
1

Active Learning for Hyperspectral Image
Classification Using Kernel Sparse Representation
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Abstract—Active learning is one of the popular approaches that
can mitigate some of the drawbacks of supervised classification.
Although sparse representation classifier has already proven to be
a robust classifier and successfully used in many applications, it is
seldom used jointly with active learning. In this letter, we propose
a novel active learning technique for sparse representation
classifiers. In the proposed model, the query function is designed
by combining uncertainty and diversity criteria, both of which
are defined by using the sparse representation classifier in kernel
space. The proposed technique outperforms other state-of-the-art
methods in terms of classification performance.

Index Terms—Active learning, hyperpsectral image, kernel
space, query function, sparse representation.

I. INTRODUCTION

Supervised methods require adequate labelled samples for
training. Since labelling requires either field survey or photo
interpretation by the experts, it is expensive and time-
consuming. To address this issue, semi-supervised learning
and active learning techniques have been developed. Semi-
supervised learning exploits unlabelled samples to select cer-
tain samples for improving the reliability and the general-
ization in the training of a classifier [1]. Whereas, active
learning (AL) selects uncertain samples from the unlabelled
pool and assigns them a label with the help of a supervisor
for updating the training set of the classifier [2], [3]. The
idea behind it is that only informative samples need to be
labelled for classification. This reduces the labelling cost and
the redundancy in the training set without compromising the
classification performance.

The fundamental step of AL is to define the query function
that selects informative samples from the unlabelled pool for
labelling. In batch mode AL, the query function is usually
defined by combining uncertainty and diversity criteria. The
uncertainty criteria are mostly supervised in nature, i.e., they
are defined by exploiting the classifiers. Most of the AL
techniques exploit support vector machines (SVM) classifier
for defining uncertainty criterion because of its classification
rule characterized by a small set of support vectors (SV). Some
popular and widely used uncertainty criteria are marginal
sampling (MS) [4], [5], multiclass level uncertainty (MCLU)
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[6], entropy query-by-bagging (EQB) [5], cluster assumption
based histogram thresholding (CAHT) [7] and breaking tie
(BT) [8]. Note that BT criterion is conceptually the same as
MCLU criterion except that the first is more generalized (i.e., it
can be defined by exploiting any classifiers), whereas the latter
is defined by exploiting the one-against-all SVM classifier.

In batch mode, the uncertain samples selected by applying
the above AL criterion may have redundancy. In order to select
informative (i.e., uncertain and non-redundant) samples, both
an uncertainty and a diversity criterion are applied. In [9],
angular based diversity (ABD) is applied to select diverse
samples from the selected uncertain samples by maximizing
their angle in the spectral domain. The closest support vector
(cSV) is another diversity defined using the SVM classifier
[5]. It selects the subset of uncertain samples which are closest
to distinct support vectors. The clustering based diversity are
widely used in AL. K-means, kernel k-means, self organizing
map (SOM) are the clustering techniques used to select
diverse samples [6], [10]. In recent years, other advanced
AL techniques have been proposed in the literature [11]–[14].
However, the query functions of most of these techniques still
rely on the above-mentioned criteria. Therefore, improvement
of these criteria (especially of the uncertainty criterion) by
exploiting a suitable classifier is the main motivation of this
research.

Sparse representation classifier (SRC) has proven to be
a robust classifier and has successfully been applied to hy-
perspectral image (HSI) classification [15], [16]. However, a
large training set is required for it to produce high classi-
fication accuracy, which is difficult to obtain in real-world
scenarios. Active learning will therefore address this issue by
selecting only informative samples. Despite recent significant
advancements, it has been found that SRC is rarely applied
in the context of active learning. Huo et al. [17] used SRC to
define the BT uncertainty criterion for HSI classification but
failed to get convincing results. In [18], Wang et al. applied
sparse modelling to select diverse uncertain samples, but they
relied on the SVM-based uncertainty criterion. In this letter,
we propose an AL query function that includes uncertainty
and diversity criteria, both of which are defined by exploiting
the SRC in kernel space, known as kernel sparse representa-
tion classifier (KSRC). The main rationale of the proposed
approach is to define an effective AL criterion for kernel
sparse representation classifier. This is important to merge the
robustness of this classifier in the analysis of hyperspectral
data with the capability to perform the learning phase with
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a minimum number of training samples selected ad-hoc for
satisfying the requirements of KSRC. The main contributions
of our technique are: (i) it proposed a robust uncertainty
criterion by exploiting KSRC; and (ii) it also proposed a novel
diversity criterion by exploiting the dictionary of the KSRC.

The rest of the paper is organized as follows. Section II
presents sparse representation classifiers in brief. Section III
describes the proposed active learning method in detail. Sec-
tion IV illustrate the datasets used and shows the experimental
results and their analysis. Finally, Section V provides the
conclusion and future directions.

II. SPARSE REPRESENTATION CLASSIFIERS

Given a hyperspectral image H ∈ RP×Q×B , where P ×
Q is the size of the image and B is the number of bands,
the sparse representation classifier strategy involves finding a
linear combination of atoms (labelled pixels) for an unknown
pixel yj ∈ RB such that:

yj = Dα (1)

where D = [D1,D2, ...,DC ] is a B×N dictionary, where Di

is a subset of the dictionary containing Ni = |Di| atoms of the
ith class; hence N =

∑C
i=1 Ni and α is a sparse vector whose

non-zero entries represent the weights of particular atoms.
The kernel sparse representation classifier performs clas-

sification by casting the original SRC problem onto higher
dimensional feature space [19]. The kernel function Φ :
X → F projects a pixel of HSI from its original fea-
ture space to kernel space. Thus, the unknown pixel yj ,
the dictionary D can be represented in the kernel space as
Φ(yj), V = [Φ(x1),Φ(x2) . . .Φ(xN )], respectively; where,
Φ(xl), l = 1, 2 . . . N represents the atom (training sample) in
higher dimensional kernel space and let α′ be the new sparse
vector. Therefore, the sparse representation of yj in kernel
space becomes:

Φ(yj) = V α′ (2)

KSRC follows a two-step procedure. The first step involves
finding α′ by solving the following optimization problem using
greedy kernel orthogonal matching pursuit (KOMP):

α̂′ = argmin ∥Φ(yj)−Vα′∥F subject to ∥α′∥0 < K (3)

where, K represents the sparsity level and ∥.∥F is the Frobe-
nius norm. Then, in the second step, the residue between yj
and its approximation for each class is calculated. Finally,
the class label that provides the minimum residue for yj is
assigned to it, i.e,

fi(yj) = ∥Φ(yj)−Viα̂′
i∥F for i = 1, 2, . . . , C (4)

class(yj) = argmin
i=1,2,...,C

{fi(yj)} (5)

In order to consider spatial contextual information, an
extended version of KSRC known as kernel joint sparse
representation classifier (KJSRC) has proposed in [20]. It

assumes that neighboring pixels of an unknown pixel can be
represented by linear combination of the same atoms. Hence,
their sparse vectors share the same sparsity pattern but with
different coefficients. For details about KJSRC, the reader may
refer to [20].

III. PROPOSED METHOD

In this section, we propose a query function consists of
uncertainty and diversity criteria designed by exploiting the
kernel sparse representation classifier. The query function of
the proposed technique selects the h most informative samples
at each iteration of AL by applying uncertainty criterion
followed by diversity criterion. The details of these criteria
are presented in the following subsections.

A. Uncertainty Criterion

In AL, the uncertainty criterion plays a major role in
selecting informative samples. As already mentioned, in the
literature, most of the AL techniques exploited SVM classifier
to define uncertainty criteria. SRC, a robust and important
classifier for HSI classification, has been used for active
learning to some extent. However, they have not achieved
convincing results as compared to the existing SVM-based
AL models. The BT criterion defined in [17] fails to find
out appropriate uncertain samples, since the HSI samples that
belong to different classes are often highly overlapped. In
order to improve the separation between overlapping classes,
the kernel sparse representation classifier that projects the
samples into a higher dimensional space is a better choice.
Accordingly, we introduce an uncertainty criterion, called
kernel breaking tie (KBT), that is defined by exploiting the
KSRC. Given an unlabelled sample, the reconstruction error
for each class is first computed using the dictionary of KSRC.
Then the classification confidence, i.e., the difference between
lowest and second-lowest reconstruction errors, is used to
define the uncertainty level of the sample. The classification
confidence Ekbt(yj) for a sample yj in the unlabelled pool U
is computed as follows:

l1 = argmin
i=1,2,...,C

{fi(yj)}, l2 = argmin
i=1,2,...,C, i̸=l1

{fi(yj)}

Ekbt(yj) = fl2(yj)− fl1(yj) (6)

Lower values of Ekbt(yj) imply that the sample yj lies
in the boundary region between two classes and is more
uncertain. Higher values of Ekbt(yj) imply that the sample yj
is less uncertain. The proposed technique selects the batch of
uncertain samples from U which have the lowest classification
confidence as computed in (6).

B. Diversity Criterion

In batch mode AL, high redundancy in the uncertainty
samples affect the selection of informative samples. In order
to select informative samples (i.e, uncertain as well as non-
redundant) at each iteration of batch mode AL, most of the
literature methods first apply an uncertainty criterion to select

This article has been accepted for publication in IEEE Geoscience and Remote Sensing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LGRS.2023.3264283

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3

m uncertain samples (may have redundancy) from U . Then
a diversity criterion is used to select h informative samples
from the m samples for labelling. In the literature, there is
a large number of diversity criteria such as closest support
vector, clustering based diversity, angle based diversity, etc.[6].
We propose, a new diversity criterion called dictionary corre-
lation based diversity (DCBD) by exploiting the dictionary
of kernel sparse representation classifier. The DCBD selects
samples that have minimum redundancy with the dictionary
by measuring the correlation between uncertain samples and
the atoms in the dictionary.

Our AL technique first selects m samples Um =
[y1, y2, . . . ym] from U using the proposed uncertainty crite-
rion. Then a first order sequential search is performed that
selects one sample at a time from Um, having minimum
redundancy with the atoms in the dictionary of KSRC. It
selects h(h < m) samples from the m uncertain samples.
Let V = [Φ(x1),Φ(x2) . . .Φ(xr)] be the initial dictionary
of KSRC. For each sample, yi ∈ Um the correlation values
between Φ(yi) and all the atoms in V are computed. Let
< V,Φ(yi) > be the vector that stores m correlation values
computed between Φ(yi) and r atoms in V . We define
a function R(yi) = max{< V,Φ(yi) >} that takes the
maximum correlation value from the vector < V,Φ(yi) >
to measure the redundancy of Φ(yi) in the dictionary V .
High values of R(yi) imply that the sample Φ(yi) will be
a redundant atom in V . Thus, in the proposed technique, the
sample yk ∈ [y1, y2, . . . ym] that has the least redundancy with
the atoms in V is selected as follows:

yk = argmin
y1,y2,...,ym

{R(y1), R(y2), . . . , R(ym)} (7)

After assigning an appropriate label for yk, the dictionary
of KSRC and Um are updated as V = V ∪ {Φ(yk)} and
Um = Um − {yk}. The above sequential search is repeated
for h times to add h atoms into the dictionary of KSRC with
minimum redundancy.

The whole process of the selection of h uncertain and
diverse samples for updating the dictionary is repeated until
the stopping criterion is met. Finally, the obtained dictionary
is used by KJSRC for classification. Algorithm 1 summarizes
the proposed AL framework with KBT uncertainty criterion
and DCBD diverse criterion. The main theoretical motivation
of the proposed technique is that uncertainty and diversity
criteria are designed in the kernel sparse representation and
not in spaces different from those in which KSRC works. In
this way it is possible to optimize the selection of samples that
are the most uncertain and the most diverse in the considered
kernel sparse representation space used by the classifier.

IV. EXPERIMENTAL RESULTS

A. Datasets
We assessed the effectiveness of the proposed technique on

three benchmark datasets.
1) Indian Pines: This dataset was acquired by the AVIRIS

sensor on the Indian Pines, Indiana, USA. The image scene
contains 200 bands and 145 × 145 pixels. There are 16 ground
truth classes present in it.

Algorithm 1 Proposed active learning strategy using KBT
uncertainty criterion and DCBD diversity criterion

Input: Hyperspectral Image H; sparsity level K; Dictionary
D; unlabelled pool U

1: Let V = [Φ(x1),Φ(x1), . . . ,Φ(xr)] be the initial dictio-
nary of KSRC

2: repeat:
3: For each yi ∈ U , compute classification confidence

Ekbt(yj) using (6)
4: Select the m uncertain samples Um from U that have the

lowest classification confidence.
5: p = m
6: /* To select h informative samples */
7: for i=1 to h do
8: for j=1 to p do
9: Compute Correlation Vector < V,Φ(yj) >

10: R(yj) = max{< V,Φ(yj) >}
11: end for12:

yk = argmin
y1,y2,...,ym

{R(y1), R(y2), . . . , R(ym)}

13: Assign appropriate class label to yk with the help of
supervisor.

14: Update:
V = V ∪ Φ(yk); Um = Um − {yk}; U = U − {yk}

15: p = p− 1
16: end for
17: until stopping criterion is met.

2) Kennedy Space Center: This dataset was taken by the
AVIRIS sensor on the Kennedy Space Center (KSC), Florida,
USA. The image scene contains 176 bands and 512 × 614
pixels. There are 13 ground truth classes present in it.

3) University of Houston: This dataset was taken by the
CASI sensor. It shows the University of Houston, Texas, USA
and the surrounding urban areas. The image scene contains
144 bands and 349 × 1905 pixels. There are 15 ground truth
classes present in it.

B. Design of Experiments

In order to show the robustness of our proposed tech-
nique, two sets of experiments are conducted, one to show
the potentiality of the proposed KBT criterion for selecting
uncertain samples and the other to show the potentiality of the
proposed DCBD criterion for selecting informative samples. In
the first experiment, to assess the effectiveness of the proposed
uncertainty criterion, the KBT criterion is compared with sev-
eral popular state-of-the-art uncertainty criteria like, Marginal
Sampling (MS) [4], Multi Class Level Uncertainty (MCLU)
[6] Entropy Query-by-Bagging (EQB) [5] and Sparse Repre-
sentation based BT (SRC-BT) [17]. In the second experiment,
to assess the effectiveness of the proposed diversity criterion,
the KBT-DCBD technique is compared with three state-of-
the-art AL techniques i.e. marginal sampling with closest
support vector (MS-cSV) [5], multi class level uncertainty
with kernel kmeans (MCLU-KK) [6] and MCLU-KK with
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edge gradient (MCLU-KK-EG) [12]. The classification results
of the proposed technique did not change significantly by
varying the sparsity level K of KSRC and the γ of RBF kernel
within the range [3, 9] and [25, 28], respectively. For the present
experiment, the value of K is fixed to 9 for the University of
Houston dataset and to 3 for the other datasets. The value of
γ is fixed to 27 and the sparsity level of KJSRC is set to 30
for all the datasets.

At the beginning of AL, 3 samples from each class are
randomly selected to form the initial training set (dictionary).
Subsequently, in each iteration of AL, h = 5 samples are se-
lected and assigned to their appropriate labels for updating the
training set (dictionary). The MS-cSV, MCLU-KK, MCLU-
KK-EG, and the KBT-DCBD techniques, first select m uncer-
tain samples. Then h informative samples from the selected
m samples are chosen for labelling. In the experiments, the
value of m is set to 3h. The AL techniques are executed for
30 iterations, resulting in 198, 189, and 195 samples in the
training set (dictionary) for Indian Pines, KSC, and University
of Houston datasets, respectively. The rest of the samples in
U (i.e., 10051, 4838, and 14839 samples for Indian Pines,
KSC, and University of Houston datasets) are used for testing.
Experiments are performed in 5 runs to reduce random effects
on the results.

All experiments are performed in a 64-bit Matlab R2018a
environment on a desktop with a 64-bit operating system, Intel
(R) Core (TM) i5 8400 CPU. 2.80GHz processing power and
16 GB of RAM.

C. Results

Table I show the results of the first experiment obtained
at different iteration of AL for Indian Pines, KSC and Uni-
versity of Houston respectively. It shows the average overall
accuracy (OA) and the standard deviation(sd) provided by all
the considered techniques with different numbers of labelled
(training) samples N . From the table, one can see that for
all the datasets, the proposed uncertainty criterion (i.e., KBT)
outperforms many popular state-of-the-art uncertainty criteria
that exist in the AL literature. For the Indian Pines dataset, the
proposed criterion provides at least 6% higher average overall
accuracy (OA) than the best literature criterion (i.e., MCLU).
Similarly, for KSC dataset, the KBT provides nearly 4% higher
OA than the best literature criterion. For the University of
Houston dataset, the proposed criterion provides similar results
as provided by the best literature criterion (i.e., MCLU). Thus,
the results show the potentiality of the proposed KBT criterion
to select better uncertain samples.

The results of the second experiment for Indian Pines and
KSC are shown in Fig. 1. From these figures, one can see
that our KBT provides significantly better results than many
other state-of-the-art methods. It is also seen that the KBT-
DCBD method further improves the results. Note that only
at the beginning, the KBT-DCBD failed to provide better
results than KBT. This is because at the initial iterations of
AL, the decision function of the classifier may be passed
through completely wrong regions in the feature space. So,
the diverse samples selected may not be useful to provide

TABLE I: Average overall accuracy (OA) and standard deviation
(sd) obtained by the MS [4], MCLU [5], EQB[5], SRC-BT [17]

and KBT for Indian Pines, KSC and University of Houston datasets

Indian Pines

Method N = 88 N = 128 N = 163 N = 198

OA sd OA sd OA sd OA sd

MS 56.41 ± 3.85 61.80 ± 2.53 65.89 ± 2.10 68.37 ± 1.79

MCLU 57.47 ± 2.36 60.97 ± 1.48 65.50 ±1.25 68.66 ± 1.19

EQB 49.46 ± 5.67 55.83 ± 4.81 59.57 ± 3.62 62.16 ± 2.21

SRC-BT 52.78 ± 1.51 55.79 ± 1.91 57.33 ± 1.49 58.45 ± 1.40

KBT 66.76 ± 4.33 70.65 ±1.84 72.54 ± 2.04 74.56 ±1.75

Kennedy Space Center

Method N = 79 N = 119 N = 154 N = 189

OA sd OA sd OA sd OA sd

MS 84.84 ± 1.64 86.89 ± 0.86 87.94 ± 0.86 89.10 ± 0.70

MCLU 84.71 ± 2.09 87.69 ± 0.93 89.51 ± 0.71 90.43 ± 0.28

EQB 82.81 ± 1.62 85.74 ±1.63 87.54 ± 0.85 88.65 ± 1.18

SRC-BT 65.29 ± 2.82 68.12 ±4.01 69.65 ± 4.49 72.85 ± 2.66

KBT 87.77 ± 2.33 90.43 ± 2.96 93.49 ± 1.53 94.05 ± 1.22

University of Houston

Method N = 80 N = 135 N = 160 N = 195

OA sd OA sd OA sd OA sd

MS 70.32 ± 2.84 77.32 ± 1.72 82.93 ± 0.90 83.47 ± 0.72

MCLU 72.63 ± 1.46 78.99 ± 1.49 81.98 ± 1.01 84.58 ± 0.65

EQB 68.25 ± 1.92 73.73 ± 1.24 76.58 ± 2.30 78.97 ± 1.98

SRC-BT 66.86 ± 1.23 69.86 ± 0.94 73.57 ± 1.49 75.31 ± 1.65

KBT 74.34 ± 1.22 80.91 ± 2.81 82.77 ± 2.35 84.38 ± 2.39

TABLE II: Computational time in seconds taken by the MS-cSV,
MCLU-KK, MCLU-KK-EG, SRC-BT, KBT and KBT-DCBD for

different datasets.

Dataset MS-cSV MCLU-KK
MCLU-
KK-EG SRC-BT KBT

KBT-
DCBD

IP 395.75 131.08 138.98 398.13 174.99 175.92

KSC 190.03 49.64 51.08 386.12 73.93 74.33

UH 491.17 134.98 135.84 521.56 242.87 243.92

additional information to the classifier. For the Indian Pines
dataset, our KBT-DCBD technique provides an OA of 77.94%
by labelling only 198 samples, whereas with the same num-
ber of labelled samples, the best literature method (i.e., the
MCLU-KK-EG) provides only 69.95%. For KSC dataset, our
technique provides an OA of 95.22% by labelling only 189
samples, whereas the best literature method (i.e., the MCLU-
KK) obtains 91.14%. Similarly, for the University of Houston
(UH) dataset the proposed KBT-DCBD technique provides an
OA of 87.29%, whereas the best literature method MCLU-
KK provides 86.35% of OA. These improvements are made
possible from the sparse representation models in kernel space,
which are exploited by the proposed technique for designing
better uncertainty and diversity criteria.

The computational time values taken by the different tech-
niques are reported in Table II. From this table, one can
see that the computational time of the proposed technique is
comparable to the literature methods.
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Fig. 1: (OA) versus the no. of labelled samples of different AL methods for a) Indian Pines, b) KSC, c) University of Houston datasets.

V. CONCLUSION

The goal of this research is to develop a novel robust query
function for improving the effectiveness of AL in identifying
appropriate informative samples to label for the training of
a KSRC. The proposed uncertainty and diversity criteria are
designed in the kernel sparse representation and not in spaces
different from those in which KSRC works like in other
literature methods. So it is possible to optimize the selection
of samples that are the most uncertain and the most diverse
in the considered kernel sparse representation space used by
the classifier with the results to obtain a very good trade-
off between labelling cost and classification accuracy. The
robustness of the proposed technique is validated by using
three real benchmark HSI datasets. For all the datasets, the
proposed method improves the classification accuracy with
a reduced number of labelled training data. This is very
important and goes in the direction of improving the real-life
deployment of an automatic classifier as results in a reduction
of the cost for labelling training data with respect to other
literature methods. Moreover, the proposed method: i) is based
on a simple design; ii) is fast; iii) does not have critical
requirements on memory; and iv) exploits a sparse classifier
robust to high dimensional feature spaces.
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