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Abstract. Let N and O be, respectively, a C2 manifold and an arbi-
trary family of C1 differential forms on N . Moreover assume that

For all y ∈ N and for all M -dimensional integral elements
Σ of O at y, there is ω ∈ O such that (dω)y|Σ 6= 0.

(0.1)

If M is any M -dimensional C1 imbedded submanifold of N , then we
expect that condition (0.1) prevents the existence of interior points in
the integral subset ofM with respect to O

I(M,O) :=
⋂
ω∈O
{ω|M = 0}.

Actually, the structure of I(M,O) can be described much more pre-
cisely by invoking the notion of superdensity. Indeed, under the previous
hypotheses, the following structure result holds: There are no (M + 1)-
density points of I(M,O) relative toM.
If we now consider M in the smaller class of C2 imbedded submani-
folds of N , then it becomes natural to expect a further “slimming” of
I(M,O). Indeed we have the following second structure result: If O is
countable, then I(M,O) is an (M−1)-dimensional C1 rectifiable subset
of M. These results are immediate corollaries of two general structure
theorems, which are the main goal of this paper. Applications in the con-
text of non-involutive distributions and in the context of Pfaff problem
are provided.

1. Introduction

1.1. The main goal. Let N and O be, respectively, a C2 manifold and
an arbitrary family of C1 differential forms on N . Moreover, let VM(O)y

denote the set of all M -dimensional integral elements of O at y ∈ N (see
[BCG91, Y92] and Section 2.2 below) and assume that
(1.1)

For all y ∈ N and Σ ∈ VM(O)y there is ω ∈ O such that (dω)y|Σ 6= 0.

If M is any M -dimensional C1 imbedded submanifold of N (see Section
2.2 below), then we expect that condition (1.1) prevents the existence of
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interior points in the integral subset ofM with respect to O, i.e.,

I(M,O) :=
⋂
ω∈O

{ω|M = 0}.

Actually, the structure of I(M,O) can be described much more precisely
by invoking the notion of superdensity (see Subsection 2.5). Indeed, under
the previous hypotheses, the following structure result holds: There are no
(M + 1)-density points of I(M,O) relative toM (see Corollary 3.4). As a
side note to this main result, we observe that the existence of C1 imbedded
submanifoldsM of N for which the measure of I(M,O) is large could be a
somewhat common event: a very notable example occurs when O is a family
of defining 1-forms for a non-involutive distribution, see [AMS22] and some
references therein (in addition to Example 3.1).
If we now consider M in the smaller class of C2 imbedded submanifolds
of N , then it becomes natural to expect a further “slimming” of I(M,O).
Indeed the following property holds: If O is countable, then I(M,O) is an
(M − 1)-dimensional C1 rectifiable subset ofM (see Corollary 4.1).

The results just mentioned are immediate corollaries of the following two
general theorems, which are the main goal of this paper.

First structure theorem (see Theorem 3.2). Let N and O be, re-
spectively, a C2 manifold and a family of C1 differential forms on N . Then,
for every M-dimensional C1 imbedded submanifoldM of N , one has

I(M,O)(M+1) ⊂
⋂
ω∈O

{(dω)|M = 0}

where I(M,O)(M+1) denotes the set of all (M+1)-density points of I(M,O)

relative toM.
Second structure theorem (see Theorem 4.2). Let N and O be,

respectively, a Ck+1 manifold and a countable family of Ck differential forms
on N (with k ≥ 1). Moreover, let condition (1.1) be satisfied and define

ρM := min
y∈N

Σ∈VM (O)y

max{m ≥ 1|((dω)m)y|Σ 6= 0 for some ω ∈ O}.

Then ρM ≥ 1 and this property holds: For everyM-dimensional Ck+1 imbed-
ded submanifold M of N , the set I(M,O) is covered by countably many
Ck imbedded submanifolds of M of dimension less or equal than M − ρM
(in particular, I(M,O) is an (M − ρM)-dimensional Ck rectifiable subset
ofM).

1.2. Application in the context of non-involutive distributions. This
theory can be applied very easily to describe the structure of the tangency
T (M,D) of anM -dimensional imbedded submanifoldM of N with respect



STRUCTURE RESULTS FOR NON-INTEGRABLE EXT. DIFF. SYSTEMS 3

to a non-involutive distribution D of rank M on N . In this case, in fact,
if O is a family of linearly independent defining 1-forms for D in N , then
we have I(M,O) = T (M,D) and these facts follow immediately from the
first and second structure theorems:

• Let N be of class C2, D be of class C1 andM be of class C1. Then
T (M,D) has no (M+1)-density points relative toM (see Corollary
5.1);
• Let N be of class Ck+1, D be of class Ck and M be of class Ck+1

(with k ≥ 1). Then T (M,D) is an (M − ρM)-dimensional Ck rec-
tifiable subset ofM (see Corollary 5.2).

The following further application in this context concerns the dimen-
sional estimate [BPR11, Theorem 1.3]. Let D be a Ck distribution of rank
M on an N -dimensional Ck+1 manifold N , with N > M ≥ 1 (and k ≥ 1).
Moreover consider a family ω1, . . . , ωN−M of defining 1-forms for D in N
and, for m = 1, . . . , N , let Am denote the set of all points P ∈M such that
there exists an m-dimensional vector subspace X of TPN satisfying

(ωh)P |X = 0, (dωh)P |X = 0

for all h = 1, . . . , N −M . It is obvious that the family A1, . . . ,AN is de-
creasing, with A1 = N and AM+1 = ∅ (see [BPR11, Section 1]). In Theorem
6.1 we get a new very easy proof of the following result proved in [D18]: If
1 ≤ m ≤ N and U denotes the image of any injective Ck+1 immersion
ϕ : U ⊂ RN → N , then the set Rm := T (U ,D) \Am+1 is covered by finitely
many Ck imbedded submanifolds of N of dimension less or equal than m.
From this result we easily obtain the structure formula for the tangency set

T (U ,D) ⊂
M⋃
m=1

[Rm ∩ (Am \ Am+1)],

hence the dimensional estimate [BPR11, Theorem 1.3] trivially follows:

dim T (U ,D) ≤ max
1≤m≤M

{min{dim(Am \ Am+1),m}}

where dim denotes the Hausdorff dimension. In the special case when D is
non-involutive (so that AM(D) = ∅), we find

T (U ,D) ⊂
M−1⋃
m=1

[Rm ∩ (Am \ Am+1)]

and

dim T (U ,D) ≤ max
1≤m≤M−1

{min{dim(Am \ Am+1),m}}.
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1.3. Application in the context of Pfaff problem. Given integers N
and m, with 3 ≤ 2m + 1 ≤ N , let us consider an N -dimensional Ck+1

manifold N and a Ck differential 1-form ω on an open set U ⊂ N (with
k ≥ 1) satisfying the following property: There exists a Ck+1 diffeomorphism
ϕ : U ⊂ RN → U such that

ϕ∗ω = πm := dx1 + x2dx3 + · · ·+ x2mdx2m+1

where x1, . . . , xN are the coordinates of RN . For this type of differential
forms we have

(1.2) (dω)m ∧ ω 6= 0, (dω)m+1 = 0 (everywhere in U)

hence, in particular, ω has constant rank m. Using Corollary 4.6, we easily
obtain the following couple of facts about situations in which the condition
(1.2), necessary for the above property to be true, is violated:

• Let (dω)m+1 6= 0 everywhere. Then, for every Ck+1 diffeomorphism
ϕ : U ⊂ RN → U , the set

(1.3) {x ∈ U |(ϕ∗ω)x = (πm)x}

is covered by finitely many Ck imbedded submanifolds of U of di-
mension less or equal than N − 1 (see Theorem 7.2).

• Assume that there exist a positive integer m and a Ck+1 diffeomor-
phism ϕ : U ⊂ RN → U such that 2(2m+ 1) ≤ N and

(dϕ∗ω)m+1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dx2m+1 6= 0, (dϕ∗ω)m+2 = 0

everywhere in U . Then the set (1.3) is covered by finitely many
Ck imbedded submanifolds of U of dimension less or equal than
N − 2m− 1 (see Theorem 7.3).

2. Basic notation and notions

2.1. Basic notation. The coordinates of RM are denoted by (x1, . . . , xM)

so that dx1, . . . , dxM is the standard basis of the dual space of RM . We set
Di := ∂/∂xi. If p is any positive integer not exceedingM , then I(M, p) is the
family of integer multi-indices α = (α1, . . . , αp) such that 1 ≤ α1 < · · · <
αp ≤M . Given a generic map Φ : A→ Rn and v ∈ Rn, we set for simplicity
{Φ = v} := {P ∈ A |Φ(P ) = v}. Let LM and Hs denote, respectively, the
Lebesgue measure and the s-dimensional Hausdorff measure on RM . The
open ball of radius r centered at x ∈ RM will be denoted by Br(x).
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2.2. Manifolds, differential forms, integral elements. In relation to
this topic, we will adopt the notations commonly used in the main biblio-
graphic references (see, e.g., [L13, N85]). We report here, quickly, just a few
of them.

A Ck manifold is a topological manifold (that is a locally Euclidean
second-countable Hausdorff space) endowed with a Ck structure.

LetM be anM -dimensional Ck manifold. Then a Ck differential p-form
(or Ck differential form of degree p) onM is a map ω :M→ ΛpT ∗M with
the following property: If∑

α∈I(M,p)

fαdxα (dxα := dxα1 ∧ · · · ∧ dxαp)

is any local representation of ω, then fα is of class Ck. For any given P ∈M,
we will use the standard notation ωP instead of ω(P ). As we did for real-
valued maps, let us set {ω = 0} := {P ∈M|ωP = 0} for simplicity.

Let N be a Ck manifold. Then a setM⊂ N is said to be a Ck imbedded
submanifold of N if M is a manifold without boundary in the subspace
topology, endowed with a Ck structure with respect to which the inclusion
mapM ↪→ N is a Ck imbedding.

Let M be a Ck imbedded submanifold of a Ck manifold N and let
ι :M ↪→ N be the inclusion map. If ω is a Ck−1 differential p-form on N ,
then the Ck−1 differential p-form ι∗ω (i.e., the restriction of ω to M) will
be denoted by ω|M.

If ω is a C1 differential p-form and m is a positive integer, then ωm will
denote the m-fold wedge product ω ∧ · · · ∧ ω. The rank of ω at x is the
integer r (depending on x) such that

(dω)r ∧ ω 6= 0, (dω)r+1 ∧ ω = 0

at x, see [BCG91, Ch. II, Sect. 3].
Let m be a positive integer satisfying 2m + 1 ≤ M and consider the

following C∞ differential 1- form on RM

πm := dx1 + x2dx3 + · · ·+ x2mdx2m+1.

Then a standard computation shows that

(2.1) (dπm)m = m! dx2 ∧ dx3 ∧ · · · ∧ dx2m+1, (dπm)m+1 = 0

and

(2.2) (dπm)m ∧ πm = m! dx1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dx2m+1.

In particular, πm has constant rank m.
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Let us recall that a C1 Riemannian manifold (N , g) with the associated
Riemannian distance function is a metric space whose topology coincides
to the original manifold topology, see [L13, Theorem 13.29]. Hence one can
define the corresponding s-dimensional Hausdorff measure Hs

g, see [F69,
Section 2.10.2], [T06, Chapter 12]. The open metric ball of radius r centered
at P ∈ N will be denoted by Bg(P, r).

Let N and O be, respectively, a C1 manifold and a family of C1 differ-
ential forms on N . Moreover, let y ∈ N .Then a linear subspace Σ of TyN
is said to be an integral element of O at y if ωy|Σ = 0 for all ω ∈ O (see
[BCG91, Y92]). If M is a positive integer (not exceeding the dimension of
N ), then the set of allM -dimensional integral elements of O at y is denoted
by VM(O)y.

2.3. Distributions. Let N and M be, respectively, a C1 manifold and a
C1 submanifold of N . Set for simplicity

M := dimM, N := dimN , H := N −M

and consider a C1 distribution D of rank M on N . Then we define the
tangency set ofM with respect to D as

T (M,D) := {y ∈M|TyM = Dy}.

If H ≥ 1 and ω1, . . . , ωH is a family of linearly independent C1 differential
1-forms defining D on an open set V ⊂ N , then one has

(2.3) V ∩ T (M,D) = T (V ∩M,D) =
H⋂
h=1

{ωh|M = 0},

that is

V ∩ T (M,D) = {y ∈ V ∩M|TyM∈ VM(O)y}, with O := {ωh}Hh=1.

Recall that the distribution D is said to be involutive at y ∈ V if

(dωh)y|Dy = 0, for all h = 1, . . . , H.

One can verify that such a definition of involutivity does not depend on the
choice of the local defining 1-forms. The distribution D is called involutive
(in N ) if it is involutive at every y ∈ N . Also recall that, if N and D
are of class Ck, then a non-empty Ck imbedded submanifoldM of N such
that T (M,D) =M is called a Ck integral manifold of D. As a celebrated
theorem by Frobenius establishes, the involutivity of D is a necessary and
sufficient condition for the existence of an integral manifold of D through
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every point of N . This topic is extensively covered in many books of dif-
ferential geometry, for example in [CCL99, Sect. 3.2], [L13, Ch. 19], [N85,
Sect. 2.11].

2.4. Basic geometric measure theory on manifolds: rectifiable sets
and Hausdorff dimension. The notions of rectifiable set and Hausdorff
measure on a Riemannian manifold are essentially obvious to anyone famil-
iar with classical geometric measure theory (see [F69, Mo88, S84, KP08]).
Perhaps for this reason we are not able to provide satisfactory basic bibli-
ographic information on this subject. It is therefore for the convenience of
the reader not familiar with GMT that we devote this subsection to a very
quick presentation of these notions.

First of all, let us recall the following well-known properties of the Haus-
dorff measure Hs

g on a C1 Riemannian manifold (N , g):

• If s = dimN , then Hs
g(B) = Vg(B) for all Borel sets B ⊂ N , where

Vg denotes the standard volume form of (N , g), see [F69, Section
3.2.46], [T06, Proposition 12.6].

• If M is a C1 imbedded submanifold of N and gM denotes the in-
duced metric, then one has Hs

gM
(B) = Hs

g(B) for all Borel sets
B ⊂M, see [T06, Proposition 12.7].

• If g denotes the standard Euclidean metric on RN , then one obvi-
ously hasHs

g = Hs. In particular,HN
g is theN -dimensional Lebesgue

measure.

By using again [F69, Section 3.2.46] it is not difficult to prove the fol-
lowing result.

Proposition 2.1. Let k, n,N be positive integers, with n ≤ N . Moreover let
N be an N-dimensional Ck manifold and R be a subset of N . The following
are equivalent:

(1) For every y ∈ R there is a Ck chart (W ,Φ) of N such that y ∈ W
and R := Φ(R ∩W) is a (Hn, n)-rectifiable set of class Ck, namely
R is a Borel subset of RN and there is a countable family S1, S2, . . .

of n-dimensional Ck imbedded submanifolds of RN such that

Hn
(
R \

⋃
i

Si
)

= 0.

(2) R is a Borel subset of N and there is a countable family S1,S2, . . .

of n-dimensional Ck imbedded submanifolds of N such that

Hn
g

(
R \

⋃
i

Si
)

= 0
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for every C1 Riemannian metric g on N .

(3) R is a Borel subset of N and there is a countable family S1,S2, . . .

of n-dimensional Ck imbedded submanifolds of N such that

Hn
g

(
R \

⋃
i

Si
)

= 0

for a certain C1 Riemannian metric g on N .

Definition 2.2. If R satisfies any or, equivalently, all of the conditions
of Proposition 2.1, then we say that R is an n-dimensional Ck rectifiable
subset of N , see [AS94, A94].

Remark 2.3. LetM be a Ck imbedded submanifold of a Ck manifold N
and let R be an m-dimensional Ck rectifiable subset ofM (m ≤ dimM).
Then R is also an m-dimensional Ck rectifiable subset of N .

Another property which follows readily from [F69, Section 3.2.46] is this
one.

Proposition 2.4. Let N be a C1 manifold, E ⊂ N and s ∈ [0,+∞). The
following are equivalent:

(1) For every C1 chart (W ,Φ) of N , one has Hs(Φ(W ∩ E)) = 0.

(2) For every C1 Riemannian metric g on N , one has Hs
g(E) = 0.

(3) There exists a C1 Riemannian metric g on N such that Hs
g(E) = 0.

Definition 2.5. Let I(E) denote the set of s ∈ [0,+∞) satisfying any or,
equivalently, all of the conditions of Proposition 2.4. Then the Hausdorff
dimension in N of E is defined as the number dimN E := inf I(E) (note:
I(E) is a right half-line containing (dimN ,+∞), so that dimN E ≤ dimN ).

Remark 2.6. The Hausdorff dimension in a C1 Riemannian manifold N
has the following properties, see [Ma95, Chapter 4]:

• It is monotone, that is: dimN E ≤ dimN F , whenever E ⊂ F ⊂ N ;
• It is stable with respect to countable unions. This means that, for
any given countable family E1, E2, . . . of subsets of N , one has

dimN
⋃
i

Ei = sup
i

(dimN Ei).

Remark 2.7. Let M be a C1 imbedded submanifold of a C1 manifold
N and let E be a subset of M. Then dimN E = dimM E . By virtue of
this remark, we can avoid distinguishing the notations dimM E and dimN E ,
identifying them (if desired) with the simpler notation dim E .
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2.5. Superdensity. Also the following proposition is a consequence of [F69,
Section 3.2.46], see [D19c, Proposition 3.3].

Proposition 2.8. Let N be an N-dimensional C1 manifold, E ⊂ N , P ∈ N
and m ∈ [N,+∞). The following are equivalent:

(1) There is a C1 chart (W ,Φ) of N such that P ∈ W and

LN(Br(Φ(P )) \ Φ(E ∩W)) = o(rm) (as r → 0+).

(2) For every C1 Riemannian metric g on N , one has

HN
g (Bg(P, r) \ E) = o(rm) (as r → 0+).

(3) There exists a C1 Riemannian metric g on N such that

HN
g (Bg(P, r) \ E) = o(rm) (as r → 0+).

Definition 2.9. If any or, equivalently, all of the conditions of Proposition
2.8 are satisfied, then we say that P is an m-density point of E (relative to
N ). The set of all m-density points of E is denoted by E (m), see [D19c].

Remark 2.10. Let N and E be as in Proposition 2.8. The following facts
occur:

• Every interior point of E is an m-density point of E , for all m ∈
[N,+∞). Thus, whenever E is open, one has E ⊂ E (m) for all m ∈
[N,+∞).
• If N ≤ m1 ≤ m2 < +∞, then E (m2) ⊂ E (m1). In particular, one has
E (m) ⊂ E (N) for all m ∈ [N,+∞).
• Let {Ej}j∈J be any family of subsets of N and m ∈ [N,+∞).

– One has (⋂
j∈J

Ej
)(m)

⊂
⋂
j∈J

E (m)
j ;

– If J is finite, then

(2.4)
(⋂
j∈J

Ej
)(m)

=
⋂
j∈J

E (m)
j ;

– If J is countable infinite, then (2.4) can fail to be true, e.g.,
N = R2 and

Ej := B1/j(O) (j = 1, 2, . . .).

Remark 2.11. For convenience of the reader, we recall some known re-
sults in the special case when N = RN (which actually could be easily
generalized):
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• If E ⊂ RN is LN -measurable then: x ∈ E(N) if and only if x is a
Lebesgue density point of E, hence LN(E∆E(N)) = 0. In particular,
it follows that (E(N))(N) = E(N).
• If E ⊂ RN , then E(m) is LN -measurable, for all m ∈ [N,+∞) (see
[D16, Proposition 3.1]).
• Every open set U ⊂ RN can be approximated in measure by uni-
formly N -dense closed subsets of U . More precisely: For all C <

LN(U) there exists a closed set F ⊂ U such that LN(F ) > C

and F (m) = ∅ for all m > N (obviously one has F (N) ⊂ F and
LN(F \ F (N)) = 0), see [D19a, Proposition 5.4].
• Let N ≥ 2 and E ⊂ RN be a set of finite perimeter, so that
HN−1(∂∗E) < +∞ (where ∂∗E is the reduced boundary of E, see
[M12, Theorem 15.9]). Then LN(E \ E(m0)) = 0, with

m0 := N + 1 +
1

N − 1
,

see Theorem 1 in [EG92, Section 6.1.1] (compare also [D12, Lemma
4.1]). Moreover, the number m0 is the maximum order of density
common to all sets of finite perimeter. More precisely, the follow-
ing property holds (see [D16, Proposition 4.1]): For all m > m0

there exists a compact set Fm of finite perimeter in RN such that
LN(Fm) > 0 and F (m)

m = ∅.

3. The integral set of a C1 submanifold with respect to
a family of C1 differential forms: first structure theorem

3.1. Introduction to the first structure theorem. Throughout this
section, N and O will denote, respectively, a C2 manifold (ambient mani-
fold) and a family of C1 differential forms on N . If M is a C1 imbedded
submanifold of N , then we define

I(M,O) :=
⋂
ω∈O

{ω|M = 0}

and call it the integral subset ofM with respect to O. We observe that:

• WhenM is a C2 integral manifold of O, one has⋂
ω∈O

{(dω)|M = 0} = I(M,O) =M,

see [N85, Proposition 2.6.7] with k = 2.

• If O is a family of linearly independent C1 differential 1-forms defin-
ing a distribution D on N , then one has

(3.1) I(M,O) = T (M,D).
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Let us now recall an interesting example.

Example 3.1. Let U := (0, 1)M and consider a C1 differential 1-form on
N := U × R

ω(x,t) = F1(x)dx1 + · · ·+ FM(x)dxM − dt, x = (x1, . . . , xM , t) ∈ N

with F := (F1, . . . , FM) ∈ C1(U,RM) ∩ L∞(U,RM) and such that

(3.2) DF (x)T 6= DF (x), for all x ∈ U .

Then ω defines a distribution D of rank M on N which is noninvolutive ev-
erywhere, see [N85, Section 2.11.14], but this does not prevent the existence
of C1 imbedded submanifoldsM of N such that I(M,O) is “large”. More
precisely, for every ε > 0:

• There exists uε ∈ C1
0(U) such that

LM(Aε) ≤ ε, Aε := {∇uε 6= F},

and
‖∇uε‖∞ ≤

C

ε
‖F‖∞

see [A91, Theorem 1].

• Hence, denoting the graph of uε byMε, we find

I(Mε, {ω}) = T (Mε,D) = {(x, uε(x)) |x ∈ U \ Aε}

and we have

HM(Mε \ I(Mε, {ω})) =

∫
Aε

(1 + |∇uε|2)1/2dLM ≤ ε+ C‖F‖∞.

Observe that

(dω)(x,uε(x))

(
∂

∂xi
+Diuε(x)

∂

∂t
,
∂

∂xj
+Djuε(x)

∂

∂t

)
= DiFj(x)−DjFi(x)

for all x ∈ U and 1 ≤ i, j ≤ M . Hence the set {(dω)|Mε = 0} is empty,
by (3.2). Unfortunately, the lack of regularity does not allow us to use
the standard elementary arguments (such as the invariant formula for the
exterior derivative, see [N85, Proposition 2.6.6] with k = 2) to infer that
I(Mε, {ω}) = T (Mε,D) has no interior points relative to Mε. Actually,
we can be much more precise. Indeed, by [D19c, Theorem 1.3], one has
T (M,D)(M+1) = ∅ for all M -dimensional C1 imbedded submanifoldsM of
N . Hence in particular I(Mε, {ω})(M+1) = T (Mε,D)(M+1) = ∅.

In general, we know little about the size of I(M,O) whenM is chosen
from the family of C1 imbedded submanifolds. Based on Example 3.1, how-
ever, we are inclined to think that the existence ofM belonging to such a
family for which I(M,O) has large size is not an uncommon event (even
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without integrability assumptions on O). In addition we have the following
result whose proof is postponed to Subsection 3.2:

Theorem 3.2 (First structure theorem). Let M be any C1 imbedded sub-
manifold of N and put M := dimM. Then one has

I(M,O)(M+1) ⊂
⋂
ω∈O

{(dω)|M = 0}

where I(M,O)(M+1) denotes the set of all (M+1)-density points of I(M,O)

relative toM.

This corollary is an immediate consequence of Theorem 3.2. Although it
establishes a very natural and most likely known property, we are unable to
provide a reference for it.

Corollary 3.3. Let M be a C1 imbedded submanifold of N such that
I(M,O) =M (i.e.,M is an integral manifold of O). Then one has⋂

ω∈O

{(dω)|M = 0} =M.

Another trivial consequence of Theorem 3.2 is the following one.

Corollary 3.4. Let VM(O)y denote the set of all M-dimensional integral
elements of O at y ∈ N (see [BCG91, Y92]) and assume that:
(3.3)

For all y ∈ N and Σ ∈ VM(O)y there is ω ∈ O such that (dω)y|Σ 6= 0.

Then one has

I(M,O)(M+1) = ∅

wheneverM is an M-dimensional C1 imbedded submanifold of N .

3.2. Proof of the first structure theorem. Theorem 3.2 follows at once
from Theorem 3.5 below (obtained by adapting the argument of [D12, The-
orem 2.1]) and Remark 2.10.

Theorem 3.5. Let ω be a C1 differential p-form on N and ϕ : U ⊂ RM →
N be a C1 map (so that M ≤ dimN ). Then

U ∩ {dλ = ϕ∗ω}(M+1) ⊂ {ϕ∗dω = 0}

for every C1 differential (p− 1)-form λ on U . In particular

U ∩ {ϕ∗ω = 0}(M+1) ⊂ {ϕ∗dω = 0}.
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Proof. Observe that the assertion is trivial for p ≥M , hence we can assume
p ≤ M − 1. Let ρ ∈ (0, 1) and consider g ∈ C2

c (B1(0)), with B1(0) ⊂ RM ,
such that

0 ≤ g ≤ 1, g|Bρ(0) ≡ 1

and

|Dig| ≤
2

1− ρ
(i = 1, . . . ,M).

Now let x ∈ U ∩ {dλ = ϕ∗ω}(M+1) and for r > 0 define gr ∈ C2
c (Br(x)) by

gr(x) := g

(
x− x
r

)
, x ∈ Br(x).

Then

Digr(x) =
1

r
Dig

(
x− x
r

)
, x ∈ Br(x)

hence

(3.4) |Digr| ≤
2

r(1− ρ)
.

We now consider r sufficiently small for the following facts to hold:

• Br(x) ⊂ U ;
• There exists a sequence ψ1, ψ2, . . . ∈ C2(Br(x),N ) converging to
ϕ|Br(x) with respect to the C1 topology.

Observe that, given an arbitrary C2 differential (M−1−p)-form θ on Br(x),
one has

d(gr ψ
∗
jω∧θ) = dgr∧ψ∗jω∧θ+gr dψ

∗
jω∧θ+(−1)pgr ψ

∗
jω∧dθ (on Br(x))

for all j, by the differentiation formula for the wedge product of forms (e.g.
[L13, Proposition 14.23]). Since∫

Br(x)

d(gr ψ
∗
jω ∧ θ) =

∫
∂Br(x)

gr ψ
∗
jω ∧ θ = 0

by the Stokes theorem, we obtain∫
Br(x)

gr ψ
∗
jdω ∧ θ =

∫
Br(x)

gr dψ
∗
jω ∧ θ

= −
∫
Br(x)

dgr ∧ ψ∗jω ∧ θ

+ (−1)p+1

∫
Br(x)

gr ψ
∗
jω ∧ dθ.

(3.5)

Now let Fθ : Br(x)→ R be the continuous function such that

ϕ∗dω ∧ θ = Fθ dx (dx := dx1 ∧ · · · ∧ dxM)
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in Br(x). Then, setting K := {dλ = ϕ∗ω} and passing to the limit (j →
+∞) in (3.5), we find∫
Br(x)

grFθ dx =

∫
Br(x)

gr ϕ
∗dω ∧ θ

= −
∫
Br(x)

dgr ∧ ϕ∗ω ∧ θ + (−1)p+1

∫
Br(x)

gr ϕ
∗ω ∧ dθ

= −
∫
Br(x)∩K

dgr ∧ dλ ∧ θ −
∫
Br(x)\K

dgr ∧ ϕ∗ω ∧ θ+

+ (−1)p+1

∫
Br(x)∩K

gr dλ ∧ dθ + (−1)p+1

∫
Br(x)\K

gr ϕ
∗ω ∧ dθ

=

∫
Br(x)

−dgr ∧ dλ ∧ θ + (−1)p+1gr dλ ∧ dθ +

+

∫
Br(x)\K

dgr ∧ (dλ− ϕ∗ω) ∧ θ + (−1)p+1gr (ϕ∗ω − dλ) ∧ dθ.

But in the last member of this equality the integral over Br(x) is zero.
Indeed, since gr and θ are of class C2, the differentiation formula for the
wedge product of forms (e.g. [L13, Proposition 14.23]) yields

−dgr ∧ dλ ∧ θ + (−1)p+1gr dλ ∧ dθ = d
(
dgr ∧ λ ∧ θ + (−1)p+1gr λ ∧ dθ

)
hence ∫

Br(x)

−dgr ∧ dλ ∧ θ + (−1)p+1gr dλ ∧ dθ = 0

by the Stokes theorem.
Thus∫

Br(x)

grFθ dx =

∫
Br(x)\K

dgr ∧ (dλ− ϕ∗ω) ∧ θ + (−1)p+1gr (ϕ∗ω − dλ) ∧ dθ.

By recalling also (3.4), it follows that there exists a number C, not depending
on r and ρ, such that∣∣∣∣ ∫

Br(x)

grFθ dx

∣∣∣∣ ≤ C LM(Br(x)\K)

(
1

r(1− ρ)
+ 1

)
.

On the other hand, the triangle inequality implies∣∣∣∣ ∫
Br(x)

grFθ dx

∣∣∣∣ ≥ ∣∣∣∣ ∫
Bρr(x)

grFθ dx

∣∣∣∣− ∣∣∣∣ ∫
Br(x)\Bρr(x)

grFθ dx

∣∣∣∣
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hence there is a number C1, which does not depend on r and ρ, such that

ρM
∣∣∣∣ ∫

Bρr(x)

Fθ dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
Br(x)

gr Fθ dx

∣∣∣∣+
1

LM(Br(x))

∣∣∣∣ ∫
Br(x)\Bρr(x)

gr Fθ dx

∣∣∣∣
≤ C1LM(Br(x)\K)

rM

(
1

r(1− ρ)
+ 1

)
+
C1(rM − ρMrM)

rM

=
C1LM(Br(x)\K)

rM+1

(
1

1− ρ
+ r

)
+ C1(1− ρM).

Passing to the limit for r ↓ 0 and recalling that x ∈ K(M+1), we obtain

ρM |Fθ(x)| ≤ C1(1− ρM).

Then, letting ρ ↑ 1, we find Fθ(x) = 0, that is

(ϕ∗dω)x ∧ θx = 0.

From the arbitrariness of θ it follows that (ϕ∗dω)x = 0. �

Remark 3.6. In general, under the assumptions of Theorem 3.5, one cannot
expect that

U ∩ {dλ = ϕ∗ω}(M) ⊂ {ϕ∗dω = 0}.
For example (see [D12, Remark 2.2]), if

U = N = R2, ϕ(x) = x, ωx = −x2dx1 + x1dx2,

then the set {ϕ∗dω = 0} is empty, while a simple application of [A91,
Theorem 1] provides λ ∈ C1(R2) such that L2({dλ = ϕ∗ω}(2)) > 0.

4. The integral set of a Ck+1 submanifold with respect to
a family of Ck differential forms: second structure theorem

4.1. Introduction to the second structure theorem. We turn our at-
tention to Corollary 3.4. If under the assumptions of that result we are
restricted to considering imbedded submanifolds M of class C2, then it is
natural to expect a consequent further “slimming” of I(M,O). In fact the
following result holds:

Corollary 4.1. Let N be a C2 manifold, O be a countable family of C1

differential forms on N and assume condition (3.3). Then this property
holds: For every M-dimensional C2 imbedded submanifoldM of N , the set
I(M,O) is covered by countably many C1 imbedded submanifolds ofM of
dimension less or equal than M − 1 (in particular, I(M,O) is a (M − 1)-
dimensional C1 rectifiable subset ofM).

Corollary 4.1 is a special case of the more general structure result below,
which will be proved in Subsection 4.2:
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Theorem 4.2 (Second structure theorem). Let N and O be, respectively, a
Ck+1 manifold and a countable family of Ck differential forms on N (with
k ≥ 1). Assume that condition (3.3) is satisfied and define

(4.1) ρM := min
y∈N

Σ∈VM (O)y

max{m ≥ 1|((dω)m)y|Σ 6= 0 for some ω ∈ O}.

Then ρM ≥ 1 and this property holds: For every M-dimensional Ck+1

imbedded submanifold M of N , the set I(M,O) is covered by countably
many Ck imbedded submanifolds ofM of dimension less or equal than M−
ρM (in particular, I(M,O) is an (M−ρM)-dimensional Ck rectifiable subset
ofM).

Example 4.3. We now return to the special case considered in Example
3.1, namely N := U × R = (0, 1)M × R and

ω(x,t) = F1(x)dx1 + · · ·+ FM(x)dxM − dt, (x, t) = (x1, . . . , xM , t) ∈ N .

This time, in addition to assuming (3.2), we require F = (F1, . . . , FM) ∈
Ck(U,RM) with k ≥ 1. Since VM({ω})(x,t) = {D(x,t)} for all (x, t) ∈ N
and condition (3.3) is trivially satisfied, we can apply Theorem 4.2 (we also
recall (3.1)). We conclude that

ρM = min
(x,t)∈N

max{m ≥ 1 | ((dω)m)(x,t)|D(x,t)
6= 0} ≥ 1

and the following property holds: For every M -dimensional Ck+1 imbedded
submanifold M of N , the set T (M,D) is covered by countably many Ck

imbedded submanifolds ofM of dimension less or equal than M − ρM (in
particular, T (M,D) is a (M−ρM)-dimensional Ck rectifiable subset ofM).

4.2. Proof of the second structure theorem. Let us first introduce
some notation useful for stating Theorem 4.5 and Corollary 4.6 below. From
Corollary 4.6 we will then obtain the proof of Theorem 4.2.

Let

θh =
∑

α∈I(M,ph)

g(h)
α dxα (h = 1, . . . , H)

be a family of homogeneous differential forms of class Ck on an open set U ⊂
RM , so that g(h)

α ∈ Ck(U) for all α, h. To proceed with the discussion, we now
need to order the sets I(M, ph) in any way (for example lexicographically),
so that we can write

I(M, ph) = {α(h;1), α(h;2), . . . , α(h;Kh)}, Kh := K(ph) :=

(
M

ph

)
.
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and

θh =

Kh∑
i=1

g
(h)

h;α(h;i) dxα(h;i) .

Moreover set K := K1 + · · · + KH and consider G = (G1, . . . , GK)T ∈
Ck(U,RK) defined as follows:

Gi := g
(1)

α(1;i) (i = 1, . . . , K1)

and

GK1+···+Kh−1+i := g
(h)

α(h;i) (h = 2, . . . , H; i = 1, . . . , Kh).

Remark 4.4. In the special case that ph = 1 for all h (hence K = HM), it
is natural to set α(h;i) := i, so that G(h−1)M+i := g

(h)
i . In particolar, we get

the following identity that will be useful below:

dθh(u, v) =
M∑
i=1

(dG(h−1)M+i ∧ dxi)(u, v)

=
M∑
i,j=1

DjG(h−1)M+i(ujvi − uivj)

=
M∑
i=1

vi(∇G(h−1)M+i) · u−
M∑
i=1

ui(∇G(h−1)M+i) · v

for all u, v ∈ RM and h = 1, . . . , H.

Now let (y1, . . . , yK) denote the coordinates of RK and define the Ck

differential 1-form on U × RK

Θ :=
K∑
l=1

G̃l dyl,

where G̃l denotes the function

(x, y) 7→ Gl(x), (x, y) ∈ U × RK .

Finally, we set U0 := {x ∈ U | (dΘ)(x,0) = 0},

Ur := {x ∈ U | (dΘ)r(x,0) 6= 0, (dΘ)r+1
(x,0) = 0} (r = 1, . . . ,M)

and

DλGβ :=

 Dλ1Gβ1 · · · DλrGβ1

... . . . ...
Dλ1Gβr · · · DλrGβr

 (β ∈ I(K, r), λ ∈ I(M, r)).

Theorem 4.5. The sets U0, U1, . . . , UM form a pairwise disjoint decompo-
sition of U . Moreover, for r = 1, . . . ,M , the following facts hold:
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(1) One has

(dΘ)r(x,0) = ± r!
∑

β∈I(K,r)

∑
λ∈I(M,r)

det(DλGβ(x)) dxλ ∧ dyβ

for all x ∈ U , hence

Ur = {rankDG = r}.

(2) The set

Ur ∩
( H⋂
h=1

{θh = 0}
)

is covered by finitely many (M − r)-dimensional Ck imbedded sub-
manifolds of U .

Proof. The first assertion about U0, U1, . . . , UM is obvious. From

dΘ =
K∑
l=1

dG̃l ∧ dyl

we obtain

(dΘ)r = ±
K∑

l1,...,lr=1

dG̃l1 ∧ · · · ∧ dG̃lr ∧ dyl1 ∧ · · · ∧ dylr

= ± r!
∑

β∈I(K,r)

dG̃β1 ∧ · · · ∧ dG̃βr ∧ dyβ.

Moreover one has (for all x ∈ U)

(dG̃β1 ∧ · · · ∧ dG̃βr)(x,0) =
M∑

j1,...,jr=1

Dj1Gβ1(x) · · ·DjrGβr(x) dxj1 ∧ · · · ∧ dxjr

=
∑

λ∈I(M,r)

det(DλGβ(x)) dxλ.

This proves (1). As for (2), we observe that (1) yields

Ur ∩
( H⋂
h=1

{θh = 0}
)

= {G = 0} ∩ {rankDG = r}

⊂
⋃

β∈I(K,r)

{Gβ = 0} ∩ {rankDGβ = r}

where Gβ := (Gβ1 , . . . , Gβr)
T . The conclusion follows from standard litera-

ture on submanifolds, e.g., [N85, Corollary 2.5.5], [KP13, Theorem 4.3.1].
�

Corollary 4.6. Let θ and r be, respectively, a Ck differential p-form on
U and a positive integer. Then the set {θ = 0} ∩ {(dθ)r 6= 0} is covered
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by finitely many Ck imbedded submanifolds of U of dimension less or equal
than M − r.

Proof. Since (dθ)r has degree r(p + 1), we can assume r(p + 1) ≤ M (oth-
erwise, the statement is trivially verified). We set θ1 := θ and adopt the
notation above, so that

θ = θ1 =
K∑
i=1

g
(1)

α(i)dxα(i) =
K∑
i=1

Gi dxα(i)

with K =
(
M
p

)
. Then one has

(dθ)r = (dθ1)r =

( K∑
i=1

dGi ∧ dxα(i)

)r
= ±

K∑
i1,...,ir=1

dGi1 ∧ · · · ∧ dGir ∧ dxα(i1) ∧ · · · ∧ dxα(ir)

= ± r!
∑

β∈I(K,r)

dGβ1 ∧ · · · ∧ dGβr ∧ dxα(β1) ∧ · · · ∧ dxα(βr)

where

dGβ1 ∧ · · · ∧ dGβr =
M∑

j1,...,jr=1

Dj1Gβ1 · · ·DjrGβr dxj1 ∧ · · · ∧ dxjr

=
∑

λ∈I(M,r)

det(DλGβ) dxλ.

Thus

(dθ)r = ± r!
∑

β∈I(K,r)

∑
λ∈I(M,r)

det(DλGβ) dxλ ∧ dxα(β1) ∧ · · · ∧ dxα(βr)

which implies
{θ = 0} ∩ {(dθ)r 6= 0} ⊂ {θ1 = 0} ∩ {rankDG ≥ r}

=
M⋃
j=r

({θ1 = 0} ∩ {rankDG = j}).

Hence the conclusion follows by Theorem 4.5. �

Remark 4.7. When p is even and r ≥ 2, the set {(dθ)r 6= 0} is empty and
thus Corollary 4.6 is trivial and uninteresting.

We are finally ready to prove the second structure theorem:
Proof of Theorem 4.2. From assumption (3.3) we get immediately ρM ≥ 1

and ⋃
ω∈O

{(dω)ρM |M 6= 0} =M.
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Hence

I(M,O) =
⋂
ω∈O

{ω|M = 0}

=

( ⋂
ω∈O

{ω|M = 0}
)
∩
( ⋃
ω∈O

{(dω)ρM |M 6= 0}
)

⊂
⋃
ω∈O

({ω|M = 0} ∩ {(dω)ρM |M 6= 0}) .

The conclusion follows at once from Corollary 4.6 and a standard localiza-
tion argument. �

5. Application in the context of non-involutive distributions
I

5.1. From the EDS point of view. Let N be a N -dimensional Ck+1

manifold, with k ≥ 1. Consider a Ck distribution D of rank M on N which
is non-involutive at each point of N , so that H := N −M ≥ 1. If O :=

{ω1, . . . , ωH} is a family of linearly independent Ck defining 1-forms for D
in N , then the following property holds: For all y ∈ N , one has VM(O)y =

{Dy} and there exists h (depending on y) such that

(dωh)y|Dy 6= 0,

see Section 2.3. Hence condition (3.3) is satisfied and (recalling the definition
of ρM given in Theorem 4.2) we have

(5.1) ρM = min
y∈N

max{m ≥ 1|((dωh)m)y|Dy 6= 0 for some h} ≥ 1.

Observe that ρM depends on D but not on the choice of the family O
defining D.

The next two results, the first of which is known, describe the structure
of the tangency of an imbedded submanifold with respect to D. They follow
trivially from Corollary 3.4 and Theorem 4.2, respectively (by recalling also
(3.1)).

Corollary 5.1 (Theorem 1.3 in [D19c]). Under the assumptions above with
k = 1, one has

T (M,D)(M+1) = ∅

wheneverM is M-dimensional C1 imbedded submanifold of N .

Corollary 5.2. Under the assumptions above, the following property holds:
For every M-dimensional Ck+1 imbedded submanifold M of N , the set
T (M,D) is covered by countably many Ck imbedded submanifolds of M
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of dimension less or equal than M − ρM (in particular, T (M,D) is an
(M − ρM)-dimensional Ck rectifiable subset ofM).

5.2. From the PDE point of view. Let U ⊂ RM , V ⊂ RH be two open
sets and consider a family of functions

Φ(1), . . . ,Φ(M) ∈ Ck(U × V,RH),

with k ≥ 1, satisfying the following condition:

For every (x, t) ∈ U × V there exist i, j ∈ {1, . . . ,M} such that(
∂Φ(i)

∂xj
− ∂Φ(j)

∂xi
+

H∑
l=1

∂Φ(i)

∂tl
Φ

(j)
l −

H∑
l=1

∂Φ(j)

∂tl
Φ

(i)
l

)
(x,t)

6= 0.
(5.2)

It is well known that condition (5.2) is equivalent to the local unsolv-
ability of the partial differential system

(5.3)

{
Dif(x) = Φ(i)(x, f(x)) (i = 1, . . . ,M)

f(x0) = t0

for all (x0, t0) ∈ U × V , see Theorem 1 in [Sp79, Chapter 6]. In geometric
terms, the system (5.3) expresses the property that the graph of f is an
integral manifold through (x0, t0) of the Ck distribution D of rankM defined
by the family of Ck differential 1-forms on U × V

O := {ω1, . . . , ωH}, ωh :=
M∑
i=1

Φ
(i)
h dxi − dth

and indeed it is well known that the non-involutivity of D at each point of
U × V is equivalent to condition (5.2), see [Sp79, Chapter 6], [N85, Section
2.11], [D18, Section 3]. Thus, correspondingly to Corollary 5.1 and Corollary
5.2, we obtain the following couple of results:

Corollary 5.3. Under the assumptions above with k = 1, let f ∈ C1(U, V ).
Then one has( M⋂

i=1

{x ∈ U |Dif(x) = Φ(i)(x, f(x))}
)(M+1)

= ∅.

Corollary 5.4. Under the assumptions above, let ρM be defined as in (4.1)
(so that (5.1) holds). Then, for all f ∈ Ck+1(U, V ), the set

M⋂
i=1

{x ∈ U |Dif(x) = Φ(i)(x, f(x))}

is covered by countably many Ck imbedded submanifolds of U of dimension
less or equal than M − ρM (in particular, it is a (M − ρM)-dimensional Ck

rectifiable subset of U).
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Remark 5.5. Consider the very special case when H = 1 and the functions
Φ(i) do not depend explicitly on t, that is

Φ(i)(x, t) = Fi(x), for all (x, t) ∈ U × R

with Fi ∈ Ck(U), for all i = 1, . . . ,M . Then condition (5.2) turns to

(5.4) DF (x)T 6= DF (x), for all x ∈ U (F := (F1, . . . , FM)T )

and we can define the positive integer ρM as above. Thus Corollary 5.3 and
Corollary 5.4 provide the following properties, which in a much more general
version were proved in [D21] (see Corollary 3.8 and Corollary 3.4 of [D21]):

• Let k = 1 and assume condition (5.4). Then, for every function
f ∈ C1(U), one has {∇f = F}(M+1) = ∅;
• Let us assume condition (5.4). Then, for all f ∈ Ck+1(U), the set
{∇f = F} is a (M − ρM)-dimensional Ck rectifiable subset of U .

A remarkable example is given by F ∈ Ck(U,RM) of the form

F (x1, . . . , xM) = (−xr+1, . . . ,−x2r, x1, . . . , xr, F2r+1(x2r+1), . . . , FM(xM))T

so that

(ω1)(x,t) = −
r∑
i=1

xr+idxi +
2r∑

i=r+1

xi−rdxi +
M∑

i=2r+1

Fi(xi)dxi − dt.

Hence
(dω1)r = ±2r r! dx1 ∧ · · · ∧ dx2r

which implies ρM = r. In particular, when M = 2r and k = 1, we obtain
[D19b, Corollary 4.1] which improves the second statement in [B03, Theo-
rem 3.1] and yields immediately the following property: The characteristic
set of a codimension 1 submanifold of class C2 in the Heisenberg group
Hr has Hausdorff dimension less or equal than r, see [B03, Theorem 1.2].
Related to this subject, we point out the recent paper [Tu21] where the
results of [D19b] are extended to the context of gradient-like vector fields
associated to a general geometric structure on R2p.

6. Application in the context of non-involutive distributions
II

The main purpose of this section is to provide (in Theorem 6.1 below)
a very simple new proof of [D18, Theorem 5.1], which in turn almost triv-
ially implies [D18, Corollary 5.2] about the structure of tangency sets with
respect to a distribution (see Corollary 6.5 below).

Throughout this section, D denotes a Ck distribution of rank M on an
(M +H)-dimensional Ck+1 manifold N (with M,H, k ≥ 1).
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Theorem 6.1. Let ω1, . . . , ωH be a family of linearly independent Ck differ-
ential 1-forms defining D in an open subset V of N . For m = 1, . . . ,M+H,
let Am(ω1, . . . , ωH) (or simply Am) denote the set of all points P ∈ V satis-
fying the following property: There exists an m-dimensional vector subspace
X of TPN such that

(6.1) (ωh)P |X = 0, (dωh)P |X = 0 (for all h = 1, . . . , H).

The following facts hold:

(1) One has

AM ⊂ AM−1 ⊂ · · · ⊂ A1 = V , AM+1 = · · · = AM+H = ∅;

(2) Let U be an open subset of RM and ϕ : U → N be an injective Ck+1

immersion such that U := ϕ(U) ⊂ V. Then, for all m = 1, . . . ,M ,
the set T (U ,D) \ Am+1 is covered by finitely many Ck imbedded
submanifolds of N of dimension less or equal than m.

Proof. Assertion (1) is actually obvious, see [BPR11]. To prove assertion
(2), we will use Theorem 4.5. So let us define

θh := ϕ∗ωh (h = 1, . . . , H)

and adopt the notation of Subsection 4.2. We shall prove the following
inclusion

ϕ−1(T (U ,D) \ Am+1) ⊂
M⋃

r=M−m

(
Ur ∩

(
H⋂
h=1

{θh = 0}

))
that implies the conclusion, by (2) of Theorem 4.5. For this purpose, we
consider x in the left-hand side set, namely x ∈ U such that

(6.2) ϕ(x) ∈ T (U ,D), ϕ(x) 6∈ Am+1.

From the first one and (2.3), we obtain

x ∈
H⋂
h=1

{θh = 0}

hence it remains to prove that

(6.3) x ∈
M⋃

r=M−m

Ur.

Let us assume, by contradiction, that (6.3) does not happen. Then, by
Theorem 4.5, one has rankDG(x) ≤M −m− 1 and thus

M = dim kerDG(x) + rankDG(x) ≤ dim kerDG(x) +M −m− 1
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which yields

(6.4) K := dim kerDG(x) ≥ m+ 1.

Now consider the K-dimensional vector space X := dϕx(kerDG(x)) ⊂
Tϕ(x)N . Recalling the first formula in (6.2), we obtain

X ⊂ dϕx(RM) = Tϕ(x)U = Dϕ(x)

hence

(ωh)ϕ(x)|X = 0 (h = 1, . . . , H).

Moreover if ξ and η are two arbitrary vectors in X, so that ξ = dϕx(u) and
η = dϕx(v) with u, v ∈ kerDG(x), then

(dωh)ϕ(x)(ξ, η) = (dωh)ϕ(x)(dϕx(u), dϕx(v))

= (ϕ∗dωh)x(u, v)

= (dθh)x(u, v)

=
M∑
i=1

vi∇G(h−1)M+i(x) · u−
M∑
i=1

ui∇G(h−1)M+i(x) · v

= 0

for all h = 1, . . . , H, by Remark 4.4. Thus one has also

(dωh)ϕ(x)|X = 0 (h = 1, . . . , H),

so that ϕ(x) ∈ AK . Finally, the contradiction arises by recalling (6.2), (6.4)
and statement (1). �

Remark 6.2. Let ω1, . . . , ωH be as in Theorem 6.1. The following properties
holds, simply by definition:

• If D is involutive in V , then AM(ω1, . . . , ωH) ∩ V = V ;
• If D is non-involutive at each point of V , then AM(ω1, . . . , ωH)∩V =

∅.

Remark 6.3. One can easily verify that identities in (6.1) are independent
from the family ω1, . . . , ωH of local defining 1-forms for D, in the following
sense: If ω1, . . . , ωH (resp. ω′1, . . . , ω′H) is a family of defining 1-forms for D
in an open subset V (resp. V ′) of N and if 1 ≤ m ≤M +H, then

Am(ω1, . . . , ωH) ∩ V ′ = Am(ω′1, . . . , ω
′
H) ∩ V .

It follows that, if define (for m = 1, . . . ,M +H)

Am(D) :=
⋃
{Am(ω1, . . . , ωH) |ω1, . . . , ωH are local defining 1-forms for D}
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then for every family ω1, . . . , ωH of defining 1-forms for D in an open set
V ⊂ N one has

(6.5) Am(D) ∩ V = Am(ω1, . . . , ωH).

Corollary 6.4. The following facts hold:

(1) One has

AM(D) ⊂ AM−1(D) ⊂ · · · ⊂ A1(D) = N

and

AM+1(D) = · · · = AM+H(D) = ∅;

(2) Let M be an M-dimensional Ck+1 imbedded submanifold of N and
1 ≤ m ≤M . Then

Rm := T (M,D) \ Am+1(D)

is a Ck rectifiable set of dimension less or equal than m.

Proof. The first statement follows trivially from (1) of Theorem 6.1. To
prove the second one, let P ∈ Rm and consider a family ω1, . . . , ωH of
defining 1-forms for D in a neighbourhood V of P . Moreover, let (Ũ ,Ψ) be
a Ck+1 chart of N with the following properties:

• P ∈ Ũ ⊂ V ;
• If we define U :=M∩ Ũ , then one has

Ψ(U) = {(x1, . . . , xM+H) ∈ Ψ(Ũ) |xM+1 = . . . = xM+H = 0} = U × {0}H ,

where U is an open subset of RM ;
• The map

ψ := (Ψ1|U , . . . ,ΨM |U) : U → U

is a Ck+1 diffeomorphism.

Now observe that
Rm ∩ U = (T (M,D) ∩ U) \ (Am+1(D)) ∩ U)

= T (U ,D) \ (Am+1(ω1, . . . , ωH) ∩ U)

= T (U ,D) \ Am+1(ω1, . . . , ωH)

by (6.5). From Theorem 6.1 it follows that Rm ∩ U is covered by finitely
many Ck imbedded submanifolds of N of dimension less or equal than m.
Hence ψ(Rm∩U) is covered by finitely many Ck imbedded submanifolds of
U of dimension less or equal than m. We conclude by recalling Proposition
2.1. �
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As an almost immediate consequence of Corollary 6.4 and Remark 2.6,
we obtain the following well-known result that provides, in particular, an
upper bound for the functionM 7→ dim T (M,D), see [BPR11, D18].

Corollary 6.5. LetM be a M-dimensional Ck+1 imbedded submanifold of
N . Then one has

T (M,D) =
M⋃
m=1

[Rm ∩ (Am(D) \ Am+1(D))]

= [T (M,D) ∩ AM(D)] ∪
M−1⋃
m=1

[Rm ∩ (Am(D) \ Am+1(D))]

(6.6)

hence

dim T (M,D) ≤ max
1≤m≤M

{min{dim(Am(D) \ Am+1(D)),m}}.

Remark 6.6. Let D be non-involutive at each point of N andM be a M -
dimensional Ck+1 imbedded submanifold of N . Then, by Remark 6.2 and
Remark 6.3, one has AM(D) = ∅ and (6.6) reduces to

(6.7) T (M,D) =
M−1⋃
m=1

R∗m

with
R∗m := Rm ∩ (Am(D) \ Am+1(D)).

If define

µM := M −max{m ∈ {1, . . . ,M − 1} |Hm(R∗m) > 0},

then we obviously have µM ≥ 1 and (by (2) of Corollary 6.4)

(6.8) HM−µM (R∗m) = 0, for all m 6= M − µM .

From (6.7) and (6.8) (recalling again (2) of Corollary 6.4) it follows that
T (M,D) is a (M −µM)-dimensional Ck rectifiable subset ofM. Now, it is
natural to ask whether or not the equality µM = ρM is true (see Corollary
5.2). Unfortunately, we do not currently have an answer for this question.

7. An application in the context of Pfaff problem

Let us consider an N -dimensional C2 manifold N (with N ≥ 3), an open
set U ⊂ N and a C2 differential 1-form ω on U with the following property:
There exists a C2 diffeomorphism ϕ : U ⊂ RN → U such that

(7.1) ϕ∗ω = πm = dx1 + x2dx3 + · · ·+ x2mdx2m+1 (2m+ 1 ≤ N).

Then one has

(7.2) (dω)m ∧ ω 6= 0, (dω)m+1 = 0
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by (2.1) and (2.2). Recall that the following converse result by G. Darboux
holds, see [BCG91, Ch. II, Theorem 3.4], [IL03, Theorem 1.9.17] and [K05,
Theorem 8].

Theorem 7.1. Let N be an N-dimensional C2 manifold (with N ≥ 3)
and ω be a C2 differential 1-form on a neighborhood V of P ∈ N . If ω
satisfies condition (7.2) everywhere in V, then there is a C2 diffeomorphism
ϕ : U ⊂ RN → U ⊂ V such that P ∈ U and (7.1) holds.

Thus, it becomes natural to ask what the sets of the type {ϕ∗ω = πm} are
reduced to when condition (7.2) is not satisfied. The following results provide
some answers to this question in the case when N is an N -dimensional Ck+1

manifold (with k ≥ 1 and N ≥ 3) and ω is a Ck differential 1-form on an
open set U ⊂ N .

Theorem 7.2. Assume that there exists a positive integer m such that
(dω)m+1 6= 0 everywhere in U . Then, for every Ck+1 diffeomorphism ϕ :

U ⊂ RN → U , the set {ϕ∗ω = πm} is covered by finitely many Ck imbedded
submanifolds of U of dimension less or equal than N − 1.

Proof. Since (dω)m+1 6= 0 everywhere in U (by assumption) and recalling
the second identity of (2.1), we find

{dϕ∗ω = dπm} ⊂ {(dϕ∗ω)m+1 = (dπm)m+1} = ∅.

Hence
{ϕ∗ω = πm} = {ϕ∗ω = πm} ∩ {dϕ∗ω 6= dπm}

and the conclusion follows by applying Corollary 4.6 with r = 1 to the Ck

differential 1-form ϕ∗ω − πm. �

This further result of “low Pfaffianity” is a special case of Theorem 7.2
(stronger assumptions, smaller dimension of {ϕ∗ω = πm}).

Theorem 7.3. Assume that there exist a positive integer m and a Ck+1

diffeomorphism ϕ : U ⊂ RN → U such that 2(2m+ 1) ≤ N and

(7.3) (dϕ∗ω)m+1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dx2m+1 6= 0, (dϕ∗ω)m+2 = 0

at each point of U . Then the set {ϕ∗ω = πm} is covered by finitely many Ck

imbedded submanifolds of U of dimension less or equal than N − 2m− 1.

Proof. If θ := ϕ∗ω − πm, then
(dθ)2m+1 = (dϕ∗ω − dπm)2m+1

=
2m+1∑
h=0

(−1)2m+1−h
(

2m+ 1

h

)
(dϕ∗ω)h ∧ (dπm)2m+1−h,
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where:

• For h ≥ m+ 2 the addends are zero, by the second identity in (7.3);
• For h ≤ m the addends are zero, by the second identity in (2.1).

Hence, by also recalling the first identity in (2.1) and the first one in (7.3),
we obtain

(dθ)2m+1 = (−1)m
(

2m+ 1

m+ 1

)
(dϕ∗ω)m+1 ∧ (dπm)m 6= 0

in U . The conclusion follows by applying Corollary 4.6 with r = 2m+1. �
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