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Abstract

Several approaches have been proposed to model biolog&tahss by
means of the formal techniques and tools available in coenmgience. To
mention just a few of them, some representations are irpiyePetri Nets
theory, and some other by stochastic processes. A mosttrappnoach
consists in interpreting the living entities as terms ofqass calculi where
the behavior of the represented systems can be inferredflyiag syntax-
driven rules.

A comprehensive picture of the state of the art of the processuli
approach to biological modeling is still missing. This pagees in the di-
rection of providing such a picture by presenting a compaaurvey of the
process calculi that have been used and proposed to degwibehavior of
living entities.

1 Introduction

The recent progress of biology is rapidly producing a hugalmer of experimen-
tal results and it is becoming impossible to coherently wigathem using only
human power. Abstract models to reason about biologicdaksys is becoming
an indispensable conceptual and computational tool fdogists, so calling for
computer science.

The biological approach clarifies components, for exampdems and cells.
It also gives graphical and very readable representatibtieednteractions among



the above entities. However, all these aspects are far feangldormally defined.

Formal foundations of descriptions are mandatory requérgmfor enhancing the
understanding of complex biological systems and for autmrsamulation and

analysis. Computer science modeling is specifically desigim meet the above
requirements, but it heavily uses mathematical symbolts is not easy to read
for a neophyte. Therefore we need an approach that hidesrastathnical details
as possible from users.

A further aspect to consider is the abstraction level tha& wants to imple-
ment. Biology tries to answer a wide set of questions thatd@stibuted on an
(imaginary) scale. For example, classical genetic amalyses theyeneas ele-
mentary unit, ignoring (i.e. abstracting from) the bioclemhproperties of its ele-
ments. Abstraction is a powerful technique in computemsm@ewhere researchers
often face undecidable problems. An abstraction has taioage essential prop-
erties of the phenomenon under consideration, and, at the 8me, it has to be
computable, to allow automatic analysis, and extensibl@etrmit the addition of
further details [65].

The models and the computational tools developed over ghegéars focused
on molecular biology. Research in bioinformatics starteminf the observation
that biological molecules in real systems patrticipate inyv@mplex networks,
like regulatory networks for gene expression, intracaliuhetabolic networks and
intra/inter-cellular communication networks. Due to theldtively) recent studies
in molecular biology and the omics disciplines, there is ezuaate description of
the fundamental components of the living systems, espgcoifproteins and cells,
but there is not a complete knowledge on how these individoaiponents are
related and interact to form complex systems.

To cope with the complexity of these systems various contiou@ approaches
have been developed and used. Among them we mention thevioj@nes:

e biochemical kinetic modelsee, e.qg., [3, 77, 71));

e generalized models of regulatigsee, e.g, [74, 1, 2, 20));
e functional object-oriented databasésee, e.g., [76, 4, 38];
e integrated frameworks with GUkee, e.g., [75, 70];

e exchange languagdsee, e.g., [39, 23]).

In recent times, a paradigmatic shift occurred in biologgs&archers started
trying to build system visions rather than component visj@and the focus is now
rapidly moving from structure to function. This processde#o the so-calle@ys-
tems Biology40] that is mostly interested in the behavior of cellulangesses and
in the description of the interactions among component&n$®m a computer
science point of view, the methods and the techniques thad dme best suited
to face the challenge of systems biology are those relatédetalescription and
simulation of interacting distributed systems.

Indeed, formal methods have gained increasing attentiostate examples
are those that use the graphical formalisniPefri Nets[67]. A Petri Net is an au-
tomaton whose states are sets of distributed componentsanéition may trans-
form some elements of a state, and more than one transitiorbeallowed to



occur at the same time. Thanks to their intuitive graphiegkesentations, some
variants of Petri Nets have been successfully developedottehbiological sys-
tems (see, e.g., [27, 30, 63, 55, 34, 42]). More sophisticatedels like self-
modified Petri Nets [34], Hybrid Petri Nets [46], Stochagtativity Networks [49]
and MetaNets [42] have been used, too. Recent studies asd®Gtaechartsand
Live Sequence Char{86, 22, 37] for biological modeling. Both formalisms are
visual languages originating from the theory of reactivetesns and software engi-
neering. Moreover, Live Sequence Charts allow, throughegip methodology,
the automated analysis of the biological data they reptd2&h Finally, mem-
brane systempb4] (also called FSystemsare computational models based upon
the notion ofmembranestructure. The model is founded on the observation that
complex biological systems are composed by independenpuating processes
separated by and communicating through membranes. Meewhdatimit regions
and compris@bjectsandevolution rules A computation is obtained starting from
an initial configuration of membrane and objects and thefyapmpevolution rules.
The research in this area is currently very active and a cehgorsive bibliography
includes hundreds of papers [51], some of them aiming atrfgqnéormal prop-
erties (e.g., [53, 52]) and some of them working on systermabgy applications
(e.g., [24, 56)).

The above modeling examples witness that the use of formélade for sys-
tems biology is actually promising, but the conceptualdaaed are either limited
in compositionality or in their ability to handle quantitet data. Another approach
to biological modeling is based on process calculi [47, BL,69]. Processes are
the basic units of these languages: they have internalssémte interaction ca-
pabilities. When a process receives an input its behavibased on its internal
state and on the content of the input. A direct consequendat@faction can
be the modification of the internal state and of the inteoactiapabilities of the
interacting processes. In the setting of process calouthpdex entities, like pro-
tein complexes, can be described hierarchically, and tlag/s either top/down
or bottom/up analysis. Moreover, process calculi typjcalbme equipped with
well-assessed equivalence relations which could be paleidls for biology. For
example, the equivalence of the same functional unit irecgffit organisms could
be used as a measure of behavioral and structural similarity

The process calculi approach to the formal modeling of Ilgiclal systems
has gained more and more attention over the last few yeats;parly since the
publication on Nature of the landmark paper by Regev and i8h§b]. A com-
prehensive picture of the state of the art, however, ismaidking. This paper goes
in the direction of providing such a picture and presentsraesuof the process
calculi that have been proposed to describe the behaviaring lentities. We will
also point out the available tools based on the calculi weries

This survey paper is mainly intended for computer scientigio are interested
in understanding how formal techniques from process datleabry can be used
to model biological systems. The reader who is not familigherocess calculi
descriptions of concurrent tasks can find in Sect. 2 a shdrhagh-level presenta-
tion that outlines the main features of the process cal@gr@ach to concurrency
and provides references to basic literature in the field.

The rest of the paper is organized as follows. Sect. 3 seteme diological
notions, providing a common background that allows the amspn of the pro-
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posed calculi. Sect. 4 introduces the basic abstractiowipte that relates biology
and process calculi. Sect. 5 presents a particular biabgitenomenon relative
to the immune system. Such phenomenon is used as runningpkexantect. 6
to comment on various calculi for biology which have beenpps®ed in the lit-
erature. In particular, we deal withiochemical stochastia-calculus[66, 62],
BioAmbientg64], Brane calculi[9], CCS-R[15], Beta-binderg61], PEPA[31]
and k-calculus[16]. The primitives of the above calculi and languages ai& a
lyzed by referring to the running example. Sect. 7 conclublegpresentation with
some final remarks on the set of calculi considered.

2 Overview on process calculi

Starting from the forerunner CCS, the ‘Calculus of Commatiing Systems’ [47],
process calculi have been defined with the primary goal ofigiag formal speci-
fications of concurrent processes, namely of computatientiies executing their
tasks in parallel and able to synchronize over certain kofidgtivities. The model
of a system is typically given as a program or a term that defihe possible be-
haviors of the various components of the system. Calculiter equipped with
syntax-driven rules, the so-callegerational semanticfs8]. These rules, that can
automatically allow the inference of the possible futuréhef system under analy-
sis. For instance, they can specify that a certain proPesgolves into procesg),
written P — Q.

The basic entities of process calculi aionsandco-actiongcomplementary
actions). In the most basic view, like e.g. in CCS, an act®rden as an input
or an output over a channel. Input is complementary to oudymalt vice-versa.
Actions and co-actions can also transmit/receive namestbgechannel (e.g. the
IP address of the Internet) on which input and output are csgp to take place.
This is, indeed, the underlying assumption taken insthealculus [48]. As it will
be clear in the rest of the paper, the actual interpretati@omplementarity varies
from one calculus to the other. The relevant fact to be pdimtet here is that
complementary actions are those that parallel processeparform together to
synchronize their (otherwise) independent behaviors.

A process is an elaboration unit that evolves by performictgpas @, b, .. .)
and co-actions (e.qa, b, ...). To constraint the temporal order of the concurrent
activities there is a limited set of operators.

Sequential ordering is rendered via threfix operatorwritten as an infix dot.
For instance the term. @. P denotes a process that may execute the activitiyen
a, and then all the activities modeled By

Two processe® and( that run in parallel are represented by the ipi@callel
compositioroperator |’ as in P | Q. As anticipated, processésand() can either
evolve independently or synchronize over complementatipra&  For instance,
the operational semantics @f P | a. ) allows the inference of the following syn-
chronizing transition:

a.Pla@Q— P|Q.

The restriction operator is essential for the representation of encapsulat
In basic calculi like CCS, this operator, writt¢na), is only meant to limit the



visibility of actions. For instance, is not possible to infe
a.P| (va)(a.QQ) — P | (va)Q

because is a private resource of the right-hand process of the ghiaimposition
and the left-hand process cannot interact on it. This faatantees, e.g., that the
two processes? and S in (va)(R | S) have the opportunity to interact over a
shared resource without any interference by the external world.

In more sophisticated calculi, as for instance in #healculus, the restriction
operator ensures a relevant gain in expressivenessr-tadculus allows channel
names to be sent in interactions and hence the representdtioobile (i.e. dy-
namically changing) systems, because receiving new naraagsyacquiring new
interaction capabilities. This is what happens in biolagicetworks, where the
connections between nodes, and so the structure of the rketvem change at any
time.

In all the calculi for mobility, restricted names cannot bensmission media
outside the scope of their definition implemented by theriatigtn operator. For
example, no interaction over can occur betwee® and@ or R in the process
P | (va(Q | R)), while @ andR can use their provate resour¢éo communicate.
Restricted names can however be used as transmitted dataren@dtransmitted,
become private resources shared by the sender and thearefteveafter we say
public (private) names or channels to mean not restrictestricted) names or
channels). Suppose for instance that the restricted rahzs been sent frory
to P in the above example. This is semantically rendered by afioation of the
scope(i.e. the visibility) of the restricted name, yielding

Plva(Q|R) — (va)(P' | Q"| R).

The peculiarity of the restriction operator of mobile pregealculi has been ex-
tensively used in modeling biological behaviors. Sidzend R and thenP’, Q’
and R can privately interact ovet, if P, ), P’ are taken to represent molecules,
then the processes: (@ | R) andva (P’ | Q' | R) can be seen as the complexes
of respectively two and three molecules.

We recalled only the fundamental operators which are comimwearious pro-
cess calculi. Each calculus then adopts some specific opgi@td has a specific
view about which activities must be considered complemgntkor instance in
CSP-like calculi (e.g. PEPA[31]) the interaction is notilied to be binary and the
parallel composition is usually equipped with the set ofrated names over which
interaction can occur. Another common feature of proceksilcas that their op-
erational semantics allows the interpretation of processmbiors as graphs, called
transition systemsThe nodes of the graph represent processes, and thereris an a
between the two nodeB and() if P evolves intoQ). For instance the immediate
futures ofa. P, | a. P» | @. P53 is drawn as

/ I/a(Pl |P2 |E.P3)
va (a. P | a. P |a. Pg)\

va (a. P | Py | P3)



The depicted transitions highlight that each of the proegsasthe left-hand and the
right-hand sides can communicate with?,. The evolution of the system depends
upon the temporal order of the interaction. Since no assomgan be made on
this, both transitions are reported in the graph, whichterpreted as a model of
all the possible evolutions.

Process calculi are typically very simple, yet containtadl ingredients for the
description of concurrent systems in termswbfat they can doather than ofvhat
they are

Two main properties of process calculi are worth mentionkigst, the mean-
ing (behavior) of a complex system is expressed in terms @fntleaning of its
components. A model can be designed following a bottom-ygrcaeh: one de-
fines the basic operations that a system can perform, thewhbke behavior is
obtained by composition of these basic building blocks. sTiroperty is called
compositionality Second, the mathematical rules defining the operatiomaase
tics of process calculi allow both the automatic generatibiine transition system
of a given process by parsing the syntactic structure of tbegss itself and the
simulation of a run of the system. So process calculi areifsgaion languages
that can be directly implemented and executed.

3 A few biological notions

Each of the languages that will be dealt with in the rest of thirvey was adapted
or developed to study a particular aspect, i.e. abstraqiedfic set of features, of
a biological system. In this section, we describe some bio# notions in terms

of a set of abstract ‘biological primitives’ that allow thelative comparison of the
considered calculi.

3.1 Biochemical interactions

Living entities are constantly crossed by a flow of matter anergy. In this con-
tinuous random flow reactions take place whenever thereuffigient quantity of
kinetic energy [73]. For instance, a reaction between nubdscA and B in Fig-

Figure 1. Molecular interaction

ure 1 may occur if A and B are close enough and correctly aaentormally the
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frequency of reactions is quite low. By need, enzymes [12] oréent molecules
in the right way favoring and speeding up the reaction.

Referring to the example in Figure 1, we observe that two oubés can bind
if they possess complementary zones, catlethains and they have the right ori-
entation (or, alternatively, the complementary domairswasible or available to
each other).

The above conditions, however, are not enough. A domain oblacule can
be eitheractiveor inactive An inactive domain can never bind, not even when a
complementary domain with the right orientation is closét.ton order to acti-
vate a domain, a molecule needs to be involved in some readto example in
a phosphorylation (binding of a phosphate group to the prpté\ctive domains
may further be free or bound. So domains are classified depgod three pos-
sible states: active bound, active free, and inactive. reéi@ushows a schematic

O Inactive

@ Active free A A A
@ Active bound 1 2 3 1 2 3 1 2 3
. : ;
i j C
C

Figure 2: Interfaces, sites, and states

representation. Biological entities (namdd B, andC in the picture) possess an
interface(the rounded box with colored hooks). Each interfacerhas0 sites (the
hooks sticking out the rounded box), and each of them can baerout of three
states (the color of the hook) as said above. A site is anigidie structure that
can only join to a complementary site. In the scenario drawfigure 2,4 cannot
bind to B. In fact, site2 and: are complementary, just 8&andj, but 2 and 3 are
both inactive. On the contraryl andC' can bind together: sitesand2, andj and

3 are pairwise complementary, and all of them are active free.

An interesting point is relative to the possibility of dyn@ally changing the
number of sites available on a given interface or their stalie general, might be
necessary to be able to add sites (see the running exampdetins$.

Finally, an important aspect of biological entities is thelhape Indeed two
molecules can interact if they can get in touch accommogdakinir shapes. Con-
sider for instance Figure 3(a) where entiti¢sand B can interact through sites 1
and 2. The interaction can change the involved electrostattes. It can modify
the shape of the new complex, and eventually make site 3adlaifor interaction
(Figure 3(b)).

Concluding, an interaction site can be inactive either bsea chemical re-
action is needed to activate it, or because it is hidden bythhee-dimensional
structure (shape) of the hosting component.
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(a) (b)

Figure 3: Shapes

3.2 Compartments

The same biochemical reaction in a different spatial cdntexy have different
outcomes. For instance, the bacterium Escherichia cap(ilives in the lower
intestines of mammals performing useful functions invadythe digestion of its
host. If E.coli escapes the intestinal gap through a pertorge.g. a hole from
an ulcer), and enters the abdomen, it can cause an infecitad cperitonitis’,
fatal without immediate treatment. This example shows that important for
a modeling language to allow the modeler to easily deal witmgartments and
with their possible modifications. These latest phenomerabe classified as
endocytosis, exocytosis, break and merge.

e Endocytosis and exocytosi&ndocytosis consists in absorbing substances
from the external environment. Endocytosis can be furthstinguished
in pinocytosis(assumption of liquids: no particle is absorbed exceptdhos
contained in the liquid)phagocytosigabsorption of another component of
comparable size), angeneralized endocytosi{gbsorption of an arbitrary
number of smaller components). Exocytosis is the opposiendocytosis,
i.e. the expulsion of sub-components.

e Break and mergeBreak is used to model phenomena that imply a change in
the boundary of a component. We consitysis, mitosisandmeiosis Lysis
is the disintegration of a cell following a damage of its pl@smembrane.
It makes free the biological material inside the membranédodit, typical
of viruses, consists in the exact duplication of the cell.iddes, typical of
reproductive cells, is the separation of the cell and of thetained genetic
material and yields two new cells. The phenomenon oppositerdak is
calledmerge

Figure 4 summarizes the four primitives which we define felfay the inspiration
gained by the above observations. We call those primitivé® EENDO, BREAK
and MERGE, respectively.

Finally, when dealing with the interaction of moleculeshiit cells, the com-
partments might be thought of as the cellular compartmentiseomolecules. For
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Figure 4: Compartment primitives
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example, one important event that occurs within cells isnttozement of small
molecules across compartment membranes. Hence, we alsmleothe opera-
tions representinginiport (the movement of one molecule across a membrane),
symport(the simultaneous movement of two molecules across a memlimahe
same direction) andntiport (the simultaneous movement of two molecules across
a membrane in opposite directions).

3.3 Further aspects

We now briefly sketch a set of interesting features of biowwwksr processes which
are independent on the concept of biochemical interactimaiscompartment and
hence have not been presented yet. More details about tresegpability of these
features in process calculi will be given later, when comtingnon the various

approaches used to face, respectively: reversibilitydhag of quantitative infor-

mation; and equivalence relations.

Reversbility

In nature many reactions are reversible. Reversibilityrimarily governed by
the kind of bonds that one wants to destroy and the availai#egg. Consider for
instance the case when two proteins A and B are competingtbtdiC (Figure 5).
The system may evolve in three distinct ways. The case whiénfdand B bind to
C gives raise to an unstable complex: sooner or later A or Bledle it. If A and
B are, respectively, the activator and the inhibitor of Gj #me global system is a
molecular switch, then it is fundamental to be able to revéne unstable complex.

Reversibility is a basic regulation mechanism that, fomepke, prevents dead-
locks. It can be specified in process calculi either in aniexplay, by means of
ad hocbehaviors, or implicitly, by means of backtracking meckars.
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Figure 5: Reversible complexation

Quantitative information

The ability of reasoning about quantitative informatiorayd a crucial role in
biomolecular processes. For example, in order to corretglcribe a reaction
it is necessary to know the exact quantity of reactants waglthe affinity of the
sites available for bonds, and the amount of energy whictbeamsed. Represent-
ing and handling quantitative parameters typically resimtboth a formal and an
implementation overhead. Nonetheless, this is a crucial ffor building useful
models of biological systems.

Equivalence

Two programs are usually considered equivalent in comaience if they exhibit
the same behavior w.r.t. some chosen notion of observaiifferent definitions
of observation lead to distinct equivalence relations. désired property is then
that two equivalent components can be safely exchangedhvethystem without
altering its overall behavior (if this property holds theue@lence turns out to be
a congruence). An analogous situation is found in biologp.tdJa certain equiv-
alence relation, eukaryote cells and prokaryote cells triighseen as belonging
to the same class of organisms. In order to relate distimetskof lymphocytes it
would be surely necessary a finer grained notion of equicalen

As far as systems described by terms of process calculi axeeowed, equiv-
alence relations are fundamental tools for both analysisvanification. It could
well be the case that the techniques developed in concyrteory may help in
the formalization and the understanding of biomoleculatiens. Further investi-
gation is needed to relate the biological notions of reteti¢e.g., homology) and
the computer science behavioral equivalences.
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4 Process calculi abstraction principle

Abstractionis the mechanism of withdrawing information content fromrel-
edge domain in order to focus on the facts that seem mostrgléer a particular
purpose. Computer science deeply leans upon abstractaringtance, comput-
ers work by simply checking presence or absence of electsighals at physical
level. With a similar capability it becomes even difficultdo simple operations
like

var = var + 3 (1)

that increments the value of a variabie-. Hence suitable abstractions are needed
to make it easy give instructions to computers ans abstretan be arranged hi-
erarchically (firmware, assembler, operating systems\-tegel programming lan-
guages, etc.). For instance, the low level steps requineffoare quite complex:
load the value obar into a registry, conver to binary representation, decompose
calculation into assembly instructions and so on. Moredwerresulting program
heavily depends on the underlying hardware architecturigh tevel languages
(e.g. C++, Java) allow to forget (i.e. abstract away) immatation details and to
focus on the programming activity. This approach boostedmder science over
the last 40 year. The idea is to exploit the same principlg/gtesns biology.

\ Biology | Processcalculi |
Entity Process
Interaction capability Channel
Interaction Communication
Modification/evolution State change

Table 1: Process calculi abstraction for systems biology

Assume to know the basic mechanisms that ‘drive’ life. If weable to design
a low level language that embeds the above mechanisms, wexpéore biolog-
ical hierarchies through compilation and then use livingtaraas our hardware
infrastructure. In a similar vision, language theory is aaaptual formal tool
that enables biologists to reassemble fragmented knoeladg a whole biolog-
ical system via computational thinking. Process calcwdiyphe role of low level
languages, because their theory coincides at some extédmtawiabstraction of
molecular interactions. Table 1 gives a concise picturénefrhap between biol-
ogy and process calculi. A biological entity (e.g., a pnotds seen as a compu-
tation unit, a process, with interaction capabilities edided as channel names.
Entities interact/react through complementary capadslias processes communi-
cate/synchronize on complementary actions. The changstaef@after a commu-
nication represents the modification/evolution of moleswdfter a reaction.

The abstraction in Table 1 has four main properties [65):it(captures an
essential part of the phenomenon) {t is computable, or better, it is executable,
allowing computer aided analysisiii | it offers a formal framework to reason;
(iv) it can be extended. In the rest of the paper we will show then mpeocess
calculi proposed for representing biological systems, wadvill show how each
one focuses on a particular extension of the abstractiociptes in Table 1.
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Figure 6: Lymphocyte T helper activation

5 Running Example

This section introduces the running example that will bedusepresent and com-
pare the considered calculi in the biology applicative diom@he example comes
from the biology of the immune system, and it is relative te #ttivation of the
lymphocyte T helper

The example has been chosen taking in mind two essentiargacti) the
example has to be sufficiently complex to be an interestisg study for represen-
tation issues; (i) it must be abstract enough to allow imhejence from irrelevant
biological details. These features ensure that a shortigéea of the phenomenon
can make it easily accessible to readers without any spéeifikground in biology.

Lymphocytes T are eukaryote cells belonging to our immuséesy. There are
three different sorts of lymphocytes T: lymphocytes T helpenphocytes T sup-
pressor, and lymphocytes T cytotoxic. The lymphocytes efittst two classes are
the main controllers of the immune system. Lymphocytes dtoyic work against
foreign eukaryote cells and against cells of the body whelelbeen infected by
avirus.

Lymphocytes are normally inactive, and start their agtivonly after being
triggered by special events. Each class of lymphocytes magchivated in many
ways. We will focus on the activation of lymphocytes T helperformed by
macrophages.

Macrophages are cells belonging to our immune system. Taeyeagulf a
virus by endocytosis, and, when this happens, the virusgeaded into fragments

and a moleculegntigen) is displayed on the surface of the macrophage. The anti-
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gen may be recognized by a lymphocyte T helper, and thisaetvthe mecha-
nisms of the immune reply, like, e.g., the duplication of h@mphocyte. Notice
that the phenomenon includes the following relevant inigred:

e pattern recognition, that allows the macrophage to disisig malicious
antigens and to activate the appropriate T cell;

e membrane interactions, that allow the macrophage to engui$es and to
express antigens;

e internal pathways, that lead to the digestion of the endulfauses.

Figure 6 gives an abstract representation of the phenomgesgribed above.
Viruses are modeled as entities with inactive sites whighegent the viral anti-
gens, i.e., the molecules characterizing the viruses. Tbeeps starts with the
phagocytosis (ENDO) of the virus by the macrophage. Thesvisithen decom-
posed (BREAK), and eventually viral antigens are moved @ strface of the
macrophage. So the macrophage acquires some active sitegtfe virus, and
can wait for a lymphocyte with a complementary site. Whenapgropriate lym-
phocyte T helper binds to the macrophage, it becomes actiystarts playing its
role in the immune reply. Observe that lymphocytes haveradites even before
binding to a macrophage. Indeed, even if in this state lyroptes are inactive, as
all in the immune reply, no binding would be possible withadative sites.

6 Calculi for biology

In this section we survey the main calculi for biology whicivle been proposed
in the literature. For each calculus, we first consider tipeagentation of the com-
partments, and then we refine the model at the biochemicall. Igve will exploit
short portions of code for the activation of lymphocytes Tpke Finally, for each
calculus we will comment on the expressivity w.r.t. the bgtal requirements
proposed in Sect. 3, and on the availability of software.

6.1 Biochemical stochastic 7-calculus

The biochemical stochastier-calculus[66, 62] represents biochemical systems
of interacting molecules as mobile communicating processdethe w-calculus
[48, 69]. Public channel names and co-names represent eoreptary sites and
cellular compartments are rendered by the appropriate fusstoictions on chan-
nels. Molecular interaction is modeled as communicatiom the stochastic ex-
tension of ther-calculus [60] is adopted to provide quantitative desaipt of
systems.

6.1.1 Syntax and Semantics

Thew-calculus is a name-passing process calculus where namegrasnyms of
both data and channels. Its biochemical stochastic extemspresents molecules
as computational processes. A molecular complex is a syst@nocesses sharing
a private name which is unknown outside the complex. In thag,va molecule
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which is external to the complex can by no means have accéiss tmmplex. The
scope of the private name represents the boundary of thelesnijovements be-
tween complexes and formations of new complexes are rapsesby transmitting
private names (the so-called name extrusions).

The biochemical stochastic-calculus represents interfaces by means of com-
munication channels. Components interact by commungatimcomplementary
sites, and interfaces may be possibly modified as a resuteafdmmunication.

6.1.2 Example

System specification
SYS::= MACROPHAGE | VIRUS | TCELL1 | TCELL2
MACROPHAGE::=(vMemM)(TIr(MemM). MemM(a). ! a(str))
VIRUS::=(vMemV)(TIr(y).y(Antl))

System evolution
MACROPHAGE | VIRUS —
(vMemM) ( MemM(a).! a(str) | (vMemV)(MemM(Ant1)))—
(vMemM)(! Antd(str))

Figure 7: Phagocytosis-Digestion-Presentatioft-italculus

Compartments. Figure 7 reports the a code fragment that encodes the anti-
gen presentation phase. The global syste¥s is given by the parallel com-
position of four processesVIRUS, MACROPHAGE, TCELL1, andTCELLZ2.
Figure 7 only presents the specifications of the first two eleism Here we just
sketch the intuition of the behavior of the sub-system gliyeMACROPHAGE |
VIRUS. The restriction on top of each component stands for itsositay mem-
brane. The macrophage phagocytes the virus by means of awagation on the
public channelllr. Operationally, this communication involves the outpuict
TIir(MemM) and its complementary input actidfir(y), and its effect is twofold:

() the restricted nam&emM undergoes a scope extrusion and becomes a pri-
vate resource of botMACROPHAGE and VIRUS (thus modeling the engulf-
ment of the virus)j(ii) the namey in VIRUS is renamed intdemM (modeling

the adaption of the internal machinery of the macrophagéato the lysis). The
subsequent communication over the chariiemM is such that the daturAntl

is transmitted tdVACROPHAGE, which can make it available to lymphocytes
T (TCELL1, TCELL2) by means of the latest actidint1(str). The operator
bang !, allows to model infinite behaviors. In particuldintl(str) behaves as
Antl(str). (! Ant1(str)), and therefordIACROPHAGE can activate many TCells
expressingAntl.

Biochemical interactions. Figure 8 shows the implementation of the activation
of the appropriate lymphocyte T helper. Assume that thgantpresentation phase
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already occurred, and hence that the macrophage is readyntmgnicate on chan-
nel Antl with whichever lymphocyte can execute a complementarpadain the
same channel. In the evolution drawn in Figure 8 this lymgteaes TCELL1
which, after the synchronization odlntl, can start its activities. Notice that the
active form of the macrophag®]ACROPHAGE’, can activate another TCell be-
cause of the bang operator.

System specification
SYS::=MACROPHAGE' | TCELL1 | TCELL2
MACROPHAGE’::=(vMemM) (! Ant1(str))
TCELL1::=(vMemT1)(Ant1(x).ACTIVITIES)
TCELL2::=(vMemT2)(Ant2(x).ACTIVITIES)

System evolution
SYS —
MACROPHAGE’ | (#MemT1)(ACTIVITIES) | (*MemT2)(Ant2(x).ACTIVITIES)

Figure 8: TCELL activation inw-calculus

6.1.3 Comments

The biochemical stochastic-calculus represents biochemical interactions as com-
munications, yielding models of biological pathways wharke both detailed and
concise. In the biochemical stochastiecalculus there is no explicit concept
of compartments. To represent the operations on compatsn{exXO, ENDO,
BREAK and MERGE), the non-intuitive concepts of restriatiand name passing
must be used.

There exist implementations of the biochemical stochastialculus that make
real in silico experiments possible. Two examples of simtetools for biochem-
ical stochastier-calculus are BioSpi [72] and SPiM [57], both based on thdeGil
spie’s algorithm [25]. Several complex models of real bemgical systems have
been implemented and simulated by using these tools. Npttdid simulation
of extra-vasation in multiple sclerosis reported in [45pwied to have a sort of
predictive flavor: an unexpected behavior of leukocytesb®es guessed by the
results of in silico simulations, and proved a posterioriailn experiments. Also,
a whole virtual cell (VICE), with a basic prokaryote-like game (about 180 dif-
ferent genes) is developed with interesting results: fstaince, the distribution of
metabolites along the glycolytic pathway of VICE signifidlgmatches with those
of real organisms [14].

To overcome the intrinsic difficult inr-calculus, due to its minimal sintax,
some eorts are devoted to design higher-level languaggsrthades direct support
for the concepts needed in modeling biological systems,gag2i] that leads to a
complex model of gene regulation [44].
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6.2 BioAmbients

BioAmbient464] focuses on compartments: the location of moleculekiwgpe-
cific compartments is considered a key issue for regulata@ghanisms in biolog-
ical systems. Biomolecular systems are organized in arei@ial and modular
way: a molecule can perform its task if and only if it is in thght compartment.

6.2.1 Syntax and Semantics

Ambients are the boundaries of a set of processes which camuoaicate with
each other. Ambients can be nested and hence they are addmérarchically.

As for ther-calculus, we do not provide a full description of the calsulWe
rather focus on a few main features which are useful for oasqmtation. The
reader is referred to [64] for full details.

Depending on the relative locations of the interacting psses, three kinds of
communication are defined in BioAmbients:

¢ |ocal, namely between two processes in the same ambient,
e s2s, namely between two processes located in sibling ambients,

e p2c/c2p, namely between processes located in ambients with a petnédt-
relation.

As far as the interpretation of movements is concernede thags of primitives
are defined as process actions:

e enter n / accept n, for entering an ambient and accepting the entrance,
respectively,

e exit n / expel n, for exiting from a containing ambient and expelling a con-
tained ambient, respectively,

e merge+ n/ merge- n, for merging two ambients together.

6.2.2 Example

Compartments. Figure 9 shows a possible specification of the digestion f th
virus by the macrophage. The two processdsct andDigest abstract the infec-
tion capability of the virus and the digestion capabilitytled macrophage, respec-
tively. Virus and macrophage synchronize on chaninghnd the virus enters the
macrophage by aanter / accept pair. Then the virus sends its antigen on channel
tlr, and eventually the macrophage makes the antigen avatabyenphocytes T
helper.

Biochemical interactions. BioAmbients uses communication channels to imple-
ment ‘interfaces’ of biological entities (as the biocheahistochasticr-calculus).
The BioAmbients implementation of the activation of the ptmacyte T helper by a
macrophage is reported in Figure 10. Each lymphocyte réaetspecific antigen
and begins its task by means of a communication on a dedicatmthel. After
the right lymphocyte has been activated, the macrophagadataate other TCells,
because of the bang operator
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Figure 9: Phagocytosis-Digestion-Presentation in Biofemnts

Macrophage

TCdll

s2sant1?{m}.Active

TCel2

s2s ant2?{m}.Active

@

Macrophage

TCdll

TCdl2

Ss2s ant2?{m}.Active

@

17

Figure 10:TCELL activation in BioAmbients




6.2.3 Comments

BioAmbients models biochemical interactions as commduiuna on channels.
It extends biochemical stochasticcalculus communications with three kind of
communications: interactions can occur between entii¢ise same compartment
(local communication), between actions lying in ambients wittie@ $ame ambi-
ent s2scommunication), and between father-child ambien2p(p2ccommuni-
cation). BioAmbients is the first process calculus for modgbiological systems
in which an explicit and intuitive notion of compartmentsansidered. It is easy
to model in BioAmbients operations as EXO, ENDO and MERGBABnbients
has no primitive to represent the splitting of environmdBREAK), and it is not
straightforward to model, e.g., mitosis. Other operatithreg can be easily mod-
eled are complex formation and transport of small molecatesss compartments.
Hence, BioAmbients may represent, in this respect, an ivgonent compared to
biochemical stochastia-calculus: many biological phenomena are represented
much more easily in BioAmbients thanirrcalculus.

A stochastic extension of the language has been defined, sindikator is im-
plemented as part of the BioSpi project [72] based on GiiEs@lgorithm [25].
Control Flow Analysis, a static analysis technique thatvedl to analyze the de-
scription of the system to discover dynamic properties,dapéed to BioAmbi-
ents [50].

6.3 Brane Calculusand Projective Brane Calculus

Brane calculug9, 10] is centered on membranes, and it is based on the Glbigerv
that membranes are not just containers, but also activdesnthat take care of
coordinating specific activities. Membranes can be higiyyadnic: for example,
they can shift or merge. Molecules can communicate usinig thembranes, and
indeed large proteins are embedded in membranes whictkaatiannels.

The main feature of Brane calculus is that membranes arédeoad active el-
ements and hence the whole computation happamsembranes. In Brane calcu-
lus membranes can move, merge, split, enter into and exit &ihver membranes.
Some constraints need to be satisfied when applying thesatimpes. The most
important one is that transformations need to be continfeus a membrane,
except the case it represents a small molecule, cannotysjpagk across another
membrane). Another constraint is that the orientation omimranes need to be
preserved, so merging of membranes cannot occur arbjtr@ig. membranes
with a different orientation cannot merge).

6.3.1 Syntax and Semantics

A system is represented in Brane calculus as a set of nestetbraees, and a
membrane as a set of actions; actions carry out the mentioedbrane trans-
formations. The Brane calculus primitives are inspired t&nmbrane properties.
Because of the constraints on membrane operations, Brdogusa primitives

are more restrictive than those we presented in Sect. 3.2.pflimitives related
to movement to and from membranes are classified in two maiapgt one for
cytosis-like and the other for mitosis-like phenomena.
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e Endocytosis, corresponding to the ENDO operation, is camed an un-
controllable process. Interesting interactions are Wguabre controllable,
therefore two finer primitives are defined: phagocytogisago), for en-
gulfing one external membrane, and pinocytopisd), for engulfing zero
external membranes. Exocytosex6), which corresponds to the EXO op-
eration, represents the expulsion of an internal membrane.

e Mitosis, corresponding to the BREAK operation, is also cd&®d an un-
controllable process, because it can split a membrane abérasy place.
Hence, two finer primitives are defined: budditoyd), for splitting off one
internal membrane, and drippindr{p), for splitting off zero internal mem-
branes. Matingrfate), which corresponds to the MERGE operation, repre-
sents the controlled merging of two membranes.

For each action, a corresponding co-action is defined. Herscimn BioAmbients,
coordination between interacting components is alwaysired. Communication
can beon-membraner cross-membranend they are associated with distinct pairs
of primitives.

e On-Membrane The primitivesp2p,, / p2p;- are for on-membrane commu-
nications only.

e Cross-Membrane The primitivess2s,, / s2s:-, p2c, / p2c;-, andc2p,, /
c2p;- are for communications between processes in distinct mamelsrand
follow a BioAmbients-like style.

Projective brane calculus. This calculus, which has been introduced in [18],
is a refinement of Brane calculus. Its authors observe thegahlife biological
membrane actions are directed; therefore they refine bralcalas by replacing
actions with directed actions, so that interaction cafiedslare specified as facing
inwards or outwards. This refinement results in an abstmnagiihich is closer to
biological settings than the original language.

6.3.2 Example

Compartments. Figure 11 reports a specification of the running example anBr
calculus. The operatar stands for parallel composition. The rounded parenthe-
ses(| | enclose the genetic content of the membrane, which is repied by a
sequence of actions to the left of the symfol

During the synchronization ovg@hago, the virus communicates its antigen to
the macrophage on the chanmél Then the macrophage presents the antigen to
the environment. As mentioned in Sect. 6.2, in real life avidoes not actually
send its antigen to a macrophage.

Biochemical interactions. Figure 12 shows the Brane calculus code for the ac-
tivation of the appropriate lymphocyte.
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System specification

SYS::=VIRUSo MACRO o TCELL1 o TCELL2

VIRUS::=phago;,;. c2p,(antl).INFECT(CAPSID)
MACRO::=phago;,(DIGEST)c2p;:(a) s2s,(str) (CYTOSOL)
DIGEST::=c2p;-(a)c2p,(a).DIGEST

System evolution

MACRO o VIRUS —

c2p:t(a)s2s,(str) (DIGEST (c2p,,(antl).INFECT(CAPSID)| o CYTOSOL) —
c2p;t(a)s2s,(str) (c2p,(antl).DIGEST(|INFECT (CAPSID)|) o CYTOSOL) —
$2S,,¢1(str) (DIGEST (INFECT (CAPSID) |) o CYTOSOL)

Figure 11: Phagocytosis-Digestion-Presentation in Bcabeulus

System specification
SYS := MACROo TCELL1 o TCELL2
MACRO::=5s2s,,,:1 (str).PHAGO(CYTOSOL))
TCELL1:=s2st ,,(X).ACTIVITIES1(CYTOSOL)
TCELL2:=s2s} ,,(X).ACTIVITIES1(CYTOSOL)
System evolution

SYS— PHAGO(CYTOSOL) o ACTIVITIES1(CYTOSOL) o TCELL2

Figure 12:TCELL activation in Brane calculus

6.3.3 Comments

In Brane calculus everything is interpreted as a membrahighwmeans that membrane-
bound cellular compartments (e.g. cells and organelleg)naolecular compart-
ments (e.g. proteins) are modeled in the same way. The Igegi@es not take
the internal structure of membrane-bound compartmensaiatount, therefore it
is not easy to describe biochemical events that are nottljinedated to cellular
membranes, such as protein activation, phosphorylation, e

Brane calculus is inspired by BioAmbients, but it gives meamies an active
role. The notion of membrane as an active entity and not jsghale container is
surely relevant. In addition, Brane calculus primitives agalistic and provide
a simple and intuitive way to model the most important meméraperations.
Being Brane calculus primarily concerned on membraneacteams, it is possible
(and also relatively easy) to model all kinds of operation®living compartments
(EXO, ENDO, MERGE, BREAK) and also movements of small moleswacross
membranes. No software tool is available for this calculus.
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6.4 CCSR

CCS-R [15] explicitly deals with the issue of reversibilitynost biochemical re-
actions are, indeed, reversible. Based on this observafi@s-R is a CCS-like
process algebra [47] with the peculiarity that revergipils embedded in the syn-
tax. No handling of energy and types of bonds is consideftthugh they are the
driving forces of biomolecular reversibility.

6.4.1 Syntax and Semantics

CCS-R is a ‘decoration’ of CCS with the concept of revergipil This feature
of the language is relevant when considering biochemioahatos. Regarding
the description of compartments, instead, CCS-R may bedenesl the same as
CCS: a process algebra that describes the interactiongéetprocesses in terms
of binary synchronized communications and does not usereitilue or name-
passing. In CCS-R it is not possible either to send a name dmaanel or to
dynamically change the scope of a restricted name. Forehison, compartments
and information flows between processes cannot be repegsent

CCS-R generalizes CCS duality between names and co-naradétary com-
plementation relatio@ between binding sites: the two sitesandz’ can connect
together only ifzCx’. Moreover, based on the observation that some proteirt inter
actions require a concurrent connection to different sttesstandard CCS syntax
is extended to allow processes like (I'y | I's | I'3).0 to represent the fact that the
sites of C must be activated simultaneously. Apart fromdhdiferences, CCS-
R is the same as CCS. In particular, for what concerns our pbearthe system
specifications in the two languages are identical.

6.4.2 Example

System specification
SYS:=(TIr)(vAntl)(vAnt2)(VIRUS | MACROPHAGE | TCELL1 | TCELL2)
VIRUS::=TIr.Ant1.INACT
MACROPHAGE::= TIr.DIGEST
System evolution
SYS — (vTIr)(vAntl)(vAnt2)(Ant1.INACT | DIGEST | TCELL1 | TCELL2)

Figure 13: Phagocytosis-Digestion-Presentation in CCS-R

Compartments. As previously mentioned, compartments cannot be repredent
in CCS-R, and the information flow from the virus to the mat¢rage cannot be
faithfully rendered. It is still possible, though, to sdgdhe antigen presentation
phase as a pathway activation. This kind of coding is usedhenspecification
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of the running example in CCS-R, shown in Figure 13. Noticd,tin order to
overcome the fact that the position of restrictions cantainge at run-time, the
relevant resources have to be declared as private charfrtaks top-level process
SYS.

System specification
SYS:=(TIr)(vAntl)(vAnt2)(VIRUS | MACROPHAGE | TCELL1 | TCELL2)
MACROPHAGE::= DIGEST
VIRUS::=Ant1.INACT
TCELL1:=Ant1.ACTIVITIES1
TCELL2::=Ant2.ACTIVITIES2
System evolution
SYS —
(vTIr)(vAntl)(vAnt2) (INACT | DIGEST | ACTIVITIES1 | Ant2.ACTIVITIES2)

Figure 14:TCELL activation in CCS-R

Biochemical interactions. CCS-R is particularly suitable to represent biochem-
ical interactions. However, since it does not use a namsipagliscipline, it is
impossible to directly render the information flow betweeagasses and its sub-
sequent changing of the possible evolution of the commtinggartners. With
respect to the previous code fragments, let us considentigea passing from the
virus to the macrophage and, finally, to the rigi@ELL: in the CCS-R specifica-
tion for lymphocyte activation (Figure 14), the virus (rettthan the macrophage)
is responsible for activating the righiCELL.

6.4.3 Comments

CCS-R, being based on CCS, allows to represent biochematialvays as a cas-
cade of synchronized interactions. CCS-R does not allowenpassing or a di-
rect representation of biological bounds, therefore mindetompartment is not
directly supported.

CCS-R has primarily been developed to implement reveitsibil a process
calculus for biology. The authors of CCS-R think of reveit#ibas the ability to
backtrack from a reaction and claim that this is a common pimamon in nature.
This is true, however, only if the energy of the system is rastsidered. Indeed
the second principle of thermodynamics states that goicg bgactly to the orig-
inal system is not possible. This principle could becomeiatuf reversibility
was investigated together with a quantitative analysisefglobal energy of the
biological system. No software tool is available for thisccéus.
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6.5 PEPA

Performance Evaluation Process AlgelfREPA) [31] is a formal language for de-
scribing Markov processes. PEPA was introduced as a togleidormance analy-

sis of large computer and communication systems to studyeisame framework

guantitative properties as throughput, utilization anspbomse time and qualita-
tive properties as deadlock freedom. With the advent of yiséesns biology era,

the abstraction facilities of PEPA was exploited in biociehsignaling pathways

analysis and simulation [8].

6.5.1 Syntax and Semantics

PEPA differs from the previous calculi because it adoptsimal synchronization
on shared name in the style of the Communicating SequemtiabBses (CSP) [33]
rather than complementarity (as CCS andalculus). The cooperation operator
DZ;Q requires the “co-operands” to join for activities specifiadhe cooperation
setL. Consider a simple biochemical reactionwhere two proteinProt! and
Prot2 interact with a raté:; and form a proteinProt3. The system is specified by
the following:

Protl g ::= (r1,k1).Protl

Prot2y = (rl,kl).Prot2y,

Prot3y, ::= (r1,T).Prot3 g

Sys::=Protl g {l?rjlﬂ} Prot2 g {I%?} Prot3y,

The subscriptd and L stay for high and low level of protein. The three protein
can synchronize on activityl enabling the transition:

Sys (r1,k1)

Prot1y, {%16} Prot2;, {%16} Prot3 g

where low levels ofProt1 and Prot2 are present and an high level Bfot3 is
reached. The multi-way synchronization underlying PERA&va the three pro-
cesses to advance in one step. This is the main differencERARV.r.t. CCSt-
calculus style of interaction.

6.5.2 Example

Compartments. PEPA cannot represent directly compartments or inderégtly
means of scope extrusion. The information flow from the viouthe macrophage
on Trl cannot be faithfully represented, but, by specifying thégem presenta-

tion phase as a biochemical interaction, it is still possiblThe approach is the
same used in CCS-R, and Figure 15 shows the related PEPA ttalophage

MACROP synchronize withVIRUS on activity Tlr enablingAntl presentation

with a ratek.

Biochemical interactions. PEPA represent biochemical interactions as cooper-
ation, meaning that processes jointly perform actions efsthime type. However,
PEPA has not name-passing features, and therefore PEPAdioafow to directly
represent information flow and subsequent changing of tieeaction capabilities.
Figure 16 sketches PEPA code for TCell activation. The v{rather than the
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System specification
SYS::=VIRUS {?S} MACROP
VIRUS::= (TIr,k) . (Antl,ka1) . INACT
MACROP::= (TIr,k) . DIGEST

System evolution

sys I (Ant1,k41) . INACT B4 DIGEST

Figure 15: Phagocytosis-Digestion-Presentation in PEPA

System specification
SYS:= VIRUS' > MACROP’ > TCELL1 . > TCELL2

{Antl,Ant2} {Antl,Ant2} Antl,Ant2}

MACROP’::= DIGEST
VIRUS'::=(Ant1,k41) . INACT

TCELL1:=(Antl, ka;) . ACTIVITIES1
TCELL2::=(Ant2, k43) . ACTIVITIES2

System evolution

Svs (AntL, kA1)

INACT B> MACROP’ B> }ACTIVITIESl{ B>] TCELL2

{Antl,Ant2} {Antl,Ant2 Antl,Ant2}

Figure 16:TCELL activation in PEPA

macrophage) synchronize with the TCell with the right aenig. Notice thatint2
is in the cooperation sdtdnt!, Ant2} because otherwisECELL2 can proceed
without recognizing the right antigene.

6.5.3 Comments

PEPA was introduced as a tool for performance analysispfication to systems
biology allows toquantitativelymodel and analyze large pathway systems (e.g.,
[7]). However, PEPA lacks in expressivity of compartmentrtives.

PEPA has two main characteristics that makes it very iniaggsalso for biol-
ogy: (i) a large community supporting it [35] with a reach availdpitf software
tools. For instance, the PEPA Workbench [26] allows to explitarkov process
analysis on PEPA specification. Moreover, external toofgpeu PEPA. For in-
stance, the PRISM model checker [32] accepts model deiseripin the PEPA
formalism. (ii) PEPA is a language for describing Markov processes, and-ther
fore PEPA is developed with a strong mathematical backgtoiihis enables the

24



comparison and convergence of process calculi models asdical ODE mod-
elling [5, 6].

6.6 Beta-binders

Beta-binderd61] is a bio-inspired process calculus that interpretsdgical enti-
ties as an internal “process unit” and an “interface” expdsghe external environ-
ment. By introducing the concept affinity, the interaction approach extends the
CCS notion of complementarity between action and coatioetat®inders com-
munication models is inspired by enzyme theory [43], whaeteractions between
not perfectly matching components are allowed.

6.6.1 Syntax and Semantics

In Beta-bindersyr-calculus processes are encapsulatedbotaeswith interaction
capabilities. Ther-calculus syntax is enriched by operations for maniputpiim
teraction capabilities, that are represented by speethlinders. Any biological
entity E is represent as a bd®g

1A ..z, Ay

Pg

TypesA; express the interaction capabilities of the box. The parabmposition

of boxes, callecbio-process models a system of interaction biological entities.
Two boxes can interact if they have complementary types up ¢ertainuser-
definednotion (see [59] for an example). Here we adopt the origimrpretation,
where types are sets of names and two typesind A, are affine ifA; N Ay # 0.
The dynamic behavior of entity baX¥zis specified through the internal pi-process
Pr. A pi-process is ar-calculus process, extended for manipulating the interfac
of a box. For instancehide and unhideactions make respectively invisible and
visible an interaction site, allowing the direct represginn of dephosphorilation
and phosphorilation. Finally, two boxes can bring togeifj@n) and one box in
two can divide in two gplit).

6.6.2 Example

Compartments. Figure 17 reports the Beta-binders fragment that encodes th
antigen presentation phase. The global sys$&f8 is given by the parallel compo-
sition of four boxes representing theRUS, the MACROPHAGE, the TCELL1,

and theTCELL2, respectively. Figure 17 only presents the specificatidrthe
first two elements and we just sketch an explanation of thenbehof the sub-
system given by thMACROPHAGE and theVIRUS. The macrophage phago-
cytes the virus by means of a join operation. This results limxawhose inter-
action capabilities are inherited froMMACROPHAGE, and whose body is essen-
tially given by the parallel composition of the internal leslof the original boxes
Pyacro and Pyrrys. After that, virus and macrophage are in the same box, so
they can communicate, and the namet; is transmitted taMACROPHAGE,
which can make it available to lymphocytes TGELL1, TCELLZ2) by means of
the latest output actioAnt1(str).
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System specification
x: {uy,ve,...} y:{v} x:{Ant1} =z :{Anty}

| | | |
SYS"=| Pyacro | | Pyrus | | Prcerr: | | Prcerre |

Pracro = x(w). expose(z, {w}). (1z(str) | Ppicest)
Pyrrus = §(Ant1). PinrECT

System evolution
x: {vy,ve, ..} y:{v}

1 1
|PMAC’RO | | Pyirus |

x : {v1,ve, ...}
I

| Pryiacro | Pvirus | -

x : {v,ve, ...} z: {Ant1}
I

| 'Z(str) | Ppicest | PiINrFECT |

Figure 17: Phagocytosis-Digestion-Presentation in Batders

Biochemical interactions. Figure 18 shows the implementation of the activation
of the appropriate lymphocyte T helper. We imagine that titeggan presentation
phase already occurred, and hence the macrophage is reasgdote an inter-
communication on channel with type ist1 with whichever lymphocyte can ex-
ecute a complementary action on a channel with a compatipk tn the system
of Figure 18 this lymphocyte iS§CELL1 which, after the interaction, can start its
activities.

6.6.3 Comments

Beta-binders was specifically designed to model biologitt@ractions. The main
peculiarity of Beta-binders is the concept of affinity, whiallows not perfectly
matching components to interact. This is often the casedlody, where the in-
teraction sites of proteins can be compatible even if notthk@omplementary.
Biochemical events that are not directly related to cellat@mbranes (e.g. pro-
tein activations, phosphorylations, etc.) can be easilyletenl by Beta-binders
communications and operations on box interfaces.

Another interesting feature of Beta-binders is that openatsuch as fusion of
membranes and splitting of one membrane into two submerabraan be easily
modeled by means of the appropriate join and split primstivélowever, when
dealing with compartments one main drawback of Beta-bmdeises: nesting of
boxes is not allowed, so itis not intuitive to model hieraeshof entities. In [28] an
extension of Beta-binders with an explicit notion of compants is introduced.
This extension permits to represent static hierarchicatgtres and the movement
of components across compartments.
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System specification
x: {vy,ve, ...}z : {Anty} a:{Ant1} a:{Anty}
1

| | |
SYS: = | Pa_macro | | Preerrs | | Preprre |

Pa_rvracro =='a(str) | PpigesT

Prcerrt == a(y).PacrrviTies:
Prcerre == a(y).Pacriviriess
System evolution

SYS —
x:{v,ve,...} 2 {Ant1 } a: {Ant,} a: {Anty}

1 | 1 |
| Pa_macro | FACTJVJTIESJ | Prcerre |

Figure 18:TCELL activation in Beta-binders

Finally, Beta-binders is equipped with a stochastic semoafit9] and the asso-
ciated simulation environment [68] for the in-silico stusfybiochemical pathways.

6.7 k-calculus

k-calculus [16, 17] is a formal calculus of proteins interaat It was conceived
to represent complexation and decomplexation of protéihe x-calculus comes
equipped with a very clear visual notation, and uses theeqnaf shared names
to represents bonds.

6.7.1 Syntax and Semantics

The units ofk-calculus are proteins, and operators are meant to represstion
and division of protein complexes. Proteins are drawn ag$auth sites on their
boundaries. A site can be either visible, hidden or bound irfstance

(oo

represents two bounded molecul4 and M2 on sitess2 ands3, respectively.
Moreover, the sits1 of M1 is hidden and the site4 is visible.

Besides the graphical representation, ghealculus provides a language in the
style of process algebras. Expressions and boxes are giveansics by a set of
basic reactions. Once the initial system has been speciitha basic reductions
have been fixed, the behavior of the system is obtained byitnegvit after the
reduction rules. This kind of reduction resembles pathwaiyation.

6.7.2 Example
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System specification
ri:  M(ph),V(in,al) —(x)(M(ph®),V(in",a1))
System evolution

@) M(ph),V(in,al) —ry
(x)(M(ph®),V(in*,al))

(b)

Figure 19: Phagocytosis-Digestion-Presentation-galculus

Compartments. The calculus does not offer a natural support for the compart
ment layer. It is possible to represent the Phagocytogigddion-Presentation ex-
ample (see Figure 19(a)) as an activation pathway. The srusndered by the
box V, which has a visible site, used to enter a cell, and a hidden sife which
represents the antigen. The macrophage is representeé bgxiv, which has a
visible siteph, used to phagocytes a molecule.

Figure 19(b) shows the single reaction relevant to our mgnexample. In this
reaction rule, the superscriptin ph* andin® means that the sitesa andph are
linked by the channel named This mechanism may resemble a possible handling
of affinity between channels, although no quantitative mesas considered.

Biochemical interactions. Figure 20(a) shows the-calculus graphical repre-
sentation of the activation of a lymphocyte T helper. Afteagocytosis, the virus
has a visible sit@l, which represents its antigen: only the lymphocyte with the
right site can bind it.

(T 5

in

ph ?
15D

(a) Graphical representation

System specification
ro:  M(ph*),V(in*,al),T1(al) — M(ph*),V(in*,al¥),T1(al¥)
rs:  M(ph*),V(in*,a2),T2(a2) — M(ph®),V(in*,a2),T2(a2¥)
System evolution

(X)(M(ph®),V(in*,al),T1(al)) — Ty
(xy)(M(ph*),V(in*,a1¥),T1(al¥))

(b) Language representation

Figure 20: TCELL activation ink-calculus
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The graphical notation does not clearly represent the t@feaf the right lym-
phocyte. This gap is filled by the formal model via the defmnitdf the basic reac-
tions. In particular, the system described in Figure 19(ay tme extended with the
rules defined in Figure 20(b). By these rules, it is possiblafer the reduction
shown in Figure 20(b).

6.7.3 Comments

The x-calculus was designed to represent complexation and daegration of
proteins, and therefore it does not allow to represent cotmgst primitives. We
want to point out that the main goal of the authors<efalculus, i.e. to “provide

a formalism that could be a suitable modeling language atigwirect descrip-
tions of molecular events” [16], has been achieved in arcedie way: the visual
language is intuitive, and the formal one rather simple ®. Udoreover, despite

its simplicity, in [13], k-calculus was shown to be expressive to translate Kohn
Interaction Map [41], a diagrammatic formalism to represertworks containing
multi-protein complexes, protein modifications, and enegm

7 Concluding remarks

The languages mentioned in this survey are quite differamdl have been con-
ceived for specifying entities at different levels of abstions. As expected, none
of them is ‘the perfect language’, which allows to model ireasy and correct way
all kinds of biological operations. Each language, howglvas some distinguish-
ing features that make it particularly suitable for modglo@rtain kinds of systems
or operations.

We can classify the various calculi depending on whether #ine adaptations
or extensions of calculi introduced to specify distribugdtems, or rather they
have been directly defined to model biological systems. Bovenience, we refer
to the languages of the first family as to bottom-up calcuig & the others as
top-down languages.

Biochemical stochastie-calculus, BioAmbients, PEPA and CCS-R are bottom-
up calculi. They are based on languages used to describibuliet systems. The
main advantages of bottom-up languages are that they cammelvell-assessed
mathematical basis and they are well-known in the commuofitjistributed sys-
tems. The main drawback is that, since they were not mearmscrithe biological
systems, they are often too abstract and not much intuitive.

Brane calculus, Beta-binders, aretalculus are top-down languages. Their
authors made the opposite effort: they tried to identifyfthelamental biological
primitives and to represent them by the techniques and tdalsncurrency theory.
The advantages and drawbacks of top-down languages areitppm those of
bottom-up ones: these languages are usually more int@itidemore biologically
correct but, since they are very recent, they lack the@ketiorks and few tools
exist to allow them to be of practical use for validation/slation purposes.

Some of the languages we have described permit an explmiésentation
of biological compartments: Brane calculus, BioAmbientsl éhe Beta-binders
extension with compartments. Therefore they can be motaldeito model phe-
nomena at compartment level. Brane calculus is very iniagesvhen the focus
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is on membrane interactions and their evolution; BioAmtsextso provides an in-
tuitive representation of compartments, and the main rdiffee between the two
languages is the place where the computation occurs: on raeewin the former,

and inside membranes in the latter. Therefore, BioAmbisatsns to be more ap-
propriate when the internal structure of compartmentdevaat. The Beta-binders
extension with compartments is somehow more similar to Bibfents because
the focus is primarily on interactions between internakcly: Beta-binders over-
comes some of the known problems of BioAmbients, but it isme&nt to model

operations involving fusion of membranes, therefore itasapplicable in model-

ing systems in which such kind of operations is important.
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