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ABSTRACT: Light timber-frame buildings are nowadays widely spread even in seismic prone regions tanks to several 
researches undertaken in the last decade, which highlighted their potentialities in terms of seismic response. Anyway, a 
definitive method to assess their dynamic properties as well as an analytical method to apply the Response Spectrum 
Analysis (RSA) are missing both in standards and literature. The present paper deals with the seismic analysis of this type 
of building. Specifically, through the use of a numerical simplified model accounting for the main deformation 
contributions, three analytical-iterative method to apply the RSA are presented. The methods are iterative because both 
of the hold-downs behaviour and the vertical load actions. In fact, the hold-downs display an on-off behaviour depending 
on their state which can be active (hold-down in tension) or not active (hold-down not in tension), whereas the vertical 
load modifies the seismic force distribution within the wall. These methods can be used to assess the dynamic properties 
of a building and to design non-regular buildings. In order to allow readers to better understand the procedures a numerical 
example is included. 
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1 INTRODUCTION  123 
The Response Spectrum Analysis (RSA)  has been 
applied to buildings which cannot be defined regular in 
elevation and it should be considered the reference 
method for the seismic design because it can be applied to 
any type of building without any geometric limitation. 
Moreover, its results could be considered more reliable 
compared to Lateral Force Method (LFM) because the 
analysis takes into account all the significant modes of 
vibration participating to the seismic response of the 
structure. Anyway, despite the construction of timber 
building is more and more increasing, the use of the RSA 
has not been established yet, because a definitive 
procedure is still missing. 
The main objective of the present work is to develop a 
suitable analytical procedure to allow researches and 
engineer to apply the RSA to light timber-frame 
buildings. In fact, nowadays the LFM is mainly used by 
designers (even if the RSA is mandatory for non-regular 
buildings, see [2]) because a definitive method to apply 
the RSA which correctly accounts for its recursive nature 
is missing. 
 
The seismic behaviour of timber buildings is not fully-
developed as they are more widespread in countries of 
North Europe (e.g. Sweden, Norway, Finland, etc.) as 
well as in Germany and Austria, where the seismic 
activity is not particularly intense. Nowadays, thanks to 
the potentialities in terms of seismic response, the timber 
buildings are becoming to spread to countries where the 
earthquake are more frequent and damaging as in 
Southern Europe and Central America. It is therefore 
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necessary to have standard requirements and the methods 
of analysis to use for timber buildings in the design phase 
in seismic areas, but for now they are still poorly 
developed.  
To better understand the behaviour of the timber building 
subjected to horizontal load (i.e. seismic event) analytical 
model is needed. For this purpose, an analytical iterative 
model suitable to predict the mechanical behavior of 
timber walls subjected to horizontal load is presented.   
This paper is based on a previous work () focused on the 
elastic analysis of one-storey timber shear-wall, both 
Light-Timber frame wall (TF) and Cross Laminated 
Timber walls (CLT). In that work an analytical procedure 
and a simplified numerical model (called UNITN model) 
were proposed to assess the elastic-horizontal behaviour 
of single-storey buildings.  
 
 
In Europe, timber buildings are traditionally more 
widespread in northern countries (e.g. Sweden, Norway, 
Finland etc.) as well as in Germany and Austria. The fact 
that the seismic activity in these areas is not particularly 
intense has led to a not fully-developed awareness about 
the potentialities of timber wall buildings in terms of 
seismic response. Research undertaken in last decades 
have highlighted these potentialities, so that timber 
building are becoming widespread even in south Europe 
and in Central America, where earthquakes are more 
frequent and damaging. For this reason it is necessary to 
deepen the knowledge of the dynamic behaviour of timber 
buildings; in fact, both standard requirements and method 
of analysis are still poorly developed. Some useful 
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researches have been done, but they are mainly focused 
on case-study buildings and based on the use of finite-
element analysis, therefore analytical models as well as 
numerical procedures and practical tools for designer are 
needed. 
This paper is based on a previous work [1] focused on the 
elastic analysis of one-storey timber shear-walls, both 
Light-Timber frame walls (TF) and Cross Laminated 
Timber walls (CLT). In that work an analytical procedure 
and a simplified numerical model (called UNITN model) 
were proposed  to asses the elastic-horizontal behaviour 
of single-storey buildings.  
The objective of the paper is to develop a correct 
procedure to apply the linear lateral force method (LFM) 
and a suitable procedure in order to give an answer to the 
open technical problem of the application of the response 
spectrum analysis (RSA) for multi-storey light-timber 
frame buildings. In fact, nowadays, LFM is mainly used 
by designers because a definitive procedure to extend the 
analytical modal analysis to timber wall building is still 
missing.  The implementation of the common LFM could 
lead to analysis errors because it is suitable for buildings 
which behaviour can be mainly attributed to the first 
modal shape (i.e. regular buildings in elevation, 
In the first part of the paper, a procedure to evaluate the 
horizontal deformation of one timber shear-wall 
composed by m storeys (system of m x 1 walls) is 
presented. The analysis is then extended to a more 
complex system composed of n timber shear-walls of m 
storeys (system of m x n walls), which reproduces a full-
scale building. Both the procedures are iterative due to the 
presence of the hold-downs (i.e. the connection devices 
which prevent the uplift of the wall), which is responsible 
of a geometrical and mechanical non-linear behaviour. 
The hold-down action in fact, should be taken into 
account only when the overturning moment produced by 
a horizontal force exceeds the stabilizing moment due to 
the vertical load. 
In the second part of the paper, the system of m x n walls 
is further developed; a procedure to asses the dynamic 
properties of a timber building (e.g. natural frequencies, 
mode-shapes, participating masses) is presented. Three 
methods to apply the RSA are also proposed. The 
procedures, better explained in Section 6.2,  differ in the 
way they consider the vertical load effects; in fact, the 
vertical load affects both the stiffness-matrix of the 
building and the shear-force distribution between the 
walls. 
2 SINGLE WALL MODEL 
2.1 Analytical formula 
The elastic displacement ΔC of  Light-Timber frame (TF) 
shear-wall subjected to a horizontal external force F, see 
Figure 1(a), can be evaluated using Eq. (1), which 
considers the four main deformation contributions, 
namely the sheeting to framing connection, the rigid-body 
rotation, the rigid-body translation and the sheeting-
boards respectively. 
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where: 
− F:  is the applied horizontal force; 
− sc:  is the fasteners spacing; 
− l:  is the wall length: 
− b:  is the breadth of the sheathing-panel 
− λ : is a parameter related to the sheeting-panel 

dimensions; 
− kh: is the hold-down stiffness; 
− q: is the vertical distributed load; 
− ka: is the angle-brackets (or screws) stiffness; 
− ia: is the angle-brackets (or screws) spacing; 
− Gp: is the shear modulus of sheathing panels; 
− tp:  is the sheathing panel thickness; 
− h:  is the height of the panel; 
− kc: is the fasteners stiffness; 
− nbs: is the number of braced sides of the wall; 
− τ : is a number accounting for the distance 

between the hold-downs, typically ∈[0.9;1]; 
Other contributions (as frame deformation, bending 
deflection, etc.) could be taken into account, but for the 
wall typologies most used in Europe, these contributions 
are negligible compared to the other. For more details see 
[1],[4] and [5]. 

 
 
Figure 1: (a) Light timber-frame wall; (b) UNITN simplified 
model. 
 
2.2 Simplified numerical model 
The behaviour of a timber wall can be faithfully 
reproduced by means of simplified numerical model, 
called UniTN-Model (see Figure 1(b)). It is called 
simplified because it reproduces the behaviour of a timber 
wall by means of three linear-elastic springs placed in 
series; each spring has a stiffness related to the 
corresponding deformation contribution, namely the hold-
down, the angle brackets and the coupled action of the 
sheathing-panels with the fasteners: 
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Considering Eq. 4 it is evident that when the hold-down 
is in tension the behaviour of the wall is not linearly-
proportional to the wall length, indeed the wall stiffness 
depends on the squared length. Furthermore, it is 
important to remark that when the hold-down is in 
tension, the horizontal displacement of a timber wall is 
reduced by the vertical load: 
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where Ktot is the global stiffness of TF wall: 
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And ΔN is the equivalent horizontal force produced by 
the vertical load (which counteracts the horizontal 
external force): 
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3 MODEL OF HORIZONTALLY 

ALIGNED WALLS 
A system of several horizontally-aligned walls, i.e. a 
system of 1xn walls modelling a single-storey building 
(see Figure 2) can be obtained by connecting each wall-
model to the next one by means of an infinite rigid pinned-
beam simulating the effects of the upper floor 
(diaphragms are assumed to be rigid, namely they do not 
undergo any deformation during earthquake), which 
imposes to the walls the same horizontal displacement. 
Therefore, the horizontal force acting on the building is 
supported by all the walls, which can be regarded as a 
system of springs in parallel (see Figure 3) 
 

 
 
Figure 2: System of 1 x n walls. 
 
The horizontal displacement Δ of the system of 1 x n, as 
well as the horizontal force carried by each wall Fi, can be 
assessed by the two following equations: 
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These equations were determined using the compatibility 
as well as the constitutive and equilibrium laws. 
It is important to note that for one-storey building, the 
horizontal force carried-out by each wall is equal to the 
shear-force acting on it. 
 

 
Figure 3: Rheological model of a one-storey building. 
 

Eqs. (8) and (9) demonstrate that both the displacement 
and the shear-force distribution are influenced by the 
presence and the magnitude of the vertical load. 
Moreover, the presence of the vertical load leads to the 
need of adopting an iterative procedure. In fact, the 
stiffness of a wall depends on the hold-down state (hold-
down in tension = active or hold-down in compression = 
not active) which, in turn, depends on the shear-force 
distribution. 
 

4 MODEL OF VERTICALLY-ALLIGNE 
WALLS  

A system of vertically-aligned walls, modelling a timber 
shear-wall of m-storey, can be obtained by means the 
superimposition of m single walls (see Figure 4(a)). Each 
wall model is characterised by three springs which 
stiffness can be determinate through Eqs. (2)-(4). The wall 
uplifting corner is vertically connected to the lower wall 
by means of a spring with stiffness equal to kh,j which 
models the j-th hold-down behaviour. In the other corner, 
instead, a pinned-axially-rigid beam is placed. This 
pinned beam is used to avoid the corner lowering but, at 
the same time, to allow a mutual translation between the 
walls connected by it. Moreover, a horizontal spring with 
a stiffness equal to KA,j reproduces the behaviour of the 
shear connection to the lower support  (i.e. angle brackets 
or screws, as well as steel plates). 
 

 

 
 
 
 
 
 
 

 

(a) Numerical m x 1      
model 

(b)  Rheological model 

 



Figure 4: System of m x 1 walls modelling a single-shear wall 
of m-storey. 
 
The rigid-rotation deformation becomes extremely 
relevant for a multi-storey shear-wall; in fact, the 
elongation of a hold-down produces an increasing 
horizontal displacement at each upper floor, because a 
multi-storey shear-wall can be considered as a system of 
several springs in series, see Figure 4(b). Moreover, the 
non-linear relationship between the wall length and its 
stiffness, as reported in Eq. (4), is directly related to the 
rigid-body rotation, which increases significantly for 
multi-storey walls.   
For a shear-wall of m-storey the displacement ∆j,ξ at the j-
th storey provoked by a horizontal force placed at the ξ-th 
storey is equal to: 
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where Ny is the vertical concentrated load at the y-th floor: 

𝑁𝑁𝑌𝑌 =
𝑞𝑞𝑦𝑦 ∙ 𝑙𝑙

2  (11) 

and where Mr is the bending moment acting at the r-th 
storey and the quantity Mr/|Mr| is needed to give the 
correct sign to the equivalent displacement ΔN,j. 
It is important to remark that when the vertical load at a 
certain storey exceeds the tensile force produced by the 
horizontal loads, the hold-down contribution at that level 
has to be removed from Eq. (10); in fact, when a hold-
down is in compression, it does not undergo any 
deformation and it does not produce any horizontal 
displacement. In order to assess the magnitude of the 
tensile force in the hold-down the following equation can 
be used: 
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where THD,j is the tensile force in the hold-down of the j-
th storey. A positive value means tension whereas a 
negative value means compression. This allows to define 
two states: hold-down active when it is in tension, hold-
down not active when it is in compression. Because a not-
in-tension hold-down does not produce any deformation, 
its stiffness can be considered infinite. 
The number of degree of freedom increases with the 
building storey and so a matrix formulation is needed. Eq. 
(10) can be written in the following matrix form:  

𝚫𝚫 = 𝑼𝑼�𝑭𝑭 − 𝚫𝚫𝑵𝑵 (13) 

where Ũ is the flexibility matrix and ΔN is the 
displacement array due to the vertical load. 
The j,ξ-element of the flexibility matrix can be obtain 
from: 
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The j-element of the displacement array ΔN can be 
determined from: 
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The bending moment Mr can be evaluated by means of the 
following equation: 
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Eq. (13) can be rearranged as: 
 

𝑭𝑭 = 𝑼𝑼�−1(𝚫𝚫 + 𝚫𝚫𝑵𝑵) = 𝑲𝑲 𝚫𝚫+ 𝑲𝑲 𝚫𝚫𝑵𝑵 =  𝑲𝑲 𝚫𝚫 + 𝐅𝐅𝑵𝑵 (17) 
 

Where the inverse of the flexibility matrix represents the 
stiffness matrix of one timber shear-wall of m-storey: 

𝑲𝑲 = 𝑼𝑼�−1 (18) 

And FN is the array of the equivalent force due to the 
vertical load. 
 
5 MODELLING OF A FULL-SCALE 

BUILDING 
A full scale building can be modelled connecting each-
other several multi-storey walls, see Figure 5. According 
to the UNITN model, each wall is represented by means 
of three springs, KSP,ji, KA,ji and kh,ji, and each wall is 
properly connected to the upper, lower and side wall. 
Moreover, the load pattern is composed by the vertical 
loads qj,i and the horizontal force distribution Fj. 
 

 
 

Figure 5: System of m x n walls modelling a full-scale 
building. 
 
The constitutive law of a system of m x n walls, can be 
derived from (17) ad it is: 

𝑭𝑭 = 𝑲𝑲𝒔𝒔𝒔𝒔𝒔𝒔 𝚫𝚫+ 𝑭𝑭𝑵𝑵,𝒔𝒔𝒔𝒔𝒔𝒔 (19) 
 

where Ksys is the stiffness matrix of the model of m x n, 
and it is given by the sum of stiffness matrices Ki (see Eq. 
(18)) of each multi-storey wall m x 1: 
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and the array of the equivalent forces FN,sys due to the 
vertical load is equal to: 
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Generally, know the applied external force distribution F 
(e.g. wind or seismic load), the horizontal displacement 
vector Δ is given by: 
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The external force array on the acting on the a multi-
storey shear-wall m x 1 can be determined by the 
following equation: 
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the shear-force distribution, the bending-moments as well 
as the hold-down force of the j,i-th shear-wall can be 
determined as: 

V𝑗𝑗,𝑖𝑖 = �𝐹𝐹𝑟𝑟,𝑖𝑖

𝑚𝑚

𝑟𝑟=𝑗𝑗

 
(24) 

M𝑗𝑗,𝑖𝑖 = �𝐹𝐹𝑟𝑟,𝑖𝑖 ∙ �𝑧𝑧𝑟𝑟 − 𝑧𝑧𝑗𝑗−1�
𝑚𝑚

𝑟𝑟=𝑗𝑗

 
(25) 

T𝐻𝐻𝐻𝐻,𝑗𝑗,𝑖𝑖 =
�𝑀𝑀𝑗𝑗,𝑖𝑖�
𝜏𝜏 ∙ 𝑙𝑙𝑖𝑖

− 𝑁𝑁𝑗𝑗,𝑖𝑖  
(26) 

 

Anyway, the complexity of the analysis is not seated in 
the matrix formulation, but it is due to the non-linearity 
introduced by the binary behaviour of the hold-downs. In 
fact, the state of the hold-downs (i.e. activation or not) 
depends on the shear distribution; but this depends on the 
stiffness of the walls which depends in turn on the state of 
the hold-downs and so on. Moreover, for the evaluation 
of the equivalent horizontal displacement of each wall 
(see Eq. (15)) the bending moment sign should be 
predetermined but this depends in turn on the force 
distribution.  
Therefore, the problem shows a recursive nature and it 
requires an iterative procedure of solution.  In detail, as 
shown in the flow-chart of Figure 6, it is necessary to 
assume the model initial condition  (i.e. state of the hold-
downs), which allows to evaluate a first-attempt solution 
in terms of displacement, shear-distribution, bending 
moment sign and hold-downs stress. This solution is 
correct if the state of the hold-downs is consistent with the 
initial condition as well as with the calculation of 
equivalent horizontal displacement due to the vertical 
load; otherwise, it has to be rejected, the model has to be 
updated and the procedure has to be iterated up-to the 
achievement of the correct solution. 
 

 
 

Figure 6: Flow-chart for the iteration. 
 
5.1 PRACTICAL EXAMPLE OF A BUILDING 

COMPOSED BY 3X2 WALL  
In order to explain the iteration procedure presented in 
Section 5, it is  applied here to a system of 3 x 2 walls, 
which mechanical and geometrical properties as well as 
the vertical loads are shown in Table 1. Despite the 
procedure can be used to analyse real three-dimensional 
buildings, a simplified bi-dimensional building is 
analysed. In fact, the study of a 3D building would not 
have added any benefit; on the contrary, the seismic force 
distribution within the walls would be more complex due 
to the eccentricity between stiffness-center and center of 
mass. 
The system is assumed to be loaded by the following set 
of external horizontal forces: 

𝐅𝐅 = �
10
20
−5

�  [kN] (27) 

Table 1: Example 3 x 2. Geometrical and mechanical 
properties of the walls. 

 

 
 
Assuming all the hold-downs active as initial conditions, 
see Figure 6 (a), the flexibility matrices of the two 3-storey 
can be evaluated by means of Eq. (14) (the values are 
given in mm/kN): 



𝑼𝑼�𝟏𝟏 = �
0.4976 0.6976 0.8976

1.8369 2.6369
𝑆𝑆𝑆𝑆𝑆𝑆 4.7761

� ;  

(28) 

𝑼𝑼�𝟐𝟐 = �
1.3949 2.1949 2.9949

6.0732 9.2732
𝑆𝑆𝑆𝑆𝑆𝑆 17.1515

�  

known the flexibility matrices, using Eq. (18), the initial 
stiffness matrices become (the values are given in 
kN/mm): 

𝑲𝑲𝟏𝟏 = �
4.51 −2.39 0.47

3.89 −1.70
𝑆𝑆𝑆𝑆𝑆𝑆 1.06

� ; 

(29) 

𝑲𝑲𝟐𝟐 = �
1.79 −0.97 0.21

1.47 −0.63
𝑆𝑆𝑆𝑆𝑆𝑆 0.36

�  

the global stiffness matrix of the system of 3 x 2 walls 
Ksys, can be determined through Eq. (20): 

𝑲𝑲𝒔𝒔𝒔𝒔𝒔𝒔 = �
6.30 −3.36 0.68

5.36 −2.32
𝑆𝑆𝑆𝑆𝑆𝑆 1.42

� ; (30) 

the arrays of the equivalent horizontal displacement 
produced by the vertical load ΔN,i are calculated by means 
of Eq. (15) assuming all the bending-moments positive, 
whereas the array of the equivalent force FN,sys produced 
by the vertical load is determined by means of Eq. (21) 
(values are given in kN): 

𝚫𝚫𝑵𝑵,𝟏𝟏 = �
3.75

12.50
23.75

� ;  𝚫𝚫𝑵𝑵,𝟐𝟐 = �
0
0
0
� ;   𝚫𝚫𝑵𝑵,𝟑𝟑 = �

−1.75
−0.68
5.68

� ;  (31) 

the total displacement at each storey (at the end of the first 
iteration) can be determined by means of Eq. (22) (values 
are given in mm): 

𝚫𝚫1st = �
7.86

13.38
10.62

�  (32) 

The arrays of external force carried out by each multi-
storey wall can be determined by the Eq. (23)  (values are 
shown in kN): 

𝐅𝐅𝟏𝟏 = �
6.70

14.58
−2.11

� ;   𝐅𝐅𝟐𝟐 = �
3.30
5.42
−2.89

�  (33) 

the bending moment are determined from Eq. (25): 

𝐌𝐌𝟏𝟏 = �
73.8
25.9
−5.28

� ;   𝐌𝐌𝟐𝟐 = �
13.7
−0.89
−7.22

�  (34) 

The signs of the bending-moments are not in agreement 
with the initial condition, hence the ΔN,j have to be 
recalculated using the values of Eq. (34). The updated 
arrays are: 

𝚫𝚫𝑵𝑵,𝟏𝟏 = �
3.75

12.50
18.75

� ;  𝚫𝚫𝑵𝑵,𝟐𝟐 = �
0
0
0
� ;   𝚫𝚫𝑵𝑵,𝟑𝟑 = �

−4.12
7.82
0.38

� ;  (35) 

the new displacement array becomes: 

𝚫𝚫2nd = �
7.88

13.54
14.59

�  (36) 

the updated values of bending moments are: 

𝐌𝐌𝟏𝟏 = �
73.3
24.9
−8.6

� ;   𝐌𝐌𝟐𝟐 = �
14.2
0.1
−3.9

�  (37) 

Comparing the signs of the bending moments of Eqs. (37) 
and (34) it can be noted that the value of the wall2,2 is not 
consistent, hence, the procedure has to be iterated once-
again. The necessity to iterate the procedure depends on 
the fact that the array of the equivalent force FNsys as well 
as the displacement arrays due to the vertical load ΔN have 
been determined with a not correct signs-distribution of 
moments. ΔN,j have to be recalculated. The updated values 
are: 

𝚫𝚫𝑵𝑵,𝟏𝟏 = �
3.75

12.50
18.75

� ;  𝚫𝚫𝑵𝑵,𝟐𝟐 = �
0
0
0
� ;   𝚫𝚫𝑵𝑵,𝟑𝟑 = �

−4.12
7.82
0.38

� ;  (38) 

the new displacement array becomes: 

𝚫𝚫3rd = �
7.88

13.54
14.59

�  (39) 

the updated values of bending moments are: 

𝐌𝐌𝟏𝟏 = �
73.3
24.9
−8.6

� ;   𝐌𝐌𝟐𝟐 = �
14.2
0.1
−3.9

�  (40) 

It is important to note that in this case the new iteration 
does not produce any change because the equivalent 
horizontal displacement ΔN,2 is zero since no vertical load 
is applied, hence it is independent by the bending-
moments sings. 
The sings of the bending-moments of Eq. (40) are in 
agreement with the values of Eq. (37) therefore according 
to STEP 3 of the flow-chart of Figure 6, the force in the 
hold-downs can be assessed by means of Eq. (12): 

𝐓𝐓𝑯𝑯𝑯𝑯,𝟏𝟏 = �
10.59
−2.53
−2.80

� ;   𝐓𝐓𝑯𝑯𝑯𝑯,𝟐𝟐 = �
11.33
0.07
3.10

�  (41) 

According to STEP 4 of the flow-chart of Figure 6, the 
force in the hold-downs is not in agreement with the initial 
condition of STEP 0 (all hold-down were supposed to be 
in tension), therefore the procedure goes back to STEP 1 
after updating the stiffness matrices, namely all the hold-
down in compression has a infinite stiffness. The new 
stiffness matrices are: 

𝑲𝑲𝟏𝟏 = �
6.30 −2.94 −0.08

5.89 −2.95
𝑆𝑆𝑆𝑆𝑆𝑆 2.34

� ; 

(42) 𝑲𝑲𝟐𝟐 = �
1.79 −0.97 0.21

1.47 −0.63
𝑆𝑆𝑆𝑆𝑆𝑆 0.36

� ; 

𝑲𝑲𝒔𝒔𝒔𝒔𝒔𝒔 = �
8.08 −3.91 0.13

7.37 −3.57
𝑆𝑆𝑆𝑆𝑆𝑆 2.70

� ; 

Using the values of the new stiffness matrix of Eq. (42) 
and the sing of the bending-moments of Eq. (40), the ΔN,j 
and the FN,sys becomes: 



𝚫𝚫𝑵𝑵,𝟏𝟏 = �
3.75
7.50

11.25
� ;  𝚫𝚫𝑵𝑵,𝟐𝟐 = �

0
0
0
� ;   𝚫𝚫𝑵𝑵,𝟑𝟑 = �

0.54
0

3.87
� ;  (43) 

the new displacement array becomes: 

𝚫𝚫4th = �
7.90

14.38
15.38

�  (44) 

The force distribution within the wall is: 

𝐅𝐅𝟏𝟏 = �
6.57

16.14
−3.21

� ;   𝐅𝐅𝟐𝟐 = �
3.43
3.86
−1.79

�  (45) 

the updated values of bending moments are: 

𝐌𝐌𝟏𝟏 = �
73.0
24.3
−8.0

� ;   𝐌𝐌𝟐𝟐 = �
14.4
0.7
−4.5

�  (46) 

The sings of the bending-moments of Eq. (46) are in 
agreement with the sings adopted (see Eq. (40)) therefore 
no iteration is needed and according to STEP 3 of the 
flow-chart of Figure 6, the force in the hold-downs can be 
assessed by means of Eq. (12): 

𝐓𝐓𝑯𝑯𝑯𝑯,𝟏𝟏 = �
10.47
−2.78
−3.04

� ;   𝐓𝐓𝑯𝑯𝑯𝑯,𝟐𝟐 = �
11.56
0.56
3.57

�  (47) 

The hold-down forces obtained at the end of the second 
iteration are in agreement with the boundary condition, 
the procedure therefore can be considered completed. The 
obtained results comply the equilibrium, the compatibility 
and the constitutive law. 
 
6 LINEAR SEISMIC ANALYSIS OF 

TIMBER SHEAR-WALL BUILDINGS 
Two types of linear analysis are suggested by [2]: the 
Lateral Force Method (LFM) and the  Response Spectrum 
Analysis (RSA). The former should be used only if the 
structure can be considered regular in elevation, the latter 
is applicable to all types of building. 
 
6.1 Lateral Force Method – LFM 
LFM can be considered as a particular case of the method 
introduced in Section 5. The LFM, indeed, assumes the 
seismic action as an equivalent static horizontal forces 
distribution. The use of the LFM has been already 
presented in the previous section, and the applied  
horizontal forces can be determined according to 
simplified expressions reported in several national 
standards, which assumes that the building response is not 
significantly affected by the contribution of the higher 
modes of vibration. For these reason, the LFM of analysis 
shall be applied if the fundamental period of structure is 
smaller than a given value and the building meets the 
criteria for regularity in elevation. 
Differently from the common practice, the method 
presented (see Section 5) considers the influence of the 
hold-downs even in the elastic response. Usually, 
designers prefer to neglect the hold-down presence 
because it introduces a non-linear behaviour since from 
the elastic-analysis, which significantly increases the 
difficulty and the time of analysis becoming iterative. The 

need to compute the hold-down contribution is however 
clear, both the shear-distribution and the tensile force in 
the hold-downs change magnitude compared with the 
actual-common approach. Therefore, in order to correctly 
asses the seismic action in a timber shear-walls building, 
the iterative approach is required.  
 
6.2 Response spectrum analysis 
RSA is usually applied to buildings which cannot be 
defined regular in elevation and it should be considered 
the reference method for determining the seismic effects 
because it can be applied to any type of building without 
any geometric limitation. Moreover, its results could be 
considered more reliable (compared to LFM) because the 
analysis takes into account all the significant modes of 
vibration participating to the seismic response of the 
structure. The effects of the analysis Eζ are then combined 
to asses the design actions; the effects can be combined 
using a modal superimposition techniques such as  the 
Complete Quadratic Combination [CQC] or the Square 
Root Sum of Square [SRSS], see [6]. 
Two key aspects have to be investigated to apply the RSA 
to timber wall buildings: the hold-downs non-linear 
behaviour (hold-downs can have two states) and the 
presence of the vertical load. 
 
6.2.1 Modal analysis for a single-story timber shear-

walls building 
In order to apply the RSA to a building, the dynamic 
properties of the building have to be assessed through a 
modal analysis. Namely, the natural periods, the mode 
shapes and the participating masses have to be determined 
using a modal analysis. 
In order to perform the modal analysis of a timber shear-
wall (see Figure 7) a  concentrated-mass m is added on 
the top-plate of the wall. 
The equation of motion can be written regarding to the 
equilibrium of the concentrated mass subjected to its 
inertial force Fin and the wall elastic force Fel: 

Fin +  Fel = 0  (48) 

The inertial force can be expressed as: 

Fin = m ∙ Δ̈  (49) 

where Δ̈ is the mass acceleration. The wall elastic force 
Fel, according to Eq. (5), is obtained by: 

Fel = K𝑡𝑡𝑡𝑡𝑡𝑡 ∙ (Δ + Δ𝑁𝑁)  (50) 

where Ktot is the wall stiffness accounting for all the 
deformation contributions. Therefore, Δ can be regarded 
as the horizontal displacement of the concentrated-mass 
and ΔN is the wall horizontal displacement due to the 
vertical load. Eq. (48) can be rewritten as: 

m ∙ Δ̈ + K𝑡𝑡𝑡𝑡𝑡𝑡 ∙ (Δ + Δ𝑁𝑁) = 0 (51) 

Eq. (51) can be rearranged as follows: 

m ∙ Δ̈ + K𝑡𝑡𝑡𝑡𝑡𝑡 ∙ Δ = −K𝑡𝑡𝑡𝑡𝑡𝑡 ∙ Δ𝑁𝑁 (52) 

Eq. (52)} is a second order linear differential equation; 
each term can be divided by the mass m to get: 

Δ̈ + ω2 ∙ Δ = −ω2 ∙ Δ𝑁𝑁 (53) 



where 𝜔𝜔 = �𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚  is the circular frequency. 

The solution of Eq. (53) can be obtained easily 
considering the homogeneous and particular terms as: 

Δ(t) = A ∙ eiωt+θ + Δ𝑁𝑁 (54) 

where: A and ϑ are the amplitude end the phase of the 
motion respectively; they are constant and can be 
calculated using the initial conditions. 
If the rigid body rotation contribution is not considered 
the wall stiffness can be expressed by Ktot,nt and the term 
ΔN becomes zero. 
The period and the natural frequency of the wall can be 
obtained directly from the circular frequency as: 

𝑇𝑇 =
𝜔𝜔
2𝜋𝜋 ;             𝑓𝑓 =

2𝜋𝜋
𝜔𝜔  (55) 

 
 

Figure 7: UNITN model with a concentrated mass. 
 
6.2.2 Modal analysis for a system of m x n walls 

modelling a multi-storey timber shear-wall 
building 

The modal analysis of a system of m x n walls can be 
performed not in a much different way from the previous 
case. In order to consider the mass-distribution along the 
height, an equivalent concentrated-mass is added at each 
storey and not to each wall; this assumption can be 
considered valid until the floor of the building can be 
regarded as a rigid-diaphragm. The mass-distribution 
hence becomes a diagonal matrix and it is defined as 
follows: 

𝐌𝐌 = �

𝑚𝑚1 0 0 0
0 𝑚𝑚𝑗𝑗 0 0
0 0 ⋱ 0
0 0 0 𝑚𝑚𝑚𝑚

� (56) 

For a system of m x n walls , the modal analysis allows to 
evaluate the  ζ Natural Periods Tζ and the relative mode-
shapes φζ, where ζ is equal to the degrees of freedom, i.e. 
the number of storeys. Due to the fact that the mode-
shapes can be determined using the following equation: 

�𝑲𝑲 − 𝜔𝜔𝜁𝜁2 ∙ 𝑴𝑴� ∙ 𝜑𝜑𝜁𝜁 = 0 (57) 

it is clear that both the Natural Periods and the relative  
mode-shapes strictly depend on the stiffness K of the 
structure, hence, they strongly depend on the hold-downs 
state. It is therefore clear once again that an iterative 
procedure is needed to solve the problem. 
 

7 RSA BY MEANS OF AN ITERATIVE 
PROCEDURE 

Three different methods for applying the RSA are 
presented. All the procedures are iterative in order to 
determine a shear-distribution and a hold-downs force 
consistent with the model of the building. 
7.1 Method 1: VTM 
The first method is called VTM (Vertical load To Main 
mode) and it is suggested to be used when a prevailing 
mode-shape exists. The method consists of five steps and 
it performs a static analyses for any shape-mode of the 
model; for the analysis associated to the main shape-mode 
the simultaneous presence of the vertical and horizontal 
load is taken into account. 
The first method presented is called VTM (Vertical load 
To Main mode) and it is suggested to be used when a 
prevailing mode-shape exists. The method consists of five 
steps as shown in Figure 8. 
In the first phase the modal analysis is performed in order 
to determine the dynamic properties of the model, namely 
the natural periods Tζ, the mode-shapes φζ and the modal 
participation factor Γζ, which is used to identify the most 
important mode-shape and determined as follow: 

Γ𝜁𝜁 =
�𝜑𝜑𝜁𝜁�𝑇𝑇 ∙ 𝐌𝐌 ∙ 𝐑𝐑
(𝜑𝜑𝜁𝜁)𝑇𝑇 ∙ 𝐌𝐌 ∙ 𝜑𝜑𝜁𝜁 (58) 

where R is a ones-array. 
In the second step of the procedure, ζ-static analyses are 
performed; for any shape-mode the model of the structure 
is loaded by an equivalent static horizontal force 
distribution related to the shape-mode itself. For the 
analysis associated to the main shape-mode (i.e. the mode 
with the higher participation factor), the simultaneous 
presence of the vertical load is taken into account in order 
to consider its influence on the shear-distribution. 
The static force distribution related to the ζ-th mode-shape 
can be evaluated as: 

𝐅𝐅𝜁𝜁 = S𝑑𝑑(T𝜁𝜁) ∙ Γ𝜁𝜁 ∙ 𝐌𝐌 ∙ Φ𝜁𝜁  (59) 

The values of shear-force and bending-moment (given by 
the ζ-static analyses) acting on each wall are combined by 
the SRSS procedure in the fourth step. This modal 
superimposition technique allows to estimate the actual 
response of the structure. The net force acting in the hold-
downs is determined from the bending moment and the 
vertical load: 

𝑇𝑇𝐻𝐻𝐻𝐻−𝑗𝑗,𝑖𝑖 =
𝑀𝑀𝑗𝑗,𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝜏𝜏𝑖𝑖 ∙ 𝑙𝑙𝑖𝑖
− 𝑁𝑁𝑗𝑗,𝑖𝑖  (60) 

The last step requires to verify that the values of hold-
downs forces are in agreement with the state set in the 
initial conditions (i.e. STEP 0, see Figure 8). If the forces 
are consistent, the procedure can be stopped; otherwise, 
the model and its stiffness matrix have to be updated 
changing the state of the hold-downs not compatible and 
the procedure has to be iterated. 
 



 
 

Figure 8: Flow chart of the VTM method. 
 
7.2 Method 2: VNA 
The method called VNA (Vertical load Not Applied) is 
similar to the previous one; it differs from the VTM 
method for the fact that the vertical load is taken into 
account only at the end of the analysis for the evaluation 
of the tensile force in the hold-downs. 
The method called VNA (Vertical load Not Applied) is 
similar to the previous one; it differs from the VTM 
method by the fact that the vertical load is not considered 
during the analysis phase (STEP 3), but it is taken into 
account only at the end of the analysis for the evaluation 
of the tensile force in the hold-downs (in the same way as 
Eq. (60)). 
Synthetically, the VNA method consists of the following 
steps (see Figure 9): in the STEP 0, the structure is 
modelled and the stiffness matrix is evaluated; in the 
STEP 1 the modal analysis is performed to determine the 
dynamic properties and the modal participation factor: Tζ, 
φζ,  Γζ; then in the STEP 2, ζ-static equivalent force 
distributions are determined using Eq. (59), which are 
used in the STEP 3 to statically analyse the structure ζ-
times, applying each time one of the static equivalent 
force distributions, the vertical load is not considered. In 
the STEP 4, the shear-forces and the bending moments 
values are combined by the SRSS and the net forces in the 
hold-downs are assessed by Eq. (60); in the last STEP the 
consistency of the result is checked in terms of 
compatibility between hold-downs forces and hold-downs 
state; if the compatibility is not satisfied the procedure has 
to be iterated. 
It is important to remark that the vertical load is 
considered by the method only as a reduction of the tensile 
forces of the hold-downs and therefore its influence on the 
shear-force distribution is not taken into account. This 
approach leads to more approximated results but, on the 
other hand, it is faster and easier compared to the other 
ones. 
 

 
 

Figure 9: Flow chart of the VNA method. 
 
 
7.3 Method 3: CNA 
The method of analysis called CNA (Complete Numerical 
Analytical) was developed with the aim to estimate as 
correctly as possible the influence of the vertical load on 
the shear-distribution.  The key point of the method is the 
evaluation of the horizontal load and of the vertical load 
effects separately. 
According to the flow-chart of Figure 10, both the modal 
analysis and the RSA (without the vertical load) are firstly 
performed in order to obtain the dynamic properties and 
modal shear-force distribution respectively. Then, the 
model of the structure is analysed only applying the 
vertical load, which causes an auto-balanced shear-
distribution.  
 

 
 

Figure 10: Flow chart of the CNA method. 
 
The RSA allows to evaluate only the modulus of the 
shear-forces but not their sign, moreover it is not 
influenced by the hold-downs position (the result of the 
RSA is not depended on the corner where the hold-downs 
are placed, left-right). On the contrary, the shear-forces 
produced by the vertical-load can change magnitude and 
orientation with the hold-down position. Hence, the 
superimposition of the shear-forces due to the RSA and 
the vertical-load static analysis can not be automatically 
performed since only the modulus of the shear-forces is 
determined by means of RSA . 
In other words, both the RSA shear-forces sign and the 
orientation of shear-forces produced by vertical-load have 
to be previously determined. Therefore, an intermediate 
analysis is needed for the evaluation of the correct 
position of the hold-downs (left or right) and for the 
evaluation of a sign-pattern, which has to be assigned to 



the RSA shear-distribution. This intermediate analysis is 
carried-out loading the structure only with a horizontal 
force distribution related to the main shape mode (which 
allows to evaluate the correct position of the hold-down).  
After evaluating the final shear-force distribution by the 
superimposition of the RSA effects with the vertical-load 
effects, the net forces in the hold-downs as well as the 
consistency as to be determined. In the case that the results 
are not in accordance with the initial conditions, the 
procedure are to be iterated. 
 
8 NUMERICAL EXAMPLE FOR THE 

APPLICATION OF THE RSA 
PROPOSED METHODS  

With the aim to make readers understand correctly the 
system of 3 x 2 walls of Section 5.1 is analysed. 
The mass matrix adopted is (the masses are given in tons): 

𝐌𝐌 = �
2 0 0
0 2 0
0 0 2

� (61) 

For the initial condition all the hold-downs are considered 
active. 
 

8.1 Modal analysis 
All the three proposed methods require, as STEP 1, the 
modal analysis of the structure-model in order to assess 
its dynamic properties as well as the mass participating 
factor.  
From the mass matrix of Eq. (61) and the global stiffness 
matrix of Eq. (30), according to Eq. (57), the periods 
result: 

𝑇𝑇1 = 0.63 sec; 𝑇𝑇2 = 0.16 sec; 𝑇𝑇3 = 0.09 sec (62) 

And the related shape-modes are: 

Φ1 = �
0.21
0.59
1.00

� ;   Φ2 = �
1.00
0.80
−0.68

� ;   Φ3 = �
−1.00
0.95
−0.35

� (63) 

The participation factors, evaluated using the Eq. (58), are 
the following: 

Γ1 = 1.29; Γ2 = 0.53; Γ3 = −0.19 (64) 

It is clear that the main mode of vibration is the first one, 
This can be more emphasized evaluating the participation 
masses: 

M�1 = 4.66 ton; M� 2 = 1.19 ton; M� 3 = 0.15 ton (65) 

In order to evaluate the equivalent force distributions 
related to the mode-shapes, the reduced response 
spectrum (called design spectrum) of Figure 11 is 
considered. For each period, the spectral values are: 

𝑆𝑆𝑑𝑑(𝑇𝑇1) = 0.42g;  𝑆𝑆𝑑𝑑(𝑇𝑇2) = 0.56g;   𝑆𝑆𝑑𝑑(𝑇𝑇3) = 0.64g (66) 

The equivalent static force distribution are determinate 
by-means of Eq. (59) (the forces are given in kN): 

𝐹𝐹1 = �
2.26
6.27

10.67
� ;   𝐹𝐹2 = �

5.84
4.67
−3.98

� ;   𝐹𝐹3 = �
2.45
−2.33
0.85

� (67) 

 

 
 

Figure 11: Design spectrum adopted. 
 

 
8.1.1 VTM method 
According to the Step 3 of the VTM method, three static 
analyses of the model are performed, namely one for each 
static force distributions. It has to be reminded that the 
analysis related to the main mode-shape considers the 
simultaneous presence of the equivalent horizontal and 
the vertical loads. Conversely, the analyses related to the 
other mode-shapes consider only the equivalent 
horizontal loads.  
The shear-force distributions and the bending-moments 
for each mode-shape are shown in Table 2; for each 
equivalent static analysis, the initial-condition assumed 
considers all the bending-moments to be positive. 
According to the procedure of Section 5, the states of the 
hold-down were checked at every step; for the first mode-
shape no iteration has been required; conversely, the other 
two methods needed two iterations each.  
he Step 4 of the VTM method consists in the modal 
superimposition of the shear-forces and the bending 
moments, the SRSS procedure gives the values shown in 
Table 3. 
The net vertical-force acting in the hold-downs and the 
related compatibility verification are shown in Table 4. 
The final result of the first iteration are in agreement with 
the initial condition adopted, therefore the results are 
consistent with the boundary condition used and no more 
iteration are needed. It is important to remark that if the 
hold-down forces would have not been compatible with 
the hypothesized hold-down state, the procedure would 
have been iterated after the updating of the boundary 
condition, hence the updating of the stiffness matrix. 
Table 2: VTM shear-force distribution and bending moments 
for the 1st interaction. 
 

 
 
 
Table 3: SRSS values of shear-force and bending moments for 
the 1st iteraction VTM. 
 



 
 
 
Table 4: Hold-down force and compatibility verification, 1st 
iteraction VTM 
 

 
 
9 CONCLUSION 
In this paper three iterative method to apply the Response 
Spectrum Analysis to light timber frame buildings were 
presented. In fact, the RSA cannot be directly applied to 
this buildings because their dynamic features (like 
periods, mode of vibration etc.) are dependent on the 
stiffness of the building, which depends on the magnitude 
of the seismic force which in turns depends on the 
stiffness itself. The methods differ in the way in which the 
hold-down they consider the effect of the vertical load on 
the hold-down forces and how it modifies the shear-
distribution within the walls. The CNA method is the most 
correct one from the mathematical point of view, but it 
requires a high computational effort. The VNA method is 
faster than the other but, at the same time is the less 
accurate. The VTM method represents a compromise 
between computational expensiveness and accuracy; for 
this reason, the VTM should be the reference method. 
 
 
This paper has dealt with the static and dynamic seismic 
elastic analysis of light timber-frame multi-storey 
buildings by-meas of the UNITN model (presented in a 
previews work), assuming a cantilever-behaviour for the 
shear-walls.  
In the first part of the paper an iterative procedure for the 
static analysis has been developed. This procedure is 
necessary to determine the horizontal-forces distribution 
proportionally to the walls stiffness and it can be 
conveniently used for applying the seismic lateral force 
method. The procedure involves two level of iteration; the 
first iteration-level is required to evaluate which of the 
two hold-downs of each wall is working and the auto-
balanced shear forces due to the vertical load. The second 
level of iteration is necessary to update the stiffness matrix 
of the system in the case that some hold-downs are in 
compression. 
The second part of the paper is focused on the modal 
analysis of the timber light-frame buildings; in particular 
three approaches for the application of the RSA are 
proposed. The modal analysis can not be directly applied 
to these type of timber building due to the non-linearity 
introduced by the hold-down and the vertical load. In fact, 
the seismic force depends on the stiffness of the structure 
which depends on the state of the hold-downs; but the 
hold-downs state is in turn influenced by the magnitude 

of the seismic force. Therefore three iterative methods 
with varying levels of accuracy have been developed. The 
CNA method is the most correct from the mathematical 
point of view, but the its complexity makes it the most 
expensive in terms of time of analysis. The VNA method 
is less accurate because it accounts for the vertical load 
effect only in the post-process phase, but at the same time 
it results faster than the other ones. The VTM method 
represents a compromise between computational 
expensiveness and accuracy; for this reason the VTM 
should be the reference method. \par 
 
The three procedures may be expensive from the 
computational point of view because, generally, they 
require several steps of iteration to achieve the solution. 
However, they allow to get a balanced and compatible 
solution (allowing their use even in the S.L.S). In 
particular, through the iteration process, a stiffness matrix 
modelling properly the building, can be determined which 
enables to get reliable values of the periods of vibration. 
Other methods, on the contrary, solve directly the problem 
without any iteration, neglecting the behaviour of the 
hold-downs (active: tension; not active: compression) and 
assuming them active. This leads to high values of period 
of vibration as well as to an underestimation of the seismic 
force (which produces a dangerous under-design of the 
building). 
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