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ABSTRACT

Abstract

In this thesis we address the constructibility problem for a ground vehicle moving

across an environment instrumented with ranging sensors. When the measure-

ments collected by the vehicle along the trajectory are sufficiently informative,

the global constructibility property is achieved and the vehicle is able to lo-

calise itself in the environment without relying on prior information on its state.

When this condition is not met, the system can still achieve local (or weak) con-

structibility, where localising the robot requires some initial information on the

state, such as a sufficiently small set containing the initial position of the robot,

or some inaccessible areas of the Cartesian plane.

First, we address the global problem: we show that extending the well–known

solutions for the positioning problem, e.g. trilateration, is not trivial and leads

to unintuitive results where constructibility is not attained. By building an ab-

stract trajectory, which contains all the relevant information to reconstruct the

actual trajectory followed by the vehicle, we analyse how global constructibility

properties are affected by the shape of the abstract trajectory, the number of

sensors, their deployment in the environment, and the distribution of measure-

ments among the beacons.

To describe local constructibility, we build the Constructibility Gramian for

a robot described by the unicycle kinematic model. We rely on this tool for

a twofold aim: (a) we build the same abstract trajectory presented for the

global analysis and define necessary and sufficient conditions to attain local

constructibility, and (b) in an environment instrumented with two beacons and

for straight trajectories followed by the vehicle, we measure local constructibility

by means of the smallest eigenvalue of the Constructibility Gramian, and we

analyse how this metric is affected by the geometry of the scenario, e.g. the

distance between anchors, and the distance between the trajectory and the line

joining the anchors.

Lastly, we extend the devised results to multiagent systems, both for con-

structibility analysis and for trajectory planning algorithms. We build the Con-

structibility Gramian for the multiagent system with relative ranging measure-

ments and assess local constructibility property. Then, we propose a trajectory

planning algorithm where a pair of vehicles without a priori information achieve

global constructibility with both absolute and relative measurements. Moreover,

we propose a variation of the Constructibility Gramian, limited to the position

variable and hence called Position Gramian, and use this tool in a Model Pre-
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dictive Control framework to plan the trajectory of a tracker vehicle aiming

at simultaneously localising itself and a collaborative target through ranging

measurements.

Keywords

Range sensing; Ground robots; Constructibility; Observability for nonlinear

systems; Sensor–based Control.
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1. INTRODUCTION

Among many engineering disciplines, robotics is one of the fields that has at-

tracted major interest and enthusiasm in recent times. The most iconic and

known example of the rapid development in this field is given by the evolu-

tion of the products of Boston Dynamics, whose evolution originated with the

first single–legged bouncing robots in 1984 [Raibert and Brown Jr, 1984], pass-

ing through the clumsy motion of the BigDog in 2005, to the famous legged

robots Atlas and Spot1. While these evolutions have enjoyed great success in

the industrial and in the research communities, concerns were also raised about

their interactions with humans. In particular, a common concern is safety when

the workspaces of the robots cross the workspaces of humans. Numerous re-

searchers both in academia and industry have dealt with this problem, under

the research field of collaborative robots [Vicentini, 2021], with main focus on in-

dustrial manipulators. Similarly, the same issue has been raised on autonomous

mobile robots, travelling across an environment shared with humans, such as

semi–automated warehouses where mobile robots are responsible for moving

goods across the dynamic and possibly unknown environment represented by a

factory, while humans execute some different tasks [Boldrer et al., 2022].

In such a scenario, common names and acronyms to refer to mobile robots

are Automated Guided Vehicles (AGV) or Unmanned Ground Vehicle (UGV).

These names focus on the main features of the robots, such as automation, i.e.

there is no need for human operators constantly providing inputs to the robots,

and guidance, highlighting that the main task performed by these robots is nav-

igating across the environment. The navigation problem can be decomposed

into different subtasks, such as action planning, where the robot (or robots)

schedules the different locations to reach and duties to be executed, and tra-

jectory planning, where the robots define the path from their current to their

target location and determine the control inputs that ensure that the path is

followed. The navigation tasks inevitably require the robots to be able to ac-

curately estimate their current position and orientation (more precisely, their

state vector), i.e. to localise themselves in the environment. To do so, the

robots rely on two families of sensors: proprioceptive and exteroceptive sensors.

Proprioceptive sensors, such as odometers, accelerometers and gyroscopes, yield

information on the motion of the robot, e.g. instantaneous velocities or acceler-

ations, which can be integrated over time to retrieve the relative displacement

of the vehicle over a time interval. On the other hand, exteroceptive sensors

perceive the environment around the vehicle and measure absolute quantities,

such as distances, orientations and positions, referred to an external, possibly

dynamic and unknown, reference frame. The family of exteroceptive sensors in-

1https://bostondynamics.com/legacy/
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Figure 1.1: Two trilateration examples. (a) Noncollinear sensors, successful trilat-
eration. (b) Collinear sensors, unsuccessful trilateration.

cludes many kinds of sensory systems, with different technologies, architectures

and complexity. Common solutions for this family of sensors are represented by

cameras, depth cameras and LiDAR– or RADAR–based systems, for unstruc-

tured indoor scenarios, the Global Positioning System (GPS) for large outdoor

environments, and visual or ranging sensors, which usually rely on markers de-

ployed beforehand in the environment. In this thesis, we will focus on ranging

sensors, because of their simplicity, versatility, affordability, and low mainte-

nance requirements. However, the listed advantages in the sensing system in-

troduce some limitations. Because of the reduced amount of information that

can be collected from a fixed ranging sensors, reconstructing the position (or

the state) of a vehicle is not always possible. Intuitively, ranging sensors are

sufficient to reconstruct the position, or the entire state vector, of a vehicle

navigating through a structured environment, only when some conditions hold

true. To support this statement, which is crucial for the further development of

this thesis, we report here a simple example showing that when some conditions

are not met, a robot cannot reconstruct its position in the environment.

Example 1.1. With reference to Figure 1.1, consider the example of the well-

known trilateration problem: a vehicle measures its distances ρA, ρB and ρC

from the three fixed markers A, B and C, respectively, and, based on these pieces

of information, tries to reconstruct its position P on the plane. Figure 1.1(a)

shows a successful trilateration scenario, where the point P is univocally defined

as the unique intersection between the three circles representing the measure-

ments. Indeed, point P has distances ρA from A and ρB from B, but it has

a distance ρC 6= ρC from C. On the contrary, in Figure 1.1(b), both points

P1 and P2 have distances ρA, ρB and ρC from the three sensors, and thus the

vehicle cannot distinguish whether its current position is P1 or P2. However, if

3



1. INTRODUCTION

the vehicle can rely on some initial information (e.g. the collinear anchors are

mounted on a wall and the side with y < 0 is not accessible), this ambiguity can

be ruled out (P2 is no more a valid solution) and the vehicle can reconstruct its

position. ?

Example 1.1 shows that, even in a simple scenario where the vehicle is not

moving, and three sensors are collecting simultaneous measurements, recon-

structing the position of a vehicle based on ranging information is possible only

under some assumptions. Moreover, it introduces two distinct, yet related, per-

spectives: global, when no a priori information is given, and local that relies

also on some initial knowledge on the system to draw conclusions. Motivated

by this example, and based on the fact that reconstructing the position of the

vehicle in the example in Figure 1.1(b) fails from a global perspective, while

succeeds from a local point of view, we introduce the main problems that this

thesis addresses.

Problem 1.1 (Global observability). Find the conditions on:

• The number and deployment of the fixed sensors;

• The trajectory followed by the vehicles composing the system;

• The number of range measurements collected by the vehicle(s) and their

distribution among the fixed sensors;

• The interactions, i.e. relative measurements and communications between

vehicles;

such that the state of the single– or multi–agent system can be univocally recon-

structed, with no a priori information.

Problem 1.2 (Local observability). Find the conditions on:

• The number and deployment of the fixed sensors;

• The trajectory followed by the vehicles composing the system;

• The number of range measurements collected by the vehicle(s) and their

distribution among the fixed sensors;

• The interactions, i.e. relative measurements and communications between

vehicles;

such that the state of the single– or multi–agent system can be reconstructed,

when some a priori information is available.

4



1. INTRODUCTION

With reference to Example 1.1, let us consider the state vector of the system

to include only the Cartesian coordinates of the vehicle. The decisive condition

that changes among the two scenarios in Figure 1.1 is the deployment of the

sensors. Both the scenarios satisfy the local conditions, i.e. Problem 1.2 can be

solved in both situations, while Problem 1.1 can be solved only in the scenario

(a), when the three sensors are not collinear.

While Problems 1.1 and 1.2 deal with the analysis of a given scenario, in

this thesis we also address the problem of perception–aware trajectory planning,

where the vehicles in the system actively plan their trajectory, based on the

information collected over time, to solve Problems 1.1 and 1.2.

Problem 1.3 (Perception–aware planning). Plan the future manoeuvres per-

formed by the vehicle(s) in the system such that we can reconstruct the state

of the system with no a priori information. Moreover, when range measure-

ments are corrupted by noise, plan the trajectory of the system to maximise the

accuracy of the estimated state.

In this thesis, we deal with the problems described above in the context

where ground vehicles, moving on a plane, are equipped with ranging sensors.

Although this setting seems restrictive, we can easily generalise our results to

the context of marine or aerial vehicles. Indeed, in underwater environments

the use of visual sensors is limited by poor visibility conditions and the most

popular solution for exteroceptive sensors is based on ultrasound devices col-

lecting ranging measurements. To cope with the 3D nature of the problem, the

underwater vehicle is required to be equipped with a depth sensor, thus reduc-

ing the observability problem to a plane where the techniques for ground robots

can be applied. In the field of aerial robotics, many alternatives can be imple-

mented as exteroceptive sensors and ranging sensors are not the most common

choice. Although results are still applicable to this scenario, provided that the

aerial robot is equipped with a sensor measuring its distance to the ground, the

practical validity of these results is limited.

1.1 Literature review

Since mobile robots have a large variety of applications, the localisation and

positioning problems have attracted the attention of a considerable number of

researchers. The localisation and positioning problems have been analysed at

different levels, spanning from the technological implementation of the extero-

ceptive sensors, to the so–called observability conditions, i.e. the conditions that

allow the vehicle to reconstruct its state, to the design of observers estimating

5



1. INTRODUCTION

the state of the system.

1.1.1 Sensor technology

As mentioned in the previous sections, mobile robots are usually equipped with

exteroceptive sensors perceiving some features or some devices deployed in the

environment. A large variety of sensors have been considered and analysed

for vehicle localisation, relying on different technologies and physical principles,

and on different requirements on the structure of the environment and on the

deployment of active or passive devices.

A popular family of solutions relies on visual information collected by the

vehicle moving across the environment. A popular solution for localisation is

the use of 2D codes deployed in the environment and sensed by a camera that

is mounted on the mobile robot. These 2D codes may be fixed to the ceil-

ing [Dzodzo et al., 2013] or to the floor [Nazemzadeh et al., 2015] and have vi-

sual cues, such as arrows and ID codes, that allow the vehicle to reconstruct both

its position and its orientation in a fixed reference frame. On the same idea,

Nazemzadeh et al. [Nazemzadeh et al., 2017] propose a localisation technique

based on data fusion that takes into account uncertainties arising in the percep-

tion of QR codes deployed on the floor. More popular solutions for visual–based

localisation techniques rely on cameras [Falanga et al., 2018], which show two

main advantages with respect to the former solutions: they do not need the en-

vironment to be instrumented with an infrastructure, and they collect a larger

amount of information, but this solution comes with the cost of an increased

computation burden and the limitations associated with brighter or darker en-

vironments. A further increase in the amount of information that is collected by

the vehicle is allowed by Light Detection and Ranging (LiDAR) sensors, which

have become common not only in robotics, but also in autonomous guidance

vehicles. A discussion on the use of LiDAR’s for robot localisation is proposed

by [Gallant and Marshall, 2016], where the authors show that a LiDAR yields

a 3D point cloud representing the environment and, based on the collected sam-

ples, information on the orientation of the vehicle can be inferred, as if the

vehicle were virtually using a LiDAR compass. While popular and commonly

integrated in autonomous robots, the drawbacks of vision–based systems are

associated with the quality of the image retrieved by the sensor, thus being very

sensitive to changes in brightness level, especially outdoors, to the detection of

features in the environment (e.g. no relevant information is retrieved when the

vehicle sees a homogeneous wall), or to unexpected light hitting the sensor, e.g.

the vehicles goes almost blind when hit by direct sunlight.

6



1. INTRODUCTION

Because of the limitations of vision–based systems or inability to exploit

them in challenging scenarios, e.g. underwater [Hung and Pascoal, 2020], rang-

ing sensors, i.e. sensors measuring the distance between a pair of devices, have

become increasingly popular [Yan et al., 2013]. Many technologies enable the

physical implementation of ranging sensors, with different properties in terms of

measurement accuracy, sensing range, or performances. An affordable solution

is represented by infrared (IR) sensors [Benet et al., 2002]. As for LiDAR’s, an

infrared sensor consists of two devices: an emitter that generates infrared waves

that travel across the environment, are reflected by the target surfaces and are

sensed by a detector. The distance of the surface is estimated either by measur-

ing the Time of Flight (ToF), i.e. the time elapsed between the emission and

the detection of the wave, or by measuring the intensity of the detected light.

In the latter case, as for vision–based systems, the performances of IR sensors

are sensitive to the illumination of the scene and to the reflectance properties

of the surfaces hit by IR rays emitted by the vehicle. Furthermore, many IR

sensors are often have to be combined in a single device because of their limited

field of view. Other popular solutions rely on devices initially meant for com-

munication, such as Wi-Fi, Ultra Wide–Band (UWB) or Bluetooth technology.

These technologies require the vehicle to be equipped with active devices that

receive a signal and measure the Received Signal Strength Indicator (RSSI) (e.g.

Wi-Fi [Biswas and Veloso, 2010]) or the ToF (e.g. UWB [Cheok et al., 2010],

Ultrasound [Shen et al., 2019]). Since autonomous mobile robots are usually

equipped with these communication devices to receive and transmit data to

other robots or to supervisory control systems, many researchers have anal-

ysed their capabilities to collect meaningful information to solve the locali-

sation problem [Chen et al., 2013]. New techniques and algorithms tailored

for these applications have been proposed, particularly for Wi-Fi–based sen-

sors [Yu et al., 2020], but easily extendable to other technologies. With similar

working principles, Bluetooth and Radio Frequency IDentification (RFID) sen-

sors estimate the distance between two devices by measuring the phase differ-

ence between the emitted and the received wave [Shu and Wang, 2023]. This

information generates ambiguities in the collected distance since different dis-

tances may yield the same phase difference [Motroni et al., 2018]. To cope with

this issue, Magnago et al. [Magnago et al., 2019] rework the output equation of

an Ultra High Frequency RFID (UHF-RFID) antenna and conclude that the

vehicle is virtually measuring the projection of its forward velocity on the line

joining the vehicle itself and the passive tag that is deployed in the environment.

Many technologies have been considered and analysed as solutions for the

physical implementation of ranging devices, and for their application to the field

of mobile robotics. While different localisation algorithms and techniques may

7



1. INTRODUCTION

be specifically designed for each of these technologies, results with general valid-

ity can be extracted by considering a generic device that measures the distance

between a vehicle and a fixed point on the plane, or the distance between two

robots, as we consider in the remainder of this thesis.

1.1.2 Observability Analyses

The main part of the sensors described in the previous section enable the ve-

hicle to collect a limited amount of information, not allowing it to measure

its complete state vector. However, as shown in Example 1.1, the vehicle can

reconstruct its state vector, or a portion of its state, when more than one mea-

surement is considered. The analysis of the conditions that enable the vehicle

to reconstruct its state fall in the category of observability or constructibility

analyses. For the sake of clarity, we introduce here the definitions of observabil-

ity and constructibility. Let us consider a discrete–time dynamical system with

state q ∈ Rn:

qk+1 = f(qk, uk), zk = h(qk), (1.1)

where uk ∈ Rm is the control input vector, and zk ∈ Rp is the output vector,

i.e. the sensor measurements.

Definition 1.1.1 (Observability). Given the discrete–time dynamical system (1.1),

and a time interval K = {k0, . . . , kf} observability is the ability to reconstruct

the state q0 of the system at the initial time k = k0, given the outputs zk and

the control inputs uk, k ∈ K.

Definition 1.1.2 (Constructibility). Given the discrete–time dynamical sys-

tem (1.1), and a time interval K = {k0, . . . , kf} constructibility is the ability to

reconstruct the state qf of the system at the final time k = kf , given the outputs

zk and the control inputs uk, k ∈ K.

When the considered dynamical system is linear, i.e.

qk+1 = Akqk +Bkuk, zk = Hkqk, (1.2)

Ak ∈ Rn×n, Bk ∈ Rn×m, Hk ∈ Rp×n, observability and constructibility can be

checked through the rank of the corresponding Gramians GO and GC , reading

as:

GO =

kf∑
k=k0

Φ(k, k0)>H>k HkΦ(k, k0), GC =

kf∑
k=k0

Φ(k, kf )>H>k HkΦ(k, kf ),

where Φ(k, k0) and Φ(k, kf ) are called state transition matrices and only depend

8



1. INTRODUCTION

on matrix Ak, k = k0, . . . , kf (see [Hespanha, 2018]). Therefore, observability

and constructibility, for a linear system, only depend on the structure of the

system, i.e. on Ak and Hk, and not on the trajectory of the system state. This

property holds true for the abstract case where the sequence of matrices Ak,

Bk and Hk are fixed upfront. Often times, linear time–varying systems are

obtained as linearisation of nonlinear systems, and thus the matrices describ-

ing the linearised dynamics depend on the linearisation point, which, in turn,

depends on the trajectory followed by the system, hence on the control input his-

tory. Indeed, when nonlinearities are involved, observability and constructibility

properties depend on the structure of the system, i.e. on the nonlinear maps

f(·) and g(·), but also on the trajectory followed by the system, as shown in

Example 1.2.

Example 1.2. Let us consider the following 1D nonlinear system where the

sensor has a bounded sensing range:

qk+1 = qk, zk =

{
qk if |qk| < 1

unavailable otherwise.

By the structure of the system, qk = q0, ∀ k > k0, and the system is observable

(and constructible) when |q0| < 1, since it is directly measured by the sensor.

On the other hand, when |q0| ≥ 1, no measurements are available, and thus the

state of the system cannot be recovered, hence the system is unobservable (and

unconstructible). ?

When dealing with nonlinear systems, observability has been tested with

several methods, by extending the definition of the Observability Matrix O and

of the Gramians GO and GC , or by relying on geometric considerations and

on map invertibility. [Isidori, 2013] introduced the concept of Lie derivatives

Lf (h)(q) for a continuous–time autonomous system

q̇ = f(q), z = h(q),

reading as

Lf (h)(q) =
∂h(q)

∂q
f(q),

where Lf (h)(q) ∈ Rp is the derivative of h(·) along the vector field f(·) and

p is the dimension of the output vector zk. Lie derivatives can be applied

sequentially as

Lif (h)(q) =
∂

∂q

(
Li−1
f (h)(q)

)
f(q), L0

f (h)(q) = h(q),

9
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and are used to build the Observability Matrix O ([Krener and Ide, 2009]) read-

ing as:

O =



∂h(q)

∂q
∇qLf (h)(q)

∇qL2
f (h)(q)
...

 .

When O has rank n, where n is the dimension of the state, the system is

said to satisfy the Observability Rank Condition (ORC), and thus to be locally

observable.

Remark 1.1.3 (Number of Lie derivatives). For a linear system with order

n, the number of Lie derivatives that are sufficient and necessary to assess the

observability of the system is n, as ensured by the Cayley–Hamilton theorem

(see [Hespanha, 2018]), guaranteeing that the rank of O does not increase by

adding Lie derivatives of order greater than n. For nonlinear system, there

exist no general rule on the order of Lie derivatives increasing the rank of O.

From a practical perspective, people seek for general patterns (e.g. columns with

only 0 entries) to draw conclusions on the rank of O, as in Example 1.3.

An equivalent tool to test the observability of a system is the nonlinear

Observability Gramian GO, which, for the discrete–time nonlinear system (1.1),

is defined as

GO =

kf∑
k=k0

Φ(k, k0)>H>k HkΦ(k, k0),

where Hk =
∂h(qk)

∂qk
and the sensitivity matrix Φ(k, k0) =

∂qk
∂q0

is the unique

solution to the initial value problem

Φ(k + 1, k0) =
∂f(qk, uk)

∂qk
Φ(k, k0), Φ(k0, k0) = I,

where I is the identity matrix. As for the Observability Matrix, the system is

locally observable as soon as GO has rank n ([Krener and Ide, 2009]). When

the sensitivity matrix Φ(k, k0) is not available in closed form, the nonlinear

observability Gramian cannot be computed analytically. Therefore, the empir-

ical Observability Gramian EOG, presented in [Powel and Morgansen, 2015],

should be used. The EOG relies only on the ability to simulate several times

the system, and for a continuous–time system is defined as

GEO =
1

4ε2

∫ T

0

Z>Z dt, Z = [z+1 − z−1, · · · , z+n − z−n],

10
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where z+i is the measurement output history of the system with initial condi-

tions q0 +εei, with ei being the unitary vector aligned with the i-th axis. When

ε→ 0, the EOG is proved to converge to the actual OG.

Different approaches have been devised to test observability properties of a

nonlinear system. By the definition of observability, a system is observable as

soon as the function, which is input–dependent, mapping the initial state q0 to

the set of measurements zk, k = k0, . . . , kf is invertible. To this aim, the authors

of [Hung and Pascoal, 2020] consider the sets of function mapping the initial

state to each measurement output and check their linear independence on the

time interval when the observations are collected. Linear independence implies

that the map from the initial condition q0 to the measurements zk is injective,

and thus invertible. Similarly, the authors of [Palopoli and Fontanelli, 2020]

consider a nonholonomic vehicle with state q = [x, y, θ] with reference to Fig-

ure 1.2, and compute the difference of the successive range measurements along

its trajectory, obtaining the linear equations

M

[
cos θ0

sin θ0

]
= h,

where M ∈ R2 × 2 is a known matrix, h ∈ R2 is a known vector. Since the

initial position (x0, y0) can be reconstructed when θ0 is known, the observability

condition boils down to the properties of M : when M is singular, the system is

unobservable.

Observability and constructibility properties define the ability of a vehicle

to localise itself in the environment. Indeed, by the definition of observability,

a vehicle can reconstruct its current state based on the past input and output

histories, only when the system is constructible. For mobile robots, several

research papers have analysed the observability properties with many dynamical

models for the vehicles and different sensors deployed in the environment. The

outputs of the most common sensors are represented in Figure 1.2, where the

orientation θ may be part of the state, while the bearing angle α and the distance

ρ from a marker M = [X,Y ]> read as

α = arctan2(y − Y, x−X), ρ =
√

(x−X)2 + (y − Y )2.

In [Martinelli and Siegwart, 2005], the authors consider a pair of vehicles

described by the unicycle kinematic model, whose state consists of its position

in the Cartesian reference frame and of its orientation with respect to a given

reference axis. An observability analysis of the follower vehicle is carried out

by means of the ORC, when many sensors, measuring different relative quan-

tities, are considered. The main outcomes, which are common throughout the

11
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Figure 1.2: Most common sensor outputs and control inputs for a ground vehicle.
The landmark M is represented by the green cross, and measures one of the following
quantities: orientation θ of the vehicle, distance ρ between the robot and the marker,
or bearing α from the marker to the vehicle. When the vehicle is described by a
kinematic mode, i.e. dynamics and inertias are neglected, the most common control
inputs are the forward velocity vf , the lateral velocity vl and the angular velocity
ω. While not all the control inputs are usually considered, more complex dynamical
models may consider as inputs the accelerations along the same directions.

technical literature, depend on the measured quantity (i.e. on the sensor): (a)

when the relative orientation is measured, then the position can never be esti-

mated, (b) when relative distance or one relative bearing is measured, the state

of the follower can be reconstructed only when both vehicle move with non–zero

velocity, (c) while when both vehicle measure the bearing of the other robot,

the motion of one of the two vehicles is sufficient to reconstruct the state of the

follower. An extension of this analysis is presented in [Martinelli, 2017], where

a disturbance is considered in the same scenario. Focusing on bearing mea-

surements, in [Bicchi et al., 1998] an observability analysis is carried out when

a vehicle collects measurements from more than one fixed marker, and aims at

reconstructing its state and the position of some fixed targets. Extensions to

multiagent systems have also been considered in [Mariottini et al., 2005], where

a set of followers measure the bearing of the leader, and in [Belo et al., 2013]

where the authors propose a complete observability analysis with a varying

number of vehicles and moving sensors based on the ORC. An application–

driven extension of these works, both for 2D and 3D environments, is proposed

in [Stegagno et al., 2016]. The authors analyse a multiagent system where the

vehicles collect relative bearing measurements without sharing their identity,

12
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thus introducing in the system the ambiguities associated with the guessed iden-

tity of the sensed vehicles.

With a combination of sensors, e.g. bearing and ranging sensor, a vehicle

can measure its position with respect to a fixed marker or to another vehicle.

In this scenario, [Hao et al., 2022] analyse a multiagent system, whose state

collects the positions of all the agents, based on graph theory. The sensing

system being more complex than the one discussed previously, the conclusions

that can be drawn are simpler: the system is observable as soon as the graph

is connected, and each node has a non–zero out degree, i.e. when there are

no detached sub–networks, and each vehicle is sensed by at least another ve-

hicle. On the other hand, when little information is produced by the sensing

system, the observability analysis is more convoluted and more restrictive con-

ditions have to be met to ensure observability, as in the case of UHF–RFID

sensors [Magnago et al., 2020].

Observability analyses with ranging sensors have been mainly carried out in

the field of marine robotics, due to the high cost of deploying more complex

sensors (such as short baseline acoustic positioning sensors) and the impossi-

bility to use visual–based sensors in a marine environment. The usual ORC is

used in [Arrichiello et al., 2013] to check the observability of an Autonomous

Underwater Vehicle (AUV) modelled as a single 3D integrator when a depth

and a ranging sensors are used. Moreover, when the system is observable, the

authors devise a metric to quantify observability based on the condition num-

ber of the Observability matrix. In the particular case when the state of the

system consists only in the position of the AUV, the observability metric is

maximised when the vehicle follows a circular trajectory centred in the beacon.

Similar results on observability are obtained in [Fernando et al., 2021] with the

ORC, where a drone is considered that measures its distance from 2 or 3 fixed

anchors. The authors show that the unobservable directions, i.e. the portions

of the state that the drone cannot reconstruct, depend heavily on the followed

trajectory. Interestingly, in [Delaune et al., 2021], the authors consider a sce-

nario where the robot performs Simultaneous Location and Mapping (SLAM),

aiming at reconstructing its state and at finding the position of relevant points

of the environment. They notice that Visual Inertial Odometry (VIO) is sub-

ject to drift, thus not allowing to successfully perform SLAM. Therefore, they

propose to add a 1D laser range finder, i.e. a sensor that measures the distance

of a visual feature on the forward direction of the robot. This way, despite the

simplicity of the added sensor, the vehicle can successfully localise itself and

map the environment. Results on observability and localisability of a unicycle

mobile robot have been obtained in [Sert et al., 2012] when the ground vehicle

measures its heading and its bearing and azimuth angles with respect to a fixed
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landmark deployed on the ceiling of a room. With such a sensing system the

robot indirectly measures its bearing angle and its distance with respect to the

projection of the landmark on the plane where the robot is free to move. In this

scenario, the robot is always observable unless it stands still under the land-

mark, where the bearing angle is not defined, or when the landmark lies on the

same plane as the robot, where the azimuth angle is always 0, thus making the

sensors useless.

Since the Observability Matrix relies on the linearisation of the dynamics,

which is state dependent, the results that are obtained with the ORC have only

local validity. With reference to the scenario in Figure 1.1(b), when the vehi-

cle is in position P1, the ORC is met, although there exists another position

(P2) that yields the same measurements. To overcome this limitation, several

researchers (e.g. [De Palma et al., 2017]) augment the state and build the Ob-

servability Gramian of the devised linear time varying system. The authors

of [Bayat et al., 2015] propose an observability analysis of a system composed

of an AUV, modelled as an underactuated nonholonomic vehicle, and a set of

fixed targets with unknown positions. They analyse the unobservable directions

both in the case where only range is measured, and when also the depth of

the AUV is measured. With a different approach, which relies on geometric

considerations, the authors of [Palopoli and Fontanelli, 2020] analyse the global

observability of a nonholonomic ground vehicle in the presence of fixed ranging

sensors. They conclude that: (a) with one sensor the vehicle is never observable,

(b) with 2 sensors the vehicle is observable only when it executes a curved tra-

jectory, while (c) with 3 or more sensors the robot is observable when the sensors

are not collinear and the vehicle moves with non–zero velocity. Fixed sensors

require some properties to the trajectory followed by the observed vehicle, that

have to be met. However, when robots are deployed in the environment, they

usually have to perform the tasks they are designed for. In these scenarios, many

research papers propose to use a set of mobile beacons, i.e. a set of vehicles with

known position, which measure their distance from one or more target vehicles.

This idea has been increasingly popular for AUV’s, since surface vessels can be

accurately tracked with a GPS system, and are suitable to host range sensors.

The authors of [Rúa et al., 2019] propose to use a range sensor mounted on a

manipulator that can perform circular motion. They show that, despite using

a single sensor, the AUV can reconstruct its position when the angle of the ma-

nipulator, hence the position of the beacon, is known over time. More efficient

and versatile solutions rely on range sensors mounted on moving surface vessels

with known position (e.g. [Hung and Pascoal, 2020]). The results obtained with

this analysis, based on independence and injectivity of functions mapping the

initial state to the measurements through the control inputs, have the same
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geometrical interpretation as the ones obtained in the previous cases, where a

still vehicle is unobservable when a single mobile beacon follows a straight tra-

jectory, or when a pair of trackers move on the same line, while curvature in the

trajectories of the trackers guarantee observability.

Observability analyses for mobile robots have also been extended to mul-

tiagent systems, where both absolute (from fixed sensors or beacon agents)

and relative (between agents) range measurements are collected. The authors

of [Araki et al., 2019] propose the analysis of a team of ground vehicles that

collect mutual range distances by means of the Observability Matrix, while

[Heintzman and Williams, 2020] exploit graph theory and rigidity theory to

analyse the case where the vehicles are subject to nonuniform environmental dis-

turbances, which jeopardise observability when not taken into account. From

a geometrical standpoint, the results for multiagent systems have the same

interpretation as the results on single agents, while their description is more

convoluted due to the motion of all the vehicles of the system.

1.1.3 Localisation

Many research papers focus on the observability properties of a system, while

the recent literature points out that the aim of a system is to reconstruct its

current state with the past history of inputs and outputs, and thus it is associ-

ated with the concept of constructibility (see [Salaris et al., 2019]). However, for

most mobile robotic systems, despite being represented by nonlinear systems,

observability implies constructibility since the dynamics of the system can be

propagated with the known inputs and known initial condition to obtain the fi-

nal state of the system. Reconstructing the state qk of the system is performed

by algorithms called observers or estimation filters, which fuse the sensor mea-

surement zk and the known control inputs uk, k = k0, . . . , kf , and output an

estimate q̂k of the actual state qk of the system (see [Bernard et al., 2022]). A

necessary condition for the existence of an estimation algorithm such that q̂k

converges to qk is observability. In some scenarios, when the system is equipped

with many sensors, the state of the system can be directly reconstructed from

the measurements collected on a single time step, i.e. when Hk in (1.2) (or h(·)
in (1.1)) is invertible and qk = H−1

k zk. In this case, the system is said to be

statically observable, and the problem of reconstructing qk is called positioning.

On the other hand, in the common setting where the output function is not

invertible, the state of the system can still be reconstructed when the system

is dynamically observable, or simply observable. In this more general case, re-

constructing the state relies on the dynamics of the system and this problem is
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known as localisation problem (see [Fontanelli, 2022]).

Example 1.3. Let us consider an example adapted from [Fontanelli, 2022],

where an autonomous vehicle is modelled as a 1D single integrator having con-

stant velocity, with two sensors measuring its position and its velocity, respec-

tively. The system is modelled as

qk =

[
xk

vk

]
, qk+1 =

[
xk+1

vk+1

]
=

[
1 Ts

0 1

]
qk = Aqk

where Ts is a sampling time. We have three different measurement models,

denoted by the letters a, b, c, reading as

zk = Hiqk, i = a, b, c,

where

Ha =

[
1 0

0 1

]
, Hb =

[
1 0

]
, Hc =

[
0 1

]
.

a) The state qk is output by the sensors, thus the system is static observable.

The matrix Ha is invertible, hence the positioning problem can be solved as

qk = H−1
a zk = zk.

b) Unlike the previous case, the output z0 is not sufficient to reconstruct q0,

since Hb is not invertible. The outputs z0 and z1 of the system can be rewritten

as [
z0

z1

]
=

[
Hbq0

Hbq1

]
=

[
Hb

HbA

]
q0 = Oq0.

By simple computations, O is invertible, hence the system is (dynamically) ob-

servable and the state q0 can be reconstructed as q0 = O−1[z0, z1]>. Intuitively,

when only the position is measured, the velocity of the vehicle can be computed

through the displacement of the robot.

c) By following the same steps as in the previous case, and extending them to

an arbitrarily high number of successive measurements, we obtain

O =


Hc

HcA
...

HcA
k

 .
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By the structure of Hc and A, the first column of O has only null entries, thus

O is not invertible and the system is unobservable. Intuitively, when only the

velocity is measured, the position of the vehicle can never be reconstructed. ?

Example 1.3 shows that the same dynamical system subject to a different

set of measurements can be statically observable (associated with positioning),

dynamically observable (associated with localisation), or unobservable.

Positioning

A well-known problem is finding the position of a fixed target on the plane or in

the space based on its distance from a set of fixed sensors with known position

in the world reference frame. This is a positioning problem, since it does not

rely on the motion of the target, and is usually solved by means of multilatera-

tion, as in Example 1.1. While trilateration is a fairly old idea, new techniques

improving computational efficiency and coping with measurement uncertainties

are still being proposed nowadays in the technical literature. As an exam-

ple, [Thomas and Ros, 2005] presents a novel formulation of the trilateration

problem that allow the authors to analyse the effect of possible errors on the

accuracy of the estimation of the position of a robot in the space. On the same

idea, when the number of sensors is greater than the dimension of the state the

robot is located, Zhou [Zhou, 2009] finds the position of the robot as the solu-

tion of a minimisation problem, analytically solved by the weighted least square

solution, whose cost function is a measure of the uncertainty of the estimate.

Similarly, in [Yang et al., 2020] show that better computational performances

are obtained when a nonlinear minimisation problem in the position (x, y) of

the vehicle is built, where the cost function is based on the difference between

the actual collected measurements and the measurements expected with the

target in position (x, y). A similar idea is exploited by [Fontanelli et al., 2021]

where a virtual multilateration, based on successive measurements, is analyti-

cally solved to minimise the uncertainty associated with the estimation of the

position of a robot. When the sensors have a bounded sensing range R, i.e. the

measurements are available only when the distance between robot and sensor is

smaller than R, the authors of [Han et al., 2013] prove that three range sensors

are optimally deployed on the plane when they are located at the three vertices

of an equilateral triangle with side
√

3R. Based on this result, they propose a

trilateration–based trajectory planning algorithm for a mobile beacon, which al-

lows it to minimise the uncertainty of a target when it is detected on a plane. To

cope with practical limitations, Filonenko et al. [Filonenko et al., 2013] analyse

a scenario where a target on the plane collects 4 range measurements, but can
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rely only on the difference between them, i.e. collecting 3 independent measure-

ments. The authors show that solving the positioning problem is still possible

with this limited amount of information, and show that the positioning accuracy

depends on the deployment of the target, i.e. on its orientation, position and

other physical and geometrical parameters. On the same idea, [Yi et al., 2018]

consider a trilateration problem with 3 Wi-Fi access points. To compensate for

unmodelled and dynamic phenomena, the authors propose to measure online

the Received Signal Strength Indicator (RSSI) between pairs of access points,

thus decreasing the uncertainty associated with the target distance estimation.

In [Cantón Paterna et al., 2017], the authors propose a novel algorithm where

the uncertainty associated with the Bluetooth–based distance measurement of

three anchors is weighted by considerations on the geometry of the intersections

of the circle representing the measurements and on the distance measured by

each of the sensors. To cope with the problem that trilateration subject to mea-

surement noise does not yield a single feasible point (i.e. a single intersection

among three circles), in [Fang and Chen, 2020] the authors propose an Evolu-

tionary Algorithm that improves the estimation accuracy of a set of fixed targets

relying on measurements collected from 3 anchors. When more sensors are con-

sidered, the authors of [Diao et al., 2021] propose to dynamically estimate the

uncertainty of the measurement yielded by each sensor and use the usual trilat-

eration techniques only on the three sensors with the lowest uncertainty. More

recent works, e.g. [Jondhale et al., 2021], propose to improve trilateration for

indoor localisation by feeding the range measurements to a Neural Network,

thus showing that trilateration is still studied and improved nowadays with new

approaches and enhancing phases. Another interesting application of the trilat-

eration technique is offered in [Maxim et al., 2008], where the authors consider

a vehicle to be equipped with 3 acoustic transducers. This way, by solving the

trilateration problem, the three ranging systems build a device that “measures”

the position of the robot with respect to another robot or to a fixed point on

the plane.

Localisation

In the scenarios presented above, where the system is statically observable, a

common assumption is that the environment is sufficiently structured, i.e. a

sufficient number of sensors are deployed in the environment, under some con-

ditions. However, as mentioned in the previous sections, static observability is

not a necessary condition to reconstruct the state of the system, but localisa-

tion algorithms can rely on relaxed assumption on the structured environment
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(e.g. a smaller number of sensors) and on the manoeuvres executed by the

vehicle to reconstruct its state. A significant change in this scenario is asso-

ciated with the portion of the state that can be reconstructed. Indeed, when

the positioning is considered, only the position of the vehicle can be recon-

structed, while no information can be retrieved about its orientation, which is

part of the state in many kinematic or dynamic models, e.g. unicycle kinematic

model. Therefore, as a rule of thumb, generally more information can be in-

ferred through localisation despite the smaller number of fixed sensors that are

needed [Maurelli et al., 2022].

A research direction that has been deeply explored is associated with the de-

velopment and design of observers for mobile robots perceiving the environment

with different sensors. A survey on localisation techniques and on most common

sensors can be found in [O’Mahony et al., 2019] and [Campbell et al., 2020]. In

this field, specifically tailored estimation filters have been devised for UHF-

RFID sensors [Shamsfakhr et al., 2021], and for bearing measurements through

cameras [Jayasuriya et al., 2020], based on the well–known Extended Kalman

Filter (EKF), while other works define ad hoc filters devised from the bearing

output equation [Sert et al., 2011].

When cameras and LiDAR sensors are involved, recent works propose to

feed the collected frames to Neural Networks in order to extract relevant fea-

tures [Barnes and Posner, 2020], or detect and track autonomous vehicles (see

e.g. [Mohamed et al., 2020]). Machine–learning–based estimation filters have

received a widespread attention in the last years, both in the field of robotic

manipulator pose estimation [Miseikis et al., 2018], and for mobile robot lo-

calisation. Such estimation algorithms are commonly implemented on robots

collecting visual information. As an example, the authors of [Sun et al., 2020]

consider the scenario where a vehicle is equipped with a LiDAR and collects syn-

thetic information based on the e Michigan North Campus Long-Term Vision

and LiDAR (NCLT) dataset. They use a 2–phase estimation algorithm where

the pose of the robot is estimated through a deep neural network processing

LiDAR information, and the belief associated with the estimate is updated by

means of the Markov process theory. As a result, the time needed by the esti-

mation process is 2 order of magnitude less than a Monte Carlo baseline with a

centimetre–level accuracy. Visual information and machine learning algorithms

are also used in [Berz et al., 2018] to enhance, through computer vision tech-

niques, the estimate of the position of an idle robot estimated through RFID

sensors. Machine learning techniques are also used to estimate the position of

a robot in [Islam et al., 2023], where only ranging measurements are collected

and trilateration–based positioning is leveraged.

A common drawback coming with visual sensors yielding much information,
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e.g. a 360° LiDAR scan of the entire environment, is the notable computational

burden that is required to the mobile platform, derived from the common use

of machine learning or deep learning methods [Wu et al., 2020].

On a different development idea, as for positioning, the deployment of the

sensors in the environment affects heavily the accuracy in the estimation of the

state, and thus optimal sensors placement techniques have been considered both

for 2D visual cues [Zenatti et al., 2016] and for ranging sensors mounted on a

surface vessel for localisation and tracking of UAV’s [Moreno-Salinas et al., 2018].

In the same scenario, where a vehicle measures its distance from known points in

the environment, many research works propose novel observers to improve the

accuracy of the state estimate [Cedervall and Hu, 2007]. A standard Kalman

Filter (KF) is used in [Bayat et al., 2015] where the actual nonlinear system is

cast to a linear time varying system by means of a state augmentation. The

state estimate generated by the devised KF on the augmented system is then

recast to the original nonlinear system where, the system being observable,

it converges to the actual state of the AUV. A different rationale is followed

in [Fontanelli et al., 2021], where an ad hoc estimation filter is built based on

geometric considerations on global constructibility properties for a unicycle vehi-

cle subject to range measurements. The authors show that the devised filter has

performances comparable with a standard EKF, but it outperforms Kalman–

like filters when the process and measurement uncertainties are partly unknown

or overestimated.

Similar results have been obtained for range–based cooperative localisation

of a team of vehicles. By reworking the output equations based on the known

control inputs, in [De Palma et al., 2015a] a KF approach is proposed for a non-

linear system. The authors use a projection approach that, together with the

linear dynamics and the definition of an equivalent output equation, which, un-

like range measurements, is linear in the state, allow them to use the Kalman

Filter, which is the Best Linear Unbiased Estimator (BLUE) for linear systems.

The direct application of an EKF to the nonlinear multiagent system is dis-

cussed in [Huang et al., 2011], where the authors find an inconsistency: when

considering only relative measurements, the sensors are insensitive to rigid ro-

tations or translation of the entire system, thus the minimum dimension of the

unobservable subspace should be 3, while the error covariance matrix gener-

ated by an EKF has a bidimensional null space. To overcome this inconsis-

tency, the authors propose an Observability Constrained EKF, which guaran-

tees that the observability conditions, i.e. the dimension of the unobservable

subspace be at least 3, are met. A different variation of the EKF is proposed

in [Chakraborty et al., 2020] to cope with scenarios where local observability is

guaranteed, and checked by means of the Observability Matrix and of the Ob-
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servability Gramian, while global observability is not. The authors use a Multi–

Hypothesis EKF where one EKF is initialised for each of the possible states of

the vehicle. As an example, consider Figure 1.1(b), where the positions P1 and

P2 are compliant with the measurements. Each of the two hypothesis carries its

likelihood χ an additional state, where a hypothesis is discarded when χ falls

below a predefined threshold.

1.1.4 Active sensing

The main focus of the research papers presented in the previous section is the

observability analysis of a system along a trajectory, or the design of suitable

observers, based on the dynamics and on the sensing system, estimating the state

of the system. In both scenarios, the vehicles navigate the environment along

a fixed or given trajectory. In this section, we shift our focus to planning the

trajectory of the vehicles in the system to guarantee observability and devise

observability metrics to be optimised for. This field, most commonly known

under the names of observability–based planning, perception–aware planning, or

active sensing control, deals with two different, yet related, problems, which will

be referred to as target localisation and self localisation. The former problem

focuses on planning the trajectories of some tracker vehicles to optimise for the

observability of a moving target and track it along its trajectory, and has had

a great impact in the marine robotics field. On the other hand, a widespread

interest has been attracted by self localisation, where a vehicle (or a team of

vehicles) plans its trajectory to optimise for its own observability.

Target localisation

The problem of active sensing applied to target localisation and tracking is a

conceptual evolution of the optimal sensor placement problem. Indeed, instead

of deploying fixed devices in the environment, the aim of this research idea is to

plan the trajectory of a mobile sensor. A preliminary solution in a marine envi-

ronment is proposed in [Rúa et al., 2020] where a ranging sensor is mounted on

a manipulator enabling it to a follow a circular motion. While the trajectory of

the AUV is given, by means of the Fisher Information Matrix (FIM), the beacon

computes the best sequence of actions that improve the estimation accuracy. A

remarkable improvement of this idea is proposed in [Hung et al., 2020] where

the beacon is mounted on an Autonomous Surface Vehicle (ASV), which plans

its trajectory without the circular motion constraint. This approach allows the

tracker to localise also a non–cooperative target, with a simple kinematic model,
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yielding quasi–steady velocities. Better performances are obtained by extend-

ing the same approach to multiple trackers with the aim of cooperatively localise

on or more ASV targets [Hung et al., 2021]. From a geometric perspective, a

common outcome that has been obtained with different observability metrics

(e.g. FIM, explicit propagation of the error covariance matrix in an EKF, Ob-

servability Matrix, Gramians) is that the optimal tracker path, with ranging

sensors, is a circle centred in the position of the target [Mandić et al., 2016],

which extends to cycloidal or helical curves when the target moves with known

velocities. When the aim of the tracker is not limited to observability, but

contains also the tracking objective, i.e. the tracker seeks to reach the target,

the authors of [Coleman et al., 2021] show that the optimal trajectories have

spiral–like shapes, where the last position reached by the vehicle coincides with

the target.

Self localisation

The target localisation problem has received a great attention in the field of

marine robotics and ranging sensors, where AUV’s are commonly deployed to

execute navigation tasks and cannot rely on some classes of sensors, e.g. visual

sensors, due to the limitations forced by the underwater environment, while sur-

face vessels offer a cost–effective solution for localisation. On the other hand, the

self localisation problem has been considered also for ground or aerial vehicles

relying on many classes of sensors. A trajectory planning algorithm for a team

of ground vehicles measuring both relative and absolute bearing angles have

been proposed in [Sharma, 2014], where the authors maximise the determinant

of the Information Matrix computed through an Extended Information Filter

(EIF). Bearing measurements are a popular solution for aerial vehicles, where

the trajectory planning problem has been extended with the maximisation of

observability metrics, commonly associated with the minimisation of the veloc-

ity of projection of some control points on the image plane [Falanga et al., 2018],

also known as normalised feature speed [Wu et al., 2022].

While range–based target localisation is common for marine robotics and un-

derwater vehicles, active sensing techniques have also been devised for ground

and aerial vehicles collecting range measurements. Examples of AUV plan-

ning their trajectories have been proposed in [De Palma et al., 2015b], where

the authors define two different goals. The primary problem consists in reach-

ing a target position, which is solved by a Lyapunov based controller. The

secondary task, i.e. the maximisation of the observability of the vehicle mea-

sured through the determinant of the FIM, is executed by means of a null
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projector, where the devised control law does not affect the success of the pri-

mary navigation task. Where only the observability task is considered, based

on the empirical Observability Gramian, [Quenzer and Morgansen, 2014] pro-

poses optimal control laws, where the optimal trajectory turns to be a circle

centred in the beacon collecting the range observations. Based on the Grami-

ans, the authors of [Salaris et al., 2017] propose a general framework, not re-

stricted to a particular class of vehicles or of sensors, where the Observabil-

ity Gramian is used as an observability metric. Successive extensions of this

idea are proposed [Salaris et al., 2019], where the Constructibility Gramian

is proved to be more suitable than the Observability Gramian as a metric

quantifying the estimation uncertainty. Indeed, the Constructibility Gramian

is closely related to the solution to the algebraic Riccati equation and with

the error covariance matrix propagated through an EKF without process un-

certainties. This result is also shown in a simulation environment where the

uncertainty of an OG–optimal trajectory is greater than the uncertainty of a

CG–optimal trajectory. These ideas have also been extended to multiagent

settings [De Carli et al., 2021] where an approximation of the smallest eigen-

value of the Constructibility Gramian is computed in a distributed fashion,

while process noise has been considered in [Napolitano et al., 2021] by intro-

ducing the Reachability Gramian along the trajectory. To account for both the

tracking and the observability properties, the same ideas have been extended

in [Napolitano et al., 2022] for a nonholonomic vehicle subject to range measure-

ments, where an MPC controller is proposed where a feedforward control plans

the trajectory to maximise for observability, while a Lyapunov–based feedback

controller stabilises the vehicle on the desired trajectory. In the same scenario

with a unicycle vehicle subject to range measurements, a completely different

approach is followed in [Shamsfakhr et al., 2022], where the vehicle builds an

artificial potential field whose contributions are based on a target point to be

reached (with an adaptively increasing weight) and on the minimisation of the

uncertainty measured by the trace of the error covariance matrix propagated

in an EKF. The observability of ground vehicles can be trivially applied to

aerial or underwater settings, when the altitude or the depth of the vehicles

can be measured. As an example, [Boyinine et al., 2022] propose the analysis

of a multiagent system where a set of support vehicles have to localise them-

selves by collecting range measurements, while they plan their trajectory with

the aim of minimising the estimation uncertainty of the leader vehicle executing

a predefined task. The problem is solved with a nonlinear Model Predictive

Control, whose cost is based on the Observability Matrix. On the same idea,

[Chen and Dames, 2020] consider a set of tracking robots that measure their

pose with respect to the environment, with respect to other trackers and to
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an unknown and time varying number of targets. The authors propose to use

the covariance matrix generated by a Probability Hypothesis Density filter as

weighing function for a Lloyd–based controller. They then show that the pro-

posed control algorithm guarantees collision avoidance between robots, both

between two trackers and between a tracker and a target, and copes also with

a remarkable initial uncertainty of the pose of the trackers.

1.2 Thesis contributions and publications

This thesis addresses the constructibility problem for a ground vehicle, or a

team of ground vehicles, subject to range measurements. The constructibility

problem, which boils down to finding the conditions such that the localisation

problem can be solved, is addressed on different levels: when no prior informa-

tion is provided to the system, we analyse the global constructibility problem

(see Problem 1.1), while the local constructibility problem is considered when

some a priori information is given, such as non–accessible areas of the plane

or a sufficiently narrow set containing the initial (or final) state of the system

(Problem 1.2). From a different perspective, this thesis also addresses the ac-

tive sensing problem, where a team of vehicles plans its trajectory in order to

achieve constructibility (Problem 1.3).

This thesis is divided into three parts, where for Part I and Part II there is a

one–to–one correspondence with Problems 1.1 and 1.2, while Part III considers

the extension of the concepts to multiagent systems and, in Chapters 7 and 9,

addresses Problem 1.3.

1.2.1 Part I – Global constructibility

A motivation for the analysis of global constructibility properties is given in

Chapter 2, where we consider the usual environment instrumented with fixed–

frame ranging sensors. For this motivation example, we choose to consider an

omnibot, i.e. a mobile robot with dynamics reading as

q̇ =

ẋẏ
θ̇

 =

vf cos θ − vl sin θ
vf sin θ + vl cos θ

0

 ,
where states and controls are represented in Figure 1.2. For this case, which can

be extended to a wider class of vehicles, as shown in Chapter 4, we show that

the basic intuition on the trivial extension of the positioning concepts to the
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localisation problem fails. In particular, we provide a proof of the well–known

trilateration problem, showing that three sensors in Example 1.1 are sufficient to

reconstruct the position of the vehicle when they collect simultaneous measure-

ments, unless a singular condition occurs. Unlike the simultaneous trilateration

scenario, when the vehicle moves between successive range measurements, we

show that in the general case, three range measurements are not sufficient to

reconstruct univocally its position in the world reference frame. This chapter,

which is originated by the publication [Riz et al., 2023b], shows that the intu-

ition on the solution of Problem 1.1 may fail, thus justifying the rest of the

analysis.

Based on the results in the previous chapter, in Chapter 3, we address a

setting similar to the one analysed in [Palopoli and Fontanelli, 2020] and extend

the result to sensors with bounded sensing range. This contribution considers

a nonholonomic vehicle described by the unicycle kinematic model, reading as

q̇ =

ẋẏ
θ̇

 =

vf cos θ

vf sin θ

ω

 ,
as represented in Figure 1.2. In this setting, with the environment instrumented

with only two sensors with bounded and non–overlapping sensing range, we pro-

vide a sufficient condition on the trajectory of the vehicle that attains global

constructibility. At the end of this chapter, which is based on [Riz et al., 2022b],

we give some geometrical insights on the sufficient condition, where global con-

structibility is not achieved when the vehicle follows a straight trajectory under

the range of the anchors, or when the two anchors are overlapped.

In Chapter 4 we extend the class of ground vehicles that are analysed, and

carry out a global constructibility analysis for intermittent measurements. The

ground vehicles that are considered in this analysis have to satisfy the following

two properties:

1. Given a state qt̄, t0 ≤ t̄ ≤ tf and the sequence of control inputs ut, t ∈
[t0, tf ], the state of the system qt, t ∈ [t0, tf ] can be univocally determined;

2. The sequence of positions (xt, yt), t = [t0, tf ] is sufficient to determine the

final state qf .

The kinematic models analysed in the previous chapters meet these conditions,

while many mobile robots satisfy the properties provided that some further com-

ponents of the state are measured. Furthermore, as a reasonable assumption

based on the technology employed in the sensors, we consider intermittent mea-

surements. The two listed properties with this last consideration allow us to
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consider only a finite number of measurement points, instead of considering the

trajectory of the state of the system. With this assumption, Chapter 4, which is

based on [Riz et al., 2022a], presents a complete global constructibility analysis,

where we analyse the effect of the number and deployment of the anchors in the

environment, the number of measurement points and their distribution among

the anchors on the constructibility properties of the system.

1.2.2 Part II – Local constructibility

Following the global constructibility analysis, a natural development of these

concepts is the local constructibility analysis. Indeed, as per Example 1.1, often

times prior information on the position of the vehicle is available. As pre-

sented in the literature overview, local analyses have commonly been carried

out by relying on the extension of tools from linear system analysis, such as

the Observability Matrix and the Gramians. In Chapter 5, we follow the same

procedure as in Chapter 4, restrict our analysis to a unicycle–like vehicle, build

the Constructibility Gramian of the system for each distribution of measure-

ments, and test local constructibility. While basic intuition suggests that any

constructible setting should be also locally constructible, some constructible set-

tings turn out to be weakly unconstructible. This unexpected result, discussed

in [Riz et al., 2022a], is presented in Chapter 5 with the help of some geometri-

cal insights and some conclusions on the issues introduced by linearisation are

drawn.

With the Constructibility Gramian introduced in Chapter 5, we propose in

Chapter 6 a quantitative comparison of the constructibility of different straight

trajectories (jeopardising global constructibility) followed by a vehicle in an en-

vironment instrumented with two bounded ranging sensors. In this setting, we

consider the effect on the smallest eigenvalue of the Constructibility Gramian,

chosen as measure of constructibility, of some geometrical parameters of the

trajectory, such as the distance between the trajectory and the anchors, the

distance between the anchors, or the final position reached by the vehicle. This

preliminary analysis, presented in [Riz et al., 2022b] could be beneficial for ac-

tive sensing problems where these results may be used as a heuristic to plan the

optimal trajectory, or a trajectory guaranteeing a given constructibility index.

1.2.3 Part III – Multiagent systems

In this Part, we extend the constructibility results obtained in the previous

parts to multiagent systems, and present some solutions for Problem 1.3. Chap-

26



1. INTRODUCTION

ter 7, which is originated by [Riz et al., 2023a] presents a trajectory planning

algorithm that ensures global constructibility for a pair of unicycle vehicles col-

lecting absolute and relative measurements. At the initial time step, the two

vehicles are deployed in the environment, each one in sight of a ranging sensor,

but with no prior information on its state. Therefore, as an example, the initial

manoeuvre planned by the vehicles relies only on its initial distance measured

from the anchor, and aims at collecting further informative measurements from

the anchor. After collecting this phase, the vehicles move on a circle centred

in their reference anchor until they meet, and eventually they plan their last

manoeuvres such that the collected measurements ensure global constructibility.

An extension of the constructibility analyses in the previous parts is pre-

sented in Chapter 8, where the vehicles in a multiagent system measure their

relative distance. While only some necessary conditions form Problem 1.1 have

been devised, the local analysis in Problem 1.2 by means of the Constructibility

Gramian is generalised for an arbitrarily large number of agents. In this anal-

ysis, presented in [Riz et al., 2024b], we provide some geometrical insights on

constructible and unconstructible settings on the shape of the trajectories and

on the measurements among agents.

Chapter 9, which is based on [Riz et al., 2024a], addresses Problem 1.3 for a

tracker–target pair, with a slight difference in the analysed model. Indeed, while

unicycle vehicles are still considered, we introduce the simplifying assumption

that the orientation θ of the two vehicles can be measured by means of a com-

pass, and thus the portion of the state vector to be reconstructed amounts only

to the position of the two vehicles. The system consists of a fixed beacon and

of the two vehicles, which are initially unaware of their position, as customary

assumption for the global constructibility problem. While no direct interaction

exists between the target and the beacon, the tracker collects range measure-

ments from both of them, and plans its trajectory to optimise for a variation of

the Constructibility Gramian encompassing the position of the two vehicles. To

cope with the lack of prior information, initially the estimation is carried out

with a delayed trilateration process, described in Chapter 2, while successively

the estimate obtained through an EKF is fed to the Gramian–based planner.

Lastly, in Chapter 10, we draw some final conclusions on constructibility

results introduced in the previous chapters, and suggest future research direc-

tions that can benefit from the concepts explored in this thesis. While an open

problem is still the complete global constructibility analysis of a multiagent sys-

tem, the main challenge is the application of the global constructibility analyses

to the robotic domain in real–life applications, where the odometry sensors

are corrupted by noise, thus affecting the ability of the vehicle to estimate the

followed trajectory. While these issues have already been addressed in the tech-
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nical literature for the local scenario (see [Napolitano et al., 2021]), addressing

this issue from a global perspective is still an open problem. Other interesting

challenges deal with multiagent systems with non–collaborative or adversarial

agents, which actively avoid measurements and inject false information in the

system to not be localised.

Figure 1.3 shows the visual structure of the thesis and points out the men-

tioned open problems.

Chap. 2
Delayed Trilateration

Chap. 3
A Sufficient Condition

Chap. 4
Global Analysis

Chap. 5
Local Analysis

Chap. 6
Quantitative Analysis

Chap. 7
Global Traj. Planning

Chap. 8
Multiagent Analysis

Chap. 9
Tracker Planner

Multiagent SystemsGlobal Constructibility

Local Constructibility

Open Problems

Complete Global
Multiagent Analysis

Malicious or
Non–Collaborative

Agents

Motion
Uncertanties

PART I PART III

PART II

Figure 1.3: Thesis structure with contributions and open problems.

28



Part I

Global Constructibility Analysis

of a Ground Vehicle





2Localisation and Positioning:

the Delayed Trilateration

Contents

2.1 Problem Description . . . . . . . . 33

2.1.1 Dynamical model . . . . . . . . . 33

2.1.2 Sensor model . . . . . . . . . . . . 35

2.1.3 Problem formulation . . . . . . . 35

2.2 Trilateration . . . . . . . . . . . . . 36

2.3 Simulation results . . . . . . . . . . 40

2.4 Discussion . . . . . . . . . . . . . . . 43



2. LOCALISATION AND POSITIONING: DELAYED TRILATERATION

Finding the position of a (moving) target in an indoor environment is a problem

that has been deeply analysed in the past years. A natural choice for solving the

positioning problem, i.e. finding the position of a still target, relies on ranging

sensors, given the large number of sensors capable of measuring the distance

between a number of fixed-frame points and the target. The most common

solution relies on the so–called trilateration (or multilateration), where 3 (or

more) simultaneous range measurements are leveraged to reconstruct the po-

sition of the target. In this chapter, we provide an example of the extension

of the well–known trilateration problem (referred to as simultaneous trilatera-

tion for the sake of clarity) to the scenario where the target is not fixed, but

it is moving through a planar environment. We notice that the results estab-

lished in the former case are not directly extendable to the delayed trilateration

scenario, and basic intuition on this problem fails. Indeed, we show with a

counterexample that, when the agent moves through the environment, there

are multiple trajectories that are compliant with the motion of the target and

with the ranging measurements that have been collected by anchors with known

positions. Therefore, we claim here that three measurements are not sufficient

to localise a moving target in a given environment even in ideal conditions when

no measurements noise or motion uncertainties are considered in the model. In

particular, we claim that the classic trilateration problem assumes an additional

implicit information besides the three ranging measurements, that is that the

three measurements are taken with respect to the same point in space or, in the

most general and most probable case of a moving target, simultaneously.

This analysis suggests that there is a structural difference between the posi-

tioning problem, i.e. finding the position of a fixed target, and the localisation

problem, i.e. reconstructing the position (or the entire state) of a moving vehi-

cle, and motivates the analyses carried out in the next chapters of this thesis.

Contributions: We consider a target moving through an environment

equipped with an infrastructure of three anchors of known position and mea-

suring the distances to the target. Dictated by various actual applications, e.g.,

limited sensing range, limited bandwidth in the target-beacon communication or

scalability issues [Magnago et al., 2019], the measurements are retrieved at dif-

ferent time steps. Contrary to the intuition that a delayed trilateration should

have the same properties of a simultaneous trilateration (i.e., three measure-

ments should be sufficient to localise the target), we show that in this setting

we are not able to recover the target location, even if an ideal, perfect knowledge

of the manoeuvres performed by the target and of the measurements collected

is available. In the developments, we additionally prove that this result roots in

an algebraically ill-posed solution of the trilateration.
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x〈B〉
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θ

Figure 2.1: Figure with the absolute and the relative reference frame.

2.1 Problem Description

In this section we will present the background knowledge and results that are

fundamental to derive the problem we are tackling in this chapter.

2.1.1 Dynamical model – continuous-time dynamics

In a previous work [Farina et al., 2017], Farina et al. presented a dynamical

model able to capture the relevant dynamics of the motion of a pedestrian. In

the same spirit and for the sake of the problem at hand, we decide to abstract

that dynamic model to a pair of integrators in the plane endowed with the

orientation θ. Notice that this dynamical system can be leveraged also to model

robotic vehicles with a simple kinematic model and these results can be easily

extended to unicycle–like vehicles. As depicted in Figure 2.1, we consider the

target having two independent inputs vx and vy in the target reference frame

〈B〉, which leads to the following dynamics in the fixed inertial reference frame

ẋ = vx cos θ − vy sin θ, ẏ = vx sin θ + vy cos θ. (2.1)

To simplify the forthcoming analysis, we consider the system to be sampled at

discrete time instants with sampling time Ts (dictated by the hardware avail-
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able), thus leading to

xk+1 = xk + Vx, yk+1 = yk + Vy, (2.2)

where xk denotes the horizontal position of the target at the time instant t = kTs

and Vx and Vy depend on the system inputs, i.e.

Vx = (vx,k cos θ − vy,k sin θ)Ts, Vy = (vx,k sin θ + vy,k cos θ)Ts, (2.3)

where vx,k = vx(kTs) and vy,k = vy(kTs). In the following, we will denote the

position of the target at time step k as Pk = [xk, yk]>, and define Ak as the

length of the path travelled by the target between steps k and k + 1, i.e.

Ak = ‖Pk+1 − Pk‖ =
√

(xk+1 − xk)2 + (yk+1 − yk)2.

Notice that we can compute the value of Ak by using the discrete-time dynam-

ics (2.2) of the target, thus yielding

Ak =

√
Vx

2 + Vy
2, (2.4)

which only depends on the relative displacements Vx and Vy in (2.3).

Moreover, we can express the angular increment δk described by the segments

connecting Pk to Pk+1, and Pk+1 to Pk+2 as

δk = βk+1 − βk
= arctan2(vy,k+1, vx,k+1)− arctan2(vy,k, vx,k),

(2.5)

where

βk = arctan2(〈B〉yk+1 − 〈B〉yk, 〈B〉xk+1 − 〈B〉xk) + θ

= arctan2(vy,k, vx,k) + θ.
(2.6)

This way, the target trajectories can be represented by segments connecting Pk

and the successive points Pk+1 by using the length Ak and the inclination βk,

as represented in Figure 2.2.

Remark 2.1.1. We assume in this chapter that the inputs vx,k, vy,k are known

perfectly (i.e., no measurement uncertainty is considered). Nevertheless, without

the ranging measurements, since we are not aware of the initial position P0

of the target and of its inclination θ, given the history of the inputs vx,k, vy,k

in any discrete-time interval [0, 1, . . . , kf ], we are not able to reconstruct the

absolute trajectory in the inertial reference frame, but we can only reconstruct

the “relative geometrical shape” of the trajectory, i.e. the length of the segments
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P2

P3

B2
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ρ2,2
ρ2,1

β1
β2

Figure 2.2: Typical trajectories followed by the target. Through the velocity input
sequence, we have an immediate description of the segment lengths A1 and A2 and
their relative orientation δ1. As an example, the anchor B2 is represented together
with its distances from the target at three consecutive time instants.

Ak, k ∈ [0, kf ] and their relative angle δk, k ∈ [0, kf − 1]. This is an immediate

consequence of the knowledge of relative measurements.

2.1.2 Sensor model

We assume that the environment is equipped with a set of anchors, e.g., UWB

anchors, Bi = [Xi, Yi]
>, i = 1, . . . , n, retrieving their distance to the target, i.e.

the measurement output of the systems at time k are the distances ρi,k, such

that

ρ2
i,k = (xk −Xi)

2 + (yk − Yi)2. (2.7)

2.1.3 Problem formulation

It is widely known that the problem of positioning a target on a plane, i.e., to

retrieve its coordinates xk, yk at a certain time kTs, is solved by means of trilat-

eration, i.e., at time kTs at least three ranging measurements from non–collinear

anchors are available [Palopoli and Fontanelli, 2020]. With respect to (2.7), it

amounts to collect ρi,k, for i = 1, . . . , 3, i.e., all the measurements come at the

same time instant. In this case, the positioning problem is statically observable.

When, instead, the measurements from the three anchors come at different time

instants, e.g., we have access to ρ1,k, ρ2,k+1 and ρ3,k+2, the positioning problem

turns to a localisation problem [Fontanelli, 2022], which entails the concept of

dynamic observability, or simply observability. The main idea is that the notion

of the motion model compensates for a reduced amount of measurements at time

k. In this chapter, we will prove that this is counterintuitively: we analyse both

the two different situations: the first is the traditional simultaneous trilateration
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problem where the three landmarks retrieve the distance measurements at the

same time, and then we will analyse the problem of the delayed trilateration,

where the measurements are retrieved at three different time steps. In the latter

case, we will show that three measurements from three different anchors are not

sufficient: in other words, the standard trilateration does not consider just three

measurements, but four: the last one is the knowledge of the simultaneous mea-

surements. In carrying out the analysis, we are not considering explicitly the

role played by the measurement uncertainties. In fact, the results here obtained

are applicable also in the ideal case, i.e., perfect measurements.

We would like here to stress that the problem we are dealing with is associ-

ated with the concept of observability, which depends only on the dynamics of

the system, on the model of the sensors and on the trajectory followed by the

system itself. Therefore, actuation uncertainty and measurement noise play no

role at this level [Fontanelli, 2022].

2.2 Trilateration

As aforementioned, the simultaneous trilateration involves three anchors re-

trieving the distance ideal measurements from the target at the same time. To

compact the notation, in the following we will drop the subscript k in (2.7). We

introduce here the formal definition of trilateration and its proof.

Proposition 2.2.1 (Simultaneous trilateration). Let P = [x, y]> ∈ R2 be the

position of the target on the plane and let Bi = [Xi, Yi]
>, i = 1, 2, 3 be the

positions of three anchors, each of them measuring their distance ρi from P .

Whenever the three anchors are not collinear, P is the only point compliant

with the three retrieved distances.

Proof. By taking the differences ρ2
2−ρ2

1 and ρ2
3−ρ2

1, we come up with two linear

equations in the unknown x, y, reading

M

[
x

y

]
= h, with M =

[
X1 −X2 Y1 − Y2

X1 −X3 Y1 − Y3

]
(2.8)

which is invertible as soon as M is nonsingular, i.e. detM 6= 0. The determinant

of M can be obtained as the only non–zero element of the cross product between

B2 −B1 and B3 −B1 0

0

detM

 =

X2 −X1

Y2 − Y1

0

×
X3 −X1

Y3 − Y1

0

 =

 0

0

d12d13 cos γ213

 , (2.9)
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d12

d13

γ213B1

B2

B3
ρ3

ρ2

ρ1

P

Figure 2.3: Three range sensors measure their distance from the target: whenever
the three anchors are not aligned (i.e. γ213 6= hπ), we have only one intersection among
the three circles, i.e. we know where the target is.

where · × · denotes the cross product between two vectors, d12 and d13 are

the distances between the anchors B1 and B2, and B1 and B3, respectively,

while γ213 is the amplitude of the angle described by the three anchors, with

vertex B1, as represented in Figure 2.3. Whenever γ213 = 0, the three anchors

are collinear, and we are not able to uniquely identify the position P of the

target.

The widely known geometric interpretation is the following: for each anchor

Bi, we build a circle centred in the anchor itself, with radius equal to the

retrieved distance ρi. The three circles have two intersection points as soon as

the three centres are aligned, otherwise they only have one unique intersection.

Remark 2.2.2. The proof of Proposition 2.2.1 is built upon the differences of

the squares of the distances, which ensures that the solution will correspond to

the actual target location. However, when the distances are not collected from a

real scenario, but the positions of the anchors and their ranges are fixed upfront,

we can still find a point [x, y]> by using (2.8), but it will not be a solution

to (2.7).

Although Remark 2.2.2 seems to account for a situation that is never oc-

curring, it turns out to be fundamental: indeed, a solution to the trilateration

problem may be wrongly considered correct even if M is invertible, but the cir-

cles do not intersect in a single point. We will explicitly consider this situation

in Section 2.2, where we introduce the concept of delayed trilateration, i.e., the

ranging measurements are collected at different time instants for a target that

is moving, which may lead to the problem discussed in Remark 2.2.2.
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Remark 2.2.3. In the case of simultaneous trilateration, we are able to recon-

struct the position P of a still target independently on the orientation angle θ,

which has no effect on the measurements retrieved by the three landmarks, since

it does not appear in the definition of the distances in (2.7).

Delayed trilateration

We address now the case of the delayed trilateration. In this scenario, the

target is assumed to move according to (2.2) with unknown initial position

P1 = [x1, y1]> and unknown orientation θ. Assuming that the three measure-

ments in (2.7) are given at time instants k1 6= k2 6= k3 and by leveraging on

our knowledge on the system inputs over time (see Remark 2.1.1), we will try

to recover the unknown initial condition P1 in order to reconstruct the entire

trajectory (indeed, the system inputs are assumed to be perfectly known).

In the previous section, we have used the condition of noncollinearity among

the three anchors Bi, in order to reconstruct the position P of the target. Since

in this scenario the target is moving, we will need a different generalised non-

collinearity condition, as in the following definition.

Definition 2.2.4 (Generalised noncollinearity). Given three consecutive posi-

tions Pk, k = 1, 2, 3 of the target and three landmarks Bi, i = 1, 2, 3, such that

the i-th anchor distance to the target is retrieved at time ki, the anchors are

said to be non-collinear if the following holds:

(B̄2 − B̄1)× (B̄3 − B̄1) 6= 0,

where the translated anchors B̄i are defined as

B̄1 = B1, B̄2 = B2 −

[
Vx1

Vy1

]
, B̄3 = B3 −

[
Vx1 + Vx2

Vy1 + Vy2

]
.

From a geometric point of view, the condition expressed in Definition 2.2.4

may be interpreted as follows: we move the pair anchor–measurement (i.e. the

pair Bi–Pi) such that all the measured points Pi coincide with P1, to recover

a scenario similar to trilateration. The generalised noncollinearity holds if the

three translated anchors B̄i are not collinear.

For the sake of simplicity and without loss of generality, we assume that

k1 = 1, k2 = 2 and k3 = 3 in (2.7), while we are interested in the initial position

P1 = [x1, y1]> of the target, together with the inclination θ (see Figure 2.4). In

light of Definition 2.2.4, we are ready to prove the following proposition.
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ρ1,1

ρ2,2

ρ3,3P1

P2

P3

B2

B1 B3

Figure 2.4: Three anchors Bi measure their distance ρi,i from the target, each of
them at time ki = i.

Proposition 2.2.5. Given the target dynamics (2.2), the system inputs vx,k, vy,k,

k = 1, 2, the sensor model (2.7), the measurement outputs ρ1,1, ρ2,2, ρ3,3 and the

initial angle θ, we can reconstruct the initial position P1 of the target only if the

generalised noncollinearity condition holds.

Proof. For the proof of this proposition, we follow the same rationale as in the

proof of Proposition 2.2.1, thus we build the differences ρ2
2,2−ρ2

1,1 and ρ2
3,3−ρ2

1,1.

By leveraging on Definition 2.2.4, we compute the i-distance as

ρi,i = ‖Bi − Pi‖ = ‖B̄i − P1‖.

Being P1 constant and common to all the measurement results, we recover the

same structure as in the proof of Proposition 2.2.1

M̄

[
x1

y1

]
= h̄, with M̄ =

[
X̄1 − X̄2 Ȳ1 − Ȳ2

X̄1 − X̄3 Ȳ1 − Ȳ3

]
, (2.10)

where X̄i and Ȳi are such that B̄i = [X̄i, Ȳi]
>, i = 1, 2, 3.

By the same procedure as for (2.8), a unique solution can be found if and

only if B̄1, B̄2 and B̄3 make the matrix M̄ invertible, thus compliant with the

condition of generalised noncollinearity of the three anchors B1, B2, B3.

Proposition 2.2.5 states that there exists only one trajectory compliant with

the manoeuvres performed by the target, with its initial inclination θ and with

the three measurement retrieved by the sensors. However, we can draw a con-

sideration that directly descends from Remark 2.2.2, which is discussed in the

following remark and turns out to be fundamental.
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Remark 2.2.6. As in the case of simultaneous trilateration, the proof of Propo-

sition 2.2.5 is based on the differences of the collected distances. However, in

this situation, we use the measurement collected by the vehicle moving across

the environment, but we fix an arbitrary value of θ, which leads us to find an

initial point P1 according to (2.10), but we have no guarantees that P1 is also a

solution to (2.7). Thus, solutions to (2.7) may be found only fixing some specific

(unknown) values for the inclination angle θ.

The main difference with the case of simultaneous trilateration is the de-

pendence on θ of M in (2.10) for the delayed trilateration. Therefore, there

may exist multiple solutions having the same sequence of manoeuvres and of

measurements, but different values of θ. As a consequence, based on Proposi-

tion 2.2.5, we can state that the knowledge of the system inputs, the model and

the measurements is not sufficient to reconstruct P1. Considering Remark 2.2.2

and Remark 2.2.6, we are now ready to introduce the main result of this chapter.

Proposition 2.2.7. Given a target moving accordingly to (2.2) with known

velocity inputs vx,k, vy,k, k = 1, 2, and three fixed-frame anchors B1, B2, B3,

measuring their distance from the target at time k = 1, 2, 3 respectively, we

cannot localise the target in the environment, i.e. we cannot reconstruct its

initial position P1 in the inertial reference frame.

The main consequence of this proposition is that three ranging measure-

ments are not sufficient for trilateration, but the three measurements should be

collected simultaneously to solve the problem, even with the additional perfect

knowledge of the model and the system inputs.

2.3 Simulation results

To support our claim, we provide a simulation of the scenario presented in

Proposition 2.2.7, with a counterexample that shows that, despite the assump-

tions in Proposition 2.2.5 hold, there are many trajectories that are compliant

with the manoeuvres performed by the target and with the range measurements

retrieved by the anchors.

Example 2.1. We assume that the target moves with given inputs (thus we

assume to know the relative displacement in (2.3) and the shape of the trajec-

tory) and collects one measurement from each of the three anchors. We further

assume the following configuration:
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Figure 2.5: Graphical representation of Example 2.1. In this case, despite the gen-
eralised noncollinearity condition holds, we have (at least) four trajectories that are
compliant with the manoeuvres and the measurements retrieved by the three anchors,
showing that three range measurements are not sufficient to uniquely identify the tra-
jectory followed by the target.

Sensor positions:

B1 =

[
0

0

]
, B2 =

[
9

6

]
, B3 =

[
14

3

]
,

Sensor readings:

ρ1,1 = 4, ρ2,2 = 3, ρ3,3 = 2,

Control inputs:

vx,1 = 5, vy,1 = 3, vx,2 = 7, vy,2 = −4,

with sampling time Ts = 1 s.

Figure 2.5 shows the results obtained in the simulation with the param-

eters above, i.e. a set of four trajectories that are compliant both with the

manoeuvres performed by the target (see Remark 2.1.1) and with the readings

of the three range sensors. As reported in Table 2.1, where the results obtained

with the four distinct solutions represented in Figure 2.5 are quantified, we can

notice that: despite the generalised noncollinearity condition holds (for each

trajectory, we can check the generalised noncollinearity condition by building
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Solution 1 Solution 2 Solution 3 Solution 4

P1
3.85 2.11 3.91 0.73
−1.10 3.40 −0.82 3.93

P2
7.64 6.35 6.44 6.02
3.32 7.40 4.43 6.37

P3
15.55 14.04 14.49 12.54
1.74 5.00 4.94 1.63

detM −2.76 2.54 −20.43 11.87

Table 2.1: Numerical results of the simulation in Example 2.1 and depicted in Fig-
ure 2.5. For each solution, we report the position of the points Pk reached by the
target at time k and whose distance is measured by the anchor Bk. In the last row we
report the determinant of matrix M built as in (2.10).

the matrix M as in (2.10) and computing its determinant detM : the last row

of Table 2.1 contains only non-zero values), all the four solutions are compliant

with manoeuvres and measurements but are all different: one may simply check

by using the obtained numerical results about the positions P1, P2 and P3. ?

From the analysis carried out on the simultaneous and delayed trilatera-

tion, which are supported by the results obtained in the numerical example, we

draw the following consideration: even though the intuition suggests that with

three measurements we are able to reconstruct the position of the target on the

plane R2, this is not sufficient whenever we add the dynamics of the system,

i.e. whenever the target moves while the measurements are taken. The problem

of finding the minimum number of measurements needed to find the position

of the target with three simultaneous ranging measurements is exhaustively ad-

dressed in Proposition 2.2.1, while Example 2.1 and Proposition 2.2.7 state that

the minimum number of anchors with delayed measurements to reconstruct the

target location is still open, and is the base for the analyses in the next chapters

of this thesis. From a practical point of view, we are considering a target that

is initially unaware of its position and orientation on the plane. These results

imply that, when it collects 3 measurements with a delayed trilateration as in

Section 2.2, the target can build a set of positions where it could be located.

Although the actual position of the vehicle is included in this set, the target

cannot retrieve it with only 3 measurements.

With these considerations in mind, we are now ready to state the main claim

of this chapter with a clear statement.

Claim 2.3.1. Whenever we consider a scenario of simultaneous trilateration as

in Section 2.2, we are collecting three measurements from the ranging sensors,

but we are also relying on one additional information, which is the implicit
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assumption that the target is still.

Notice that this assumption is not explicitly used in the computations and

proofs (see proof to Proposition 2.2.1), but it allows us to find the position

of the target on the plane. This claim is supported by Section 2.2 and by

the numerical simulation in the Example 2.1, where the implicit assumption

of simultaneous measurements is explicitly removed, i.e. the target is not still

while the measurements are collected, thus leading to reconstruction failure.

2.4 Discussion

In this chapter we have shown how three measurements are not always sufficient

to reconstruct the state of the agent, i.e., localise it in the environment, but we

have given no hint on the minimum number of measurements and anchors needed

to reconstruct the state, i.e. to attain the so-called global observability. This

counterintuitive result lays the foundations for the analyses that will be carried

out in the next chapters of the thesis, where we aim at analysing how the global

observability/constructibility properties are affected by these three quantities:

• The shape of the trajectory (associated with control inputs and proprio-

ceptive sensors);

• The number and layout of the anchors in a planar environment;

• The number of measurements collected by the vehicle and their distribu-

tions among the anchors.

43





3A Sufficient Condition for

Global Constructibility

Contents

3.1 Problem Description . . . . . . . . 46

3.2 Global constructibility analysis . 49



3. A SUFFICIENT CONDITION FOR CONSTRUCTIBILITY

In Chapter 2, we have presented the problem of localising a (moving) target by

leveraging range sensors, and we have shown that this problem is not trivial to

address, since intuition on the extension of the classic trilateration technique

fails. In this chapter, we reverse our focus, and rather than analysing an un-

constructible scenario, i.e. a setting where the state of the system cannot be

univocally reconstructed, we look at a condition where the state of the vehicle

can be reconstructed. We consider a sparse deployment in which anchors are in

a small number and have a finite and non–overlapping sensing range. Under the

most extreme conditions (i.e., the robot being in sight of two anchors at differ-

ent times), we provide a sufficient condition on the manoeuvres that the robot

is required to execute within the sensing range of each of the anchors in order

to achieve global constructibility. This contribution represents the first step

towards a complete analysis of the global constructibility properties of a non-

holonomic vehicle moving through a planar environment and collecting range

measurements from fixed–frame sensors.

Contributions: In this chapter, we consider a mobile robot, represented

by the unicycle kinematic model, travelling across an environment instrumented

with a sparse infrastructure of range sensors with non-overlapping ranges. There-

fore, the robot can take only one measurement at a time. Moreover, we con-

sider the robot to collect intermittent measurements, modelling discrete–time

behaviours of digital components, e.g. finite sampling frequencies. In this set-

ting, we show a particular type of manoeuvres that attain global constructibility.

These conditions require the robot to follow curved trajectories and to repeat

the same set of manoeuvres under the sensing range of the two anchors.

3.1 Problem Description

We consider discrete-time systems in the state space

qk+1 = f(qk, uk),

zk = h(qk)
(3.1)

where q ∈ Rn is the state, u ∈ Rm represents the control inputs and z ∈ Rp is

the output of the system, i.e. the sensor readings. Specifically, we will focus the

kinematic model of a unicycle-like vehicle, given in continuous time by:

ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇(t) = ω(t),

(3.2)
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3. A SUFFICIENT CONDITION FOR CONSTRUCTIBILITY

where x(t), y(t) represent the Cartesian coordinates of the vehicle, while θ(t)

denotes its heading with respect to a reference axis. We make the simplifying

assumptions that the control inputs v(t) and ω(t) be constant over every time

interval of fixed duration Ts, as if the system were controlled by a digital system

with a finite sampling frequency 1/Ts, i.e. v(t) = vk, ∀t ∈ [kTs, (k + 1)Ts
)
. By

exploiting this simplification, we can explicitly integrate the dynamics over the

sampling interval [kTs, (k + 1)Ts) to compute the state qk+1 = q
(
(k + 1)Ts

)
.

First, we compute the trajectory over time of the heading angle θ(t), which

xk+1 and yk+1 depend on. To this aim, we compute

θ(t) = θk +

∫ t

kTs

ω(s) ds = θk + ωk(t− kTs).

From this, we can compute the next position (xk+1, yk+1) of the vehicle as

xk+1 = xk+

∫ (k+1)Ts

kTs

v(s) cos(θ(s)) ds,

yk+1 = yk+

∫ (k+1)Ts

kTs

v(s) sin(θ(s)) ds.

By manipulating these expressions with trigonometric identities, with v(t) = vk

and ω(t) = ωk for t ∈ [kTs, (k + 1)Ts
)
, we get

xk+1 = xk +
vk
ωk

(sin(θk + ωkTs)− sin θk)

= xk + 2
vk
ωk

sin

(
ωk
Ts
2

)
cos

(
θk + ωk

Ts
2

)
,

and analogously

yk+1 = yk −
vk
ωk

(cos(θk + ωkTs)− cos θk)

= yk + 2
vk
ωk

sin

(
ωk
Ts
2

)
sin

(
θk + ωk

Ts
2

)
.

Therefore, in the rest of this thesis, we will consider the discrete–time counter-

part of the well–known continuous–time kinematic model (3.2), reading as

xk+1 = xk +AkCk,

yk+1 = yk +AkSk,

θk+1 = θk + ωkTs

(3.3)
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with

Ak =

 2
vk
ωk

sin

(
Ts
2
ωk

)
if ωk 6= 0,

vkTs otherwise,

Ck = cos

(
θk +

Ts
2
ωk

)
,

Sk = sin

(
θk +

Ts
2
ωk

)
,

where, in the adopted notation, the subscript k denotes the time t = kTs

for the continuous-time dynamics (for further details the reader is referred

to [Palopoli and Fontanelli, 2020]).

The measurement system consists of a set of ranging sensors (henceforth

called anchors) yielding their distance from the vehicle, so as the measurement

output zk is defined as

zk =

ρ1(xk, yk)

ρ2(xk, yk)

. . .

 =


√

(xk −X1)2 + (yk − Y1)2√
(xk −X2)2 + (yk − Y2)2

. . .

 , (3.4)

where ρ1 and ρ2 are the measurements collected from the first two anchors B1

and B2. We consider the case in which anchors have a bounded range, i.e. a

measurement is collected by anchor i only if its distance from the vehicle is

smaller than its sensing range ρmax
i .

A common problem arising in the control of dynamical systems is the es-

timation problem, i.e. the reconstruction of the state of the system based on

the measurement outputs and on the control inputs, usually performed by the

so-called estimation filters. If the purpose of the filter is to estimate the initial

state, it is required that the trajectories of the system satisfy the observability

property, i.e., the ability to reconstruct the initial state given an input/output

sequence. More recently, the problem of estimating the final state has taken

centre [Salaris et al., 2019]. In this case the key property to look at is con-

structibility, as defined below.

Definition 3.1.1 (Constructibility). Given system (3.1), constructibility is de-

fined as the ability to reconstruct the state qf of the system at time k = kf , given

the outputs zk, k = k0, . . . , kf and the control inputs uk, k = k0, . . . , kf − 1. In-

tuitively, constructibility consists in reconstructing the current state qk given the

past history of inputs and outputs.

Remark 3.1.2. Unlike linear systems, nonlinear systems are not structurally

constructible (or unconstructible), but the concept of constructibility is referred
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to the particular trajectory followed by the system itself.

Given the dynamical system (3.3)-(3.4), moving across an environment in-

strumented with two fixed–frame ranging sensors with bounded and non–over-

lapping sensing range, in this chapter we aim at providing a sufficient condition

on the set of manoeuvres executed by the vehicle that attain global constructibil-

ity.

3.2 Global constructibility analysis

Consider the unicycle model (3.3)-(3.4) moving in an environment equipped

with ranging anchors with limited sensing range, i.e., the measurement function

ρi(x, y) is defined in the region Ωi =
{

[x, y]>|ρi(x, y) ≤ ρmax
i

}
. For this particu-

lar nonlinear system, observability implies constructibility, since from the known

initial state q0, one may apply the known control inputs to the system and re-

construct the entire trajectory, including the final point qf , hence guaranteeing

constructibility.

Given this implication, we can use known results on observability for our

constructibility analysis. In our past work, we have shown some observability

results, gathered in the following theorem:

Theorem 3.2.1 ([Palopoli and Fontanelli, 2020]). Given the system (3.3)-(3.4),

and assuming that the p > 0 anchors have infinite range, i.e., Ωi = R2,

∀i = 1, . . . , p, then:

1. If p = 1, the system state is not globally constructible;

2. If either p = 2 or p ≥ 3 with collinear anchors, and if both ∃k such that

vk 6= 0, and ωk = 0, ∀ k (i.e., the robot follows a rectilinear trajectory),

the system state is not globally constructible;

3. If either p = 2 or p ≥ 3 with collinear anchors, and if ∃k such that vk 6= 0

and ωk 6= 0 (i.e., the robot follows a bending trajectory), the system state

is globally constructible;

4. If p ≥ 3 and the anchors are not collinear, and if ∃k such that vk 6= 0, the

system state is globally constructible.

We now aim to generalise this result to the case in which the p anchors

have finite range and that their sensing ranges are disjoint sets:
⋂p
i=1 Ωi = ∅.

Specifically, by defining as p̄k the number of anchors in view at time k, we want

to investigate the global constructibility property when p̄k = {0, 1}, ∀k, and
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there exists at least two time instants k′′i > k′i such that [xk, yk]> ∈ Ωi, ∀k ∈
[k′i, k

′′
i ], ∀i = 1, . . . , p. Considering disjoint sensing ranges has little practical

interest, but this simplifying assumption allows us to state the results that are

presented in the following.

Global constructibility for two anchors with finite range

Contrary to the analysis in our previous work, we do not make any claim here

of global constructibility for a generic trajectory. On the contrary, we seek

specific sequences of controls that allow us to reconstruct the final state in

the spirit of active sensing [Salaris et al., 2019]. Specifically, we look for the

simplest manoeuvres that allow us to reconstruct the state in the least favourable

conditions (i.e., collecting a minimal number of measurements from the minimal

number of anchors). To this end, we report the following theorems.

Theorem 3.2.2. Given the system (3.3)-(3.4), and considering an anchor i ∈
{1, . . . , p} and two time instants k′′′i > k′i such that [xk, yk]> ∈ Ωi, ∀k ∈ [k′i, k

′′′
i ],

the dimension of the unconstructible space reduces to 2 when k = k′i, i.e. as soon

as the first measure is retrieved by the anchor, while it decreases to 1 whenever

for two consecutive steps k?i , k
?
i + 1, such that k′i ≤ k?i < k′′′i − 1, ωk?i 6= −ωk?i+1,

i.e. the vehicle curves at least once within the sensing range of the anchor.

Proof. We divide this proof into two parts, to separately prove the two results.

1) As soon as the first measurement ρ′i is retrieved, the vehicle must lie on the

circle centred on the anchor with radius equal to the collected measurement

ρ′i. Therefore, its position is “constrained” on a unidimensional geometrical

variety, while its heading θ is not constrained by the measurement, and thus the

unconstructible subspace has dimension 2.

2) Similarly to the proofs in the previous chapter, we write the differences

ρ2
k′′′ − ρ2

k′′ and ρ2
k′′ − ρ2

k′ ,

thus obtaining the linear equations

M

[
xk′

yk′

]
= h, with detM = −Ak′Ak′′ sin

(
(ωk′ + ωk′′)

Ts
2

)
.

Hence, given θk′ , we can determine the initial position of the vehicle as soon as

it turns. However, with only one anchor we will never be able to determine the

initial heading of the vehicle ([Palopoli and Fontanelli, 2020, Thm. 1]).

From Theorem 3.2.2, we can draw two important conclusions. The first
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Figure 3.1: Sketch of the trajectory followed by the vehicle to attain global con-
structibility with two anchors.

(quite obvious) is that we need to collect measurements from at least 2 anchors

in order to have constructibility. The second is that by making at least one

bend across two measurements the vehicle generates information that can help

disambiguate its position. However, repeating this manoeuvre more than once

does not produce any benefit for constructibility. In view of these considerations,

we can restrict ourselves to a type of trajectory in which the vehicle makes

only one bend every time it comes in sight of each anchor. Let us assume

for simplicity’s sake, but without loss of generality, that the vehicle lies in the

sensing range of the i-th anchor only for the three consecutive steps k′i, k
′′
i and

k′′′i , and consider the following manoeuvres:

1. The robot moves with non-zero translational speed vk 6= 0, ∀k;

2. At steps k′1, k
′′
1 the vehicle moves with ωk′1 6= −ωk′′1 ;

3. Between steps k′′′1 and k′2 − 1 the robot moves with an arbitrary angular

velocity;

4. At step k′2, the robot comes within the range of anchor 2 and turns with

angular velocity ωk′2 = ωk′1 −
∑k′2−1

k=k′′′1
ωk and then with ωk′′2 = ωk′′1 , ωk′′′2

=

ωk′′′1
.

In other words, the robot turns for two steps, when it is within the range of

the first anchors; then it keeps track of the turns it makes before reaching the

second anchor.

As soon as the robot reaches the second anchor, it makes a turn to “undo”

all the previous manoeuvres, and then it executes the same turns in the range

of the second anchor that it made when it was in the range of the first anchor.

The trajectory followed by the vehicle is represented in Figure 3.1. Although

this manoeuvre is not the easiest from the robot side, it allows us to reconstruct

its state, as stated in the following:
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3. A SUFFICIENT CONDITION FOR CONSTRUCTIBILITY

Theorem 3.2.3. Consider the discrete-time unicycle (3.3) moving in the sce-

nario described above. If we apply the sequence of manoeuvres in the scenario

with ωk′1Ts 6= 2h1π and ωk′′1 Ts 6= 2h1π (with h1 ∈ N \ {0}) and (ωk′1 + ωk′′1 )Ts 6=
2h2π (with h2 ∈ N), then the system state is globally constructible.

Proof. By computing the differences

(ρ2
k′′′2
− ρ2

k′′2
)− (ρ2

k′′′1
− ρ2

k′′1
) and (ρ2

k′′2
− ρ2

k′2
)− (ρ2

k′′1
− ρ2

k′1
),

we obtain two linear equations

M

[
Ck′1
Sk′1

]
= h, with detM = −Ak′1Ak′′1D

2 sin
(
(ωk′1 − ωk′′1 )Ts2

)
,

and thus the trajectory becomes unconstructible when the two anchors coincide

(D = 0), when the vehicle does not turn (see Theorem 3.2.2), or when the vehicle

retrieves two consecutive measurements in the same position (Ak′1Ak′′1 = 0). The

latter may happen due to null velocity vk′ = 0, or when the vehicle travels along

an entire circle between the two time steps (sin(ωk′1
Ts
2 ) = 0), thus returning to

the same state qk′′ = qk′ .
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4. INDISTINGUISHABILITY FOR A NONHOLONOMIC VEHICLE

In Chapter 3 we have analysed a particular trajectory followed by a unicycle

vehicle in an environment equipped with two ranging sensors with bounded and

non–overlapping sensing ranges. We have shown that repeating the same curved

trajectory under the sensing ranges of the two anchors represents a sufficient

condition for the vehicle to reconstruct its state based only on range information,

but no results have been presented on necessary or other sufficient conditions.

In this chapter, we shift our focus from the synthesis of a particular trajec-

tory achieving constructibility to the analysis of more general trajectories for a

larger class of kinematic models. Therefore, we propose a global constructibility

analysis for a vehicle moving on a planar surface. Assuming that the vehicle

follows a trajectory that can be uniquely identified by the sequence of control

inputs and by some intermittent ranging measurements from known points in

the environment, we can model the trajectory as a rigid body subject to rotation

and translation in the plane. This way, the localisation problem can be reduced

to finding the conditions for the existence of a unique roto-translation of the

trajectory from a known reference frame to the world reference frame, given the

collected measurements. As discussed in this chapter, such conditions can be

expressed in terms of the shape of the trajectory, of the layout of the ranging

sensors, and of the numbers of measurements collected from each of them.

Contributions: The main part of the technical literature uses the Observ-

ability Matrix or the Observability Gramian as tools to quantify the observabil-

ity of a system. However, since these tools are based on the linearisation of the

dynamics of the system or of the output function associated with the measure-

ments collected by the sensors, they produce local results, which are associated

with the notion of weak observability. By definition, a weakly constructible (or a

weakly observable) system can reconstruct its state along its trajectory as long

as it is provided with some a priori information on its state at a certain time

instant, such as a sufficiently narrow set that includes the state itself. In light

of this consideration, we analyse the setting where no a priori information is

given, thus referring to “global observability/constructibility properties”. With

respect to the results presented in the last chapter, we abstract the dynamics

of the system by considering a finite number of points that can be regarded as

roto-translations of a given sequence of points in a known reference frame. With

this consideration, our aim is to extend the global constructibility analysis (more

formally the u-constructibility analysis) with intermittent measurements, and

provide both sufficient and necessary conditions to achieve global constructibil-

ity.
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4. INDISTINGUISHABILITY FOR A NONHOLONOMIC VEHICLE

4.1 Problem Description

Let us consider a generic continuous-time nonlinear system in its state space

representation

q̇(t) = f(q(t), u(t)), (4.1)

where q ∈ Rn is the state of the system, while u ∈ Rm denotes its control

inputs. We assume that the nonlinear system represents the dynamics of a

vehicle, moving on a planar surface, and thus a portion of the state vector q(t)

denotes the Cartesian position P (t) = [x(t), y(t)]> of the vehicle in a reference

frame 〈W 〉 on the plane Xw×Yw. We denote by 〈V 〉 a reference frame where the

initial conditions qV (0) of the vehicle are arbitrarily set to 0, i.e. the reference

frame is centred on the initial position of the vehicle. In 〈V 〉, the position

of the vehicle at time t is represented by PV (t) = [xV (t), yV (t)]> and can be

reconstructed by using the control input history u(s), s ∈ [0, t]. We will use

the following Property 4.1.1, which is directly derived from the definition of the

rotation matrix

Rφ =

[
cosφ − sinφ

sinφ cosφ

]
.

Property 4.1.1. Given the position of the vehicle PV (t), ∀t ∈ [t0, tf ], there

exists a unique triplet (∆x,∆y, φ) such that

P (t) = RφPV (t) +

[
∆x

∆y

]
, ∀t ∈ [t0, tf ].

From a geometric point of view, Property 1 states that the path followed

by the vehicle in any reference frame is a roto-translation of the path travelled

in its local reference frame, i.e. the vehicle can reconstruct the “shape” of its

own trajectory by dead reckoning. By Property 4.1.1, we may simplify the

dynamics (4.1) of the vehicle and consider the path followed by the vehicle as a

rigid body on the Xw × Yw plane.

The environment is instrumented with a set of sparsely deployed ranging

sensors, referred to as anchors. The i-th anchor is located at known coordinates

Bi = [Xi, Yi]
>, i = 1, . . . , p, and the vehicle collects the ranging measurement

‖Bi − P (t)‖.

Assumption 4.1.2 (Intermittent measurements). Moreover, we consider that

measurements are collected at known, but possibly not uniform, sampling in-

stants tk, with tk+1 > tk.

The output zk is given by the measurements collected by the anchors, i.e.,
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4. INDISTINGUISHABILITY FOR A NONHOLONOMIC VEHICLE

the output equation is the following:

zk = ‖Pk −Bik‖, (4.2)

where Pk = P (tk) is the position of the vehicle at time t = tk, while the index

ik ∈ {1, . . . , p} defines the anchor that the vehicle measures its distance from.

For the sake of clarity, the collected distance will be denoted by ρk,i when the

second index i is not clear from the context. Measurements are intermittent;

therefore at time tk, only one ranging measurement ρk,i is available. The case

when multiple measurements can be collected at once has been already solved

in [Palopoli and Fontanelli, 2020].

We assume full knowledge of the time instants tk when the measurements are

taken and of the input sequence u(s), s ∈ [0, tk], which allows us to reconstruct

the sequence of positions PV (tk) of the vehicle in 〈V 〉. Therefore, instead of

considering the entire paths P (t) and PV (t), we focus only on the locations

where the ranging measurements are collected:

Pk(∆x,∆y, φ) = RφPV (tk) +

[
∆x

∆y

]
,

for k = 0, . . . , Nm−1, with Nm being the total number of measurements. Given

two points Pl and Pm, we define by Sl,m the segment given by their convex

combination, with length given by ‖Sl,m‖. We can now restrict our study to an

abstract trajectory T of the vehicle, defined as the union of all the segments

connecting two consecutive positions Pk of the vehicle, thus

T =

Nm−1⋃
k=0

Sk,k+1, (4.3)

which can be regarded as a rigid body.

Remark 4.1.3. The abstract trajectory T does not coincide with the actual

trajectory P (t), but contains all the features that are needed in the following

discussion: the sequence of measurements, the distance and the total change in

the orientation between any two measurements.

In light of the definition of T , we want to find the conditions on the position

of the anchors in 〈W 〉 and on the trajectory T such that it is possible to find a

roto-translation such that the points Pk are compliant with the measurements

collected from the anchors. To this aim, we need to introduce the concepts

of constructibility and backward indistinguishability of the states of a nonlin-

ear system. For the sake of generality, in the following definitions, adapted

from [Bayat et al., 2015], we consider a plant with a continuous-time dynam-
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ics (4.1) and the general version of the discrete-time output equation (4.2), i.e.

q̇(t) = f(q(t), u(t)), zk = h(q(tk)). (4.4)

We consider the dynamical system to evolve between an initial time instant t0

(i.e. k = 0) and a final time tf , with k = kf . Given the hybrid nature of (4.4),

we will use both k and t to denote the time, with the implicit assumption that

by the time instant k we refer to time tk.

We deal with the notion of constructibility, defined as the ability to re-

construct the state qf of the system at the final time instant tf . Intuitively,

constructibility amounts to reconstructing the current state qk given the past

history of inputs and outputs. In view of Property 4.1.1, the problem of es-

timating the final state is equivalent to estimating the initial state q0, which

is the well-known concept of observability. However, the performance of an

estimation filter, i.e. the uncertainty related to the state estimate based on

the previous history of motions and measurements, is not directly associated

with the concept of observability, but rather to the notion of constructibility

(for further details, the reader is referred to [Salaris et al., 2019]). To analyse

formally the concept of constructibility, both from a local and from a global

perspective, we introduce the definition of backward indistinguishability, instead

of the notion of indistinguishability considered for more common observability

analyses [Bayat et al., 2015].

Definition 4.1.4. Given the dynamical system (4.4), a time interval T =

[t0, tf ], and an admissible control input function u?(t), t ∈ T , two final states

qf and q̄f are said u?–backward indistinguishable on T , if for the input

u?(t), t ∈ T , the output sequences zk and z̄k, k = 0, . . . , kf of the trajectories

satisfying the final conditions qf , q̄f , are identical. Moreover, we define Iu?(b)(qf )

as the set of all the final conditions that are u?–backward indistinguishable from

qf on T .

Since we assume full knowledge of the control input, the shape of the trajec-

tory T is known in its turn. Hence, we will focus on the concept of u-backward

indistinguishability. With a slight abuse of definition, we will refer to indistin-

guishable trajectories as trajectories generated by a known control input and by

two u–backward indistinguishable final conditions.

Assumption 4.1.5. We assume that system (4.4) with the continuous–time

position P (t) as output is constructible, i.e. we can reconstruct its final state

qf given the history of inputs and outputs over a given time interval.

Remark 4.1.6. Assumption 4.1.5 holds true for nonholonomic systems mod-

elled through kinematic models (e.g. unicycle–like vehicles and car–trailer vehi-
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cles). Moreover, vehicles represented by dynamical models meet this assumption

as soon as they can rely on additional sensors measuring at least their velocities.

We can now link the notion of constructibility to the existence of a roto-

translation that, when applied to T , produces a set of points compliant with

the measurements.

Lemma 4.1.7. The system is u?-constructible if there exists a unique roto-

translation (∆x,∆y, φ) of T generated by u? such that

‖Pk(∆x,∆y, φ)−Bi‖ = ρk,i,

for each i such that the measurement is available at time k, and for k =

0, . . . , kf .

Proof. The proof directly follows from Property 4.1.1 and from Assumption 4.1.5.

Remark 4.1.8. By Assumption 4.1.5, as soon as a roto-translation is found,

we can reconstruct the entire trajectory followed by the vehicle and thus retrieve

both the initial condition q(t0) and the final condition q(tf ). Therefore, the

system is observable if and only if it is constructible.

For the sake of simplicity, we introduce here a new definition to link the

number of indistinguishable trajectories to the constructibility properties of the

system.

Definition 4.1.9. Given a trajectory T , if there exist n roto-translations of T
that are indistinguishable from T itself, we say that T is Ind(n).

Since a trajectory T is always indistinguishable from itself, it is impossible

to have Ind(0). On the other hand, a system is constructible if and only if it is

Ind(1). Moreover, in light of Definition 4.1.9, a system is unconstructible when

T is Ind(∞), i.e. when there is an infinite set of roto-translations from 〈V 〉 to

〈W 〉 satisfying (4.2).

Problem Statement

Given a dynamical system such that Property 4.1.1 holds, and the sequence of

positions PV (tk), k = 0, . . . , kf , in the vehicle reference frame, we want to find

the conditions on T , on the layout of the sensors Bi = [Xi, Yi]
>, i = 1, . . . , p, in

〈W 〉, and on the distribution of the measurements among the sensors, such that
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the system is u-constructible at the final condition qf . In light of the discussion

above, these problems boil down to find whether the equations

‖Pk(∆x,∆y, φ)−Bi‖ = ρk,i, ∀k

have a unique solution in the unknowns ∆x,∆y, φ, where the roto-translation

of T from 〈V 〉 to 〈W 〉 is modelled by the translation vector [∆x; ∆y]> and by

the rotation angle φ.

4.2 Global constructibility with a single anchor

We consider the trajectory T defined in (4.3), and discuss how the readings

of a single anchor change depending on roto-translations of T . In our past

work [Palopoli and Fontanelli, 2020, Thm. 1], we have restricted our analysis

to a unicycle-like vehicle, and we have proved that a single anchor collecting

range measurements can never ensure observability of the system state. In

simple terms, by Remark 4.1.8, we have proved that u-constructibility as in

Definition 4.1.4 can never be achieved with a single anchor. We now want to

reformulate this result in terms of the trajectory T and generalise the analysis

of the non-constructible subspaces of the system, depending on the number and

on the layout of the measurement points sensed by the anchor.

Without loss of generality, we will consider one anchor located at the origin

of the reference frame 〈W 〉, i.e. B = [0, 0]>, and we will focus on the first three

points P0, P1 and P2 of T , where the measurements occur.

Theorem 4.2.1. Given a vehicle for which Property 4.1.1 holds, its trajectory

T and the set of measurements ρk, k = 0, . . . , Nm− 1, collected from an anchor

B, a trajectory T is u-indistinguishable from T if:

1. For any Nm, T is a rotation of T about the anchor;

2. For Nm = 1 (or Nm > 1 coincident points Pk), T is a rotation of T about

the unique measurement point P0;

3. For Nm = 2 (or Nm > 2 with collinear points Pk), T is symmetric to T
with respect to an axis passing through the anchor.

Proof. By geometric arguments, any rotation of the trajectory about the anchor

does not change the sensor readings, and thus the system sensed with a single

anchor is always (at least) Ind(∞). We now analyse scenarios with increasing

number of measurements collected by the anchor.
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One measurement With one measurement, we identify a point P0 that is

sensed by the anchor, thus constraining the possible roto-translations of T that

satisfy the sensor readings. The measurement point is compliant with the sen-

sor reading only for a position P0 = [ρ0 cosφ, ρ0 sinφ]>, for any φ ∈ [0, 2π).

Therefore, the trajectory is compliant with the measurement for any rotation

of the trajectory about the anchor plus any rotation about P0, i.e. the system

is Ind(∞×∞), unless ρ0 = 0, i.e. P0 coincides with the anchor.

Two measurements By taking the second measurement in position P1, pro-

vided that the two measurements are not taken in the same point (otherwise

the previous case straightforwardly applies), we are adding a constraint on the

position and orientation of the trajectory. Indeed, with P0 = Rφ[ρ0; 0]> and

P1 = Rβ [ρ1; 0]>, and ‖P1 − P0‖ = ‖S0,1‖, we get an explicit expression of β,

which reads as

β = φ± arccos

(
ρ2

1 − ‖S0,1‖2 − ρ2
0

2ρ0‖S0,1‖

)
, φ± δ. (4.5)

This result shows that, for any rotation φ about the anchor, there are two

different points P(a)
1 and P(b)

1 , that are compliant with the manoeuvres executed

by the vehicle (i.e. ‖S0,1‖) and the measurements collected by the anchor (i.e.

ρ0 and ρ1), hence this setting leads to a Ind(2×∞) system.

The geometric interpretation of (4.5) is a reflection about an axis passing

through the anchor B. Indeed, any point of a circle reflected about an axis

passing through its centre lies on the circle itself. Moreover, the geometry of

the trajectory, which is uniquely identified by the distance ‖S0,1‖, is preserved.

Three measurements Let us consider the setting with two measurements

presented previously. For each of the two values of β, we can compute explic-

itly the position of the third measurement point P(a)
2 and P(b)

2 , represented in

Figure 4.4.

P(a)
2 =

[
ρ0 + ‖S0,1‖ cos(δ) + ‖S1,2‖ cos(δ + µ0,1)

‖S0,1‖ sin(δ) + ‖S1,2‖ sin(δ + µ0,1)

]
,

P(b)
2 =

[
ρ0 + ‖S0,1‖ cos(−δ) + ‖S1,2‖ cos(−δ + µ0,1)

‖S0,1‖ sin(−δ) + ‖S1,2‖ sin(−δ + µ0,1)

]
,

(4.6)

where µ0,1 is the angle between the segments S0,1 and S1,2. For simplicity, but

without loss of generality, we have assumed φ = 0 in (4.5). Computing the

differences of the distances of P(a)
2 and P(b)

2 from the origin, we have

‖P(b)
2 ‖2 − ‖P

(a)
2 ‖2 = 4ρ0‖S1,2‖ sinµ0,1 sin δ.
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We then conclude that the two distances are equal only when µ0,1 = hπ, h ∈ Z,

i.e. when P0, P1 and P2 are collinear, or when δ = hπ, h ∈ Z, i.e. the situation

described in Remark 4.2.2 occurs, hence P(a)
2 and P(b)

2 coincide. Therefore, only

trajectories rotated around the anchor are indistinguishable, hence the problem

is Ind(∞).

Remark 4.2.2. In the particular case when ρ1 = ρ0 ± ‖S0,1‖, i.e. the vehicle

moves on the diameter of the circle centred on the anchor, we get cos δ = ±1, i.e.

a unique feasible value for β in (4.5), hence avoiding the ambiguity associated

with the rotation about P0, i.e. Ind(1×∞) = Ind(∞).

With three non–collinear measurement points, we reach the maximum amount

of information that can be collected by a single anchor, and thus we conclude

that any further measurement beyond the third is no more informative (unless

all the preceding measurement points are collinear). Therefore, with the analy-

sis of 1, 2 and 3 measurements, we have exhaustively addressed the analysis of

a single anchor, whose results depend both on the number of collected measure-

ments and on their layout on the plane. In light of the results in Theorem 4.2.1,

we can define the three equivalence classes C1, C2, and C3, by introducing the

following notation.

Notation. By a set C1 of measurements, we denote any number of measure-

ments collected by the same anchor in the same position P on the plane, pro-

vided that P does not coincide with the anchor;

By a set C2 of measurements, we denote any number of collinear measurements,

not lying on the anchor, collected by the same anchor;

By a set C3 of measurements, we denote any number of measurements col-

lected by an anchor, not falling in one of the two cases above, i.e. distinct and

non-collinear measurement points or with a point coinciding with the anchor.

4.3 Global constructibility with more anchors

In this section, we will leverage the results found for a single anchor to extend

the analysis of indistinguishable trajectories to the case of multiple anchors. In

light of Lemma 4.1.7, the localisation problem can be solved, i.e. the state of

the system can be determined, if and only if T is Ind(1).

4.3.1 Pathological conditions

While our primary interest is to analyse positive and negative results for con-

structibility in the cases in which the available information is minimal (i.e., small
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η
η

2η

P0

P1 P2

P3 P4P0
P1

P2

P3
P4

B1 B2

Figure 4.1: Example 4.1. The same trajectory T rotated about the pivot anchor B1.
When P3, P4 and B1 are collinear, we always have two roto-translations of T that are
compliant with the measurements.

number of anchors), it is useful to discuss some negative constructibility results

that apply to an arbitrarily large number of anchors and of measurements. This

is done in the following examples.

Example 4.1 (Rotation). Consider the scenario shown in Figure 4.1. An an-

chor B1 is used to collect a set {P0,P1,P2} of C3 measurements. Consider an

additional set {P3,P4} of C2 measurements from a second anchor B2 such that

P3 and P4 are aligned with B1; let η be the angle between S3,4 and the line B1,2

joining the two anchors. If we rotate the whole set T by 2η about B1 neither

the new readings for {P0,P1,P2} will be affected (Theorem 4.2.1), nor the new

readings for {P3,P4} because of the axial symmetry around B1,2. Hence, the

blue and red trajectories in Figure 4.1 are indistinguishable. ?

Example 4.2 (Translation). Consider the scenario in Figure 4.2. We collect

a set {P0,P1} of C2 measurements from anchor B1. Let ∆ be the distance

between B1 and segment S0,1. By translating the trajectory T by 2∆ in the

direction orthogonal to S0,1, we achieve an axial symmetry, which by Theo-

rem 4.2.1 makes the translated measurements for {P0,P1} indistinguishable

from the previous ones. Consider an additional set {P2,P3} of C2 measure-

ments from an anchor B2 such that S2,3 is parallel to S0,1, and its distance from

B2 is ∆. By construction, the translation of the trajectory by 2∆ generates an

axial symmetry on both the anchors. Therefore, the blue and red trajectories

in Figure 4.2 are indistinguishable. ?

Remark 4.3.1. We have presented two examples where each anchor collects a

set of at least C2 of measurements. If one or more anchors collect a set C1

of measurements, the condition for indistinguishability simplifies: S3,4 should
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∆
∆

∆
∆

S0,1

S4,5

S4,5

S0,1

B1

B3

∆
∆

S2,3

S2,3

B2

Figure 4.2: Example 4.2. The same trajectory T translated by 2∆ orthogonally to
S0,1. When S0,1, S2,3 and S4,5 are parallel and have the same distance ∆ from the
anchor collecting the measurements, we always have two translations of T that are
compliant with the measurements.

not be necessarily aligned with B1 for Example 4.1; likewise S2,3 should not be

necessarily parallel to S0,1 for Example 4.2.

The same construction discussed in the previous examples can be iterated

for an arbitrary number of anchors, which leads us to the following statement.

Fact 4.3.2. Given p anchors Bi = [Xi, Yi]
>, 1, . . . , p, deployed on a plane, there

always exists at least one abstract trajectory T for which it is possible to find

indistinguishable trajectories.

This fact is the first main result of this chapter: given any configuration of

anchors, there is not a sufficiently high number of measurements and/or anchors

such that the system is always constructible. Luckily, this negative result is

limited to specific pathological trajectories. As discussed next, in the general

case it is possible to overcome this problem.

4.3.2 Conditions for unconstructibility

After discussion some pathological abstract trajectories, which remain indistin-

guishable no matter the number of anchors and measurements taken, we can

now shift our focus to the analysis of generic trajectories collecting a small

number of measurements from the anchors to determine the conditions for un-

constructibility. We will henceforth adopt a special notation to list the number

of measurements collected by each anchor: we will use numbers separated by a

“+” sign, e.g. 3 + 1 denotes a C3 set of measurements collected from the first

anchor and a set of C1 measurements from the second. Our main results on
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necessary and sufficient conditions for indistinguishability will be constructed

analysing this property for an increasing number of measurements.

1 + 1 scenario:

When two anchors are used to collect one measurement each, a single roto-

translation from 〈V 〉 to the world frame 〈W 〉 is impossible to construct, which

clearly leads to unconstructibility. More precisely, given the two measured points

P(0)
0 and P(0)

1 , we can always construct an indistinguishable trajectory as follows.

First, we rotate T about B1 of any angle φ ∈ [0, 2π) (as in the analysis of the

single anchor). Assuming that P(0)
0 has coordinates [ρ0, 0], its rotated version

P0 will have coordinates P0 = [ρ0 cosφ; ρ0 sinφ]>, and be indistinguishable from

P(0)
0 . In order for the rotated point P1 to be indistinguishable from P(0)

1 it is

sufficient that it lies the intersection between the circle centred on P0 of radius

‖S0,1‖ and the circle centred on B2 of radius ρ1. Therefore, by assuming that

B1 = [0; 0]>, we can find two possible indistinguishable points

P(a),(b)
1 = Rψ

[
‖S0,1‖

0

]
+Rφ

[
ρ0

0

]
,

where the angle ψ can take one of the following two values (one for each inter-

section between the two aforementioned circles):

ψ = φ+ arctan2 (D sinφ, ρ0 −D cosφ)± arccos

(
ρ2

1 − ‖S0,1‖2 − d2

2‖S0,1‖d

)
, (4.7)

where d2 = D2 + ρ2
0 − 2Dρ0 cosφ is the (unknown) distance between P0 and

B2, while D = ‖B1,2‖ is the distance between the two anchors. Notice that

the value of β in (4.5) is a particular case of this value of ψ, when the two

anchors coincide, i.e. when D = 0. To summarise, this setting generally leads to

Ind(2×∞) trajectories. For some particular values of φ, the two circles become

tangent and the two points P1 coincide. Moreover, since two pairs of points

are involved in this analysis (two anchors and two measurement points), the

trajectories symmetric with respect to B1,2 are indistinguishable. As a summary

we can state the following:

Case 4.3.3. In the 1 + 1 case, generic trajectories are Ind(2×∞) (hence,

indistinguishable). In the degenerate case when S0,1 ⊂ B1,2, the trajectory is

Ind(1).
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P0 P (b)
1

P (b)
2

P (a)
2

P (a)
1

B1 B2

B3

Figure 4.3: Locus where the third measurement point P2 can lie after the first two
measurements ρ0 and ρ1 (dashed lines) are collected from the first two anchors. The
blue and red colours are associated with the two intersections between the aforemen-
tioned circles. The solid green circle represents the third measurement ρ2 collected by
B3 in a 1 + 1 + 1 setting. After ρ2, the blue and the red trajectories are no more indis-
tinguishable (P(b)

2 does not lie on the green circle), but there are still 6 intersections
of the locus with the green circle, and thus T is Ind(6).

1 + 1 + 1 scenario:

We can search for indistinguishable trajectories following the same line of argu-

ments as in the paragraphs above. We start from a trajectory T characterised

by three points P(0)
0 ,P(0)

1 ,P(0)
2 , associated with the measurements ρ0, ρ1 and

ρ2. As we did for the 1 + 1 case, we rotate the whole trajectory about B1 of

an angle φ and come up with two potential points P(a)
1 ,P(b)

1 , which lie on the

intersection between a circle centred on B2 of radius ρ1 and a circle centred

onto P0 of radius S0,1 (see (4.7)). The two points P(a)
1 ,P(b)

1 uniquely determine

the third potential measurements P(a)
2 ,P(b)

2 . By changing the rotation angle

φ, the points P(a)
2 ,P(b)

2 generate the locus shown in Figure 4.3. The locus is

parametrised by the first angle φ (and thus its dimension is 1), that it is defined

only when
∣∣‖S0,1‖−d

∣∣ < ρ1 < ‖S0,1‖+d, and that it is continuous and differen-

tiable on its domain. We have indistinguishability whenever the locus intersects

the circle centred on B3 of radius ρ2 in more than one point, i.e. when P(a)
2 and

P(b)
2 have the same sensor readings.

As a consequence, the indistinguishable third point P2 has at most 8 different

locations. Indeed, by defining C = cosφ and S = sinφ, we take the differences
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ρ2
2− ρ2

0 and ρ2
1− ρ2

0 and obtain linear equations in the unknowns C and S, thus

yielding a unique solution (C̄, S̄). Then we impose the constraints{
C̄2 + S̄2 = 1

x2
0 + y2

0 = ρ2
0

,

being polynomials with degree 4 and 2 in the unknowns x0 and y0, respectively.

By Bézout’s theorem, the maximum number of real solutions (x0, y0) to this set

of equations is the product between the degrees of the two polynomials, i.e. 8.

Finally, also for the 1+1+1 case, we can have a degenerate case, as detailed

next.

Case 4.3.4. In the 1 + 1 + 1 case, generic trajectories are Ind(n̄), n̄ ≤ 8, and

thus indistinguishable. In the degenerate case when the locus is tangent to the

circle centred on B3 of radius ρ2 in one point, the trajectory T is Ind(1).

2 + 1 scenario:

We address the case 2 + 1 following the same procedure as in the previous case.

From (4.6) we can compute the distances d
(a)
2 and d

(b)
2 of the points P(a)

2 and P(b)
2

from B1, and the locus in Figure 4.3 degenerates to two circles centred on B1.

Each of the two circles has two intersections as long as d < ‖P?2 −B1‖ < d holds

true, where d = |D− ρ2| and d = D+ ρ2, and P?2 denotes any of the two points

P(a)
2 and P(b)

2 . Hence, there are at most four indistinguishable trajectories.

This particular condition allows us to compute the number of indistinguishable

trajectories. Moreover, we can introduce a degenerate case for this setting.

Case 4.3.5. The 2 + 1 setting is a particular case of the 1 + 1 + 1 setting, since

the locus in Figure 4.3 is a pair of circles centred on the first anchor. Generic

trajectories are Ind(4), while in the degenerate cases when min{d(a)
2 , d

(b)
2 } =

‖B2 −B1‖ − ρ2 or max{d(a)
2 , d

(b)
2 } = ‖B2 −B1‖+ ρ2, the circles are tangent in

a point lying on B1,2, and the trajectory is Ind(1).

3 + 1 scenario:

With the same rationale as in the previous sections, we can reconstruct the

distance d3 between P3 and B1. Therefore, P3 lies on the intersection between

the circle centred on B1 of radius d3 and the circle centred on B2 of radius ρ3,

thus yielding two intersections. We can identify the following degenerate case.

Case 4.3.6. In the 3+1 case, generic trajectories are Ind(2). When d3 = D±ρ3,

the two circles are tangent in a point lying on the line connecting B1 and B2.
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In this degenerate case, the two intersections, i.e. the two indistinguishable

trajectories, collapse on each other, thus achieving Ind(1).

With the definition of these four degenerate cases, keeping in mind that the

role of the two anchors can be switched (i.e., 3 + 1 is equivalent to 1 + 3), and

considering that any number Nm of measurements can be at most a C3 set of

measurements, we can now state the following theorem.

Theorem 4.3.7. Given a trajectory T with Nm measurement points, the system

is unconstructible when two anchors collecting Nm − 1 and 1 measurement,

respectively, are involved, or when Nm ≤ 3, unless at least one among the

degenerate cases in Case 4.3.3, 4.3.4, 4.3.5 and 4.3.6 occurs.

We have shown a set of settings where constructibility is never achieved, or

it is achieved only for some particular shapes of T and layouts of the anchors.

These setting are summarised in red in Figure 4.5.

4.3.3 Conditions for constructibility

We now consider all the other cases and search for constructibility conditions,

keeping in mind that trajectory indistinguishability may arise when pathological

trajectories are selected, as stated in Section 4.3.1.

2 + 2 scenario:

For this analysis, we will define a new reference frame, which will simplify the

forthcoming discussion. To this aim, we consider Equation (4.6), with φ = 0.

This way, we know the position of the first anchor B1, lying on the origin,

and of the two trajectories T (a) and T (b), as shown in Figure 4.4. In this

particular reference frame, the 4 indistinguishable trajectories arising in the

setting 2+1 correspond to 4 positions of the second anchor B2. For each pair of

indistinguishable trajectories, we want to analyse how a further measurement

collected by the second anchor preserves or solves the ambiguity. At first, we

notice that ambiguities may arise between two trajectories rotated both about

B1 and about P0, i.e. T (a) and T (b), or between two trajectories only rotated

about the anchor B1, i.e. T1 and T2, and thus the analysis will be divided into

two parts, one for each pair of trajectories.

Rotation about anchor: Given the two measurement points P2 = [x2, y2]>

and P3 = [x3, y3]> about B2, we want to find the position of the anchor B2 sat-
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µ0,1

µ0,1
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(a)
2

B1

ρ2

ρ2

D

P0

P(a)
1

P(a)
2

P(b)
1

P(b)
2

Figure 4.4: New reference frame showing the setting 2 + 1. The blue and red lines
represent the two trajectories T (a), T (b). Each of them has a circle centred on their last
point P2, hence yielding an overall number of 4 intersections (i.e. possible positions
of B2) with the circle centred on B1 of radius D.

isfying the following equations:
X2

2 + Y 2
2 =D2,

(X2 − x2)2 + (Y2 − y2)2 = ρ2
2,

(X2 − x3)2 + (Y2 − y3)2 = ρ2
3.

(4.8)

To this end, we take the difference of the last two equations with respect to the

first and get to these linear equations in the unknowns X2, Y2

MB2 =

[
x2 y2

x3 y3

][
X2

Y2

]
=

1

2

[
D2 − ρ2

2 + x2
2 + y2

2

D2 − ρ2
3 + x2

3 + y2
3

]
. (4.9)

To find a unique solution for B2, we need a nonsingular matrix M , whose

determinant is

detM = x3y2 − x2y3. (4.10)

Therefore, B2 has a unique solution, i.e. there exists no pair of indistinguishable

trajectories rotated about the first anchor, if B1, P2 and P3 are not aligned.

Hence, to guarantee Ind(1), P3 cannot lie on the two lines joining B1 and P(a)
2 ,

and joining B1 and P(b)
2 , which are available in the reference frame 〈V 〉. From a

geometric point of view, we may reformulate the problem as finding the position

of B2 by using three ranging measurements. Indeed, by using trilateration this

problem has a unique solution if the three ranging measurement points are

non-collinear. This result is perfectly in line with the scenario proposed in

Example 4.1 and with the results in Proposition 2.2.1 in Chapter 2.
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Rotation about anchor and initial point: Given two points P(a)
2 , P(a)

3 ,

we can derive P(b)
2 , P(b)

3 as

P(b)
? = Rζ(P(a)

? − P0) + P0,

where ζ = −2δ and δ defined in (4.5), and the subscript ? is either 2 or 3.

With these two pairs, we want to find the positions of two anchors B
(a)
2 , B

(b)
2

satisfying the set of equations (4.9), for both T (a) and T (b). With the same

rationale followed previously, we take the differences

‖P(a)
2 −B(a)

2 ‖2 − ‖B
(a)
2 ‖2 = ‖P(b)

2 −B(b)
2 ‖2 − ‖B

(b)
2 ‖2

‖P(a)
3 −B(a)

2 ‖2 − ‖B
(a)
2 ‖2 = ‖P(b)

3 −B(b)
2 ‖2 − ‖B

(b)
2 ‖2

(4.11)

As in the previous case, we get to two linear equations reading as

M

[
X

(a)
2

Y
(a)
2

]
= h,

with the same M as in (4.10). In light of this result, given one of the two

feasible B
(b)
2 obtained in the case 2 + 1, we find a unique anchor B

(a)
2 satisfying

the differences of the distances, as far as P(a)
2 , P(a)

3 and B1 are not aligned, as

before. Since D is the distance from B1 to B2 and B1 is in the origin of the

reference frame, we now add the constraint ‖B2‖ = D, i.e. ‖B(a)
2 ‖−‖B

(b)
2 ‖ = 0,

with B
(a)
2 obtained as the unique solution of (4.11). Therefore, we have a

quadratic equation in the coordinates of P(a)
3 in the form

[
x3 y3 1

]
Q

x3

y3

1

 = 0,

where the matrix of the quadratic equation Q, representing a conic section, is

Q =

[
S b

b> c

]
,

where S ∈ R2×2, b ∈ R2 and c ∈ R, and where its invariants characterise

the conic. In particular, the centre of the conic is O = −S−1b = P(a)
2 , while

detQ = 0, and thus this is a degenerate conic with centre P(a)
2 . To identify its

shape, we analyse the determinant of the submatrix S, that yields

detS = −ρ2
0(X

(b)
2 −X (b)

2 )2(‖P(a)
2 ‖2 − d

2)(d
2 − ‖P(a)

2 ‖2),
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where X (b)
2 = X

(b)
2 cos ζ − ρ0(cos ζ − 1) + Y

(b)
2 sin ζ is the x coordinate of the

point obtained by rotating B
(b)
2 about P0 by −ζ. The condition d < ‖P2‖ < d

guarantees that the product of the last two terms is always positive, while the

intermediate term is always nonpositive, and it is 0 when the points P0, P(b)
1

and B
(b)
2 are collinear. This situation is the mirrored version of the situation

analysed above, where the two measurement points collected from B2 and B1

were aligned, and thus there exists no points P(a)
3 that can recover Ind(1), as

in Example 4.1. In fact, matrix Q is in this case the 0 matrix, i.e. a conic

describing the whole Xw × Yw motion plane. When this unfortunate situation

does not occur, the determinant is negative, hence the conic described by Q is

a degenerate hyperbole, i.e. two lines intersecting in P(a)
2 and thus, for each of

the two positions B
(b)
2 arising from the setting 2 + 1, we find two critical lines.

In conclusion, we have two critical directions for P(a)
3 arising from the first

situation and four from the second, and thus there exists 6 lines in 〈V 〉, inter-

secting in P(a)
2 , where P(a)

3 should not lie onto to ensure that the trajectory is

Ind(1). The number of critical direction may be geometrically interpreted as

follows: in the 2 + 1 scenario there are 4 indistinguishable trajectories, and for

each of the 6 pairs there is a critical direction that preserves ambiguity among

the two.

2 + 1 + 1 scenario:

With respect to the previous case, we here collect the same number of mea-

surements, but we distribute them among 3 anchors. One can follow the same

procedure as before, obtaining more convoluted expressions leading to the same

result with a more complex geometrical interpretation. However, as in the pre-

vious case, we can conclude that, in the reference frame 〈V 〉 there are at most

6 lines where P3 should not lie onto to achieve a Ind(1) problem. Indeed, given

the (at most) four indistinguishable trajectories arising in the setting 2 + 1, we

can find the four possible positions of the third anchor in 〈V 〉. We can com-

pute the distances between a given fourth position PV,3 and each of the four

“virtual” anchors B
(i)
V,3, i = 1, . . . , 4. Two among these distances coincide, i.e.

‖B(i)
V,3 − PV,3‖ = ‖B(j)

V,3 − PV,3‖, i 6= j, if and only if PV,3 lies on the axis of the

segment having as vertexes a pair of the “virtual” anchors themselves. If PV,3
lies on one of these 6 critical lines, then the system is Ind(2), while when PV,3
does not lie on any of these lines, T is Ind(1).
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3 + 2 scenario:

The analysis carried out in this section is a particular case of the setting 2 + 2.

Indeed, by collecting C3 measurements from the first anchor, we can discard

one of the two indistinguishable trajectories T (a) and T (b). Therefore, indistin-

guishability can be obtained only by rotation about the first anchor, coming up

with a set of equations as in (4.8), with the proper modifications on the sub-

script to account for the additional point sensed by the first anchor. We get to

the same conclusion as in (4.10), i.e. that the trajectories are indistinguishable

only if B1, P3 and P4 are aligned.

3 + 1 + 1 scenario:

With the same rationale as in the analysis of the 3 + 2 setting based on the

2 + 2 scenario, we can adapt here the analysis of the setting 2 + 1 + 1. After

the first 4 measurements (3 + 1), there exist two indistinguishable trajectories

and thus, in the reference frame 〈V 〉, there is a line (obtained with the same

procedure presented in the setting 2 + 1 + 1) where P4 should not lie to solve

this ambiguity.

1 + 1 + 1 + 1 scenario:

As discussed in the analysis of the setting 1 + 1 + 1, after three measurements,

there is a finite number n < 8 of indistinguishable trajectories. As in the

previous cases, for each of the (at most) 28 pairs there is a line where P3 should

not lie to achieve a Ind(1) trajectory. Moreover, these lines are known in 〈V 〉,
and thus the vehicle can plan its last manoeuvre in order to avoid such lines

and reach Ind(1).

With these findings, we can state the following theorem.

Theorem 4.3.8. Given a trajectory T and Nm measurement points, the sys-

tem is constructible when Nm ≥ 4 and each anchor collects at most Nm − 2

measurements, unless the last point of T lies on one of the indistinguishability

line identified in the analysis.

Using the necessary and sufficient conditions to attain constructibility iden-

tified previously, the final taxonomy of Figure 4.5 can be derived, where the

area highlighted in red subsumes the results of Theorem 4.3.7, while the part

highlighted in green is referred to Theorem 4.3.8.
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Figure 4.5: Summarising picture subsuming the taxonomy derived in this chapter
as a function of the overall number of measurements and of their distribution among
the different anchors. The number in brackets denotes the number of indistinguish-
able trajectories. The red part is referred to Theorem 4.3.7, while the green part is
associated with the results obtained in Theorem 4.3.8.

Remark 4.3.9. Apparently, there is a duality between the conditions for con-

structibility in Theorem 4.3.7 and 4.3.8. However, from a practical view point,

in the latter case, the vehicle can compute numerically in 〈V 〉 the “critical”

lines before collecting the last measurement, plan its last manoeuvre to avoid

such lines and achieve Ind(1). On the other hand, in the former scenario, the

vehicle is not able to plan its trajectory to fall into the degenerate cases 4.3.3,

4.3.4, 4.3.5, 4.3.6, since they are detected once all the measurements are col-

lected.

Remark 4.3.10. We now reverse the perspective, by considering the problem

of mapping, the dual problem with respect to localisation. In this case, we want

to find the position of the anchors Bi = [Xi;Yi]
> in the reference frame 〈V 〉,

where the trajectory T of the vehicle is known. Although the two problems are

dual, there are remarkable differences in the analysis. Indeed, in the localisation

problem, we have used both the shape of the trajectory T and the layout of the

anchors Bi, while here we have no information on the layout of the anchors

on the plane. Thus, the overall mapping problem boils down to an indepen-

dent mapping problem for each anchor, which leads to the classic trilateration

problem [Palopoli and Fontanelli, 2020].
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4.4 Discussion

In Part I, we have focused our analysis on the global constructibility properties

of the system, starting from Chapter 2 where we have shown that extending

trilateration techniques to a dynamical system is not trivial.

In the next part, we will focus our attention on local properties, i.e. we

consider that the vehicle is provided with some a priori information on its state,

e.g. a sufficiently narrow set that the state of the vehicle belongs to at a given

time instant, or a region of the plane (e.g. a room) where the vehicle cannot lie.

We will show that some results are inherited from this part, while some others

show a counterintuitive behaviour, where local (formally weak) constructibility

is not achieved while the global property holds.
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5. WEAK CONSTRUCTIBILITY ANALYSIS

In Part I we have analysed the problem of global constructibility, i.e. the problem

of reconstructing the state of a vehicle when no prior information is available.

In Part II, starting with this chapter, we analyse the problem from a local per-

spective by means of the Constructibility Gramian. We will show that the two

problems are related, but not trivially and, for example, the natural intuition

that any condition sufficient for the global property is sufficient also for local

constructibility fails. As in Chapter 4, in this chapter we focus on the conditions

on the shape of the trajectory and on the history of ranging measurements col-

lected by the vehicle, which make the Constructibility Gramian have full rank.

Such conditions can be expressed in terms of the shape of the trajectory, of the

layout of the ranging sensors, and of the numbers of measurements collected

from each of them.

Contributions: An assumption underlying the design of suitable estima-

tion filters, which have been developed in the technical literature described

above, is the local (more precisely weak) constructibility. Indeed, when the sys-

tem is not constructible, there exist no estimation algorithm that can reconstruct

the pose of the vehicle. On the other hand, active sensing planning techniques

avoid unconstructibility by design, since, while optimising some chosen matrix

metric (a suitable norm of Observability Matrix, Gramians or Fisher Informa-

tion Matrix), they also make the chosen matrix non–singular [Salaris et al., 2019].

In this chapter, as a particular case of the scenario described in the previous

chapter, we analyse the weak constructibility properties of a vehicle described

by a unicycle kinematic model. We show that a unicycle–like model satisfies the

assumptions we leveraged in the previous analyses, and we discuss how similari-

ties and differences from the results in the previous chapter can be geometrically

interpreted.

5.1 Problem Description

For the analysis in this chapter, we leverage the unicycle kinematic model, whose

state q consists in the (x, y) position of a relevant point of the physical vehicle

(usually the barycentre of the vehicle or the centre point of its rear axle) and

of its orientation θ with respect to a given reference axis (usually the x–axis of

the world reference frame). The state space representation of this system is

q̇ =

ẋẏ
θ̇

 =

v cos θ

v sin θ

ω

 , (5.1)
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where the control inputs v(t) and ω(t) represent the forward and angular velocity

of the vehicle, respectively. As in the previous chapter, we represent by PV (t)

the Cartesian position of the vehicle a local reference frame 〈V 〉 such that the

initial state of the vehicle in 〈V 〉 is qV (0) = [0; 0; 0]>.

In the previous chapter, two properties were requested to the dynamic or

kinematic model representing the mobile robot. We recall them here and show

that a unicycle vehicle satisfies them, since they will be useful to interpret

geometrically the results in this chapter.

Property 5.1.1. Given the position of the vehicle PV (t), ∀t ∈ [t0, tf ], there

exists a unique triplet (∆x,∆y, φ) such that

P (t) = RφPV (t) +

[
∆x

∆y

]
, ∀t ∈ [t0, tf ].

To show that a unicycle–like vehicle is compliant with this property, we ex-

plicitly compute, at a given time t, the positions PV (t) and P (t) in the local

reference frame 〈V 〉 and in the world reference frame 〈W 〉, respectively. By defi-

nition the initial state of the vehicle in 〈V 〉 is [xV (0); yV (0); θV (0)]> = [0; 0; 0]>,

and thus

xV (t) =

∫ t

0

v(s) cos (θV (s)) ds,

yV (t) =

∫ t

0

v(s) sin (θV (s)) ds,

θV (t) =

∫ t

0

ω(s) ds,

while in the world reference frame 〈W 〉, the system starts from the initial con-

dition q0 = [x0; y0; θ0]>. Therefore,

x(t) = x0 +

∫ t

0

v(s) cos (θ(s)) ds,

y(t) = y0 +

∫ t

0

v(s) sin (θ(s)) ds,

θ(t) = θ0 +

∫ t

0

ω(s) ds.

Since θ(t) = θ0 + θV (t), the trajectory can be written asx(t)

y(t)

θ(t)

 =

x0

y0

θ0

+

cos θ0 − sin θ0 0

sin θ0 cos θ0 0

0 0 1


xV (t)

yV (t)

θV (t)

 ,
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where the position P (t) = [x(t); y(t)]> of the vehicle in 〈W 〉, is compliant with

Property 5.1.1, with ∆x = x0, ∆y = y0, φ = θ0.

The second property requested in the previous chapter is the ability of the

vehicle to reconstruct its state given the history of its position P (t), proved and

reported hereafter as a lemma.

Lemma 5.1.2. A unicycle vehicle (5.1) with the continuous–time position P (t)

as output is constructible, i.e. we can reconstruct its final state qf given the

history of inputs and outputs over a given time interval.

Proof. Proving that this lemma holds true for the unicycle kinematic model

is straightforward. Indeed, the output P (t) coincides with the two of position

variables x(t) and y(t). At the same time, by the dynamics, we can reconstruct

the heading θ(t) as a function of Ṗ (t), which is available by assumption. Indeed,

Ṗ (t) =

[
ẋ

ẏ

]
=

[
v cos θ

v sin θ

]
, and thus θ(t) = arctan2

(
ẏ

v
,
ẋ

v

)
.

The same results can be obtained by proving that the unicycle kinematic

model is a differentially flat system with the Cartesian position as a flat out-

put [Fliess et al., 1995].

In compliance with the previous analyses, we consider here fixed–frame sen-

sors where the vehicle collects intermittent ranging measurements from. The

i–th anchor is located at coordinates Bi = [Xi, Yi]
>, i = 1, . . . , p, and the vehicle

collects the measurement ‖Bi − P (t)‖. Measurements are collected at known

sampling instants tk+1 > tk. The output zk is given by the measurements

collected by the vehicle, i.e. the output equation reads as

zk = ‖Pk −Bik‖, (5.2)

where Pk = P (tk) is the position of the vehicle at time t = tk, while the index

ik ∈ {1, . . . , p} defines the anchor that the vehicle measures its distance from.

For the sake of clarity, the collected distance will be denoted by ρk,i when the

second index i is not clear from the context. We consider measurements to be

intermittent; therefore at time tk, only one ranging measurement ρk is available.

As in the previous chapters, we assume full knowledge of the time instants

tk when the measurements are taken and of the input sequence u(s), s ∈ [0, tk],

which allows us to reconstruct the sequence of positions PV (tk) of the vehicle

in 〈V 〉. Therefore, instead of considering the entire paths P (t) and PV (t), we
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focus only on the locations where the ranging measurements are collected:

Pk(∆x,∆y, φ) = RφPV (tk) +

[
∆x

∆y

]
,

for k = 0, . . . , Nm−1, with Nm being the total number of measurements. Given

two points Pl and Pm, we define by Sl,m the segment given by their convex

combination, with length given by ‖Sl,m‖. We can now restrict our study to an

abstract trajectory T of the vehicle, defined as the union of all the segments

connecting two consecutive positions Pk of the vehicle, thus

T =

Nm−1⋃
k=0

Sk,k+1, (5.3)

which can be regarded as a rigid body.

Remark 5.1.3. The abstract trajectory T does not coincide with the actual

trajectory P (t), but contains all the features that are needed in the following

discussion: the sequence of measurements, the distance and the total change in

the orientation between any two measurements. Indeed, θk can be reconstructed

by solving
∫ tk+1

tk

v(s) cos(θV (s)) ds −
∫ tk+1

tk

v(s) sin(θV (s)) ds∫ tk+1

tk

v(s) sin(θV (s)) ds

∫ tk+1

tk

v(s) cos(θV (s)) ds


[

cos θk

sin θk

]
= Pk+1 − Pk,

where the matrix is known, and it is singular only when v(t) = 0, ∀ t ∈ [tk, tk+1).

In light of the definition of T , we want to find the conditions on the position

of the anchors in 〈W 〉 and on the trajectory T such that it is possible to find a

roto-translation such that the points Pk are compliant with the measurements

collected from the anchors. To this aim, we need to introduce the concepts

of constructibility and backward indistinguishability of the states of a nonlin-

ear system. For the sake of generality, in the following definitions, adapted

from [Bayat et al., 2015], we consider a plant with a continuous-time dynamics

and a discrete-time output equation, i.e.

q̇(t) = f(q(t), u(t)),

zk = h(q(tk)).
(5.4)

We consider the dynamical system to evolve between an initial time instant t0

(i.e. k = 0) and a final time tf , with k = kf . Given the hybrid nature of (5.4),

we will use both k and t to denote the time, with the implicit assumption that
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by the time instant k we refer to time tk.

We deal with the notion of constructibility, defined as the ability to re-

construct the state qf of the system at the final time instant tf . Intuitively,

constructibility amounts to reconstructing the current state qk given the past

history of inputs and outputs. By Lemma 5.1.2, the problem of estimating the

final state is equivalent to estimating the initial state q0, which is the well-known

concept of observability. However, the performance of an estimation filter, i.e.

the uncertainty related to the state estimate based on the previous history of

motions and measurements, is not directly associated with the concept of ob-

servability, but rather to the notion of constructibility (for further details, the

reader is referred to [Salaris et al., 2019]). To analyse formally the concept of

constructibility, from a local perspective, we introduce the definition of back-

ward indistinguishability, instead of the notion of indistinguishability considered

for more common observability analyses [Bayat et al., 2015].

Definition 5.1.4. Given the dynamical system (5.4), a time interval T =

[t0, tf ], and an admissible control input function u?(t), t ∈ T , two final states

qf and q̄f are said u?–backward indistinguishable on T , if for the input

u?(t), t ∈ T , the output sequences zk and z̄k, k = 0, . . . , kf of the trajectories

satisfying the final conditions qf , q̄f , are identical. Moreover, we define Iu?(b)(qf )

as the set of all the final conditions that are u?–backward indistinguishable from

qf on T .

Since we assume full knowledge of the control input, the shape of the trajec-

tory T is known in its turn. Hence, we will focus on the concept of u-backward

indistinguishability. With a slight abuse of definition, we will refer to indistin-

guishable trajectories as trajectories generated by a known control input and by

two u–backward indistinguishable final conditions.

Definition 5.1.5. Given the interval T = [t0, tf ], and the control input u?(t), t ∈
T , the system (4.4) is said to be u?–weakly constructible at qf if qf is an

isolated point of Iu?(b)(qf ). Moreover, a system is said to be u?–(weakly) con-

structible if it is u?–(weakly) constructible at any qf .

In the local analysis, associated with the concept of weak constructibility,

we will refer to a weakly constructible trajectory as a trajectory, defined by

a control sequence u?, such that the system is u?-weakly constructible. By

Definition 5.1.5, the set of globally constructible trajectories (analysed in the

Chapter 4) is a subset of the weakly constructible trajectories, since a unique

point in a set is always isolated.

In light of Lemma 5.1.2, we can now state a new relevant result in the

following lemma.
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Lemma 5.1.6. Let (∆x,∆y, φ) be such that

‖Pk(∆x,∆y, φ)−Bi‖ = ρk,i,

for each i such that the measurement is available at time k, and for k =

0, . . . , kf . Then, the system is u?-weakly constructible if

‖Pk(∆x,∆y, φ)−Bi‖ 6= ρk,i, ∀∆x ∈ N
(
∆x
)
,∆y ∈ N

(
∆y
)
, φ ∈ N

(
φ
)
,

where N (x), x ∈ R denotes an arbitrary small subset of R including x.

Proof. The proof directly follows from Lemma 5.1.2.

Problem Statement

Given the unicycle kinematic model (5.1), and the sequence of positions PV (tk), k =

0, . . . , kf , in the vehicle reference frame, we want to find the conditions on T ,

on the layout of the sensors Bi = [Xi, Yi]
>, i = 1, . . . , p, in 〈W 〉, and on the

distribution of the measurements among the sensors, such that the system is

u-weakly constructible at the final condition qf .

5.2 Local constructibility

To formally define the relationship between weak constructibility properties and

rank of the Constructibility Gramian (CG), we report here the following theo-

rem, adapted from [Powel and Morgansen, 2015].

Theorem 5.2.1 ([Powel and Morgansen, 2015]). Given system (5.4), if there

exists a sequence of control inputs u(t), t ∈ [t0, tf ], i.e. a shape of T , such that

CG(t0, tf ) is full rank, then system (5.4) is weakly constructible.

5.2.1 Constructibility Gramian

We build the Constructibility Gramian for the unicycle kinematic model (5.1)

subject to intermittent ranging measurements (5.2). The CG is an n×n matrix,

where n is the size of the state of the system, that may be used as a tool to check

for nonlinear constructibility, i.e. it describes how difficult it is to reconstruct

the final state of the system given the controls and the measurements over

a time window [t0, tf ]. In particular, the reciprocal of its smallest singular

value (or equivalently of its smallest eigenvalue, since the CG is symmetric and
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positive semidefinite), quantifies how measurement noise affects the estimate of

the final state, and if it is equal to 0, i.e. if the CG is singular, then the system is

weakly unconstructible (see [Krener and Ide, 2009]). The CG is defined either for

continuous- or discrete-time systems, and thus we have to extend its definition

to a generic system with continuous-time dynamics and intermittent (discrete-

time) measurement output (4.4). For a continuous-time system

q̇(t) = f
(
q(t), u(t)

)
, z(t) = h

(
q(t)

)
,

the Constructibility Gramian GC(t0, tf ) is defined as

GC(t0, tf ) =

∫ tf

t0

Φ>(τ, tf )H>(τ)WC(τ)H(τ)Φ(τ, tf ) dτ, (5.5)

where H(t) =
(
∂h
∂q

)∣∣∣
q=q(t)

is the Jacobian of the measurement evaluated at the

current time t, and WC(t) is a weighing matrix, which accounts for heteroge-

neous measurement units, different uncertainties among sensors, or for nonlinear

effects, such as bounded sensing range. The sensitivity matrix Φ(t, tf ) = ∂q(t)
∂qf

represents how small perturbations in the final condition of the system affect

the state at the current time t, and is the unique solution to the final value

problem:

Φ̇(t, tf ) = F (t)Φ(t, tf ), Φ(tf , tf ) = In,

where F (t) =
(
∂f
∂q

)∣∣∣
q=q(t)

is the linearised dynamics of the system and In is the

n × n identity matrix. To cope with the discrete-time output zk in (4.4), we

design the weighing matrix WC such that

WC(tk) =

{
δD diag(ei) if Bi is measured at tk,

0 otherwise.

where 0 denotes the null matrix, the diag(w) operator indicates a diagonal ma-

trix having the entries of the vector w as diagonal entries, ei is the unitary

vector aligned with the i-th axis, thus assuming that the sensors have homo-

geneous uncertainty, and δD is the Dirac delta. This way, with the same idea

as in the previous section, we can disregard the dynamics of the system and

the trajectory followed by the vehicle and focus on a finite number of points

Pk where the measurements are collected. However, the definition of the CG

explicitly contains the final state qf and, by computations carried out hereafter,

it depends on the final position Pf = [xf , yf ]>, reached by the vehicle at time

t = tf . Therefore, the CG in (5.5) may be rewritten in the following simplified
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αk
pk

Pk

Bi

Pf

Figure 5.1: The vehicle is located in the point Pk, and it is sensed by the anchor
Bi. The quantities affecting the term gk of the CG only depend on the angle αk of
the measurement and not on the collected distance ρk.

expression

GC(t0, tf ) =

Nm−1∑
k=0

g(tk, tf ),

where Nm is the overall number of measurements, and the contribution g(tk, tf )

of the k-th measurement, denoted as gk in the following, is computed with its

definition in (5.5)

gk = γkγ
>
k , γk = [cosαk, sinαk, pk]>, (5.6)

with αk = arctan2(yk − Yi, xk −Xi), while pk is the distance of the final point

from the line passing through the measured anchor Bi and having slope αk, i.e.

pk =
(xf − xk)(Yi − yk)− (yf − yk)(Xi − xk)√

(xk −Xi)2 + (yk − Yi)2
.

Notice that pk is not dependent on the collected measurement, i.e. the distance

ρk. Figure 5.1 shows the relevant parameters defining gk. By construction, gk

is an n × n matrix with rank 1, whose column space is γk. We will leverage

considerations on the rank of sum of matrices, relying on alignment among null

and column spaces of the contributions gk. As in Chapter 4, we analyse the

settings with increasing number of measurement and anchors.

5.2.2 Single anchor

With a single anchor collecting measurements, the analysis of the CG trivially

leads to the same conclusions drawn in Theorem 4.2.1 in the previous chapter,

i.e. the trajectory can rotate about the anchor without modifying the sensor

readings.
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One measurement

When a single measurement is collected, in P0 = [x0, y0]>, the Constructibility

Gramian is simply computed as G = γ0γ
>
0 , where γ0 is defined in (5.6) and

thus, by construction, the CG has rank 1. Its null space, i.e. the unconstructible

subspace, is a two-dimensional vector subspace whose basis contains the columns

of the matrix

ker(G) =

−(yf − Y1) −(yf − y0)

xf −X1 xf − x0

1 1

 .
The two vectors defining the unconstructible subspace are tangent to the circle

centred on B1 and passing through Pf , and to the circle centred on P0 and

passing through Pf , respectively. This result is compliant with Theorem 4.2.1,

hence highlighting the same constructibility properties.

Two measurements

The second measurement collected by the anchor generates an overall Con-

structibility Gramian G = γ0γ
>
0 + γ1γ

>
1 , having at most rank 2, since it is the

sum of two rank 1 matrices. Since the column space of g0 is γ0 by construction,

we can analytically derive the conditions on P1 such that the Gramian has still

rank 1, by solving γ1 = `γ0, with ` ∈ R, yielding

P1 = `P0 + (1− `)B1,

i.e. P0, P1 and B1 are collinear, occurring whenever the vehicle is moving on

the diameter of the circle centred on the anchor. From an analytical viewpoint,

this result is not surprising, since P0 and P1 share the same angle α, and thus

γ0 = γ1. This result may be interpreted by keeping in mind that we are dealing

with local properties, i.e. we are regarding rotations as (small) translations along

the tangent of the circle centred on the rotation pole. In this particular scenario,

the rotation about B1 and about P0 share the same tangent, orthogonal to S0,1,

and thus, only in this setting, also a rotation about P0 is allowed. The two

situations with rank 2 and rank 1 are represented in Figure 5.2.

Remark 5.2.2. This result has a strong connection with the scenario described

in Remark 4.2.2, where indistinguishability was avoided, while preventing weak

constructibility. In this situation, the angle δ defined in (4.5) is equal to 0 and

the two points P(a)
1 and P(b)

1 collapse on each other.

Any further measurement collected by the first anchor, beyond the second,
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ρ1
ρ0

S0,1 P1P0

B1
ρ1

ρ0
B1 S0,1

P1

P0

(a) (b)

Figure 5.2: A pair of measurements collected by anchor B1. (a) The three points
are not aligned, the rank of the CG is 2 and the two tangents of the circles passing
through P1 are not aligned. (b) The particular situation where B1, P0 and P1 are
aligned occurs, the two circles passing through P1 share the same tangent, hence
making the CG rank deficient.

is not informative from a local point of view (provided that the two mea-

surement points are not collinear with the anchor itself). Indeed, the vector

[−(yf − Y1);xf −X1; 1]>, associated with the rotation of the trajectory about

the anchor, does not depend on the sensed measurement point. Hence, a single

anchor always generates a singular Gramian, independently on the number of

measurements collected.

5.2.3 Two anchors

We now consider a higher number of anchors and an increasing number of mea-

surements distributed among them. Since the maximum number of informative

measurements collected by an anchor is 2, we will analyse the settings 1 + 1,

2 + 1 and 2 + 2 hereafter.

1 + 1

Since we are summing two rank-1 matrices, we can already state upfront that

the CG will be singular. However, with the same rationale of the previous case,

we look for the condition on P1 such that the Gramian has rank 1, i.e. when

γ1 = `γ0, thus getting from the first two equations

P1 = `(P0 −B1) +B2. (5.7)
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By plugging this definition of P1 into the third equation, which reads as p1 = `p0,

we get a linear equation in y0, yielding

y0 =
Y1 − Y2

X1 −X2
x0 +

X1Y2 −X2Y1

X1 −X2
,

i.e. P0, B1 and B2 collinear. By plugging this result in (5.7), we get that also

P1 lies on the same line. Thus, as soon as the four points are not collinear, the

rank of the Gramian is 2.

Remark 5.2.3. This condition has already been discussed in the degenerate

Case 4.3.3, where the circles passing through P1 and centred on P0 and B2,

respectively, share the same tangent. In this situation, two indistinguishable

trajectories coincide, thus achieving Ind(1) and preventing weak constructibility.

2 + 1

Without loss of generality, let us consider the anchor B1 collecting two measure-

ments in P0 and P1, while the second anchor B2 collects its only measurement

in P2. By the previous analyses, we know that

ker(γ0γ
>
0 + γ1γ

>
1 ) =

−(yf − Y1)

xf −X1

1

 ,
while the column space of γ>2 γ2 is γ2 itself. Whenever these two vectors are

orthogonal, i.e. their inner product 〈ker(γ0γ
>
0 + γ1γ

>
1 ), γ2〉 is 0, the CG has

rank 2. This condition holds true when

X1Y2 −X2Y1 −X1y2 + Y1x2 +X2y2 − Y2x2 = 0,

i.e. when B1, B2 and P2 are aligned. To give a geometrical interpretation,

we need to refer to the results obtained in the case 2 + 1 in Section 4.3 (see

Figure 4.4, reported here as Figure 5.3). From a local perspective we have some

knowledge on the initial state of the system, i.e. we can a priori distinguish

whether the vehicle is travelling along the trajectory T (a) or T (b) in Figure 5.3,

and thus we can compute the distance of P2 from the anchor B1. Therefore,

we know that P2 lies on the intersection between two circles centred in B1

and B2 respectively. Whenever P2 lies on the line connecting the two anchors,

these two circles intersect in a single point, and therefore they share the same

tangent direction, with the same conclusions as in the 1 + 1 setting, described

in Figure 5.2. Notice that, in this case, we do not have a perfect duality with
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µ0,1

µ0,1
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y
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(b)
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B1

ρ2

ρ2

D

P0

P(a)
1

P(a)
2

P(b)
1

P(b)
2

Figure 5.3: Setting 2 + 1. The blue and red lines represent two trajectories T (a),
T (b). If T (a) is selected based on a priori information, the CG is singular when the
circle centred in P

(a)
2 is tangent to the circle centred in B1.

the degenerated case 4.3.5, since we can discard a priori one of the two circles

in Figure 5.3.

2 + 2

We consider two pairs of measurement points being not collinear with the anchor

collecting their distance. In this scenario, the CG is singular as long as the 1-

dimensional null spaces of the Gramians G1, G2, associated with each anchor,

are aligned. The condition ker(G2) = ` ker(G1) reads

−yf + Y2 = −`yf + `Y1, xf −X2 = `xf − `X1, 1 = `,

hence yielding B1 = B2, which is impossible by assumption of distinct anchors.

Therefore, when two anchors collect a pair of measurements each, the system is

weakly constructible as far as the pair of measurement points and the anchor

collecting their distances are not collinear.

5.2.4 Three anchors

With three anchors, we only consider the scenario 1 + 1 + 1, which is ex-

pected to yield results similar to the case 2 + 1. We build the column spaces

γk, k = 0, 1, 2, of the three contributions to the CG. The overall Gramian is

full rank as soon as the three column spaces are linearly independent, and this

conditions may be checked by computing the determinant of W = [γ0, γ1, γ2],
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yielding detW = ax2 + by2 + c, where a, b, c are three parameters depending

on the coordinates of the three anchors B1, B2, B3, and of the two measure-

ment points P0 and P1. Hence, detW = 0 describes a line on the Xw × Yw
plane, where the coefficients are such that this line passes through the anchor

B3 itself. Therefore, the Gramian is singular as soon as P2 lies on a line, with

known analytical form, passing through B3. From a geometric point of view,

this line has a similar interpretation to the one obtained in the scenario 2 + 1.

Indeed, by combining the rotation of P1 about B1 and of P2 about B2 such

that S1,2 maintains the same length, the (tangent to the) resulting motion of

the third point P3 is tangent to the circle centred on B3 and passing through

P3 itself. From a global perspective, in this situation two intersections between

two 1D geometrical varieties coincide (see Remarks 4.2.2 and 5.2.2), but there

are guarantees on the uniqueness of these intersections.

Theorem 5.2.4. Given at least three measurements, distributed among at least

2 anchors, the trajectory T is weakly constructible, unless the last point of T
lies on one of the critical lines identified in the analysis.
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6. MEASURING CONSTRUCTIBILITY FOR A UNICYCLE VEHICLE

In Chapter 5 we have shown a binary classification of trajectories based on

the rank of the Constructibility Gramian. However, when the system is weakly

constructible, finding the current state requires the inversion of the Gramian.

Common problems arise in this setting when the matrix to be inverted is “close”

to singular, which can be measured by its smallest singular value. Being the

Constructibility Gramian a symmetric and positive (semi)definite matrix, an

equivalent metric is represented by its smallest eigenvalue. Motivated by this

consideration, unlike the previous chapter, in this chapter we quantify local

Constructibility and give some geometrical insights on the results. We pro-

pose a local Constructibility analysis for a nonholonomic vehicle moving across

an environment equipped with two ranging sensors. The vehicle travels along

a straight line parallel to the line joining the two anchors. By the analysis

in the previous chapters, the system is globally unconstructible, while its local

Constructibility can be quantified through the smallest eigenvalue of the Con-

structibility Gramian (CG). The main contribution of this chapter is to show

how this metric changes according to the geometric parameters of the linear

trajectory with respect to the position of the anchors and their sensing range.

Contributions: We consider a mobile robot travelling across an environ-

ment instrumented with a sparse infrastructure of range sensors with non-

overlapping ranges. Therefore, the robot can take only one measurement at

a time. When the robot moves along a straight line, weak constructibility is

achieved, with a level of performance that can be tied to the minimum eigen-

value of the Constructibility Gramian (CG). In this chapter, we also show the

configuration of the anchors and the linear manoeuvres that optimise this met-

ric.

6.1 Problem Description

We consider discrete-time systems in the state space

qk+1 = f(qk, uk),

zk = h(qk),
(6.1)

where q ∈ Rn is the state, u ∈ Rm represents the control inputs and z ∈ Rp is

the output of the system, i.e. the sensor readings. Specifically, we will focus the

kinematic model of a unicycle-like vehicle, given in continuous time by:ẋ(t)

ẏ(t)

θ̇(t)

 =

v(t) cos θ(t)

v(t) sin θ(t)

ω(t)

 , (6.2)
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where x(t), y(t) represent the Cartesian coordinates of the vehicle, while θ(t)

denotes its heading with respect to a reference axis. As in Chapter 5, we make

the simplifying assumptions that the control inputs v(t) and ω(t) be constant

over every time interval of fixed duration Ts, as if the system were controlled

by a digital system with a finite sampling frequency 1/Ts, i.e. v(t) = vk, ∀t ∈
[kTs, (k+1)Ts

)
. By exploiting this simplification, the kinematic model (6.2) can

be exactly integrated over each time interval, yielding the following discrete-time

dynamics xk+1

yk+1

θk+1

 =

xk +AkCk

yk +AkSk

θk + ωkTs

 (6.3)

with

Ak = 2
vk
ωk

sin

(
Ts
2
ωk

)
and lim

ωk→0
Ak = vkTs,

Ck = cos

(
θk +

Ts
2
ωk

)
, Sk = sin

(
θk +

Ts
2
ωk

)
,

where, in the adopted notation, the subscript k denotes the time t = kTs for the

continuous-time dynamics (see Chapter 3). The measurement system consists

of a set of ranging sensors (henceforth called anchors) yielding their distance

from the vehicle, so as the measurement output zk is defined as

zk =

ρ1(xk, yk)

ρ2(xk, yk)

. . .

 =


√

(X1 − xk)2 + (Y1 − yk)2√
(X2 − xk)2 + (Y2 − yk)2

. . .

 , (6.4)

where ρ1 and ρ2 are the measurements collected from the first two anchors B1

and B2. We consider the case in which anchors have a bounded range, i.e. a

measurement is collected by anchor i only if its distance from the vehicle is

smaller than its sensing range ρmax
i .

The constructibility properties of a nonlinear system, unlike for linear sys-

tems, depend not only on the structure of the system itself, i.e. on the dynamical

model and on the sensors, but also on the trajectory followed by the system it-

self. Trivially, in our scenario, the system cannot be constructible when the

vehicle never enters the sensing ranges of the sensors. For the sake of complete-

ness, we report here an intuitive definition of Constructibility, which has been

formally defined in the previous chapter.

Definition 6.1.1 (Constructibility). Given system (6.1), constructibility is de-

fined as the ability to reconstruct the state qf of the system at time k = kf , given

the outputs zk, k = k0, . . . , kf and the control inputs uk, k = k0, . . . , kf − 1. In-
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tuitively, constructibility consists in reconstructing the current state qk given the

past history of inputs and outputs.

Given the dynamical system (6.3)-(6.4), this chapter aims at investigating

how different geometric parameters of the trajectory followed by the vehicle,

such as the position of the anchors, the distance between anchors and vehicle

when the measurements occur and the final position reached by the vehicle,

affect the constructibility of its trajectory. Specifically, we focus on the effect of

these geometric parameters of the trajectory on the smallest eigenvalue of the

Constructibility Gramian, defined in the next section.

6.2 Local Constructibility Analysis

When global observability cannot be ensured (e.g., for linear trajectories), we

can maximise the local constructibility of some given trajectories given their

geometric parameters. To this aim, we introduce the Constructibility Gramian.

With respect to the analysis in Chapter 5, we derive here the expression of the

Constructibility Gramian by considering the discrete–time version (6.3) of the

unicycle dynamics. With respect to the previous case, since the same assump-

tion on the intermittence of the measurements is considered, a different proce-

dure will lead to the same output, i.e. to the same Constructibility Gramian.

6.2.1 Constructibility Gramian

The Constructibility Gramian (CG) GC(k0, kf ) for the nonlinear system (6.1)

is defined as

GC(k0, kf ) =

kf−1∑
κ=k0

Φ>(κ, kf )H>κ WκHκΦ(κ, kf ), (6.5)

where Hk =
(
∂h(q)
∂q

)∣∣∣
q=qk

is the Jacobian of the measurement output evaluated

at the current time step and Wk is a diagonal weighing matrix accounting for

heterogeneous units of measurement, measurement uncertainty and finite sens-

ing range. To model the finite sensing range of the anchors, we set the i-th

diagonal entry of Wk to 0 whenever the vehicle is outside the sensing range

(i.e. no measure is retrieved by the i-th anchor), while we set it to 1, without

loss of generality, when the vehicle is within the sensing range. The matrix

Φ(k, kf ) = ∂qk
∂qf

is called sensitivity matrix and is the solution to the following
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final value problem

Φ(k + 1, kf ) = Fk Φ(k, kf ),

Φ(kf , kf ) = In,

where In is the n × n identity matrix and Fk =
(
∂f(q,u)
∂q

)∣∣∣
q=qk

represents the

linearised dynamics of the system. Notice that the CG embeds the linearised

dynamics of the nonlinear system and the linearised version of the nonlinear

output equation, and thus results achieved with it have local validity.

For the discrete-time unicycle system (6.3), the sensitivity matrix Φ(k, kf )

is available in closed form, and thus we can write explicitly the contributions

gi(k, kf ) given by each measure to the CG, which can be expressed as

GC(k0, kf ) =

Nm∑
i=1

gi(k, kf ),

where Nm is the total number of retrieved measurements. Let us consider the

anchor B1 retrieving the i-th measurement, associated with the i-th row H[i](k)

of the sensitivity matrix Hk:

gi(k, kf ) = Φ>(k, kf )H>[i](k)H[i](k)Φ(k, kf ), (6.6)

and thus

g
(1)
i (k, kf ) = γγ>, γ =

[
cosα

(1)
i sinα

(1)
i p

(1)
i

]>
, (6.7)

where the superscript (1) refers to the anchorB1, α
(1)
i = arctan2 (yi − Y1, xi −X1)

and p
(1)
i is the distance (with sign) of the final position [xf , yf ]> from the line

centred on anchor B1 with slope α
(1)
i , computed as

p
(1)
i =

(xf − xi)(Y1 − yi)− (yf − yi)(X1 − xi)√
(xi −X1)2 + (yi − Y1)2

,

which is only dependent on the angle α
(1)
i and on [xf , yf ]>, not on the distance

from the anchor, as Figure 6.1 shows.

Remark 6.2.1. The Constructibility Gramian obtained in the previous Chap-

ter (5.6) and its expression in (6.7) are equal. Indeed, the two systems have

the same dynamics (where one is the discretisation of the other), and the same

sensor model, relying on the assumption of intermittent measurements.

As pointed out in [Salaris et al., 2019, §2], the CG is associated with the

inverse of the optimal covariance matrix P , hence maximising some norm of

the CG allows the robot to travel on the trajectory resulting in the minimum

estimation uncertainty on the final state. Moreover, the CG is not dependent
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α
(1)
1

p
(1)
1

[
x1
y1

]
[
X1

Y1

]
[
xf
yf

]

Figure 6.1: Geometrical interpretation of the parameters affecting g
(1)
i (k, kf ). The

superscript (1) indicates that the measure is collected by anchor B1, the angle α1

only depends on the measurement, i.e. the relative position of the anchor and of the
measured point, while p1 depends both on the measurement and on the position of
the final position [xf , yf ]>.

on the observer that is employed to estimate the state of the system and thus

the results obtaining by maximising its norm have general validity.

With the same interpretation as the Observability Gramian, which has been

much more analysed than the CG, we employ some norm of the CG as a Con-

structibility metric (see [Krener and Ide, 2009]). Possible choices of norms of the

CG (which is symmetric and positive definite by construction) may be found

among the so-called optimality criteria (see [Gichuki et al., 2020, §4] and refer-

ences therein). In our analysis, we consider the most critical direction (in the

state space) for constructibility, which is captured by the E-optimality crite-

rion, i.e., the smallest eigenvalue, whose eigenvector is aligned with the least

constructible direction in the state space.

6.2.2 Trace-based lower bound

The smallest eigenvalue of a square matrix is generally not available for a high-

dimensional state or for multiagent systems, where the size of the CG grows

rapidly. Therefore, we detail hereafter a trace-based lower bound that will

simplify the analysis of the constructibility metric and will yield closed form

solutions for some simple scenarios.

Theorem 6.2.2 (Lower bound). Let M ∈ Rn×n be a symmetric and positive

definite matrix, Tr(M) its trace and λmin(M) its smallest eigenvalue. Then the

following holds

λmin(M) ≥ T, with T =
1

Tr(M−1)
.

The proof is based on the definition of the first order “generalised Newton

shift” ([Aishima et al., 2010], [Yamamoto, 2017]) and it is skipped for brevity.

Corollary 6.2.3. By using the definition of g
(1)
i (k, kf ) in (6.7), we come up
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with the following expression for T

T =

∑
(k1,k2,k3)∈K

(pk1Sk2k3 + pk2Sk3k1 + pk3Sk1k2)
2

N∑
i=1

N∑
j=i+1

S2
ij+(N−1)

N∑
i=1

p2
i−2

(
N∑
i=1

N∑
j=i+1

pipjCij

) ,

where Cij and Sij are shortened notations of cos(αi − αj) and sin(αi − αj)

respectively, while K is the set of all the combinations of the Nm measurements

taken 3 at a time, regardless of the order, thus K contains
(
Nm
3

)
elements.1

6.2.3 Analysis of relevant effects

Before entering into the details of how to derive closed-form solutions for the

lower bound T introduced above, we point out that, given its definition, the

CG is only affected by the sensor readings and by their relative position with

respect to [xf , yf ]>, and thus it is independent of the trajectory followed by

the vehicle between two successive measurements. As a matter of fact, only a

finite set of points (i.e., anchors, measurements and final vehicle positions) are

of interest for this analysis, since the measurements order, the starting vehicle

position and the system dynamics are already considered in the expression of

the CG. Therefore, without loss of generality, we consider the minimum number

of two anchors aligned horizontally, i.e., Y1 = Y2, a pair of measurements from

each anchor and that the 4 retrieved measurements and [xf , yf ]> all lie on the

x-axis. Figure 6.2 shows the considered motion and identifies the parameters

characterising the trajectory of the vehicle: the lateral offset a, the horizontal

position of the final point xf , and the distance between the anchors, determined

by X1 and X2.

Lateral offset

To analyse the effect of the lateral offset a in Figure 6.2, we consider as given

the 4 measurement points, [xf , yf ]> and both X1 and X2, while Y1 = Y2 =

−a. This way, a = δ tanα, where δ = X1 − x1 is a parameter common to

all the measurements. The simplifying assumption on δ reduces the number of

parameters and allows us to find the compact closed-form optimal offset given

in (6.8). Moreover, we immediately notice, by symmetry, that the same result

is expected for the pair a and −a, thus allowing us to analyse settings with only

a ≥ 0.

1In combinatorics, K is defined as the set of all the 3-combinations of the set {1, 2, . . . Nm}.
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αα

[
x1
y1

]
B1 B2

a

[
xf
yf

]
x

y
δδ

Figure 6.2: General sketch of the scenarios that have been analysed. In the gen-
eral case we will always consider yf = y1 = 0 and the relevant parameters are the
lateral offset a, the final position xf and the position of the two anchors B1 and B2.
The vehicle is travelling on the x-axis, starting from the point [x1, y1]> with θ = 0
(thicker black line). The four red dots represent the measurements from the anchors.
The dashed-dotted green line represents a globally constructible trajectory under the
assumptions in Theorem 3.2.3, with the heading constraint.

The smallest eigenvalue of the CG, depicted in Figure 6.3 as a function of

a along with its lower bound, shows two different behaviours. The first, visible

for small values of offset a, comes from the loss of observability when the vehicle

moves along the line connecting the two anchors. In this case, the measurements

contributions to gi(k, kf ) become linearly dependent and small perturbations of

the initial state could generate an unobservable trajectory that is symmetric

with respect to the line connecting the two anchors and that generates the same

measurements sequence (same result as in [De Palma et al., 2017, §5.1]). The

second effect becomes visible for large values of a, with angle α approaching

π/2. In this limiting case, the measurements collected from the two anchors

collapse into each other making the CG rank deficient. These different effects

can be appreciated considering the evolution of the two smallest eigenvalues λ1

and λ2. For small values of a, λ1, whose eigenvector is approximatively parallel

to the y axis and which can be associated with the first effect, is lower and

its effect is dominant. Conversely, for large values of a, λ2, associated with an

eigenvector approximatively parallel to the x axis and with the second effect,

becomes the dominant one. In Figure 6.3, we report a numeric example, with

the dashed blue line representing the second smallest eigenvalue of the CG. The

lower bound T follows closely this pattern. From its analytic form, it is possible

to estimate the lateral offset maximising T , which is ā = δ tan ᾱ, with ᾱ defined

as

ᾱ = arcsin

√2(X2
1 +X2

2 + 2)−
√

2
√
X2

1 +X2
2 + 2

√
(X1 −X2)2 + 4δ2

(X1 +X2)2 − 4δ2 + 4


(6.8)

98



6. MEASURING CONSTRUCTIBILITY FOR A UNICYCLE VEHICLE

0 0.5 1 1.5 2 2.5 3
Lateral o,set a (m)

0

0.2

0.4

0.6

0.8

1

1.2

S
m

al
le
st

ei
ge

n
va

lu
e

of
th

e
C
G

(-
)

61;62

Lower bound

Figure 6.3: Effect of the lateral offset on the smallest eigenvalue of the CG (solid blue
line) and on its lower bound T (red line). The offset optimising T , vertical black line,
is close to the value of a maximising the smallest eigenvalue. In order to clarify the
two prominent effects, the dashed blue line represents the second smallest eigenvalue
of the CG.

if δ 6=
√

1 + (X1+X2)2

4 , while, by continuity, ᾱ = π
4 otherwise.

Final point

We consider now the effect of the final point xf of the trajectory on the CG.

Figure 6.4(a) shows the smallest eigenvalue of the CG and its lower bound T

as a function of the final horizontal coordinate xf . As in the previous analysis,

we are able to write an explicit expression of the lower bound T , and therefore

compute an estimate of the optimal final position xf . Interestingly, this value

is given by

xf =
X1 +X2

2
,

i.e., the optimum is in the middle point between the two anchors. In order to

cast some light on the practical meaning of this result, we have considered a

simulation scenario in which a unicycle-like vehicle (6.2) localises itself using

and Extended Kalman Filter (EKF), with a ranging measurement variance of

10−6 (i.e., an uncertainty around the millimetre). We suppose that the vehicle

collects the four measurements (as depicted in Figure 6.2) and then moves along

the x axis using dead-reckoning and stops in the point of minimum uncertainty.

By computing the eigenvalues of the covariance matrix P (as the CG is associ-

ated with P−1 as stated in [Salaris et al., 2019, Sec. II]) of the EKF, it turns

out that this point is exactly xf (see the largest eigenvalue in Figure 6.4(b)).

This effect is far from obvious: according to the dead-reckoning effects and its

unavoidable uncertainty growth, one would expect that the robot should stop
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Figure 6.4: Effect of the final position of the vehicle. (a) Effect of the horizontal
coordinate of the final point xf on the smallest eigenvalue of the CG (blue line) and on
its lower bound T (red line). The horizontal position of the two anchors is represented
by the two dashed vertical lines, while the solid line represents the position optimising
both T and the smallest eigenvalue of the CG. (b) Eigenvalues of the covariance matrix
P in dead-reckoning phase, after having retrieved the four measurements. The blue
line represents the greatest eigenvalue of P . The two vertical dashed lines denote the
position of the two anchors, while the solid line represents the position optimising
uncertainty.

right after collecting the second measurement from the second anchor. Indeed,

this expectation is verified for all possible motions other than moving backward

along the same direction previously followed by the robot up until it reaches xf .

This anomaly deserves future investigations.

Distance between the anchors

Finally, we analyse the effect of the distance between the anchors on local con-

structibility. In order not to take into account unwanted contributions due to the

position of the final point xf , in this analysis we fix xf = 0, and consider the two
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Figure 6.5: Effect of the horizontal coordinate of the anchor X1 on the smallest
eigenvalue of the CG (blue line) and on its lower bound T (red line). The horizontal
position of the anchor B2 is opposite in sign with respect to X1, while the final point
lies in the origin, i.e. xf = 0.

anchors to be symmetric with respect to the y-axis, i.e., X2 = −X1. Figure 6.5

shows the results obtained with this analysis. As expected for X1 = X2 = 0,

the CG is singular since the two anchors coincide, and we only have 2 indepen-

dent measurements. This effect vanishes as the two anchors move further apart

and both T and λmin(GC) reach an asymptotic value that depends on the other

geometric parameters of the trajectory.

6.3 Discussion

Quantifying local constructibility and interpret its effects from a geometric point

of view has not been thoroughly addressed in this chapter, but further inves-

tigations on these effects could be beneficial in finding metrics, equivalent to

the smallest eigenvalue of the Constructibility Gramian, to optimise for in a

trajectory planning algorithm.
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7. A TRAJECTORY PLANNING EXAMPLE FOR A PAIR OF VEHICLES

In Parts I and II, we have focused on a single agent travelling across an environ-

ment equipped with fixed–frame sensors. We have analysed its Constructibility

properties, both from a global and a local perspective. In this part, starting with

this chapter, we extend some results to multi–agent systems, where the vehicles

rely on both absolute and relative range measurements in order to reconstruct

their state. In this chapter we present a trajectory planning algorithm, based

on the global Constructibility analysis carried out in Part I. The tools developed

in Chapter 3 will be used to plan the trajectory of a pair of vehicles, allowing

them to achieve global constructibility. We consider two “kidnapped” unicycle

vehicles released in an unknown environment. Initially, each vehicle is in sight of

a ranging sensor (called anchor with a clear reference to UltraWide–Band tech-

nology) and has to choose a trajectory that enables it to localise itself relying

only on its anchor measurements, on its odometry and on the information (state

and mutual distance) that it can exchange with the other vehicle when they are

sufficiently close. We propose a motion planning algorithm that, at each time

step, is based on the limited amount of information available to the vehicle, and

that solves the simultaneous localisation problem in this challenging scenario.

Contributions: We consider an environment equipped with 2 fixed-frame

range sensors, where 2 unicycle vehicles are free to move. Each vehicle is com-

pletely unaware of its initial position and orientation and has to plan its trajec-

tory to reconstruct its state only relying on the measurements from its “refer-

ence” anchor, on the manoeuvres executed, and on the mutual measurements

and information exchanged with the other vehicle, available only when they

come sufficiently close to each other. We propose a control strategy, based on

three phases, allowing the two vehicles to avoid indistinguishability. In the first

phase the robots execute some manoeuvres to extract the maximum informa-

tion from the anchors. In the second phase, they follow circular trajectories,

which (under appropriate assumptions) enable them to meet. The third phase

consists of a sequence of manoeuvres that enables the vehicles to rule out the

remaining ambiguity.

7.1 Problem Description

We consider a pair of vehicles, denoted by the superscripts a and b, described by

the unicycle kinematic model, whose state consists of their coordinates x, y in

the world reference frame 〈W 〉, and of their heading θ with respect to a reference
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axis. As in the Chapter 6, we use their discrete–time dynamics model

xk+1 = xk +AkCk,

yk+1 = yk +AkSk,

θk+1 = θk + ωkTs,

(7.1a)

with

Ak = 2
vk
ωk

sin

(
Ts
2
ωk

)
, lim

ωk→0
Ak = vkTs,

Ck = cos

(
θk +

Ts
2
ωk

)
Sk = sin

(
θk +

Ts
2
ωk

)
.

The control inputs vk and ωk represent the forward and angular velocity re-

spectively, while the subscript k denotes the k-th time instant kTs, while Ts

is the sampling period. Each vehicle is equipped with a range sensor with

sensing range S, measuring its distance from its reference fixed-frame beacon

Bi = [Xi, Yi]
>, i = 1, 2. Without loss of generality, we consider B1 = [0; 0]>,

and B2 = [D; 0]>, with D > 0. Moreover, the vehicles can measure their rel-

ative distance whenever they come sufficiently close (within S) to each other.

Therefore, the measurement model for the robots is

zak =

[
ρak

2

ρk
2

]
=

[
(xak −X1)2 + (yak − Y1)2

(xak − xbk)2 + (yak − ybk)2

]
,

zbk =

[
ρbk

2

ρk
2

]
=

[
(xbk −X2)2 + (ybk − Y2)2

(xak − xbk)2 + (yak − ybk)2

]
,

(7.1b)

with the understanding that the measurements are available only when ρk ≤ S,

where S is the sensing range of the devices. For the sake of clarity, we introduce

here a new notation to denote the reference frame that will be used in the

forthcoming.

Notation: We denote the position of the vehicle a in the world reference

frame 〈W 〉 as Qak = [xak, y
a
k ]> and its position sequence Qa = {Qak}. Further-

more, we define by 〈a(B1)〉 the reference frame centred in B1 and with the

x-axis aligned with one point of the trajectory followed by vehicle a that will be

specified from time to time; the state of the vehicle a in 〈a(B1)〉 will be denoted

by P ak . The same definitions apply to vehicle b.

Remark 7.1.1. The knowledge of two positions Qak1 and Qak2 , k1 < k2, and the

knowledge of vk and ωk, ∀k ∈ [k1, k2] together with the discrete dynamics (7.1)

determine uniquely θak, ∀k ∈ [k1, k2], as discussed in Chapter 5. Hence, the

localisation problem can be recast into the reconstruction of two positions Qak1
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and Qak2 .

7.1.1 Theoretical background

We deal with the localisation of the vehicles in the world reference frame 〈W 〉,
by relying on the control inputs vk, ωk and on the measurement outputs zak , z

b
k

over a given time interval [k0, kf ]. This task is associated with the concept of

u-indistinguishability, introduced in the following definition.

Definition 7.1.2. Given a nonlinear discrete-time system

qk+1 = f(qk, uk),

zk = h(qk),

a time interval K = [k0, kf ], and an admissible control input history u?k, k ∈ K,

two states q0 and q̄0 are said to be u?-indistinguishable if the output histories

zk and z̄k, k ∈ K of the trajectories satisfying the initial conditions q0 and q̄0

respectively, are identical.

As in the previous chapters, to compact the notation, we will refer to indis-

tinguishable trajectories as trajectories having u-indistinguishable initial condi-

tions. The indistinguishability properties of the trajectories followed by a vehicle

depend on the number of measurements that are collected, on their distribution

among different fixed-frame landmarks, and on the manoeuvres executed by the

vehicle itself (see Chapter 4). We recall here the analysis of indistinguishability

of some trajectories followed by a vehicle with respect to an anchor, which will

prove useful in the following analyses.

Single anchor

In Chapter 4, we have analysed the situation with a vehicle sensed by a single

anchor, whose results are summarised in the following proposition:

Proposition 7.1.3. Given the vehicle a, its position sequence Qa = {Qak}, k =

0, . . . , N−1, and the set of measurements ρak collected from anchor B1, a position

sequence Q̄a is u-indistinguishable from Qa if: (1) For any N , Q̄a is a rotation

of Qa about the anchor; (2) For N = 2 (or for N > 2 collinear measurement

points), Q̄a is symmetric to Qa with respect to an axis passing through the

anchor.

By the analysis in 4, Proposition 7.1.3 collects the sufficient and necessary

conditions for the case N ≥ 2. In light of it, any measurement beyond the
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third, provided that the measurement points are noncollinear, adds no further

information to the state of the vehicle. Indeed, the vehicle is aware of its distance

from the anchor and of its orientation with respect to the line joining the anchor

with the vehicle itself. Therefore, we consider this to be the condition where

the vehicle has extracted the maximum amount of information from one anchor.

On the other hand, when only 2 measurements are collected, the vehicle can

compute a distance-orientation pair for each one of the two axial symmetric

trajectories. This result will prove useful in the analysis with more anchors,

presented hereafter.

More anchors

To compact the notation, we list the number of measurements collected from

each anchor, divided by a “+” sign. With a 3 + 1 setting, i.e. 3 measurements

from one anchor and 1 from another, the vehicle a is aware of its distance

from the first anchor at any time. Thus, Qa3 , related to the second anchor,

lies on an intersection between the circles centred in the two anchors, hence

defining two indistinguishable sequences Q̄a and Qa. With the same rationale,

2 measurements from the first anchor yield 2 potential distances from it, and

thus a 2+1 setting yields a maximum number of 4 indistinguishable trajectories.

When the indistinguishable trajectories are known, the vehicle can explicitly

design a further manoeuvre to obtain a measurement ruling out the ambiguities.

This procedure will be detailed out more in our specific case at the end of

Section 7.2.

7.1.2 Problem statement

Given the position of the two anchors B1 and B2 in 〈W 〉, we aim at designing

the manoeuvres of the two vehicles that solve the localisation problem. Fur-

thermore, we will use the measurements collected along the trajectories and the

sequence of manoeuvres executed by the vehicles to reconstruct their trajectories

in 〈W 〉.

7.2 Trajectory planning Algorithm

The two vehicles a and b start from unknown initial positions Qa0 and Qb0 in the

range of the respective anchor. Then, each vehicle implements its perception-

aware trajectory planning algorithm to meet the other agent and share the
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B1 B2

Phase 1 Phase 2 Phase 3Phase 1 Phase 2 Phase 3

Qb
0Qa

0

Figure 7.1: Trajectory planning algorithm: the paths of the two vehicles are rep-
resented in blue and red respectively, while the three phases are highlighted with
different colours. The black dashed lines represent the sensing range of the anchors,
while coloured dashed lines represent the “orbiting” distance of the two vehicles, which
will be defined in phase 2.

collected information in order to simultaneously localise the agents. The plan-

ning algorithm comprises three main phases: (1) collecting the largest amount of

information by the reference anchor, (2) meeting the other vehicle by “orbiting”

about the anchors, (3) designing the last manoeuvres to avoid indistinguishabil-

ity. The three phases are presented in Figure 7.1, and are described separately

in the next sections.

7.2.1 Phase 1: Fixed-frame marker

In this phase, highlighted in green in Figure 7.1, the vehicles are far away from

each other and cannot communicate or exchange information, thus they have

to plan their trajectory separately. Without loss of generality, we will analyse

vehicle a, dropping the superscript a for readability. At the initial time, the

vehicle collects its distance ρ0 from the anchor and has to determine v0 and ω0

to the second measurement point. To cope with a potential measurement noise,

making two near points be sensed as a unique point, we plan the first manoeuvre

to maximise the distance between Q0 and Q1, by maximising A0 in (7.1), i.e.,

v0 = vmax and ω0 = 0. Since the vehicle is not aware of its position in 〈W 〉, it

may or may not collect ρ1 at k = 1. The two cases are treated separately.
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ρ1 is collected after the first manoeuvre

If the vehicle remains in the sensing range of the anchor and collects the mea-

surement ρ1, it can now build two position sequences, Q and Q̄, compliant with

the measurements and with the manoeuvres in its local reference frame 〈a(B1)〉:
P0 = [ρ0, 0]

>
, and P1 = [ρ0 +A0 cosα,±A0 sinα]

>
, with

α = arccos

(
ρ2

1 − ρ2
0 −A2

0

2ρ0A0

)
, (7.2)

yielding ‖P0 − P1‖ = A0, and ‖P1 − B1‖ = ρ1. From P1, the vehicle has to

plan the next manoeuvre (v1, ω1). By the definition of P1 and by applying the

controls, we can compute the distance from the anchor the robot will reach in

P2, i.e.

d2 = ∆2 + 2ρ0A1 cos(±α+ δ1), (7.3)

where δ1 = ω1
Ts
2 and

∆2 = ρ2
0 +A2

0 +A2
1 + 2A0A1 cos δ1 + 2ρ0A0 cosα,

which yields two solutions, say d+ and d−. By Proposition 7.1.3, any pair

(v1, ω1), such that v1 6= 0, ω1 6= jπ, j ∈ Z, is suitable to get the maximum

amount of information. We design the pair (v1, ω1) maximising the difference

∣∣d2
+ − d2

−
∣∣ = 8ρ0 sinα

v1

ω1
sin2

(
Ts
2
ω1

)
.

This way, we maximise the intensity of a potential measurement noise that

is necessary to “confuse” the two predicted distances with each other, thus

increasing the robustness of this process to measurement noise. More precisely,

we define

max
v1,ω1

v1

ω1
sin2

(
Ts
2
ω1

)
, s.t. |v1| ≤ vmax, |ω1| ≤ ωmax, (7.4)

thus the optimal value of ω1 can be found by computing the partial derivative

of the cost function with respect to ω1 and setting it to 0. This procedure yields

cos(Tsω1) + Tsω1 sin(Tsω1)− 1 = 0,

whose solution cannot be found in closed form, but numerically yields ω1 =

2.3311/Ts. Since the optimisation problem in (7.4) is constrained, the opti-

mal value for ω1 is min{2.3311/Ts, ωmax}. Although the forward velocity solv-

ing (7.4) is v1 = vmax, we have no guarantee that at least one of the two

measurement points will fall in the sensing range of the anchor. However, by
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using (7.3), we can enforce that min{d+, d−}2 ≤ S2 by choosing v1 as

v1 =
ω1

2 sin
(
Ts
2 ω1

)[√
S2 −

(
ρ0 sin(α+ Ts

2 ω1) +A0 sin(Ts2 ω1)
)2

− ρ0 cos
(
α+ Ts

2 ω1

)
−A0 cos

(
Ts
2 ω1

) ]
.

Hence, if the vehicle falls outside the sensing range, i.e., no measurement is

collected, a virtual measurement ρ2 = max{d−, d+} is collected. Therefore,

by Proposition 7.1.3, with three non-collinear measurement points, the vehicle

collects the largest amount of information from its reference anchor.

ρ1 is not collected after the first manoeuvre

To collect the second measurement, the vehicle turns on the spot by π/2, i.e.,

v1 = 0 and ω1 = π
2Ts

, and starts moving on a circle with centre Q0 and radius

A0, i.e., vk/ωk = A0, with k = 2, . . . , kρ − 1, where kρ is the time instant

when the measurement is collected. Since Q0 is within the sensing range of

the anchor and A0 < S, an arc of the circular trajectory of the vehicle, with

amplitude 2π−2η, will be inside the sensing range, leading the vehicle to collect

the measurement ρ1, as in Figure 7.2(a), where

η = arccos

(
S2 − ρ2

0 −A2
0

2A0ρ0

)
.

However, since measurements occur only at sampling times kTs, the vehicle

travels an arc of maximum amplitude 2π−2η during Ts, hence upper-bounding

its velocity to ωk = min{ωmax,
2π−2η
Ts

, vmax

A0
} and leading to the forward velocity

vk = ωkA0. After Nl manoeuvres, the vehicle enters the sensing range of the

anchor, collects ρ1, and computes α by using (7.2): this way, the vehicle can find

two trajectories Q and Q̄ (associated with ±α as in the previous case), that are

compliant with the measurements and the manoeuvres, hence indistinguishable.

In the reference frame 〈a(B1)〉, the vehicle can compute the coordinates, and

consequently the distance dl, of each point Pl in Q and Q̄

d2
l = ρ2

0 +A2
0 + 2ρ0A0 cos(±α− lωk), l = 1, . . . , Nl.

If one of these distances dl ≤ S, the corresponding trajectory is disregarded,

thus collecting the largest amount of information from one anchor with only

two measurements (see Figure 7.3(b)). Should this situation not happen, i.e.,
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2η
A0

S

ρ0

A0

S

B

2Ω
B1

B2

D/2

D

d

2S

(a) (b)

Figure 7.2: (a) Phase 1, ρ1 not collected after the first manoeuvre: Circular path
followed by the vehicle after the first (straight) motion. (b) Phase 2: orbiting paths
with the definitions of the angle Ω.

dl > S, ∀l = 1, . . . , Nl, the vehicle can follow the same procedure as before to

collect the third measurement ρ2, with the proper modifications accounting for

its orientation.

7.2.2 Phase 2: Meeting the other vehicle

By Proposition 7.1.3, after the first phase, the two vehicles can now estimate

their position Pk and determine their orientation µ with respect to the line

joining the anchor and the vehicle itself in their reference frame 〈a(B1)〉 and

〈b(B2)〉, with

µ =

 ω2Ts +α− arctan2(y, x), with 3 measurements

π

2
+α− arctan2(y, x), with 2 measurements

,

where the x and y coordinates are known in the local 〈a(B1)〉 and 〈b(B2)〉 refer-

ence frames, and depend on the procedure followed in the first phase. Moreover,

the distance from the anchor is known from the last measurement. To reach

any prescribed distance from its anchor, the vehicle can turn by −µ on the

spot (i.e. v = 0, ω = −µ/Ts), to align to the diameter of the circle centred in

the reference anchor, and travel on a straight path, i.e. ω = 0. The vehicles

are aware of their radial coordinates with respect to their reference anchor and

of the distance D between the two anchors themselves, and have to plan their

trajectories in order to reduce their relative distance below the sensing range

S. To this aim, the two vehicles travel on a circular trajectory, centred in their

reference anchor, with prescribed radius d, as reported in Figure 7.1, highlighted
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in light blue. To determine the optimal radius d, we consider the situation rep-

resented in Figure 7.2(b) where the vehicles and the anchors are aligned on the

x-axis of 〈W 〉, with horizontal coordinates X1 = 0, xa = d, xb = D−d,X2 = D,

where we want the two vehicles to have distance S, and xa > xb, and thus

d = D+S
2 . We then define Ω = arccos

(
D

D+S

)
as half of the angle described by

the two segments connecting one of the anchors with the two intersections of

the trajectories, giving an estimate of the arc where the measurement between

the two vehicles can occur. To meet, the vehicles rotate in opposite directions,

choosing their velocities such that while a travels over a circle, b travels an arc

with amplitude 2Ω,

ωa = min

{
ωmax,

2vmax

D + S

}
, va = ωa

D + S

2
,

ωb =−Ω

π
ωa, vb =− ωb

D + S

2
.

(7.5)

With this choice of the control inputs, we can estimate an upper bound Tmax

to the time needed by the two vehicles to meet, based on the time needed by b

to travel over the entire circle, travelling twice on the 2Ω arc, yielding

Tmax =
2π + 2Ω

|ωb|
= 2π

( π
Ω

+ 1
)

max

{
1

ωmax
,
D + S

2vmax

}
.

7.2.3 Phase 3: Designing the last manoeuvres

As soon as the two vehicles meet and collect the first mutual measurement

ρ1,m, they are aware of their sequence Q in their local reference frame, of their

distance, and of the distance D between the two anchors. Let P a1 and P b1 be

the positions of the vehicles when the ρ1,m is collected. We define the local

reference frame 〈a(B1)〉 such that B1 = [0, 0]> and P a1 = [D+S
2 , 0]>. With the

same procedure, in 〈b(B2)〉, B2 = [0, 0]> and P b1 = [D+S
2 , 0]>, while the heading

of the two vehicles with respect to their x-axis is ±π/2 since they are travelling

on the circle centred in their reference anchor. In 〈b(B2)〉, we can regard B2

and P b1 as fixed-frame anchors, and thus the two distances D and ρ1,m generate

a 1 + 1 setting (see Section 7.1) for the vehicle a.

Second mutual measurement With the same rationale, we can treat the

next position P b2 of vehicle b as an additional anchor in 〈b(B2)〉. Therefore, by

collecting an additional measurement, we add no further information if the two

vehicles do not move, while we have a 2 + 1 if one of the two stays still, and a

1 + 1 + 1 if both vehicles move. By the analysis in 4, a 2 + 1 setting should be

preferred, since it yields a number N
[2+1]
IT ≤ 4 of indistinguishable trajectories
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that can be computed by checking a condition that will be detailed out later,

while a setting 1+1+1 yields N
[1+1+1]
IT ≤ 8 indistinguishable trajectories, where

N
[1+1+1]
IT cannot be computed. Therefore, vehicle b stops as soon as it collects

the first measurement (i.e. P b2 = P b1 ), while vehicle a follows the same procedure

as in the first phase to collect a second mutual measurement, i.e. moving straight

and possibly travelling on a circle centred in its previous position. With these

manoeuvres, we can update the reference frame 〈a(B1)〉, by adding the known

position P a2 = P a1 + [δx, δy]>, and define γ as the angle described by the two

branches of Qa intersecting in P a1 as γ = π − arctan2(δy, δx). To compute the

number of indistinguishable trajectories arising in this 2 + 1 setting, we build

a reference frame where P b1 lies on the origin, while P a1 lies on the x–axis, i.e.

〈a(P b1 )〉, which will allow us to compute the distance ‖B1 − P b1‖. In this frame,

P a1 = [ρ1,m, 0]>, P a2 = P a1 +A1[cosα,± sinα]> and

B1 = P a1 +
D + S

2
[cos(±α+ γ); sin(±α+ γ)]

>
,

and thus, we conclude that

‖B1 − P b1‖2 =

(
D + S

2

)2

+ ρ2
1,m + ρ1,m(D + S) cos(±α+ γ).

Therefore, in 〈b(B2)〉, the landmark B1 lies at the intersection between one

of the two circles centred in P b1 with radius ‖B1 − P b1‖ and the circle cen-

tred in B2 with radius D. We can compute the number of intersections be-

tween the circles. In particular, each circle centred in B1 has 2 intersections

if ‖B1 − P b1‖ ∈ (|D − S|/2, (3D + S)/2), hence fixing the maximum number

of indistinguishable trajectories to 4. If the vehicle collects the second mutual

measurement after travelling over a circular arc, it may be able to discard either

α or −α, hence yielding 2 indistinguishable trajectories. We remark that each

of these indistinguishable sequences Qa can be roto-translated from 〈b(B2)〉 to

〈W 〉, since the coordinates of all the positions, including B1, are known.

Third mutual measurement The indistinguishable sequences Qa in 〈b(B2)〉
can be built by using the solutions φ,∆x,∆y of the following set of equations

‖B2 −(RφB1 + T )‖2 = D2

‖ P b1 −(RφP
a
1 + T )‖2 = ρ2

1,m

‖ P b1 −(RφP
a
2 + T )‖2 = ρ2

2,m,

(7.6)

where Rφ =
[

cosφ − sinφ
sinφ cosφ

]
is a rotation matrix, T = [∆x,∆y]> is a transla-

tion vector, B1, P a1 and P a2 are expressed in 〈a(B1)〉, while B2, P b1 and P b2 in
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〈b(B2)〉. To this end, it is convenient to subtract the first equation from the

others, yielding two linear equations in ∆x and ∆y, substitute the result into

the first equation, thus having a nonlinear equation in φ with a known number

of solutions. Once the N ≤ 4 solutions to (7.6) are found, vehicle b is aware of

the possible positions P a2,i, i = 1, .., N in 〈b(B2)〉. For simplicity’s sake, a stops

as soon as it collects ρ2,m. Vehicle b plans (v2, ω2) and moves to the next point

P b2 , whose distance d from vehicle a is one of the N possible di = ‖P a2,i−P b2‖. As

in the previous analysis, to cope with measurement noise, b plans its manoeuvre

such that the predicted measurements di are as far as possible from each other,

thus defining the optimisation problem

max
v2,ω2

J, s. t. |v2| ≤ vmax, |ω2| ≤ ωmax, (7.7)

where J = min(i,j) |di−dj | is linear in v2, indeed with v2 = 0 the vehicles collect

the same measurement ρ2,m, and thus we select v2 = vmax. For each pair of

possible positions of vehicle a in 〈b(B2)〉, we can compute the difference of the

distances as a function of ω2. However, the cost J is defined piecewise, due to

the min(·) operator, and thus a closed-form solution cannot be found. Therefore,

we deal with this problem by enumeration: we select a sufficiently high number

of values for ω2 and, for each of them, we determine and choose the smallest

difference of distances, which gives us the value of ω2 corresponding to the

maximum value of the cost function J obtained through this procedure. Once

v2 and ω2 are selected, vehicle bmoves and collects the last mutual measurement,

which rules out the ambiguity between the N possible positions P a2 . The global

localisation problem is thus solved using the planned trajectories.

7.3 Simulation examples

We present here two different examples, with the same parameters S = 3 m,

D = 10 m, Ts = 1 s, vmax = 1 m/s and ωmax = π rad/s, with different initial

conditions. Different initial states will lead the vehicles to take different deci-

sions, thus covering all the described cases. We remark that the representation

of the trajectories will consist in a line connecting the successive positions of the

vehicles, while the path followed by the vehicles (see discretisation in (7.1a)),

consists of straight lines and arcs of circles. Figures 7.3 and 7.4, showing the

simulation results, are reported at the end of this chapter.
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First simulation

In the first simulation example, in Figure 7.3, we choose the initial conditions as

Qa0 = [2.4,−1.2, 4.8]>, Qb0 = [11.3,−0.4, 3.6]>. Figure 7.3(a) shows the position

sequences Qa in blue and Qb in red, during the whole simulation. Phase 1 of

vehicle a is described in Figure 7.3(b), where the vehicle moves straight falling

outside the sensing range of B1, represented by the solid black line, travels on

a circle and eventually collects the second measurement. These two measure-

ments are sufficient to collect the maximum amount of information from the

anchor, since the dotted trajectory, associated with −α, has points inside the

sensing range that should have been sensed by the anchor, thus allowing ve-

hicle a to avoid the potential ambiguity ±α. The same outcome is obtained

by b by collecting three measurements from B2. During phase 2, the two ve-

hicles reach their orbiting distance, dashed red and blue lines in Figure 7.3(a),

until they meet. A screenshot of the first mutual measurement is reported in

Figure 7.3(d1), where b stops, while a proceeds straight, i.e. on the tangent

of its orbiting circle, as depicted in Figure 7.3(d2). After the second mutual

measurement, vehicle a stops, while b finds the 4 potential trajectories followed

by a in 〈b(B2)〉, getting to the setting in Figure 7.3(c), thus finding the optimal

value for ω2, maximising the smallest difference of the distances, generating the

motion in Figure 7.3(d3). Despite the natural intuition, vehicle b does not move

on the bisector between two axes in Figure 7.3(c), but it seeks for a trade-off

between this behaviour and the maximum possible displacement.

Second simulation

For the second simulation example, presented in Figure 7.4, we choose the initial

conditions Qa0 = [−1.5,−1.7, 2.6]>, Qb0 = [10,−0.1, 6]>. In phase 1 the two

vehicles collect 3 measurements each from their reference anchors, then reach

the prescribed orbiting distance (phase 2). The noteworthy difference with

the previous example occurs in phase 3. Indeed, by following a straight path,

vehicle a falls outside the sensing range of b, travels over a circle, and eventually

falls inside the sensing range of b, ruling out the ambiguity ±α in (7.3), thus

decreasing to 2 the number of indistinguishable trajectories. Vehicle b plans its

last manoeuvre in the same way as before, maximising the only difference of the

two distances, as in Figure 7.4(b).
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Figure 7.3: First simulation example. (a) Path followed by vehicle a in blue, and by
b in red. The black crosses the position of the two landmarks B1, B2, with sensing
range S (black dashed line), whereas the dashed lines represent the orbiting distances.
(b) Phase 1: 〈a(B1)〉, two trajectories ±α of vehicle a, where the solid line represents
the sensing range S, the dashed lines represent the measurements ρ0 (outer) and ρ1

(inner). The dotted trajectory is discarded, since some of its points are inside the
sensing range. (c) Phase 3: 〈b(B2)〉 after the second mutual measurement. The black
solid line represents the points reachable by b with v2 = vmax, the red line and the
red crosses denote the best choice for ω2, the blue dots are the four potential positions
of the vehicle a, with distance ρ2 denoted by the black dashed line, while the thin
black lines represent the axes of the segments with a pair of blue dots as endpoints.
(d) Phase 3, zoom from (a): the vehicles collect their first mutual measurement (d1),
a moves on the tangent (black solid line) of the dashed circle (d2), and eventually b
moves according to the control inputs described in (c), i.e. turning slightly left.
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Figure 7.4: Second simulation example. (a) Paths followed by the two vehicles. (b)
Phase 3: Situation seen by vehicle b while planning its last manoeuvre, with the same
conventions as in Figure 7.3. The possible positions of vehicle a are reduced to 2, since
it has followed a curved trajectory outside the sensing range of b (similar to the one in
Figure 7.3(a)), thus ruling out the ambiguity between the two trajectories. (c) Phase
3: zoom on the last points reached by the two vehicles.
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8. MULTIAGENT CONSTRUCTIBILITY ANALYSIS

In Chapter 7, we have proposed a trajectory planning algorithm for a pair of

vehicles with absolute and relative range measurements. For the given scenario

with two fixed ranging sensors and two vehicles moving without prior informa-

tion on their state, the algorithm we have proposed is sufficient to guarantee

global constructibility, while no analysis has been presented on the necessary

conditions to attain local or global constructibility properties. In this chap-

ter, following the same rationale as in Parts I and Part II, we analyse the

constructibility properties of a multiagent system composed of unicycle–like ve-

hicles collecting relative range measurements. The results of the global analysis

in Chapter 4 are extended to the multiagent scenario, but, as stated in Chap-

ter 1, a complete global constructibility analysis has not been carried out in

this chapter, but only a limited amount of results is presented on the global

problem.

Contributions: In this analysis, we introduce some simplifications, in line

with the assumptions in the previous chapters, that allow us to consider the

position sequences of the vehicles and obtain some simpler geometrical insights

on the results devised analytically. Moreover, we address relative localisation,

with respect to an anchor vehicle. First, we analyse the constructibility prob-

lem from a global perspective and propose some necessary conditions on the

trajectory and measurements of each vehicle when a constructible subsystem

can be identified. Second, we analyse the local constructibility properties for a

3–agent system by means of the Constructibility Gramian for the whole system,

and lastly, we extend this results for multiagent systems with a generic number

N of vehicles.

8.1 Problem Description

Let us consider a multiagent system composed of N ≥ 2 vehicles. Each vehi-

cle is described in the global reference frame 〈W 〉 by its state vector Wq[i] =

[Wx[i];Wy[i];Wθ[i]]> composed of its Cartesian position and its orientation with

respect to a given reference axis. For each vehicle V [i], i = 0, . . . , N − 1, we

define a local reference frame 〈V [i]〉, whose origin lies on the initial position
WP [i](0) = [Wx[i](0);Wy[i](0)] of the vehicle and whose x-axis is aligned with the

initial heading Wθ[i](0) of the vehicle. In 〈V [i]〉, and analogously in 〈W 〉, the

time evolution of the i-th vehicle state q[i] = [x[i]; y[i]; θ[i]]> is governed by the

following equations:

ẋ[i] = v[i] cos θ[i], ẏ[i] = v[i] sin θ[i], θ̇[i] = ω[i], (8.1)
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where v[i] and ω[i] are the control inputs, representing the forward and angular

velocities of the vehicle, respectively. By propagating the system dynamics (8.1)

with the control input history v[i](τ), ω[i](τ), which is assumed known for τ ∈
[0, t], we can reconstruct the position P [i](t) of the vehicle in 〈V [i]〉 at any time

t ≥ 0. We assume that the vehicles are equipped with ranging sensors measuring

the relative distance between two agents; we also assume that a vehicle can

collect the distances from more than one vehicle simultaneously. Moreover,

we consider the sensors to collect measurements only at known time instants,

to model finite sensing range or finite sampling frequency of the sensors. We

denote by t
[i,j]
k , k ∈ N, a time instant when two vehicles V [i] and V [j] collect

their relative distance, while elements t
[i]
k ∈ Θ[i] are defined as the time instant

when V [i] collects a measurement, independently on the other vehicle involved

in the measurements. For V [i], the output equation reads as

z
[i]
k =

{
ρ[i,j](t

[i]
k ), ∀ j ∈ N [i](t

[i]
k )
}
, (8.2)

where ρ[i,j](t
[i]
k ) := ‖WP [i](t

[i,j]
k )−WP [j](t

[i,j]
k )‖, WP [i](t

[i,j]
k ) is the position of the

i-th agent at time t
[i,j]
k in the world reference frame 〈W 〉, while N [i](t

[i]
k ) is the

set of neighbours of the i-th agent at time tk, i.e. the set of vehicles measuring

their distance from V [i] at time t
[i]
k .

Notation. To simplify the notation, we denote by the subscript k the time

instant t
[i]
k , when the index i is clear from the context, e.g. N [i]

k is the short

notation for N [i](t
[i]
k ), and ρ

[i,j]
k is short for ρ[i,j](t

[i]
k ).

We notice that, by (8.2), only the position of the vehicles is involved in the

measurements, and thus we can focus on the sequence of positions Q[i]

Q[i] =
{
P

[i]
k , ∀ k : t

[i]
k ∈ Θ[i]

}
, (8.3)

expressed in the local reference frame 〈V [i]〉, which is known by the previous

considerations. By the dynamics (8.1), we can express the sequence of points

reached by a vehicle in the world reference frame, denoted by WQ[i], through the

rigid transformation [WR[i],WT [i]] of Q[i] as

WP
[i]
k = WR[i]P

[i]
k + WT [i], (8.4)

where WR[i] =
[

cosφ[i] − sinφ[i]

sinφ[i] cosφ[i]

]
is a rotation matrix, while WT [i] = [∆x[i]; ∆y[i]]>

is the translation vector. While the actual rigid transformation [WR[i],WT [i]] is

unknown, we define for each vehicle the sequence of points Q̃[i] as

Q̃[i] =
{
P̃

[i]
k = R̃[i]P

[i]
k + T̃ [i], ∀ t[i]k ∈ Θ[i]

}
, (8.5)
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with R̃[i] and T̃ [i] arbitrary rotation and translation.

Definition 8.1.1. A trajectory of the multiagent system is said to be compliant

with the measurements when R̃[i] and T̃ [i], i = 0, . . . , N − 1 are such that

‖P̃ [i]
k − P̃

[j](t
[i]
k )‖ = ρ

[i,j]
k , (8.6)

with P̃
[i]
k ∈ Q̃[i], j ∈ N [i]

k , t
[i]
k ∈ Θ[i].

Trivially, by Definition 8.1.1, when R̃[i] = WR[i] and T̃ [i] = WT [i], i =

0, . . . , N − 1, i.e. when we pick the actual rigid transformation, the trajec-

tory is compliant with the measurements, but there may exist other compliant

rigid transformation.

For the multiagent system, we build an overall state vector Wq(t) ∈ R3N by

stacking the state vectors of the N vehicles, expressing their unknown coordi-

nates and orientations in the world reference frame 〈W 〉. We aim at analysing

the necessary and sufficient conditions to reconstruct the state Wq(t), based on

the measurements and on the control input history associated with each vehicle.

To this aim, we give some definitions on the system obtained, with continuous-

time dynamics and discrete-time output, having the shape

q̇(t) = f (q(t), u(t)) , zk = h (q(tk)) . (8.7)

To account for both continuous and discrete time, we associate with k = 0 the

initial time t = t0, while k = kf corresponds to the final time tf , where the

absence of superscripts refers to the whole multi–agent system.

Definition 8.1.2 (u-backward indistinguishability). Given the system (8.7) and

a time interval T = [t0, tf ], two final states qf and q̄f are said to be u-backward

indistinguishable if, for the given input history u(t), t ∈ T , the output histories

zk and z̄k, k = 0, . . . , kf of the trajectories satisfying the final conditions qf and

q̄f , respectively, are identical. Moreover, we define Iu(qf ) as the set of final

states that are backward indistinguishable from qf .

While backward indistinguishability is a property of the final state reached

by the system, we can also assess the constructibility properties of the system

itself.

Definition 8.1.3 (u-(weak) constructibility). Given a time interval T = [t0, tf ]

and a control input history u(t), t ∈ T , the system (8.7) is said to be u-

constructible at qf on T if Iu(qf ) = {qf}, while it is said to be u-weakly

constructible at qf on T if qf is an isolated point of Iu(qf ).

As in the previous chapters of this thesis, with a slight abuse of notation,

we will refer to a (weakly) constructible system as a system that is (weakly)

124



8. MULTIAGENT CONSTRUCTIBILITY ANALYSIS

constructible at its final state qf over a time interval T = [t0, tf ] where the

measurements are collected, while we will refer to indistinguishable trajectories

as trajectories having u-indistinguishable final conditions. In the remainder of

the chapter, without loss of generality, we assume the reference frame 〈V [0]〉 to

coincide with the world reference frame, and we will refer to the vehicle V [0] as

to anchor vehicle, to underline that its position sequence Q[0] is known in 〈W 〉.
To give a practical interpretation of Definitions 8.1.2 and 8.1.3 for our mul-

tiagent system, we provide two facts, which rely on the following proposition:

Proposition 8.1.4. The state q(t) = [x(t), y(t), θ(t)]> of a unicycle vehicle with

dynamics (8.1) can be reconstructed from a finite number of time derivatives of

its position P (t) = [x(t), y(t)]>.

Proof. The proof descends from the fact that the unicycle kinematic model is

differentially flat, with its position as flat output [Fliess et al., 1995].

By Proposition 8.1.4, reconstructing the state of a vehicle boils down to

finding a rigid transformation [R̃[i], T̃ [i]] from the reference frame 〈V [i]〉 of the

vehicle to the world reference frame 〈W 〉.

Fact 8.1.5 (Global Constructibility). A multiagent system is constructible if

there is a unique set of rigid transformation {[R̃[i], T̃ [i]], i = 1, . . . , N − 1} such

that (8.6) holds true, i.e. when there exist a unique trajectory of the multiagent

system which is compliant with the measurements, as for Definition 8.1.1.

Fact 8.1.6 (Local Constructibility). A multiagent system is weakly constructible

if, given a solution φ̃[i], ∆x̃[i] and ∆ỹ[i] of (8.6), there exist neighbourhoods

S(φ̃[i]), S(∆x̃[i]) and S(∆ỹ[i]) of non–null size such that ∀φ̂[i] ∈ S(φ̃[i]), ∀∆x̂[i] ∈
S(∆x̃[i]) and ∀∆ŷ[i] ∈ S(∆ỹ[i]), (8.6) does not hold true.

Fact 8.1.6 presents considerations with only local validity, hence the name

local constructibility, since it excludes the existence of other compliant rigid

transformation R̃[i], T̃ [i] only in the neighbourhood of the given solution. The

global result is presented in Fact 8.1.5.

8.1.1 Problem Statement

As a natural extension of the analysis in Chapter 4 to multiagent systems,

we analyse how the conditions on the trajectories followed by the vehicles, their

number and their relative measurements affect the constructibility of the system.

Problem 8.1. Given N agents, whose trajectories in their local reference frames

〈V [i]〉 are represented by the sequences of positions Q[i], i = 0, . . . , N−1, find the
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conditions on the trajectories Q[i] and on the measurements z
[i]
k , i = 0, . . . , N−1,

such that the system is (weakly) constructible. In light of Facts 8.1.5 and 8.1.6,

this problem is equivalent to finding the conditions such that (8.6) has a unique

or a finite number of solutions [R̃[i], T̃ [i]] representing rigid transformation from

〈V [i]〉 to 〈V [0]〉, i = 1, . . . , N − 1.

8.1.2 Preliminary Results

In Chapter 4, we have analysed the setting where a vehicle collects non–simul-

taneous measurements from fixed sensors (“anchors”) deployed in the environ-

ment. In this section we report and extend the devised necessary conditions

to settings where simultaneous measurements are collected. Indeed, in Chap-

ter 7, we have shown that simultaneous measurements have peculiar structural

properties, which are clearly different from the case in which measurements are

collected at distinct times. This extension is instrumental to the constructibil-

ity analysis of multiagent systems, modelling a vehicle that does not change

position between to successive measurements or being in sight of two or more

agents at the same time instant. The two following theorems, with reference

to Facts 8.1.5 and 8.1.6, describe global and local constructibility results and

consider the setting where a vehicle is aware of its position sequence Q in its

reference frame 〈V 〉, while the environment is instrumented with fixed sensors

with known position Bj , j = 0, . . . , NB − 1 in 〈W 〉.

Theorem 8.1.7 (Global Constructibility). Given a sequence of points Q with

Nm measurement points, necessary conditions for the system to be globally con-

structible are: Nm ≥ 4, the vehicle collects at most Nm−2 range measurements

from each anchor Bj, and at most Nm − 2 measurements from each position

Pk ∈ Q.

Theorem 8.1.8 (Local Constructibility). Given a sequence of points Q with

Nm measurement points, necessary conditions for the system to be locally con-

structible are: Nm ≥ 3, the vehicle collects at most Nm−1 range measurements

from each anchor Bj, and at most Nm − 1 measurements from each position

Pk ∈ Q.

Remark 8.1.9. In Chapter 4 we have proved a variation of these theorems

with the demanding assumption that all the positions Pk ∈ Q are distinct. The

proof is based on finding a rigid transformation [WR,WT ] from 〈V 〉 to 〈W 〉 such

that (8.6) holds true.

Proof. Since the proofs of Theorem 8.1.7 and Theorem 8.1.8 rely on the same

idea, they are presented here together. Starting from Chapter 4, we relax the
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P
[0]
0

P
[1]
0

P
[2]
0

P
[3]
0

ρ[4,5]

WQ[4]

WQ[5]

WP
[4]
0

WP
[4]
1

Figure 8.1: Example: the four idle anchor vehicles V [j], j = 0, . . . , 3 are represented
by black crosses, and collect their relative distance from the blue V [4] and green V [5]

vehicles, which also measure their relative distance ρ[4,5] at their last position. The
actual sequence of the vehicles positions are depicted in solid lines, while their alias
sequences are dotted. When only one target vehicle is considered (system S−), the
system is weakly constructible, while when both vehicles are considered, the system is
globally constructible.

condition of non–coincident points and allow for simultaneous measurements,

or equivalently, for coincident positions Pk of the vehicle. To show that the last

condition in the two theorems is necessary, we follow a symmetric procedure

with respect to the proof in Chapter 4, by seeking for a rigid transformation

[VR, VT ] from 〈W 〉 to 〈V 〉 such that (8.6) holds true. By symmetry, and since
WR = VR>, and WT = −VR> VT , the procedure and the results are equivalent,

hence concluding the proof.

Example 8.1. To visualise the conditions in Theorem 8.1.7 and Theorem 8.1.8,

let us consider the scenario in Figure 8.1. The vehicle V [4] (in blue) collects 4

measurements from 4 distinct anchors in position P
[j]
0 , j = 0, . . . , 3, but it col-

lects 3 measurements in its first position WP
[4]
0 and only one from its last position

WP
[4]
1 . Therefore, it meets the necessary conditions for local, but not for global

constructibility, i.e., in a neighbourhood of the initial vehicle orientation θ[4](0)

we can distinguish between the solid and the dotted blue lines representing the

possible sequences of robot positions stemming from WP
[4]
0 . ?

Fact 8.1.10. The analysis in Chapter 4 also reports the sufficient conditions

for local and global constructibility, where some more properties are required to

the relative position of the measurement points and of the fixed sensors, e.g.

non–collinearity.
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8.2 Global Constructibility Analysis

In the previous section, we have recalled and proposed some results where the

environment is assumed to be equipped with fixed sensors. In this section we

shift our focus to multiagent systems measuring their mutual distance, hence

dealing with the problem of relative localisation. As a first simplification, let

us consider the scenario where a set of anchor vehicles are deployed in the

environment and do not move, i.e. they act as sensors with positions P [i](t) =

B[i], ∀ t, known in 〈W 〉, and a vehicle V is localising itself with respect to these

positions. The extension of the results in Theorem 8.1.7 and Theorem 8.1.8 to

this scenario is trivial. As a natural follow–up of this scenario, we consider some

anchor vehicles to be moving across the environment, while a target vehicle V

is localising itself with respect to them. We formalise the problem as follows.

Let us consider a constructible multiagent system, denoted by S−, composed

of N vehicles, whose position sequences WQ[i], i = 0, . . . , N − 1, are known in

the world reference frame 〈W 〉. By relying on the results stated in the previous

sections, we want to find the conditions on the trajectory and measurements

collected by an additional vehicle V , such that the new system, denoted by

S, achieves local/global constructibility. To analyse this problem, we cast it

to a similar problem involving a set of fixed-frame sensors, where results in

Theorem 8.1.7 and Theorem 8.1.8 are applicable. Indeed, for any time instant

t
[N ]
k ∈ T [N ], the position P

[N ]
k of V are known in its local reference frame, and

so are the positions WP [j](t
[N ]
k ) of the anchor vehicles in 〈W 〉. Therefore, we

build the set B

B =
⋃

t
[N]
k ∈T [N]

Bk, with Bk =
{
WP [j](t

[N ]
k ) : j ∈ N [N ]

k

}
,

containing the position of the vehicles (acting as anchors) collecting measure-

ments from the N -th agent. This equivalent single–agent system is locally or

globally constructible as long as the conditions in Theorems 8.1.7 and 8.1.8 hold

true. Moreover, by the definition of S− and S, whenever this single-agent system

is (weakly) constructible, so is S. An example is shown in Figure 8.2, where a

vehicle added to a constructible system S− satisfies the local conditions. When

no constructible system S− exists, the overall system S may still be globally con-

structible, as reported in Example 8.2. However, the analysis of this scenario is

still an open problem.

Example 8.2. With reference to Figure 8.1, let S− include the anchor vehicles

V [j], j = 0, . . . , 3, and the vehicle V [4] (blue). By Theorem 8.1.7, there are two
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P
[0]
0

P
[0]
1

WQ[2]

WQ[1]

Figure 8.2: Systems S− and S. The crosses represent the positions of the anchor
vehicle, while the dashed lines represent the measurements collected. The system S−,
with V [1] in blue, is constructible, since the position sequence WQ[1] satisfies the suf-
ficient conditions. The second vehicle with position sequence WQ[2] (solid green line),
does not meet the necessary conditions in Theorem 8.1.7, and different rigid transfor-
mation of Q[2] compliant with the measurements from V [1] (black circles) are depicted
in dotted lines with the hollow circles. However, system S is weakly constructible,
since small rigid transformations of WQ[2] change the sensor readings.

indistinguishable trajectories, hence S− is weakly constructible. The system S,

where V [5] (green) collects ranging measurements from the anchor vehicles and

its distance ρ[4,5] from V [4] at their last time step, is constructible because only

for the actual trajectories in Figure 8.1 the distance between the last positions

of the vehicles is ρ[4,5]. Similarly, the same conclusions are drawn when S−

includes V [5] instead of V [4]. ?

The main result of this section is a sufficient, but not necessary condition

for global constructibility, stated in the following fact.

Fact 8.2.1. When a globally constructible subsystem S− can be identified, suf-

ficient conditions for the system S with an added vehicle V to be globally con-

structible are given in Theorem 8.1.7 and in Fact 8.1.10, while conditions for

local constructibility are given in Theorem 8.1.8 and in Fact 8.1.10.

8.3 Weak Constructibility Analysis

We have considered previously a particular case of multiagent system, where a

new vehicle is added to an already constructible system, and we have analysed

the properties of the trajectory Q[N ] of the new vehicle and of the measure-

ments collected, while we have shown in Example 8.2 that a system S may be

constructible even though there exist no constructible subsystem S−. In this

section, we analyse the weak constructibility properties of a general multiagent
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system, which is a remarkable generalisation of what proposed in Chapter 7,

where just two agents and fixed anchors were considered. To this aim, we build

the Constructibility Gramian of the system and analyse when the contributions

given by the measurements are linearly dependent. Since the state of the an-

chor vehicle V [0] is known, we estimate the state q ∈ R3(N−1) of the vehicles

V [i], i = 1, . . . , N . Therefore, when the vehicles in the system collect at least

3(N − 1) linearly independent measurements, where N is the number of agents

and 3 is the dimension of the state of each vehicle, the Constructibility Gramian

has full rank, hence the system is weakly constructible. At the end of the section,

we also propose some geometrical insights, for a 3–agent system, on the results

obtained analytically.

8.3.1 Constructibility Gramian

We build the Constructibility Gramian of the multiagent system with state
Wq(t) ∈ R3N , dynamics (8.1) and intermittent ranging measurements (8.2). Let

Nm be the total number of measurements collected by the vehicles, i.e. Nm =
1
2

∑N−1
i=0 N

[i]
m , where N

[i]
m is the number of measurements collected by V [i], while

the division by 2 accounts for each measurement involving two vehicles. As in

Chapter 4, for a system (8.7) with continuous-time dynamics and discrete-time

output, the Constructibility Gramian can be defined as

GC =

Nm∑
l=1

γlγ
>
l , with γ>l =

∂h

∂q

∣∣∣∣
t=tl

Φ(tl, tf ), (8.8)

with tl denoting the time instant when the l-th measurement is collected. The

sensitivity matrix Φ(tl, tf ) is the unique solution to the final value problem

Φ̇(tl, tf ) =
∂f

∂q

∣∣∣∣
t=tl

Φ(tl, tf ), Φ(tf , tf ) = In.

Fact 8.3.1. For a team of unicycle vehicles (8.1), we compute Φ(t, tf ) in closed

form as

Φ(t, tf ) = diag
i


1 0 −

(
y[i](t)− y[i](tf )

)
0 1 x[i](t)− x[i](tf )

0 0 1


 , (8.9)

where diagi{Mi} is a block diagonal matrix with blocks Mi.

From (8.9) we can compute explicitly the expression of the contributions

γl to the Constructibility Gramian. Let us consider the measurement repre-

sented in Figure 8.3. The slope of the line joining the two vehicles is α
[i,j]
k =
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x

y

〈W 〉
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[i,j]
k

p[i,j](t
[i]
k )

p[j,i](t
[i]
k )

WP [j](t
[i]
k )

WP [i](t
[i]
k )

WP
[j]
f

WP
[i]
f

Figure 8.3: Quantities that affect the vector γ
[i,j]
k of a measurement between vehicles

V [i] and V [j]. The two circles represent the position P [i] and P [j] of the two vehicles
at the current time instant t

[i]
k , while the two squares denote their final positions Pf .

The quantities that define the vector γ
[i,j]
k are α

[i,j]
k , p

[i,j]
k and p[j,i](t

[i]
k ).

arctan2
(
WP

[i]
k −WP [j](t

[i]
k )
)

. By this definition, α[j,i](t
[i]
k ) = π + α

[i,j]
k . The

signed distances of the final points from the line joining the two vehicles are

p
[i,j]
k =

1

ρ
[i,j]
k

det
[
WP

[i]
f −

WP
[i]
k ,

WP [j](t
[i]
k )−WP

[i]
k

]
,

p[j,i](t
[i]
k ) =

−1

ρ
[i,j]
k

det
[
WP

[j]
f −

WP [j](t
[i]
k ), WP

[i]
k −

WP [j](t
[i]
k )
]

A measurement ρ
[i,j]
k , as represented in Figure 8.3, gives the Constructibility

Gramian a contribution γ
[i,j]
k

γ
[i,j]
k = e>i �

cosα
[i,j]
k

sinα
[i,j]
k

p
[i,j]
k

− e>j �
cosα

[i,j]
k

sinα
[i,j]
k

p[j,i](t
[i]
k )

 , (8.10)

where � denotes the Kronecker product and ei is the unitary row vector aligned

with the i-th axis of RN−1 and e0 = 0. To build the Constructibility Gramian,

we take the sum of these contributions, with the constraint j < i to avoid mutual

measurements be considered twice and to include the measurements collected

from the reference vehicle V [0]. Therefore,

GC =

N−1∑
i=1

∑
t
[i]
k ∈Θ[i]

∑
j∈N [i]

k
j<i

γ
[i,j]
k γ

[i,j]
k

>
, (8.11)
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where each term γ
[i,j]
k γ

[i,j]
k

>
is a 3(N − 1) × 3(N − 1) matrix with rank 1. We

want to find the conditions on the measurements collected by the vehicles such

that the Gramian has full rank, thus guaranteeing weak constructibility.

8.3.2 Three-agent System

For the sake of simplicity, let us consider a system composed of three vehicles

V [i], i = 0, 1, 2, where the world reference frame 〈W 〉 coincides with the ref-

erence frame 〈V [0]〉 of the first vehicle. We seek sufficient conditions on the

measurements to achieve a full–rank Gramian. To this aim, we analyse the

contributions given by all the measurements and draw some considerations on

their linear dependence. By using (8.10), we compute the two contributions

γ[1,0] and γ[2,0] given by measurements involving the vehicle V [0], and the con-

tribution γ[1,2] given by the relative measurement between V [1] and V [2], where

the subscript k is dropped for brevity.

γ[1,0] = [C [1,0] ; S[1,0] ; p[1,0] ; 0 ; 0 ; 0 ]>,

γ[2,0] = [ 0 ; 0 ; 0 ; C [2,0] ; S[2,0] ; p[2,0] ]>,

γ[1,2] = [C [1,2] ; S[1,2] ; p[1,2] ; −C [1,2] ; −S[1,2] ; −p[2,1] ]>,

where C [i,j] and S[i,j] are short notations for cosα[i,j] and sinα[i,j], respectively.

By definition, each contribution γ[i,j]γ[i,j]> is a matrix with rank 1, and thus

6 measurements are needed to have a full rank Gramian, provided that their

contributions γ[i,j] are linearly independent, as stated in the following Lemma.

Lemma 8.3.2. Let µk ∈ Rn, k = 1, . . . , Nµ, be a set of vectors. The matrix

M having the vectors µk as columns has the same rank as the matrix M =∑Nµ
k=1 µkµ

>
k .

Proof. We prove this result by showing that the null spaces of the matrices M
>

and M coincide. Let w ∈ Rn belong to the null space of M
>

, i.e. M
>
w =

0. By the definition of M , w is such that µ>k w = 0, ∀ k, and thus Mw =∑N
k=1 µkµ

>
k w = 0, hence w belongs to the null space of M . Let w ∈ Rn be a

vector of the null space of M . Then, by definition of M ,
∑N
k=1 w

>µkµ
>
k w =

0. Matrices µkµ
>
k are symmetric and positive semidefinite, therefore all the

terms w>µkµ
>
k w are non–negative. Thus, the summation is 0 if and only if

w>µkµ
>
k w = 0, ∀ k = 1, . . . , Nµ. Therefore, w must belong to the null space of

M
>

, hence concluding the proof.

In light of Lemma 8.3.2, we can get results on the rank of the Constructibil-

ity Gramian by analysing the terms γ
[i,j]
k and their linear dependence. To this
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aim, we first analyse the conditions when measurements between the same pair

of agents generate linearly dependent column spaces γ
[i,j]
k . For each measure-

ment, we define a line with slope α
[i,j]
k joining the two points involved in the

measurement.

Lemma 8.3.3 (Same pair of vehicles). Given two vehicles collecting Nm mea-

surements of their mutual distance, the maximum rank achieved by the Con-

structibility Gramian is 3. Moreover, (1) For any Nm, the Gramian has rank

1 when the 2Nm points involved in the measurements are aligned; (2) for any

Nm ≥ 3, the Gramian has rank 2 when the lines associated with each measure-

ment have a common intersection, or are parallel.

Proof. For the sake of simplicity, we will consider the pair V [1]–V [0]. Each

measurement generates a contribution γ
[1,0]
k γ

[1,0]
k

>
with rank 1 and only 3 non–

zero entries, hence the maximum rank of the Gramian is 3.

With two measurements, dependence is achieved when γ
[1,0]
1 = `γ

[1,0]
2 , ` ∈ R.

Two terms constrain the two lines to have the same slope, while the third one

imposes that the (signed) distance p[1,0] between the final position and these lines

be the same, hence the two lines must coincide. This result can be extended to

any number of measurements where all the involved points are aligned.

With three non-collinear measurements, by Lemma 8.3.2, we build the ma-

trix Γ having the first three entries of γ
[1,0]
1 , γ

[1,0]
2 and γ

[1,0]
3 as columns, and

compute its determinant. det Γ = m1(δ3 − δ2) + m2(δ1 − δ3) + m3(δ2 − δ1),

where mk = tanα
[1,0]
k is the slope of the k-th line and δk = Wy

[1]
k − mk

Wx
[1]
k

is its y-intercept. The determinant is 0 as long as these three lines have one

common intersection, or are parallel. The proof can be extended to any number

of measurements with similar arguments.

This result includes one of the conditions in Theorem 8.1.8. Indeed, when

a vehicle collects 3 or more measurement from an idle anchor vehicle, all the

lines associated with the measurements intersect in the position of the anchor

vehicle, while when a still vehicle collects 3 or more measurements, all the lines

associated with the measurements intersect in the location of the robot.

Besides linear dependence between measurements collected by the same pair

of vehicles, dependence may occur also when different pairs of vehicles are taken

into account. By the structures of the terms γ
[i,j]
k , we need to involve all the

3 pairs of vehicles in a 3–agent system. To analyse this scenario, we introduce

the definition of agent–wise linear independence.

Definition 8.3.4 (Agent–wise linear independence). Let us consider a set of

ranging measurements ρ
[i,j]
k involving the i-th agent. The measurements are

said to be linearly independent with respect to vehicle V [i] if the entries of
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the vectors γ
[i,j]
k corresponding to the agent V [i], i.e. γ

[i]
k = (ei � I3) γ

[i,j]
k , are

linearly independent.

With a slight abuse of notation, we will refer to a measurement agent–wise

dependent with respect to agent V [i] as to a measurement that does not pro-

vide any constructibility contribution given the set of measurements previously

collected by V [i].

For the sake of simplicity, we initially consider the particular case where one

of the 3 pairs arising in a 3–agent system collects its first measurement. This

way we analyse the conditions when linear dependence arises among distinct

pairs of agents.

Lemma 8.3.5 (Different pairs of vehicles). Let us consider a 3–agent system,

whose 3 pairs have collected n1, n2, and 0 linearly independent measurements,

respectively, i.e. the rank of the Constructibility Gramian is n1 + n2, with

n1, n2 ≤ 3. A measurement collected by the pair that has collected 0 mea-

surements increases by 1 the rank of the Constructibility Gramian, unless it

is agent–wise linearly dependent with respect to both the agents involved in the

measurement.

Proof. Without loss of generality, consider this scenario: the pair V [0]–V [1] has

collected 3 linearly independent measurements (i.e. the system S− consisting of

this pair is weakly constructible), while the pair V [0]–V [2] has collected n2 mea-

surements. The pair V [1]–V [2] collects its first measurement. By Lemma 8.3.2,

the Constructibility Gramian has the same rank as a matrix Γ having the vectors

γ
[i,j]
k ∈ R6 as columns, with

Γ =



Γ[1,0] 0
C

[1,2]
3

S
[1,2]
3

p
[1,2]
3

0
C

[2,0]
0 C

[2,0]
1 C

[2,0]
2

S
[2,0]
0 S

[2,0]
1 S

[2,0]
2

p
[2,0]
0 p

[2,0]
1 p

[2,0]
2

−C [1,2]
3

−S[1,2]
3

−p[2,1]
3


, (8.12)

where the first three columns gather the terms γ
[1,0]
k and Γ[1,0] is a 3 × 3 non–

singular matrix by assumption. We now consider an increasing number of

columns in the second block, associated with the measurements ρ
[2,0]
k , which

is equal to n2. We remark that, since Γ[1,0] is full rank, any contribution γ
[1,2]
3

will be agent–wise linearly dependent with respect to V [1].

n2 = 0: The last column, i.e. γ
[1,2]
3 , is the first measurement involving V [2],

and thus it is clearly agent–wise independent with respect to V [2] itself. Since

the last three entries are non–zero, γ
[1,2]
3 increases by 1 the rank of Γ.
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n2 = 1 or n2 = 2: We exploit the block structure of Γ, and look at the

last three rows. When considering the role of the measurement ρ
[1,2]
3 , the same

conditions as in Lemma 8.3.3 apply, i.e. ρ
[1,2]
3 does not increase the rank if it is

collected on the same line as the only measurement ρ
[2,0]
1 (n2 = 1), or when the

three lines associated with the three measurements intersect in a single point

(n2 = 2).

n2 = 3: The Gramian is full rank, and the contribution γ
[1,2]
3 is agent–wise

dependent with both V [1] and V [2].

We can adapt the same procedure to the cases with lower values of n1,

where the agent–wise dependence conditions must hold true for both V [1] and

V [2] simultaneously, hence concluding the proof.

Since there is no explicit time dependence, Lemmas 8.3.3 and 8.3.5 cover all

the cases where one pair has collected three independent measurements. Since a

system with 6 independent measurements is already constructible, only one sit-

uation is left to analyse: two pairs have collected 2 independent measurements,

while the last pair is collecting its second measurement.

Lemma 8.3.6 (Same and different pairs of vehicles). Let us consider a 3–agent

system, whose 3 pairs of vehicles have collected 2, 2 and 1 agent–wise linearly

independent measurements, respectively, i.e. the rank of the Constructibility

Gramian is 5. A further measurement ρ
[i,j]
k , collected by the pair that has

collected only 1 measurement, increases to 6 the rank of the Constructibility

Gramian unless WP [j](t
[i]
k ) lies on the line passing through WP

[i]
k having a slope

that depends on the other 5 measurements and on WP
[i]
k itself.

Proof. Without loss of generality, let us consider the pair V [1]–V [2] to collect

the last measurement ρ
[1,2]
k with the position WP

[1]
k fixed on the plane, while

WP
[2]
k = [Wx

[2]
k ,

Wy
[2]
k ]>. As in (8.12), we build the matrix Γ having as columns

the 6 vectors γ
[i,j]
k . Matrix Γ is singular whenever det Γ = aWx

[2]
k +bWy

[2]
k +c = 0,

where the coefficients a, b and c depend on the other measurements and are such

that aWx
[1]
k + bWy

[1]
k + c = 0, i.e. describing a line passing through the position

WP
[1]
k . If WP

[2]
k lies on this line, then, by Lemma 8.3.2, the Constructibility

Gramian is singular, and thus the system is unconstructible.

In light of the results in Lemmas 8.3.3, 8.3.5 and 8.3.6, we can state the

main result of this analysis.

Proposition 8.3.7 (3–agent system). A 3–agent system is weakly constructible

if: (1) a number of Nm ≥ 6 measurements is collected, (2) each pair collects

at most Nm − 3 measurements, (3) each vehicle satisfies the conditions in The-

orem 8.1.8 (i.e. the critical cases in Lemmas 8.3.3 and 8.3.5 do not occur).
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Moreover, if each pair of agents collects 2 measurements, then the conditions in

Lemma 8.3.6 need to be satisfied.

By Proposition 8.3.7, 6 measurements can be sufficient for weak constructibil-

ity in a 3–agent system. Since constructibility properties do not change with the

reference frame, we can split the 6 measurements among the 3 pairs of vehicles

in 3 ways: 3–3–0, 3–2–1, and 2–2–2, where, without loss of generality, we list in

order the three pairs V [0]–V [1], V [0]–V [2], and V [1]–V [2]. In the 3–3–0 scenario,

both V [1] and V [2] collect three measurements from V [0], without interacting

with each other. They independently fulfil the conditions in Theorem 8.1.8,

thus achieving weak constructibility. The same conclusion is drawn for the pair

V [0]–V [1] in the 3–2–1 setting, thus generating a weakly constructible subsystem

S−, as described in Figure 8.2. Vehicle V [2] collects 3 measurements from S−,

satisfying the conditions in Theorems 8.1.8, and thus the system S is weakly

constructible. In the case 2–2–2, the system cannot be decomposed into weakly

constructible subsystems as in the previous situations, but all the agents are

needed to achieve weak constructibility of the whole system, as in Lemma 8.3.6.

8.3.3 Geometry of Constructibility

From a geometrical perspective, we consider the sets of points Q[1] and Q[2] as

rigid bodies, whose positions and orientations are constrained by the collected

measurements. Figure 8.4 shows a scenario where two vehicles V [1] and V [2]

collect two measurements from V [0] each, and a mutual measurement. With

the measurements in WP
[1]
0 and WP

[1]
1 , the pair V [0]–V [1] does not change its

sensor readings when Q[1] slightly rotates about J1; indeed the circles centred

in J1 and in WP
[0]
0 share the same tangent in WP

[1]
0 , and analogously for WP

[1]
1 .

Therefore, any allowed motion of Q[1], i.e. different choice of [R̃[1], T̃ [1]] such

that (8.6) still holds true, makes the point WP
[1]
2 locally move on the tangent of

the circle centred in J1. The same applies to V [2] with respect to J2. Since the

measurement ρ
[1,2]
2 is collected on the line joining J1 and J2, i.e. the degenerate

case in Lemma 8.3.5 occurs, the tangents to the circles centred on J1 and J2

passing through WP
[1]
2 are aligned, and thus any allowed motion of Q[1] and Q[2]

generates no local changes in the term γ
[1,2]
2 . Therefore, in this particular config-

uration of the system, the measurement γ
[1,2]
2 does not add further information

to the system, and the number of informative measurements, i.e., the rank of

the Constructibility Gramian remains 4.

In general, we can interpret a measurement ρ
[i,j]
k as a physical constraint be-

tween two different rigid bodies that are described by the sequences of positions

Q[i] and Q[j]. As a consequence, a measurement ρ
[i,j]
k increases the information
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Q[1]

Q[2]

Q[0]
ρ
[1,2]
2

WP
[1]
2

WP
[2]
2

J1 J2

WP
[1]
0

WP
[1]
1

WP
[0]
0

Figure 8.4: A 2–2–1 scenario. The three vehicles (with position sequences Q[i], i =
0, 1, 2 represented by coloured dots and connected by solid lines) collect ranging 5
measurements (dashed black lines), each of them defining a line (grey thin line). The
measurements associated with V [1] intersect in J1, while the ones related to V [2] inter-
sect in J2. The line associated with the measurement ρ

[1,2]
2 passes through J1 and J2,

thus not increasing the rank of the Constructibility Gramian, by Proposition 8.3.7.

in the system (quantified through the rank of the Constructibility Gramian), as

soon as it introduces a non–redundant constraint in the system itself. By nature

of the constraint ρ
[i,j]
k , the measurement is redundant as soon as its associated

line is both orthogonal to translations of WP
[i]
k generated by allowed motions of

Q[i] and orthogonal to translations of WP [j](t
[i]
k ) generated by allowed motions

of Q[j].

8.3.4 The Case with N > 3 Agents

We leverage the results obtained for a 3–agent system to extend the analysis

to an arbitrarily high number N of agents in the system. Unlike Lemma 8.3.3,

the results in Lemma 8.3.5 have to be adapted to the increased number of

agents in the network. To this aim, we consider three vehicles V [i], V [l] and V [j]

and the measurements ρ
[l,i]
k and ρ

[l,j]
k . These measurements generate virtual

measurements ρ
[i,j]
k associated with the contributions γ

[i,j]
k .

Lemma 8.3.8 (Virtual measurements). Let us consider three vehicles V [i], V [j]

and V [l] such that the independent measurements ρ
[l,i]
k , k = 0, . . . , n[l,i] − 1 and

ρ
[l,j]
k , k = 0, . . . , n[l,j] − 1 are collected. For each of the n[l,j] contributions γ

[l,j]
k

that are agent–wise linearly dependent on the terms γ
[l,i]
k , k = 0, . . . , n[l,i] − 1

with respect to V [l], we can build the linearly independent virtual contributions
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γ
[i,j]
k , k = 0, . . . , n[i,j] − 1,

γ
[i,j]
k = γ

[l,j]
k −

n[l,i]−1∑
κ=0

βκγ
[l,i]
κ ,

where the coefficients βκ are such that

(
el � I3

)γ[l,j]
k −

n[l,i]−1∑
κ=0

βκγ
[l,i]
κ

 = 0.

Proof. By construction, the vectors γ
[i,j]
k have non–zero values only in the entries

associated with V [i] and V [j]. Moreover, since the terms γ
[l,j]
k are independent

by assumption, so are the virtual contributions γ
[i,j]
k .

In light of the considerations in Section 8.3.3, the measurements ρ
[1,0]
k and

ρ
[2,0]
k in Figure 8.4, generate virtual measurements ρ[1,2]. Indeed, the sequence

of points Q[1] is allowed to rotate about the point J1, while Q[2] is allowed to

rotate about J2, and thus, when V [1] and V [2] lie on the line joining J1 and

J2, their distance is constrained even though no measurements are collected

between them, as if they were virtually constrained by a measurement ρ[1,2].

Intuitively, by Lemma 8.3.5, a measurement ρ
[i,j]
k that is agent–wise linearly

dependent on both V [i] and V [j] is not increasing the rank of the Constructibil-

ity Gramian, and thus its carried information is already available in the system.

Therefore, there is no structural difference between actual measurements col-

lected by the pair V [i]–V [j] and measurements collected by the two agents from

an intermediate vehicle V [l].

Remark 8.3.9. The procedure in Lemma 8.3.8 does not account for actual

measurements collected by the pair V [i]–V [j], but the results in Lemma 8.3.6

hold true for this situation.

The results in Lemma 8.3.8, with Remark 8.3.9, hold true for any sequence

of intermediate agents V [iw], w = 0, . . . , n, with i0 = i and in = j, where each

iteration of the procedure removes an agent from the sequence, until reaching

the same situation detailed out above.

Corollary 8.3.10. In a sequence of vehicles V [iw], w = 0, . . . ,m, the maximum

dimension of the subspace spanned by the virtual contributions γ
[i0,im]
k is equal

to the smallest dimension of the subspace spanned by the vectors γ
[iw,iw+1]
k , w =

0, . . . ,m− 1.

Proof. By Lemma 8.3.8, n[i0,im] ≤ min{n[i0,i1], n[i1,im]}, and recursively n[i0,im] ≤
minw∈[0,m−1] n

[iw,iw+1].
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With Lemma 8.3.8, Corollary 8.3.10 and Lemma 8.3.6, each vehicle V [i] com-

putes its set of measurements (both actual and virtual) collected from the ref-

erence vehicle V [0]. Therefore, any incoming measurement ρ[i,j] can be checked

for linear dependence against the previous contributions γ
[i,0]
k , γ

[j,0]
k and γ

[i,j]
k .

If the new measurement is dependent on the previous ones, then it adds no

further information to the system and can be neglected; otherwise, each vehicle

updates its set ρ
[i,0]
k given the additional measurement that has been collected.

This procedure guarantees that, as soon as 3N measurements are considered,

the system is weakly constructible, i.e. the Constructibility Gramian is full rank.

Proposition 8.3.11 sums up the results discussed and obtained in this section.

Proposition 8.3.11. Given an N -agent system, the system is weakly con-

structible if the vehicles collect a number Nm ≥ 3(N − 1) of measurements

that is linearly independent on the measurements previously collected, where

linear independence is checked with the procedure described in Lemma 8.3.3,

Lemma 8.3.6 and Lemma 8.3.8.
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9. A MULTIAGENT TRAJECTORY PLANNING SCENARIO

In Chapter 7 we have proposed a trajectory planning scenario for a pair of

unicycle–like vehicles to achieve global constructibility, where each manoeuvre

is planned based only on the current knowledge on the state acquired along the

trajectory. This planning algorithm is based on the demanding and unrealistic

assumption that the measurements are not corrupted by noise, thus making the

algorithm not directly applicable to real–life robotic scenarios. In this chapter,

we move the first steps towards the application of trajectory planning techniques

without prior state information to the robotic domain by including the effect

of sensor noises in the planning algorithm. As a common practice in marine

robotics, we consider the vehicles to be equipped with a ranging sensor, a depth

sensor and a compass, or an equivalent sensor, measuring the orientation of

the vehicles with low uncertainty. These assumptions allow us to simplify the

analysis, by dealing with a planar problem, and come up with some closed–form

solutions.

Contributions: We consider a system composed of a tracker and a tar-

get vehicle, modelled as unicycle robots. The tracker measures its distance

from a fixed sensor and its distance from the target that broadcasts its future

manoeuvres. The tracker, without a priori information, aims at minimising

simultaneously the estimation uncertainty on its position and on the position

of the target. The trajectory planning algorithm consists in two phases: in the

initial phase, the tracker estimates the positions of the beacon and of the target

in its reference frame by means of trilateration and, by translation, estimates its

position and the position of the target in the beacon’s reference frame, with the

associated uncertainty. In the second phase, the tracker plans its manoeuvres,

in an MPC–like framework, to maximise the smallest eigenvalue of the Posi-

tion Gramian, a variation of the Constructibility Gramian, associated with the

estimation uncertainty. We show with examples that the second phase is not

sufficient to guarantee the convergence of an Extended Kalman Filter, especially

when the initial estimate of the position of the tracker is rough. Moreover, we

show that the approach is robust to actuation uncertainties, although they are

not explicitly considered in the planning algorithm.

9.1 Problem Description

9.1.1 System model

We consider a tracker and a target vehicle, denoted by the subscripts P and Q,

respectively. Both are described by the discrete–time unicycle kinematic model,
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whose state consists of the x, y coordinates of the vehicle and of its orientation

θ with respect to the world reference frame 〈W 〉. The model can be written as

xk+1 = xk +AkCk, yk+1 = yk +AkSk, θk+1 = θk + ωTs, (9.1)

Ak = 2 vkωk sin
(
ωk

Ts
2

)
, lim

ωk→0
Ak = vkTs,

Ck = cos(φk), Sk = sin(φk), φk = θk + ωk
Ts
2 ,

where Ts is the duration of the sampling interval where the forward velocity

vk and the angular velocity ωk of the vehicle are constant. We build the state

of the whole system qk by stacking the state vectors of the two vehicles, thus

qk = [xP,k, yP,k, θP,k, xQ,k, yQ,k, θQ,k]>.

9.1.2 Sensor model

Each vehicle is provided with a compass measuring its heading θk. Moreover,

the tracker is equipped with two ranging sensors, one measuring its distance

from a fixed–frame beacon B = [X;Y ]> with known coordinates, and the other

measuring the distance between the tracker and the target. We assume the

compasses to be more accurate than the ranging sensors, and thus we consider

the vehicles to be aware of their (almost) exact heading θk at any time instant k.

Therefore, we build as subset of the measurement output vector of the system,

reading as

zk =
[
‖Pk −B‖; ‖Pk −Qk‖

]>
, (9.2)

where ‖ · ‖ denotes the Euclidean norm, while Pk = [xP,k, yP,k]> and Qk =

[xQ,k, yQ,k]> represent the positions of the tracker and of the target, respectively,

at time k. Furthermore, the range measurements given by each of the two

ranging sensors are corrupted by a white Gaussian noise with covariance matrix

ηI2, where I2 is the 2× 2 identity matrix.

Remark 9.1.1. Unlike the scenarios analysed in the previous chapters, the pres-

ence of the sensors measuring θk for both vehicles makes the system observable

also when the vehicle is sensed by a single ranging sensor.

9.1.3 Problem statement

Given a fixed beacon, a target vehicle and a tracker vehicle described by the

models (9.1) and (9.2), we want to plan the trajectory of the tracker vehicle such
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that it can simultaneously localise itself and the target vehicle, i.e. to estimate

the state vector qk of the whole system, with the smallest uncertainty.

To tackle the problem, we need a metric to quantify the amount of infor-

mation (and in turn, the residual uncertainty) that is collected by the tracker

along its trajectory. To this end, we introduce a variation of the standard Con-

structibility Gramian [Krener and Ide, 2009].

9.2 Position Gramian

In light of the different levels of measurement noise of the two kinds of sensors, we

define a variation of the Constructibility Gramian (or, with the same results, of

the Observability Gramian). Our version is restricted to the position coordinates

Pk, Qk, instead of the state qk of the whole system, and thus it is referred to as

Position Gramian (PG). The PG, devised from the Constructibility Gramian,

is defined as

GP = Π−1
0 +

1

η

kf∑
k=1

γkγ
>
k , γ>k =

[
∂zk
∂Pk

∂Pk
∂Pf

;
∂zk
∂Qk

∂Qk
∂Qf

]
, (9.3)

where Pf and Qf represent the positions of the two vehicles at the final time

instant kf , while Π0 is the error covariance matrix associated with the initial

estimate of the positions of the two vehicles. In the following, we will refer to the

running part of the PG as G = GP −Π−1
0 . By the dynamics of the system, the

sensitivity matrices ∂Pk/∂Pf and ∂Qk/∂Qf are equal to the identity matrix1,

and thus γk can be computed explicitly as

γ>k =

[
cosαB,k sinαB,k 0 0

cosαQ,k sinαQ,k − cosαQ,k − sinαQ,k

]
, (9.4)

where αB,k = arctan2(Pk −B) and αQ,k = arctan2(Pk −Qk).

Therefore, the running part of the PG is

G =

[
A+M −M
−M M

]
, (9.5)

1The Observability Gramian involves the sensitivity with respect to the initial positions
P0 and Q0. The sensitivity matrices ∂Pk/∂P0 and ∂Qk/∂Q0 are equal to the identity, and
thus the derivation through the two Gramians leads to the same PG.
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where A ∈ η2×2 refers to the absolute ranging measurements, and is defined as

A =
1

η

 ∑kf
k=1 C

2
B,k

∑kf
k=1 CB,kSB,k∑kf

k=1 CB,kSB,k
∑kf
k=1 S

2
B,k

 , (9.6)

where CB,k and SB,k are short notations for cosαB,k and sinαB,k, respectively,

while M is defined analogously with αQ,k in place of αB,k.

Since the PG is related to the inverse of the error covariance matrix of an

optimal estimator [Salaris et al., 2019], we want to find the trajectory of the

tracker vehicle that maximises the smallest eigenvalue of the PG in (9.5) (E–

optimality criterion).

9.2.1 Analysis of a single vehicle

In the simplified scenario with only one vehicle (be it a vehicle localising itself

or a tracker vehicle localising a fixed/moving target), the running part of the

PG coincides with matrix A, with N = kf − 1 the number of measurements

collected. We present here a known result for this scenario.

Proposition 9.2.1. Let us consider a system with a single vehicle. Its PG,

defined as GP = Π−1
0 +A, (A as in (9.6)) is optimal, i.e. its smallest eigenvalue

is maximum, when

GP =
1

2

(
Tr
(
Π−1

0

)
+
N

η

)
I2,

where Tr (·) denotes the trace of a matrix.

Proof. Let the initial error covariance matrix Π0 be such that

Π−1
0 =

[
a b

b c

]
.

Since GP is a 2×2 matrix, we can extract the explicit expression of its smallest

eigenvalue λ1(GP ) as

λ1(GP ) =
1

2

(
a+ c+

N

η
−

((
a+

∑kf
k=1 cos2 αB,k

η
− c−

∑kf
k=1 sin2 αB,k

η

)2

+

4

(
b+

∑kf
k=1 sinαB,k cosαB,k

η

)2) 1
2
)

(9.7)
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By (9.7), λ1(GP ) is maximum when

2bR+

kf∑
k=1

sin(2αB,k) = 0, (a− c)η +

kf∑
k=1

cos(2αB,k) = 0. (9.8)

The first condition generates 0 off–diagonal terms, and the second condition

forces the two terms on the diagonal to be equal. By the definition of A in (9.6),

the trace of the resulting PG is Tr (GP ) = Tr
(
Π−1

0

)
+ N

η . As a consequence,

the optimal PG has half of this quantity as diagonal terms, thus concluding the

proof.

Remark 9.2.2. One popular (but not necessarily the only) optimal trajectory,

when the initial covariance matrix Π0 is a multiple of the identity, is represented

by a circle centred on the beacon (see [Hung and Pascoal, 2020]).

This result proves useful in the following section, where we analyse the PG

of the entire system, as defined in (9.5).

9.2.2 Analysis of the tracker–target pair

In the general scenario, the PG has the block structure described in (9.5). For

simplicity’s sake, we consider only its running part. The extension to the com-

plete PG accounting for the a priori information can be obtained following the

same arguments as in Proposition 9.2.1. We introduce the two real positive

number NA and NM interpreted as the weighted number of measurements col-

lected from the beacon and from the target, respectively. NA is defined as the

number of observations collected from the beacon divided by the noise variance

(i.e. N
η in the previous analysis) of the sensor and NM is defined analogously.

They allow us to account for a different level of sensor noise or for a different

number of measurements collected from the beacon and from the target. We

introduce here the first main result of this paper.

Theorem 9.2.3. Let us consider the PG defined in (9.5). When the trajectory

is optimal, i.e. the smallest eigenvalue of the PG is maximum, both A and M

are optimal, i.e.

A =
NA
2

I2, M =
NM

2
I2.

9.2.3 Proof of Theorem 9.2.3

This proof is divided into two sections: first, we find the eigenvector associated

with the smallest eigenvalue of the optimal PG, then we leverage this result to
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prove that the PG is optimal when both A and M are optimal.

Eigenvector associated with the smallest eigenvalue

Let w = [w1, w2, w3, w4]> be a unitary vector, i.e. w>w = 1. Then, by sym-

metry of G, minw(λ) = λ1(G), where λ = w>Gw is the cost function, and

λ1(G) is the smallest eigenvalue of the PG (Rayleigh quotient with unitary vec-

tor w). To solve the minimisation problem, we build the Lagrangian function

L = w>Gv+µ(w>w− 1), where µ is the Lagrangian multiplier associated with

the constrained norm of w. The candidate solution for w is

w =
1√

1 + `2

[
cosβ, sinβ, ` cosβ, ` sinβ

]>
,

where

`=
NA

2NM
+

√
N2
A + 4N2

M

2NM
, `†=

NA
2NM

−
√
N2
A + 4N2

M

2NM
, (9.9)

and β ∈ [0, 2π) is a generic angle. The gradient of the Lagrangian function

evaluated at w is 0 (for both ` and `†), thus satisfying the first order optimality

condition. By plugging w in λ, we get

λ? =

(
NA + (`− 1)2NM

)
2(1 + `2)

=
NA
4

+
NM

2
−
√
N2
A + 4N2

M

4
,

which is the smallest eigenvalue of the optimal PG. The same vector w with `†

in place of ` is associated with the maximum value of λ. By its structure, G has

two eigenvalues with multiplicity 2. Therefore, no more cases are left to inspect.

PG is optimal when its blocks are optimal

Based on the shape of w, we show hereafter that for any choice G different from

the optimal PG (i.e. at least one between A and M is not optimal), we can find

a unitary vector w such that w>Gw < λ?, i.e. the smallest eigenvalue of G is

smaller than the smallest eigenvalue of the optimal PG.

Let us define the two vectors

wi =
1√

1 + `2
[cosβi, sinβi, ` cosβi, ` sinβi]

>
, i = A,M,

such that [cosβi, sinβi]
> is the eigenvector associated with the smallest eigen-

value of matrix i, yielding the cost functions λi = w>i Gwi, i = A,M . To prove

our point, we show that λ?2 > λAλM , which is sufficient for at least one between
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λA and λM to be smaller than λ?,

λ?2 − λAλM ≥
(

(`− 1)2σM − σA
1 + `2

)2

≥ 0,

where σA = NA
2 −λ1(A) represents the difference between the optimal eigenvalue

(half of the trace) and the actual smallest eigenvalue of A, and analogously for

σM . In the chain of weak inequalities, the equality λ?2 − λAλM = 0 holds only

when two conditions are met: σA = (` − 1)2σM (second equality), and when

the eigenvector of A associated with its smallest eigenvalue coincides with the

eigenvector of M associated with its greatest eigenvalue, and vice versa (first

equality). In this unfortunate situation, where λM = λA = λ?, let us consider

λl = w>l Gwl, with

wl = 1√
1+l2

[cosβ, sinβ, l cosβ, l sinβ]
>
.

Its derivative d
dlλl

∣∣
l=`

is 0 only for ` = 1, which is infeasible because NA, NM > 0

in (9.9). Therefore, there exists at least one l 6= ` such that λl < λ?, thus

concluding the proof.

Theorem 9.2.3 accounts only for the running part G of the PG. The extension

of the result to the scenario where an initial covariance P0 is given, requires the

following property. We will prove in the following that for the system at stake

Property 9.2.4 holds true.

Property 9.2.4. The initial covariance matrix Π0 has the following block struc-

ture

Π0 =

[
ΠB ΠB

ΠB ΠB + ΠQ

]
, ΠB ,ΠQ ∈ R2×2,

whose inverse (appearing in the definition of GP in (9.3)) is

Π−1
0 =

[
Π−1
B + Π−1

Q −Π−1
Q

−Π−1
Q Π−1

Q

]
. (9.10)

Corollary 9.2.5. When Property 9.2.4 holds true, the global maximum of the

smallest eigenvalue of GP in (9.3) coincides with the global minimum of the
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following function:

JΣ =

(aB − cB)η +

kf∑
k=1

cos(2αB,k)

2

+

2bBη +

kf∑
k=1

sin(2αB,k)

2

+

(aQ − cQ)η +

kf∑
k=1

cos(2αQ,k)

2

+

2bQη +

kf∑
k=1

sin(2αQ,k)

2

, (9.11)

where Π−1
B =

[
aB bB
bB cB

]
and Π−1

Q =
[
aQ bQ
bQ cQ

]
.

Proof. The proof is similar to the proof of Theorem 9.2.3 and hinges on the

optimality of A and M in Proposition 9.2.1.

9.2.4 Optimal Control Problem

In light of the results in Theorem 9.2.3 and in Corollary 9.2.5, we state the

Optimal Control Problem (OCP) that can be solved by the tracker to plan its

optimal trajectory.

Problem 9.1. The OCP is stated as

min
vP,k,ωP,k

J subject to

{
vP,min ≤ vP,k ≤ vP,max,

ωP,min ≤ ωP,k ≤ ωP,max,

where J = −λ1(GP ), or J = JΣ in (9.11).

We compare the solutions of the OCP in Problem 9.1 with the two differ-

ent versions of the cost function with NA = NM = N , Π0 = I4 and η = 0.1,

hence satisfying Property 9.2.4. To this aim, we show in Table 9.1 the average

performances over 30 simulations, with the two different cost functions. While

the two cost functions have the same global optimum point, the numerical op-

timisation of the two may yield different results due to the high nonlinearity

and nonconvexity of the problem. Results are shown in terms of time taken for

the optimisation, and smallest eigenvalue of the PG. The simulations have been

performed in a MATLAB® environment with CasADi [Andersson et al., 2019],

running on an Apple® M1 chip. In each set of simulations (each row of Ta-

ble 9.1), we observe a reduction in the optimisation metric λ1(G) (block of

columns on the right), which shows that choosing JΣ over J generates a disad-

vantage. On the other hand, we observe a greater reduction in the time needed

by numerical algorithm to yield the result to Problem 9.1. Therefore, JΣ should

be preferred for the formulation of the OCP when solved online, as we show in

Section 9.3.
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Table 9.1: Comparison between J = λ1(G) and JΣ in (9.11).

N
Time (s) Eigenvalue

J JΣ Reduction J JΣ Reduction

5 0.21 0.16 −22% 1.25 1.20 −4%

10 0.92 0.59 −37% 2.51 2.18 −13%

40 4.56 2.63 −42% 8.60 8.48 −1%

100 25.38 17.81 −30% 20.10 20.10 0%

Condition 9.1. To solve the OCP at each time step, Property 9.2.4 must always

hold true.

While Condition 9.1 seems demanding, we prove in Fact 9.3.1 and in Fact 9.3.2

that it holds true for the analysed system subject to the trajectory planning al-

gorithm described in the next section.

9.3 Trajectory Planning

The previous section addresses the problem of defining a suitable cost function,

which the tracker uses to plan its optimal trajectory. To effectively implement

this theoretical result in a real–world scenario, we need to take into account

some limitations, e.g. the tracker’s and target’s positions Pk and Qk are not

known in advance, and their motions are restricted by the kinematic model (9.1)

and may be affected by some process noise. To overcome these limitations and

design an effective control algorithm, we propose a scheme that executes online

two tasks: (i) update the estimate of the positions of the vehicles, which is

based on the new ranging information collected by the tracker, and performed

via an Extended Kalman Filter, and (ii) plan the trajectory of the tracker via a

Model Predictive Control (MPC) algorithm to optimise for the cost function JΣ

in (9.11) based on the updated information and on the manoeuvres planned and

communicated by the target. Before the online estimation scheme, to provide

a sufficiently accurate initial estimate of the state of the system, we propose an

initialisation phase, based on trilateration, where the tracker collects 3 ranging

measurements from the target and from the beacon. A block diagram of the

complete control and estimation scheme is represented in Figure 9.1.
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Target

Tracker
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Qk

Pk
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Pk, ρB,k, ρQ,k
̂ξk, Πk

Open-loop 
Controller

INITIALISATION PHASE ONLINE ESTIMATION AND CONTROL

k = 0, 1 k ≥ 2

Figure 9.1: Block diagram of the complete scheme responsible for estimation and
control.

9.3.1 Online Estimation and Control Scheme

Estimation Filter

Before presenting the Gramian–based planning algorithm, we draw some con-

siderations on the outputs of an estimation filter for the state qk with (almost)

perfect measurements of the headings θP,k and θQ,k of the two vehicles, and the

ranging sensor model in (9.2) corrupted by a zero–mean white Gaussian noise

with covariance ηI2. Therefore, the overall output vector ζk is defined as

ζk = [zk; θP,k; θQ,k]>,

with covariance matrix Zk = diag(η, η, ε, ε), ε � η. As an estimation filter,

we choose the Extended Kalman Filter (EKF). At each time step k, it yields

an estimate q̂k of the state qk and its error covariance matrix Ψk, based on

the estimate q̂k−1 and covariance Ψk−1 at the previous time step, on the ex-

pected motion of the robots (control inputs and model), and on the collected

measurements ζk. The current covariance matrix Ψk is computed as

Ψk = (I6 −KkHk)Ψk|k−1,

where Hk = ∂ζk
∂qk

is the observation matrix, while Ψk|k−1 is the covariance of

the prediction, accounting for the propagation of the uncertainty due to the dy-

namics and to possible actuation uncertainties. The Kalman gain Kk is defined

as

Kk = Ψk|k−1H
>
k (HkΨk|k−1H

>
k + Zk)−1.
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One may check from these definitions that, for any Ψk|k−1 ∈ R6×6, the entries of

the covariance matrix Ψkin the rows and columns associated with the headings

(i.e. third and sixth) are much smaller than the others. Therefore, without

loss of generality, we can focus on the reduced state ξk = [Pk;Qk]> ∈ R4 with

covariance matrix Πk ∈ R4×4, propagated with the usual EKF equations with

model (9.1) and output zk as in (9.2).

Fact 9.3.1. When Property 9.2.4 holds true for Πk, Property 9.2.4 holds true

also for the next covariance matrix Πk+1 obtained with the EKF equations, thus

recursively satisfying Condition 9.1.

This fact descends from the propagation of the covariance matrix in the EKF

equation. Equivalently, it can be inferred from the definition of GP in (9.3),

the shape of its running part G in (9.5) and shape of Π−1
0 in (9.10), hence

Πk+1 = (Π−1
k +G)−1 has the block structure required in Property 9.2.4.

Gramian–Based Trajectory Planning

After the estimation phase, the planner is fed with the position estimates ξ̂k

and the covariance matrix Πk. Based on the provided information, the PG

and the cost function JΣ on the next N steps (i.e. k + 1, k + 2, . . . , k + N)

is predicted using the system and sensor models (9.1) and (9.2). The tracker

solves a variation of the OCP in Problem 9.1 with the predicted cost function

ĴΣ based on the estimated positions ξ̂k and the associated covariance Πk, as

an approximation of the unknown JΣ. Since the result of the OCP depends on

the estimate ξ̂, which is updated at each time instant k, the optimal trajectory

has to be replanned at each time step, thus justifying our choice of an MPC

approach to the problem.

After the planning phase, the controller applies vP,k and ωP,k to the tracker,

and once the next measurements ζk+1 are collected, the EKF estimates ξ̂k+1

and Πk+1 that are provided again to the planner.

In the description of this approach, each phase of the algorithm recursively

relies on the previous step. The usual EKF approach relies on initial data ξ̂0

and Π0 set by the user, whose choice affects sensibly the performances of the

estimation algorithm. Therefore, we propose an initialisation phase that allows

the tracker to estimate the zero and first order moments of the probability density

function (pdf) describing the initial positions P0 and Q0.
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9.3.2 Initialisation phase

In the initial phase of the trajectory, the tracker collects range measurements

to estimate the position vector ξ0. Since no prior information are available (i.e.

the angles αk cannot be estimated), the vehicle cannot plan its manoeuvres

according to the OCP in Problem 9.1. Therefore, we propose a different set

of manoeuvres, based on geometric considerations, which allow the vehicle to

collect informative measurements.

The initial phase faces a trade–off: increasing its duration allows the vehicle

to collect more information, and thus to estimate more accurately the positions

ξk, but at the same time, it delays the Gramian–based trajectory planning

algorithm. Therefore, in our solution, the tracker plans 2 manoeuvres, thus

collecting 3 pair of measurements, and uses trilateration.

Trilateration

We define a local reference frame with the origin lying in the initial position P0

of the tracker with the axes parallel to the axes of the world reference frame.

To denote the positions in this reference frame, we add the subscript v, thus the

positions of the tracker are

Pv,0 =

[
xv,0

yv,0

]
=

[
0

0

]
, Pv,1 =

[
A0C0

A0S0

]
, Pv,2 =Pv,1+

[
A1C1

A1S1

]
,

where Ak, Ck, Sk, k = 0, 1, are known via planning. To plan the manoeuvres

of the tracker, we draw some considerations on the pdf describing the position

Bv of the beacon.

Without measurements, Bv is described by a uniform pdf on R2. The tracker

aims at reducing this pdf to a unimodal distribution. This problem boils down to

an observability problem: the distribution is multimodal as long as the nominal

system (i.e. without actuation uncertainties and measurement noises) is unob-

servable, i.e. when more than one point Bv is compliant with the measurements

ρB,k collected by the tracker (see Chapter 4). Following the same rationale as in

Chapter 7, to cope with measurement noise making two near points be sensed

as a unique point, the tracker plans its first manoeuvre to travel the longest

distance, i.e. vP,0 = vmax, ωP,0 = 0. With two measurements collected, the

nominal system is still unobservable, since there exist two points that have dis-

tances ρB,0 from Pv,0 and ρB,1 from Pv,1, and they are mirrored with respect

to the segment connecting Pv,0 and Pv,1. Therefore, the pdf describing Bv is

bimodal, whose two peaks are mirrored with respect to the segment connecting
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Pv,0 and Pv,1. To minimise the likelihood of one of these two peaks, i.e. to

approach a unimodal pdf, the second manoeuvre is planned with vP,1 = vmax

and ωP,1 = ±min{2.3311/Ts, ωmax}.
We want to estimate separately the position of the anchor B̂v = [X̂v, Ŷv]

>

and of the target Q̂v = [x̂Q,v, ŷQ,v]
>, together with their covariance matrices ΠB

and ΠQ, while relying on the ranging measurements zk, k = 0, 1, 2. To compact

the notation, we denote the distances collected from the anchor and from the

target with ρB,k and ρQ,k, k = 0, 1, 2, respectively.

Beacon By the analysis in [Fontanelli et al., 2021], we estimate the position

Bv of the beacon and its covariance matrix ΠB as

B̂v =

[
x̂B,v

ŷB,v

]
=

1

2
Σ−1
B hB , ΠB = Σ−1

B NB
(
Σ−1
B

)>
, (9.12)

with

NB = η

[
ρ2
B,0 + ρ2

B,1 ρ2
B,0

ρ2
B,0 ρ2

B,0 + ρ2
B,2

]
,

ΣB =

[
xv,1 − xv,0 yv,1 − yv,0
xv,2 − xv,0 yv,2 − yv,0

]
,

hB =

[
ρ2
B,0 − ρ2

B,1 − x2
v,0 − y2

v,0 + x2
v,1 + y2

v,1

ρ2
B,0 − ρ2

B,2 − x2
v,0 − y2

v,0 + x2
v,2 + y2

v,2

]
.

Target The extension to the target is not trivial, since the tracker should take

into account the (known) manoeuvres executed by the target itself. Therefore,

the tracker performs a delayed trilateration (see Chapter 7), i.e. generates a new

reference frame where each pair of positions (Pv,k, Qv,k), k = 0, 1, is translated

such that Qv,k coincides with Qv,2. As a result, the virtual target is still, while

the motion of the virtual tracker is the combination of the motions of the two

vehicles, and thus matrices ΣQ and hQ are computed with these substitutions:

Pv,0 → Pv,0 − (Qv,0 −Qv,2), Pv,1 → Pv,1 − (Qv,1 −Qv,2),

where Qv,k −Qv,2, k = 0, 1, can be explicitly computed since AQ,k and φQ,k in

the dynamics (9.1) are known.

With these procedures, (9.12) yields the estimates of the positions B̂v and

Q̂v,2 in the tracker’s reference frame, with the associated covariance matrices

ΠB and ΠQ.
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Translation

We now translate the estimates to the world reference frame. This operation

boils down to a translation of the origin of the reference frame by the random

variable −B̂v. Hence, the propagation of the pdf estimating the positions of the

vehicles (i.e. ξ2) is not trivial. We define

ξ2 =

[
P2

Q2

]
=

[
Pv,2 −Bv
Qv,2 −Bv

]
, ξ̂2 =

[
P̂2

Q̂2

]
=

[
Pv,2 − B̂v
Q̂v,2 − B̂v

]
,

with expected value E
{
ξ̂2

}
= ξ2. Furthermore, we define δBv = B̂v − Bv and

δQv,2 = Q̂v,2 − Qv,2, with expected value E {δBv} = E {δQv,2} = 0 and first

moment E
{
δBv δB

>
v

}
= ΠB and E

{
δQv,2 δQ

>
v,2

}
= ΠQ, respectively, by (9.12).

By the first order Taylor expansion, we express ξ̂2 as

ξ̂2 ' E
{
ξ̂2

}
+ δξ̂2, δξ̂2 = JB δBv + JQ δQv,2,

where JB = −[I2; I2]> and JQ = [02; I2]> are the Jacobians of ξ2 with respect to

Bv and Qv,2, respectively. Therefore, the error covariance matrix Π2 associated

with the estimated positions ξ̂2 is computed as

Π2 = E
{
δξ̂2 δξ̂

>
2

}
=

[
ΠB ΠB

ΠB ΠB + ΠQ

]
.

Fact 9.3.2. Property 9.2.4 holds true for the initial covariance matrix Π2 when

the first Gramian–based OCP is solved, hence satisfying Condition 9.1.

Remark 9.3.3. Matrix ΣQ may be singular even though the positions Pk and

Qk, k = 0, 1, 2, are not so. Should this unfortunate situation occur, the tracker

can simply choose the opposite sign for ωP,1, thus making ΣQ invertible.

Once the estimate ξ̂2 and its error covariance matrix Π2 are computed, they

are fed to the Gramian–based planner and used to initialise the trajectory plan-

ning algorithm.

9.4 Simulation Examples

In this section, we simulate 2 scenarios described in Section 9.3. For both the

simulations, we consider a planning horizon of N = 5 steps, with a sampling

time of 0.5 s, and a final discrete time kf = 40, corresponding to 20 s, after the

3–step initialisation phase. In all the scenarios, the control inputs are bounded
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Figure 9.2: First simulation example. Blue lines refer to the tracker, red lines
refer to the target. Ellipses represent the diagonal blocks of the covariance matrix
Πk, k = 0, 10, 20, 30, 40, while dotted lines denote the estimates of the positions of the
vehicle. (a) Without the initial estimation phase, the estimate P̂k of the position of
the tracker eventually converges to the actual position Pk, while the estimate Q̂k of
the position of the target drifts apart. (b) With the initial estimation phase, both
estimates P̂k and Q̂k converge to the actual positions of the vehicles.

with 0 m/s ≤ vP,k ≤ 1 m/s, and −π2 rad/s ≤ ωP,k ≤ π
2 rad/s. As for the

previous simulations, whose results are presented in Table 9.1, the optimisations

have been carried out with CasADi [Andersson et al., 2019], a framework for

optimisation and optimal control.

9.4.1 With or without initialisation phase

In the first simulation example, we compare the performances of the Gramian–

based planning algorithm with and without the initialisation phase. We consider

perfect actuation (no actuation uncertainty) and show that an imperfect, but

still reasonable, choice of the initial estimates jeopardises the convergence of

the EKF estimates to the ground–truth, thus showing, in Figure 9.2, that the

initialisation phase is beneficial.

For both the simulations, the initial state of the system is q0 = [6; 4; 0; 4; 3; 0]>,

while in the first scenario, the initial estimate is q̂0 = [8.2; 11.7; 0; 3.2; 2.4; 0]>,

with covariance Π0 = diag(25, 25, 0, 25, 25, 0). Figure 9.2 shows two notable re-

sults: (1) although the estimate Q̂0 in the first simulation is close to the actual

target position, Q̂k drifts due to the initial rough approximations of the position

Pk of the tracker, and (2) despite the greater initial covariance in the second

simulation, both estimates are close to actual initial positions, and thus they

converge fast to the actual positions.
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Figure 9.3: Second simulation example. Blue lines refer to the tracker, red lines
refer to the target. Ellipses represent the diagonal blocks of the covariance matrix
Πk, k = 0, 10, 20, 30, 40, while dotted lines denote the estimates of the positions of the
vehicle. Both estimates yielded by the EKF converge to the actual value.

9.4.2 With actuation uncertainties

The second simulation example considers the general setting with a moving

and collaborative target, where the Gramian–based planning relies on the ini-

tial estimation phase. To highlight the robustness of our method, we simulate

imperfect actuation. The nominal control inputs v and ω for both vehicles

are corrupted by am uncorrelated white Gaussian noise with covariance matrix

diag(0.1 m/s, 0.08 rad/s) as estimated in [Fontanelli et al., 2021] for a standard

unicycle–like vehicle. Figure 9.3 shows that, despite the presence of the ac-

tuation uncertainty, which is not explicitly accounted for in either the initial

estimation phase or in the Gramian–based planning algorithm, both the initial

estimates based on trilateration and the EKF estimates are close to the actual

positions of the vehicles.
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CONCLUSIONS AND FUTURE PERSPECTIVES

In this thesis, we have addressed various problems concerning the constructibility

properties of a system composed of ground vehicles relying on ranging sensors,

motivated by a large part of the technical literature dealing with these problems

but showing a deep focus on local constructibility properties. With the same

procedures, both global and local results have been presented, and have been

implemented for an application–driven scenario where the vehicles in the system

actively plan their trajectory. The path towards the real–life application of these

ideas still needs to solve some practical problems, which will be detailed out in

the section dedicated to future perspectives. This final chapter draws some

conclusions on the contributions presented in this thesis and discusses some

future research directions based on some problems left open in this thesis.

10.1 Summary of the Thesis Contributions

In Part I we have analysed the constructibility problem from a global perspec-

tive. We have presented in Chapter 2 an example showing that the solutions to

the well–known positioning problem cannot be trivially extended to the locali-

sation problem. Indeed, when the generalised noncollinearity condition holds,

there are still indistinguishable trajectories of the vehicle. Motivated by this re-

sult, in Chapter 3 we have shown a sufficient condition on the trajectory of the

vehicle for constructibility, in the setting where the environment is instrumented

with only 2 anchors with non–overlapping sensing range. As a natural develop-

ment, in Chapter 4 we have carried out a global constructibility analysis for a

ground vehicle collecting various numbers of measurements distributed among a

variable number of anchors, where no simultaneous measurements are collected

and the vehicle moves between successive measurement collections. As a result,

there no sufficient condition on the number or distribution of observations, but

constructibility depends also on the geometry of the trajectory followed by the

vehicle and on the deployment of sensors in the environment.

We have addressed the local constructibility problem in Part II, where the

analysis is carried out by means of the Constructibility Gramian. In Chapter 5

we analyse the rank of the Constructibility Gramian to determine whether the

system is constructible, with the same procedure as in the previous analysis.

Surprisingly, some constructible settings turn out to yield a singular Gramian,

thus showing the limitations of linearisation–based techniques on nonlinear sys-

tems. This counterintuitive result has been discussed in comparison with the

global analysis in Chapter 4. The smallest eigenvalue of the Constructibility

Gramian has been introduced in Chapter 6 as a constructibility metric. With

an approximation of the devised metric, we have analysed straight trajectories
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parallel to the line joining the two sensors the environment is instrumented with.

We have analysed the effect of some geometrical parameters of the trajectory

on the constructibility metric, and we have discussed the results giving some

geometrical insights.

Finally, in Part III, we have extended the results obtained in the previous

analyses to multiagent systems. In Chapter 7 we have presented a trajectory

planning algorithm for a pair of vehicles collecting absolute and mutual rang-

ing measurements. This algorithm is articulated into three phases where the

vehicles (a) collect measurements from one anchor, (b) they travel until they

come sufficiently close to each other, and eventually (c) they plan their last ma-

noeuvres to rule out residual ambiguities and indistinguishabilities. A different

extension of the results in Parts I and II has been addressed in Chapter 8, where

the local analysis, based on the Constructibility Gramian, has been carried out,

while only sufficient conditions have been presented for global constructibility.

A variation of the Constructibility Gramian has been leveraged in Chapter 9,

where a vehicle (tracker) plans its trajectory to simultaneously localise itself

and a collaborative target based on relative and absolute measurements. To

plan its trajectory the tracker initially relies on manoeuvres based on delayed

trilateration, while the main part of the controller relies on the Constructibil-

ity Gramian, hence merging the results presented in the previous parts of this

thesis.

10.2 A Real–world Application

In this section, we discuss a possible application of the techniques and results

devised in this thesis, driven by practical and real–world problems, showing

how the constructibility results devised in this thesis may impact the robotics

research.

Recently, the field of agricultural robotics has attracted significant interest

from researchers, largely due to the substantial dependence on human-guided

machinery and manual labour throughout the processes involved in transport-

ing fruit from the tree to the consumer. One of the challenges arising in this

domain is the outdoor localisation of mobile robots navigating orchards and

vineyards. Although visual sensors represent a popular solution for this prob-

lem (see [Shalal et al., 2015]), they have inherent limitations due to changing

luminance conditions, due to season and daily changes, and due to the growth

and alteration of the tree aspect from which visual features are extracted. A

sensor fusion approach that combines cameras and laser range sensor has been

explored in [Lepej and Rakun, 2016] for the application in outdoor unstructured
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environments, where similar issues due to changes in the environment arise.

A different approach is suggested by the results devised in this thesis, where

the robot localises itself by measuring its distance to a set of devices deployed

in the environment. Although ranging measurements require the environment

to be instrumented, unlike visual sensors, this type of sensors enjoys some prop-

erties such as robustness with respect to direct sunlight and with respect to

environmental alterations. An example of deployment of sensors in a vineyard

is shown in Figure 10.1.

Figure 10.1: An example of practical application. The vineyard, whose 2 rows are
depicted as boxes, is instrumented with some beacons represented by crosses, deployed
in known positions and with a small sensing range represented by a circle. A usual
path followed by a robot to execute predefined tasks (e.g. harvesting) is represented
in a blue dashed, while the green path shows a better behaviour for localisation.

From a purely theoretical perspective, the vehicle may collect 4 measure-

ments from the first two beacons in a 2 + 2 setting, and achieve global con-

structibility, thus allowing it to solve the localisation problem. But additional

challenges arise in this scenario when non–idealities are taken into account: the

vehicle has to execute some tasks, measurements are affected by noise, and the

motion of the vehicle is affected by uncertainties due to the non–ideal contact

between the wheels and the ground. To cope with these issues, one may suggest

the following solutions:

1. Multiple tasks:

• Set time–dependent or uncertainty–dependent weights to the local-

isation task and to the other tasks (e.g. harvesting). The main

challenge to be addressed here is avoiding that the harvesting task

has poor efficiency in the areas where the vehicle has less accurate

estimates of its state. A suggested approach to this aim is based on
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null–space projectors of the control actions, where a secondary ob-

jective may be achieved without affecting the efficiency in executing

the primary task (see [De Palma et al., 2015b]).

2. Measurement noise:

• As in Chapter 9, the vehicle should plan its trajectory to collect

informative measurements (in a constructibility perspective), but also

to reduce the impact of measurement noise. The solution proposed

in Chapter 9 is based on two phases where global constructibility is

achieved in the initialisation phase based on trilateration, while local

constructibility, which is associated with the inverse of the estimation

uncertainty, is maximised by means of the Position Gramian.

3. Actuation uncertainties:

• This problem has been neglected in the results obtained in this the-

sis to simplify the analysis by introducing a deterministic position

sequence. A thorough and careful analysis of the actuation noise

must be carried out to apply to a real—life scenario the results de-

vised in this thesis. Indeed, the manoeuvres executed by the vehicle

affect the estimation uncertainty in many ways, e.g. the smallest

eigenvalue of the Constructibility Gramian is influenced by the final

position reached by the vehicle and by the geometrical properties of

the position where measurements are collected (see Chapter 6). On

the other hand, the manoeuvres performed by the vehicle introduce

different levels of uncertainty. As an example, consider a tracked

vehicle where the uncertainty introduced by slippage phenomena in-

creases with the curvature of the path.

This example shows a practical application that could benefit from the re-

sults devised in this thesis. Indeed, the concept of global constructibility, and

the conditions to achieve it, lay the foundation for localising the vehicle when

no prior information is available, or when the uncertainty associated with the

state estimate is high. When global constructibility is achieved in these uncer-

tain conditions, the vehicle could benefit from the local analysis, whose a priori

information is an approximation (estimation) of the state of the system, and the

robot may plan its trajectory to increase the sensitivity of the measurements

with respect to the final state of the system, i.e. maximising some norm of the

Constructibility Gramian or of an equivalent local constructibility metric.

With a similar formulation, an equivalent problem may be stated for the

navigation and localisation of a mobile robot across indoor intelligent environ-
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ments, e.g. an automated warehouse, where the ranging information may be

used together with visual sensors.

10.3 Suggestions for Future Research

In this section, we show some suggestions for future research directions, which

deal with problems left open in this thesis, or with developments based on the

results presented in this thesis. While many research directions can be identified

as a follow–up of this thesis, we present here some future perspectives with some

intuitions on the complexity of the problems and possibly some hints on how to

tackle them.

10.3.1 Complete global analysis for multiagent systems

In Chapter 4, we have presented a thorough global constructibility analysis

for a single vehicle, while in Chapter 8, we have extended the concepts to the

particular case of multiagent setting where a constructible subsystem exists. The

general problem can be formalised as in Chapter 8, where we want to find the

conditions on the trajectories of the vehicles and on the relative measurements

such that there exists a unique set of rototranslations (R[i], T [i]), i = 1, . . . , N −
1, to the reference frame of the vehicle V [0]. Based on the results presented in

this thesis, we can intuitively state some necessary conditions that each vehicle

has to satisfy:

Condition 10.1 (Necessary). Let V [i] collect N
[i]
m measurements in positions

P
[i]
k , k = 0, . . . , N

[i]
m − 1, where some positions P

[i]
k might coincide. Moreover,

let the position of the other vehicle involved in the measurements be P
[jk]
k , where

the index jk denotes the vehicle collecting a relative measurement from V [i] at

time k. The following necessary conditions must hold true:

1. V [i] must collect at least 4 measurements (N
[i]
m ≥ 4);

2. At most N
[i]
m − 2 positions P

[jk]
k of the other vehicles involved in the mea-

surements can coincide;

3. At most N
[i]
m − 2 positions P

[i]
k can coincide.

Conditions 1 and 2 are an intuitive, yet not proved, consequence of the

analysis in Chapter 4, where the minimum number of non—simultaneous mea-

surements is proved to be 4, provided that the measurements are collected by

at least 2 anchors. Condition 3 is intuitively derived from the analysis in Chap-

ter 8, on simultaneous measurements. However, drawing conclusions on the
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B1

B2

B3 B4

ρ[1,2]

Figure 10.2: Example: the two vehicles collect 3 measurements from the beacons in
their position P

[i]
0 , i = 1, 2, one measurement from B4 and a relative measurement in

P
[i]
1 . The system is only locally constructible when ρ[1,2] is not collected, while it is

globally constructible when also the relative distance is measured.

sufficient and necessary conditions for global constructibility on such a multi-

agent system is not a straightforward extension of the procedures followed in

Chapter 4. To show the complexity of the problem, let us consider the example

proposed in Chapter 8, and reported in Figure 10.2. The final position P i1 of

the vehicles must satisfy the constraints arising from the measurements and the

constraint deriving from the dynamics, i.e. the distance from the initial point

be A
[i]
0 . The positions P

[i]
1 = [x

[i]
1 ; y

[i]
1 ]> are the solution to the following set of

nonlinear equations:

‖ P [1]
1 − P

[1]
0 ‖2 = A

[1]
0

2

‖ P [2]
1 − P

[2]
0 ‖2 = A

[2]
0

2

‖ P [1]
1 − B4 ‖2 = ρ

[1]
4

2

‖ P [2]
1 − B4 ‖2 = ρ

[2]
4

2

‖ P [1]
1 − P

[2]
1 ‖2 = ρ[1,2]2

As in Chapter 3, we can take the differences between pairs of equations

to have linear equations in some unknowns, solve them and substitute in the

following equations. As a result, we obtain an equation with only x
[2]
1 as a

variable (or equivalently one of the others unknowns). The equation has a

fourth–order numerator, which may have up to 4 solutions, while it is clear from

Figure 10.2 that it only has one real solution in the depicted setting. Analysing

this problem for a generic number of vehicles and interactions between them

seems unfeasible with these arguments. A more promising solution leverages

graph theory, as shown in [Hao et al., 2022], where each node (representing the

vehicle) should be “rigidly connected” to V [0]. Intuitively, two vehicles V [i] and

V [j] are “rigidly connected” when the sequence of positions of V [i] is known in

the reference frame 〈V [j]〉 and vice versa, but the concept of “rigid connection”
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Figure 10.3: Example with actuation noise: 100 realisations of the path of the vehicle
with actuation noise (blue crosses). The nominal position predicted by the vehicle with
the nominal controls is represented in red, while its mirrored position, reached with
the sign of the nominal angular velocity ω reversed is depicted in green.

should be formally stated and analysed.

10.3.2 Motion uncertainties

This thesis, both in the parts presenting constructibility analysis and synthesis,

does not take into account possible uncertainties that may arise in the actuation.

From a local perspective, actuation noise has been considered in the literature,

e.g. in [Napolitano et al., 2021] where the authors propose a cost function for an

MPC controller that has both the contribution of the Constructibility Gramian,

associated with the amount of information that can be collected through exte-

roceptive sensors, and of the Reachability Gramian, which minimises the uncer-

tainty on the state vector generated by actuation noise (otherwise modelled as

noise in the proprioceptive sensors). When looking at the problem from a global

perspective, there are some limitations that have to be taken into account. Let

us consider the following example:

Example 10.1. Let us consider a unicycle vehicle lying in the origin of the

world reference frame, aware of its initial state. The setting is represented in

Figure 10.3. The vehicle executes a manoeuvre with control inputs

v0 = 1 + 0.05σ1, ω0 =
π

10
+ 0.3σ2,

where σ1 and σ2 are two independent random variables from a zero–mean normal
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distribution with covariance equal to 1. When the vehicle reaches its second

position, it measures its distance from the origin. While the predicted position

is represented in red in Figure 10.3, when actuation noise is involved, the vehicle

may reach a position which is closer to the mirrored position in green. Therefore,

in some settings, actuation noise may induce the vehicle to pick one trajectory

(in this example the red), while it is travelling along a different trajectory, thus

jeopardising the validity of the analyses carried out in this thesis. ?

Example 10.1 shows that actuation noise deserves a deeper analysis, which

is associated with the concepts of reachability. In particular, we should devise

a metric to quantify the global constructibility of a trajectory, measuring “how

indistinguishable” two or more trajectories are. When the position of the vehicle

is found by solving a linear equation

M

[
x

y

]
= h,

a metric could be the smallest eigenvalue of the matrix M , but some settings

in Chapter 4 do not rely on the inversion of a matrix M . This metric may also

be used in trajectory planning algorithms, e.g. to minimise for the likelihood of

one or more hypothesis in a Multi–Hypothesis Extended Kalman Filter or of a

Generalised Pseudo Bayesian algorithm.

10.3.3 Malicious or non–collaborative agents

The extension of constructibility analyses to multiagent systems opens many

further research directions, which can rely on the tools devised and presented in

this thesis. In particular, extensions with heterogeneous agents can be trivially

performed when each of them meets the usual conditions on its trajectory, i.e.

the sequence of positions is sufficient to reconstruct the state, and the path

followed by the vehicle has a shape that only depends on the control inputs. An

interesting extension involves malicious and non–collaborative agents, which

actively avoid measurements or broadcast wrong information on their actual

state due to faulty sensors, unmodelled dynamics or malicious intentions. Let

us consider some scenarios, of increasing complexity, where constructibility is

jeopardised by limited or false information.

Example 10.2. Let us consider a still target with unknown position P =

[x; y]>, measuring its distance from a tracker vehicle that is aware of its state

and plans its successive positions. The tracker aims at making the target localise

itself in a different position P , and to do this, it seeks for a set of positions
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Pk = [xk, yk]>, k = 1, 2, 3 to communicate to the target, which is aware of the

three measured distances ρk, k = 1, 2, 3. Therefore, in the usual trilateration

equation[
x̃0 − x̃1 ỹ0 − ỹ1

x̃0 − x̃2 ỹ0 − ỹ2

][
x̃

ỹ

]
=

1

2

[
−ρ2

0 + ρ2
1 + x̃2

0 − x̃2
1 + ỹ2

0 − ỹ2
1

−ρ2
0 + ρ2

2 + x̃2
0 − x̃2

2 + ỹ2
0 − ỹ2

2

]
,

the trackers, given ρk, k = 1, 2, 3, aims at finding the positions P̃k such that

P̃ = P .

A trivial solution to this problem is P̃k = Pk + P̃ − P , infinitely many

solutions for this problem can be found. ?

While Example 10.2 shows a scenario that does seem to be uncommon in

real–life settings, it represents a starting point to devise a set of behaviours for

a malicious agent to not be localised.

Example 10.3. Let us consider a target–tracker scenario, where the target is

non–collaborative (see [Hung et al., 2020]). When the target has a complex or

byzantine behaviour, game theory should be involved, while less sophisticated

methods may be leveraged with some simplifying assumption, e.g. when the

target moves with constant but unknown velocities. In this scenario, the target

may be modelled as a double integrator system reading as

q =


x

y

vx

vy

 , q̇ =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 q.

The problem may be addressed with the same machinery as in Chapter 9, where

the results are expected to have the same shape, i.e. the optimal trajectory has

a Gramian with diagonal blocks, but an analytical proof has to be provided. ?

Example 10.4. As a last example, let us consider a more complex scenario

where a team of vehicles is patrolling a room. A byzantine agent, part of

the patrolling team, aims at leaving an area of the room unmonitored, or at

creating a path for an intruder to move across the room without been seen

by the patrolling team. To successfully execute this task, the malicious agent

should inject false information in the system to make the team localise it in the

wrong position, which is the position where the intruder can lie without being

seen. ?

While the problem in Example 10.4 is evidently more complex than the

examples shown before, it inherently requires disrupting global constructibility,

and thus it can rely on the concepts devised in this thesis.
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10.3.4 Other types of sensors

In the analysis of a unicycle–like vehicle, ranging sensors measure a quantity that

only depends on a part of the state (in the case the x and y coordinates), while

the orientation θ is reconstructed by relying on the dynamics and manoeuvres

executed by the vehicle. Similar results, which may be obtained with a geometric

analysis, are expected with other classes of sensors where only a part of the state

is involved. Some insights may come from the local observability analysis for a

unicycle vehicle has already been presented in [Martinelli and Siegwart, 2005],

where, for instance, local constructibility can never be achieved with orientation

measurements, since any final position Pf = [xf ; yf ]> yields the same output

history when the executed manoeuvres and the final orientation θf are the given.

Bearing sensors have been deeply analysed in the technical literature from

a local perspective, and they present many remarkable differences with respect

to the ranging sensors. Indeed, let us consider a vehicle moving on a straight

line, perceived by a single sensors in the origin, i.e. [X;Y ]> = [0; 0]>, with

q0 =

0

2

0

 , q1 =

1

2

0

 , q2 =

2

2

0

 ,
and h(qk) = arctan2(yk − Y, xk − X). Unlike ranging sensors, in this scenario

where absolute bearing is measured, the vehicle is constructible, i.e. there is a

unique solution to the set of equations

arctan2( ỹ0 , x̃0 ) = arctan2( y0 , x0 )

arctan2( ỹ0 + sin θ̃0 , x̃0 + cos θ̃0 ) = arctan2( y0 + sin θ0 , x0 + cos θ0 )

arctan2( ỹ0 + 2 sin θ̃0 , x̃0 + 2 cos θ̃0 ) = arctan2( y0 + 2 sin θ0 , x0 + 2 cos θ0 )

,

which is q̃0 = q0. Instead, different results are achieved when the relative bearing

is measured, i.e. the slope of the line joining the vehicle to the beacon with

respect to the orientation of the vehicle itself, reading as

h(qk) = arctan2(yk − Y, xk −X)− θk.

Indeed, when computing the Constructibility Gramian with a single sensor de-

ployed in the environment, we always obtain a null space, i.e. an unconstructible

direction, with dimension 1, reading as [−yf + Y, xf −X, 1]>, hence associated

with the rotation of the trajectory about the beacon, as for the ranging scenario.

Theoretically, similar results are expected for sensors measuring the distance

between the vehicle and a line (instead of the range between the vehicle and
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a device), which could be represented by a wall. Intuitively, when the vehicle

measures its distance from a single wall or from a set of parallel walls, it cannot

reconstruct its coordinate parallel to the wall itself.

Finally, extending the techniques and procedures utilized in this thesis to

the case of RFID sensors presents its own challenges. Indeed, since RFID mea-

surements rely on the phase difference of a backscattered signal, the problem

of periodicity arises, i.e. any distance D + nλ, n ∈ Z, where λ is the wave-

length of the signal, yields the same measurement. This problem has been

tackled in [Magnago et al., 2020] by using the derivative of the measurement,

which represents the projection of the velocity of the vehicle on the line joining

the beacon and the vehicle itself. Addressing this problem from a global per-

spective with the same arguments as in the ranging scenario, introduces one

further limitation: when the vehicle collects two simultaneous measurements

from two distinct tags, the positions compliant with the measurements, i.e. the

indistinguishable positions, are more than two, as shown in Figure 10.4. From

geometric intuitions, the set of indistinguishable positions with range sensors is

a subset of the indistinguishable positions with RFID tags. Therefore, the anal-

ysis of ranging system may be beneficial in drawing conclusions on the RFID

scenario.
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P

P̃
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P P̃

(b)

Figure 10.4: Comparison between ranging sensors and RFID sensors with the same
position P of the vehicle (blue) and of the devices (black crosses) deployed in the
environment. The red positions P̃ represent the alias positions, i.e. positions different
from P that are compliant with the measurements. (a) With ranging systems, there
exists only one alias position, which is mirrored with respect to the line joining the
two devices. (b) When RFID tags are deployed in the environment, more than one
circle is compliant with the measurement from each tag, thus increasing the number
of alias positions.
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