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Abstract
We consider the framework of convex high dimensional stochastic control problems,
inwhich the controls are aggregated in the cost function.As first contribution,we intro-
duce amodified problem,whose optimal control is under some reasonable assumptions
an ε-optimal solution of the original problem. As second contribution, we present a
decentralized algorithm whose convergence to the solution of the modified problem
is established. Finally, we study the application of the developed tools in an engi-
neering context, studying a coordination problem for large populations of domestic
thermostatically controlled loads.
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1 Introduction

The present article aims at solving a high dimensional stochastic control problem (P1)
involving a large number n of agents indexed by i ∈ {1, · · · , n}, of the form:

(P1)

⎧
⎪⎪⎨

⎪⎪⎩

min
u∈U

J (u)

J (u) := E

[

F0(
1

n

n∑

i=1

ui (ωi , ω−i )) + 1

n

n∑

i=1

Gi (u
i (·, ω−i ), ωi )

]

.
(1.1)

Here the noise ω := (ω1, . . . , ωn) belongs to Ω := Πn
i=1Ω

i , where (Ω i ,F i , μi )

is a probability space, and (Ω,F , μ) is the corresponding product probability space.
Let ω−i := (ω1, . . . , ωi−1, ωi+1, . . . , ωn) denote an element of the space Ω−i :=
Πn

j=1, j �=iΩ
j . The associated product probability space is (Ω−i ,F−i , μ−i ), where

F−i := ⊗n
j=1, j �=iF j and μ−i := Πn

j=1, j �=iμ
j . Each decision variable ui is a random

variable (i.e. is F-measurable), square summable with value in a Hilbert space U so
that u := (u1, . . . , un) belongs to L2(Ω, (U)n). The function ωi �→ ui (ωi , ω−i ) is
denoted by ui (·, ω−i ) and is a.s. (in ω−i ) F i -measurable and belongs to L2(Ω i ,U).
Also, U := Πn

i=1Ui where Ui is, for i = 1 to n, a closed convex subset of L2(Ω,U). In
the application to dynamical problems, the constraint ui ∈ Ui includes the constraint
of adaptation of ui to some filtration. If each ui is a random variable of ωi , for i = 1
to n, we say that u is a decentralized decision variable.

The cost function is the sum of a coupling term F0 : U → R, function of the
aggregate strategies 1

n

∑n
i=1 u

i , and local terms functions of the local decision ui and
local noise ωi with Gi : L2(Ω i ,U) × Ω i → R. This framework aims at containing
stochastic optimal control problems, where the states of the agents are driven by
independent noises (see Eqs. (5.5) and (5.2) developed in Sect. 5).

1.1 Motivations

This work is motivated by its potential applications to distributed coordination of
large populations of small agents, with relevant real-world implications in different
sectors, from communication networks to power systems. The application developed
in this paper deals with the coordination of flexible electrical appliances, to support
power system operation in a context of increasing penetration of renewables. Among
other appliances, thermostatically controlled loads (e.g. refrigerators, air conditioners
etc.) have been investigated in the last few years, for their intrinsic flexibility and
potential for network support. Several papers have already assessed the potential of
demand-side response actions for frequency response services of TCLs [28] and how
the population recovers from significant perturbations [7]. The coordination of TCLs
can be performed in a centralized way, like in [12]. However, this approach raises
concerns with respect to the communication requirements and customer privacy. A
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common objective can be reached in a fully distributed approach, like in [32], where
each TCL is able to calculate its own actions (ON/OFF switching) to pursue a com-
mon objective. This paper is related to the work of De Paola et al. [8], where each
agent represents a flexible TCL device. In [8] a distributed solution is presented for
the operation of a population of n = 2 × 107 refrigerators providing frequency sup-
port and load shifting. They adopt a game-theory framework, modelling the TCLs as
price-responsive rational agents that schedule their energy consumption and allocate
their frequency response provision in order to minimize their operational costs. The
potential practical application of our work also considers a large population of TCLS
which, as extension to [8], have stochastic dynamics. The proposed approach is able
to minimize the overall system costs in a distributed way, with each TCL determining
its optimal power consumption profile in response to price signals.

1.2 Related Literature

The consideredproblembelongs to the class of stochastic control: looking for strategies
minimizing the expectation of an objective function under specific constraints. One
of the main approaches proposed in the literature to tackle this problem is to use
random trees: this consists in replacing the almost sure constraints, induced by non-
anticipativity, by a finite number of constraints, in order to get a finite set of scenarios
(see [13] and [26]). Once the tree structure is built, the problem is solved by different
decompositionmethods such as scenario decomposition [25] or dynamic splitting [27].
Themain objective of the scenariomethod is to reduce the problem to an approximated
deterministic one. The present paper focuses on high dimensional noise problems with
a large number of time steps, for which this approach is not feasible.

The idea of reducing a single high-dimensional problem to a large number of smaller
problems with lower dimension has been widely studied in the deterministic case. In
deterministic and stochastic problems there is the possibility of using time decom-
position thanks to the Dynamic Programming Principle [2], taking advantage of the
Markov property of the system. However, this method requires a specific time struc-
ture of the cost function and is not suitable for problems with high-dimensional state
spaces. Under continuous linear-convex assumptions, one can deal with the curse
of dimensionality by using the Stochastic Dual Dynamic Programming algorithm
(SDDP) [22] to get upper and lower bounds of the value function, using polyhedral
approximations. The almost-sure convergence of a broad class of SDDP algorithms
has been proven [24], and complexity of the algorithm can be estimated, in the spe-
cific case of Lipschitz continuous value function [34] or by using a regularization of
the value functions [33]. In [19, 21], a stopping criteria based on a dual version of
SDDP, which gives a deterministic upper-bound for the primal problem, is proposed.
SDDP is well-adapted for medium sized population problems (n ≤ 30), whereas it
fails for problems with large populations (n > 1000) such as the ones considered in
this paper. To tackle this type of high dimensional problems, it is natural to investigate
decomposition techniques in the spirit of the Dual Approximation Dynamic Program-
ming (DADP) [11, 18]. This approach is characterized by a price decomposition of
the problem, where the stochastic constraints are projected on subspaces such that
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the associated Lagrangian multiplier is adapted for dynamic programming. Then the
optimal multiplier is estimated by implementing Uzawa’s algorithm. To this end in
[18], the Uzawa’s algorithm, formulated in a Hilbert setting, is extended to a Banach
space. DADP has been applied in different cases, such as storage management prob-
lem for electrical production in [1, 11] and hydro valley management [5]. The idea of
approaching the primal and dual problems by restricting or relaxing the set of decision
variables has also been proposed in the context of stochastic programming [4, 16] to
provide upper and lower bounds for the considered problem. In the proposed paper,
in the same vein as DADP, we propose a price decomposition approach restricted
to deterministic prices. This new approach takes advantage of the large population
number in order to introduce an auxiliary problem where the coupling term is purely
deterministic.

1.3 Contributions

The numerical difficulty of Problem (P1) is related to the randomness of the aggregate
term 1

n

∑n
i=1 u

i involved in the coupling function F0. Let us introduce the set of
decentralized controls:

Û := ∏n
i=1 Ûi ,

where Ûi := {ui ∈ Ui | ui is T 1 ⊗ . . . ⊗ F i ⊗ T i+1 ⊗ . . . ⊗ T n − measurable},(1.2)

where T j is the trivial σ -field {∅,Ω j }. Note that by construction, we can identify Ûi

withF i−measurable functions defined onΩ i . In addition, two decentralized controls
ui ∈ Ûi and u j ∈ Û j , i �= j , are independent random variables. If the control u is
decentralized, since the variance of the sum of independent random variables is equal
to the sum of the variances of these random variables, the aggregate term 1

n

∑n
i=1 u

i

can be approximated by 1
n

∑n
i=1 E ui when n is large enough. Let us consider then the

following approximation of Problem (P1):

(P2)

{
minu∈U J̃ (u)

J̃ (u) := F0
( 1
n

∑n
i=1 E ui

) + 1
nE

[∑n
i=1 Gi (ui (·, ω−i ), ωi )

]
.

(1.3)

A first step consists in showing that, without loss of optimality in Problem (P2), one
can restrict the control set U to Û .

Theorem 2.1 states the equivalence between Problem (P2) and its decentralized
version (P̂2) defined by:

(P̂2)

{
minu∈Û J̃ (u)

J̃ (u) := F0
( 1
n

∑n
i=1 E ui

) + 1
nE

[∑n
i=1 Gi (ui , ωi )

]
.

(1.4)
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Through the article, the circumflex symbol ˆ will be used to denote minimization
problems w.r.t. decentralized controls. Problem (P̂2) can be written as:

(P̂ ′
2)

⎧
⎪⎪⎨

⎪⎪⎩

min
u∈Û ,v∈U

J̄ (u, v),

J̄ (u, v) := F0(v) + 1
nE

[∑n
i=1 Gi (ui , ωi )

]
,

s.t g(u, v) = 0,

(1.5)

where g : U × U → U is defined by

g(u, v) := 1

n

n∑

i=1

E ui − v. (1.6)

Observe that, for any ui ∈ Ûi , Gi (ui , ·) is independent ofF−i . As a first contribution,
this paper shows that under some convexity and regularity assumptions on F0 and
(Gi )i∈{1,...,n}, any solution of Problem (P2) is an εn-solution of (P1), with εn → 0
when n → ∞. In addition, we will see that an approach of price decomposition
for (P̂2), based on the formulation (P̂ ′

2), is tractable for dynamical problems, since
the problem of minimizing the Lagrangian with deterministic dual variables can be
decomposed in subproblems which are solvable by Dynamic Programming.

Since computing the dual cost of (P̂ ′
2) is expensive, we propose Stochastic Uzawa

and Sampled Stochastic Uzawa algorithms relying on the Robbins-Monroe algorithm,
in the spirit of the stochastic gradient. Their convergence is established, relying on the
proof provided by [10] for the convergence of the stochastic gradient in aHilbert space.
We check the effectiveness of the Stochastic Uzawa algorithm on a linear quadratic
Gaussian framework, and we apply the Sampled Stochastic Uzawa algorithm to a
model of power system, inspired by the work of De Paola et al. [8].

1.4 Assumptions

Various assumptions needed in the article are listed in this subsection.

Assumption 1 (i) Each set Ui is bounded, i.e. there exists M > 0 such that
E‖ui‖2

U
≤ M2, for i ∈ {1, . . . , n}.

(ii) The function ui �→ Gi (ui (·, ω−i ), ωi ) is a.s. non negative, convex and lower
semi continuous (l.s.c. for short). And, for any ui ∈ Ui , the function ω �→
Gi (ui (·, ω−i ), ωi ) is measurable.

(iii) The function F0 is l.s.c. and proper.
(iv) Problem (P1) is feasible.

Assumption 2 The function F0 is convex.

Assumption 3 The function F0 is Gâteaux differentiable with c-Lipschitz derivative.

Assumption 4 (i) The function ui �→ Gi (ui , ωi ) is for a.a. ωi ∈ Ω i strictly convex
on Ûi .
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(ii) The function F0 has at least quadratic growth, i.e. there exist C1,C2 > 0 such
that for any v ∈ U:

C1‖v‖2
U

− C2 ≤ F0(v).

Remark 1.1 By Lemma 1 in Appendix 1, if F0 satisfies Assumption 3 then, F0 has at
most quadratic growth, i.e. there exists C > 0 such that for any v ∈ U one has:

F0(v) ≤ C(‖v‖2
U

+ 1).

We denote by {ρk}k∈N∗ the sequence of step sizes used in the Stochastic Uzawa and
Sampled Stochastic Uzawa algorithms in Sect. 4.

Assumption 5 The sequence {ρk}k∈N∗ is such that: ρk > 0,
∑∞

k=1 ρk = ∞ and∑∞
k=1(ρk)

2 < ∞.

Note that a sequence of the form ρk := a
b+k , with (a, b) ∈ R

∗+ × R+, satisfies
Assumption 5.

Assumption 6 (i) F0 is strongly convex.
(ii) There exists δ > 0 such that for any i ∈ {1, . . . , n} and for a.a. ωi ∈ Ω i , the

function Ûi 
 ui �→ Gi (ui , ωi ) is strongly convex with modulus of convexity
greater or equal to δ.

Obviously, Assumption 6 is stronger than Assumption 4.

2 Approximating the Optimization Problem

In this section, the link between the values of problems (P1) and (P2) is analyzed.

Lemma 2.1 Let Assumptions 1 and 2 hold. Then Problem (P1) has a solution, i.e. J
reaches its minimum over U .

Proof The existence of a minimum is proved by considering a minimizing sequence
(which exists since (P1) is feasible) {uk} of J over U . The set U being bounded and
weakly close, there exists a subsequence {uk	

} which weakly converges to a certain
u∗ ∈ U . Using Assumptions 1.(i) and convexity of F0, it follows that lim inf J (uk	

) ≥
J (u∗) and thus u∗ is a solution of (P1). ��
We obtain the following Corollary about (P2).

Corollary 2.1 If Assumptions 1 and 2 are satisfied, then Problem (P2) has a solution
and its value is lower or equal to the value of Problem (P1) i.e:

inf
u∈U

J̃ (u) ≤ inf
u∈U

J (u).
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Proof Assumption 1.(iii) and convexity of F0 imply that (P2) is feasible. By using
the same techniques as in the proof of Lemma 2.1, one can prove that (P2) admits a
solution. Using the convexity of F0 and Jensen’s inequality, one has for any centralized
control u ∈ U :

F0(
1

n

n∑

i=1

E ui ) ≤ E[F0(1
n

n∑

i=1

ui )],

and the conclusion follows from the definition of (P1) in (1.1) and (P2) in (1.3) ��
We have the following key result.

Theorem 2.1 If Assumption 1 is satisfied, then the decentralized Problem (P̂2) has the
same value as the centralized Problem (P2) i.e.:

inf
u∈Û

J̃ (u) = inf
u∈U

J̃ (u). (2.1)

Proof Since Û ⊂ U , it is immediate that inf
u∈U

J̃ (u) ≤ inf
u∈Û

J̃ (u).

Fix i ∈ {1, . . . , n}, using the definition of conditional expectation, we define ũi ∈
L2(Ω i ,U) for any ui ∈ Ui by:

ũi (ωi ) := E[ui (ωi , ω−i )|ωi ] =
∫

Ω−i
ui (ωi , ω−i )dμ−i (ω−i ) for any ωi ∈ Ω i .

Since Gi is a.s. convex w.r.t. the first variable, Jensen’s inequality gives:

Gi (ũ
i , ωi ) ≤

∫

Ω−i
Gi (u

i (·, ω−i ), ωi )dμ−i (ω−i ) = E[Gi (u
i (·, ω−i ), ωi )|ωi ] a.s.

(2.2)

On the other hand (u1, . . . , un) �→ F0(
1
n

∑n
i=1 E ui ) is invariant when taking the

conditional expectation, thus:

F0

(
1

n

n∑

i=1

E ui
)

= F0

(
1

n

n∑

i=1

E ũi
)

.

Taking the expectation of (2.2), we have inf
u∈Û

J̃ (u) ≤ inf
u∈U

J̃ (u), and the conclusion

follows. ��
Remark 2.1 In the applications to stochastic control problems (in discrete and contin-
uous time) we have the constraint of having progressively measurable control policies.
Since the set of progressively measurable policies is closed and convex, this enters
in the above framework. In particular, the decentralized policy ũi constructed in the
above proof is progressively measurable.
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Remark 2.2 By Theorem 2.1, for any ε > 0 there exists an ε-optimal solution of
Problem (P2) that is a decentralized control.

Before stating the next result, we need to introduce Problem (P̂1), that corresponds
to the minimization of J , defined in (1.1), over the set of decentralized controls Û :

(P̂1)
{
min
u∈Û

J (u).

Proposition 2.1 If Assumption 1 is satisfied and F0 is Lipschitz continuous with con-
stant γ , then any solution of (P̂2) is an ε-optimal solution of (P̂1) and, conversely, any
solution of (P̂1) is an ε-optimal solution of (P̂2), with ε = 2γ M/

√
n.

Proof Since F0 is Lipschitz continuous with Lipschitz constant γ , it holds for any
x, y ∈ U: |F0(x) − F0(y)| ≤ γ ‖x − y‖U. We set for any u ∈ U :

ui := ui − E ui . (2.3)

Using the Lipchitz continuity of F0, one has for any u ∈ Û :
∣
∣
∣E

[
F0

( 1
n

∑n
i=1 u

i
) − F0

( 1
n

∑n
i=1 E ui

)]∣∣
∣ ≤ E

∣
∣F0

( 1
n

∑n
i=1 u

i
) − F0

( 1
n

∑n
i=1 E ui

)∣
∣

≤ γ
nE ‖∑n

i=1 u
i‖U.

Using the Jensen’s inequality, for any u ∈ Û , the mutual independence of the centered
variables ui and u j for any j �= i and E‖ui‖2U ≤ M2, we get:

γ

n
E ‖

n∑

i=1

ui‖U ≤ γ

n
E[‖

n∑

i=1

ui‖2
U
] 12 ≤ γ

n
1
2

M . (2.4)

Let û denote a minimizer of (P̂2), then using (2.4) for the first and last inequality,
for any u ∈ Û it holds:

J (û) ≤ J̃ (û) + γ

n
1
2

M ≤ J̃ (u) + γ

n
1
2

M ≤ J (u) + 2γ

n
1
2

M . (2.5)

Similarly, if u∗ is a solution of (P̂1), then for any u ∈ Û one has:

J̃ (u∗) ≤ J (u∗) + γ

n
1
2

M ≤ J (u) + γ

n
1
2

M ≤ J̃ (u) + 2γ

n
1
2

M . (2.6)

��
Theorem 2.2 Let Assumptions 1, 2 and 3 be satisfied. Then any solution of Problem
(P̂2) is an ε-optimal solution (where ε = cM2/n) of Problem (P1).
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Proof From Corollary 2.1 and Theorem 2.1, one has for any û ∈ Û solution of (P̂2)
that:

J̃ (û) ≤ inf
u∈U

J (u). (2.7)

Since F0 is convex, differentiable, with a c-Lipschitz derivative, one can derive a.s.:

F0(
1

n

n∑

i=1

ûi ) − F0(
1

n

n∑

i=1

E ûi )

≤ 1

n
〈∇F0(

1

n

n∑

i=1

ûi ) ,

n∑

i=1

ui 〉U

= 1

n
〈∇F0(

1

n

n∑

i=1

ûi ) − ∇F0(
1

n

n∑

i=1

E ûi ) ,

n∑

i=1

ui 〉U

+1

n
〈∇F0(

1

n

n∑

i=1

E ûi ) ,

n∑

i=1

ui 〉U

≤ c

n2
‖

n∑

i=1

ui ‖2
U

+ 1

n
〈∇F0(

1

n

n∑

i=1

E ûi ) ,

n∑

i=1

ui 〉U, (2.8)

where ui is defined from û as in (2.3). From the definition of ui , one obtains:

E

[

〈∇F0(
1

n

n∑

i=1

E ûi ) ,

n∑

i=1

ui 〉U
]

= 0.

Since û ∈ Û , controls are mutually independent and bounded a.s. by M , one gets as
in (2.4):

c

n2
E‖

n∑

i=1

ui ‖2
U

≤ c

n
M2. (2.9)

Taking the expectation of the first and last terms of (2.8) and then incorporating (2.9)
and the equality above, one obtains:

J (û) − J̃ (û) ≤ c

n
M2.

From previous inequality and (2.7), we get:

J (û) ≤ inf
u∈U

J (u) + c

n
M2. (2.10)

��

123



8 Page 10 of 35 Applied Mathematics & Optimization (2023) 88 :8

Remark 2.3 Observe that the value of the centralized Problem (P1) on the l.h.s. of the
inequality (2.11) below is upper bounded by the following decentralized problem on
the r.h.s of this inequality i.e.

inf
u∈U

J (u) ≤ inf
u∈Û

J (u). (2.11)

Reference [6] obtains an upper bound for the decentralized problem and a lower bound
for the centralized problem. The upper bound is provided by a resource decomposition
approach (with deterministic quantities) while the lower bound is obtained by a price
decomposition approach with deterministic prices (see Eq. (28) of [6]). Theorem 2.2
provides an upper bound for Problem (P1) with an a priori quantification of the devi-
ation from the optimal value which vanishes when the number of agents grows to
infinity. Moreover, in Sect. 4 we provide an original algorithm that allows to approach
the solution of the decentralized problem.

Remark 2.4 Let û and u∗ be respectively the optimal solutions of problems (P̂2) and
(P1). From Jensen’s inequality and by definition of û we have:

−J (u∗) ≤ − J̃ (u∗) ≤ − J̃ (û).

Adding J (û), one has:

0 ≤ J (û) − J (u∗) ≤ J (û) − J̃ (u∗) ≤ J (û) − J̃ (û). (2.12)

Inequality (2.12) allows to compute an upper bound of the "optimality" error J (û) −
J (u∗), by evaluating J (û) − J̃ (û).

3 Dualization and Decentralization of Problem (P2)

The Lagrangian function associated to the constrained optimization Problem (P̂ ′
2),

defined in (1.5), is: L : Û × U × U −→ R̄ defined by:

L(u, v, λ) := J̄ (u, v) + 〈λ,
1

n

n∑

i=1

E ui − v〉U. (3.1)

The dual Problem (D) associated with (P̂ ′
2) is:

(D) max
λ∈U W(λ), where W(λ) := min

u∈Û ,v∈U
L(u, v, λ). (3.2)

For any λ ∈ U, it holds:

W(λ) = −F∗
0 (λ) + 1

n

n∑

i=1

min
ui∈Ûi

E[Gi (u
i , ωi )] + 〈λ,E ui 〉U, (3.3)
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where, for any real valued function F defined onU, F∗ stands for its Fenchel conjugate,
defined for x ∈ U by F∗(x) := supy∈U 〈x, y〉U − F(y). The problem is said to be
qualified if it is still feasible after a small perturbation of the constraint, in the following
sense:

There exists ε > 0 such that BU(0, ε) ⊂ g(Û,U), (3.4)

where BU(0, ε) is the open ball of radius ε in U, g has been defined in (1.6) and
g(Û,U) is the image by g of Û × U.

Lemma 3.1 If Assumption 1 holds, then Problem (P̂ ′
2) is qualified. If Assumption 2 is

also satisfied, then problems (P̂ ′
2) and (D) have the same value, the set of dual solutions

S is nonempty and bounded and any primal solution û satisfies both W (λ̂) = J̃ (û)

and (û, v̂) ∈ argmin
u∈Û ,v∈U

L(λ̂, u, v), with λ̂ ∈ S.

Proof By Assumption 1.(iii), there exists ǔ feasible for Problem (P1). Then using the
definition of g in (1.6)

BU(0, ε) ⊂ U = g(ǔ,U) ⊂ g(Û,U). (3.5)

The qualification of (P̂ ′
2) follows. The conclusion follows by [3, Theorem 2.165]. ��

Since the set of admissible controls Û = Û1 × . . . × Ûn is a Cartesian product,
if Gi is strictly convex with respect to its first variable, then each component ûi of
the solution û of Problem (P̂2), can be uniquely determined by solving the following
subproblem:

ûi = argmin
ui∈Ûi

{
E

[
Gi (u

i , ωi ) + 〈λ̂, ui 〉U
]}

,

where λ̂ ∈ S.

Remark 3.1 By using the same argument as in Theorem 2.1, one can prove, for any
λ ∈ U:

min
ui∈Ûi

{
E

[
Gi (ui , ωi ) + 〈λ, ui 〉U

]}

= min
ui∈Ui

{
E

[
Gi (ui (·, ω−i ), ωi ) + 〈λ, ui 〉U

]}
.

(3.6)

4 Stochastic Uzawa and Sampled Stochastic Uzawa Algorithms

This section aims at proposing an algorithm to find a solution of the dual problem
(3.2).
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4.1 Preliminary Results

Though the below result is well-known and can be found in [14] for functions defined
on finite vector spaces, we adapt the proof to the Hilbert space setting for the sake of
completeness.

Lemma 4.1 If Assumption 1 and 2 are satisfied, then Assumption 3 holds iff F∗
0 is

strongly convex.

Proof (i) Let Assumption 3 holds. Since F0 is proper, convex and l.s.c., F∗
0 is l.s.c.

proper. From the Lipschitz property of the gradient of F0, it holds that dom(F0) = U.
Let s, s̃ ∈ dom(F∗

0 ) such that there exist λs ∈ ∂F∗
0 (s) and λs̃ ∈ ∂F∗

0 (s̃). From
the differentiability, l.s.c. and convexity of F0, it follows that: s = ∇F0(λs) and s̃ =
∇F0(λs̃). By Assumption 3 and the extended Baillon-Haddad theorem [23, Theorem
3.1], ∇F0 is cocoercive. In other words:

〈s − s̃, λs − λs̃〉U = 〈∇F0(λs) − ∇F0(λs̃), λs − λs̃〉U
≥ 1

c‖∇F0(λs) − ∇F0(λs̃)‖2U
= 1

c‖s − s̃‖2
U
,

(4.1)

where c is the Lipschitz constant of ∇F0 defined in Assumption 3. Therefore ∂F∗
0 is

strongly monotone, which implies the strong convexity of F∗
0 .

(ii) Conversely, assume that F∗
0 is proper and strongly convex. Then there exist α, β >

0 and γ ∈ U such that for any s ∈ dom(F∗
0 ): F∗

0 (s) ≥ α‖s‖2
U

+ 〈γ, α〉U − β, and F0
being convex, l.s.c. and proper, for any λ ∈ U it holds:

F0(λ) ≤ sup
s∈U

〈s, λ − γ 〉U − α‖s‖2
U

+ β = ‖λ − γ ‖2/(4α) + β. (4.2)

Thus, F0 is proper and uniformly upper bounded over bounded sets and therefore is
locally Lipschitz. In addition, from the strong convexity of F∗

0 and the convexity of F0,
for any λ ∈ U, ∂F0(λ) is a singleton. Thus F0 is everywhere Gâteaux differentiable.

Let λ,μ ∈ U. Since F∗
0 is strongly convex, the functions F∗

0 (s) − 〈λ, s〉U (resp.
F∗
0 (s) − 〈μ, s〉U) has a unique minimum point sλ (resp. sμ), characterized by:

λ ∈ ∂F∗
0 (sλ) and μ ∈ ∂F∗

0 (sμ). From the strong convexity of F∗
0 , the strong mono-

tonicity of ∂F∗
0 holds: 〈μ − λ, sμ − sλ〉U ≥ 1

c ‖sμ − sλ‖2U, where c > 0 is a constant
related to the strong convexity of F∗

0 . Using that sλ = ∇F0(λ) and sμ = ∇F0(μ), it
holds:

〈μ − λ,∇F0(μ) − ∇F0(λ) 〉L2(0,T ) ≥ 1

c
‖∇F0(μ) − ∇F0(λ)‖2L2(0,T )

, (4.3)

meaning that ∇F0 is cocoercive. Applying the Cauchy-Schwarz inequality to the left
hand side of the previous inequality, the Lipschitz property of ∇F0 follows. ��
Lemma 4.2 If Assumptions 1, 2 and 3 hold, then W is strongly concave.

123



Applied Mathematics & Optimization (2023) 88 :8 Page 13 of 35 8

Proof For any λ ∈ U, the expression of W(λ) is given by (3.3), where for any i ∈
{1, . . . , n}, λ �→ inf

ui∈Ûi

EGi (ui , ωi ) + 〈λ,E ui 〉U is concave and, from Lemma 4.1,

−F∗
0 is strongly concave. Since the sum of a concave function and of a strongly

concave function is strongly concave, the result follows. ��

4.2 Analysis of the Algorithms

Assumptions 1, 2 and 4 are supposed to hold throughout Sect. 4.2. For all i ∈ {1, . . . n},
and λ ∈ U, we define the optimal control ui (λ):

ui (λ) := argmin
ui∈Ûi

{
E

[
Gi (u

i , ωi ) + 〈λ, ui 〉U
]}

, (4.4)

which is well defined since ui → EGi (ui , ωi ) is strictly convex.
For any λ ∈ U, the subset V (λ) is defined by:

V (λ) := argmin
v∈U

{F0(v) − 〈λ, v〉U}. (4.5)

Since F0 is convex and has at least quadratic growth, V (λ) is a non empty subset of
U and is reduced to a singleton if F0 is strictly convex. For any λ ∈ U, we denote by
v(λ) an element of V (λ), and for any v(λ) ∈ V (λ), one has v(λ) ∈ ∂F∗

0 (λ).
Uzawa’s algorithm seems particularly fitting for this problem. However, at each

dual iteration k and any i ∈ {1, . . . , n}, one would have to compute the quantities
E[ui (λk)] for the update of λk+1, which is hard in practice. Therefore two algorithms
are proposed where, at each iteration k, λk+1 is updated thanks to a realization of
ui (λk).

We introduce the function f : U → U defined by:

f (λ) := g(u(λ), v(λ)) = 1

n

n∑

i=1

E ui (λ) − v(λ). (4.6)

By Assumption 4.(ii), F0 has at least quadratic growth, whence F∗
0 has at most

quadratic growth. Indeed, using the definition of the Fenchel’s conjugate, the fact
that F0 has at least quadratic growth, and the Cauchy-Schwarz inequality, there exist
C̄1, C̄2 > 0 such that for any λ ∈ U:

F∗
0 (λ) ≤ sup

μ∈U
‖μ‖U‖λ‖U − C̄1‖μ‖2

U
+ C̄2 = ‖λ‖2

U

2C̄1
+ C̄2.

Then using Lemma 1 in Appendix 1 and that v(λ) ∈ ∂F∗
0 (λ), there exists C > 0 such

that for any λ ∈ U:

‖v(λ)‖U ≤ C(‖λ‖U + 1). (4.7)
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Using the definition of U , one has 1
n

∑n
i=1 ‖E ui (λ)‖U ≤ M for any λ ∈ U. Therefore,

from the definition of f in (4.6), there exist M1, M2 > 0 such that for any λ ∈ U one
has:

‖ f (λ)‖2
U

≤ M1 + M2‖λ‖2
U
. (4.8)

For any λ ∈ U, we denote by ∂(−W(λ)) the subgradient of −W at λ. Therefore, for
any λ ∈ U:

∂(−W(λ)) 
 − f (λ). (4.9)

The iterative algorithm, proposed as an approximation scheme forλ∗ ∈ argmax
λ

W(λ),

is summarized in the Stochastic Uzawa Algorithm 1.

Algorithm 1 Stochastic Uzawa
1: Initialization λ0 ∈ U, set {ρk }k∈N∗ satisfying Assumption 5.
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λk ) where v(λk ) ∈ V (λk ) , this set being defined in (4.5).
5: ui,k ← ui (λk ) where ui (λk ) is defined in (4.4) for any i ∈ {1, . . . , n}.
6: Generate n independent noises (ω1,k+1, . . . , ωn,k+1), independent also of {ωi,p : 1 ≤ i ≤ n, p ≤

k}.
7: Compute the associated control realization (u1,k (ω1,k+1), . . . , un,k (ωn,k+1)).
8: Yk+1 ← 1

n
∑n

i=1 u
i,k (ωi,k+1) − vk .

9: λk+1 ← λk + ρk Y
k+1.

At any dual iteration k of Algorithm 1, Y k+1 is an estimator of E
[ 1
n

∑n
i=1 u

i (λk)

(ωi,k+1) − v(λk)
]
. An alternative approach, proposed in the Sampled Stochastic

Uzawa Algorithm 2, consists in performing less simulations at each iteration, by
taking m < n, at the risk of performing more dual iterations, to estimate the quantity
E

[ 1
n

∑n
i=1 u

i (λk)(ωi,k+1) − v(λk)
]
.

Algorithm 2 Sampled Stochastic Uzawa

1: Initialization of m a positive integer and λ̌0 ∈ U, set {ρk }k∈N∗ satisfying Assumption 5.
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λ̌k ) where v(λ̌k ) ∈ V (λ̌k ), this set being defined in (4.5).
5: Generate m i.i.d. discrete random variables I k1 , . . . , I km uniformly in {1, . . . , n}.
6: u

I kj ,k ← u
I kj (λ̌k ) where u

I kj (λ̌k ) is defined in (4.4) for any j ∈ {1, . . . ,m}.
7: Generate m independent noises (ω1,k+1, . . . , ωm,k+1), independent also of {ωi,p : 1 ≤ i ≤ m, p ≤

k}.
8: Compute the associated control realization (uI

k
1 ,k

(ω1,k+1), . . . , uI
k
m ,k (ωm,k+1)).

9: Y̌ k+1 ← 1
m

∑m
j=1 u

I kj ,k (ω
I kj ,k+1

) − vk

10: λ̌k+1 ← λ̌k + ρk Y̌
k+1.
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The complexity of the Sampled Stochastic Uzawa Algorithm 2 is proportional to
m×K , where K is the total number of dual iterations andm the number of simulations
performed at each iteration. The error E ‖λk+1 − λ∗‖2

U
for λ∗ ∈ S (we recall that S

is defined by S := argmax
λ∈U

W(λ) and from Lemma 3.1 S is non empty) is the sum

of the square of the bias (which only depends on K and not on m) and the variance
(which both depends on K and m). Therefore, this algorithm enables a bias variance
trade-off for a given complexity. Similarly, for a given error, it enables to optimize the
complexity of the algorithm.

The following result establishes the convergence of the Stochastic Uzawa Algo-
rithm 1:

Lemma 4.3 Let Assumptions 1, 2, 4 and 5 hold and let {λk}k be a sequence of multi-
pliers generated by Algorithm 1. Then:

(i) {‖λk − λ‖2
U
} converges a.s., for all λ ∈ S.

(ii) W(λk) −−−→
k→∞ max

λ∈U W(λ) a.s.

(iii) {λk} weakly converges to some λ̄ ∈ S in U a.s.
(iv) If Assumption 3 holds, then a.s. {λk} converges to λ̄ in U, with S := {λ̄}.
The proof follows from [10, Theorem 3.6]. The cited reference (changing mini-

mization in maximization) is interested in the maximization of a function W of the
specific form W(λ) = EW(λ, ω), where W(·, ω) is concave a.s. in ω. However, in
our setting we cannot in general exhibit such a representation for the dual function
W , defined in (3.2). Using the definition of u(λ) in (4.4) and v(λ) in (4.5), we have
W(λ) = EW(λ, ω), where

λ �→ W(λ, ω) := F0(v(λ)) + 1

n

n∑

i=1

Gi (u
i (λ), ωi ) + 〈λ,

1

n

n∑

i=1

ui (λ) − v(λ)〉U.

Note tat W(·, ω) is not a concave function of λ for a.a. ω ∈ Ω . Although our setting
does not enter in the framework considered in [10], the proof of Lemma 4.3 follows
from an obvious adaptation of the one in [10, Theorem 3.6]. It is enough to provide
the first steps of the proof.

Proof of Lemma 4.3 First consider point (i). Let λ ∈ S. For any k, Gk+1 is the filtration
defined by:

Gk+1 := σ
(
{ωi,p} : 1 ≤ i ≤ n, p ≤ k + 1}

)
. (4.10)

Using the definition of Y k+1 ∈ U line 8 in the Stochastic Uzawa Algorithm 1, we
have:

‖λk+1 − λ‖2
U

= ‖λk + ρkY k+1 − λ‖2
U= ‖λk − λ‖2

U
+ 2ρk〈λk − λ,Y k+1〉U

+(ρk)
2‖Y k+1‖2

U
.

(4.11)
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Since Y k+1 is independent from Gk , it follows that:

E[‖Y k+1‖2
U
|Gk] = E ‖1

n

n∑

i=1

ui (λk)(ωi,k+1) − v(λk)‖2
U
. (4.12)

Using previous equality and the inequality (4.8), one can easily show that there exists
M3, M4 > 0 such that, for any k ∈ N, one has:

E[‖Y k+1‖2
U
|Gk] ≤ M1 + M2‖λk‖2U ≤ M3 + M4‖λk − λ‖2

U
(4.13)

Since λk is Gk-measurable and that E[Y k+1|Gk] = f (λk), we have that:

E[‖λk+1 − λ‖2
U
|Gk]

= ‖λk − λ‖2
U

+ 2ρkE[〈λk − λ,Y k+1〉U|Gk)] + (ρk)
2
E[‖Y k+1‖2

U
|Gk]

≤ ‖λk − λ‖2
U

+ 2ρk〈λk − λ, f (λk)〉U + (ρk)
2(M3 + M4‖λk − λ‖2

U
)

≤ ‖λk − λ‖2
U
(1 + M4ρ

2
k ) + (ρk)

2M3 − 2ρk(W(λ) − W(λk)).

(4.14)

In the last inequality, we used the concavity of W and (4.9). The rest of the proof
follows [10, Theorem 3.6]. ��

Recalling the definition of J̄ (u, v) in (1.5) and of λ̄ in Lemma 4.3.(iii), we define
ū:

ū := argmin
u∈Û

{

E

[
n∑

i=1

Gi (u
i , ωi ) + 〈λ̄, ui 〉U

]}

. (4.15)

Under Assumption 4, Gi is strictly convex w.r.t. the first variable, and then ū is well
defined. If F0 is strictly convex, then V (λ̄) is a singleton and we can write:

v̄ := argmin
v∈U

{
F0(v) + 〈λ̄, v〉U

}
. (4.16)

Remark 4.1 If F0 is convex, by Lemma 3.1, there is no duality gap associated to the
Lagrangian L defined in (3.1). Further, if F0 is strictly convex, then (ū, v̄, λ̄) is the
unique saddle point associated to the Lagrangian L . Indeed, by Assumption 3, λ̄ is
the unique solution of the dual problem (D), by Assumption 4.(i), ū is unique and by
strict convexity of F0, v̄ is also the unique minimizer in the right hand side of (4.16).

Theorem 4.1 Let the Assumptions 1, 2, 3, 4 and 5 hold, then we have:

(i) {u(λk)} weakly converges a.s. to ū.
Furthermore, if F0 is strictly convex, then from Remark 4.1, ū is the unique minimizer
of J̃ in Û and:

(ii) J̃ (u(λk)) −−−→
k→∞ J̃ (ū) a.s.

(iii) lim sup
k→∞

J (u(λk)) ≤ infu∈U J (u) + 2 ε a.s. where ε = cM2/n.
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Proof Proof of point (i). By Lemma 4.3.(iv), the sequence {λk} is bounded in U.
Thus, using inequality (4.7) one deduces that {v(λk)} is also bounded in U. Since
the sequence {(u(λk), v(λk))} is bounded in Û × U, there exists a weakly convergent
subsequence {(u(λθk ), v(λθk ))} such that:

(u(λθk ), v(λθk )) ⇀
k→∞(uθ , vθ ) ∈ Û × U. (4.17)

Using the definition of λ �→ u(λ) in (4.4), it holds for any k > 0:

E
[
Gi (ūi , ωi )) + 〈λθk , ūi )〉U

]

≥ E
[
Gi (ui (λθk ), ωi ) + 〈λθk , ui (λθk )〉U

)]. (4.18)

Using that ui �→ Gi (ui , ωi ) is a.s. w.l.s.c. on Ûi and the a.s. convergence of {λk},
resulting from Lemma 4.3.(iv), we have from (4.18) when k → ∞ :

E

[
Gi (ū

i , ωi ) + 〈λ̄, ūi )〉U
]

≥ E

[
Gi (u

i,θ , ωi ) + 〈λ̄, ui,θ 〉U
]
. (4.19)

Since ū is unique, it follows uθ = ū and (4.19) is an equality. Using that every weakly
convergent subsequence of {u(λk)} has the same weak limit ū, (i) is deduced.

Proof of point (ii).
From point (i) and (4.19), it follows for any i ∈ {1, . . . , n}:

lim
k→∞EGi (u

i (λk), ωi ) = EGi (ū
i , ωi ). (4.20)

Using (4.17), the w.l.s.c. of F0, equation (4.16), and applying the same previous
argument to {v(λk)}, it holds that:

lim
k→∞F0(v(λk)) − 〈λk, v(λk)〉U = F0(v̄) − 〈λ̄, v̄〉U, (4.21)

and v(λk) ⇀
k→∞v̄.

From the two previous equalities and the a.s. convergence of {λk}, it follows:

lim
k→∞F0(v(λk)) = F0(v̄). (4.22)

Using that (ū, v̄, λ̄) is a saddle point, it follows:

1

n

n∑

i=1

E ūi = v̄. (4.23)

From (4.22) and (4.23), it holds:

lim
k→∞F0

(
1

n

n∑

i=1

E ui (λk)

)

= F0

(
1

n

n∑

i=1

E ūi
)

. (4.24)
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Then adding (4.20) and (4.24): lim
k→∞ J̃ (u(λk)) = J̃ (ū).

Proof of point (iii). From point (ii), inequality (2.10) and Theorem 2.2, it holds:

lim sup
k→∞

J (u(λk)) ≤ lim sup
k→∞

J̃ (u(λk)) + ε = inf
u∈U

J̃ (u) + ε ≤ inf
u∈U

J (u) + 2ε.

(4.25)

��
Lemma 4.4 Let Assumptions 1 and 6.(i) hold, then the function λ �→ v(λ) is Lipschitz
on U.

Proof From the definition of v in (4.5), we have for any λ ∈ U that λ ∈ ∂F0(v(λ)).
Thus, for any λ,μ ∈ U, we have from the strong convexity of F0:

{
F0(v(μ)) ≥ F0(v(λ)) + 〈λ, v(μ) − v(λ)〉U + α‖v(μ) − v(λ)‖2

U

F0(v(λ)) ≥ F0(v(μ)) + 〈μ, v(λ) − v(μ)〉U + α‖v(λ) − v(μ)‖2
U
.

(4.26)

Adding the two previous inequalities, after simplications, we get:

〈λ − μ, v(λ) − v(μ)〉U ≥ 2α‖v(λ) − v(μ)‖2
U
. (4.27)

Applying the Cauchy-Schwarz inequality and simplifying by ‖v(λ)−v(μ)‖U, we get
the desired Lipschitz inequality. ��
Lemma 4.5 If Assumptions 1 and 6.(ii) hold, the function λ �→ u(λ) is Lipschitz onU.

Proof The proof is similar to the proof of Lemma 4.4. ��
Theorem 4.2 Let Assumptions 1, 3, 5, and 6 hold, then: u(λk) −−−→

k→∞ u(λ̄) a.s.

Proof The convergence follows from the Lipschitz property of λ �→ u(λ) (as a result
of Assumption 6) associated with the a.s. convergence of {λk}. ��
Remark 4.2 Note that Lemma 4.3 and Theorems 4.1 and 4.2 still hold when replacing
λk by λ̌k and Y k by Y̌ k (as defined respectively in line 9 and 10 of the Sampled
Stochastic Uzawa Algorithm 2). This can be proved by the same argument, using that
Y̌ k is bounded a.s. and E[Y̌ k |Ǧk] = f (λ̌k) for any k, where:

Ǧk = σ
(
{W I p	 ,p} : 1 ≤ 	 ≤ m, p ≤ k}

)
∨ σ

(
{I p	 } : 1 ≤ 	 ≤ m, p ≤ k}

)
, (4.28)

with W Ik	 ,p and I p	 defined respectively in line 9 and 10 of the Sampled Stochastic
Uzawa Algorithm 2.

Remark 4.3 We wish to emphasize that the proposed Algorithm 2 is particularly suit-
able for practical distributed implementations in agent-based scenarios. In these cases,
the quantity λ can be interpreted as a common price signal that is broadcast to the inde-
pendent agents, which in turn compute independently their optimal solution u(λ) on
the basis of their local parameters (step 5).

123



Applied Mathematics & Optimization (2023) 88 :8 Page 19 of 35 8

To illustrate the results, we consider in the next section stochastic control problems in
both continuous and discrete time settings.

5 Application to Stochastic Control

5.1 Continuous Time Setting

Let (Ω,F ,F,P) be a complete filtered probability space on whichW = (Wi )i=1,...,n
is a n × d−dimensional Brownian motion such that, for any t ∈ [0, T ] and i ∈
{1, . . . , n}, Wi

t takes value in R
d and generates the filtration F = (Ft )0≤t≤T . In the

considered notation, P stands for the Wiener measure associated with this filtration
and F for the augmented filtration by all P-null sets. The following notations are used:

X :=
{ϕ : Ω → C([0, T ],Rd) | ϕ(·) isF − adapted, ‖ϕ‖∞,2 := E sup

1≤k≤d
s∈[0,T ]

|ϕk(s)|2 < ∞},

U := L2([0, T ],Rp) := {ϕ : [0, T ] → R
p |

∫ T

0

p∑

k=1

|ϕk(t)|2dt < ∞},

For any i ∈ {1, . . . , n}, the feasible set of controls is defined by:

Ui := {v : Ω × [0, T ] → R, v(·) is F − prog. measurable,
v(ω) ∈ U and vt (ω) ∈ [−Mi , Mi ]p, for a.a. (t, ω) ∈ [0, T ] × Ω}, (5.1)

and we set M := max
i∈{1,...,n} Mi , where Mi > 0.

Each local agent i = 1, . . . , n is supposed to control its state variable through the
control process ui ∈ Ui and is subject to independent uncertainties. More specifically,

the state process of each agent, Xi,ui = (Xi,ui
t )t∈[0;T ], for i = 1, . . . , n takes values

in Rd and follows the dynamics for i ∈ {1, . . . , n}:
{
dXi,ui

t = μi (t, uit (·,Wi ), Xi,ui
t )dt + σi (t, X

i,ui
t )dWi

t , for t ∈ [0, T ],
Xi,ui

0 = xi0 ∈ R
d ;

(5.2)

We assume that, for any i , there exist five functions αi ∈ L∞([0, T ],Rd×p), βi , θi ∈
L∞([0, T ],Rd×d), γi ∈ L∞([0, T ],Rd) and ξi ∈ L∞([0, T ],Rd×d×d) such that, for
any (t, ν, x) ∈ [0, T ] × [−M, M]p × R

d :

μi (t, ν, x) = αi (t)ν + βi (t)x + γi (t) and σi (x, t) = ξi (t)x + θi (t). (5.3)

Without loss of generality, the initial states xi0 are supposed to be deterministic. The

process Xi,ui is F-progressively measurable. For all i , F i stands for the natural filtra-
tion of the Brownian motion Wi .
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5.1.1 On theWell-posedness of (P1)

In this section, we discuss some conditions under which Problem (P1) is well-posed.

Lemma 5.1 Let i ∈ {1, . . . , n} and v ∈ Ui be a control process. The map v �→ Xi,v is
linear continuous from Ui to X and there exists a unique process Xi,v ∈ X satisfying
(5.2) (in the strong sense) such that, for any p ∈ [1,∞):

E
[

sup
0≤t≤T
1≤k≤d

|Xi,v
k,t |r

]
< C(r , T , x0, K ) < ∞ . (5.4)

Proof The proof for the existence and uniqueness of a solution of (5.2) relies on [20,
Theorem 3.6, Chapter 2]. The inequality is a result of [20, Theorem 4.4, Chapter 2 ].

��
Let F0 : U → R be a proper, convex and lower semi continuous function, satisfying
Assumptions 3 and 4.(ii). For any i ∈ {1, . . . , n}, we assume that there exists Fi such
that the local cost Gi is of the form:

ui �→ Gi (u
i (·, ω−i ), ωi ) = Fi (u

i (ωi , ω−i ), Xi,ui (ωi )), (5.5)

where Fi : U×C([0, T ]×R
d) → R+ is a proper and lower semi continuous function.

Additional assumptions are formulated below.

Assumption 7 For any i ∈ {1, . . . , n}:
(i) Fi is jointly convexw.r.t. both variables and strictly convexw.r.t. the first variable.
(ii) there exists a positive integer r such that Fi has r -polynomial growth, i.e there

exists K > 0 such that for any xi ∈ C([0, T ],Rd) and ui ∈ U: |Fi (ui , xi )| ≤
K (1 + sup0≤t≤T

0≤k≤n
|xik,t |r ).

Note that if Assumption 7.(i) is satisfied, using the definition of F0 and Fi above
in this section, Assumptions 1 to 4 hold.

Remark 5.1 It is worth highlighting the following aspects regarding Assumption 7:

1. Assumption 7.(i) is satisfied if there exist gi : L2((0, T ),Rp) → R strictly convex
and hi : C([0, T ],Rd) → R convex, such that Fi (v, X) = gi (v) + hi (X).

2. Observe that Assumption 7 satisfies Assumptions 1.(i) and 4.(i)

From now on, Assumption 7 is in force. Now the optimization problems (Pc
1 ) and

(P̂c
2 ) can be clearly defined:

(Pc
1 )

{
infu∈U J c(u)

J c(u) := E

[
F0(

1
n

∑n
i=1 u

i (ω)) + 1
n

∑n
i=1 Fi (u

i (ω), Xi,ui (ωi ))
]
,

(5.6)

and

(P̂c
2 )

⎧
⎨

⎩

infu∈Û J̃ c(u)

J̃ c(u) := F0
( 1
n

∑n
i=1 E ui

) + 1
nE

[∑n
i=1 Fi (u

i (ω), Xi,ui (ωi ))
]
,

(5.7)
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Using the results of Section 2, we can state the following corollary:

Corollary 5.1 (i) Problems (Pc
1 ) and (P̂c

2 ) admit both a unique solution.

(ii) Any optimal solution of Problem (P̂c
2 ) is an ε-optimal solution, where ε =

cM2/n, of Problem (Pc
1 ).

Proof The proof of point (i) is a specific case of Lemma 2.1. Similarly, point (ii) is a
particular case of Theorem 2.2. ��
Remark 5.2 A practical example of this type of stochastic optimization problem is
illustrated in Section 7, which considers the interactions between a large population
of price-responsive self-interested domestic appliances and a central system operator
which has to meet the prescribed levels of demand at minimum generation costs.

5.2 Discrete Time Setting

The main results of the paper are instantiated to the discrete time setting in this sub-
section. The following notations are used.

• Let n ∈ N
∗ be the number of agents, d, p ∈ N

∗ the dimension respectively of their
state and control variables at any time step, and T ∈ N

∗ the finite time horizon.
• For any matrix M , its transpose is denoted by M�.
• We consider a global noise process as a sequence of independent random variables

(W1, . . . ,WT ), where for any t ∈ {1, . . . , T }, Wt is a vector of d-dimensional
independent random variables, with finite variance, defined on the probability
space (Ω,F ,P): Wt := (W 1

t , . . . ,Wn
t ), with Wi

t ∈ R
d . For any i ∈ {1, . . . , n}

and t ∈ {1, . . . , T } we define F i
t := σ(Wi

1, . . . ,W
i
t ) and Ft := ⊗n

i=1F i
t .

• The space X is defined by:

X := {x = (x0, . . . , xT ) | ∀t ∈ {0, . . . , T },Rd 
 xt is

Ft − measurable and E‖xt‖22 < ∞}. (5.8)

• For any i ∈ {1, . . . , n}, we define the space of control U i of agent i by:

U i := {ui = (ui0, . . . , u
i
T−1) | ∀t ∈ {0, . . . , T − 1},Rp 
 uit is

Ft − measurable and uik(ω) ∈ [−M, M]p P-a.s.}, (5.9)

where M > 0. We finally set U := ∏n
i=1 U i .

• For any i ∈ {1, . . . , n}, Xi,ui := (Xi,ui

0 , . . . , Xi,ui

T ) ∈ X is the state trajectory of
agent i controlled by ui ∈ U i . We have the following dynamics:

{
Xi,ui

t+1 = Ai Xi,ui
t + Biuit + Wi

t+1, for t ∈ {0, . . . , T − 1},
Xi,ui

0 = x0 ∈ R
d ,

(5.10)

where Ai ∈ R
d×d and Bi ∈ R

d×p.
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Let F0 : R
p×T → R̄ be proper, lower semi continuous, convex and satisfy Assump-

tions 3 and 4.(ii). Similarly to the previous subsection, we assume that, for any i ,
there exists a function Fi : R

p×T × R
d×T → R such that Gi and Fi satisfy (5.5),

and Fi satisfies Assumption 7 for an integer r such that E ‖Wt‖r is finite for any
t ∈ {1, . . . , T }.

Now, for any n ∈ T
∗, the optimization problems (Pd

1 ) and (P̂d
2 ) can be clearly

defined:

(Pd
1 )

⎧
⎨

⎩

infu∈U Jd(u)

Jd(u) := E

[
F0(

1
n

∑n
i=1 u

i ) + 1
n

∑n
i=1 Fi (u

i , Xi,ui )
]
,

(5.11)

and

(P̂d
2 )

⎧
⎨

⎩

infu∈Û J̃ d(u)

J̃ d(u) := F0
( 1
n

∑n
i=1 E ui

) + 1
nE

[∑n
i=1 Fi (u

i , Xi,ui )
]
.

(5.12)

In the same spirit as in the previous subsection, we have the following results, which
will be useful for the next section.

Corollary 5.2 (i) Problems (Pd
1 ) and (P̂d

2 ) admit both a unique solution.

(ii) Any optimal solution of Problem (P̂d
2 ) is an ε-optimal solution, where ε =

cM2/n, of Problem (Pd
1 ).

Proof The proof of point (i) is analogous to the one of Lemma 2.1. Similarly, proof
of point (ii) is analogous to the one of Theorem 2.2. ��
One can implement the Stochastic Uzawa (Algo 1) and the Sampled Stochastic Uzawa
(Algo 2) in this discrete time setting with Lemma 4.3 and Theorems 4.1 and 4.2 still
ensuring the algorithm convergence.

6 A Numerical Example: The LQG (Linear Quadratic Gaussian)
Problem

This section aims at illustrating numerically the convergence of the Stochastic Uzawa
(Algorithm 1) on a simple example. The speed of convergence of the algorithm is
evaluated according to the number of dual iterations and of agents. A linear quadratic
formulation is considered, with n agents in a discrete setting Problem (P̂ LQG

2 ). We
use the notations of Sect. 5.2.

This framework constitutes a simple test case, since the (deterministic) Uzawa’s
algorithmcanbeperformed, andone can compare the resultingmultiplier estimatewith
the one provided by the Stochastic Uzawa algorithm. All the assumptions required for
the convergence of the Stochastic Uzawa (Algo 1) are satisfied for Problem (P̂ LQG

2 ).
Moreover, the optimal solutions to the local problems (line 5 of Algorithm 1) can be
resolved analytically.
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Problem (P̂ LQG
2 ) is similar to (P̂d

2 ) defined in (5.12) but, in this specific case, the
function F0 is a quadratic function of the aggregate strategies of the agents

F0

(
1

n

n∑

i=1

E ui
)

:= ν

2

T∑

t=0

(
1

n

n∑

i=1

E uit − rt

)2

, (6.1)

where ν > 0 and {rt } is a deterministic target sequence. Similarly, the cost term Fi
of the individual agents is expressed as a quadratic function of their state Xi,ui and
control ui

Fi (u
i , Xi,ui ) := 1

2

(
T∑

t=0

di (X
i,ui
t )2 + qi (u

i
t )
2

)

+ d f
i

2
(Xi,ui

T )2, (6.2)

where qi > 0 and di > 0 for any i ∈ {1, . . . , n}. Defining the matrices D =
diag(d1, . . . , dn), Q = diag(q1, . . . , qn) and D f = diag(d f

1 , . . . , d f
n ), we get:

n∑

i=1

Fi (u
i , Xi,ui ) = 1

2

(
T∑

t=0

Xu�
t DXu

t + u�
t Qut

)

+ 1

2
Xu�
T D f Xu

T , (6.3)

where, for any t ∈ {0, . . . , T }, Xu
t := (X1,u1

t , . . . , Xn,un
t ) ∈ R

n is the controlled state
vector of all the agents. Now the optimization Problem (P̂ LQG

2 ) is clearly defined.

To find the optimal multiplier and control of (P̂ LQG
2 ), the Stochastic Uzawa Algo-

rithm 1 is applied. In this specific case, the lines 4 and 6 take respectively the following
form at any dual iteration k:

ui (λk) := argmin
ui∈Û i

{

E

[
1

2

(
T∑

t=0

di (X
i,ui
t )2 + qi (u

i
t )
2 + λkt u

i
t

) + d f
i

2
(Xi,ui

T )2

]}

,

(6.4)

v(λk) := argmin
v∈RT

{

(

T∑

t=0

ν (vt − rt )
2 − λkt vt

}

. (6.5)

The optimization problem (6.4) solved by each local agent also falls within the LQG
framework. One can solve these problems using the results of [30]. The resolution
via Riccati equations of (6.4) shows that ui (λk) is a linear function of the state Xi,ui

and of the price λk . Therefore, in this specific example, one can explicitly compute
E[uit (λk)|Gk] for any t , with Gk as defined in (4.10).

Within this described framework, it is possible to implement the (deterministic)
Uzawa’s algorithm and use it as a reference to evaluate the performances of the
Stochastic Uzawa algorithm.

Different population sizes n are considered, with n ranging between 1 and 104.
Similarly, the algorithm is stopped after different numbers of dual iteration k, ranging
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between 10 and 104. In order to evaluate the bias and variance of the Stochastic Uzawa
algorithm, this has been performed over J = 1000 runs.

It is possible to define a Problem (P̂ ′LQG
2 ) and a dual Problem (DLQG) from

Problem (P̂ LQG
2 ) following the same approach presented in (1.5) and (3.2) for the

definition of (P̂ ′
2) and (D), respectively, from (P̂2). It can be shown that, for any n,

there exists a unique optimalmultiplier λ̄n , solution of (DLQG). For any n, the quantity
λk,n, j denotes the dual price computed during the j th simulations ( j = 1, . . . , J ) of
the Stochastic Uzawa algorithm, after k dual iterations.

For any n, the deterministic multiplier λ̄n is obtained by applying Uzawa’s algo-
rithm, after 104 dual iterations. To this end, we applied the Stochastic Uzawa
Algorithm 1, where we ignored the line 8 and we replaced the update of λk line 9
by: λ̄k+1 ← λ̄k + ρk(

1
n

∑n
i=1 E ui (λ̄k) − v(λ̄k)).

At each dual iteration k, the computation of E ui (λk) is straightforward in this
specific case, since ui (λk) is a linear function of Xi,ui and λk , as explained in the
previous subsection.

The multipliers λk,n, j and λ̄n , obtained by applying the Stochastic Uzawa and
Uzawa algorithms, respectively, are now compared. For any k and n, let bk,n , vk,n
and 	k,n denote an estimation of the bias, the variance and the L2 norm of the error,
respectively, as computed via Monte Carlo method with J simulations. For any k and
n, these quantities are defined as follows:

bk,n := 1

J

J∑

j=1

λk,n, j − λ̄n,

vk,n := 1

J

J∑

j=1

‖λk,n, j − λ̄n − bk,n‖22,

	k,n := vk,n + ‖bk,n‖22.

Since numerical simulations are based on finite dimensional approximations, it is
relevant to compare the empirical convergence rates, shown in Figs. 1, 2, 3 with the
associated theoretical asymptotic rates presented in the literature for a finite dimen-
sional setting.

In Fig. 1, we observe a behavior in 1/kα (with α � 0.8) of the variance vk,n w.r.t.
the number of iterations k. This rate of convergence is consistent with [9, Theorem
2.2.12, Chapter 2], where the best asymptotic convergence rate for the Robbins-Monro
algorithm is proved to be of the order of 1/k (for the quadratic error).

In Fig. 2 we observe a behavior in 1/nβ (with β � 1) of the variance vk,n w.r.t. the
number of agents n. This is expected, following [9, Theorem 2.2.12, Chapter 2] and
the observation that the variance of Y k+1 is of the order of 1/n for any iteration k.

Finally, in Fig. 3, we note that the bias ‖bk,n‖2 decreases faster than 1/k w.r.t. the
number of iterations k. Thus, for a large number of iterations (k > 0), the dominant
term impacting the error lk,n is the variance vk,n .
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Fig. 1 Variance term
log10(vk,n), expressed as a
function of k, for different
number of agents n

Fig. 2 Variance term
log10(vk,n), expressed as a
function of n, for different
number of iterations k

7 Price-Based Coordination of a Large Population of Thermostatically
Controlled Loads

The goal of this section is to demonstrate the applicability of the presented approach
for the coordination of TCLs in the context of flexible power systems. In particular,
the problem analyses the daily operation of a power system with a large penetration of
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Fig. 3 Bias term
log10(‖bk,n‖22), expressed as a
function of k, given the number
of agents n = 104

price-responsive TCLs, adopting a modelling framework similar to [8]. Two distinct
elements are considered: i) a system operator, which must schedule a portfolio of
generation assets in order to satisfy the energy demand at a minimum cost, and ii) a
population of price-responsive TCLs that individually determine their ON/OFF power
profile in response to price, with the objective of minimizing their operating cost
while fulfilling users’ requirements. Note that the operations of the two elements are
interconnected, since the aggregate power consumption of the TCLs will modify the
system-level demand profile that needs to be accommodated by the system operator.

7.1 Formulation of the Problem

In the considered problem, the function F0 represents theminimized power production
cost and corresponds to the resolution of an Unit Commitment (UC) problem. The
UC determines generation scheduling decisions (in terms of energy production and
frequency response (FR) provision) in order to minimize the short term operating cost
of the systemwhile matching generation and demand. The demand quantity is the sum
of an inflexible deterministic term (denoted for any time instant t ∈ [0, T ] by D̄(t))
and of a stochastic component n ×UTCL(t), i.e. the product of the population size n
and the average demand profile UTCL(t) of the TCL population.

For simplicity, aQuadratic Programming (QP) formulation in a discrete time setting
is adopted for the UC problem. The central planner disposes of Z generation tech-
nologies (gas, nuclear, wind) and schedules their production and allocates response by
slot of 30 min every day. For any j ∈ {1, . . . , Z} and 	 ∈ {1, . . . , 48}, the quantities
Hj (t	), G j (t	) and R j (t	) denote respectively the commitment, the power production
and the frequency-response fromunit j during the time interval [t	, t	+1] (all expressed
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in MWh). The associated vectors are denoted by H(t	) = [H1(t	), . . . , HZ (t	)],
G(t	) = [G1(t	), . . . ,GZ (t	)] and R(t	) = [R1(t	), . . . , RZ (t	)].

The cost sustained at time t	 by unit j is linear with respect to the commit-
ment Hj (t	) and quadratic with respect to generation G j (tl) and can be expressed
as c1, j H j (t	)GMax

j (t	) + c2, j G j (t	) + c3, j G j (t	)2. In this cost expression, GMax
j

denotes the production limit allocated by each generation technology, c1, j [£/MWh]
is the no-load cost term, whereas c2, j [£/MWh] and c3, j [£/MW2h] are the production
cost coefficients of the generation technology j . The optimization of F0 must satisfy
the following constraints for all 	 ∈ {1, . . . , 48} and j ∈ {1, . . . , Z}:

Z∑

j=1

G j (t	) −
∫ t	+1

t	
(D̄(t) + n UTCL(t))dt = 0, (7.1)

0 ≤ Hj (t	) ≤ 1, (7.2)

R j (t	) − r j Hj (t	)G
max
j (t	) ≤ 0, (7.3)

R j (t	) − s j (Hj (t	)G
max
j (t	) − G j (t	)) ≤ 0, (7.4)

ΔGL − Λ
(
D̄(t	) + n(ŪTCL(t	) − R̄TCL(t	)

)
Δ f max

qss − R̂(t	) ≤ 0, (7.5)

2ΔGLtre f td − t2re f R̂(t	) − 4Δ fre f td Ĥ(	) ≤ 0, (7.6)

q̄(t) − Ĥ(	)R̂(	) ≤ 0, (7.7)

μ r j Hj (t	)G
max
j (t	) − G j (t	) ≤ 0, (7.8)

where (7.1) equals production and aggregated demand (i.e. the system inelastic demand
D̄ and the TCL flexible demand nUTCL ). The quantities R̂ and Ĥ denote the total
reserve and inertia of the system, respectively, and are defined for any 	 ∈ {1, . . . , 48}
as:

R̂(t	) =
Z∑

j=1

R j (t	) + nRTCL(t	),

Ĥ(t	) =
Z∑

j=1

h j Hj (t	)Gmax
j − hLΔGL

f0
.

In (7.2) it is supposed that, for any generation technology j , the capacity of the single
power plant is significantly smaller than the total installed capacity. As a result, it
is reasonable to consider the continuous relaxation of the UC problem by assuming
Hj (t	) ∈ [0, 1].

The amount of response allocated by each generation technology is limited by
the headroom r j Hj (t	)Gmax

j (t	) in (7.3) and by the slope s j linking the FR with the
dispatch level (7.4). Constraints (7.5) to (7.8) deal with frequency response provision
and RTCL (the mean of FR allocated by TCLs). They guarantee secure frequency
deviations following sudden generation loss ΔGL . Inequality (7.5) allocates enough
FR (with delivery time td ) such that the quasi-steady-state frequency remains above
Δ f max

qss , with Λ accounting for the damping effect introduced by the loads [17]. The
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constraint (7.7) imposes themaximum tolerable frequency deviationΔ fnad , following
the formulation and methodology presented in [29] and [31]. The rate of change of
frequency is taken into account in (7.6) where at trc f the frequency deviation remains
above Δ fre f . Constraint (7.8) prevents trivial unrealistic solutions that may arise in
the proposed formulation, such as high values of committed generation Hj (t	) in
correspondence with low (even zero) generation dispatch G j (t	). The reader can refer
to [8] for more details on the UC problem.

The solution F0 of the UC problem can be defined by the following optimization
problem:

F0(UTCL , RTCL ) := min
H ,G,R

48∑

	=1

Z∑

j=1

c1, j H j (t	)G
max
j (t	) + c2, j G j (t	) + c3, j G j (t	)

2,

(7.9)

subject to equations (7.1)-(7.8).
Note that the formulation of the present problem does not fulfill all the assumptions

presented in Sect. 4. In particular, the function F0 is not strictly convex, as instead
supposed in Theorem4.1.(ii).(iii). Nevertheless, the numerical simulations of Sect. 7.2
shows that the proposed approach is still able to achieve convergence.

Regarding the modelling of the individual price-responsive TCLs, each TCL i ∈
{1, . . . , n} is characterized at any time t ∈ [0, T ] by its temperature state Xi,ui

t [◦C]
and by its power consumption control uit [W ]. The thermal dynamic Xi,ui

t of a single
TCL i is given by:

{
dXi,ui

t = − 1
γi

(Xi,ui
t − Xi

OFF + ζi uit )dt + σi dW i
t , for t ∈ [0, T ],

Xi
0,ui

= xi0 ∈ R,
(7.10)

where:

• γi is its thermal time constant [s],
• Xi

OFF is the ambient temperature [◦C],
• ζi is the heat exchange parameter [◦C/W ],
• σi is a positive constant [(◦C)s

1
2 ],

• Wi is a Brownian Motion [s 1
2 ], independent from W j for any j �= i .

For any i ∈ {1, . . . , n}, the set of control Ui is defined by:

Ui := {v : Ω × [0, T ] → R, v(·) is F − prog. measurable,
v(ω) ∈ U and vt (ω) ∈ {0, PON ,i }, for a.a. (t, ω) ∈ [0, T ] × Ω}. (7.11)

The TCLs dynamics in (7.10) have been derived according to [15], with the addition
of the stochastic term σi dW i

t to account for the influence of the environment (open-
ing/closing of the fridge, environment temperature, etc.) on the evolution of the TCL
temperature.
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By combining the objective functions of the systems, the system operator has to
solve the following optimization problem:

(PTCL
1 )

⎧
⎪⎪⎨

⎪⎪⎩

inf
u∈U

J (u)

J (u) := E

[
F0

(
1
n

∑n
i=1 u

i , 1
n

∑n
i=1 ri (u

i , Xi,ui )
)]

+E

[
1
n

∑n
i=1

∫ T
0 fi (uis, X

i,ui
s )ds + γi (X

i,ui

T − X̄ i )2
]
.

(7.12)

The term ri (ui , Xi,ui ) denotes the maximum amount of FR allocated by the TCL i at
time s and can be expressed as:

ri (u
i , Xi,ui )(s) := uis

Xi,ui
s − Xi

min

Xi
max − Xi

min

. (7.13)

The discomfort term of the single TCL i at time s is denoted by fi (uis, X
i,ui
s ), which

takes the following expression:

fi (u
i
s, X

i,ui
s ) := αi (X

i,ui
s − X̄ i )2 + βi ((X

i
min − Xi,ui

s )2+ + (Xi,ui
s − Xi

max)
2+),

(7.14)

where:

• αi (X
i,ui
s − X̄ i )2 is a discomfort term penalizing temperature deviations from some

comfort target X̄ [◦C], considering αi [£/h(◦C)2] as a discomfort term parameter;

• βi ((X
i,ui
s − Xi

min)
2+ + (Xi

max − Xi,ui
s )2+) is a penalization term meant to maintain

the temperature within the interval [Xi
min, X

i
max], considering the cost parameter

βi [£/s(◦C)2] and the maximum function (a)+ = max(0, a);

• γi (X
i,ui

T − X̄i )
2 is a terminal cost term meant to impose soft periodic constraints

by quadratically penalizing the deviations of the final temperature state Xi,ui

T
with respect to the initial temperature value X̄i , considering the cost parameter
γ [£/s(◦C)2].
Note that the control set U is not convex. We can mention a possible relaxation of

the problem by taking the control in the interval [0, PON ,i ].
In order to solve (PTCL

1 ), the modified Problem (PTCL
2 ) is studied:

(PTCL
2 )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf
u∈U

J̃ (u)

J̃ (u) := F0
(
1
n

∑n
i=1 E ui , 1

n

∑n
i=1 E ri (ui , Xi,ui )

)

+E

[
1
n

∑n
i=1

∫ T
0 fi (uis, X

i,ui
s )ds + γi (X

i,ui

T − X̄ i )2
]
.

(7.15)
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7.2 Decentralized Implementation

The Sampled Stochastic Uzawa Algorithm 2 is applied to solve (PTCL
2 ), with m =

317 simulations per iteration. At each iteration k, the lines 4 and 6 of Algorithm 2
correspond to the solution of a deterministic UC problem and of an Hamilton Jacobi
Bellman (HJB) equation, respectively. The time steps Δt = 7.6 s and temperature
steps ΔT = 0.15◦C are chosen for the discretization of the HJB equation. Let us note
that, at line 6, each TCL solves its own local problem on the basis of the received price
signal λk = (pk, ρk):

inf
ui∈Ui

∫ T

0
fi (u

i
s, X

i,ui
s ) + uis p

k
s − ri (u

i , Xi,ui )(s)ρk
s ds, (7.16)

where fi (uis, X
i,ui
s ) is a discomfort term defined in (7.14), uis p

k
s can be interpreted

as consumption cost and ri (ui , Xi,ui )(s)ρk
s as fee awarded for FR provision. This

implementation has a practical sense: eachTCLuses local information and the received
price signals to schedule its power consumption on the time interval [0, T ], with the
objective of minimizing its overall costs. It follows that, with the proposed approach,
it is possible to optimize the total system costs in (PTCL

1 ) in a distributed manner, with
each TCL acting independently and pursuing its own cost minimization.

7.3 Results

In the proposed case study, the considered generation technologies available in the
system are nuclear, combined cycle gas turbines (CCGT), open cycle gas turbines
(OCGT) and wind. The characteristics and parameters of the UC in this simulation
are the same as in [8].

It is assumed that the population of TCLs corresponds to n = 2 × 107 fridges
with built-in freeze compartment that operate in the system according to the pro-
posed price-based control scheme. For any TCL i , we set the consumption parameter
PON ,i = 180W . The values of theTCLdynamic parameters γi and Xi

OFF of (7.10) are
equal to the ones considered in [8]. The initial temperatures of the TCLS are selected
randomly according to a uniform probability distribution, considering temperature
values between −21 ◦C and −14 ◦C. For any TCL i , the parameters of the individual
cost function fi , defined in (7.14), are: αi = 0.2 × 10−4 £/s(◦C)2, βi = 50£/s(◦C)2,
X̄ i = −17.5◦C and Xmax = −14◦C , Xmin = −21◦C . The parameter βi is intention-
ally taken very large to ensure that the TCL temperature remains within the interval
[Xi

max , X
i
min]. Note that the individual problems solved by the TCLs are distinct than

the ones in [8] (different terms and parameters).
Simulations are performed for different volatility values σi := 0, 1, 2 (all the TCLs

have the same volatility in the simulations), with σi defined as in (7.10). The Sampled
Stochastic Uzawa Algorithm is stopped after 75 iterations.

The resulting profiles of total power consumption U = n UTCL and total allocated
response R = nRTCL by the TCLs population are reported in Fig. 4, while the
resulting electricity prices p and response availability prices ρ are shown in Fig. 5. As

123



Applied Mathematics & Optimization (2023) 88 :8 Page 31 of 35 8

Fig. 4 Total power consumption
U and allocated response R
(MW) of the TCLs after 75
algorithm iterations

observed in [8], the total consumptionU is higher when the electricity price p is lower.
Conversely, the total allocated response R is higher when the FR remuneration price
ρ is also higher. This can be observed in particular during the first hours of the day,
between 0 and 6 h. The power consumptionU exhibits smaller oscillations during the
rest of the day, as the internal temperature of the TCLs is maintained within feasible
levels. Although the prices do not seem to be particularly sensitive with respect to
the volatility parameter σ , the power consumption U and frequency response R are
highly correlated to the volatility of the TCLs temperature.

The TCLs impact on system commitment decisions and consequent energy/FR
dispatch levels is also analyzed and displayed in Figs. 6 and 7. In this analysis, the
“flexibility scenario”, obtained with the proposed optimization strategy and consid-
ering flexible price-responsive TCLs, is compared to a “business-as-usual” scenario
where the TCL do not respond to external price signals and do not perform any opti-
mization of their costs. In the “business-as-usual”, we impose RTCL(t) = 0 and we
assume that the TCLs operate exclusively according to their internal temperature Xi,ui .
They switch ON (ui (t) = PON ,i ) when they reach their maximum feasible tempera-
ture Xi

max and they switch back OFF again (ui (t) = 0) when they reach the minimum
temperature Xi

min . In Fig. 6, we can clearly observe that TCL’s flexibility allows to
increase the contribution of wind to the energy balance of the system while decreasing
the contribution of CCGT both in energy and frequency response. In the “business-as-
usual” scenario, without frequency support by the TCL, the optimal solution envisages
a further curtailment of wind output in favor of an increase in CCGT generation, as
wind does not provide any FR. As expected, the influence of the TCL on the system
is larger when the temperature volatility is lower.

A comparison of the system costs (i.e. UC solution) between the “flexibility sce-
nario” (FS) and the “Business-as-usual” (BAU) framework is provided in Table 1. As
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Fig. 5 Electricity price p and
response availability price ρ

(£/MWh) after 75 algorithm
iterations

Fig. 6 Deviation of generation
profiles (MW) from the
“business-as-usual” scenario
during the first hours of the day,
considering three different
values of temperature
volatility σ

expected, costs are lower in the FS, as the flexibility of the TCLs positively supports
system operation, allowing to replace gas generation from OCGT and CCGT plants
with cheaper wind energy. The reduction is higher (about 1.9%) for σ = 0with respect
to the cases with σ = 1 or σ = 2 (about 1.6% and 1.2%, respectively). This confirms
previous indications that TCLs tend to be more flexible when the volatility of their
internal temperature is lower.
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Fig. 7 Deviation of Frequency
Response (MW) allocated by
CCGT technology with respect
to the “business-as-usual”
scenario during the first hours of
the day, considering three
different values of temperature
volatility σ

Table 1 Minimized system costs
in (£)

σ = 0 σ = 1 σ = 2

BAU 2.770 × 107 2.770 × 107 2.772 × 107

FS 2.719 × 107 2.725 × 107 2.740 × 107

8 Conclusions

Randomness and high dimensionality usually make the resolution of an optimization
problem quite difficult. However, in the specific case of convex aggregative control
problems, we have shown that, under independent noise assumptions, one can take
advantage of the high dimension to approximate accurately the original Problem (P1)
by a decentralized Problem (P̂2), whose numerical resolution is more tractable. We
highlight the fact that the approximation error is of order 1

n , where n is the number of
agents. The extension of this approach to stochastic control problems with common
noise or to non convex problems may be challenging but interesting topics for further
work.
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Appendix

Lemma 1 Let H be a Hilbert space and f : H → R be l.s.c. and convex. The function
f has at most quadratic growth if and only if its subgradient has linear growth.

Proof Let the subgradient have linear growth, that is, ‖q‖H ≤ c1(1+‖x‖H )whenever
x ∈ H and q ∈ ∂ f (x). Then f (x) ≤ f (0) + 〈q, x〉H ≤ f (0) + ‖q‖H‖x‖H ≤
c2(1 + ‖x‖2H ), so that f has at most quadratic growth.

Conversely, let f have at most quadratic growth. Since f is convex, one has for all
x ∈ H and q0 ∈ ∂ f (0):

f (x) ≥ f (0) + 〈q0, x〉H ≥ −c3(1 + ‖x‖2H ),

where c3 > 0 depends only on f (0) and q0. Then, using the growth assumption on f
and the inequality above, one gets for all x, y ∈ H and q ∈ ∂ f (x):

c4(1 + ‖y‖2H ) ≥ f (y) ≥ f (x) + 〈q, y − x〉H ≥ −c3(1 + ‖x‖2H ) + 〈q, y − x〉H .

Take y = x + αq, with α ∈ (0, 1), we get

2c4(1 + ‖x‖2H + α2‖q‖2H ) ≥ −c3(1 + ‖x‖2H ) + α‖q‖2H
so that (α−2c4α2)‖q‖2H ≤ (2c4+c3)(1+‖x‖2H ). Takeα = 1/(4c4), thenα−2c4α2 =
1/(8c4) > 0 and then

‖q‖2H ≤ 8c4(2c4 + c3)(1 + α‖x‖2H )

and the conclusion follows. ��
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