therefore, if we now assume that S and ∂Ω meet transversely
everywhere (i.e., at every point in ∂Ω ∩ S), then we find ∂Ω ∩ S ⊂ bμ,0(Ω).
This does not imply that condition (4.3) is verified. For example, consider
the case n := 3, k := 2 and

Ω := B1(0), S := {(x1, x2, x3) ∈ R
3 |x3(x3 − 1) = 0}\{(0, 0, 1)}.

In this case, S and ∂Ω meet transversely everywhere and ∂Ω ∩ S = bμ,h(Ω)
for all h ∈ [0,+∞). Hence, we have also

(0, 0, 1) 	∈ bμ,h(Ω)

and

∂Ω ∩ spt μ = ∂Ω ∩ S = (∂Ω ∩ S) ∪ {(0, 0, 1)} = bμ,h(Ω) ∪ {(0, 0, 1)}
for all h ∈ [0,+∞).
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Remark 4.6. It is natural to ask whether Theorem 4.1 can be extended to
the case that r̄ depends on x ∈ sptμ. After trying to prove such a general-
ization, we are inclined to believe that the answer is negative, but we have
no counterexamples.

5. Applications of Theorem 4.1, Two Remarkable Examples

5.1. First Example

Let μ = Ln and p = q = n. Then, applying Theorem 4.1 and recalling (1) of
Remark 4.4, we obtain Ref. [8, Prop.3.2].

5.2. Second Example

Let k ≤ n and consider a bounded open subset G of Rk, with boundary of
class C1. Let ϕ ∈ C1(Rk,Rn) be such that ϕ|G is injective and

Jϕ(y) =
[
det
[
(Dϕ)t × (Dϕ)

]
(y)
]1/2

> 0

for all y ∈ G. We will apply Theorem 4.1 to the measure μ := Hk�ϕ(G) =
Hk�ϕ(G), but in order to do so, we must first prove the following result.

Proposition 5.1. There exist C, r̄ ∈ (0,+∞) such that

rk

C
≤ μ(Br(x)) ≤ Crk (5.1)

for all x ∈ spt μ and r ∈ (0, r̄].

Proof. Let us first consider y ∈ G and observe that the number

λ(y) := min
{(

[(Dϕ)t × (Dϕ)](y)u
) · u |u ∈ R

k, |u| = 1
}

is the smallest eigenvalue of the matrix

[(Dϕ)t × (Dϕ)](y)

cf. [15, Ch.VIII, Th.3.3]. Hence and recalling that the zeros of a monic poly-
nomial depend continuously on its coefficients (cf. [18, Sect.1.3]) we obtain
that the function λ : G → R is continuous. Then, also the function mapping
y ∈ G to

m0(y) :=
1
2
[
min

{(
[(Dϕ)t × (Dϕ)](y)u

) · u |u ∈ R
k, |u| = 1

}]1/2

has to be continuous. Since G is compact, there exists y0 ∈ G such that

m00 := m0(y0) = min
y∈G

m0(y).

Observe that m00 > 0 by Lemma 3.1. Furthermore, since Dϕ is continuous,
we easily see that there must exist r0 ∈ (0, 1] such that

σr(y) := max
z∈Br(y)

‖(Dϕ)(z) − (Dϕ)(y)‖ ≤ m00,

for all y ∈ G and r ∈ (0, r0], where ‖ · ‖ denotes the Hilbert–Schmidt norm
of matrices. Now, using inequality (3.6), we obtain

|ϕ(z) − ϕ(y)| ≥ 2m0(y)r − σr(y)r ≥ m00r, (5.2)
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for all y ∈ G, z ∈ ∂Br(y) and r ∈ (0, r0]. On the other hand, recalling (3.5),
we also have

|ϕ(z) − ϕ(y)| ≤ m1r (5.3)

for all y ∈ G, z ∈ ∂Br(y) and r ∈ (0, 1], where m1 is defined as in (3.4). From
(5.2) and (5.3), it follows that

ϕ(G) ∩ Bm00r(ϕ(y)) ⊂ ϕ(G) ∩ ϕ(Br(y)) ⊂ ϕ(G) ∩ Bm1r(ϕ(y)), (5.4)

for all y ∈ G and r ∈ (0, r0]. Now, using (5.4), we can proceed to the proof
of (5.1):

• We first prove by contradiction the following claim: there exist C1, r1 ∈
(0,+∞) such that

μ(Br(x)) ≥ rk

C1
(5.5)

for all x ∈ spt μ = ϕ(G) and r ∈ (0, r1]. If this were not true, for each
positive integer j, there would exist yj ∈ G and ρj ∈ (0, 1/j] such that

Hk
(
ϕ(G) ∩ Bρj

(ϕ(yj))
)

<
ρk

j

j
. (5.6)

Since G is compact, we can assume that yj → ȳ ∈ G, as j → +∞. On
the other hand, by the second inclusion in (5.4) and the area formula,
we have

Hk
(
ϕ(G) ∩ Bρj

(ϕ(yj))
) ≥ Hk

(
ϕ(G) ∩ ϕ(Bρj/m1(yj)

)
=
∫

G∩Bρj/m00
(yj)

JϕdLk,

provided j is large enough. Hence, recalling that ∂G is of class C1, we
find

lim inf
j→+∞

Hk
(
ϕ(G) ∩ Bρj

(ϕ(yj))
)

Lk(Bρj/m00
(yj))

≥ Jϕ(ȳ)
2

> 0

which contradicts (5.6). Thus, the claim above has to be true.
• From the first inclusion in (5.4) and the area formula, it follows that

Hk (ϕ(G) ∩ Br(ϕ(y))) ≤ Hk
(
ϕ(G) ∩ ϕ(Br/m00

(y))
)

=
∫

G∩Br/m00
(y)

JϕdLk

for all y ∈ G and r ∈ (0,m00r0]. Thus, since Jϕ is bounded in G, there
must exist a positive constant C2 (which does not depend on x and r)
such that

μ(Br(x)) = Hk (ϕ(G) ∩ Br(x)) ≤ C2r
k (5.7)

for all x ∈ sptμ = ϕ(G) and r ∈ (0,m00r0].
• Finally, the inequalities (5.5) and (5.7) yield (5.1) with C := max{C1, C2}

and r̄ := min{r1,m00r0}. �
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Now, by applying Theorem 4.1 with μ = Hk�ϕ(G) and p = q = k
(taking Proposition 5.1 into account), we obtain:

Corollary 5.1. The following properties hold for all ε > 0 and h > n − k:
1. If Ω ⊂ R

n is a bounded open set, then there exists an open set A ⊂ Ω
such that

Hk(ϕ(G) ∩ A) < ε, Ω ∩ ϕ(G) ⊂ bHk�ϕ(G),h(A) ⊂ Ω ∩ ϕ(G).

In the special case when

∂Ω ∩ ϕ(G) ⊂ bHk�ϕ(G),h(Ω),

the set A can be chosen so that we have

bHk�ϕ(G),h(A) = Ω ∩ ϕ(G).

2. There is an open set U ⊂ R
n satisfying

Hk(ϕ(G) ∩ U) < ε, bHk�ϕ(G),h(U) = ϕ(G).

6. Density Degree Functions

Let μ ∈ R be non-trivial, i.e., sptμ 	= ∅. We will follow the path traced in
Ref. [9].

First, observe that if E ⊂ R
n and x ∈ R

n, then the set {h ∈ [0,+∞) |x ∈
Eμ,h} is a (possibly empty) interval.

Definition 6.1. Let E be a subset of Rn. Then, the density degree of E (w.r.t.
μ) is the function dμ

E : Rn → {−n} ∪ [0,+∞] defined as follows:

dμ
E(x) :=

{
sup{h ∈ [0,+∞) |x ∈ Eμ,h} if x ∈ Eμ,0

−n if x 	∈ Eμ,0.

For m ∈ [0,+∞], we also define

intμ,mE := {x ∈ R
n | dμ

E(x) > m} , clμ,mE := {x ∈ R
n | dμ

E(x) ≥ m}
and

∂μ,mE := clμ,mE\intμ,mE = {x ∈ R
n | dμ

E(x) = m} .

When the following identity holds:

Eμ,0 =
μ

∂μ,mE = {x ∈ R
n | dμ

E(x) = m}
we say that E is a uniformly (μ,m)-dense set.

Remark 6.1. The following trivial facts occur:
1. If E =

μ ∅, then Eμ,0 = ∅ and hence dμ
E ≡ −n;

2. clμ,0E = Eμ,0;
3. intμ,+∞E = ∅, hence ∂μ,+∞E := clμ,+∞E.

Example 6.1. If E is open, then dμ
E(x) = +∞ for all x ∈ E. Hence,

E ⊂ intμ,mE

for all m ∈ [0,+∞). Observe that the strict inclusion can occur, e.g., for
μ := Ln and E := Br\{0} (in such a case one has intμ,mE = Br).
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This proposition collects some very simple (nevertheless interesting)
facts.

Proposition 6.1. Let E be a subset of Rn and m ∈ [0,+∞]. The following
properties hold:

1. ∂μ,kE ∩ ∂μ,mE = ∅, if k ∈ [0,+∞] and k 	= m.
2. intμ,mE =

⋃
k>m Eμ,k.

3. If m > 0, then clμ,mE =
⋂

l∈[0,m) Eμ,l.
4. intμ,mE, clμ,mE and ∂μ,mE are μ-measurable sets.
5. intμ,mE ⊂ Eμ,m ⊂ clμ,mE.
6. The following two claims are equivalent:

• E is a uniformly (μ,m)-dense set;
• clμ,mE =

μ

Eμ,0 and intμ,mE =
μ ∅.

7. E is a uniformly (μ, 0)-dense set if and only if intμ,0E =
μ ∅.

8. The function dμ
E is measurable.

Proof. Definition 6.1 yields at once (1), (2) and (3). Statement (4) follows
trivially from (2) and (3), by recalling (2) in Remark 6.1, (2) in Remark 2.1
and (1) in Proposition 4.2. Also (5) follows trivially from (2) and (3), by
recalling (2) in Remark 2.1.

Let us prove (6).
• If we assume that the first claim is true, then, by recalling also (3), we

obtain

clμ,mE ⊂ Eμ,0 =
μ

clμ,mE\intμ,mE ⊂ clμ,mE.

This proves the first formula in the second claim. It also proves that
clμ,mE =

μ

clμ,mE\intμ,mE, hence the last formula in the second claim
follows by recalling (5).

• Conversely, if we assume that the second claim is true, then

∂μ,mE = clμ,mE\intμ,mE =
μ

Eμ,0

i.e., E is a uniformly (μ,m)-dense set.

Now, the statement (7) follows at once from (2) in Remark 6.1 and (6).
Finally, observe that for a ∈ R one has

{x ∈ R
n | dμ

E(x) ≥ a} =

⎧⎪⎨
⎪⎩
R

n if a ≤ −n

Eμ,0 if a ∈ (−n, 0)
clμ,aE if a ≥ 0

by Definition 6.1. Hence, (8) follows from (1) in Proposition 4.2 and (4). �

Remark 6.2. Let E ⊂ R
n and m ∈ [0,+∞]. Then, from (4) and (6) of Propo-

sition 6.1 and (5) in Remark 2.1, it follows that the following statements are
equivalent:

• E =
μ

∂μ,mE;
• E ∈ Mμ and E is a uniformly (μ,m)-dense set,
• clμ,mE =

μ

E and intμ,mE =
μ ∅.
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Remark 6.3. Proposition 6.1 holds whatever negative value is assigned, in
Definition 6.1, to the restriction of dμ

E to R
n\Eμ,0. We chose −n only because

this way the function n + dLn

E coincides with the density degree function dE

defined in Ref. [9, Def.5.1].

The following proposition is an easy consequence of (1) and (4) of Propo-
sition 6.1 (cf. [9, Prop.5.2]).

Proposition 6.2. Let E be a measurable subset of Rn. Then, the set

{m ∈ [0,+∞] |μ(∂μ,mE) > 0}
is at most countable.

Now, we prove a result about approximation of a set, given as the closure
of an open set, by closed subsets having small density degree (w.r.t. μ). The
proof is obtained by adapting the argument used in Ref. [9, Prop.5.4].

Proposition 6.3. Assume that:

(i) There exist C, p, q, r̄ ∈ (0,+∞) such that q ≤ min{n, p} and

rp

C
≤ μ(Br(x)) ≤ Crq

for all x ∈ spt μ and r ∈ (0, r̄);
(ii) It is given a non-empty bounded open set Ω ⊂ R

n with the following
property: there exists a bounded open set Ω′ ⊂ R

n such that Ω ⊂ Ω′ and
∂Ω′ ∩ spt μ ⊂ bμ,h(Ω′) for all h > m := np

q − q.

Then, for all H ∈ (0, μ
(
Ω
))
, there exists a closed subset F of Ω such that

μ(F ) > H, intμ,mF =
μ ∅.

Proof. Let j be an arbitrary positive integer. Then, by Theorem 4.1, there
exists an open set Aj ⊂ Ω′ such that

μ(Aj) <
μ
(
Ω
)− H

2j
, bμ,hj (Aj) = Ω′ ∩ sptμ (6.1)

with

hj := m +
1
j

=
np

q
− q +

1
j
.

Define

Kj := Ω′ ∩ Ac
j , K :=

+∞⋂
j=1

Kj = Ω′ ∩
⎛
⎝+∞⋃

j=1

Aj

⎞
⎠

c

.

Then, K is closed and

μ(K) = μ
(
Ω′)− μ (∪jAj) ≥ μ

(
Ω′)−

∑
j

μ(Aj) > μ
(
Ω′)− μ

(
Ω
)

+ H,

(6.2)
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by (6.1). Moreover, by (2), (3), (5) of Proposition 4.1 and (6.1), we have

K
μ,hj

j =
μ [

bμ,hj (Kc
j )
]c

=
[
bμ,hj

((
Ω′)c ∪ Aj

)]c

=
[
bμ,hj

((
Ω′)c) ∪ bμ,hj (Aj)

]c

⊂
[((

Ω′)c ∩ sptμ
)

∪ (Ω′ ∩ sptμ
)]c

= (spt μ)c

that is

K
μ,hj

j =
μ ∅

for all j. Moreover, for each k ∈ (m,+∞) we can find j such that k > hj ,
hence

Kμ,k ⊂ Kμ,hj ⊂ K
μ,hj

j =
μ ∅,

by (2) of Remark 2.1. Recalling (2) of Proposition 6.1, we obtain

intμ,mK =
⋃

k>m

Kμ,k =
μ ∅.

Now, define

F := Ω ∩ K.

Then, F is a closed subset of Ω and (again by (2) of Proposition 6.1)

intμ,mF ⊂ intμ,mK =
μ ∅, i.e., intμ,mF =

μ ∅.

Moreover,

μ(F ) = μ(K) − μ
(
K\Ω

)
> μ

(
Ω′)− μ

(
Ω
)

+ H − μ
(
K\Ω

)
by (6.2), where

μ
(
Ω′)− μ

(
Ω
)

= μ
(
Ω′\Ω

) ≥ μ
(
K\Ω

)
.

Hence, μ(F ) > H. �

Remark 6.4. Hypothesis (ii) of Proposition 6.3 can be trivially restated as
follows: consider any bounded open set Ω ⊂ R

n and let μ belong to the family
RΩ of non-trivial measures λ ∈ R with the following property: there exists a
bounded open set Ω′ ⊂ R

n such that Ω ⊂ Ω′ and ∂Ω′ ∩ sptλ ⊂ bλ,h(Ω′) for
all h > m.

In relation to Proposition 6.3, it would be interesting to know how
large these subfamilies of R are. Here we merely observe that Ln ∈ RΩ for
all bounded open set Ω ⊂ R

n, as follows immediately from (1) of Remark
4.4 (since we can always find a ball containing Ω). In this very special case,
hypothesis (i) of Proposition 6.3 is trivially verified with p = q = n, hence the
conclusion holds with m = 0, that is: If Ω ⊂ R

n is a bounded open set, then
Ω can be approximated to any degree of accuracy by uniformly (Ln, 0)-dense
closed subsets. We have thus recovered a result already obtained in a previous
work, namely Ref. [9, Prop.5.4]. This nice property can easily be extended
to the context of regular surfaces, as we are going to prove in Corollary 6.1
below.
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Corollary 6.1. Let G and ϕ be as in Sect. 3. Moreover, let A ⊂ ϕ(G) be open
with respect to the topology induced in ϕ(G) by τ(Rn) and assume that

A ⊂ ϕ(G). (6.3)

Then, for all for all H ∈ (0,Hk
(
A
))
, there exists a closed set E ⊂ A such

that

λ(E) = Hk(E) > H, intλ,0E =
λ ∅ (6.4)

where λ := Hk�ϕ(G). In particular, E is a uniformly (λ, 0)-dense set.

Proof. Let us consider the bounded open set

D := (ϕ|G)−1(A)

and observe that, by (6.3), we have also

D = (ϕ|G)−1(A) = (ϕ|G)−1(A) ⊂ G. (6.5)

Now, let H ∈ (0,Hk
(
A
))

=
(
0, λ
(
A
))

and consider H ′ ∈ (0,Lk
(
D
))

satis-
fying

H ′ ≥ Lk
(
D
)− λ

(
A
)− H

M
, (6.6)

where

M := max
D

Jϕ.

From Proposition 6.3 (with n = p = q = k and μ = Lk) and recalling (1) of
Remark 4.4, it follows that a closed set K ⊂ D has to exist such that

Lk(K) > H ′, intLk,0K =
Lk

∅. (6.7)

Then, consider h ∈ [0,+∞) and the closed set

E := ϕ(K).

Observe that

Eλ,h ⊂ E ⊂ ϕ
(
D
)

= A ⊂ ϕ(G), (6.8)

by (6.5) and (7) in Remark 2.1. Hence and by the area formula (cf. [14, Cor.
5.1.13]), we obtain

λ
(
A
)− λ(E) = Hk

(
ϕ
(
D
))− Hk(ϕ(K)) =

∫
D\K

JϕdLk

≤ M
(Lk

(
D
)− Lk(K)

)
.

(6.9)

The inequality in (6.4) now follows easily from (6.6), (6.7) and (6.9).
From Proposition 3.1, Remark 3.1, (6.7), (2) in Proposition 6.1 and

(6.8), also taking into account (1) and (2) in Remark 2.1, it follows that

Eλ,h = Eλ,h ∩ ϕ(G) = ϕ
(
[(ϕ|G)−1(E)](k+h) ∩ G

)
= ϕ

(
K(k+h) ∩ G

)
=
λ ∅

for all h ∈ (0,+∞). Hence, recalling again (2) in Proposition 6.1 and (2) in
Remark 2.1, we obtain

intλ,0E =
λ ∅.
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Finally, E is a uniformly (λ, 0)-dense set, by (7) of Proposition 6.1. �

Remark 6.5. In general, Proposition 6.3 does not provide the optimal result.
For example, if we apply Proposition 6.3 directly to the measure λ carried by
a k-dimensional imbedded C1 submanifold of Rn with C1 boundary we get
a worse result than that obtained in Corollary 6.1. To verify this fact, let us
consider G and ϕ as in Sect. 3 and further assume that ∂G is of class C1. We
observe that hypothesis (i) of Proposition 6.3 is verified, with

μ = λ = Hk�ϕ(G), p = q = k,

by Proposition 5.1. Now, let A ⊂ ϕ(G) be open with respect to the topol-
ogy induced in ϕ(G) by τ(Rn) and assume that (6.3) holds. By a standard
argument, it follows that a bounded open set Ω ⊂ R

n exists such that

A = Ω ∩ ϕ(G), A = Ω ∩ ϕ(G).

Since sptμ is bounded, there is an open ball B ⊂ R
n such that Ω ⊂ B and

∂B∩sptμ = ∅. Hence, (ii) of Proposition 6.3 is trivially verified, with Ω′ = B.
Now, consider any H ∈ (0,Hk

(
A
))

and observe that Hk
(
A
)

= λ
(
Ω
)
. Then,

by Proposition 6.3, there exists a closed subset F of Ω such that λ(F ) > H

and intλ,n−kF =
λ ∅, i.e.,

λ(E) > H, intλ,n−kE =
λ ∅

where E := F ∩ϕ(G), which is closed with respect to the topology induced in
ϕ(G) by τ(Rn). Therefore, this argument does not prove the result obtained
in Corollary 6.1, namely, that there are closed subsets of A of arbitrarily close
measure to Hk

(
A
)

that are also uniformly (λ, 0)-dense.

Remark 6.6. The problem highlighted in Remark 6.5 may be “of a technical
nature”. By this, we mean that the bound m := np

q −q introduced in Theorem
4.1 could perhaps be improved “simply” by adapting the argument used to
prove Ref. [8, Prop.3.2] in a more efficient way than we have done here. At
present, this is only a hypothesis that we are unable to confirm.

7. A Schwarz-Type Result

We will prove the following result that generalizes the classical Schwarz the-
orem on cross derivatives (cf. Remark 7.1 below).

Theorem 7.1. Let us consider μ ∈ R, an open set Ω ⊂ R
n, f,G,H ∈ C1(Ω),

a couple of integers p, q such that 1 ≤ p < q ≤ n and x ∈ R
n. Assume that:

(i) For i = p, q, the i-th distributional derivative of μ is a Borel real measure
on R

n also denoted Diμ (with no risk of misinterpretation), so that we
have Diμ(ϕ) = − ∫ Diϕ dμ =

∫
ϕd(Diμ), for all ϕ ∈ C1

c (Rn);
(ii) x ∈ Ω ∩ Aμ,1, where A := {y ∈ Ω | (Dpf(y),Dqf(y)) = (G(y),H(y))}

(in particular x ∈ spt μ);
(iii) limρ→1− σ(ρ) = 1, where σ(ρ) := lim infr→0+

μ(Br(x))
μ(Bρr(x)) (note that σ is

decreasing);
(iv) For i = p, q, one has limr→0+

|Diμ|(Br(x))
rμ(Br(x)) = 0.



MJOM Superdensity w.r.t. a Radon Measure on R
𝑛

Page 21 of 26 4

Then, DpH(x) = DqG(x).

Proof. Let ρ ∈ (0, 1) and consider g ∈ C2
c (B1(0)) such that 0 ≤ g ≤ 1,

g|Bρ(0) ≡ 1 and

|Dig| ≤ 2
1 − ρ

(i = 1, . . . , n).

For every real number r such that 0 < r < dist(x,Rn\Ω), we define gr ∈
C2

c (Br(x)) as

gr(y) := g

(
y − x

r

)
, y ∈ R

n

and observe that (for all y ∈ Br(x) and i = 1, . . . , n)

|Digr(y)| =
1
r

∣∣∣∣Dig

(
y − x

r

)∣∣∣∣ ≤ 2
r(1 − ρ)

. (7.1)

Moreover, define

Γ := DpH − DqG.

Then, after a simple computation in which we use only (i), the definition
of A in (ii) and the identity DpDqgr = DqDpgr, we arrive at the following
equality (where Br and Bρr stand for Br(x) and Bρr(x), respectively):∫

Br

Γgr dμ =
∫

Br

(grG + fDpgr) d(Dqμ) −
∫

Br

(grH + fDqgr) d(Dpμ)

−
∫

Br\A

(H − Dqf)Dpgr dμ +
∫

Br\A

(G − Dpf)Dqgr dμ.

Hence, by also recalling the polar decomposition theorem (cf. [3, Cor.1.29])
and (7.1), we obtain∣∣∣∣

∫
Br

Γgr dμ

∣∣∣∣ ≤
∫

Br

(gr|G| + |f | |Dpgr|) d|Dqμ|

+
∫

Br

(gr|H| + |f | |Dqgr|) d|Dpμ|

+
∫

Br\A

|H − Dqf | |Dpgr|dμ

+
∫

Br\A

|G − Dpf | |Dqgr|dμ

≤ C
[|Dqμ|(Br) + |Dpμ|(Br)

]
+

C

r(1 − ρ)
[|Dqμ|(Br) + |Dpμ|(Br) + μ(Br\A)

]

where C is a suitable positive constant independent from r and ρ. Conse-
quently, C can be chosen such that we have∣∣∣∣

∫
Br

Γgr dμ

∣∣∣∣ ≤ C

r(1 − ρ)
[|Dqμ|(Br) + |Dpμ|(Br) + μ(Br\A)

]
, (7.2)
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for all r, ρ ∈ (0, 1). On the other hand
∣∣∣∣
∫

Br

Γgr dμ

∣∣∣∣ ≥
∣∣∣∣∣
∫

Bρr

Γgr dμ

∣∣∣∣∣−
∣∣∣∣∣
∫

Br\Bρr

Γgr dμ

∣∣∣∣∣
that is ∣∣∣∣∣

∫
Bρr

Γ dμ

∣∣∣∣∣ ≤
∣∣∣∣
∫

Br

Γgr dμ

∣∣∣∣+
∣∣∣∣∣
∫

Br\Bρr

Γgr dμ

∣∣∣∣∣ . (7.3)

From (7.2) and (7.3) (choosing a larger C, if need be), it follows that∣∣∣∣∣
1

μ(Bρr)

∫
Bρr

Γ dμ

∣∣∣∣∣ ≤
C

r(1 − ρ)μ(Bρr)
[|Dqμ|(Br) + |Dpμ|(Br) + μ(Br\A)

]

+
C

μ(Bρr)
μ(Br\Bρr)

=
C

1 − ρ
· μ(Br)
μ(Bρr)

[ |Dqμ|(Br)
rμ(Br)

+
|Dpμ|(Br)

rμ(Br)
+

μ(Br\A)
rμ(Br)

]

+ C

(
μ(Br)
μ(Bρr)

− 1
)

for all r, ρ ∈ (0, 1). Hence, by assumptions (iii) and (iv), we obtain

|DpH(x) − DqG(x)| ≤ C(σ(ρ) − 1)

for every ρ in a left neighborhood of 1. The conclusion follows from assump-
tion (iii). �

Remark 7.1. If μ := Ln, f ∈ C2(Ω), G := Dpf and H := Dqf , then Theo-
rem 7.1 reduces trivially to the Schwarz theorem on cross derivatives. How-
ever, we cannot claim a new proof of the Schwarz theorem, since the latter
was actually used to prove our statement.

Remark 7.2. Let us consider a smooth k-dimensional surface S ⊂ R
n, with-

out boundary or with smooth boundary. Then, a hasty attitude might suggest
that the distributional derivatives of the Hausdorff measure carried by S, i.e.,
Di(Hk�S), with i = 1, . . . , n, are themselves real Borel measures. Instead, in
general this is not the case, and we will show this through the following very
simple example. Let n = 2, k = 1 and

S := {(x1, x2) ∈ R
2 |x1 = x2}.

Let us set μ := H1�S for simplicity and observe that

(D1μ)(ϕ) = −
∫

S

D1ϕdH1 = −
√

2
∫
R

(D1ϕ)(t, t) dt (7.4)

for all ϕ ∈ C∞
c (R). Now, let η : [0,+∞) → [0, 1] be a decreasing function of

class C∞ such that

η|[0,2π2] ≡ 1, η|[2π2+1,+∞) ≡ 0
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and define ϕ1, ϕ2, . . . ∈ C∞
c (R2) as follows

ϕj(x1, x2) := η(x2
1 + x2

2) cos(jx1) sin(jx2).

From (7.4) and the equality

(D1ϕj)(t, t) = 2tη′(2t2) cos(jt) sin(jt) − jη(2t2) sin2(jt),

we obtain

(D1μ)(ϕj) = −2
√

2 I ′
j + j

√
2 I ′′

j ,

with

I ′
j :=

∫
R

tη′(2t2) cos(jt) sin(jt) dt, I ′′
j :=

∫
R

η(2t2) sin2(jt) dt.

Hence,

|(D1μ)(ϕj)| ≥ j
√

2 |I ′′
j | − 2

√
2 |I ′

j | = j
√

2 I ′′
j − 2

√
2 |I ′

j | (7.5)

where

|I ′
j | ≤

∫
R

|tη′(2t2)|dt = −2
∫ +∞

0

tη′(2t2) dt = −1
2

∫ +∞

0

D[η(2t2)] dt =
1
2
(7.6)

and

I ′′
j ≥

∫ π

−π

η(2t2) sin2(jt) dt =
∫ π

−π

sin2(jt) dt = π. (7.7)

From (7.5), (7.6) and (7.7), we obtain

|(D1μ)(ϕj)| ≥ jπ
√

2 −
√

2 (j = 1, 2, . . .). (7.8)

Since we have also

max
R2

|ϕj | ≤ 1, spt ϕj ⊂ B2π2+1(0, 0) (j = 1, 2, . . .),

then the estimate (7.8) proves that D1μ is not a real Borel measure.

We will now present two simple applications in the context of Lebesgue
measure.

Corollary 7.1. Let h be a non-negative function in C1(Rn). Moreover, con-
sider an open set Ω ⊂ R

n, f,G,H ∈ C1(Ω), a couple of integers p, q satisfying
1 ≤ p < q ≤ n, x ∈ R

n and assume that

(i) h(x) > 0;
(ii) x ∈ Ω∩AhLn,1, where A is the set defined in Theorem 7.1 (in particular

x is in the closure of h−1((0,+∞)));
(iii) For i = p, q, one has

∫
Br(x)

|Dih| dLn = o(rn+1), as r → 0+ (e.g.,
Dih(y) = o(|y − x|), as y → x).

Then, DpH(x) = DqG(x).
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Proof. We will apply Theorem 7.1 with μ := hLn. For this purpose, we
observe that

Diμ = (Dih)Ln, hence |Diμ| = |Dih|Ln (for all i = 1, . . . , n) (7.9)

and (taking into account (i))

σ(ρ) = lim inf
r→0+

∫
Br(x)

h dLn∫
Bρr(x)

h dLn
= ρ−n (for all ρ > 0).

Thus, assumptions (i), (ii) and (iii) of Theorem 7.1 are trivially verified.
Finally, assumption (iv) of Theorem 7.1 is equivalent to (iii) (by (i) and
(7.9)). Therefore Theorem 7.1 proves the statement. �

Remark 7.3. If in Corollary 7.1 we take h ≡ 1, then assumptions (i) and
(iii) are trivially verified at every x ∈ R

n. Recalling also (1) of Remark 2.1,
we conclude that DpH = DqG in Ω ∩ A(n+1). In particular, the following
property immediately follows: If f ∈ C1(Ω), F ∈ C1(Ω,Rn) and define A∗ :=
{x ∈ Ω | (D1f(x), . . . Dnf(x)) = F (x)}, then DF t = DF in Ω ∩ A

(n+1)
∗ .

Corollary 7.2. Let U ⊂ R
n be an open set with boundary of class C1 and

let (ν1, . . . , νn) denote the unit outward normal vector field to ∂U . Moreover,
consider f,G,H ∈ C1(Rn), a couple of integers p, q satisfying 1 ≤ p < q ≤ n,
x ∈ R

n and assume that
(i) x ∈ ∂U ∩ ALn�U,1, where A := {y ∈ R

n | (Dpf(y),Dqf(y))
= (G(y),H(y))};

(ii) For i = p, q, one has
∫

∂U∩Br(x)
|νi| dHn−1 = o(rn+1), as r → 0+ (e.g.,

νi(y) = o(|y − x|2), as y → x).
Then, DpH(x) = DqG(x).

Proof. Define μ := Ln�U , Ω := R
n and observe that assumptions (ii) of

Theorem 7.1 is verified by (i), while assumptions (iii) of Theorem 7.1 follows
from

lim
r→0+

μ(Br(x))
μ(Bρr(x))

= lim
r→0+

Ln(U ∩ Br(x))
Ln(U ∩ Bρr(x))

= ρ−n.

Moreover, by the divergence theorem, we have

Diμ = −νi Hn−1�∂U, hence |Diμ| = |νi|Hn−1�∂U (i = 1, . . . , n).

Thus, assumption (i) of Theorem 7.1 is trivially verified, while (ii) yields
assumption (iv) of Theorem 7.1. �
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