
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Automatic Detection of Speculative Execution Combinations
Anonymous Author(s)

ABSTRACT

Modern processors employ different prediction mechanisms to
speculate over different kinds of instructions. Attackers can exploit
these prediction mechanisms simultaneously in order to trigger
leaks about speculatively-accessed data. Thus, sound reasoning
about such speculative leaks requires accounting for all potential
mechanisms of speculation. Unfortunately, existing formal models
only support reasoning about fixed, hard-coded mechanisms of
speculation, with no simple support to extend said reasoning to
new mechanisms.

In this paper we develop a framework for reasoning about com-
posed speculative semantics that capture speculation due to differ-
ent mechanisms and implement it as part of the Spectector veri-
fication tool. We implement novel semantics for speculating over
store and return instructions and combine them with the semantics
for speculating over branches. Our framework yields speculative
semantics for speculating over any combination of those instruc-
tions that are secure by construction, i.e., we obtain these security
guarantees for free. The implementation of our novel semantics in
Spectector let us verify existing codebases that are vulnerable to
Spectre v1, Spectre v4, and Spectre v5 vulnerabilities as well as
new snippets that are only vulnerable to their compositions.

1 INTRODUCTION

Speculative execution avoids pipeline stalls by predicting interme-
diate results and by speculatively executing instructions based on
such predictions. When a prediction turns out to be incorrect, the
processor squashes the speculative instructions, thereby rolling
back their effect on the architectural state. Speculative instructions,
however, leave footprints in microarchitectural components (like
caches) that persist even after speculative execution terminates. As
shown by Spectre [21], attackers can exploit these side effects to
leak information about speculatively accessed data.

Modern general-purpose processors have different prediction
mechanisms (branch predictors, memory disambiguators, etc.) that
are used to speculate over different kinds of instructions: condi-
tional branching [21], indirect jumps [21], store and load opera-
tions [20], and return instructions [22]. While well-known attacks
target only a single speculation mechanism (e.g., Spectre-PHT [21]
targets branch predictors), some speculative leaks only arise due to
the interaction of multiple speculation mechanisms.

Listing 1: Speculative leak arising from speculation over

branch and store instructions combined.

1 x = 0;
2 p = &secret;
3 p = &public;
4 if (x != 0)
5 temp &= A[*p];

For example, the code in Listing 1 can speculatively leak the value
of &secret in Line 5 whenever (1) the memory write to p in Line 3

is predicted to have a different address then the memory read *p
on Line 5, and (2) the branch instruction on Line 4 is mispredicted
as taken. This leak, therefore, arises from the combination of spec-
ulation over the branch predictor and the memory disambiguator.
Hence, leaks like the one in Listing 1 are missed by sound analyses
for speculative leaks that consider speculation over only one of
these speculation mechanisms.

Sound reasoning about speculative leaks requires accounting for
all potential sources of speculative execution. However, existing
formal models (also called speculative semantics) support multiple
sources of speculation poorly. Some of them support only fixed
speculation mechanisms: branch predictors [17, 18, 30–32] and
(in addition) memory disambiguators [9, 14, 26]. Furthermore, the
different speculation mechanisms are hard-coded into the formal se-
mantics [9, 14, 17]. Extending these semantics with new speculation
mechanisms (e.g., speculation over return addresses or value predic-
tion) requires changes to the formal model and to any security proof
relying on it. This is simply not a scalable approach for developing
comprehensive formal models and analyses for speculative leaks.

In this paper we develop a framework for composing speculative
semantics that capture speculation due to different mechanisms
and implement it as part of the Spectector verification tool. The
combination yields a single operational semantics which can be
used to reason about leaks involving the different kinds of spec-
ulation that compose it (as in Listing 1). Our framework lets us
define the speculative semantics of each mechanism independently,
which leads to simpler formalisation. Additionally, the security of
the composed semantics can be derived automatically from the
security of its sub-parts, maximising proof reuse. Finally, the com-
posed semantics can be easily implemented in Spectector, which
can then be used to verify the absence of speculative leaks such as
those of Listing 1.

Concretely, this paper makes the following contributions:

• it introduces S and R, two novel semantics for specula-
tion over store and return instructions (Section 3).

• it defines the framework for composing different specu-
lative semantics and formalises its key properties: if the
individual semantics fulfil some (expected) security condi-
tions (which we prove for all the semantics we combine),
then the composed semantics is also secure (Section 4).

• it instantiates the framework with S, R and B, the
semantics for speculation over branch instructions [17],
creating all the possible compositions (B+S, S+R, B+R,
and B+S+R) and proving their security (Section 5).
All the presented semantics are formalised in the Coq Proof
assistant, and we write to indicate that the semantics of
some specific snippet is calculated mechanically.

• it extends the Spectector verification tool with all these
semantics and validates this extension on both existing
benchmarks (for speculation on store and return instruc-
tions) as well as on new snippets (for combined speculation)
that we define (Section 6).

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The rest of the paper first presents background notions, such as
the security notion we rely on, and the formal language we extend
with the novel speculative semantics (Section 2) and then related
work (Section 7) and conclusions (Section 8).

For space constraints, formal details of the semantics, auxiliary
lemmas and proofs can be found in the companion technical report.
Our code extension to Spectector will be open sourced.

2 BACKGROUND: 𝜇ASM, SPECULATIVE

SEMANTICS AND SECURITY DEFINITION

This section first describes the attacker model and the security
definition we consider (Section 2.1). Then it presents the syntax
(Section 2.2) and the semantics (Section 2.3) of 𝜇Asm, a simple
assembly-style language, followed by B, the semantics for specu-
lation over branch instructions (Section 2.4). Most of the notions
that we overview next are taken from Guarnieri et al. [17].

2.1 Attacker Model and Security Definition

We adopt a commonly-used attacker model [3, 9, 14, 16–18, 25, 30]:
a passive attacker observing the execution of a program through
events 𝜏 . These events, which we call observations, model timing
leaks through cache and control flow while abstracting away low-
level microarchitectural details.

Obs ::= load 𝑛 | store 𝑛 | pc 𝑛 | call 𝑓 | ret 𝑛 𝜏 ::= 𝜀 | Obs
| start𝑥 𝑛 | rlb𝑥 𝑛 𝜏 ::= ∅ | 𝜏 · 𝜏

The store 𝑛 and load 𝑛 events denote read and write accesses to
memory location 𝑛, so they model cache leakage. In contrast, pc ,
call 𝑓 , and ret 𝑛 events record the control-flow of the program.
The start𝑥 𝑛 and rlb𝑥 𝑛 observations denote the start and the
finish of a speculative transaction [17] (with identifier 𝑛) produced
by the speculative semantics 𝑥 (we often use 𝑥 to range over any
of the speculative semantics we define later).

An observation 𝜏 is either an event Obs or the empty observation
𝜀. Traces 𝜏 are sequences of observations; we indicate sequences of
elements [𝑒1; · · · ; 𝑒𝑛] as 𝑒 , and adding an element 𝑒 to 𝑒 as 𝑒 · 𝑒 .

The non-speculative projection ↾𝑛𝑠 [17] of a trace 𝜏 deletes all
speculative observations by removing all sub-traces enclosed be-
tween start𝑥 𝑛 and rlb𝑥 𝑛. The remaining trace, then, captures
all non-speculative observations.

With this trace model we can define the security property we
use in this paper: Speculative Non-Interference (SNI) [17]. Intuitively,
SNI requires that programs do not leak more information under the
speculative semantics than under the non-speculative semantics.

SNI is parametric in a policy 𝜙 and in the speculative semantics
𝑥 it uses. The policy 𝜙 describes the public/low information of the
program. We use the same policy 𝜙 as described by Guarnieri et al.
[17]: a list describing public registers and public memory locations.
Two configurations 𝜎1, 𝜎2 are called low-equivalent for a policy 𝜙 ,
written 𝜎1 ∽𝜙 𝜎2, if they agree on all register andmemory locations
in 𝜙 . The speculative semantics 𝑥 defines how the (speculative)
traces describing the program behaviour are generated. We indicate
that program 𝑝 generates trace 𝜏 from state 𝜎 with semantic 𝑥
as BehA𝑥 (𝑝, 𝜎)). We fix the maximal speculation window, i.e., the
maximum number of speculative instructions, to a global constant
𝜔 . We formalise several speculative semantics in later sections.

A program 𝑝 satisfies SNI (Definition 1) for a speculative se-
mantics 𝑥 iff any pair of low-equivalent initial configurations 𝜎1

and 𝜎2 for program 𝑝 that generate the same observations without
speculation events, then the two configurations generate the same
observations considering speculation events too.

Definition 1 (SNI). 𝑝 ⊢𝑥 SNI def
= ∀𝜎1, 𝜎2 if𝜎1 ∽𝜙 𝜎2 and BehA𝑥

(
𝑝, 𝜎1)

)
and BehA𝑥

(
𝑝, 𝜎2)

)
and 𝜏1↾𝑛𝑠 = 𝜏2↾𝑛𝑠 then 𝜏1 = 𝜏2.

2.2 𝜇Asm

(Programs) 𝑝 B 𝑛 : 𝑖 | 𝑝1;𝑝2 (Functions) F B ∅ | F ; 𝑓 ↦→ 𝑛

(Registers) 𝑥 ∈ Regs (Values) 𝑛, 𝑙 ∈ Vals = N ∪ {⊥}
(Expressions) 𝑒 B 𝑛 | 𝑥 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2

(Instructions) 𝑖 B skip | 𝑥 ← 𝑒 | load 𝑥, 𝑒 | store 𝑥, 𝑒 | jmp 𝑒

| beqz 𝑥, 𝑙 | 𝑥 𝑒′?←−− 𝑒 | spbarr | call 𝑓 | ret

𝜇Asm is an assembly-like language whose syntax is presented above.
𝜇Asm programs 𝑝 are sequences of mappings from natural numbers
𝑛 (i.e., the instruction address) to instructions 𝑖 or ⊥. Instructions
include skipping, register assignments, loads, store, indirect jumps,
branching, conditional assignments, speculation barriers, calls, and
returns. Instructions can contain expressions and values. The for-
mer come from the set Regs, containing register identifiers and
designated registers pc and sp modelling the program counter and
stack pointer respectively, while the latter come from the set Vals,
which includes natural numbers and ⊥.

2.3 Non-speculative Semantics of 𝜇Asm

𝜇Asm has a small-step operational non-speculative semantics that
describes how its programs execute. This semantics judgement is
(𝑝, 𝜎) 𝜏−→ (𝑝, 𝜎 ′) and it reads: “a program state ⟨𝑝, 𝜎⟩ steps to a new
program state ⟨𝑝, 𝜎 ′⟩ producing observation 𝜏”. Program states ⟨𝑝, 𝜎⟩
consist of the program 𝑝 and the configuration 𝜎 . The program 𝑝 is
used to look up the current instruction, whereas the configuration
𝜎 is used to read from/write to the register file 𝑎 and the memory
𝑚. Memories map addresses (which are natural numbers) to values
while registers map registers id to values.

Most of the rules of the semantics are standard and thus omitted,
we present selected rules below. The rules rely on the evaluation
of expressions (indicated as J𝑒K(𝑎) = 𝑣) where expression 𝑒 is
evaluated to value 𝑛 under register file 𝑎. In the rules, 𝑎[𝑥 ↦→ 𝑦],
where 𝑥 ∈ Regs ∪ N and 𝑦 ∈ Vals, denotes the update of a map
(memory or registers), whereas 𝑎(𝑥) denotes reading from a map.
Finally, 𝜎 (𝑥), where 𝑥 ∈ Regs and 𝜎 = ⟨𝑚,𝑎⟩, denotes 𝑎(𝑥).

(Store)

𝑝 (𝑎(pc)) = store 𝑥, 𝑒 𝑛 = J𝑒K(𝑎)

(𝑝, ⟨𝑚,𝑎⟩) store 𝑛−−−−−−−→ (𝑝, ⟨𝑚[𝑛 ↦→ 𝑎(𝑥)], 𝑎[pc ↦→ 𝑎(pc) + 1])⟩
(Beqz-Sat)

𝑝 (𝑎(pc)) = beqz 𝑥, ℓ 𝑎(𝑥) = 0

(𝑝, ⟨𝑚,𝑎⟩) pc ℓ−−−→ (𝑝, ⟨𝑚,𝑎[pc ↦→ ℓ])⟩
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(Call)

𝑝 (𝜎 (pc)) = call 𝑓 F (𝑓) = 𝑛

𝑎′ = 𝑎[pc ↦→ 𝑛, 𝑠𝑝 ↦→ 𝑎(𝑠𝑝) − 8] 𝑚′ = [𝑎′(𝑠𝑝) ↦→ 𝑎(pc) + 1]

⟨𝑝, ⟨𝑚,𝑎⟩⟩
call 𝑓
−−−−−−→ ⟨𝑝, ⟨𝑚′, 𝑎′⟩⟩
(Return)

𝑝 (𝜎 (pc)) = ret 𝑙 =𝑚(𝑎(𝑠𝑝))
𝑎′ = 𝑎[𝑝𝑐 ↦→ 𝑙, 𝑠𝑝 ↦→ 𝑎(𝑠𝑝) + 8]

⟨𝑝, ⟨𝑚,𝑎⟩⟩ ret 𝑙−−−−→ ⟨𝑝, ⟨𝑚,𝑎′⟩⟩
Conditionals emit observations recording the outcome of the branch
(Rule Beqz-Sat), while memory operations emit observations record-
ing the accessed memory (Rule Store). A call to function 𝑓 is a jump
to the function’s starting line number𝑛, as indicated by the function
map F . A call stores the return address on the stack at the value of
the stack pointer sp and decreases sp (Rule Call). A return does the
inverse: it looks up the return address via the stack pointer sp and
then increases the stack pointer (Rule Return).

The non-speculative behaviour Beh𝑁𝑆 (𝑝) of a program 𝑝 is the set
of all traces generated from an initial state until termination using
the reflexive-transitive-closure of the non-speculative semantics.

2.3.1 Symbolic semantics. Following [17], we introduce a symbolic
non-speculative semantics −→S that is at the basis of Spectector’s
analysis. This symbolic semantics differs from −→ in two key ways:
(1) concrete configurations 𝜎 are replaced with symbolic configura-
tions 𝜎S , and (2) path condition constraints are generated in the
standard way and they are encoded as part of the symbolic trace 𝜏 .
Given a symbolic trace 𝜏 , 𝜇 (𝜏) denotes the set of all concrete traces
that can be obtained by concretising 𝜏 with values consistent with
𝜏 ’s path condition. As before, we can introduce the symbolic non-
speculative behavior Beh𝛼

𝑁𝑆
(𝑝) of a program 𝑝 , and 𝜇 (Beh𝛼

𝑁𝑆
(𝑝)) is

the set of all concrete traces derived from symbolically executing 𝑝 .
As proved by Guarnieri et al. [17], Beh𝑁𝑆 (𝑝) = 𝜇 (Beh𝛼

𝑁𝑆
(𝑝)).

2.4 B: Speculating Over Branch Instructions

To model and reason about the effects of speculation induced by the
branch predictor, Guarnieri et al. [17] propose the three semantics:
an always-mispredict semantics (Section 2.4.1), an oracle semantics
(Section 2.4.2), and a symbolic semantics (Section 2.4.3). The always-
mispredict semantics, our main focus, is a safe overapproximation
of the oracle one, which depends on a prediction oracle that models
the branch predictor. Finally, the symbolic semantics, which is used
in Spectector, is the symbolic version of the always-mispredict
semantics. We summarize the properties of these three semantics in
Section 2.4.4. With a slight abuse of notation, we use B to indicate
both the three speculative semantics, and the AM one alone (since
it is the most relevant one).

2.4.1 Always-mispredict (AM) Semantics. At every branch instruc-
tion, the always-mispredict semantics first speculatively executes
the wrong branch for a fixed number of steps and then continues
with the correct one. As a result, this semantics is deterministic and
agnostic to implementation details of the branch predictor [17].

The state ΣB of theAM semantics is stack of speculative instances
ΦB where reductions happen only on top of the stack. Whenever
we start speculating, a new instance is pushed on top of the stack

(Rule B:AM-branch). The instance is then popped when specula-
tion ends (Rule B:AM-Rollback). Each instance ΦB contains the
program 𝑝 , a counter ctr that uniquely identifies the speculation
instance, a configuration 𝜎 , and the remaining speculation window
𝑛 describing the number of instructions that can still be executed
speculatively (or ⊥ when no speculation is happening).

Spec. States ΣB ::= ΦB Spec. Instances ΦB ::= ⟨𝑝, ctr, 𝜎, 𝑛⟩

This judgement for the AM semantics is: ΣB
𝜏

B Σ′B.

(B:AM-branch)

𝑝 (𝜎 (pc)) = beqz 𝑥, ℓ (𝑝, 𝜎) 𝜏−→ (𝑝, 𝜎 ′) 𝑗 =𝑚𝑖𝑛(𝜔,𝑛)
𝜎 ′′ = 𝜎 [pc ↦→ 𝑙 ′] 𝜏 = 𝜏 · startB ctr · pc 𝑙

𝑙 ′ =

{
𝜎 (pc) + 1 if 𝜎 ′(pc) = 𝑙

𝑙 if 𝜎 ′(pc) ≠ 𝑙

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

B ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′, 𝑗⟩
(B:AM-NoSpec)

𝑝 (𝜎 (pc)) ∉ [beqz 𝑥, ℓ ; Z] 𝜎
𝜏−→ 𝜎 ′

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

B ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩
(B:AM-Rollback)

𝑛′ = 0 or p is stuck

⟨𝑝, ctr, 𝜎, 𝑛⟩ · ⟨𝑝, ctr ′, 𝜎 ′, 𝑛′⟩
rlbB ctr

B ⟨𝑝, ctr ′, 𝜎, 𝑛⟩
As mentioned, Rule B:AM-branch pushes a new speculative

state with the wrong branch, followed by the state with the cor-
rect one. When speculation ends, Rule B:AM-Rollback pops the
related state. All other instructions are handled by delegating back
to the non-speculative semantics (Rule B:AM-NoSpec). Rule B:AM-
NoSpec also contains a novel element, the parameter 𝑍 (in gray),
which indicates other instructions that are skipped. 𝑍 is part of our
composition framework and we defer to Section 4.1 an in-depth
explanation of its role.

The always-mispredict behaviour BehAB (𝑝) of a program 𝑝 is
the set of all traces generated from an initial state until termination

using the reflexive-transitive closure of
𝜏

B.

2.4.2 Oracle Semantics. The oracle semantics explicitly models the
branch predictor using an oracle OB that relies on the branching
history ℎ of the program 𝑝 to predict branch outcomes.

Here, we quickly summarize the key differences with the AM se-
mantics; see [17] for the full definition. First, speculative instances
are extended to track the branching history ℎ. Second, when exe-
cuting a beqz instruction, the oracle is used to predict the branch
outcome and to create a new speculative instance that is pushed
on top of the stack. Finally, whenever the speculation window of
an instance anywhere on the stack reaches 0, the execution needs
to be rolled back or committed. Thus, committing and rolling back
speculations happen along the stack. Rolling back deletes all the
instances above the rolled back instance, while committing updates
the configuration, the counter and the branching history ℎ of the
instance below and the committed instance is deleted.

Similarly to before, the behaviour BehOB (𝑝) of a program 𝑝 under
the oracle semantics is the set of all traces generated from an initial
state until termination.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.4.3 Symbolic Semantics. The symbolic speculative semantics
S
B works on symbolic speculative states ΣSB and is used in the

implementation of Spectector [17]. The only two differences w.r.t.
the AM semantics are that (1) concrete states ΣB are replaced with
symbolic states ΣSB , which store symbolic configurations𝜎S instead
of concrete configurations𝜎 , and (2) the semantics uses the symbolic
non-speculative semantic instead of the concrete one.

The rules of the symbolic semantics look like those of the AM
one and the behaviour BehSB (𝑝) of a program 𝑝 is defined as for the
AM semantics.

2.4.4 Properties of B. Guarnieri et al. [17] prove several proper-
ties relating the three semantics we presented above, which were
instrumental in proving Spectector’s security. We recap these
properties in a single definition (Definition 2), which we will prove
for all semantics we present in this paper. In the definition we in-
dicate that a program 𝑝 satisfies SNI w.r.t. the oracle semantics as
𝑝 ⊢OB SNI.

Definition 2 (Secure Speculative Semantics). A semantics 𝑥 is
secure (denoted ⊢ 𝑥 SSS) if:

• Oracle Overapproximation: ∀O . 𝑝 ⊢O𝑥 SNI iff 𝑝 ⊢𝑥 SNI
• Symbolic Consistency: BehA𝑥 (𝑝) = 𝜇 (BehS𝑥 (𝑝))
• NS Consistency: BehA𝑥 (𝑝)↾𝑛𝑠 = Beh𝑁𝑆 (𝑝) = BehO𝑥 (𝑝)↾𝑛𝑠

Intuitively, a secure speculative semantics is made of three com-
ponents, an AM, an oracle and a symbolic semantics. First, the
AM semantics must overapproximate the oracle semantics, so it is
enough to check a program 𝑝 for SNI w.r.t. the AM semantics [17,
Theorem 1]. Then, since Spectector uses the symbolic semantics
in the implementation, the symbolic semantics must be faithful
w.r.t. the AM one [17, Proposition 2]. Finally, both the AM and
the Oracle semantics can recover the non-speculative behaviour of
a program 𝑝 by applying the non-speculative projection on their
traces [17, Propositions 1,3]. So we can execute 𝑝 only once to get
the (non-)speculative behaviour of that program run.

Theorem 1 states that B is a secure speculative semantics.

Theorem 1 (B is SSS [17]). ⊢ B SSS

3 SPECULATION ON STORES AND RETURNS

This section defines S and R, two novel speculative semantics
that model the effects of speculative execution over store (Sec-
tion 3.1) and return instructions (Section 3.2). Similarly to B,
for each speculation source we define three semantics: an always-
mispredict semantics, an oracle semantics, and a symbolic seman-
tics. As before, we will mostly focus on the always-mispredict
semantics, which safely over-approximates the oracle one, and we
will use its symbolic version to reason about leaks using Spectec-
tor. Most formal details, as well as proofs, can be found in the
companion technical report.

3.1 S: Speculation on Store Instructions

Modern processors write stores to mainmemory asynchronously to
reduce delays caused by thememory subsystem. For this, processors
employ a Store Queue where not-yet-committed store instructions
are stored before being permanently written to memory. When
executing a load instruction, the processor first inspects the store

queue for a matching memory address. If there is a match, the
value is retrieved from the store queue (called store-to-load forward-
ing), and otherwise the memory request is issued to the memory
subsystem. To speed up computation, processors employ memory
disambiguation predictors to predict if memory addresses of loads
and stores match. Since the prediction can be incorrect, processors
may speculatively bypass a store instruction in the store queue
leading to a load instruction retrieving a stale value.

Example 1 (Store Speculation Vulnerability). Consider the exam-
ple in Listing 2:

Listing 2: Code vulnerable to store speculation.

1 p = &secret;
2 p = &public;
3 temp = B[*p * 512];

Assume that the store instructions in Line 1 and Line 2 are still in the
store queue and not yet committed tomainmemory. Amisprediction
of the memory disambiguator for the load instruction in Line 3
causes it to bypass the store instruction in Line 2 and retrieve the
value from the stale store instruction in Line 1. The speculative
access of the memory is then leaked into the microarchitectural
state by the array access into B.

This section first introduces the extended trace model required
to talk about speculation over store instructions (Section 3.1.1).
Next, it presents the speculative AM semantics (Section 3.1.2) and
the corresponding oracle semantics (Section 3.1.3) and symbolic
semantics (Section 3.1.4). This semantics is a secure speculative
semantics (Theorem 2).

Theorem 2 (S is SSS). ⊢ S SSS

3.1.1 Extended Trace Model. We extend the trace model Obs with
startS 𝑛 and rlbS 𝑛 observations to mark start and end of a spec-
ulative transaction 𝑛 started by a store bypass. Furthermore, we
add a skip 𝑛 observation which denotes that a store instruction at
program counter 𝑛 was skipped.

ObsS ::= Obs | startS 𝑛 | rlbS 𝑛 | skip 𝑛

3.1.2 Speculative Semantics. The overall structure of the S se-
mantics is similar to that of B: speculative execution is modeled
using a stack of speculative states, instructions that do not start
speculative transactions are executed by delegating back to the
non-speculative semantics, and speculative transactions are rolled
back whenever the speculative window reaches 0. The key differ-
ence between S and B is the differing source of speculation:
branches for B and stores for S.

The states used for the speculative semantics of S are similar
to the states of B:

Spec. States ΣS ::= ΦS Spec. Instance ΦS ::= ⟨𝑝, ctr, 𝜎, 𝑛⟩

Judgement ΣS
𝜏

S Σ′S describes how program state ΣS steps to
Σ′S emitting observation 𝜏 . Similar to B, reductions only happen
on top of the stack.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(S:AM-Store)

𝑝 (𝜎 (pc)) = store 𝑥, 𝑒 (𝑝, 𝜎) 𝜏−→ (𝑝, 𝜎 ′) 𝑗 =𝑚𝑖𝑛(𝜔,𝑛)
𝜎 ′′ = 𝜎 [pc ↦→ 𝜎 (pc) + 1] 𝜏 ′ = 𝜏 · skip 𝜎 (pc) · start ctr

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏 ′

S ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′, 𝑗⟩

To model the effect of bypassing a store instruction, Rule S:AM-
Store skips the store instruction by increasing the program counter
without updating the memory and starts a new speculative trans-
action by pushing a new speculative instance on top of the state.
A load instruction loading from the same memory location as the
skipped store instruction loads a stale value.

Similarly to B, all instructions that are not store instructions
are handled by delegating back to the non-speculative semantics
and when the speculation window reaches 0, a roll back occurs that
pops the topmost speculative instance from the stack.

The behaviour BehAS (𝑝) is the set of all traces that are generated
from an initial state until termination using the reflexive-transitive

closure of
𝜏

S.

3.1.3 Oracle Semantics. Instead of skipping every store instruction
speculatively, the oracle semantics employs an oracleO that decides
if the store instruction should be skipped or not. Similar to before,
the behaviour BehOS (𝑝) of a program 𝑝 is the set of all traces starting
from an initial state until termination using the reflexive-transitive
closure of the oracle semantics.

3.1.4 Symbolic Semantics. Similarly to S
B , the symbolic specula-

tive semantics S
S requires two changesw.r.t. the always-mispredict

one: concrete configurations 𝜎 and the non-speculative semantics
are replaced by symbolic configurations 𝜎S and the symbolic non-
speculative semantics respectively. The behaviour BehSS (𝑝) of a
program 𝑝 is the set of all traces starting from an initial state until
termination using the reflexive-transitive closure of the symbolic
semantics.

3.2 R: Speculation on Return Instructions

The return-stack-buffer (RSB) is a small stack used by the CPU to
save return addresses upon call instructions. These saved return
addresses are speculatively used when the function returns because
that is faster than looking up the return address on the stack (stored
in main memory). This works well because return addresses rarely
change during function execution. However, mispredictions lead
to speculative execution which can be exploited by an attacker.

Example 2 (Return Speculation Vulnerability). Consider the ex-
ample in Listing 3 and recall that register sp is used to find return
addresses saved on the stack.

Listing 3: A program exploiting RSB speculation.

1 Manip_Stack:
2 sp ←− sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 load eax , secret
7 load edx , eax
8 ret

9 Main:
10 call Speculate
11 skip

Each function call pushes a return address on the stack and decre-
ments the sp register. After reaching the function Manip_Stack in
line 2 the sp register is incremented. Thus, sp points to the previ-
ous return address on the stack, and the non-speculative execution
continues in Main and terminates. However, because the return
address of the call in line 5 is line 6 and is on top of the RSB, the
CPU speculatively uses this return address and execution jumps to
line 6; thus, the secret is leaked.

This section describes the AM semantics (Section 3.2.1), the
Oracle semantics (Section 3.2.2), and the symbolic semantics (Sec-
tion 3.2.3). Then, it discusses formalising different implementations
of the RSB in the CPU (Section 3.2.4). This semantics is a secure
speculative semantics (Theorem 3).

Theorem 3 (R is SSS). ⊢ R SSS

3.2.1 Speculative Semantics. Unlike before, the state of R con-
tains a model of the RSB which is used to retrieve return addresses
instead of relying on the stack. Thus, speculative instances of R
are extended with an additional entryR for tracking the RSB, whose
size is limited by a global constant R𝑠𝑖𝑧𝑒 denoting the maximal RSB
size. A speculative instance ΦR now consists of the program 𝑝 , the
counter ctr , the configuration 𝜎 , the speculation window 𝜔 and the
RSB R. As before, a state ΣR is a stack of speculative instances ΦR.

Spec. States ΣR ::= ΦR Spec. Instance ΦR ::= ⟨𝑝, ctr, 𝜎,R, 𝑛⟩

As before, the small-step operational semantics ΣR
𝜏

R ΣR, reduc-
tions happen at the top of the stack.

(R:AM-Ret-Spec)

𝑝 (𝜎 (pc)) = ret 𝜎
𝜏−→ 𝜎 ′

R = R′ · 𝑙 𝑗 =𝑚𝑖𝑛(𝜔,𝑛) 𝑙 ≠𝑚(𝑎(sp))
𝜎 ′′ = 𝜎 [pc ↦→ 𝑙, sp ↦→ 𝑎(sp) + 8] 𝜏 = 𝜏 · startR ctr · ret 𝑙

⟨𝑝, ctr, 𝜎,R, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′,R′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′,R′, 𝑗⟩
(R:AM-Call)

𝑝 (𝜎 (pc)) = call 𝑓 𝜎
𝜏−→ 𝜎 ′

R′ = R · (𝑎(pc) + 1) |R| < R𝑠𝑖𝑧𝑒

⟨𝑝, ctr, 𝜎,R, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′,R′, 𝑛⟩
During call instructions (Rule R:AM-Call), the return address is

pushed on top of the RSB (if there is space available) and during
ret instructions, the return address stored on the RSB is used if the
entry on top of the RSB is different from the one stored on the stack
(Rule R:AM-Ret-Spec). Then, the rule creates a new speculative
instance that uses the return address from the RSB R. Note that
speculation only happens when the return address from the RSB
differs from the one on the stack (stored in𝑚(𝑎(sp))).

Here, we overview how our semantics behaves with an emp-
ty/full RSB; full formalization is available in the technical report.
Intuitively, whenever the RSB is empty, executing a ret instruction
does not cause speculation and we return to the address pointed

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

by sp. In contrast, whenever the RSB is full, executing a call in-
struction does not add entries to the RSB, i.e., we model a so-called
acyclic RSB.1

The behaviour BehAR (𝑝) is is the set of all traces generated from
an initial state until termination using the reflexive-transitive clo-
sure of R.

3.2.2 Oracle Semantics. Unlike before, the oracle cannot decide
the outcome of the ret instruction, because the CPU always uses
the return address stored in the RSB (if there is one) and it does not
speculate otherwise [9]. The only thing the oracle decides here is
the size of the speculation window 𝜔 .

3.2.3 Symbolic Semantics. Just as before, the symbolic specula-
tive semantics S

R replaces concrete configurations and the non-
speculative semantics with symbolic configurations and the sym-
bolic non-speculative semantics respectively. We remark that the
program counter pc is always concrete in the symbolic non-speculative
semantics [17]. As a result, the RSB only contains concrete values
(and return addresses). The behaviour BehSR (𝑝) of a program 𝑝 is
the set of all traces starting from an initial state until termination
using the reflexive-transitive closure of the symbolic semantics

3.2.4 Different Behaviours of Empty and Full RSBs. Modern CPUs
use different RSBs implementations that differ in the way they
handle under- and overflow, i.e., when the RSB is empty or full [23].
For example, cyclic RSB implementations overwrite old entries
when the RSB is full. Alternatively, CPUs can fallback to other
predictors (like the indirect branch predictor) to predict return
addresses whenever the RSB is empty.

In our model, the RSB is not cyclic and there is no speculation
when the RSB is empty (Rule R:AM-Ret-Empty).

(R:AM-Ret-Empty)

𝑝 (𝜎 (pc)) = ret 𝜎
𝜏−→ 𝜎 ′

⟨𝑝, ctr, 𝜎, ∅, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′, ∅, 𝑛⟩
We remark that extending R to support different RSBs imple-

mentations can be done with minimal effort.

4 A FRAMEWORK FOR COMPOSING

SPECULATIVE SEMANTICS

The presented speculative semantics allow us to verify programs
for violations of SNI but they do not capture the vulnerability in
Listing 1, as the traces of Example 3 show.

Example 3 (SNI for Listing 1,). The traces generated are:

𝜏1
B = 𝜏2

B := store 𝑝 · store 𝑝 · startB 0 · load 𝑝
· load 𝐴 + 𝑝𝑢𝑏𝑙𝑖𝑐 · rlbB 0 · pc 9

𝜏1
S = 𝜏2

S := ... · store 𝑝 · startS 1 · skip 1 · pc ⊥ ·
rlbS 1 · pc ⊥

The program in Listing 1 seems secure since there is no secret value
leaked in the speculative transaction; thus the program satisfies
SNI for S and R in isolation. As we show later, the program
in Listing 1 is not secure, but we need our combined semantics to
point out this vulnerability, as we show in Section 5.3.
1We follow the way AMD processors handle this kind of speculation [23].

The vulnerability only appears when the branch predictor (Sec-
tion 2.4.1) and the memory disambiguator (Section 3.1.2) are used
together. Intuitively, we know that the CPU uses all the predictors
described here (and many others as well) at the same time. Thus,
we should not only focus on these different attacks in isolation but
we need to look at their combinations as well. That is, we need is a
way to compose the different semantics into new semantics that
can detect these combined vulnerabilities.

This section presents a novel, general framework for composing
two speculative semantics 𝑥 and 𝑦 to allow for speculation from
both sources 𝑥 and 𝑦. The speculative semantics 𝑥 and 𝑦 are also
called the source semantics of the composition. Thus, this section
first introduces the new composed semantics, which consists of
the always-mispredict, the oracle and the symbolic semantics (Sec-
tion 4.1). Finally, the section define what it means to be a proper
composition by identifying key correctness properties (Section 4.2).
From this definition, we can derive corollaries like that SNI of the
combination implies SNI of both of its parts.

New Notation. The states Σ𝑥𝑦 , instancesΦ𝑥𝑦 and the trace model
Obs𝑥𝑦 are defined as the union of the source parts. Furthermore,
we define a projection function ↾𝑥𝑦 and two projections ↾𝑥𝑥𝑦 and
↾
𝑦
𝑥𝑦 that return the first and second projection of the pair from ↾𝑥𝑦 .

These functions are lifted to states by applying them pointwise:

Obs𝑥𝑦 := Obs𝑥 ∪ Obs𝑦 Φ𝑥𝑦 := Φ𝑥 ∪ Φ𝑦 Σ𝑥𝑦 := Σ𝑥 ∪ Σ𝑦

↾𝑥𝑦 : Φ𝑥𝑦 ↦→ (Φ𝑥 ,Φ𝑦) ↾𝑥𝑥𝑦 : Φ𝑥𝑦 ↦→ Φ𝑥 ↾
𝑦
𝑥𝑦 : Φ𝑥𝑦 ↦→ Φ𝑦

For example, the ΦS+R states resulting of the union of ΦS and
ΦR states (from Section 3.1.2 and Section 3.2.1 respectively), is ⟨𝑝,
ctr, 𝜎,R, 𝑛⟩, as it contains all the common elements (the program
𝑝 , the counter ctr , the state 𝜎 , and the speculation count 𝑛), plus
the return stack buffer R that belongs to ΦR only. Taking the ·↾SS+R
of a ΦS+R state returns the ΦS subpart (i.e., all but the return stack
buffer).

We overload ↾𝑥𝑥𝑦 and ↾𝑦𝑥𝑦 to also work on traces 𝜏 . The projection
on traces deletes all speculative transactions (marked by start𝑦 id
and rlb𝑦 id) that are not generated by the source semantics 𝑥 . The
definition of ↾𝑦𝑥𝑦 is similar by replacing 𝑥 with 𝑦:

𝜀↾𝑥𝑥𝑦 = 𝜀 (𝜏 · 𝜏)↾𝑥𝑥𝑦 = 𝜏 · (𝜏)↾𝑥𝑥𝑦
(start𝑦 id · · · · rlb𝑦 id · 𝜏)↾𝑥𝑥𝑦 = 𝜏↾𝑥𝑥𝑦

We indicate source semantics for𝑥 and𝑦 as 𝑥 and 𝑦 respectively
and use 𝑥𝑦 to indicate their composed semantics.

4.1 Combined Speculative Semantics

The idea behind the combined semantics is to delegate back to the
source semantics of 𝑥 and𝑦 to allow for speculation on both sources.
This, in turn, yields proof reuse and is encapsulated in the two core
rules below:

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(AM-x-step)

Φ𝑥𝑦↾
𝑥
𝑥𝑦

𝜏 𝑍𝑥𝑦↾
𝑥
𝑥𝑦

𝑥 Φ
′
𝑥𝑦↾

𝑥
𝑥𝑦

Φ𝑥𝑦
𝜏 𝑍𝑥𝑦

𝑥𝑦 Φ
′
𝑥𝑦

(AM-y-step)

Φ𝑥𝑦↾
𝑦
𝑥𝑦

𝜏 𝑍𝑥𝑦↾
𝑦
𝑥𝑦

𝑦 Φ
′
𝑥𝑦↾

𝑦
𝑥𝑦

Φ𝑥𝑦
𝜏 𝑍𝑥𝑦

𝑥𝑦 Φ
′
𝑥𝑦

The semantics does a step by either delegating back to the 𝑥
source semantics (Rule AM-x-step) or to the 𝑦 one (Rule AM-y-
step). Each rule relies on metaparameter 𝑍𝑥𝑦 , which is a pair of
two metaparameters 𝑍𝑥𝑦 := (𝑍𝑥 , 𝑍𝑦) — one for 𝑥 and one for 𝑦. We
overload the projections ↾𝑥𝑥𝑦 and ↾𝑦𝑥𝑦 to extract he corresponding
metaparameter from 𝑍𝑥𝑦 .

The role of 𝑍 is central to making the composed semantics work
as expected, so now we explain 𝑍 in detail. If we were to remove
metaparameter𝑍 and combine B and S into B+S, consider the
execution of the beqz instruction in Line 4 in Listing 1. Without 𝑍 ,

B+S can use Rule AM-x-step and delegate back to B for beqz in-
structions, creating a new speculative transaction. However, B+S
can also use Rule AM-y-step, because beqz instructions are also
handled by S. Unfortunately, this would lead to no speculative
transaction because speculation happens only on store instructions.
Intuitively, B+S should delegate back to B, so Rule AM-y-step
should not be applicable.

With metaparameter 𝑍 , we can instantiate it for B+S as 𝑍B+S =

([store], [beqz]), so that its projections are 𝑍B = [store] and
𝑍S = [beqz]. Now, B+S can only apply Rule AM-x-step on the
beqz of Line 4, because 𝑍S ensures that S can not execute beqz
instructions, as depicted in the full rule for S below (where we
indicate the instructions derived from 𝑍 in blue).

(S:AM-NoSpec)

𝑝 (𝜎 (pc)) ∉ [store 𝑥, 𝑒; beqz 𝑥, ℓ] 𝜎
𝜏−→ 𝜎 ′

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

S ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩

Having clarified the intuition behind the semantics, we can de-
fine the behaviour BehA𝑥𝑦as the set of all traces generated from an
initial state until termination using the reflexive-transitive closure

of
𝜏

𝑥𝑦 .

4.1.1 Oracle Combination. Instead of using one oracle, the combi-
nation uses a pair of oracles, one from each source.When delegating
back to either source, the correct oracle of the source is handed
over to the source semantics.

4.1.2 Symbolic Combination. Instead of using the AM semantics
for delegation, the combined symbolic semantics S

𝑥𝑦 uses the
symbolic source semantics for delegation. Furthermore, the new
notation (union, projections) is lifted to the symbolic combination
to create the symbolic states ΣS𝑥𝑦 . The behaviour BehS𝑥𝑦 (𝑝) of pro-
gram 𝑝 is the set of all traces generated from an initial state until
termination using the reflexive-transitive closure of the symbolic
semantics.

4.2 Properties of Composition

We now illustrate the benefits of our composition framework. For
this, we first introduce a notion of well-formed composition (Sec-
tion 4.2.1), which intuitively tells when a combined semantics
“makes sense”. Then, we show that for well-formed compositions, if
the source semantics are SSS, then the combined semantics is also
SSS (Section 4.2.2). Note that since we prove these properties in the
framework, any well-formed composition is also SSS for free. This
proof reuse and extensibility is the key advantage of our frame-
work over having ad-hoc semantics combining multiple speculation
sources, which requires one to manually prove the SSS results we
instead obtain for free.

4.2.1 Well-formed Compositions. The well-formedness conditions
for the composition ensures that the delegation is done properly
(Definition 3), they are the minimal set of assumptions that let
us derive SSS of the combined semantics for free. For this, the
well-formedness conditions attest that (1) the composed semantics
is deterministic, and (2) the composed semantics does not hide
observations produced by its components.

Point (3) is fairly technical, and to present it, we need to mention
a technical detail: the state relation (denoted ≈𝑥𝑦 and defined in
our technical report) between the AM states (Σ𝑥𝑦) and the Oracle
ones (𝑋𝑥𝑦). Intuitively, two states are related if they are the same or
if one is waiting on a speculation of the other to end. Then, point
(3) ensures that whenever we start from related states (Σ𝑥𝑦 ≈𝑥𝑦
𝑋𝑥𝑦) and we do one or more steps of the AM composed semantics

(Σ𝑥𝑦
𝜏 ∗

𝑥𝑦 Σ′𝑥𝑦), then we can always find a related state (Σ′𝑥𝑦 ≈𝑥𝑦
𝑋 ′𝑥𝑦) that is reachable by performing one or more steps of the

composed oracle semantics (𝑋𝑥𝑦
𝜏 ′
O𝑥𝑦
𝑥𝑦
∗ 𝑋 ′𝑥𝑦). This fact is used

when proving that SNI of a program under the composed AM
semantics implies SNI under the composed oracle semantics (point
1 of Definition 2). Thus, it is not important for the AM and the
Oracle semantics to produce the same traces, just that the two AM
traces and the two Oracle traces are pairwise equivalent – which
follows from the state relation.

Definition 3 (Well-formed composition). A composition 𝑥𝑦 of
two speculative semantics 𝑥 and 𝑦 is well-formed, denoted with
⊢ 𝑥𝑦 : WFC if:

(1) (Confluence) Whenever Σ𝑥𝑦
𝜏

𝑥𝑦 Σ′𝑥𝑦 and Σ𝑥𝑦
𝜏

𝑥𝑦

Σ′′𝑥𝑦 , then Σ′𝑥𝑦 = Σ′′𝑥𝑦 .
(2) (Projection preservation) For all programs 𝑝 , BehA𝑥 (𝑝) =

BehA𝑥𝑦 (𝑝)↾𝑥𝑥𝑦 and BehA𝑦 (𝑝) = BehA𝑥𝑦 (𝑝)↾
𝑦
𝑥𝑦 .

(3) (Relation preservation) If Σ𝑥𝑦 ≈𝑥𝑦 𝑋𝑥𝑦 and Σ𝑥𝑦
𝜏 ∗

𝑥𝑦 Σ′𝑥𝑦

then 𝑋𝑥𝑦
𝜏 ′
O𝑥𝑦
𝑥𝑦
∗ 𝑋 ′𝑥𝑦 and Σ′𝑥𝑦 ≈𝑥𝑦 𝑋 ′𝑥𝑦 .

Since the combined semantics delegates back to its sources, it
becomes non-deterministic. Confluence is needed to ensure the
non-determinism is not harmful. Consider the assignment in Line 1
in Listing 1. B+S can delegate to either B or S to reduce the
assignment. If the combined semantics is Confluent then it does
not matter which source rule executes the assignment in Line 1 in
Listing 1, the semantics reaches the same state either way.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

The projection preservation condition, instead, ensures that the
combined semantics is not hiding or forgetting traces of its sources.
Any observable emitted by a source semantics must be propagated
to the combined one, this is also the reason why Obs𝑥𝑦 is defined
as the union of the source Obs.

4.2.2 Free Theorems. The key result of our framework is that well-
formed compositionswhose source are secure speculative semantics
(SSS) are also SSS (Theorem 4).

Theorem 4 (𝑥𝑦 is SSS). if ⊢ 𝑥 SSS and ⊢ 𝑦 SSS and ⊢ 𝑥𝑦 :
WFC then ⊢ 𝑥𝑦 SSS.

As a corollary of Theorem 4, we obtain that the security of well-
formed compositions is related to the security of their components
(Theorem 5). In particular, whenever a program is insecure w.r.t. one
of the components, then it is insecure w.r.t. the composed semantics.
Dually, if a program is secure w.r.t. the composed semantics, then it
is secure w.r.t. the single components. Note, however, that there are
programs that are secure for the single components but insecure
w.r.t. the composed semantics like Listing 1.

Theorem 5 (Combined SNI Preservation). If ⊢ 𝑥𝑦 : WFC
and 𝑝 ⊬𝑥 SNI or 𝑝 ⊬𝑦 SNI, then 𝑝 ⊬𝑥𝑦 SNI.

If ⊢ 𝑥𝑦 : WFC and 𝑝 ⊢𝑥𝑦 SNI, then 𝑝 ⊢𝑥 SNI and 𝑝 ⊢𝑦 SNI.

Our free theorems have an immediate practical impact on Spec-
tector. Note in fact that (1) Spectector’s security analysis relies
on the symbolic semantics, (2) the source symbolic semantics B,

S, and R are SSS, (3) well-formed compositions are also SSS,
and (4) the composition of B, S, and R are well-formed. So,
the Spectector security analysis equipped with any combination
of the B, S, and R produces sound results, i.e., whenever the
tool proves that a program is leak-free then the program satisfies
SNI. So, the next section describes all the compositions and proves
they are well-formed, while the section thereafter describes their
implementation in Spectector.

5 INSTANTIATING OUR FRAMEWORK

This section describes all possible combinations of the speculative
semantics B, S, and R: S+R (Section 5.1), B+R (Section 5.2),

B+S (Section 5.3), and B+S+R (Section 5.4). For each of them, we
overview how the combined always-mispredict semantics behave
using concrete examples and we prove that the combined semantics
is well-formed, i.e., it satisfies Definition 3.

In the following, we describe in detail how the S+R semantics
can be instantiated as part of our framework; the other combina-
tions can be instantiated similarly and we only provide a higher-
level description. We remark that the traces associated with the
code snippets in this section have been computed using our Coq
executable composed semantics. Due to the length of these traces,
here we elide uninteresting observations.

5.1 S+R Composition

To combine semantics using our framework, we need to define the
states, observations, and metaparameter 𝑍S+R for the composed
semantics S+R. The combined state ΣS+R is the union of the states
ΣS and ΣR; thus it contains the RSB R as well.

Spec. States ΣS+R ::= ΦS+R Spec. Instance ΦS+R ::= ⟨𝑝, ctr, 𝜎,R, 𝑛⟩

The union ObsS+R of the trace models ObsS and ObsR is defined as:
ObsS+R ::= startS 𝑛 | startR 𝑛 | rlbS 𝑛 | rlbR 𝑛 | skip 𝑛 | ...

To define the metaparameter 𝑍S+R, we need to identify, for each
component semantics, the instructions that are related with spec-
ulative execution. For S, the only instruction associated with
speculative execution is store, since the semantics can only spec-
ulative bypass stores. For R, even though the semantics specu-
lates only over ret instructions, call instructions also affect spec-
ulative execution since R pushes return addresses onto the R
when executing call. Therefore, we set the metaparameter 𝑍S+R to
([call, ret], [store]). This ensures that in the combined semantics

S+R, store instructions are only executed by delegating back to
[call,ret]
S and similarly, call and ret instructions are only executed

by delegating back to [store]
R .

Theorem 6 states that combining S and R in the way de-
scribed above results in a well-formed composition. Given that S

and R are both SSS (Theorem 2 and Theorem 3), we can derive
“for free” that S+R is also SSS by applying Theorem 4.

Theorem 6 (Well-formed Composition S+R). ⊢ S+R :
WFC

Let us now informally argue why Theorem 6 holds. Intuitively,
Confluence follows from the fact that both S and R delegate
back to the non-speculative semantics for instructions not related
to speculation. Since instructions related to speculation are already
restricted by the metaparameter 𝑍S+R, we only need to show Con-
fluence for those instructions not related to speculation. Because
the non-speculative semantics is deterministic, we can derive Con-
fluence for instructions not related to speculation.

For the Projection preservation, the composed semantics allows
nesting of different speculative transactions i.e., the nesting of spec-
ulative transactions for store and ret instructions. Despite the nest-
ing, these transactions are still fully explored — similar to what the
corresponding source semantics would do.

Listing 4 presents a program that contains a leak that can be
detected only by S+R but not by its components S and R.

Listing 4: S+R example

1 Manip_Stack:
2 sp ←− sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 store secret , p
7 store pub , p
8 load eax , p
9 load edi , eax
10 ret
11 Main:
12 call Speculate
13 skip

In Listing 4, execution starts on Line 12 by calling the function
𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑒 and it continues at Line 5. Next, the function𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘
is called and the stack pointer sp is incremented (Line 2). This mod-
ifies the return address of the function𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 to now point

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

to Line 13 (the return address of the call to 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑒). Under R,
mispredicting the return address of 𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 using the RSB
leads continuing the execution at Line 6. However, the store in-
structions in Line 7 overwrites the secret value stored in Line 6.
Then, the load instructions in Line 8 and Line 9 emit only public val-
ues. As a result, no secret is leaked and speculation ends. Similarly,
under S, speculation over store bypasses has no effect in Listing 4
because the store instruction in Line 6 is never reached and func-
tion𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 returns to Line 13. Therefore, the leak in missed
under S and R, i.e., Listing 4 ⊢S SNI and Listing 4 ⊢R SNI.

However, following the combined semantics S+R, the store
instruction on Line 7 is now skipped and when returning from func-
tion𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 execution speculatively continues from Line 8.
Now, the load instructions are executed and the secret is leaked, as
shown in the traces below. Since secret is a high value, we can find
two low-equivalent configurations 𝜎1, 𝜎2 that differ in the value
of secret. This means we can find two traces () that differs in the
observation load 𝑠𝑒𝑐𝑟𝑒𝑡 (highlighted in gray). Thus, the program is
not secure under the combined semantics i.e., Listing 4 ⊬S+R SNI.

𝜏2
S+R ≠ 𝜏1

S+R
def
= call Speculate · · · startR 0 · · · startS 1 · · · rlbS 1

· · · startS 2 · skip 7 · load 𝑝 · load 𝑠𝑒𝑐𝑟𝑒𝑡 · · ·
The relation between the source semantics and their composi-

tion is visualised in Figure 1, which shows the insecure programs
(w.r.t SNI) detected under the different semantics. The combined
semantics encompasses all vulnerable programs of S and R and
additional programs like Listing 4. These additional programs are
the reason why the semantics S+R is ‘stronger than the sum of
its parts’ S and R.

S+R

S
R

Listing 2
Listing 3

Listing 4

Figure 1: Relating S, R and S+R wrt SNI.

5.2 B+R Composition

In this combination, the instructions that influence speculative
execution are call and ret (R) and beqz (B). Thus, we set𝑍B+R =

([call, ret], [beqz]) to account for this, and to allow speculation
from both sources.

Theorem 7 states that B+R is a well-formed composition. As be-
fore, this allows us to derive “for free” that B+R is SSS by applying
Theorem 4.

Theorem 7 (Well-formed Composition B+R). ⊢ B+R :
WFC

Listing 5: B+R example

1 Manip_Stack:
2 sp <- sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 x <- 0
7 beqz x, L2
8 load eax , secret
9 L2:
10 ret
11 Main:
12 call Speculate
13 skip

Listing 5 presents a leak that can be detected only under B+R. The
execution proceeds similarly to Listing 4 until the ret instruction in
Line 3 is reached. Under R, mispredicting the return address leads
to function 𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 returning to Line 6. However, the beqz
instructions in Line 7 jumps to Line 10 (since 𝑥 is 0) and speculation
ends without leaking. Under B, the branch instruction in Line 7
is never executed and the function𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 returns to Line 13
without leaking. Hence, Listing 5 is secure (i.e., it satisfies SNI)
when considering R and B in isolation.

Under the combined semantics B+R, function 𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘
returns to Line 6 and the beqz instruction is then mispredicted.
This leads to executing the load instructions in Line 8, which leaks
secret information. The resulting traces () are given below, where
we highlight the secret-dependent observations. Given the length
of the trace, we carve out only the most relevant parts, i.e., that
both kinds of speculations need to have started in order for the
leak to appear.

𝜏2
B+R ≠ 𝜏1

B+R
def
= call 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑒 · · · startR 0 · · · startB 1

· pc 8 · load 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 1 · rlbR 0

Again, the two traces that differ in the observation in the grey box
and we have Listing 5 ⊬B+R SNI.

5.3 B+S Composition

In this combination,speculation happens on beqz instructions (B)
and on store instructions (S). Thus, we set 𝑍B+S = ([store],
[beqz]). Therefore, in the combined semantics B+S, beqz instruc-
tions are only executed by delegating back to [store]

B and store

instructions are only executed by delegating back to [beqz]
S . This

semantics is also a well-formed composition (Theorem 8) and SSS.

Theorem 8 (Well-formed Composition B+S). ⊢ B+S :
WFC

Listing 1 from Section 1 contains a leak that can only be detected
by B+S but not by its components. The traces associated with the
code () are given below, where secret-dependent observations
are highlighted in gray:

𝜏2
B+S ≠ 𝜏1

B+S
def
= · · · startS 1 · skip 1 · · · · startB 2 · pc 5

· load 𝑝 · load 𝐴 + 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 2 · rlbS 1 · · ·
Thus, the program is not secure under B+S, i.e., Listing 1 ⊬B+S
SNI.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

5.4 B+S+R Composition

We conclude this section by combining all three semantics B,
S, and R. Our framework (Section 4) allows only combining

a pair of source semantics into a combined one. For simplicity,
we present B+S+R as a direct combination of the three source
semantics (technically, we obtain B+S+R by combining B+S
with R). The metaparameter 𝑍B+S+R (which we represent as a
triple of values) is ([call, ret, store], [call, ret, beqz], [beqz, store]).
As a result, the combined semantics B+S+R can only delegate
to the corresponding speculative semantics for the appropriate
speculation sources.

As before, we can prove that B+S+R is a well-formed compo-
sition (Theorem 9) and we get that B+S+R is SSS by applying
Theorem 4.

Theorem 9 (Well-formed Composition B+S+R). ⊢ B+S+R :
WFC

Listing 6: B+S+R example

1 Manip_Stack:
2 sp <- sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 x <- 0
7 beqz x, L2
8 load eax , p
9 load edi , eax
10 L2:
11 ret
12 Main:
13 store secret , p
14 store pub , p
15 call Speculate

Listing 6 depicts a leaky program that can be detected only under
B+S+R, since the program satisfies SNI under B, S and R.

Under B+S+R, the store instruction in Line 14 is bypassed There-
fore, when returning from𝑀𝑎𝑛𝑖𝑝_𝑆𝑡𝑎𝑐𝑘 , the program mispredicts
the return address and speculatively returns to Line 6. Here, the
beqz instruction in Line 7 is mispredicted and the load instructions
are executed, which now leaks the secret value.

The resulting traces () are given below:

𝜏2
B+S+R ≠ 𝜏1

B+S+R
def
= · · · startS 1 · skip 14 · call Speculate · · ·
· startR 2 · ret 6 · startB 3 · pc 8 · load 𝑝

· load 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 3 · rlbR 2 · ·rlbS 1 · · ·
Thus, the program is not secure i.e., Listing 6 ⊬B+S+R SNI.

6 IMPLEMENTATION AND EVALUATION

This section describes how our combined semantics can be used
to detect leaks introduced by the interaction of multiple specula-
tion mechanisms. For this, we extended Spectector, a symbolic
analysis tool for speculative leaks, with the semantics for S, R
and for all the combinations presented in Section 5 (Section 6.1).
Using Spectector, we analyze a corpus of 49 microbenchmarks

containing speculative leaks generated by different speculation
mechanisms (Section 6.2). With these experiments, we aim to show
that (1) our S and R speculative semantics can correctly identify
speculative leaks associated with speculation over store-bypasses
and return instructions, and (2) our combined semantics can de-
tect novel leaks that are otherwise undetectable when considering
single speculation mechanisms in isolation.

6.1 Implementation

We implemented all our semantics (the symbolic versions of S

and R plus all the compositions from Section 5) as an extension
of Spectector [17]. Spectector uses symbolic execution together
with self-composition [6] and a SMT solver to check for SNI w.r.t.

B. Due to this setup, we inherit limitations of Spectector as well,
i.e., path explosion because of symbolic execution and limitations
in the translation from x86 to 𝜇Asm.

6.2 Experiments

Benchmarks: We analyze 49 snippets of code containing leaks
resulting from speculation over branch, store/load, and return in-
structions (and their combinations):
• Spectre-STL: 13 programs are variants of the Spectre-STL vul-

nerability. They exploit speculation over memory disambiguation,
and they have been used as benchmarks in prior work [14, 26]. For
each program, we also analyze a patched version where a manually
inserted lfence instruction stops speculation over store-bypasses
and prevents the leak.
• Spectre-RSB: 5 programs are variants of the Spectre-RSB

vulnerability. They exploit speculation over return instructions, and
they are obtained from the safeside [1]2 and transientfail [8]3
projects. For each program, we also analyze manually patched
versions obtained by (1) inserting lfences after each call instruction
(i.e., at the instruction address where ret speculatively returns), and
(2) using the retpoline defense [23].
• Spectre-Comb: 4 programs contain leaks that arise from com-

bining speculation mechanisms. These are the programs depicted in
listing 1, listing 5, listing 4, and listing 6 and discussed in Section 5.
For each program, we also analyze a manually patched version
where lfence instructions prevent the speculative leaks.
Experimental setup:The benchmarks for Spectre-STL and Spectre-
RSB are implemented in C and compiled with Gcc 11.1.0 and
we manually inserted lfence/retpoline countermeasures in the
patched versions. The benchmarks for Spectre-Comb are directly
formalized in 𝜇Asm. We run all our experiments on a laptop with a
Dual Core Intel Core i5-7200U CPU and 8GB of RAM.
Spectre-STL: Table 1a reports the results of analysing the pro-
grams in the Spectre-STL benchmark4. Using the S semantics,
Spectector successfully detected leaks (i.e., violations of SNI) in

2Out of the three Spectre-RSB examples from [1], we analyze the only one that works
against an acyclic RSB like the one supported by R .
3Programs ca_ip, ca_oop, and sa_ip from transientfail rely on concurrent execu-
tion. Since Spectector does not support concurrency, we hardcode the worst-case
interleaving in terms of speculative leakage in our benchmark.
4We had to slightly modify programs 02, 05, and 06 due to limitations of Spectector’s
x86 front-end when dealing with global values (programs 05 and 06) and 32-bit address-
ing (program 02). We had to limit the speculation window, due to vanilla Spectector’s
limitations in symbolic execution, when analyzing program 09, which contains a loop.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Test case S

None Fence

case01 (-) ◦ •◦
case02 (-) ◦ •◦
case03 (+) •◦ •◦
case04 (-) ◦ •◦
case05 (-) ◦ •◦
case06 (-) ◦ •◦
case07 (-) ◦ •◦
case08 (-) ◦ •◦
case09 (+) •◦ •◦
case10 (-) ◦ •◦
case11 (-) ◦ •◦
case12 (+) •◦ •◦
case13 (-) ◦ •◦

(a) Results for the Spectre-STL pro-

grams under the S semantics against

unpatched programs (column “None”)

and programs patchedwith lfence (col-
umn “Fence”)

Test case R
None Fence Retpoline

𝑟𝑒𝑡2𝑠𝑝𝑒𝑐_𝑐_𝑑 (-) ◦ •◦ •◦
𝑐𝑎_𝑖𝑝 (-) ◦ •◦ •◦
𝑐𝑎_𝑜𝑜𝑝 (-) ◦ •◦ •◦
𝑠𝑎_𝑖𝑝 (-) ◦ •◦ •◦
𝑠𝑎_𝑜𝑜𝑝 (-) ◦ •◦ •◦

(b) Results for the Spectre-RSB programs under the R seman-

tics against unpatched programs (column “None”), programs

patched with lfence (column “Fence”), and programs patched

with retpoline (column “Retpoline”)

Test case B S R B+S S+R B+R B+S+R

listing 1 (-) •◦ •◦ •◦ ◦ •◦ •◦ ◦
listing 5 (-) •◦ •◦ •◦ •◦ ◦ •◦ ◦
listing 4 (-) •◦ •◦ •◦ •◦ •◦ ◦ ◦
listing 6 (-) •◦ •◦ •◦ •◦ •◦ •◦ ◦
listing 1 Fence (+) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 5 Fence (+) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 4 Fence (+) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 6 Fence (+) •◦ •◦ •◦ •◦ •◦ •◦ •◦

(c) Results for the Spectre-Combprogramswhere “listing𝑥 Fence”

denotes the patched version (using lfence) of “listing 𝑥”

Table 1: Result of the analysis of our benchmarks. For each program, ◦ denotes that our tool finds a violation of SNI w.r.t to

the corresponding semantics, whereas •◦ denotes that our tool proves the program secure under the semantics. Next to each

program, we report whether the program contains a speculative leak (+) or not (-) in its unpatched version.

all unpatched programs, except programs 03, 09, and 12 which
do not contain speculative leaks (consistently with other analysis
results [14, 26]). Observe that Binsec/Haunted [14] flags program
13 as secure since the program can only speculatively leak initial
values from the stack, which Binsec/Haunted treats as public by
default [2]. Since we assume initial memory values to be secret
(like Ponce de León and Kinder [26]), Spectector correctly de-
tected the leak in program 13. Spectector also successfully proved
that all patched programs (where an lfence is added between store
instructions) satisfy SNI and are free of speculative leaks.

Spectre-RSB: Table 1b reports the analysis results on the Spectre-
RSB programs. Using R, Spectector successfully detected leaks
in all unpatched programs. Moreover, Spectector successfully
proved that the patched programs where a lfence instruction is
added after every call satisfy SNI, i.e., they are free of specula-
tive leaks. Spectector also successfully proved secure the pro-
grams patched using the modified retpoline defense proposed by
Maisuradze and Rossow [23], which replaces return instructions
with a construct that traps the speculation in an infinite loop until
speculation ends.

Spectre-Comb: Table 1c reports the results of our analysis on
the Spectre-Comb programs, which involve leaks arising from
a combination of multiple speculation mechanisms. Spectector
equipped with the single semantics B, S, and R is not able to

detect the speculative leaks in any of the 4 programs and, therefore,
proves them secure. This is expected since the programs contain
leaks that arise from a combination of semantics. Spectector can
successfully identify leaks in listing 1, listing 5, listing 4 when
using, respectively, the semantics B+S, S+R, and B+R. Each
semantics, however, fail in detecting leaks in the other programs,
and all of them fail in detecting a leak in listing 6 as expected. Finally,
Spectector is able to successfully detect leaks in all programs
when using the B+S+R semantics that combines all speculation
mechanisms studied in this paper.

Similarly to Spectre-STL and Spectre-RSB, we also analyzed
programs that have been manually patched by inserting lfence
statements (“listing 1 Fence”, “listing 5 Fence”, “listing 4 Fence”, and
“listing 6 Fence” in Table 1c). As before, Spectector successfully
prove the security of patched programs. We remark that, even
for leaks that arise from multiple speculation sources, it is often
sufficient to insert a single lfence to secure the entire program.
For instance, it is sufficient to introduce a lfence after the beqz
instruction in Listing 5 to ensure that the program satisfies SNI
with respect to B+S+R.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

7 RELATEDWORK

Speculative execution attacks: After Spectre [21] has been dis-
closed to the in 2018, researchers have identified many other specu-
lative execution attacks [4, 7, 22, 23, 33]. These attacks differ in the
exploited speculation sources [20, 22, 23], the covert channels [27–
29] used, or the target platforms [12]. We refer the reader to Canella
et al. [8] for a survey of existing attacks.

Security conditions for speculative leaks: Researchers have
proposed many program-level properties that capture different
flavors of security against speculative leaks. These properties can
be classified in three main groups [10]:

(1) Non-interference definitions ensure the security of specu-
lative and non-speculative instructions. For instance, speculative
constant-time [9] (used also in [3, 14, 30]) extends the constant-time
security condition to account also for transient instructions.

(2) Relative non-interference definitions [11, 16, 17, 19] ensure
that transient instructions do not leak more information than what
is leaked by non-transient instructions. For instance, speculative
non-interference [17], which we build on, (used also in [18, 25])
restricts the amount of information that can be leaked by specu-
latively executed instructions (without constraining what can be
leaked non-speculatively).

(3) Definitions that formalise security as a safety property [25,
26], which often over-approximate the non-interference definitions
from the categories above.

Operational semantics for speculative leaks: In the last few
years, there has been a growing interest in developing formal mod-
els and principled program analyses for detecting leaks caused by
speculatively executed instructions. We refer the reader to [10] for
a comprehensive survey on the topic. In the following, we discuss
the approaches that are more relevant to our paper.

Our speculative semantics S and R capture the effects of
transient instructions at a rather high-level, and they are inspired
by the always-mispredict B semantics from [17]. In contrast,
other approaches, which we overview next, consider more complex
models that explicitly model microarchitectural components like
multiple pipeline stages, caches, and branch predictors.

For instance, KLEESpectre [31] and SpecuSym [19] consider a
semantics that explicitly model the cache, which enable reasoning
about the cache content. McIlroy et al. [24] go a step further and
model a multi-stage pipeline with explicit cache and branch pre-
dictor. Their semantics can only model speculation over branch
instructions since it lacks store-forwarding or RSB.

Cauligi et al. [9]’s semantics model speculation over branch in-
structions, store-bypasses, and return instructions. Differently from
our high-level semantics, their 3-stage pipeline semantics explicitly
models several microarchitectural components like a reorder buffer
and an RSB. Their tool uses symbolic execution to detects violations
of speculative constant-time induced by speculation over branch
instructions and store-bypasses.

Binsec/Haunted [14] can also detect violations of speculative
constant-time induced by speculation over store-bypasses and branch
instructions. For this, their semantics explicitly model the store

buffer, which S abstracts away. Barthe et al. [5] extend the Jas-
min [3] cryptographic verification framework to reason about spec-
ulative constant-time and, again, it supports speculation over store-
bypasses and branch instructions.

While several of the models describe above support multiple
speculation mechanisms, these mechanisms are hard-coded and
none of the aforementioned approaches provide a composition
framework like ours (or extensible ways of extending the main
theoretical results to new mechanisms “for free”). Moreover, while
we could have used other operational semantics, like the one in [9],
as a basis for our composition framework, this would have resulted
in more difficult proofs (since semantics like the one in [9] are
significantly more complex than ours).
Axiomatic semantics for speculative leaks: A few approaches
formalize the effects of speculatively executed instructions using
axiomatic semantics inspired by work on weak memory models.
For instance, Colvin and Winter [13] and Disselkoen et al. [15]
capture the effects of speculation over branch instructions but they
both lack program analyses.

Ponce de León and Kinder [26] illustrate how one can model
leaks resulting from speculation over branch instructions and load-
/store instructions using the CAT modeling language for memory
consistency, and they present a bounded model checking analy-
sis for detecting speculative leaks. Interestingly, they talk about
composing several of theirs semantics [26, IV E.], which in theory
should allow them to detect vulnerabilities like Listing 1 (which
we detect under B+S). Differently from our framework, however,
they do not formally characterize compositions and, therefore, they
cannot derive interesting results “for free” about the composed
semantics (like we do in Theorem 4). Moreover, even though they
state that composability is a main advantage of axiomatic mod-
els, our framework (and tool implementation) clearly show that
composability can be done with operational semantics as well.

8 CONCLUSION AND FUTUREWORK

This paper presented new speculative semantics for speculation
on store instructions and on return instructions. Furthermore, it
defined a general framework to reason about the composition of dif-
ferent speculative semantics and instantiated the framework with
our new speculative semantics S and R and the semantics by
Guarnieri et al. [17]. Our framework yields security of the com-
posed semantics (almost) for free, given the security of its parts. All
the new semantics are implemented as extension in the tool Spec-
tector and the tool correctly detects all vulnerabilities in existing
as well as in novel benchmarks.

There are multiple directions for future works. Our composition
is restricted in the sense that the different speculation sources do
not influence each other. Koruyeh et al. [22] argued that during a
transient execution caused by branch misprediction, one can add
entries to the RSB by transiently executing a call instruction. During
the roll back, the RSB is not rolled back, which could lead to more
speculation down the line. However, this composition would not
be ⊢ : WFC because this composition would not be related to its
projection (for a rather technical reason one can see in the technical
report). In the future, we would like to allow these combinations as
well without losing all the ‘free’ theorems presented here.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Automatic Detection of Speculative Execution Combinations Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

REFERENCES

[1] 2019. SafeSide. https://github.com/google/safeside (2022).
[2] 2021. Expected result of case_13. https://github.com/binsec/haunted_bench/

issues/2.
[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machin-
ery, New York, NY, USA, 1807–1823. https://doi.org/10.1145/3133956.3134078

[4] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch history injection: On the effectiveness of hardwaremitigations
against cross-privilege Spectre-v2 attacks. In USENIX Security, Vol. 11.

[5] G. Barthe, S. Cauligi, B. Gregoire, A. Koutsos, K. Liao, T. Oliveira, S. Priya, T.
Rezk, and P. Schwabe. 2021. High-Assurance Cryptography in the Spectre Era. In
2021 2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
Los Alamitos, CA, USA, 788–805. https://doi.org/10.1109/SP40001.2021.00046

[6] G. Barthe, P.R. D’Argenio, and T. Rezk. 2004. Secure information flow by self-
composition. In Proceedings. 17th IEEE Computer Security Foundations Workshop,
2004. 100–114. https://doi.org/10.1109/CSFW.2004.1310735

[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTherSpec-
tre: Exploiting Speculative Execution through Port Contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 785–800. https://doi.org/10.1145/3319535.3363194

[8] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses.
In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 249–266. https://www.usenix.org/conference/usenixsecurity19/
presentation/canella

[9] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 913–926. https:
//doi.org/10.1145/3385412.3385970

[10] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan. 2022. SoK: Practi-
cal Foundations for Software Spectre Defenses. In 2022 2022 IEEE Symposium on
Security and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA,
1517–1517. https://doi.org/10.1109/SP46214.2022.00088

[11] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. 2019. A Formal
Approach to Secure Speculation. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF). 288–28815. https://doi.org/10.1109/CSF.2019.00027

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. Stealing Intel Secrets from SGX Enclaves via Speculative
Execution. In Proceedings of the 4th IEEE European Symposium on Security and
Privacy (EuroS&P ’19). IEEE.

[13] Robert J. Colvin and Kirsten Winter. 2019. An Abstract Semantics of Speculative
Execution for Reasoning About Security Vulnerabilities. In Formal Methods. FM
2019 International Workshops: Porto, Portugal, October 7–11, 2019, Revised Selected
Papers, Part II (Porto, Portugal). Springer-Verlag, Berlin, Heidelberg, 323–341.
https://doi.org/10.1007/978-3-030-54997-8_21

[14] L.-A. Daniel, S. Bardin, and T. Rezk. 2021. Hunting the Haunter — Efficient
relational symbolic execution for Spectre with Haunted RelSE. In NDSS.

[15] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The
Code That Never Ran: Modeling Attacks on Speculative Evaluation. In 2019 IEEE
Symposium on Security and Privacy (SP). 1238–1255. https://doi.org/10.1109/SP.
2019.00047

[16] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking
and Fixing Microarchitectural Vulnerabilities by Formal Analysis. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York,
NY, USA, 1853–1869. https://doi.org/10.1145/3372297.3417246

[17] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. 2020. Spectector:
Principled Detection of Speculative Information Flows. In 2020 IEEE Symposium
on Security and Privacy (SP). 1–19. https://doi.org/10.1109/SP40000.2020.00011

[18] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
Software Contracts for Secure Speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). 1868–1883. https://doi.org/10.1109/SP40001.2021.00036

[19] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng
Wu, and Zhiqiang Zuo. 2020. SpecuSym: Speculative Symbolic Execution for
Cache Timing Leak Detection. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 1235–1247. https://doi.org/10.
1145/3377811.3380428

[20] J. Horn. 2018. Speculative execution, variant 4: Speculative store bypass. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528. Accessed: 2021-04-
11.

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,
MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/
SP.2019.00002

[22] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks Using the Return
Stack Buffer (WOOT’18). USENIX Association, USA, 3.

[23] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2109–2122. https://doi.org/10.
1145/3243734.3243761

[24] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. CoRR abs/1902.05178 (2019). arXiv:1902.05178 http://arxiv.org/abs/
1902.05178

[25] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure
Compilers. In Proceedings of the 28th ACM Conference on Computer and Commu-
nications Security (CCS 2021). ACM.

[26] H. Ponce de León and J. Kinder. 2022. Cats vs. Spectre: An Axiomatic Approach
to Modeling Speculative Execution Attacks. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1415–1428.
https://doi.org/10.1109/SP46214.2022.00082

[27] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Computer Security –
ESORICS 2019, Kazue Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.). Springer
International Publishing, Cham, 279–299.

[28] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. CoRR abs/1806.07480 (2018).
arXiv:1806.07480 http://arxiv.org/abs/1806.07480

[29] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. CoRR abs/1802.03802 (2018). arXiv:1802.03802
http://arxiv.org/abs/1802.03802

[30] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically Eliminating Speculative Leaks from Cryptographic Code with Blade.
Proc. ACM Program. Lang. 5, POPL, Article 49 (Jan. 2021), 30 pages. https:
//doi.org/10.1145/3434330

[31] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. KLEESpectre: Detecting Information Leakage
through Speculative Cache Attacks via Symbolic Execution. ACM Trans. Softw.
Eng. Methodol. 29, 3, Article 14 (June 2020), 31 pages. https://doi.org/10.1145/
3385897

[32] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2021. oo7: Low-Overhead Defense Against Spectre Attacks
via Program Analysis. IEEE Transactions on Software Engineering 47, 11 (2021),
2504–2519. https://doi.org/10.1109/TSE.2019.2953709

[33] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. 2020. Exploring
Branch Predictors for Constructing Transient Execution Trojans. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 667–682.
https://doi.org/10.1145/3373376.3378526

13

https://github.com/google/safeside
https://github.com/binsec/haunted_bench/issues/2
https://github.com/binsec/haunted_bench/issues/2
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1145/3319535.3363194
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/SP46214.2022.00088
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1145/3377811.3380428
https://doi.org/10.1145/3377811.3380428
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
https://doi.org/10.1109/SP46214.2022.00082
https://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1806.07480
https://arxiv.org/abs/1802.03802
http://arxiv.org/abs/1802.03802
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3385897
https://doi.org/10.1145/3385897
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1145/3373376.3378526

	Abstract
	1 Introduction
	2 Background: Asm, Speculative Semantics and Security Definition
	2.1 Attacker Model and Security Definition
	2.2 Asm
	2.3 Non-speculative Semantics of Asm
	2.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 B: Speculating Over Branch Instructions

	3 Speculation on Stores and Returns
	3.1 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 S: Speculation on Store Instructions
	3.2 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 R: Speculation on Return Instructions

	4 A Framework for Composing Speculative Semantics
	4.1 Combined Speculative Semantics
	4.2 Properties of Composition

	5 Instantiating our Framework
	5.1 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 S+ R Composition
	5.2 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 B+ R Composition
	5.3 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 B+ S Composition
	5.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 22 !widthheightdepth.6(-,-1).98 .5(1.75,-1.5)(1,-1)(.7,-.5)(.5,0)(.5,0)(.3,.5)(0,1.6)(1,1.6)(1,1.6)(1.8,1.6)(1.8,.9)(1.8,.6)(1.8,.6)(1.8,-.3)(.9,-.7)(1.25,-1.5).68 .5(1.75,-1.5)(1.4,-1.2)(1.1,-1.8)(.75,-1.5)(.75,-1.5)(.4,-1.2)(.1,-1.8)(.25,-1.5)(.25,-1.5)(.6,-1.2)(.9,-1.8)(1.25,-1.5)to*.4 B+ S+ R Composition

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Experiments

	7 Related Work
	8 Conclusion and Future Work
	References

