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Abstract. Exercising Machine Learning (ML) algorithms to detect intrusions is 

nowadays the de-facto standard for data-driven detection tasks. This activity re-

quires the expertise of the researchers, practitioners, or employees of companies 

that also have to gather labeled data to learn and evaluate the model that will then 

be deployed into a specific system. Reducing the expertise and time required to 

craft intrusion detectors is a tough challenge, which in turn will have an enormous 

beneficial impact in the domain. This paper conducts an exploratory study that 

aims at understanding to which extent it is possible to build an intrusion detector 

that is general enough to learn the model once and then be applied to different 

systems with minimal to no effort. Therefore, we recap the issues that may pre-

vent building general detectors and propose software architectures that have the 

potential to overcome them. Then, we perform an experimental evaluation using 

several binary ML classifiers and a total of 16 feature learners on 4 public attack 

datasets. Results show that a model learned on a dataset or a system does not 

generalize well as is to other datasets or systems, showing poor detection perfor-

mance. Instead, building a unique model that is then tailored to a specific dataset 

or system may achieve good classification performance, requiring less data and 

far less expertise from the final user.  

Keywords: Intrusion Detection, General Model, Transferability, Machine Learn-

ing, Feature Learning 

1 Introduction 

“Unfortunately, we cannot claim validity of our results beyond the system/datasets used 

in this study”. This statement appears quite frequently when discussing threats to valid-

ity or when remarking lessons learned from an experimental study. At a first glance, it 

may be seen as a defensive statement, which discourages the reader from applying the 

proposed technique in systems other than those considered in the study. However, gen-

eralizing the results of an experimental study is together one of the main goals and at 

the same time one of the most difficult achievements of those studies.  
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In the security domain, this aspect is extremely relevant as most of the mitigations, 

defenses, and detection mechanisms are tightly tailored to a specific system, domain or 

attack to defend against. More specifically, intrusion detectors are nowadays built [49] 

by feeding Machine Learning (ML) with performance indicators that are being contin-

uously monitored and analyzed to spot anomalous behaviors due to ongoing attacks. 

Those ML algorithms are typically binary classifiers, which aim at distinguishing be-

tween normal and attack-related behavior by processing feature values. This has proven 

to be very effective for detecting a wide variety of attacks, and in the last two decades 

originated a huge amount of research papers and industrial applications [42], [43], [44], 

[45], [46], [47], [48] that have the potential to improve security attributes of ICT sys-

tems. However, researchers and practitioners have to craft intrusion detectors for spe-

cific systems, network interfaces and attack models, to name a few. 

As a result, intrusion detectors that may have excellent detection performance for a 

given system will not have comparable detection performance when applied to different 

systems, network topologies or attack types. On the other hand, the availability of ML 

algorithms that are more robust, accurate and that orchestrate ensembles of ML algo-

rithms themselves (i.e., meta-learners [14], [17]) may offer the opportunity to build 

intrusion detectors that generalize well to (slightly) different systems or domains. 

Therefore, this paper conducts an exploratory study to understand to what extent, 

and under which assumptions, it is possible to craft intrusion detectors that have satis-

fying detection performance and generalize well to different systems. We start by list-

ing the main threats to building general intrusion detectors according to the literature 

on the domain. This paves the way for proposing two software architectures that rely 

either on feature mapping or feature learning and that allow building intrusion detectors 

that are as general as possible, and can potentially be trained once and used in different 

systems with minimal effort. We then conduct an experimental campaign embracing 4 

public attack datasets that have overlapping feature sets and that suit the evaluation of 

both feature mapping and feature learning architectures for intrusion detection. Results 

clearly show that it is not possible to build an intrusion detector that is general enough 

to be trained once and then be applied to other systems or datasets with no effort, 

achieving satisfying detection performance. Instead, it is possible to build a detector to 

be used as a baseline and then tailored to the specific system, requiring minimal exper-

tise and less data with respect to creating a system/specific intrusion detector, but hav-

ing comparable detection performance. 

The paper is structured as follows. Section 2 summarizes related works and the main 

issues in building general intrusion detectors, letting Section 3 propose software archi-

tectures for building general intrusion detectors. Section 4 expands on our experimental 

campaign, whose results are elaborated in Section 5. Section 6 concludes the paper. 

2 On Generalizing Intrusion Detectors 

The traditional flow for deriving intrusion detectors [49] starts from identifying se-

curity problems and collecting data to be used for learning models. Their performance 

is then evaluated and compared against potential competitors, and then the detection 
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system is deployed and put into operation. This is a consolidated flow that has been 

proven effective in many studies [42], [44], [45], [46], [47], [48].  

2.1 Motivation and Novelty of this Study 

However, the intrusion detector created at the end of this process is system-specific, 

meaning that it is meant to be effective only in a specific system, against specific attacks 

and under specific additional assumptions (if any).  

This forces the security specialist to start almost from scratch whenever they have a 

new problem to deal with. Companies or research institutes often already have system 

monitors that can be used to gather the values of performance indicators of a system 

over a period of time; however, the collection process is time-consuming, and labeling 

monitored data has even an higher cost. That is why in recent years there were studies 

[2], [50] aimed at building intrusion detectors that are not system-specific and could 

generalize to other datasets, requiring far less data and knowledge for training, evalu-

ating and deploying the detector. Both studies rely on two datasets with similar feature 

sets, learn the model (supervised in [2], unsupervised in [50]) using one dataset, and 

test their model on the other dataset. Authors agree that a model learned on a dataset 

cannot perform detection in another one with good detection performance.  

In this paper, we are interested in conducting an exploratory study that spans across 

a wider range of software architectures that could potentially build general intrusion 

detectors. According to studies [2], [50], we do not expect models learned on a dataset 

to have excellent detection capabilities on other systems or datasets when used as they 

are. Instead, we explore the extent to which is it possible to tailor an existing model to 

a new dataset or system to perform intrusion detection satisfactorily, and the amount of 

knowledge that is required to perform such tailoring. Should this knowledge be small 

enough, this would require less expertise and save time (i.e., money) as it will allow 

building intrusion detectors starting from a general baseline instead of starting every 

time from scratch [49].  

2.2 Issues in Generalizing Intrusion Detectors 

Here we summarize the obstacles to building a general intrusion detector. 

I1: Domain and Purpose of the System. It is widely acknowledged that modern ICT 

systems can be targeted by attackers [26], [33]. There is significant evidence on the risk 

of cyber-attacks, both in terms of the likelihood of being targeted and the cost and im-

pact of a successful attack. The number of computer security incidents has been steadily 

growing over the past few years: in 2021, SonicWall [26] reported an average of 28 

million cyber-attacks detected daily, with 140 000 of them being novel malware sam-

ples. Starting from 2020, the European Union Agency for Cybersecurity (ENISA) ob-

served a spike in non-malicious incidents, most likely because the COVID-19 pandemic 

became a multiplier for human errors and system misconfigurations, and attributed 

them as the root cause for the majority of security breaches [25].  
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Consequently, virtually any system connected to a public (but also private) network 

should be willing to adopt an intrusion detector to ensure that appropriate security re-

quirements are met. From a theoretical standpoint, a general intrusion detector should 

achieve satisfying detection performance when processing data from any domain, 

which is clearly unfeasible in practice. However, there could be small constraints to be 

applied and that allow building an intrusion detector with a wide (albeit not complete) 

range of applicability. 

I2: Monitoring. Regardless of the purpose, type and domain of a system, it is not pos-

sible to conduct intrusion detection without monitoring specific attributes, areas, com-

ponents or layers of the system itself. Monitoring activities collect the value of perfor-

mance indicators of a system at given time-instants or when specific events occur: ex-

amples include memory usage [19], [20], the throughput of buses [20], and system calls 

[21]. Also, those indicators can be gathered at hardware or low-level [22], system-level 

[20], [21], input/sensor [24], environment [19], or even coding-level [23]. Specifically 

for intrusion detectors, indicators to be monitored are usually related to network usage: 

this reduces the uncertainty regarding where a specific indicator is going to be moni-

tored. Unfortunately, different network monitors may provide different indicators, or 

similar indicators with different measure units or sampling process, which still compli-

cates the data analysis process. 

I3: Feature Extraction and Learning. The baseline upon which intrusion detectors 

learn how to assign the “normal” or “anomaly/attack” binary label to a data point de-

pends on the features, which are defined as “individual measurable properties or char-

acteristics of a phenomenon being observed” [17]. Feature values related to the state of 

the system at a given instant build a data point: collections of data points are typically 

in the form of tabular datasets. Each data point contains values for each feature engi-

neered from monitored system indicators. Additional attributes, called meta-features, 

can be further extracted from the corresponding dataset during the process [18]. Not all 

features help in distinguishing between normal or anomalous data points, whereas some 

of them may just represent noise. The importance of a thorough understanding of the 

underlying data and their features, as well as the produced results, is stressed in [1].  

Learning complex features from the training dataset is of utmost importance, espe-

cially in deep learners that exercise a backbone [16] composed of convolutional and 

pooling layers, and forward its outputs to the connected layers that learn how the value 

of those features is linked to either normal or anomalous behavior due to attacks. 

I4: Availability and Quality of Data. It is of no surprise that the amount [7] and noise 

[9], [13] contained in training data heavily affect the model building and consequently 

the whole detection task. Relying on a small training data set may result in underfitting 

[8] the model: this means that the model was created using poor or insufficient 

knowledge and will not be accurate nor general. In addition, data pre-processing (or the 

ML algorithm itself) should minimize uncertainty due to noisy labels [9] or in the train-

ing set [13]: a noisy item should not have a major impact on the way an ML algorithm 

learns a model, or on the way the model is used to assign labels to novel instances.   
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I5: Learning Process. ML algorithms are trained using a training dataset [3], which 

contains data points and the associated labels describing the binary class of each point. 

When the model learned from the ML algorithm is not general, even small perturbations 

can cause classifiers with high accuracy to produce an incorrect prediction on novel 

samples [4]. Overfitting [8] happens when a classifier learns a model that corresponds 

too closely or exactly to a particular set of data, and may therefore fail to generalize to 

a different, albeit similar, input set.  

Throughout years, ML algorithms and especially deep learners were made more and 

more robust to overfitting through techniques such as pruning [15], early stopping [12], 

batch normalization [5], dropout regularization [6], conjugate gradient [11], and weight 

decay [10]. Altogether, those techniques are necessary to build models which have sat-

isfying generalization capabilities. Unfortunately, they are not sufficient, as “it is very 

difficult to make a detailed characterization of how well a specific hypothesis generated 

by a certain learning algorithm will generalize, in the absence of detailed information 

about the given problem instance” [14]. 

3 Architectures for Building Generalized Intrusion Detectors 

All the issues above constitute severe obstacles in building a generalized Intrusion De-

tector. However, there are efforts that could be made to overcome some of them and 

mitigate the negative impact of other issues. 

3.1 Dealing with Generalization Issues 

The Domain and Purpose (I1) of the system will impact how the intrusion detector 

will work regardless of all the efforts we could put. Intrusions will be at least partially 

related to the target system: in this study, we limit the uncertainty on this aspect by 

assuming that an intrusion detector is a binary classifier, which raises an alert if notices 

something unexpected in the data flow. The data flow of performance indicators comes 

from Monitoring (I2) activities: each system has its own monitoring strategy we do not 

have control about. Whereas it is likely that network indicators will be monitored 

through state of the art (and usually open source) tools such as Wireshark, Nagios, Pro-

metheus, Zabbix, CICFlowMeter or slight variations of them, we cannot reasonably 

assume to know how many and which indicators are going to be monitored for a given 

system. However, we can manage the way we Extract and Learn Features (I3) from 

those data, to provide the intrusion detector with a set of features of constant and pre-

defined amount. This will require exercising a system-dependent activity that processes 

monitored performance indicators (PI) to extract a fixed amount of features to be fed 

into the intrusion detector which is therefore decoupled from the target system. 

This way, it is possible to gather data from different systems or existing datasets, 

merge them and build training and test datasets for intrusion detection that contain far 

more data instances. This helps also with the issue of availability (I4) of data to make 

the intrusion detector learn how to distinguish between normal and attack-related data. 

This learning process (I5) is at this point may even be completely decoupled from the 
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target system(s), providing the system architect with extreme freedom in choosing the 

binary classifier that has the best potential for building an accurate intrusion detector.  

3.2 Feature Mapping and Feature Learning 

Let us explore how we deal with I3 with the aid of Figure 1. On top of the figure we 

find three different sample target systems, each running a monitoring strategy that gath-

ers heterogeneous sets of performance indicators, whose cardinality may be different 

(size a, b, c in the figure). As a result, the intrusion detector cannot assume to know the 

contents and the size of the feature set. This requires crafting a System-Dependent Fea-

ture Processing layer that is in charge of processing performance indicators to build a 

feature set that contains a fixed amount of features and with known content, regardless 

of the size and the contents of the monitored indicators from the target system. We 

foresee two possible software architectures to implement this activity:  

• Feature Mapping (on the left of Figure 1): the first option creates a mapping func-

tion that processes the set of performance indicators and maps them into a pre-

defined set of features of fixed length m {F1, F2, … Fm}. Suppose you want to 

process performance indicators to build a set of 4 features (m=4) {F1=protocol, 

 

Figure 1. Architectures for building a General Intrusion Detector. Regardless of the size of the 

feature set gathered from different systems (on top), exercising either Feature Mapping (on the 

left) or Feature Learning provides the Binary ML classifier (bottom of the figure) in charge of 

detecting intrusions with a feature set that has constant size. 
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F2=packet size, F3=packet length, F4=header flags}. The feature mapper should 

process performance indicators of a system or a dataset to extract those features: 

clearly, the mapper depends on the target system since it has to know details about 

performance indicators and then derive the mapping function to the defined feature 

set.  

• Feature Learning (on the right of Figure 1): differently, we can exercise an addi-

tional layer of ML that does not aim at classifying, but is instead directed to learn 

a fixed amount of features from the heterogeneous sets of performance indicators. 

Learned features will then be provided to the intrusion detector for the second level 

of learning: in other words, we are building a stacking meta-learner [27]. This ap-

proach employs a set of k ML algorithms that are trained using the specific set of 

performance indicators PI of a given system (and thus feature learning is system-

dependent), whose output has a fixed cardinality, regardless of the size of the input 

indicators. The outputs of all the k ML algorithms are then assembled to build a 

feature set of n features {F1, F2, … Fn}. For example, we could employ k = 3 ML 

algorithms: two binary classifiers BC1 and BC2 each of them outputting two prob-

abilities pN (probability of data being normal) and pA (probability of data being 

an attack), and a deep learner DL we use as backbone, extracting the 4 features it 

generates after convolutional and pooling layers. This generates a set of n = 8 fea-

tures {BC1_pN, BC1_pA, BC2_pN, BC2_pA, DL_F1, DL_F2, DL_F3, DL_F4}, 

which has constant size regardless of the input performance indicators.  

3.3 Discussion, Advantages and Disadvantages  

Those two software architectures have their strengths and weaknesses.  

Feature mapping is clearly faster to execute and does not involve training ML algo-

rithms (other than the binary classifier) which may be a time-consuming and also a 

complex task that involves optimizations, sensitivity analyses, and many more. On the 

downside, mapping performance indicators into a set of features may lead to loss of 

information, be very tricky and often unfeasible. For example, the NGIDS [51] dataset 

has only 3 features (process_id, syscall, event_id) as well as ADFANet [51] (packets, 

bytes, duration), whereas the CICIDS17, CICIDS18, AndMal17, and SDN20 share the 

same feature set of 77 network indicators. Finding a feature set that can convey most 

of the information contained in those datasets is not possible at all as there are no over-

lapping indicators between NGDIS and the other datasets. Even excluding NGDIS, 

ADFANet has far less indicators that other datasets and therefore it is very difficult to 

map all datasets into a unique feature set without losing information. It follows that this 

approach should be preferred whenever it is possible to tune the monitoring system to 

extract relevant indicators, while it is less feasible when detecting intrusions in existing 

datasets or in systems with non-customizable monitoring strategies. 

Differently, Feature Learning is a complex process that abstracts from all those prob-

lems, which are masked by the learning process of ML algorithms used for feature 

learning. Moreover, it is a flexible approach since the amount and the type of feature 

learners can be tuned depending on the needs of the user e.g., the computational power 

available for intrusion detection.  
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In the rest of the paper we will build an experimental campaign to quantify the gen-

eralization capabilities of intrusion detectors that use either of those two architectures. 

Since our data baseline can be only composed of existing datasets, we will choose those 

that were built using the same monitoring strategy and tooling and have overlapping 

feature sets to make feature mapping feasible.        

4 Experimental Campaign  

4.1 Datasets Collection  

There is a wide variety of tabular datasets related to intrusion detection, ranging from 

device data in Internet-of-Things (IoT) systems to network data for intrusion detection 

[28], [29]. Those often have heterogeneous feature sets which may not fit our explora-

tory study. Instead, AndMal17 [32], CICIDS17 [31], CICIDS18 [31], and SDN20 [30] 

were collected using the same network monitoring tool and as such fit our analysis. 

Table I summarizes the datasets considered in this study, reporting domain, name, pub-

lication year, number of data points, number of features, types, and percentages of at-

tacks. Those datasets are quite recent (not older than 2017), and they are well-known 

reference datasets in the domain. Regarding the attacks logged in the datasets, 

(Distributed) Denial of Service and scanning attacks (e.g., probing, port scanning, 

reconnaissance) appear in all datasets but AndMal17. Other attacks such as malware 

(AndMal17, SDN20), web attacks (CICIDS17, CICIDS18), botnets (CICIDS18), spam 

(AndMal17) and phising (AndMal17) occur in a few datasets. Overall, these 4 datasets 

provide a view on most of the common attacks in the current threat landscape [33] and 

therefore we believe they provide a representative data baseline to experiment on. Also, 

the reader should notice that different datasets log system behavior under different 

attacks and therefore diversity among datasets is dual: both from the target system and 

the attack model standpoints.  

4.2 Binary Classifiers for Intrusion Detection    

We then choose the candidate binary classifiers for implementing the intrusion detector. 

We do not aim at identifying a complete and broad set of classifiers: instead, we want 

to use those that were widely used in the literature and that were proven to be effective 

for tabular data. We ended up selecting Random Forests (RF, [36]), eXteme Gradient 

Boosting (XGB, [37]) and the deep learner FastAI (FAI, [38]), which has optimizations 

for tabular data. Random Forests are a well-known bagging ensemble of decision trees 

TABLE I.  SELECTED DATASETS: NAME, REFERENCE, RELEASE YEAR, SIZE, NUMBER OF 

FEATURES, NUMBER AND PERCENTAGE OF ATTACKS. 

Dataset Name Ref Year # Data Points Used # Features # Attacks % Attacks 

AndMal17 [32] 2017 100 000 77 4 15.5 

CICIDS17 [31] 2017 500 000 77 5 79.7 

CICIDS18 [31] 2018 200 000 77 8 26.2 

SDN20 [30] 2020 205 167 77 5 66.6 

 



9 

that saw a lot of applicability for intrusion detection in the last decade [34], while 

XGBoost has proven to outperform many classifiers including deep learners [35] for 

tabular data. Lastly, FastAI contains optimizations for processing tabular data and en-

tity embedding of categorical features.  

4.3 ML Algorithms to be Used for Feature Learning 

Feature learners to be used in this study can be essentially any ML algorithm: super-

vised, unsupervised, backbone deep learner, and so on and so forth. Since this is an 

exploratory study, we aim at exercising as many feature learners as possible: then, we 

may filter out those that learn weak features and keep only those that learn the strong 

ones. In our study, each feature learner learns two features, which are the probability of 

being a normal data point, or the probability of being an attack. Summarizing, this study 

employs 16 feature learners, that learn a total of 32 features (2 each):  

• 10 unsupervised ML algorithms from the library PYOD [39], namely: ECOD, 

COPOD, FastABOD, HBOS, MCD, PCA, LOF, CBLOF, Isolation Forests, 

SUOD.  

• 5 supervised ML algorithms from Scikit-Learn [40], different from those used 

for intrusion detection in the previous section: k-th Nearest Neighbors, ADA-

Boost, Naïve Bayes, Logistic Regression, Linear Discriminant Analysis.  

• A deep learner used as backbone for feature learning (FastAI), which as moti-

vated before contains suitable optimizations to learn features from tabular data.  

4.4 Experimental Setup and Methodology 

Experiments are executed on a Dell Precision 5820 Tower with an Intel I9-9920X, 

GPU NVIDIA Quadro RTX6000 with 24GB VRAM, 192GB RAM, and Ubuntu 18.04, 

and they required approximately 6 weeks of 24H execution.  

The Pyod, Scikit-Learn and xgboost python packages contain all the code needed to 

exercise ML algorithms. We created a Python script to load datasets, orchestrate feature 

learners, train and evaluate intrusion detectors. The evaluation will mainly be carried 

out by means of evaluation metrics for binary classification i.e., confusion matrix [41] 

and especially using aggregated metrics as Accuracy and Matthews Correlation Coef-

ficient (MCC). Additionally, we compute the importance that intrusion detectors assign 

to their features: those will help to break down the behavior of different intrusion de-

tectors and provide insights on the way they build their models. We split each of the 

dataset in half (50-50 train-test split) and perform 5 series of experiments, which we 

explain below and partially depict in Figure 2:  

• RegularID: we exercise the ML algorithms Random Forests (RF), XGBoost 

(XGB), and FastAI (FAI) on all datasets separately using the 50-50 train-test 

split and collect metric scores. This is the usual way of training and evaluating 

an intrusion detector, which is entirely system-dependent (i.e., not general). 

• FeatL: we exercise the 16 feature learners on the train portion of each dataset 

but the one used for testing, collecting their outputs. Those build a huge training 

set composed of data instances with homogeneous structure (i.e., each of those 
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data points has 32 feature values), even if they come from different datasets. 

Those are used to train the intrusion detectors RF, XGB, FAI individually. For 

example, when testing the dataset AndMal17, we train the detector using the 

train partition of CICIDS17, CICID18 and SDN20 (i.e., without using 

AndMal17 at all). The resulting model is then used to detect intrusions using the 

test portion of AndMal17, which is completely unknown to the intrusion detec-

tor. This quantifies how well the detector generalizes to a different dataset.  

• FeatL_TL: This is a process similar to FeatL, but it is not completely unrelated 

from the dataset used for testing. Particularly, we partially use the train partition 

of the dataset we want to evaluate to re-train the FeatL detector using transfer 

learning mechanics. This way, the binary ML classifier gets tailored using some 

key information about the system under test and is expected to have better clas-

sification performance than FeatL, at a cost of a less general model. We will use 

either 1000, 5000, 10000, 20000 data points for transfer learning, labeling the 

corresponding detector as FeatL_TL1, FeatL_TL5, FeatL_TL10, FeatL_TL20.  

• Map: it is a process similar to FeatL, but does not execute Feature Learning. 

Instead, it maps directly features from different datasets to the same feature set, 

since the 4 datasets in this study all share the exact same feature set. 

• Map_TL: it is a process similar to FeatL_TL, but does not execute Feature 

Learning. Instead, it maps directly features from different datasets to the same 

feature set, since the 4 datasets in this study all share the exact same feature set. 

 

Figure 2. Experiments for building a RegularID, FeatL and FeatL_TL intrusion detectors, sep-

arating the system-dependent from the general part of those detectors. The Map and Map_TL 

detectors work the same as the FeatL and FeatL_TL, but do not perform feature learning. 
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5 Results and Discussion  

5.1 Regular, Feature Learning and Feature Mapping Intrusion Detectors 

We start analyzing results with the aid of Table II. The table reports the highest MCC 

achieved either by RF, XGB, or FAI for a given intrusion detector: RegularID, FeatL 

Map, FeatL_TL20, Map_TL20. We chose the TL20 variants of the FeatL_TL and 

Map_TL as they were delivering higher MCC than their counterparts which are using 

less data for transfer learning. It turns out evident how RF and XGB are the preferred 

ML algorithm for intrusion detection in most of the cases: they achieve the highest 

MCC on most configurations reported in the table. Also, the AndMal17 dataset is the 

hardest of the four to perform detection on: while for CICIDS17, CICIDS18 and 

SDN20 we have MCC scores over 0.90, for AndMal17 the MCC does not exceed 0.65, 

that corresponds to an accuracy of 92.9 and a Recall of 48.3 (i.e., more than half of the 

attacks, the 51.7%, are not detected by the intrusion detector).  

Going into the detail of the 5 different intrusion detectors we instantiated in this 

study, we can observe that – as expected – RegularID has the highest MCC being spe-

cific of a dataset and with no generalization capabilities. Using only 3 datasets for train-

ing a unique model to be tested on another unknown dataset, either by mapping features 

(Map in Table II) or by feature learning (FeatL in the table) generates MCC scores that 

are far lower than those of RegularID. Map scores are not even comparable with others, 

whereas FeatL scores are better than those of Map but still noticeably lower than Reg-

ularID in all datasets but SDN20, making those general detectors not applicable in a 

real setup due to an excessive amount of False Positives and/or False Negatives. Scores 

of Map_TL20 and FeatL_TL20 are clearly better than those of Map and FeatL, but still 

lower than those of RegularID: additionally, transfer learning limits the generalization 

capabilities of those detectors as it adds another system-specific training component.    

Nevertheless, it is interesting to observe the impact transfer learning has on MCC 

scores. We discuss this aspect with the aid of Figure 3, which also allows remarking 

the following important observations:  

• Adopting transfer learning clearly improves capabilities of intrusion detectors: 

Map_TL1 has better MCC than Map, and the MCC grows the more data is used 

for transfer learning (i.e., Map_TL20 has better MCC than Map_TL10, which 

is better than Map_TL5, which outperforms Map_TL1). The same applies to 

FeatL and FeatL_TL.  

TABLE II.  MCC SCORES OF THE BEST ML ALGORITHM (FAI, RF, XGB) USED AS REGULAR ID, 
FEATL, MAP, FEATL_TL20, MAP_TL20. 

Dataset Map Map_TL20 FeatL FeatL_TL20 RegularID 

AndMal17 0.023 XGB 0.251 XGB 0.313 FAI 0.453 XGB 0.647 RF 

CICIDS17 0.626 XGB 0.993 XGB 0.975 FAI 0.987 RF 0.999 XGB 

CICIDS18 0.260 FAI 0.853 XGB 0.890 RF 0.908 RF 0.928 XGB 

SDN20 0.180 XGB 0.999 XGB 0.999 RF 0.999 RF 1.000 RF 

Average MCC 0.272  0.774  0.794  0.837  0.893  
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• Transfer learning has an outstanding impact when using detectors relying on 

feature mapping. Map detectors have very poor scores, but improve dramati-

cally even when only 1000 data points are used for transfer learning 

(Map_TL1). This can be observed in Figure 3a and 3b looking at the two series 

of bars on the bottom of each bar chart.  

• The FeatL detectors have overall better performance than Map and therefore 

their performance improvement with transfer learning is less evident than those 

of Map. Nevertheless, applying transfer learning brings FeatL_TL20 to achieve 

MCC scores that are very similar to those of RegularID scores. This is an im-

portant results because it shows how it is possible to achieve good detection 

performance tailoring an existing model rather than crafting an intrusion detec-

tion from scratch, saving key amount of time and thus money. 

5.2 On the Contribution of Feature Learners  

FeatL has better scores than Map: this is due to the feature learners, which are trained 

using a small portion of the novel system under test to extract features. We explain the 

contribution each feature learner has on the overall detection process with the aid of 

Table III, which presents the importance of feature learners for FeatL and FeatL_TL20 

using either RF or XGB on the CICIDS18 dataset. Importance in each row of the table 

sum up to 1, while each score ranges between 0 and 1: the higher, the most relevant 

features learned from a feature learner are for training the intrusion detector. Addition-

ally, we report the difference in the importance of features between the FeatL_TL20 

and the FeatL, which does not apply transfer learning. The importance using XGB or 

RF follow a similar path: the FeatL detector learns a model that is almost entirely built 

  

Figure 3a (left) and 3b (right). MCC scores for each of the four datasets (one bar series 

each). Each bar chart has 11 series of bars, one for each intrusion detector. Scores using XGB 

are on the left (Figure 3a), while scores using RF are on the right (Figure 3b). 
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over features learned by KNN, which has 0.920 and 0.911 importance respectively for 

XGB and RF. Other feature learners have marginal to negligible contribution, making 

the FeatL detectors very dependent on the behavior of KNN features.  

Differently, the FeatL_TL20 models obtained using 20 000 data points of CICIDS18 

(the system under test for building this table) for transfer learning do not rely entirely 

on KNN to detect intrusions. The importance of KNN features decreases a lot, favoring 

FAI, ADABoost and LDA features. Other feature learners, especially those unsuper-

vised, still have very marginal contribution to the overall detection process.  

Overall, it is safe to say that transfer learning makes XGB and RF learn a model that 

does not heavily depends on a single feature learner, but instead combines the output 

of different feature learners: this results in a more general model.    

6 Conclusions and Future Works 

In this study we proposed and experimentally evaluated two software architectures for 

building intrusion detectors that have good generalization capabilities. Briefly, we 

aimed at learning the model once and then apply it to as many datasets the user wants 

with minimal effort, still achieving satisfying detection performance. 

Our experimental results are not fully encouraging: they tell us that no matter the 

intrusion detector, it will not generalize well to other datasets as is. Instead, it will be 

outperformed by system-specific intrusion detectors, confirming the studies [2], [50]. 

A non-zero amount of knowledge about the system under test is indeed required to 

make intrusion detectors able to detect intrusions in other datasets with satisfactory 

performance. Knowing only a few thousands of data points of the system under test 

allowed intrusion detectors reaching satisfying detection scores in our experiments, 

without outperforming traditional system-specific intrusion detectors. It follows that 

tailoring a baseline model through transfer learning has the potential to obtain satisfac-

torily (albeit not optimal) detection performance, requiring less data and minimal ex-

pertise from the user standpoint, which does not have to train multiple ML algorithms 

nor running complex performance evaluations.  

TABLE III.  IMPORTANCE OF FEATURE LEARNERS IN BUILDING THE MODEL FOR FEATL AND 

FEATL_TL20 USING EITHER XGB OR RF AS ML ALGORITHMS FOR THE CICIDS18 DATASET. 
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XGB 

FeatL .001 .030 .003 .002 .003 .001 .002 .003 .002 .002 .003 .002 .000 .920 .020 .003 

FeatL_TL20 .009 .012 .003 .001 .013 .007 .001 .005 .005 .007 .033 .088 .000 .455 .221 .139 

Diff .007 -.018 .000 -.002 .011 .005 -.002 .002 .004 .005 .030 .086 .000 -.465 .201 .136 

RF 

FeatL .001 .032 .004 .003 .003 .002 .002 .003 .002 .002 .003 .002 .000 .911 .021 .004 

FeatL_TL20 .010 .006 .004 .002 .011 .011 .001 .007 .007 .008 .027 .107 .000 .352 .327 .108 

Diff .009 -.026 .000 -.001 .008 .009 -.001 .004 .006 .006 .024 .105 .000 -.559 .306 .105 
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Particularly, pre-processing datasets through different ML algorithms deployed as 

feature learners clearly builds an intrusion detector that potentially has generalization 

capabilities. Therefore, as future works we want to elaborate more on those detectors 

with respect to three dimensions of analysis, namely: i) carefully selecting feature learn-

ers to be used, ii) gathering training data from more datasets, hoping to build a detector 

which is more solid and as such has better generalization capabilities, and iii) perform-

ing sensitivity analyses aiming at clearly identifying the minimum amount of data 

which we have to gather from the system under test to train feature learners and tailor 

the detector to achieve satisfactory detection performance. 
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