

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A DISTRIBUTED ALGORITHM FOR ROBUST DATA SHARING
AND UPDATES IN P2P DATABASE NETWORKS

Enrico Franconi, Gabriel Kuper, Andrei Lopatenk, and Ilya Zaihrayeu

February 2004

Technical Report # DIT-04-011

Also: Proceedings of the EDBT International Workshop on Peer-to-peer
Computing and Databases (P2P&DB'04), Heraklion, Crete, 2004

.

A distributed algorithm for robust data sharing

and updates in P2P database networks

Enrico Franconi1, Gabriel Kuper2, Andrei Lopatenko1,3, and Ilya Zaihrayeu2

1 Free University of Bozen–Bolzano, Faculty of Computer Science, Italy,
franconi@inf.unibz.it, alopatenko@unibz.it

2 University of Trento, DIT, Italy, kuper@acm.org, ilya@dit.unitn.it
3 University of Manchester, Department of Computer Science, UK

Abstract. In this paper we thoroughly analyze a distributed procedure
for the problem of local database update in a network of database peers,
useful for data exchange scenarios. The algorithm supports dynamic net-
works: even if nodes and coordination rules appear or disappear during
the computation, the proposed algorithm will eventually terminate with
a sound and complete result.

1 Introduction

In the paper [Franconi et al., 2003] we introduced a general logical and com-
putational characterization of peer-to-peer (P2P) database systems. We first
defined a precise model-theoretic semantics of a P2P system, which allows for
local inconsistency handling. We then characterized the general computational
properties for the problem of answering queries to such a P2P system. Finally,
we devised tight complexity bounds and distributed procedures in few relevant
special cases. The basic principles of the characterization given in [Franconi et
al., 2003] are: (a) the role of the coordination formulas between nodes is for data
migration (as opposed to the role of logical constraints in classical data integra-
tion systems); (b) computation is delegated to single nodes (local computation);
(c) the topology of the network may dynamically change; (d) local inconsistency
does not propagate; (e) computational complexity can be low.

In this paper we thoroughly analyze a distributed procedure for the problem
of local database update in a network of database peers, as defined in [Franconi
et al., 2003]. The problem of local database update is different from the problem
of query answering: in the latter, the answer to a local query may involve data
that is distributed in the network, thus requiring the participation of all nodes at
query time; in the former, all the nodes consistently and optimally propagate all
the relevant data to their neighbors, allowing for subsequent local queries to be
answered locally within a node, without fetching data from other nodes at query
time. The update problem has been considered important by the P2P literature;
most notably, recent papers focused on the importance of data exchange and
materialization for a P2P network [Fagin et al., 2003; Daswani et al., 2003].

Relevant work in semantically well founded P2P systems includes [Halevy et
al., 2003], which describes an algorithm for acyclic P2P systems using classical
(first-order logic) semantics. The acyclic case is relatively simple – a query is

propagated through the network until it reaches the leaves of the network. The
work in [Calvanese et al., 2003] uses a notion of semantics similar to the semantics
introduced in [Franconi et al., 2003], but it describes only a global algorithm, that
assumes a central node where all computation is performed. The paper [Serafini
and Ghidini, 2000] describes a local algorithm to compute query answers, but
it does not allow existential variables in the head of the coordination rules. The
algorithm we present in this paper supports such variables, in a similar fashion
to the algorithm of [Calvanese et al., 2003].

The algorithm presented in this paper supports dynamic networks: even if
nodes and coordination rules appear or disappear during the computation, the
proposed algorithm will eventually terminate with a sound and complete re-
sult (under appropriate definitions of the latter). In addition, our algorithm is
based on an asynchronous model of communications (while also supporting a
synchronous alternative), which means that answering a query, and reaching the
fix-point, may be faster at expense of an increase of the number of messages in
the network.

2 P2P database systems

Our P2P framework is based on the logical model of [Franconi et al., 2003].

Definition 1 (Local database) Let I be a nonempty finite set of indexes {1, 2,

. . . , n}, and C be a set of constants. For each pair of distinct i, j ∈ I, let Li be
a first-order logic without function symbols, with signature disjoint from Lj but
for the shared constants C. A local database DB i is a theory on the first order
language Li.

Nodes are interconnected by means of coordination rules. A coordination rule
allows a node i to fetch data from its neighbor nodes j1, . . . , jm.

Definition 2 (Coordination rule) A coordination rule is an expression of the
form

j1 : b1(x1,y1) ∧ · · · ∧ jk : bk(xk,yk) ⇒ i : h(x)

where j1, . . . , jk, i are distinct indices, each bl(xl,yl) is a formula of Ljl
, and

h(x) is a formula of Li, and x = x1 ∪ · · · ∪ xk.

Note that we are making the simplifying assumption that the equal constants
mentioned in the various nodes refer to equal objects, i.e., that they play the
role of URIs (Uniform Resource Identifiers). Other approaches consider domain
relations to map objects between different nodes [Serafini et al., 2003], and we
plan to consider such extensions in future work.

A P2P system is just the collection of nodes interconnected by the rules.

Definition 3 (P2P system) A peer-to-peer (P2P) system is a tuple of the
form MDB = 〈LDB ,CR〉, where LDB = {DB1, · · · ,DBn} is the set of local
databases, and CR is the set of coordination rules.

A user accesses the information hold by a P2P system by formulating a query
at a specific node.

2

Definition 4 (Query) A local query is a first order formula in the language
of one of the local databases DB i.

The semantics of a P2P system and of queries is defined in [Franconi et
al., 2003]. In this paper, we assume that all nodes are relational databases;
coordination rules may contain conjunctive queries in both the head and body
(without any safety assumption and possibly with built-in predicates). Under
these assumptions computing of answers is reducible to data fetching [Franconi
et al., 2003; Calvanese et al., 2003].

To describe the P2P networks we introduce the notion of a dependency edge
between nodes of a P2P network.

Definition 5 There is a dependency edge from a node i to node j, if there is a
coordination rule with head at node i and body at node j.

Note that the direction of a dependency edges is the opposite to that of the
rules. The direction of a rule is the direction in which data is transfered, whereas
the dependency edge has the opposite orientation. In this paper we use MDB

to denote a P2P system, using terms such as P2P system or a network. I is used
to denote a set of all nodes in given MDB, C denotes the set of all coordination
rules, and L the set dependency edges between nodes in a network derived from
C. Subsets of I are denoted by A. We assume that I, L, and C are always finite
sets.

Definition 6 A dependency path for a node i is a path 〈i1, i2, . . . , in〉 of depen-
dency edges, such that 1) i1 = i ; 2) 〈i1, . . . , in−1〉 is a simple path (no one node
met twice).

Definition 7 A maximal dependency path for a node i is a dependency path
such that if we add any node to the path, the result will not be a dependency
path. In this paper, when we describe dependency paths for a node i, we omit the
first node (i).

As an example, consider a P2P system with the follow schemas and rules:

A : a(X, Y)

B : b(X, Y)

C : c(X, Y), f(X)

D : d(X, Y)

E : e(X, Y)

r1 : E : e(X, Y) → B : b(X, Y)

r2 : B : b(X, Y), b(Y), Z → C : c(X, Z)

r3 : C : c(X, Y), c(Y, Z) → B : b(X, Z)

r4 : B : b(X, Y), b(X, Z), X 6= Z → A : a(X, Y)

r5 : A : a(X, Y) → C : f(X)

r6 : A : a(X, Y) → D : d(Y, X)

r7 : D : D(X, Y), D(Y, Z) → C : c(X, Y)

The dependency edges and the maximal dependency paths for the example are:

3

A

BC

D

E

path # path # path # path

A ABCA B BE C BE D ABE
A ABE B BCAB C BC D ABCD
A ABCB B BCB C DABC D ABCB
A ABDA B BCDAB C ABC D ABCA

C ABE

3 The distributed update algorithm

The problem we want to solve is to propagate to all nodes all the information
which is distributed among all the databases, so that queries can be answered
locally. The main idea behind the distributed update algorithm is that nodes
update their local databases by importing data from their neighbors (called ac-
quaintances) using the definitions of coordination rules w.r.t. these neighbors.
The global update procedure is started by some super-node, which sends global
update requests to its acquaintances, these acquaintances propagate these re-
quests to their acquaintances, and so on. The work of the algorithm seems easy
until we have loops in the dependency paths. In this case, query results from
some node can go through a chain of nodes and return to the given node. In order
to avoid infinite loops in propagation of already computed data in the system,
node N stops propagating of some result set R iff a) N is contained in the path R
has passed through, and b) there is no new data in R for N. In this case we will
say that node N reaches a fix-point. This procedure can be proved to be sound
and complete with respect the semantics presented in [Franconi et al., 2003]. The
algorithm presented here does not present possible optimization; these exploit
the knowledge of specific topological structures, and allow for more fine grained
queries to acquaintances and answer from acquaintances (delta optimization) in
order to minimize data transfer and duplication.

It is assumed that when a node joins the P2P network it knows only its
acquaintances. Therefore, the first step of the algorithm is to let each node
know the network topology. Each node first looks for the set of its maximal
dependency paths (Topology discovery algorithm). At the end of this first phase,
all nodes are aware of the relevant part of the network topology - i.e., each
node will know about all the maximal dependency paths starting from it; in the
P2P literature [Hellerstein, 2003] it is assumed reasonable if a node is aware of
log(n) ’neighbor’ nodes, where n is a size of network. The topology discovery is
initiated by a “super-peer”, which should be selected to optimize the distribution
of messages during discovery time; a super-peer do not have any other property
differentiating it from other nodes. It is possible that the topology changes while
the discovery process is ongoing; in Section 4 we analyze this case.

The algorithm for the actual database update is the same as the one for
the topology discovery, with two main differences: (1) in the discovery phase
the topology discovery algorithm stops when a node is reached twice, while the
update algorithm has to continue the computation until a fix-point is reached;
and (2) the discovery algorithm does not perform actual database queries and
propagation. Both phases of the algorithm are executed asynchronously in par-

4

allel; we use the notation Name Of Functioni to mean the execution of that
function at node i. Figure 1 shows a sample execution of the algorithm for our
example P2P system.

Lemma 1 1. (Soundness and completeness) A node reaches the state closed
iff the algorithm has reached the fix-point at this node;

2. (Termination) Every node of the network eventually reaches the state closed;
3. (Complexity) The complexity of the algorithm database update at each node

is 2EXPTIME in the number of nodes.

Each node is given the following data structure:

– stated, a variable that describes the state of knowledge about the network.
It can have the value discovery, that means that the discovery process is
undergoing and the knowledge is incomplete, or closed, when the knowledge
about the network is complete. Initially it is undefined.

– stateu, a variable that describes the status of the data at a node. It has the
value open when the node has no complete data, or closed when the node
has reached the fix-point.

– finished , a boolean variable indicating that the network discovery through
the node is finished.

– Rules(rule, node, flag), a relation that describes the set of coordination
rules which have the node as target. The attributes of this relation are rule,
the id of a rule, node, the id of the source node for that rule, and a flag (see
the algorithm). We assume that initially each node knows all rules of which
it is a target.

– Paths(path, flag, closed), a relation that describes the maximal depen-
dency paths for the node. Its attributes are: path, a string that represents
the path, and flag, closed (see the algorithm). We assume that initially the
relation is empty.

– Edges(source, target), a relation that describes all dependency relations
in the part of the network reachable from the node.

– ID is the identifier of the node, assumed to be unique in the network.
– owner , an array which contains pairs of node IDs, the first being a node ID

on behalf of which the node is searching for data, and the second being the
node ID which sent the request.

In the algorithm we use the function id(rule) to take the ID of a rule’s ID and
return the ID of the source node of the rule.

A1: Network topology discovery.

The algorithm is executed by the ‘super-peer’ which starts the process of network
discovery. All the other nodes will only run the Query and processAnswer algorithms
when they are requested.

Discover(Rules, ID)
if |Rules| == 0

stated = closed ; Paths = ∅ ; return

if stated == ⊥
stated = discovery

5

:A :B :C :E

t

requestNodes

Query

processAnswer

Answer

requestNodes

Query

processAnswer

Answer

requestNodes

Query

processAnswer

Answer

processAnswer

Answer

processAnswer

Answer

Fig. 1. A sample execution of the discovery and update algorithm

foreach r ∈ Rules
requestNodesid(r)(ID, ID)

owner = owner ∪ 〈∅, ID〉

A2: Topology discovery: process request

Process the request sent by another node; IDs is an ID of the node sending request,
IDo is the ID of the node on behalf of which the request is sent.

requestNodes(IDs, IDo)
if Rules == ∅

stated = closed ; finished = true

if IDo 6∈ π2(owner)
foreach r ∈ Rules

requestNodesid(r)(ID , IDo)
else

finished = true

owner = owner ∪ 〈IDs, IDo〉
processAnswerIDs

(IDo , Edges ∪ 〈ID , ID
s
〉, stated , finished)

A3: Topology discovery: process the answer from another node

IDo is a ID of a node on behalf of which discovery is done, set is a set of answers
(dependency edges between nodes), and state is the answer completeness status, status
is an indicator that discovery in a given branch is finished, me is an ID of the rule to
which the current answer relates.

6

processAnswer(IDo, set , state, status)
Edges = Edges ∪ set
if state == closed

update Rules set flag = true where rule = me
if status == true

update Rules set closed = true where rule = me
if ∀Rulesflag == true

stated = closed
if ∀Rulesfinished == true

finished = true
if ID == IDo

if ∀Rulesfinished == true
statedd = closed

foreach (
〈IDs, IDo〉 ∈ owner)

processAnswerIDs
(IDo , Edges, stated , finished)

A4: Database update: process query sent by another node

IDs is the ID of the node which did send the request, Q is a query (the head of the
coordination formula), SN is a sequence of nodes’ IDs describing a path for the query
evaluation.

Query(IDs, Q, SN)
QA = Compute-local-answer(Q)
AnswerIDs

(ID, QA, ID + SN, stateu)
owner = owner ∪ IDs, first(SN)
if stateu == open ∧ ID 6∈ SN

foreach r ∈ Rules
Queryid(r)(ID, Query(r), ID + SN)

A5: Database update: Process the answer sent by another node

ID is an ID of the node which sent the answer, QA is the answer as a set of tuples, SN
is a sequence of nodes’ IDs, state is a flag indicating if the answer is complete.

Answer(ID, QA, SN, state)
update = UpdateLocalData(rule, QA)
if state == complete

update Rules set flag = true where rule = rule(Q)
if update = ∅

update Paths set flag = true where path = SN
if update 6= ∅

update Paths set flag = false where path = SN
if ∀t ∈ Rulesπflag(t) == true

stateu = closed

if ∀t ∈ Pathsπflag(t) == true

stateu = closed

foreach node ∈ π1 (owneru)
QA = ComputeAnswer()

7

Answernode(ID, QA, SN, stateu)

A6: Database update: local update algorithm.

Updates the database to make it consistent with the view extensions (i.e., the rules)
and the original content. Rule is the identifier of a rule, QA is a set of tuples.

UpdateLocalData(rule, QA)
if (

QA 6≡ ∅)
foreach (

tuple t ∈ QA) foreach (
relation R ∈ definition(View rule))
if πR(t)¬ ∈ R

insert (πR(t)) into R with new values for existential

4 Dynamic behavior of the P2P network

One of the distinctive characteristics of P2P systems is that the network can
vary dynamically. Assume that the network MDB consist initially of a set of
nodes I, and that C is an initial set of coordination rules with L being the initial
set of dependency edges. We model network dynamicity by adding/removing
coordination rules between nodes, and therefore deletion of a node is modeled
by deleting all coordination rules that relate to this node. With respect to query
answering adding/removing nodes with coordination rules is easily seen to be
equivalent to the assumption that all nodes are present from the start, and that
only coordination rules are changed.

We define an atomic network change operation as follows.

– addLink(i,j,rule,id): add the coordination rule rule from node j (the body)
to node i (the head). id is the name of a rule, which should be unique for a
given pair of nodes.

– deleteLink(i,j,id): delete the coordination rule id between nodes i and j

Definition 8 1. A change U of a network MDB is a sequence of atomic
change operations over MDB.

2. A finite change of a network is a finite sequence of atomic changes.
3. An initial subchange U1 of a change U is a initial prefix of U
4. A subchange UA of U in respect to A ⊂ I is a set of atomic operations of

U, relevant to A and ordered with the same order as in U

We assume that in the case of atomic change the network will be notified
about the change in the following cases:

1. in case of addLink(i,j,rule,id), the node i (which will be able to fetch data
by this rule) gets a notification; addRule(i, j, rule, id)

2. in case of deleteLink(i,j,id), the node i (which will be unable to feth data by
this rule) gets a notification. deleteRule(i, j, id)

8

Definition 9 1. A sound answer of a query Q in a network subject to runtime
changes, is an answer to the query that is included in the result that we would
obtain if we executed all the addLink statements before running Q, and did
not execute the deleteLink statements at all.

2. A complete answer of a query Q in a network subject to runtime changes,
is an answer to the query that contains the result that we would obtain if we
executed all the deleteLink statements before running Q, and did not execute
the addLink statements at all.

The basic idea behind this definition is that we cannot know in advance what
the state of the database will be at termination time. Therefore, we require that
a sound and/or complete answer will be sound and/or complete with respect
to that part of the database that is unchanged. The result with respect to the
part that is changed will depend on the order and timing of the execution of the
changes.

Theorem 2 1. For a finite change of a network, the update algorithm will
terminate.

2. The result of the algorithm is a sound and complete answer to the query
subject to changes.

3. In the case of an infinite change to the network, the update algorithm may
not terminate.

In general, we cannot assume that a network change is finite. In the general
case, therefore, the nodes in the network may never reach the fix-point – or at
least, we may not be able to show that they have reached fix-point. We now give
a condition on when a subset of nodes can reach a fix-point, even under infinite
change of the whole network.

Definition 10 1. A set of nodes A1 is separated from a set of nodes A2 in
a P2P network I if there is no dependency path from any node in A1 that
involves a node in A2.

2. A set of nodes A1 is separated from a set of nodes A2 in P2P network I

with respect to a change U if for any subchange of U there is no dependency
path from a node in A1 involving a node in A2 in the network we obtain by
applying that subchange.

Theorem 3 If, for a network I, a set of nodes A is separated from (I \ A)
with respect to a (possibly infinite) change U over I, and UA is finite, then
the algorithm, when applied to a node in A, terminates, yielding a sound and
complete answer.

Lemma 4 For a finite change, the complexity of reaching the fix-point is in
2EXPTIME with respect to the size of the change.

5 Implementation

We implement database peers on top of JXTA [JXTA project,]. JXTA specifies a
set of protocols which provide implementation of basic, as well as rather sophisti-
cated P2P functionalities. As basic functionalities we can distinguish: definition

9

Fig. 2. First level architecture

of a peer on a network; creation of communication links between peers (called
pipes); creation of messages, which can envelope arbitrary data (e.g. code, im-
ages, queries); sending messages onto pipes, etc. Examples of more sophisticated
functionalities provided by JXTA are: creation of peer groups; specification of
services and their implementation on peers; advertising of network resources (i.e.
peers, pipes, peer groups, services, etc.) and their discovery in a distributed, de-
centralized environment. JXTA has a number of advantages for developing P2P
applications. It provides IP independent naming space to address peers and
other resources, it is independent of system platforms (e.g. Microsoft Windows
or UNIX) and networking platforms (e.g. Bluetooth, TCP/IP), it can be run on
various devices such as PCs or PDAs, and provides support for handling fire-
walls and NATs. We have chosen JXTA since it already gives practically all basic
building blocks for developing P2P applications and thus allow the developer to
concentrate on implementation of specific functionalities a given application is
required to provide.

First level logical architecture of a node, inspired by [Bernstein et al., 2002]
and [Giunchiglia and Zaihrayeu, 2003], is presented on Figure 2. A node consists
of P2P Layer, Local Database (LDB) and Database Schema (DBS). DBS de-
scribes part of LDB, which is shared for other nodes. P2P Layer consists of User
Interface (UI), Database Manager (DBM), JXTA Layer and Wrapper. Nodes
connect to a P2P database network by means of connecting to other peer(s), as
it is schematically shown on Figure 2 (see the arrow from JXTA Layer to the
network and arrows between nodes in the network).

By means of UI users can commence network queries and updates, browse
streaming results, start topology discovery procedures, and so on. Among other
things, UI allows to control other modules of P2P Layer. For instance, user
can modify the set of coordination rules w.r.t. other nodes, define connection
details for Wrapper, etc. DBM processes both user queries and queries coming
from the network, as well as global and query-dependent update requests. It is
also responsible for processing of query results coming both from LDB and the
network, as well as for processing of updates results coming from the network.
Finally, DBM manages propagation of queries, update requests, query results and
update results on the network. JXTA Layer is responsible for all node’s activities
on the network, such as discovering of previously unknown nodes, creating pipes
with other nodes, sending messages containing queries, update requests, query

10

results, etc. Wrapper manages connections to LDB and executes input database
manipulation operations. This is a module which is adjusted depending on the
underlying database. For instance, when LDB does not support nested queries,
then this is the responsibility of Wrapper to provide this support. Yet another
task of Wrapper is retrieval and maintenance of DBS.

The LDB rectangle stands for RDBMS. It has dashed border to mean that
local database may be absent. Nevertheless DBS must always be specified in
order to allow a node to participate on the network. In this situation a given
node acts as a mediator for propagating of requests and data, and all required
database operations (as join and project) are executed in Wrapper. The DBS
rectangle has rounded corners because it represents a repository, where DBS is
stored. Arrows between UI and DBM as well as arrows between JXTA Layer,
Wrapper and DBM have the same graphical notation because they represent
procedure calls between different execution modules. The arrow between JXTA
Layer and the network has another notation because it represents communication
supported by JXTA. The arrows connecting Wrapper, DBS and LDB have yet
another notation because the communication they denote is LDB dependent.

For the purposes of collecting experimental data, each node has an addi-
tional statistical module (not shown on Figure 2). This module accumulates
information about number of executed queries and updates, total time which
was required to answer a certain query or fulfill an update request, volumes of
data transferred onto pipes, number of queries received and sent for the same
original query (due to different paths and loops), and so on. For the statistical
purposes, there is a possibility to make some peer the super-peer on the network.
This peer can read coordination rules for all peers from a file and broadcast this
file to all peers on the network. Once received this file, each peer looks for rel-
evant to it coordination rules, reads them, creates and drops pipes with other
nodes, where necessary. Thus, one peer can change the network topology at run-
time. This is extremely convenient for running multiple experiments on different
topologies. Finally, the super-peer can “command” other peers to send to it sta-
tistical information accumulated by some moment of time, or reset statistics at
all peers.

Current version of the prototype supports both global and query-dependent
updates handling, distributed query answering, and implements the topology
discovery algorithm. When a node starts, it creates pipes with those nodes,
w.r.t. which it has coordination rules, or which have coordination rules w.r.t.
the given node. Several coordination rules w.r.t. a given node can use one pipe
to send requests and data. If some coordination rules are dropped and a pipe
becomes unassigned a coordination rule, then this pipe is also closed.

Preliminary experiments were done to measure the scalability of our approach
with respect to a size of the P2P network. We are currently organizing more
precise experiments.

Up to 31 nodes participated to the preliminary experiments. The local re-
lational databases are based on DBLP data (http://dblp.uni-trier.de/xml)
and contained about 20000 records about publications (about 1000 per node),
organised in 3 different relational schemas. We considered two different data
distributions. In the first one there is no intersection between initial data in

11

neighbor nodes. In the second, there is 50% probability of intersection between
initial data in nodes linked by coordination rules; the intersection between data
in other nodes is empty. Three types of topologies have been considered: trees,
layered acyclic graphs, and cliques.

By looking at the execution time and the number of messages exchanged
between nodes, the preliminary experiments confirmed the expectation that in
the simple topological structures (like the tree and the layered acyclic graphs)
the execution time is linear with respect to the depth of the structure.

References

[Bernstein et al., 2002] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopou-
los, L. Serafini, and I. Zaihrayeu. Data management for peer-to-peer computing: A
vision. WebDB, 2002.

[Calvanese et al., 2003] Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Semantic data integration in p2p systems. In
Proc. of the Int. Workshop on Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P 2003), 2003.

[Daswani et al., 2003] Neil Daswani, Hector Garcia-Molina, and Beverly Yang. Open
problems in data-sharing peer-to-peer systems. In ICDT 2003, 2003.

[Fagin et al., 2003] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and
Lucian Popa. Data exchange: Semantics and query answering. In Proceedings of the
9th International Conference on Database Theory, pages 207–224. Springer-Verlag,
2003.

[Finch, 1998] Peter Finch. European research gateways on-line: Ergo pilot project. In
CRIS 98, Luxembourg, 1998. CORDIS.

[Franconi et al., 2003] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Lu-
ciano Serafini. A robust logical and computational characterisation of peer-to-peer
database systems. In International Workshop On Databases, Information Systems
and Peer-to-Peer Computing, 2003.

[Giunchiglia and Zaihrayeu, 2003] F. Giunchiglia and I. Zaihrayeu. Implementing
database coordination in p2p networks. DIT technical report # DIT-03-035, the
University of Trento, Italy, November 2003.

[Halevy et al., 2003] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov.
Schema mediation in peer data management systems. In ICDE, 2003.

[Hellerstein, 2003] Joseph M. Hellerstein. Toward network data independence. SIG-
MOD Rec., 32(3):34–40, 2003.

[JXTA project,] JXTA project. see http://www.jxta.org.
[Serafini and Ghidini, 2000] Luciano Serafini and Chiara Ghidini. Using wrapper

agents to answer queries in distributed information systems. In Proceedings of the
First Biennial Int. Conf. on Advances in Information Systems (ADVIS-2000), 2000.

[Serafini et al., 2003] Luciano Serafini, Fausto Giunchiglia, John Mylopoulos, and
Philip A. Bernstein. Local relational model: A logical formalization of database
coordination. In CONTEXT 2003, pages 286–299, 2003.

[Zimmerman, 2002] Eric Zimmerman. Cris-cross: Current research information sys-
tems at a crossroads. In CRIS2002: Gaining Insight from Research Information,
Kassel, Germany, 2002. euroCRIS.

12

