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Boresight Slope Optimization of Sub-arrayed Linear

Arrays through the Contiguous Partition Method
Luca Manica, Paolo Rocca, Matteo Pastorino, and Andrea Massa

Abstract

The optimization of the normalized boresight slope of the difference pattern in sub-arrayed linear monopulse antennasis
presented. The knowledge of the independently optimum difference excitations, which provide the maximum normalized boresight
slope, is exploited with an efficient excitation matching technique based on the contiguous partition method. A set of numerical
experiments are provided to assess the effectiveness of theproposed method in reaching the best achievable performances even
though with a small number of sub-arrays.

Index Terms

Monopulse array antennas, Sum and difference patterns, Boresight slope.

I. INTRODUCTION

In the framework of radar applications, a key feature of the antenna systems is the ability to afford a difference patternwith

a null as deep as possible in the boresight direction [1]. As amatter of fact, such a characteristic determines the sensitivity

of the radar in term of angle resolution. In [2], it has been shown how to obtain the maximum angular sensitivity (i.e., the

deepest slope on boresight) in the case of a linear odd amplitude distribution. As regards to monopulse radar [3], Bayliss

distributions are usually used since they allow the synthesis of patterns with a good trade-off between low-sidelobe and narrow

beamwidth. Unfortunately, the synthesized patterns do notpresent the maximum normalized slope for a given array geometry.

Moreover, a complete and dedicated feed network would be required to generate such a difference mode [3][4]. The use of

two independent feed networks for the sum and difference patterns is often unacceptable, because of the complexity of the

HW realization and the arising costs. In order to overcome these drawbacks, several techniques, which share parts of the feed

network to generate the sum and the difference patterns, have been presented in the literature [5]-[10]. More in detail,one set

of excitations (either the sum or the difference coefficients) is a-priori fixed to afford an optimum pattern. The other pattern

is obtained by properly grouping the array elements into sub-arrays and assigning to each sub-array a suitable gain to match

some constraints on the generated beam.

As far as the literature on such a topic is concerned, the approximation of a reference pattern has been considered in [5][10],

wherein the “best compromise” has been computed by means of excitation matching procedures. On the other hand, in [6]-[9]

the optimization of the sidelobe level (SLL) of the difference pattern, for a pre-fixed sum mode, has beenconsidered.

The optimization of other pattern features has been faced in[11] and in [9] where the directivity and the slope on the boresight,

together with a proper control of theSLL, of the difference pattern have been optimized through a differential evolution (DE)

method and a hybrid approach, respectively. In this letter,the contiguous partition method (CPM ) [10] is applied to the

optimization of the boresight slope of the difference pattern. In particular, since theCPM has shown its effectiveness not

only in synthesizing a difference pattern close as much as possible to the optimum one in the Dolph-Chebyshev sense [10],

but also in minimizing theSLL [12] of difference beams, this work is aimed at showing its potentialities and limitations as

well as its flexibility also in this context. Moreover, a comparison with the results in [9] is also reported to shown how the

proposed approach compares with others in the literature.

The paper is organized as follows. In Sect. 2, the problem is mathematically formulated by detailing the synthesis procedure.

In Sect. 3, selected results are reported to assess the validity and versatility of theCPM -based technique. Finally, some

conclusions are drawn (Sect. 4).
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II. MATHEMATICAL FORMULATION

Let us consider a linear array ofM = 2 × N elements uniformly-spaced ofd. Following the monopulse principle, the

sum pattern is given by the setαn, n = ±1, ...,±N of symmetric excitations (αn = α
−n), while anti-symmetric coefficients

(βn = −β
−n) generate on receive the difference beam. Accordingly, sumand difference patterns are obtained by adding and

subtracting the two halves of the antenna aperture [13].

When a sub-arraying technique is adopted to generate the difference mode from the sum one [5], the synthesis problem is recast

as the definition of a suitable grouping, described through the integer indexescn ∈ [1 : Q], n = 1, ..., N , and the sub-array

gainswq, q = 1, ..., Q, to fit some user-defined requirements. In particular, the compromise difference pattern is obtained from

the coefficient set

B = {bn = −b
−n = αnδnqwq; n ∈ [1 : N ] ; q ∈ [1 : Q]} . (1)

whereδnq is the Kronecker delta equal toδnq = 1 if cn = q andδnq = 0 otherwise.

Since the problem at hand is concerned with the maximizationof the boresight slope of the difference pattern and theCPM

is an excitation matching approach aimed at fitting a reference pattern, it is needed to determine the optimal pattern in terms

of slope. Concerning the metric to be used to quantify the boresight slope of an array of discrete elements, thedifference slope

ratio is considered [14]. It is defined asKr = K
K0

, K andK0 being the normalized boresight slope of the actual difference

beam and the maximum value that would be achieved with a line source distribution on the antenna aperture of sizeL/λ,

respectively. In the linear case, it has been shown in [2] that the distribution providing the maximum value ofK0 is a linear

odd (with respect to the center of the antenna aperture) distribution. Accordingly, sinceK0 is known once the array geometry

is given, the synthesis procedure for a discrete element array is aimed at maximizing the value of the normalized boresight

slopeK. Such a value for an anti-symmetric set of excitations is given by [14]

K =

∑N

n=1 {knβn}
√

2
∑N

n=1

∑N

m=1 {βnGnmβm}
(2)

wherekn = 2n−1
2N−1 andGnm = sin[(m−n)kd]

(m−n)kd
− sin[(m+n−1)kd]

(m+n−1)kd
. Accordingly, the first step of the compromise synthesis procedure

is aimed at computing the excitation coefficientsBopt = {bopt
n ; n = ±1, . . . ,±N} that afford a pattern with the maximum

normalized boresight slopeKmax in the case of discrete element arrays. Towards this end, thefunctional (2) is maximized by

means of a standard steepest-descent method according to the procedure described in [14]. Afterward, theCPM is exploited

to find the “best compromise” between sum and difference patterns such that the excitationsB be close as much as possible

to the reference onesBopt. In particular, once the sum mode coefficientsαn, n = 1, ..., N are fixed to provide an optimum

sum pattern (e.g., a Taylor pattern [15]), the following cost function

Ψ (cn, wq) =
1

N

{

N
∑

n=1

|gnq|
2

}

(3)

wheregnq = αn

[

γn −
∑Q

q=1 δnqwq (cn)
]

andγn =
bopt

n

αn
, is minimized with respect to the unknowns(cn, wq), n = 1, ..., N ;

q = 1, ..., Q.

It is worth to notice that, equation (3) mathematically formalizes a minimum variance problem, where each term is related to a

different sub-array. Since the value minimizing the sum of the square distances, for a given set of real values, is the weighted

arithmetic mean, the sub-array weights turn out to be

wq (cn) =

∑N

n=1 (αn)
2
δnqγn

∑N

n=1 (αn)
2
δnq

, q = 1, . . . , Q. (4)

As a consequence, the problem solution recast as the definition of only the sub-array aggregationscn, n = 1, ..., N . With

reference to (3), let us observe that such a solution is a least square partition and Fisher in [16] proved that it is acontiguous
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Fig. 1. Test Case 1 (N = 20, d = 0.7λ, Taylor sum pattern [15] - SLL = −30 dB, n = 6) - Value of the normalized boresight slope versus the number
of sub-arraysQ.

partition 1 (CP ) of the ordered list of theoptimal gains γn. Since the number ofCPs is equal toU =

(

N − 1

Q− 1

)

, the

dimension of the solution space of theCPM considerably reduces compared to that of classical optimization-based approaches

[6]-[9]. In order to sample such a space, theBorder Element Method (BEM ) [10] is used. Starting from a randomly chosen

contiguous partitionC(0) =
{

c
(0)
n ; n = 1, ..., N

}

, the trial solution is updated,C(i) ← C(i+1), taking into account that the

border elements (i.e., those elements whose adjacent valuesγn−1 or/andγn+1 are assigned to a different sub-array) can change

the sub-array membership without violating the condition of contiguous partition. The process is iterated until the termination

criterion, based on the maximum number of iterationsI (i.e., i > I) or on the stationariness of the cost function value (i.e.,
˛

˛

˛
KΨΨ(i−1)

−

PKΨ
j=1 Ψ(j)

˛

˛

˛

Ψ(i) ≤ ηΨ, beingKΨ andηΨ two user-defined control parameters), is verified.

III. NUMERICAL RESULTS

In the first example, an array ofM = 40 elements spaced byd = 0.7 λ is considered. The sum pattern has been fixed to

a Taylor pattern withSLL = −30 dB and n = 6. The reference difference patternBopt, which guarantees the maximum

boresight slope (Kmax = 2.2013) has been computed [14]. Concerning the compromise solution, the number of sub-arrays

used in the non-complete feed network has been varied in the rangeQ ∈ [1, 20]. As far as the initialization of theBEM is

concerned, the initial aggregationC(0) has been chosen with the array elements uniformly distributed among theQ sub-arrays.

The values ofK in correspondence with the solutions obtained by theCPM are shown in Fig. 1. By quantifying the

closeness of the synthesized normalized difference slope on boresight to the optimal valueKmax = 2.2013 with the index

ξK , Kmax−KCPM

Kmax
× 100, it turns out thatξK ≤ 3 when Q ≥ 4 and ξK ≤ 1 for Q ≥ 8. On the other hand, the

simplification of the network architecture whenN
Q

⌋

Q=3
≃ 7 and N

Q

⌋

Q=2
= 10 causes a strong reduction of the performance

(i.e., ξK⌋Q=3 = 4.95 and ξK⌋Q=2 = 10.74).

The effectiveness of theCPM in sampling the solution space is pointed out by the values inTab. I, Iend and T being the

number of cost function evaluations to get the final solutionand the totalCPU -time (on a3.4 GHz PC with2 GB of RAM),

respectively. As a matter of fact, starting from an uniform clustering (i = 0), the trial solution is closer to the reference one

just increasing the number of sub-arrays (Ψ(i)
⌋

Q=3
≃ 2.9 × 10−2, Ψ(i)

⌋

Q=5
≃ 1.2 × 10−2, Ψ(i)

⌋

Q=10
≃ 2.8 × 10−3, and

Ψ(i)
⌋

Q=15
≃ 8.2 × 10−4). Moreover, it should be observed that at most40 iterations are enough to reach the convergence

solutions whose excitations and corresponding patterns are shown in Fig. 2.

The second example deals with a linear array ofN = 20 equally-spaced (d = 0.5λ) elements. The sum excitations have

been set to those of the Dolph-Chebyshev pattern withSLL = −20 dB [17]. Regarding the definition of the reference set

of excitationsBopt, it has been observed [14] that the element coefficients, forthe half-wavelength spacing case, are simply

computed by sampling the continuous line-source distribution in [2] (Fig. 3 - McNamara, 1987). Thus, the maximum value

1 A grouping of array elements is acontiguous partition when given two elementsγi andγn which belong to theq-th sub-array, if another element exists
such that the conditionγi < γj < γn holds true, henceγj has to be assigned to the same sub-array.
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TABLE I

Test Case 1 (N = 20, d = 0.7λ, Taylor sum pattern [15] - SLL = −30 dB, n = 6) - COMPUTATIONAL INDEXES.

U Iend T [sec]

Q = 3 741 3 3.0 × 10−8

Q = 5 82251 31 3.1 × 10−7

Q = 10 211 × 106 33 3.3 × 10−7

Q = 15 1.50 × 1010 9 9.0 × 10−8
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Fig. 2. Test Case 1 (N = 20, d = 0.7λ, Taylor sum pattern [15] - SLL = −30 dB, n = 6) - Plots of the (a) excitation coefficients and of the (b)
corresponding relative power pattern for various values ofQ.
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Fig. 4. Test Case 2 (N = 10, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - Plot of the normalized boresight slope values versus the
number of sub-arraysQ.
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Fig. 5. Test Case 2 (N = 10, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - Plot of the relative power pattern for different values of
Q.

of the boresight slope for an aperture of lengthL/λ = 10 is Kmax = 1.3572 [14]. Also in this case, the estimated values of

K are close (ξK < 1) to the reference one whenQ > 4 (Fig. 4). Such a circumstance is further pointed out in Fig. 3where

the synthesized coefficients get closer and closer to the reference setBopt whenQ→ N .

For completeness, the difference patterns for the experiment considered in Fig. 3 are reported in Fig. 5. Moreover, the sub-array

configurations and the corresponding gains are summarized in Tab. II. As far as the computational issues are concerned, the

dimensions of the solution spaces are equal toU⌋Q=3 = U⌋Q=8 = 36 and U⌋Q=5 = 126. Furthermore, the numbers of

iterations to reach the convergence solutions areIend⌋Q=3 = 4, Iend⌋Q=5 = 1, and Iend⌋Q=8 = 3. As a result, theCPU -time

for the synthesis is lower that10−6 sec.

Finally, let us compare with the result reported in [9] wherethe constrained (sidelobe-wise) optimization of the boresight

slope is considered whenN = 10 andQ = 8. Towards this end, the sub-array weights are now computed solving a Convex

Programming (CP ) problem as in [9] starting from the sub-array configurationobtained by means of theCPM . Figure 6 shows

TABLE II

Test Case 2 (N = 10, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - SUB-ARRAY CONFIGURATIONS AND SUB-ARRAY GAINS.

cn wq

1 1 1 1 2 2 2 3 3 2 0.2328, 0.8925, 1.6912

1 1 2 2 3 3 4 5 5 4 0.1145, 0.3696, 0.7152, 1.0299, 1.6912

1 1 2 2 3 4 6 7 8 5 0.1145, 0.3696, 0.6184, 0.8325, 1.0, 1.1087, 1.4783, 1.9923
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Fig. 6. Test Case 3 (N = 10, Q = 8, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - Plot of the relative power pattern obtained by the
herein proposed hybrid method and that of [9].

TABLE III

Test Case 3 (N = 10, Q = 8, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - PERFORMANCE INDEXES.

K [V/rad] SLL [dB] BW [degree]

CP M 1.35 −8.0 3.95

CP M − CP (a) 1.28 −10.8 3.90

Hybrid SA 0.90 −35.7 5.90

CP M − CP (b) 0.97 −37.5 5.60

the results of the hybrid approach (CPM − CP , [18]) as well as those synthesized by theCPM and in [9]. With reference

to the configuration in Tab. II, theSLL of the solution computed through the hybrid method [CPM − CP (a)] is almost

3 dB below that with theCPM , but the slope at boresight slightly worsen. Successively,more stringent constraints on the

SLL are imposed to fairly compare with the solution of theHybrid SA in [9]. Accordingly, a new reference pattern has been

assumed (namely a Zolotarev pattern withSLL = −39 dB [4]), which presents a high value of the boresight slope for agiven

SLL. In this case, the synthesized aggregation is{cn} = {1 2 3 4 4 4 5 6 7 8}. The corresponding solution [CPM − CP (b)]

outperforms that in [9] for both the boresight slope, the beamwidth (BW ), and theSLL (Tab. III).

Similar conclusions hold true for the case also dealt with in[9] with Q = 6 , thus confirming the effectiveness and versatility

of the CPM -based approach. In particular, Figure 7 and Tab. IV report the radiation patterns obtained with the bareCPM

as well as the hybrid approaches (i.e.,CPM − CP andHybrid SA [9]) and their performance, respectively.
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Fig. 7. Test Case 4 (N = 10, Q = 6, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - Plot of the relative power pattern obtained by the
herein proposed hybrid method and that of [9].
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TABLE IV

Test Case 4 (N = 10, Q = 6, d = λ/2, Dolph-Chebyshev sum pattern [17] - SLL = −20 dB) - PERFORMANCE INDEXES.

K [V/rad] SLL [dB] BW [degree]

CP M 1.35 −8.2 3.94

CP M − CP (a) 1.25 −9.5 3.92

Hybrid SA 1.05 −29.5 5.26

CP M − CP (b) 1.06 −30.0 5.21

IV. CONCLUSIONS

In this paper, the optimization of the normalized boresightslope of the difference pattern of monopulse array antennashas

been carried out by means of theCPM . In particular, the sub-arraying configuration has been taken into account in order to

reduce the complexity of the synthesized antennas and the knowledge of the independently optimum difference excitations,

which provide the maximum normalized boresight slope has been exploited. The numerical experiments have pointed out that a

proper definition of the sub-array configurations and the corresponding gains allows one to obtain good boresight slope values

even though with a limited number of sub-arrays. Constraints on theSLL have been also taken into account through a hybrid

CPM − CP approach in order to compare with other state-of-the-art methods dealing with slope maximization.
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