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Abstract We investigate whether geomorphic signatures of permafrost are embedded in planforms of river
meanders, and we inquire as to how physical factors unique to permafrost environments are able to affect their
dynamics. By exploiting satellite imagery, a data set of 19 freely‐meandering Arctic rivers is compared against
an independent data set of 23 freely‐meandering streams flowing through temperate and tropical regions.
Suitable dimensionless metrics are defined to characterize morphometric properties of meanders in terms of the
spatio‐temporal distribution of curvature and channel width. Results show the absence of marked contrasts in
the amplitude of bend‐curvature between the two data set. Differently, we find a permafrost signature in the
channel width response, which manifests itself through larger values of the average bend‐width and by peaks of
width fluctuations. Field data suggest that permafrost meanders tend to widen for increasing bend sinuosity,
likely promoting a shift of their morphodynamic regime as final cutoff is approached.

Plain Language Summary One of the most striking impacts of climate warming in the Arctic region
is permafrost thaw. Arctic rivers typically flow through perennially‐frozen floodplains, thus they are
particularly susceptible to ground thawing. In order to understand the response of Arctic rivers to climate
variability, basic knowledge about key differences with respect to non‐permafrost streams is needed. Despite
recent studies which have emphasized the slower yearly movement rates distinguishing Arctic streams, we still
do not understand whether permafrost‐affected rivers show distinctive features in their morphology due to
specific physical mechanisms. By exploiting satellite imagery, we show that permafrost leaves a signature in the
shape of meandering Arctic rivers. Specifically, their average bend‐width increases as sinuosity develops, while
the amplitude of width oscillations is larger than that displayed by their non‐permafrost kin.

1. Introduction
Looking at an Arctic landscape is like looking at a painting. Rivers represent the warp of a canvas strewn with
morphological features intimately tied to the presence of permafrost, as thermokarst lakes. Like their lower
latitude kindred, northern streams manifest themselves across a continuum of patterns ranging from the two poles
of multi‐thread braiding and single‐thread meandering. Here the attention is devoted to the latter family, namely
meandering rivers carving their path through permafrost floodplains.

So far, our understanding of meandering rivers has been mainly restricted to streams located in temperate and
tropical regions (Figure 1a). However, due to the raising awareness of the detrimental effects caused by the
changing climate a growing attention has recently been paid to the behavior of fluvial systems in the Arctic
(Figure 1b). Among the several implications related to atmospheric warming, the alteration of air and water
temperatures are expected to accelerate river banks erosion causing an increasing amount of sediment loaded to
streams (Rowland et al., 2010; Zhang et al., 2022). As a consequence, Arctic communities are threatened by
several combined risks associated with permafrost thaw, such as increased flooding, accelerated bank recession,
and damage of infrastructures (Hjort et al., 2018; Smith et al., 2022). Yet, there is still a poor understanding of the
morphodynamics of Arctic streams, which hinders our comprehension of their potential geomorphic response to
climate variability. In particular, it is still not clear whether there is a morphological signature embedded in the
planform of rivers flowing through permafrost floodplains. But why should we expect some differences between
the dynamics of permafrost and lower latitudes streams?

For decades, the dynamics of meandering streams has been primarily characterized in terms of curvature‐driven
effects on bed and channel planform development. However, meanders tend to display, to a certain degree, spatial
and temporal oscillations of the channel width correlated with channel curvature (Eke, Czapiga, et al., 2014;
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Frascati & Lanzoni, 2013; Luchi et al., 2010; Monegaglia et al., 2019; Seminara, 2006). As firstly observed by
Brice (1975, 1982), the degree of morphological activity of meandering streams depends on the spatial distri-
bution of channel width variations. The so‐called wider‐at‐bends meanders, in which the widest cross‐section is
located close to the bend apex (Monegaglia et al., 2019), are found to be characterized by the highest rate of
dynamism, while more stable configurations are observed in streams displaying a rather irregular width distri-
bution. Wider‐at‐bends patterns appear to be dominated by bank processes (Zolezzi et al., 2012), in which
different rates of migration of the advancing and retreating banks are forcing temporal variations of the channel
width at the bend apex, where the outer retreating bank migrates faster than the inner one. Eventually, riparian
vegetation can colonize the inner bank by encroachment (Asahi et al., 2013; Eke, Parker, & Shimizu, 2014;
Perucca et al., 2007), and lately give rise to new portions of the floodplain (Zen et al., 2016). On the other hand, in‐
channel processes occurring in the central flow region are likely to play an important role in promoting local
widening close to inflection points due to nonlinear curvature‐width interactions (Luchi et al., 2011; Monegaglia
et al., 2019; Zolezzi et al., 2012).

In Arctic environments, the winding movement is affected by further, unique, mechanisms that are strictly
connected with the frozen floodplains through which rivers flow. Three main interrelated factors can be iden-
tified. First, channel migration can be controlled both by thermal and mechanical processes. Thermal processes
lead to pore‐ice melting, which is the primary responsible for the formation of peculiar morphological features
like thermo‐erosional niches or localized bank collapse due to thermal denudation (e.g., Costard et al., 2003;
Douglas et al., 2023; Kanevskiy et al., 2016; Lawson, 1983; Walker & Hudson, 2003). Second, the hydrological
regime, and consequently the sediment supply, is strongly seasonal. Most of the morphological activity occurs
concurrently with ice break‐up in spring and late summer floods (e.g., Scott, 1978; Tananaev & Lotsari, 2022;
Walker et al., 1987; Walvoord & Kurylyk, 2016). Third, vegetation may have a weaker role in providing bank
cohesion. The roots depth is limited by a seasonally‐thawed active layer (e.g., Rowland et al., 2023), thus causing
bank stability be mostly controlled by ice content and water temperature (Chassiot et al., 2020). It is reasonable to
expect that these three major factors can affect planform morphologies, especially in contexts where bank erosion
is primarily controlled by thermal processes (Douglas et al., 2023).

Figure 1. Examples of typical non‐permafrost and permafrost meandering streams with an overview of the investigated study reaches in the Arctic. On the left panels,
Landsat images of meandering rivers: (a) Ucayali River, Perù, 5°40′S 74°18′W; (b) the Arctic Selawik River, Alaska (USA), 66°57′N 149°49′W. (c) Permafrost map
based on Obu et al. (2019), in which the selected permafrost rivers are highlighted. The red dot indicates the Selawik River.
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Existing studies mostly investigated the relationship between permafrost and non‐permafrost rivers in terms of the
absolute pace of lateral migration, and how ice‐bounded streams are expected to respond to climate warming
(Brown et al., 2020; Crampton, 1979; Ielpi et al., 2023; Rowland et al., 2023). The combination of both field
measurements and satellite imagery showed the general tendency of Arctic rivers to migrate slower than non‐
permafrost streams. Thus, these studies essentially identified permafrost streams as a “slowly migrating
version” of lower latitudes rivers. Yet, there is no evidence so far that the pace itself is really informative about the
role of permafrost on the morphodynamic processes determining rivers dynamics. As suggested by standard
meandering theories (e.g., Seminara, 2006; Seminara et al., 2001), if the timescale of planform development,
which is proportional to the product of the erosion rate times the curvature, is properly re‐scaled, even rivers with
lateral migration rates of different order of magnitudes can show the same evolutionary behavior.

Here, the dynamics of permafrost meanders is investigated hypothesizing that their planform should be a
manifestation of the distinctive physical processes they are shaped by. This hypothesis brings with it a basic
question: what does distinguish the planform shape of a river carving its path into perennially‐frozen ground
compared to one which does not? In particular, is there some hallmark in the local values of planform parameters
(width, curvature) of permafrost streams? To answer these questions, we compiled a data set of several permafrost
sinuous rivers in the Arctic, which was later compared with an independent data set of non‐permafrost rivers. As
described in the next section, and more in detail in Supporting Information S1, the riverine active channels were
extracted from multispectral Landsat images using Google Earth Engine over a temporal window of approxi-
mately 40 years. Successively, active channels were analyzed with the process‐based software PyRIS (Mon-
egaglia et al., 2018). The data were then investigated in terms of dimensionless metrics thus making it possible to
rule‐out possible scaling effects and reducing the subjectivity intrinsic in building the data set.

2. Methods
Arctic environments present multiple challenges mostly linked to ice‐cover seasonality and the limited time
window of the morphological activity. Furthermore, permafrost landscapes are characterized by a variety of small
scale and medium scale features ‐ among others, thermokarst lakes, scattered vegetation, bare soil areas, and
mudboils ‐ whose spatial variability affects negatively the detection of fluvial features from medium‐resolution
images, thus implying a greater remote sensing computational effort compared to non‐permafrost environments.
These issues were addressed by considering a set of meandering rivers bounded by frozen floodplains in the
Arctic. Data collection spans over zones of continuous, discontinuous, and sporadic permafrost distribution on the
basis of the map proposed by Obu et al. (2019) (Figure 1c). The extraction of permafrost meandering rivers was
based on multispectral medium‐resolution image filtering and segmentation, combining the cloud computing
capability of Google Earth Engine (GEE) and PyRIS, a process‐based tool for riverine multitemporal planform
analysis (Monegaglia et al., 2018). Rivers were selected on the basis of: (a) their size, wider than approximately
100 m; (b) remote locations, where human disturbance is as far as possible minimized; (c) well‐defined flood-
plains by avoiding confined reaches.

Considering that the typical Arctic climate leads to the absence of significant morphological activity during most
of the year, we selected a time window that spans from May to September of each year to generate a single
representative seasonal image. For each permafrost case, river mask pre‐processing was performed on Landsat
surface reflectance products (Landsat 5 Thematic Mapper, Landsat 7 Enhanced ThematicMapper, Landsat 8 OLI/
TIRS Collection 2). The implemented procedure combines synthetic representative multispectral indexes and
anisotropic image filtering to improve the extraction of riverine active channels. As a result, the data set counts on
19 river reaches of the North American and Russian Arctic regions (see Tables S1–S2 in Supporting Informa-
tion S1), for a total of 54 useable river masks from 1985 to 2021. The non‐permafrost rivers data set contains 23
river reaches derived from a data set summarized in Tables S3–S4 in Supporting Information S1. To validate the
limited spatial resolution of Landsat images, a subset of the narrower permafrost streams were compared with
Sentinel‐2 derived river masks showing a satisfactory agreement (see Figure S4 in Supporting Information S1).

The data set extracted with PyRIS in terms of binary masks include the longitudinal and transversal coordinates of
the channel centerline (both in the UTM reference system and in the local reference system of the mask), the
channel half‐width, the inflection angle, and the channel curvature. Furthermore, the data set includes migration
data, namely the longitudinal and lateral components of the migration vectors along with their magnitude, at least
for the subset of the lumped data set for which the extraction was possible. Further details of the GEE and PyRIS
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methodology are presented in Supporting Information (Texts S1–S2 in Supporting Information S1). The complete
data set extracted with PyRIS can be found in Bonanomi et al. (2024a).

3. Results and Discussion
The evidence of permafrost‐signatures in the morphometric properties of Arctic meanders is first sought by
analyzing the overall spatio‐temporal distribution of channel curvature through the dimensionless parameter ν:

ν =
W
2Rr
, (1)

with Rr a characteristic value of the radius of curvature (here set as twice the radius of curvature at the bend apex),
and W the average channel bend‐width value. For both data set, the dimensionless curvature, as computed with
reference to individual bends (νbend, Figure 2a), displays a magnitude lower than unity, which is comparable with
earlier findings on temperate and tropical rivers (e.g., Lagasse et al., 2004; Luchi et al., 2011; Monegaglia
et al., 2019). When the two subset are analyzed separately, no significant differences are exhibited by the dis-
tributions, with mean values of 0.14 and 0.16 for non‐permafrost and permafrost meanders, respectively.

The lack of a marked contrast in curvature variations can be further assessed by analyzing the extracted channel
centerlines in terms of the widely employed simplified description of meander shape originally proposed by
Kinoshita (1961):

C = 2ν[cos(λms) − CS sin(3λms) − CF cos(3λms)], (2)

where C is the dimensionless curvature, λm the intrinsic meander wavenumber, and s the longitudinal coordinate
measured along the centerline. The coefficients CS and CF account for bend skewing and fattening, respectively,
and are obtained through a ContinuousWavelet Transform of the curvature signal following the method proposed
by Vermeulen et al. (2016). With reference to the corresponding coefficients S and F as defined by Parker
et al. (1983), CS and CF are given by:

Figure 2. Comparison between non‐permafrost and permafrost sinuous streams in terms of bend‐curvature variations.
(a) Relative frequency of the dimensionless bend curvature (νbend). The vertical lines indicate the mean value (ν̄bend) , with cv
the coefficient of variation (i.e., the ratio between the standard deviation and the mean). (b) Distribution of bend skewing (CS)
and fattening (CF) coefficients for non‐permafrost (teal bins) and permafrost (blue bins) rivers, respectively. The red arrow
indicates flow direction. The null hyphothesis is verified by means of a Kolmogorov‐Smirnov test at a significance level
p < 0.05.

Geophysical Research Letters 10.1029/2024GL109410

RAGNO ET AL. 4 of 9

 19448007, 2024, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
109410 by N

iccolo R
agno - U

niversität B
onn , W

iley O
nline L

ibrary on [02/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CS = 3Sθ20, CF = 3Fθ20, (3)

with θ0 the amplitude of the inflection angle.

According with the definitions (Equation 3), a positive (negative) CS corresponds to downstream (upstream)
skewed meanders. Likewise, positive (negative) CF coincides with fat (angular) meanders (Vermeulen
et al., 2016). The results portrayed in Figure 2b show that both families of data almost split in two halves, where
most meanders are found to be weakly skewed and fat. In general, a remarkable consistency is observed between
the permafrost and non‐permafrost distributions of planform coefficients. Figure 2 suggests that the degree of
fattening and skewing is apparently weakly controlled by physical factors that are exclusively characteristics of
Arctic watersheds, at least in the nearly‐pristine meandering rivers with well‐defined floodplains considered
herein. We note that, through the sign of CS, bend skewing can be interpreted as a proxy of the morphodynamic
regime of the reach. Specifically, it has been shown theoretically that upstream (downstream) skewing occurs
when the channel width‐to‐depth ratio is lower (higher) than a resonant value (Seminara et al., 2001; Zolezzi &
Seminara, 2001), the latter being a function of the reach‐averaged characteristics. Resonance defines the threshold
between prevailing downstream or upstream influence of two‐dimensional morphodynamic changes that are
triggered by geometrical disturbances as channel curvature or width oscillations. Besides the first‐order control
that is exerted by in‐stream channel morphodynamics on the planform evolution of river meanders, other factors
may concur to determine the bend shapes, in particular those associated with floodplain heterogeneities (e.g.,
Güneralp & Rhoads, 2011). This notwithstanding, as also found by Guo et al. (2019), our analysis suggests that in
reaches including dozens of bends, upstream (i.e., sub‐resonant) and downstream‐skewed (i.e., super‐resonant)
bends are found with roughly equal occurrence.

Having shown that channel curvature as a standalone indicator does not provide evidence of any significant
permafrost‐fingerprint, the planform geometry is then explored in terms of channel width variations. For this
purpose, the dimensionless parameter δ quantifying the amplitude of width oscillations is defined as:

δ =
Wmax − W
2W

, (4)

withWmax the maximum bend‐width value. In contrast with curvature variations, the permafrost data set shows a
marked bias toward larger values of width oscillations at the bend scale δbend (Figure 3a), with a distribution that is
statistically less skewed (i.e., more symmetric) with respect to the non‐permafrost data set. The mean value passes

Figure 3. Comparison between non‐permafrost and permafrost sinuous streams in terms of width variations. (a) Relative frequency of the magnitude of bend‐width
oscillations (δbend). The vertical lines indicate the mean value ( δ̄bend) , with cv the coefficient of variation. (b) Mean bend‐width (Wbend) normalized with the “low
sinuosity” value (Wbend |0) for permafrost (blue bins) and non‐permafrost (teal bins) rivers. Data are shown for different sinuosity classes. The upper and lower limits of
boxes correspond to the lower and upper quartile data values. For each sinuosity class, the percentage of bends within the whole subset is shown. The null hyphothesis is
verified by means of a Kolmogorov‐Smirnov test at a significance level p < 0.05.
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from 0.17 to 0.21, which means that widest sections are appreciably wider than those of non‐permafrost me-
anders. Nevertheless, values of δbend keep again well‐below unity.

A clear and statistically significant difference between the two data set is also observed by analyzing the bend‐
averaged width (Wbend) as a function of the local sinuosity (i.e., the ratio between the intrinsic bend length and the
Cartesian distance between the two subsequent inflection points, σbend). This is shown in Figure 3b, whereWbend

is scaled by the “quasi‐straight”, “low‐sinuosity” value Wbend|0, here set as the bend‐averaged width corre-
sponding to 1.0 ≤ σbend ≤ 1.1. Indeed, since bend sinuosity tends to increase monotonically in time between
meander formation and the final cutoff (Monegaglia et al., 2019; Seminara et al., 2001), σbend can be used as a
proxy of each bend's evolutionary stage (Monegaglia & Tubino, 2019). While data of non‐permafrost rivers show
a general tendency of the bend‐averaged width to keep nearly constant, permafrost meanders display a gradual
widening as bend elongates. Specifically, for values of σbend typical of “mature meanders”, the median value of
Wbend exhibits a 20% increase with respect to the “young” initial stage.

A possible explanation for the observed difference in channel width response lies in the distinctive mechanisms
driving the planform evolution of permafrost‐affected meanders. The more pronounced width variations
exhibited by Arctic rivers are symptomatic of larger differential migration rates between the eroding and the
accreting bank. Since the period of morphological activity is constrained by seasonality, it is plausible that
permafrost rivers have not enough time before the frozen period to enable the advancing inner bank to keep up
with the retreating outer bank. In non‐permafrost rivers it has been shown how width variations are positively
correlated with the rate of chute cutoffs (Constantine et al., 2010; Zolezzi et al., 2012), with a higher frequency of
wider‐at‐bends meanders when high sediment loads are available (Constantine et al., 2014). This observation
might appear in contradiction with the considerably lower yearly sediment loads measured in Arctic rivers as
compared to those located in lower latitudes (Gordeev, 2006). However, despite the fact that average annual bank
erosion rates are usually smaller in rivers with permafrost (Figure S2 in Supporting Information S1, but see also
Rowland et al. (2023)), previous studies highlighted how most of the sediment transport, and thus of the
morphological activity, is concentrated within few weeks through the year (Walker et al., 1987; Walker &
Hudson, 2003), potentially generating short‐term, rapid and faster erosion rates (Costard et al., 2003; Douglas
et al., 2023; Kanevskiy et al., 2016). Furthermore, bank erosion can be reinforced during spring floods by thaw‐
limited conditions (Douglas et al., 2023), whereby frozen sediment is eroded mainly through ablation (e.g.,
Costard et al., 2003; Kanevskiy et al., 2016; Lawson, 1983; Walker & Hudson, 2003). In contrast, the binding of
sediment due to riparian vegetation is constrained by the resistance of trees and shrub to abrasion and ice‐induced
scours applied by drifting ice blocks (e.g., Ettema, 2008; Turcotte et al., 2011), by the short root depth with respect
to bank height, and by the brief available time for vegetation to develop. All these effects could cause vegetation
to have a lowered effectiveness on bank stability with respect to non‐permafrost streams (Chassiot et al., 2020).
Thus, permafrost streams are inferred to be prone to generating wider‐at‐bends meanders characterized by sig-
nificant width oscillations (Figure S3 in Supporting Information S1).

Finally, the tendency of permafrost meanders to widen as long as they grow (Figure 3b) suggests that permafrost
streams may be characterized by a shift of their morphodynamic regime from sub‐resonant to super‐resonant as
the bends get more sinuous. It is worth noticing that previous theory of meandering (Monegaglia et al., 2019)
showed that super‐resonant meanders are particularly susceptible to width oscillations driven by curvature dy-
namics, which are associated with the formation of mid‐channel bars (Hooke, 1986; Luchi et al., 2010). The net
resulting picture is that permafrost meanders could be particularly inclined to develop transitional morphologies
(Zolezzi et al., 2012), where features of both meandering and braiding patterns coexist along the same reach. How
this transitional tendency may be affected by warmer temperatures is set as a goalposts for future investigations.

4. Conclusions and Perspectives
Recalling the key questions driving the present work, we can conclude that a permafrost signature manifests itself
through channel width adjustments, specifically in the form of a progressive widening of the average bend‐width,
and of larger peaks of width oscillations. Thus, the peculiar physical conditions related with an Arctic envi-
ronment, that is, the different variability of flow and thermal regime, sediment supply, the characteristics of ri-
parian vegetation and the soil properties of the permafrost floodplains, are likely to promote the formation of
wider‐at‐bends meanders characterized by wider cross‐sections as bend sinuosity develops. As highlighted by
various studies on river meandering (e.g., Monegaglia et al., 2019), such increase of the average channel width
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may lead permafrost meanders to become particularly sensitive to width oscillations generated by in‐channel
processes, and therefore to morphodynamic feedbacks between curvature and width oscillations, which are
fundamentally nonlinear. Disentangling the in‐stream and bank‐driven contributions from remotely sensed data
of the channel shape is anything but an easy task. However, satellite observations can be integrated with mor-
phodynamic theories and analytical modeling, where one can take advantage of perturbation techniques by noting
that, even in permafrost rivers, the dimensionless metrics quantifying curvature and width changes are both small
quantities. In practice, this strategy would require extending the bend‐scale theoretical framework of Monegaglia
et al. (2019) to account for either the in‐stream dynamics and the different rates of lateral shift of the channel
banklines, and then coupling it with the recent reach‐scale analysis by Monegaglia and Tubino (2019) that allows
to compute the reach‐averaged hydraulic properties of evolving meandering rivers.
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