
IDENTIFIABILITY FOR THE k-SECANT VARIETY OF THE

SEGRE-VERONESE VARIETIES

E. BALLICO

Abstract. Identifiability holds for the k-secant variety σk(X) of an embedded variety X ⊂ Pr

if a general q ∈ σk(X) is in the linear span of a unique subset of X with cardinality k. We
consider here the case in which X is a Segre-Veronese embedding of a multiprojective space,

i.e. q corresponds to a partially symmetric tensor and X-rank is the partially symmetric tensor

rank. To improve by 1 the known results we exclude the case of codimension one contact loci
and handle cases in which the irreducible components of the tangential k-contact locus are linear

spaces.

1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety defined over an algebraically closed field
K with characteristic 0. Set n := dimX. For each integer k > 1 the k-secant variety σk(X)
of X is the closure in Pr of ∪S⊂X,|S|=k〈S〉, where 〈 〉 denotes the linear span. Now assume
dimσk(X) = k(n + 1) − 1 < r, i.e. assume that σk(X) has the expected dimension and that
σk(X) 6= Pr. Fix a general (p1, . . . , pk) ∈ Xk (in particular pi ∈ Xreg for all i). By Terracini’s
lemma ([6, Corollary 1.11]) the linear space L := L(p1, . . . , pk) := 〈∪ki=1Tpi

(X)〉 has dimension
k(n+ 1)− 1. Consider the set B := {x ∈ Xreg | L is tangent to X at x} and let B′ be the closure
of B in X. Following [10, 16, 17] the tangential k-contact locus Γk(p1, . . . , pk) of X with respect to
{p1, . . . , pk) is the union of the irreducible components of B′ containing at least one of the points
p1, . . . , pk. A key observation is that if dim Γk(p1, . . . , pk) = 0, then identifiability holds for σk(X),
i.e. for a general q ∈ σk(X) there is a unique S ⊂ X such that |S| = k and q ∈ 〈S〉 ([10, Lemma 4.2
and Corollary 4.3], [16, Theorem 2.4], [17, Proposition 3.9]). This observation was used in several
papers and our first aim is to improve by 1 the results on the identifiability given in [10] at least
for Segre-Veronese embeddings of multiprojective spaces (i.e. for partially symmetric tensors). We
think that this apply to other varieties, too, and we put the proof of our results in a way that it
may be applied to other varieties (Remark 2.1 and Propositions 2.2 and 2.3). In particular we get
the following results.

Theorem 1.1. Let X ⊂ Pr be a Segre-Veronese embedding of a multiprojective space. Set n :=
dimX. Fix a positiver integer k such that dimσk(X) = k(n+ 1)− 1 < r. Exclude the case s = 2,
n = 2, k = 8 embedded by the linear system |OP1×P1(4, 4)|. Then the tangential k-locus of X is not
a hypersurface.

Theorem 1.2. Fix positive integers s ≥ 2, ni, di, 1 ≤ i ≤ s, and set n := n1 + · · · + ns and
r := −1 +

∏s
i=1

(
ni+di

ni

)
. Let A be the set of all i ∈ {1, . . . , s} such that di = 1. If A 6= ∅ assume

that for each i ∈ A there is j ∈ A such that j 6= i and nj = ni. Let X ⊂ Pr be the Segre-Veronese
embedding of multidegree (d1, . . . , ds). Fix an integer k > 0 such that (k + n − 2)(n + 1) ≤ r and
assume dimσk+n−2(X) = (k+n−2)(n+ 1)−1. Exclude the case s = 2, n1 = n2 = 1, d1 = d2 = 4
and k = 8. Then X is not tangentially k-defective and identifiability holds for σk(X).

The following corollaries follow using respectively [31, Theorem 3.1] and [7].

Corollary 1.3. Fix integers s ≥ 2 and di > 0, 1 ≤ i ≤ s, and set r := −1 +
∏s

i=1(di + 1). Take
ni = 1 for all i. Fix a positive integer k such that k ≤ br/(s+ 1)c − s+ 2. Exclude the case s = 2,
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n1 = n2 = 1, d1 = d2 = 4 and k = 8. Then X is not tangentially k-defective and identifiability
holds for σk(X).

Corollary 1.4. Fix integers m ≥ 2 and s ≥ 2. Set r := −1 + (m+ 1)s, a := b(m+ 1)s/(ms+ 1)c,
and let ε be the only integer such that 0 ≤ ε ≤ m and a ≡ ε (mod m + 1). If either ε > 0 or
(k+ms)(sm+ 1) ≤ (m+ 1)s−1, set a′ := a− ε. If ε = 0 and (ms+ 1)a = (m+ 1)s set a′ := a−1.
Let X ⊂ Pr be the Segre embedding of (Pm)s. Then for all positive integers k ≤ a′ −ms+ 2 X is
not tangentially k-defective and for a general q ∈ σk(X) there is a unique S ⊂ X such that |S| = k
and q ∈ 〈S〉.

See [10, §5] for other varieties to which the tools used to prove Theorem 1.1 may (perhaps) be
applied.

Our second aim is to continue the study of the tangential k-contact loci in the sense that we
give some cases in which the irreducible components of the tangential contact loci are not linear
spaces. We prove the following result.

Proposition 1.5. Fix positive integers k, x, s ≥ 2, ni, di, 1 ≤ i ≤ s, and set n := n1 + · · · + ns
and r := −1 +

∏s
i=1

(
ni+di

ni

)
. Let X ⊂ Pr be the Segre-Veronese embedding of Pn1 × · · · × Pns . Let

Ax be the set of all i ∈ {1, . . . , n} such that di = 1 and ni ≥ x. Assume Ax 6= ∅ and let i0 be

the maximum of all i ∈ Ax. Assume σk(X) = k(n + 1) − 1 and k ≥ (r+1)(ni0−x+1)

(ni0
+1)(n−x+1) . Then the

tangential k-locus of X is not the union of k x-dimensional linear subspaces.

If Ax = ∅ it is easy to check that a general k-contact locus contains no x-dimensional linear
subspace (see the proof of Proposition 1.5).

From Proposition 1.5 we get the following corollary.

Corollary 1.6. Let X ⊂ Pr be a Segre-Veronese embedding of a multiprojective space. Set n :=
dimX and fix a positive integer k such that dimσk+n−2(X) = (k+ n− 2)(n+ 1)− 1 < r. Then X
is not tangentially k-defective and identifiability holds for σk(X).

To show why in some sense our results improve by 1 some of the results of [10] we state here
[10, theorem 5.6], which the reader may compare to Theorem 1.2 and Proposition 1.5.

Theorem 1.7. ([10, Theorem 5.6]) Fix integer s ≥ 2, ni > 0, di > 0, 1 ≤ i ≤ s. Set n :=

n1+ · · ·+ns and r = −1+
∏(di+ni

di

)
. Let X ⊂ Pr be the (n-dimensional) Segre-Veronese embedding

of the multiprojective space Pn1 × · · · × Pns , via the linear system Ld1
1 ⊗ · · · ⊗ Lds

s , where each Li

is the pull-back of OPni (1) in the projection onto the i-th factor. Assume that dimσk+n−1(X) =
(k + n− 1)(n+ 1)− 1 < r. Assume also that either:

• di > 1 for all i; or
• for all i with di = 1 there exists j 6= i such that dj = 1 and ni = nj.

Then X is not weakly j-defective (hence it is j-identifiable) for every j 5 k.

Thus in our paper we require σk+n−2(X) 6= Pr and that σk+n−2(X) has the expected dimension,
while Theorem 1.7 requires σk+n−1(X) 6= Pr and that σk+n−1(X) has the expected dimension.
Obviously Theorem 1.7 is not the key result of [10], the key ones being [10, Lemma 3.5 and
Theorem 5.1]. Similarly, all the results of this paper follow from a key observation (Remark 2.1,
Propositions 2.2 and 2.3) plus a little work for each of the results stated in the introduction.

There are a huge number of papers on the identifiability problem ([12, 13, 20, 21, 22, 23, 24,
25, 27, 28, 33]). Since a necessary condition for the identifiability for σk(X) is that dimσk(X) =
k(dimX+1)−1 (and we explicitly assumed it in the statements of Theorem 1.2 and Corollary 1.6,
while we use that it was known for Corollaries 1.3 and 1.4), we also list some of the papers proving
that dimσk(X) = k(dimX + 1) − 1 in the case of Segre-Veronese varietes ([1, 2, 3, 4, 5, 7, 8, 11,
14, 30, 31, 32]. The key tool (the tangential contact loci) of our paper comes from [15, 16, 17]. See
[29] for several topics (pure and applied) on tensors and symmetric tensors.

We thank the referee for many useful suggestions.

2. The proofs

We recall ([15, 16, 17]) that a tangential k-contact locus Γk(p1, . . . , pk) is said to be of type I
(resp. type II) if it is irreducible (resp. it has k irreducible components, each of them containing
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exactly one point pi and all of them of the same dimension). If Γk(p1, . . . , pk) is irreducible, then
pi ∈ Γk(p1, . . . , pk) for all i. For any p ∈ X ⊂ Pr let 2p denote the closed subscheme of X with
(Ip)2 as its ideal sheaf; here Ip is the ideal sheaf of p on X, not on Pr. The scheme 2p is a
zero-dimensional scheme with 2pred = {p}. If p ∈ Xreg and dimX = n, then deg(2p) = n + 1
and the linear span 〈2p〉 of 2p in Pr is the tangent space Tp(X) ⊂ Pr of X at p. Let Z ⊂ Pr be
a zero-dimensional scheme. The linear span 〈Z〉 of Z in Pr is the intersection of all hyperplanes
of Pr containing Z, with the convention 〈Z〉 = Pr if there is no such hyperplane. We always
have dim〈Z〉 ≤ deg(Z) − 1. We say that Z is linearly independent if dim〈Z〉 = deg(Z) − 1.
Any subscheme of a linearly independent zero-dimensional scheme is linearly independent. For
any closed subscheme A ⊂ X and any p ∈ Areg let (2p,A) denote the closed subscheme of A
with (Ip,A)2 as its ideal sheaf. We have (2p,A) ⊆ 2p (hence (2p,A) is linearly independent) and
〈(2p,A)〉 = Tp(A); we also have (2p,A) = 2p ∩ Tp(X) (scheme-theoretic intersection) and (2p,A)
is the minimal subscheme of 2p whose linear span contains Tp(A).

Remark 2.1. Let V1, V2, V3 be finite dimensional vector spaces over K with V1 6= 0, V2 6= 0, and
let u : V1 ⊗ V2 → V3 be the linear map associated to a bilinear map f : V1 × V2 → V3. Assume
that f is both left and right non-degenerate, i.e. assume that for all a ∈ V1 \ {0} and b ∈ V2 \ {0}
we have f(a, b) 6= 0 (equivalently, the induced linear maps fa : V2 → V3 and fb : V1 → V3 are
injective, where fa and fb are defined by the formulas fa(y) = f(a, y) and fb(x) = f(x, b)). The
classical bilinear lemma says that dimu(V1 ⊗ V2) ≥ dimV1 + dimV2 − 1 (see [26, page 544] for
some historical informations). D. Eisenbud extended this result in two ways and we only need one
of them, but we feel that the other one may be used in a similar context (using k-genericity of
the bilinear map f , the previous condition being called (by definition) 1-genericity). Let X be an
integral quasi-projective variety, L,R ∈ Pic(X) and V ⊆ H0(L), W ⊆ H0(R) finite-dimensional
vector spaces. Consider the multiplication map u : V ⊗W → H0(L ⊗R) induced by the bilinear
map f : H0(L)×H0(R)→ H0(L⊗R). Since X is integral, f is right and left injective. Thus the
bilinear lemma says that dimu(V ⊗W ) ≥ dimV + dimW − 1. D. Eisenbud classified in [26] the
cases in which equality holds. Obviously equality holds if either dimV = 1 or dimW = 1. Thus
we assume v := dimV ≥ 2 and w := dimW ≥ 2. The linear subspaces V and W induce rational
maps u1 : X 99K Pv−1 and u2 : X 99K Pw−1 whose images generate the projective spaces Pv−1 and
Pw−1. Let U ⊆ X be a non-empty Zariski open subset of X on which both u1 and u2 are defined.
The rational maps u1 and u2 define a morphism ϕ : U → Pv−1×Pw−1. If we identify H0(OPv−1(1))
with V ∨ and H0(OPw−1(1)) with W∨, then H0(OPv−1⊗Pw−1(1, 1))) ∼= V ∨⊗W∨ (by the Künneth’s
formula). By [26, last line of page 543] we have dimu(V ⊗W ) ≥ v+w+dimϕ(U)−2. In particular
if dimu(V ⊗W ) = v + w − 1, then ϕ(U) is a curve. Now assume that X is projective and that
V and W span L and R respectively. In this case we get a surjective morphism X → C with C a
projective curve ([26, last line of page 543]).

Proposition 2.2. Let X ⊂ Pr be a smooth, non-degenerate and linearly normal variety such that
h1(OX) = 0. Set n := dimX. Fix a positive integer k such that dimσk(X) = k(n + 1) − 1 < r
and assume that X is k-tangentially defective of type I with generic tangential k-contact locus a
hypersurface A. Then:

(1) h0(OX(A)) = k+1, h0(OX(1)(−2A)) = r+1− (n+1)k and h0(OX(1)(−A)) = r+1−nk.
(2) If OX(A) is base point free, then |OX(A)| maps X onto P1. If OX(A) and OX(1)(−2A)

are base point free, then |OX(A)| and |OX(1)(−2A)| map X onto P1 with the same fibers.

Proof. Since X is smooth, any non-constant morphism X → C with dimC = 1 factor through the
normalization of C. Since h1(OX) = 0 we have D ∼= P1 for any smooth curve D such that there is
a non-constant morphism X → D.

Since h1(OX) = 0, algebraic equivalence and linear equivalence coincide for divisors of X.
Since any divisor algebraically equivalent to A is linearly equivalent to A and A contains k gen-
eral points of X, we have h0(OX(A)) ≥ k + 1. Let L ⊆ H0(OX(1)) denote the linear sub-
space such that PL = 〈∪ki=1Tpi

(X)〉. Since dimσk(X) = k(n + 1) − 1 and (p1, . . . , pk) is gen-
eral in Xk, Terracini’s lemma gives dimL = r − k(n + 1) > 0 ([6, Corollary 1.11]). Note that

L = H0(OX(1)(−
∑k

i=1 2pi)). By the definition of tangential k-locus L is tangent to X at each
point of Areg. Thus L ⊇ H0(OX(1)(−2A)). Since pi ∈ A for all i, we have H0(OX(1)(−2A)) ⊆
H0(OX(1)(−

∑k
i=1 2pi)). Thus L = H0(OX(1)(−2A)). Since dimσk(X) = k(n + 1) − 1, the
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zero-dimensional scheme ∪ki=12pi is linearly independent in Pr. Thus ∪ki=1(2pi, A) is linearly in-
dependent, i.e. dim〈∪ki=1(2pi, A)〉 = nk − 1, i.e. h0(OX(1)(−(∪ki=1(2pi, A)))) = r + 1 − nk.
Since pi ∈ A for all i, we have the inclusion H0(OX(1)(−(∪ki=1(2pi, A)))) ⊆ H0(OX(1)(−A)).
Consider the multiplication map u : H0(OX(1)(−2A)) ⊗ H0(OX(A)) → H0(OX(1)(−A)). Since
H0(OX(1)(−2A)) 6= 0, h0(OX(A)) ≥ k + 1 and h0(OX(1)(−A)) − dimL ≤ k, the bilinear lemma
(Remark 2.1) gives h0(OX(A)) = k + 1 and h0(OX(1)(−A)) = r + 1− kn. If OX(A) is base point
free and r + 1 ≥ k(n + 1) + 2, then the last sentence of Remark 2.1 gives that the linear systems
|OX(A)| and |OX(1)(−2A)| map X onto a smooth curve C with the same fibers. The smooth
curve C is isomorphic to P1, because h1(OX) = 0. �

Proposition 2.3. Let X ⊂ Pr be a smooth, non-degenerate and linearly normal variety such that
h1(OX) = 0. Set n := dimX. Fix a positive integer k such that dimσk(X) = k(n + 1) − 1 <
r and assume that X is k-tangentially defective of type II with generic tangential contact locus
A1 ∪ · · · ∪ Ak. All Ai are linearly equivalent, h0(OX(1)(−2kA1)) 6= 0, h0(OX(1)(−kA1)) = r +
1 − kn, h0(OX(1)(−2kA1)) = r + 1 − (n + 1)k, h0(OX(A1)) = 2 and h0(OX(kA1)) = k + 1. If
h0(OX(1)(−2kA1)) ≥ 2 and OX(kA1) has no base points, then OX(A1) has no base points and
both |OX(A1)| and |OX(1)(−2kA1)| induce surjections X → P1.

Proof. Since h1(OX) = 0 and each Ai is algebraically equivalent to A1, each Ai is linearly equiv-
alent to C. Thus E := A1 ∪ · · · ∪ Ak is linearly equivalent to kA1. Since h0(OX(A1)) ≥ 2 and
h0(OX(kA1)) = k + 1, we have H0(OX(kA1)) = SkH0(OX(A1)). Hence OX(A1) and OX(kA1)
have the same base points. Then we may continue as in the proof of Proposition 2.2. �

Remark 2.4. Take a smooth, non-degenerate and linearly normal X ⊂ Pr such that h1(OX) = 0.
Fix an integer k > 0 such that dimσk(X) = (n+ 1)k − 1 < r, n := dimX.

(a) By Proposition 2.2 the tangential k-contact locus of X is not an irreducible hypersurface
if either H0(OX(1)(−2A)) = 0 for every hypersurface A of X or there is no non-constant mor-
phism X → C with C is a curve. The first assumption is satisfied for the Segre embedding of a
multiprojective space. The latter condition is satisfied if n > 1 and Pic(X) ∼= Z (e.g. when n ≥ 3
for all complete intersections varieties).

(b) By Proposition 2.3 the tangential k-contact locus of X is not of type II and a hypersurface
if either h0(OX(1)(−2kA)) = 0 for every hypersurface A of X or h0(OX(−2kA)) ≥ 2 and there is no
non-constant morphism X → C with C is a curve. Assume that Pic(X) ∼= Z, and callA the positive
generator of Pic(X). Assume OX(1) ∼= A⊗e and A ∈ |A⊗f |. We have h0(OX(1)(−2kA)) 6= 0 if
and only if e ≥ 2kf . We have h0(OX(1)(−2kA)) = 1 if and only if e = 2kf .

Remark 2.5. Take an integral projective variety D and assume the existence of a curve C and a
non-constant morphism f : T1 ×D → C. For each p ∈ D the map f|T1×{p} is constant. Thus f is
the composition of the projection T1 ×D → D with a surjective morphism D → C.

Tale X ⊂ Pr. For any q ∈ Pr let S(X, q) denote the set of all S ⊂ X such that |S| = rX(q) and
q ∈ 〈S〉.

The following well-known example shows the existence of the exceptional case in the statements
of Theorems 1.1 and 1.2 and of Corollary 1.3.

Example 2.6. Take s = 2, n1 = n2 = 1, d1 = d2 = 4 and k = 8. We prove that |S(X, q)| = 2 for
a general q ∈ σ8(X) and that a general tangential 8-contact locus is a smooth elliptic curve. Take
a general S ⊂ X with |S| = 8 and any q ∈ Pr with S ∈ S(X, q). Since h0(OP1×P1(2, 2)) = 9, there
is a unique C ∈ |OP1×P1(2, 2)| such that S ⊂ C. Since h0(I2S(4, 4)) = 1 and 2C ⊃ 2S, we have
|I2S(4, 4)| = {2C}. Hence P1 × P1 embedded by |OX(4, 4)| is tangentially 8-degenerate. Now we
check that identifiability does not hold for σ8(X). Since X has a type I tangential contact locus,
we have |S(X, q)| = S(C, q)| ([10, Corollary 4.5]). We have dim〈C〉 = −1 + h0(OP1×P1(4, 4)) −
h0(OP1×P1(2, 2)) = 15. Thus C is linearly normal with arithmetic genus 1 in 〈S〉 and σ8(C) = 〈C〉.
Since C is not a rational normal curve, |S(C, q)| > 1 ([15, Theorem 3.1]). For a general S we get
a general C ∈ |OP1×P1(2, 2)|, i.e. a smooth elliptic curve. In this case we have |S(C, q)| = 2 ([9,
Proposition 3.1 (d)]).

Proof of Theorem 1.1: Write X =
∏s

i=1 Pni with s ≥ 1 and ni > 0 for all i. Let (d1, . . . , ds) be the

multidegree giving the Segre-Veronese embedding. We have r + 1 =
∏s

i=1

(
ni+di

ni

)
.
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(a) Assume for the moment the existence of a non-constant map f : X → C, with C a curve.
Since X is smooth, taking the normalization of C instead of C we may assume that C is a smooth
curve. Since X is rational, this curve must be rational. Since any map from a projective space
of dimension > 1 into a curve is constant, Remark 2.5 shows that ni = 1 for at least one index
i and f factors through the projection π : X → X1 where X1 = (P1)m is the product of the
one-dimensional factors of X, say f = f1 ◦ π with f1 : X1 → P1. The structure of base point free
pencils on (P1)m, m > 1, shows that f is a subsystem of a linear system |OX(c1, . . . , cs)| such that
there is i0 ∈ {1, . . . , s} with ci = 0 for all i 6= i0 and ni0 = 1. Moreover a general fiber of f has ci0
connected components.

(b) Assume that X has a type I tangential contact locus, i.e. that for a general (p1, . . . , pk) ∈
Xk, A := Γk(p1, . . . , pk) is irreducible. Take (a1, . . . , as) ∈ Ns such that A ∈ |OX(a1, . . . , as)|.
Note that |OX(A)| is base point free. Assume for the moment k(n+ 1) < r. The last sentence of
step (a) gives k = 1, a contradiction.

Now assume r = k(n + 1), i.e. di = 2ai for all i. Thus ai > 0 for all i. By Proposition 2.2 we
have

∏s
i=1

(
ni+ai

ni

)
= k + 1 and

∏s
i=1

(
ni+2ai

ni

)
= (n+ 1)k. In particular we have

s∏
i=1

(
ni + 2ai
ni

)
< (n+ 1)

s∏
i=1

(
ni + ai
ni

)
(1)

Claim 1: For all integers m ≥ 1 and x ≥ 1 we have
(
m+2x

m

)
/
(
m+x
m

)
≥ (m+ 2)/2.

Proof of Claim 1: The left hand side of the inequality in Claim 1 is the ratio ψ(x,m) between∏x
i=1(m+ 2x+ 1− i) and

∏x
i=1(2x+ 1− i). Since ψ(x+ 1,m)/ψ(x,m) = (m+ 2x+ 2)(m+ 2x+

1)/(2x+ 2)(2x+ 1) > 1, it is sufficient to observe that ψ(1,m) = (m+ 2)/2.
Claim 2: We have

∏s
i=1(ni + 2) ≥ 2s(n1 + · · ·+ ns + 1), unless s = 2 and n1 = n2 = 1.

Proof of Claim 2: First assume ni = 1 for all i. We have 3s ≥ 2s(s + 1) for all s ≥ 3. Now
assume n1 = 2 and ni = 1 for all i > 1. We have 4 · 3s−1 ≥ 2s(s+ 2) for all s ≥ 2. Then use that
the difference between the left hand side and the right hand side of the inequality in Claim 2 has
positive partial derivatives with respect to the variable n1, . . . , ns when ni ≥ 1 for all i.

By Claims 1 and 2 the inequality (1) fails, except at most when s = 2, n1 = n2 = 1, d1 = 2a1,
d2 = 2a2 and 3k = r = 4a1a2 + a2a2 + 2a2. Since k + 1 = (a1 + 1)(a2 + 1) we get a1a2 = a1 + a2
which has only (a1, a2) = (2, 2) as a solution with positive integers. This case was discussed in
Example 2.6.

(c) Assume that X has a type II tangential contact locus, i.e. assume that Ai 6= Aj for all
i 6= j. Set E := A1 ∪ · · · ∪ Ak. Since h1(OX) = 0 and each Ai is algebraically equivalent to A1,
each Ai is algebraically equivalent to A1. Thus OX(E) ∼= OX(kA1). Take (b1, . . . , bs) ∈ Ns such
that A1 ∈ |OX(b1, . . . , bs)|. By Proposition 2.3 we have h0(OX(b1, . . . , bs)) = 2. Thus there is
i0 ∈ {1, . . . , s} such that bi = 0 for all i 6= i0 and ni0 = bi0 = 1. If r = (n + 1)k, we also get
di = 2kbi for all i, contradicting the assumption s ≥ 2 and that the Segre-Veronese embedding
is an embedding. If r > k(n + 1) the last sentence of Proposition 2.3 gives that di = 2kbi for all
i 6= i0, contradicting the assumption s ≥ 2. �

Proof of Theorem 1.2: Write n := dimX. Since σk+n−2(X) has the expected dimension and (n+
1)(k+n− 2) ≤ r, we have dimσx(X) = x(n+ 1)− 1 for all x ≤ k+n− 2. Assume that σk(X) has
tangential locus of dimension t > 0 and call B a generic tangential k-locus. By [10, Lemma 3.5] X
has tangential loci of dimension tx ≥ t for each k < x ≤ k + n− 2.

First assume that B is either of type I or of type II, but that no connected component of B is a
linear subspace of Pr. By [10, Lemma 3.5] we have tx ≥ t+ x− k for all x = k + 1, . . . , k + n− 2.
Since tk+n−2 ≤ n − 2 by Theorem 1.1, we get a contradiction. Now assume that B has type II,
say B = B1 ∪ · · · ∪Bk, with each Bi a linear space. We mimic the proofs of [10, Theorems 5.3 and
5.6]. For any i ∈ {1, . . . , s} let εi denote the element (c1, . . . , cs) ∈ Ns such that cj = 0 for all j 6= i
and ci = 1. Since B1 is a linear space, we have A 6= ∅ and there is i ∈ A such that OB1(εi) is the
positive generator of Pic(B1), while OB1

(εj) ∼= OB1
for all j 6= i. Set B: = {h ∈ A | nh = ni}. By

assumption |B| ≥ 2. Since dj = 1 for all j ∈ B, there is a linear automorphism of Pr sending X
into itself and inducing an automorphism f : X → X which maps (o1, . . . , os) ∈ X, oi ∈ Pni for
all i, to some (o′1, . . . , o

′
s) with o′h = oh if h /∈ {i, j}, o′j = oi and o′i = oj . This automorphism does

not fix the numerical invariants of a generic tangential k-locus, a contradiction. �



6 E. BALLICO

Proofs of Corollaries 1.3 and 1.4: The improvement by 1 of [10, Corollaries 5.4 and 5.5] is an easy
consequence of Theorem 1.1, the last part of the proof of Theorem 1.2, the non-defectivity of almost
all Segre-Veronese varieties of (P1)s ([31]) and of [7, Theorem 3.1]. �

Proof of Proposition 1.5: For i = 1, . . . , s let πi : X → Pni denote the projection onto the i-th
factor of X. For any x-dimensional linear subspace L ⊂ X there is a unique i ∈ {1, . . . , s} such
that πj(L) is a point for all j 6= i, while πi induces an embedding of L into Pni . Thus ni ≥ x. Since
L is a linear subspace of X contained in the i-th factor Pni of X, we have di = 1. Thus i ∈ Ax

and in particular ni ≤ ni0 .

Claim 1: We have k ≥ (r+1)(ni−x+1)
(ni+1)(n−x+1) .

Proof of Claim 1: By assumption we have k ≥ (r+1)(ni0−x+1)

(ni0
+1)(n−x+1) . Since ni ≤ ni0 , we get Claim

1.
Now take L = L1 with L1 ∪ · · · ∪ Lk = Γk(p1, . . . , pk) for some general (p1, . . . , pk) ∈ Xk. It is

easy to check that by the generality of (p1, . . . , pk) we get πj(Lh) = 0 for all j 6= 1 and all 1 ≤ h ≤ k
(as in [10, Remark 5.2 and proofs of Theorems 5.3 and 5.6]), i.e. all L1, . . . , Lk are contained in
the same ruling of X. Up to a permutation of the factors of X we may assume i = 1. Fix a general
linear space H ⊂ Pn1 with dimH = n1 − x and set XH := H ×

∏s
i=2 Pni seen as a codimension x

subvariety of X. For a general H we have |XH ∩ Lh| = 1 for all h. Set {qh} := XH ∩ Lh.
Claim 2: dim〈∪ki=1TqiXH〉 = k(n1 − x+ 1)− 1.
Proof of Claim 2: By assumption L := 〈∪ki=1TpiX〉 has dimension k(n + 1) − 1, i.e. TpiX ∩

TpjX = ∅ for all i 6= j and the linear spaces Tp1X, . . . , Tpk
X are linearly independent. Fix

i ∈ {1, . . . , k} and any oi ∈ Li. Let M [oi] be any codimension x linear subspace of Pn1 such that
M [oi] ∩ Li = {oi}. Set X[oi] = M [oi] ×

∏s
i=2 Pni . Since d1 = 1 and Li and M [oi] are linear

subspaces of Pn1 with M [oi]∩Li = {oi} and 〈M [oi]∪Li〉 = Pn1 , we have Li ∩ToiX[oi] = {oi} and
TpiX = 〈Li ∪ ToiX[oi]〉. In particular TqiXH ⊂ TpiX for all i. Thus TqiXH ∩ TqjXH = ∅ for all
i 6= j and Tq1XH , . . . , TqkXH are linearly independent, concluding the proof of Claim 2.

Since dimXH = n − x, Claim 2 and Terracini’s lemma ([6, Corollary 1.11]) give σk(XH) =
k(n−x+ 1)−1. Since XH is a Segre-Veronese variety and d1 = 1, we have dim〈XH〉 = −1 + (n1−
x+1)

∏s
i=2

(
ni+di

ni

)
= −1+(r+1)(n1−x+1)/(n1+1). Thus k(n−x+1) ≤ (r+1)(n1−x+1)/(n1+1).

Thus k ≤ (r+1)(n1−x+1)
(n1+1)(n−x+1) . Claim 1 gives k = (r+1)(n1−x+1)

(n1+1)(n−x+1) . We get L ⊇ 〈σk(XH)〉. Since XH is a

covering family of subvarieties of X, we get L = Pr, contradicting the assumption k(n+1) ≤ r. �

Proof of Corollary 1.6: Assume that X is tangentially k-degenerate with tangential k contact locus
of dimension e > 0. Set k0 := br/(n + 1)c. Since X is not defective and k0(n + 1) ≤ r, Theorem
1.1 says that the tangential k0-locus of X is not a hypersurface, i.e it has dimension f ≤ n− 2. By
Proposition 1.5 the tangential k0-locus of X is not of type II with linear spaces as its irreducible
components. Since k ≤ k0, we have f ≥ e > 0. For each x ∈ {k, . . . , k0} let ex be the dimension of
the tangential x-contact locus Γx of X. Thus ek = e and ek0

= f . If k ≤ x < k0 we have ex ≤ ex+1

and equality holds only if Γx and Γx+1 have type II with linear components ([10, Lemma 3.5]).
Since k ≤ k0 − n + 2 and f − e ≤ f − 1 ≤ n − 3, there is t ∈ {k, . . . , k0 − 1} such that et = et+1.
By [10, Lemma 3.5] each irreducible component of Γt and Γt+1 is an et-dimensional linear space.
Fix any integer z such that t ≤ z ≤ k0 and a general z-contact locus Γz(p1, . . . , pz), (p1, . . . , pz)
general in Xz. Since Γt(p1, . . . , pt) = L1 ∪ · · · ∪ Lt with each Li a linear space and pi ∈ Li for
all i, permuting the points p1, . . . , pz we see that Γz(p1, . . . , pz) ⊇ L1 ∪ · · · ∪ Lz with each Li an
et-dimensional linear space containing pi. Taking z = k0 we get that the k0-contact locus contains
enough linear spaces, each of them containing a different point p1, . . . , pk0 , to get a contradiction
using the proof of Proposition 1.5 (in that set-up we have x = et). �
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