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Abstract 

 

Loss of vascular function associated with cardiovascular disease, such as 

arthrosclerosis, represents the leading medical epidemic in the United States and 

typically requires surgical intervention through synthetic or autologous vascular 

grafts.  To overcome the limitations associated with adult cell sources, which are 

often restricted by supply or compromised by disease, mesenchymal stem cells 

(MSCs) have emerged as potential candidates for vascular tissue engineering.  

While evidence suggests the roles of several factors influencing MSC differentiation 

into vascular phenotypes, including matrix rigidity, geometry and chemistry, the 

phenomena associated with these events are still largely unknown.  Further, the 

development of mature vascular phenotypes, such as vascular smooth muscle cells 

(vSMCs), with functional behavior remains elusive to the research community.   

This thesis proposed to engineer and direct specific and mature vascular 

differentiation from MSCs by way of highly tailored matrices mimicking the vascular 

niche environment.  Taking inspiration from natural organization, we contend that a 

biomimetic design approach to tissue scaffolds that display features of the natural 

cellular microenvironment whilst mimicking the bulk tissue properties may elicit highly 

specific differentiation of MSCs to vascular phenotypes.  To validate our hypothesis, 

we employed a systemic approach incorporating physical and chemical 

microenvironmental cues, i.e. stiffness, biological ligands and chemical factors, with 

the aim to augment vascular phenotype expression, functionality, and final 

incorporation into a tailored biomaterial scaffolds.   

First, we present a novel technique for the preparation of silk hydrogels directly 

from high pressure CO2 environments without the need for crosslinking agents or 

additional additives such as surfactants or co-solvents.  Through this novel method, 

we demonstrate the utility of CO2 as a volatile electrolyte, capable of sufficiently 

influencing the sol-gel transition of silk proteins, resulting in the formation of stable 

hydrogels with properties suitable for biomedical applications.  

Second,  we hypothesized that suitable soluble factor regimen and matrix 

rigidity can instruct MSC differentiation towards more mature, functional vSMCs.  To 



 

address this, we investigated cellular differentiation on tunable SF hydrogels 

prepared using a solvent-free CO2 processing method.  The focus of this portion of 

the thesis is on exploiting the combined use of substrate stiffness and growth factor 

(TGF- β1) on SF matrices, with the aim of correlating the effects on the vascular 

commitment of human mesenchymal stem cells (hMSCs).  Our data reveal that 

hMSC differentiation into mature SMCs can be achieved within modest culture 

periods (72 h) by combining appropriate SF hydrogel stiffness (33 kPa) with growth 

factor (TGF-β1).  These findings advance our understanding of how complex 

multicomponent biomaterials, whereby mimicking the intricacy of natural tissue 

environments, can play a significant role in developing optimal stem cell 

differentiation protocols.   

Third, we postulated that the presentation of ECM proteins on 3D matrices with 

tunable stiffness will augment the differentiation of MSCs to vascular lineages. To 

address this, we established a high-throughput ECM platform based on soft, fibrous 

PEG hydrogels meanwhile highly-tunable in stiffness and 3-dimensional geometry.  

Using this technique, we identified several microenvironments supporting MSC 

adhesion, spreading and differentiation toward early vascular lineages. This portion 

of the thesis supports the hypothesis that a complex milieu exists coupling protein 

functional behavior with substrate rigidity and that this phenomenon may potentially 

be exploited through proper application of high-throughput screening methodologies.   

In the final work of this thesis, we explored the integration of ECM-derived 

small engineered peptides with 3D soft matrices to refine the differentiation of MSCs 

to vascular phenotypes, and further successfully recapitulate the complex vascular 

niche necessary for specific and efficient MSC differentiation into vascular lineages.  

In line with this, we report the development of a microarray platform based on 

electrospun nanofibrous hydrogels of photoclickable thiol-ene poly(ethylene glycol) 

(PEG) hydrogels.  Here, we demonstrate the ability to control primary cell adhesion 

to soft, fibrous hydrogels functionalized with RGD peptide.  However, future work will 

be focused on designing combinatorial peptide studies, whereby, the integration of 

several biological ligands of interest with tunable physical properties can instruct 

stem cell differentiation in a highly specific manner. 

 



 

 

This thesis has provided fundamental insights into the effects of physiological 

stimuli on vascular differentiation of MSC in terms of the specificity and maturity of 

the final differentiated cells. Better understanding of such mechanisms will prove 

paramount in the sequential stages of MSC differentiation to mature vascular cells.  

Additionally, the findings of this thesis will help to better define the process of 

regenerating functional healthy vascular tissue from MSCs. Altogether, a 

combinatorial approach investigating the effects of matrix elasticity, biological ligands 

and growth factors on MSC differentiation in a 3D nanofiber culture will be critical 

towards understanding and recapitulating MSC differentiation in the in vivo vascular 

environment. 
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Chapter I 

Introduction & Background 

 
1. Motivation 
 
1.1. Cardiovascular Disease:  Motivation for New Th erapies  
 

There is a pressing need to develop advanced strategies for the treatment of 

cardiovascular diseases (CVD).  Cardiovascular disease (CVD) is the leading cause 

of death in the United States associated with 1 out of every 4 deaths as reported in 

2009 (Kochanek, 2009). Current therapies rely on surgical intervention using 

autologous vascular bypass grafts such as the saphenous vein; however, these 

therapies are restricted in practice as they require surgical harvest and may be 

limited by a prior disease state or previous use (Weintraub, 1994).  Approximately 

1.5 million cases are alternatively treated with synthetic vascular grafts; however, 

these grafts commonly fail due to stenosis, an abnormal narrowing of the vessel, or 

thrombosis, formation of a blood clot in the vessel. These conditions arise because 

current synthetic vascular grafts fail to successfully integrate with the local 

vasculature at the implant site.  Various recent studies have attempted to improve 

the biorecognition and integration of synthetic grafts by loading the substrates with 

primary vascular cells.   Nonetheless, such methods still represent limited successful 

outcomes due to the need for invasive surgery and the limited expansion and 

functionality of these primary cells in vitro. 

 

1.2. Tissue Engineering Therapies 
 

Tissue engineering and regenerative medicine seek to provide therapeutic 

solutions to repair or replace damaged tissue (Langer, 1993).  Traditionally, tissue 

engineering has relied on cultivating a cell source, usually a biopsy of the host 

tissue, onto a structural matrix (scaffold) and subsequently implanted at the site of 

defect.   The ability to design scaffolds that imitate the natural cellular micro-

environment of the replacement tissue is vital for the success of such implants and 

usually involves the fine-tuning of engineered matrices on various scales.  Vascular 
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tissues are highly organized, ranging from nanoscale matrix proteins, providing a 

medium for biological cues between adjacent cells, to macroscopic structures that 

influence the architecture and mechanical function of such vessels.  This stunning 

organization found in nature at all size scales allows tissues to perform functions 

beyond the single cell.  Vascular tissues rely on the viable and functional extra 

cellular matrix (ECM) to impart the necessary requisites of mammalian vasculature 

(Cleary, 2012).  Taking inspiration from this natural organization, several reports 

have focused on preparing vascular tissue scaffolds that display features of the 

natural cellular environment whilst mimicking the bulk architecture; together mirroring 

the essential building blocks for functional vasculature. 

 

1.3.    Stem Cells in Tissue Regeneration 
 
1.3.1. Vascular Regeneration 
 

Stem cell therapy promises to revolutionize the treatment of vascular diseases 

with the potential to regenerate vascular tissues in vitro or in vivo (Krawiec, 2012).  

Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into 

several tissues including vascular phenotypes, can be easily obtained and are 

rapidly expandable in vitro, thereby providing several advantages for their utility in 

vascular tissue regeneration (Kan, 2005).  There is growing evidence that MSCs 

reside in a perivascular niche which is thought to interact largely with vascular 

signals in vivo and may play a significant role in local tissue regeneration and 

homeostatsis of the vasculature (da Silva Meirelles, 2008).  Further, a recent study 

developed a protocol to produce functional vascular SMCs from induced pluripotent 

stem cells (iPSCs) via an MSC intermediate (Bajpai, 2012).  The iPSC-derived MSC 

were found be both highly proliferative and capable of differentiating into highly 

contractile SMCs.  The preceding citations lend credibility to the hypothesis that 

MSCs represent a potent cell source for the regeneration of highly specific and 

functional vascular tissues.  

However, despite significant progress in regenerating vascular tissues using 

MSCs and other stem cells, there are still considerable challenges associated with 

the production of vascular phenotypes with high cell specificity, maturity and 
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functional behavior.  The vascular niche constitutes a complex microenvironment 

which conveys a variety of signals, eliciting specific biological responses and 

maintaining tissue function and homeostasis.  Further resolution of the mechanisms 

and environmental signaling which regulate MSC differentiation towards vascular 

phenotypes has profound implications towards cell-based vascular tissue 

engineering and regeneration. 

 

1.4. Microenvironmental Cues Direct Stem Cell Fate Decisions 
 

There is abundant evidence to suggest that local signals from the tissue 

specific ECM microenvironments, through cell-ligand, cell-molecule or cell-matrix 

activation, significantly affect MSC differentiation and mature phenotype expression 

(Reilly, 2010; Suzuki, 2010; Engler, 2006) (Fig. 1).  Substrate physical properties 

such as elasticity (Engler, 2006; Discher, 2005) and geometry (Cukierman, 2001; 

Huebsch, 2010) have been implicated to strongly influence MSC differentiation.  Our 

group has previously demonstrated that 3D nanofibrous PEG gel substrates with 

elasticity that mimics the natural vascular stiffness (E= 8 to 15 kPa) can direct MSC 

differentiation  

toward vascular phenotypes within 24 hours (Wingate, 2012). Besides substrate 

physical properties, MSC differentiation and phenotype commitment are also greatly 

influenced by matrix chemical markers such as growth factors or matrix chemistry.  

Figure I - 1.  The ECM microenvironment confers a variety of physical and chemical 
cues which direct MSC growth, adhesion and differentiation. 
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Together, these signals impart an instructional environment whereby MSC behavior 

and differentiation are directed in a highly specific manner.  However, successful 

recreation of this complex milieu which directs MSCs to vascular phenotypes in vitro 

as well as the underlying mechanisms governing these events is still widely 

unknown.  A biomimetic approach, incorporating several environmental signals, such 

as cell-matrix and cell-biomolecule interactions, will help to establish more robust 

and specific MSC differentiation protocols. 

 

1.4.1. Biological Ligands Instruct Stem Cell Differ entiation 
 

Cell-matrix and cell-biomolecule interactions play a critical role in diversity of 

biological events including cell adhesion, growth, differentiation, and apoptosis 

(Discher, 2009; Kuraitis, 2012).  Growing evidence shows that that MSCs acquire 

tissue-specific characteristics when co-cultured with mature cells types or exposed to 

preformed biological matrices in vitro and that this instructive differentiation is elicited 

by the specific signals of the microenvironment (Philp, 2005). However, matrix and 

soluble factor (SF) signals are often observed independently to differentiate cells on 

2D substrates, an environment vastly different from the way cells are presented 

naturally in vivo, i.e. a 3D tissue context which elicits multiple signal inputs to 

regulate cell fate. It is likely that crosstalk of these environmental factors on 

intracellular signaling molecules may be required to direct MSC differentiation toward 

desired cell type and function.  Several reports have focused on the influence of 

different matrix signals such as ECM proteins, ECM-derived peptides and SFs on 

regulating MSC differentiation to vascular lineages (Table 1). A recent report 

demonstrated the potential of small peptides incorporated into 2D rigid substrates to 

guide MSC differentiation towards osteogenic or adipogenic lineages respectively 

(Frith, 2012).  However, while this study provides insight into small peptide directed 

MSC differentiation; systematic studies of tailored peptides to instruct MSC 

differentiation to vascular phenotypes on soft 3D substrates are absent. 

 

1.4.2. Soluble Factors as Critical Signals for MSC Differentiation 
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Recent evidence suggests that precise, complex SF regimens can result in 

highly specific and mature VSMCs from iPSCs (Lachaud, 2013; El-Mounayri, 2013).  

However, these protocols are often time consuming, utilizing multiple factors and 

requiring weeks to reach maturity.  Studying the activity of early cell signaling events 

in the presence of SFs may help to refine current factor protocols.  Several pathways 

mediating SF effects on VSMC differentiation from iPSCs have also been revealed 

recently. Though largely unexplored, the potential crosstalk sites between signaling 

induced by matrix adhesion and chemical signaling for vascular morphogenesis 

include  ERK, AKT, RhoA or JNK (Discher, 2009; Martino, 2009; Park, 2011).  

Reports suggest inhibition of ERK activation in MSCs induces spontaneous VSMC 

differentiation, whereas RhoA mediating TGF-β signaling transduction or integrin 

mechanotransduction signaling leads to Smad activation for VSMC differentiation 

(Han, 2011).  Despite considerable progress towards mechano-chemical signaling 

phenomena during cellular processes, questions remain as to how these 

mechanisms direct early instruction of MSC differentiation.  Further, systematic 

studies evaluating the effect of growth factor regimens on early MSC differentiation 

processes is yet to be explored.   

Table 1.  Effect of Various Matrix Signals on hMSC Growth & Differentiation 

Matrix Signal Outcome  

ECM Protein    
     Collagen I ↑ SMC markers19 (Gong, 2008) 
     Collagen IV ↑growth, ↑ SMC markers19 (Gong, 2008) 
     Elastin ↑ Osteogenic markers (Gong, 2008) 
     Laminin ↑ SMC markers9 (Suzuki, 2013) 
     Fibronectin ↑ SMC markers19 (Gong, 2009) 
Engineered Peptide   
     RGD ↑Viability20, ↑adhesion21 (Nuttleman, 2005; Hersel, 

2003) 
     IKVAV ↑Osteogenic markers18 (Frith, 2012) 
     GKDGEA ↑Osteogenic markers18 (Frith, 2012) 
     YGISR ↑Adipogenic markers18 (Frith, 2012) 
     VAPGVG ↑ Osteogenic markers18 (Frith, 2012) 
Soluble Factor   
     TGF-β1 ↓ Proliferation22 

↑ SMC differentiation22 

(Narita, 2008) 

     PDGF ↑ Proliferation19,23 

↓ SMC differentiation23 

(Gong, 2008; Vazao, 2011) 

     bFGF ↑ Proliferation24 

↓ SMC differentiation19,24 

(Gong, 2008; Han, 2010) 

     Ascorbic  Acid (AA) ↑ Proliferation22 

↑ SMC differentiation22 

(Narita, 2008) 



20 

     Retionic Acid (RA) ↑ SMC differentiation23 (Vazao, 2011) 
 

 
 
 
 
1.5. Biomimetic Scaffolds for Stem Cells 
 
1.5.1. Scaffold Requirements 

The design of 3D tissue scaffolds is essential to the success of an engineered 

tissue in order to permit cell adhesion, proliferation, differentiation, permeability for 

nutrients as well as structural support for tissue growth (Langer, 1993). To achieve 

this, a scaffold should include several criteria such as suitable porosity, pore size, 

permeability for nutrients, material biocompatibility and degradation, whilst mirroring 

the mechanical behavior of the intended tissue (Chua, 2001; Stevens, 2010). Ideally, 

a scaffold with high porosity improves cell infiltration as well nutrient diffusion. 

However, scaffold physical properties, such as porosity and cell geometry, influence 

the mechanical behavior of such constructs (Gibson, 1982). In this regard, a careful 

balance between mechanical function and elicited biological response must be 

considered when designing a tissue scaffold. Particularly with biodegradable 

polymers, as the material degrades mechanical properties diminish; thereby 

presenting the necessity to prepare scaffolds that maintain the required support for 

tissue growth before degradation. This concept is particularly significant for load 

bearing tissues, such as bone or vasculature, which provides appropriate 

mechanical properties due in part to its unique architecture and internal anisotropy 

(Fratzl, 2007).   

 
1.5.2. Material Selection 
 

Material properties, such as chemistry, surface properties, and biocompatiblity, 

are significant factors that must be considered when preparing a tissue scaffold. In 

particular, when a material is implanted within the body a cascade of chemical 

signaling is initiated as the body recognizes the material as “foreign”. Most notably 

these events are recognized by local inflammation and the formation of a fiberous 

capusule encasing the foreign material. In tissue engineering, the encouragement of 
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tissue infilitration and tolerance of the foreign material are necessary to encourage 

new tissue formation. By adjusting the properties of the material utilized, the body’s 

response to foreign materials can be controlled such that cells can proliferate and 

infiltrate. 

 

1.5.2.1. Synthetic Polymers 
 

Synthetic polymers offer several advantages as materials for developing tissue 

engineering scaffolds including the ability to tailor mechanical properties and 

degradation kinetics to meet various applications. Specifically, synthetic polymers 

are  attractive because they can be fabricated into various shapes with desired 

morphologies and  features which can be permissive for cell maintence and in-

growth (Gunatillake, 2003).  For example, synthetic polymers can be produced 

reproducibily with specific molecular weights, block structures, degradable moities, 

and crosslinking mechanims. These properties in turn, govern material formation 

dynamics, crosslinking density, and material mechanical and degradation properties.  

PEO and poly(ethylene glycol) (PEG) are hydrophilic polymers that can be 

photocrosslinked by modifying each end of the polymer with either acrylates or 

methacrylates (Cruise, 1998; West, 1999; Mann, 2001). Hydrogels can then be 

prepared when the modified PEO or PEG is mixed with the appropriate photoinitiator 

and crosslinked via UV exposure (West, 1999; Bryant, 2001).  Synthetic hydrogels 

are often attractive materials for thier inert properites since they lack cell adhesion 

receptors and proteins often do not readily absorb to them.  Specifically, PEG has 

been used to prevent post-operative adhesions (West, 1996) and to prevent intimal 

thickening of arteries after damage (West, 1996).  However, while synthetic materials 

are attractive for their cost, reproducible fabrication and facile manufacturing, their 

lack of cell-recognition sites as well as potential for toxic degradation products 

causing undesirable inflammation are often disadvantageous (Seo, 2013).   

 
1.5.2.1. Natural Polymers 
 

In nature, fibrous proteins represent the foundation for mechanically robust 

structures (i.e. collagen fibrils), provide recognition sites for cell binding and 
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hierarchical organization, as well as providing anchoring sites for other extracellular 

matrix components.  Among naturally derived fibrous proteins, silk fibroin, the 

primary structural protein of natural Bombyx Mori silk fibers, is a natural polymer that 

has been studied extensively for tissue engineering applications in part to its 

excellent mechanical properties, biocompatibility, and controllable degradation rate .  

Silk proteins have found significant utility in biomedicine due to their high 

biocompatibility, tunable biodegradability and material format versatility. Perhaps its 

earliest biomaterial rendition, natural silk fibers have been employed as sutures for 

wound ligation for centuries (Moy, 1991).  Wound dressings have also been 

prepared using pure silk electrospun nets (Schneider, 2009) or with silk blends of 

PEG (Kweon, 2008) or carboxymethyl keratin (Lee, 1999), demonstrating improved 

inflammation response and wound healing kinetics. Silk fibroin coatings are also 

attractive for implant materials. Improved adhesion of human fibroblasts has been 

reported on silk fibroin coated polyurethane (Petrini, 2001) and polycarbonate 

(Chiarini, 2003) surfaces. Other adaptions of silk fibroin implant technologies include 

anterior cruciate ligament (ACL) reconstruction (Altman, 2002) knee meniscus repair 

(Mandal, 2011) and nerve guidance conduits (Yang, 2007). 

 

1.5.3. Fabrication Techniques 
 

A number of techniques to prepare tissue scaffolds have been described by 

previous authors such as porogen leaching, thermally induced phase separation, gas 

foaming, electrospinning and 3D printing among (Chua, 2001; Stevens, 2010). Each 

method has advantages and disadvantages over others in regard to fabrication time, 

reproducibility and employed solvents. Moreover, the ability to tune scaffolds at 

specific length scales is also dependent on the method utilized. At the cellular level, 

cells interact with a plethora of structures, from matrix proteins to adjacent cells. The 

organization and size of such structures can guide cells to form functional groups 

which are the building blocks of macroscopic tissue. Electrospinning polymer nets 

can produce nanofibers which resemble the shape and size of matrix proteins 

(Wingate, 2012, Bonani 2012). It is speculated that the likeness of the nanofibers 

with natural ECM proteins enhances cell activity. One limitation, however, of 
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nanofibers meshes is the absence of macroscopic structures which support porosity 

and interconnectivity, severely limiting cell infiltration and nutrient diffusion. 

Recent studies have highlighted the importance of 3-dimensional, fibrous  

matrices to optimize stem cell niche environments (Carlson, 2012; Lim, 2009).   One 

potential solution is the use of hydrogels which present both a fibrous microstructure 

reminiscent of the natural ECM combined with excellent nutrient diffusion. Hydrogels 

are networks of polymer chains that are stabilized either by chemical or physical 

crosslinking and dispersed throughout an immobilized water phase.  The stability of 

the polymer network allows for the penetration and uptake of water (swelling) without 

dissolving, thus lending itself to a variety of attractive and practical applications.  

Hydrogels have become excellent material candidates for a wide selection of 

biomedical applications because of their high water content (allowing for efficient 

transport of biological molecules), improved biocompatibility and innate similarity to 

the physiochemical nature of natural tissues (Drury, 2003; Peppas, 2006).  

 

1.6. Tailoring Microenvironments to Control Stem Ce ll Fate 

 

1.6.1. Current State of the Art 
 

There has been a considerable drive in recent years to develop engineered 

microenvironments which capture the complex SC niche found in vivo.  The previous 

sections discussed how both physical and biological cues can individually direct 

stem cell fate processes.  However, it is difficult to achieve tailored differentiation of 

stem cells with regard to both the efficiency of stem cell differentiation into desired 

lineages as well as mature tissue functionality merely from the introduction of limited 

signals (i.e. simple growth factor regimens or non-specific physical cues).  The 

culmination of such signals is likely to drive the future for complex SC differentiation 

protocols and specificity.  Several reports have attempted to elucidate the synergistic 

roles of combined bio-physical cues, such as substrate elasticity and biological 

factor, in stem cell fate processes (Table 2).  One of the earlier studies performed by 

Park et al. elucidated the importance of the synergy involved  between substrate 

elasticity and growth factor TGFβ-1 to instruct specific MSC differentiation (Park, 
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2011).  Here it was found that substrate elasticity could invoke different SC fate 

commitments in the presence of growth factor which alone was not sufficient.  

Expanding on this theory, Wingate et al. combined VEGF administration with a soft, 

three-dimensional substrate optimally designed for endothelial cells (ECs).  The 

authors reported that the substrate combined with growth factor were significantly 

more effective at directing stem cell fate towards EC lineage than growth factor alone 

(Wingate, 2014).  The two preceding citations provide compelling evidence that a 

synergistic role of individual environmental factors can assist in the MSC 

differentiation process.  Challenges in the future will be in the discovery of multiple 

signal effectiveness for specific SC lineage commitment as well as platforms 

designed for end-user tunablility.   

 

 
1.6.2. Systemic Approaches to Multivariate Studies 
 

High through-put approaches have emerged in recent years to circumvent the 

limitations of traditional low through-put techniques (i.e. conventional cultureware), 

with the promise to develop complex platforms for combined biomolecule/substrate 

discovery.  An early example of such technology, Flaim et al. developed an ECM 

microarrary to investigate the role of specific proteins on SC differentiation (Flaim, 

2005).  By spotting proteins onto acrylamide coated slides, the authors presented 32 

different protein conditions in the form of discrete protein dots on the order of 200µm.  

The technology was reproducible and capable of producing multiple microarrays with 

significantly less protein requirement than traditional methods.  The authors 

investigated the influence of the different protein conditions in the presence of both 

primary hepatocytes and mouse embryonic SCs.  Interrogation of the respective cell 

Table 2.  Review of Biomaterials for Stem Cell Differentiation by Variable 

Year Material Geometry Elasticity Biological Ligand Soluble Factor Ref 

2006  2D planer soft - - Engler, 2006 

2008 PGA mesh 3D scaffold stiff ECM proteins Various Gong, 2008 

2010 PEGDM Gel 3D gel soft RGD - Huebsch, 2010 

2011 Collagen I/PA gel 2D planer soft - TGF-β1 Park, 2011 

2012 PS-PEO copolymer 2D planer stiff engineered peptides  Frith, 2012 

2012 PEGDM Nanofiber Gel 3D nanofibers soft - - Wingate, 2012 

2013 Pegylated-Fibrin Gel 2D/3D gel soft - TGF-β1 Stowers, 2013 

2014 PEGDM Nanofiber Gel 3D nanofibers soft - VEGF Wingate, 2014 
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lines indicated several protein combinations which either maintained hepatocyte 

function or persuaded SC differentiation.  While this report lends strong credibility to 

high through-put techniques, the incorporation of multiple signals within designed 

microarrays has proven to be a challenge within the field.  An approach developed 

by Gobaa et al. has proven an important step as it provides the opportunity to 

analyze a greater number of variables and more rapidly than previous attempts 

(Gobaa, 2011).  In particular, the authors designed individual hydrogel microwells, 

with both modular stiffness as well as variable protein composition.  This report 

represents a paradigm shift in study of SC differentiation events from the traditional 

methods of single specimen culture ware to the sample robust high through-put 

capabilities.   The development of complex high through-put platforms to investigate 

SC differentiation with combinatorial signaling will likely prove instrumental towards 

the design of future biomaterial platforms. 

 

1.6.3. Translational Methods to Integrate Complex S tem Cell 

Environments   

  

Integration of complex cellular signaling environments into biomaterial scaffolds 

presents a considerable challenge to the tissue engineering community (Kim, 2012).  

Protein materials represent an interesting platform as they often mimic the 

organization found in natural tissues as well as impart improved biological responses 

(Kim, 2012).  We have found that silk proteins offer tremendous advantage as 

substrate platforms for scaffolds and vascular grafts due impart to its excellent 

mechanical properties, biocompatibility, controllable degradation rate, and mild 

inflammatory response in vivo (Murphy, 2009; Motta, 2012).  Previously, we have 

developed a novel technique to produce silk hydrogels with tunable elasticity using 

the green solvent carbon dioxide (CO2) (Floren, 2012).  Due to its tunable elasticity 

approaching vascular tissues (E = 10-30 kPa), combined with clean fabrication, we 

propose to use this matrix as a next-generation platform that integrates vascular 

niches for MSCs to be used in vascular tissue engineering.  The production of 

tunable vascular graft materials, comprised of compatible biomaterials, and further 
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specialized with engineered vascular niche environments will be of considerable 

value to the research community. 

 

1.7. Significance & Motivation for this Research 

 

While there have been several important contributions in the literature that 

elucidate stem cell differentiation events associated with microenvironment discovery 

and design, there is still much uncertainty surrounding specific and controlled stem 

cell fate decisions.  There is a growing consensus among the scientific community 

that recapitulation of the complex stem cell niche environment can lead to more 

robust and controlled stem cell differentiation processes and maintenance.  Our 

interest in vascular regeneration prompted us to adopt a holistic approach to capture 

the complex vascular niche environment.  We aim to engineer complex vascular 

niche environments by 1) resolving the mechanisms associated with MSC-matrix 

interactions, 2) establish simple, precise SF regimen protocols into these complex 

environments and 3) translate these optimized vascular niches to well established 

biomaterial platforms.    Successful completion of this project will provide 

fundamental understanding of the effects of physiological stimuli on vascular 

differentiation of MSC in terms of the specificity and maturity of the final differentiated 

cells. Better understanding of such mechanisms will prove paramount in the 

sequential stages of MSC differentiation to vascular cells.  Additionally, the results 

will help to better define the process of regenerating functional healthy vascular 

tissue from MSCs. In summary, a combinatorial approach investigating the effects of 

matrix elasticity, biological ligands and growth factors on MSC differentiation in a 3D 

nanofiber culture will be critical towards understanding and recapitulating MSC 

differentiation in the in vivo vascular environment. 
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Chapter II 

Specific Objectives 

 
2.1.    Introduction 

The main objective of this thesis is to engineer and instruct specific and mature 

vascular differentiation from MSCs by way of highly tailored matrices mimicking the 

natural vascular niche environment.  Taking inspiration from natural organization, we 

propose that a biomimetic approach to vascular tissue scaffolds that display features 

of the natural cellular microenvironment whilst mimicking the bulk tissue properties 

may elicit highly specific differentiation of MSCs to vascular phenotypes.  Previous 

work in our laboratory suggests a holistic approach for directing MSC differentiation 

to vascular phenotypes, encompassing the combined effects of matrix rigidity, 

growth factor presentation and synthetic peptides, to enhance the vascular 

differentiation of MSCs (Wingate, 2012; Wingate, 2014).  To this aim, we 

hypothesize that the convergence of several mechanochemical cues may 

recapitulate the complex vascular niche compulsory to instruct MSC differentiation 

into mature vascular tissues and enabling functional vascular regeneration in vitro.  

To validate our hypothesis, we will take a novel approach by resolving the 

mechanisms ascribed to MSC differentiation towards VSMCs in a systematic 

approach, i.e. stiffness, biological ligands and chemical factors, to augment vascular 
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phenotype expression and functionality, via relevant biomaterial scaffolds.  We 

expand on these aims as follows: 

 

2.2.    Aims of this Thesis 
 
2.2.1. Aim 1 

The first objective of this thesis was to develop tunable hydrogel systems 

based on the natural polymer silk fibroin.  Silk fibroin (SF), a natural protein extracted 

from Bombyx mori silkworms, is an attractive material for tissue engineering due to 

its excellent mechanical properties, biocompatibility, tunable degradation rate, and 

mild inflammatory response in vivo [Wang, 2008].  A diversity of regenerative tissues 

has been reported using SF-based constructs including bone [Meinel, 2005; Fini, 

2005), cartilage (Wang, 2010), vascular (Soffer, 2008; Bondar, 2008; Bonani, 2011), 

skin (Unger, 2004), nervous (Yang, 2007), hepatic (Gotoh, 2004) and ocular 

(Lawrence, 2009) amongst others (Kundu, 2013).  In light of these reports, the future 

and relevance of silk biomaterials for therapies catered to the biomedical community 

are believed to be great (Motta, 2012). 

Hydrogels have become excellent material candidates for a wide selection of 

biomedical applications because of their high water content (allowing for efficient 

transport of biological molecules), improved biocompatibility and innate similarity to 

the physiochemical nature of natural tissues (Drury, 2003; Peppas, 2006).  Recently, 

porous natural-based hydrogels have been chemically crosslinked under high 

pressure CO2 without the necessity for surfactants or co-solvents (Partap, 2006; 

Annabi, 2009; Annabi, 2010).  Hydrogels produced using high pressure CO2 

generally exhibit greater porosity and improved crosslinking, resulting in improved 

gel stiffness as well as an enhanced capacity to support cell and tissue infiltration 

(Annabi, 2010).  The potential of CO2 to induce silk protein gelation without the need 

for extensive chemical processes, circumventing complex materials fabrication 

protocols and avoiding complications to biological systems, would presumably be of 

considerable value to the biomaterials community. 

Here, for the first time, we present a novel technique for the preparation of silk 

hydrogels directly from high pressure CO2 environments without the need for 

crosslinking agents or additional additives such as surfactants or co-solvents.  
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Through this novel method, we demonstrate the utility of CO2 as a volatile 

electrolyte, capable of sufficiently influencing the sol-gel transition of silk proteins, 

resulting in the formation of stable hydrogels with properties suitable for biomedical 

applications.  The influence of CO2 pressure, silk protein concentration and 

processing time were investigated in regard to the gelation kinetics, physical and 

mechanical properties of the prepared gels (Chapter III). 

 

2.2.2. Aim 2 
The second objective of this thesis was to study the influence of growth factor 

(TGF-β1) combined with silk fibroin hydrogels of varying stiffness, as prepared in 

Aim 1, on the differentiation of MSCs into a mature SMC phenotype.   

Cell interactions with the local microenvironment are recognized in several 

important biological events including cell adhesion, growth, differentiation, and 

apoptosis [5, 6].  In particular, substrate biophysical properties such as rigidity 

(Engler, 2006; Discher, 2005), geometry (Cukierman, 2001; Huebsch, 2010) 

biological ligand (Suzuki, 2010; Gong, 2008), soluble factor (Narita, 2008), or 

combination thereof (Wingate, 2014) have been revealed to influence MSC 

differentiation events.  However, integration of complex cellular signaling 

environments into biomaterial scaffolds presents a considerable challenge to the 

tissue engineering community (Kim, 2012).  We previously developed a technique to 

produce porous, SF hydrogels with tunable stiffness and morphology using the green 

solvent, carbon dioxide (CO2), see Aim 1.  Hydrogel elastic moduli approaching soft 

tissues (E = 6-30 kPa), combined with ease of fabrication and biocompatibility, 

motivated us to use these SF materials as a platform to instruct stem cell 

differentiation towards the vascular smooth muscle cell (SMC) lineage in a precise 

manner. 

We hypothesized that suitable soluble factor regimen and matrix rigidity can 

instruct MSC differentiation towards more mature, functional vSMCs.  In the present 

study, we address cellular differentiation on tunable SF hydrogels prepared from a 

solvent-free CO2 processing method.  The transforming growth factor β (TGF-β) 

family is a potent regulator of several cell functions such as proliferation, spreading 

(Derynck, 1997) and is strongly associated with vascular smooth muscle cell (vSMC) 
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differentiation of stem cells (Narita, 2008).  Therefore, the focus of this objective is on 

exploiting the combined use of substrate stiffness and growth factor (TGF- β1) on SF 

matrices, with the aim of correlating the effects on the vascular commitment of 

human mesenchymal stem cells (hMSCs). 

 

2.2.3. Aim 3 
Despite accumulated knowledge regarding individual and combined roles of 

various mechanochemical ECM signals in stem cell activities, the intricacy exhibited 

by cellular microenvironments poses a considerable challenge in resolving the 

mechanisms ascribed to stem cell behavior and fate determination processes.  This 

complexity mandates a systemic approach whereby integrative studies must be 

expanded to capture a more comprehensive understanding of the determinants 

which direct stem cell differentiation toward desired cell type and function.   

High  through-put  approaches  have  emerged  in  recent  years  to  circumvent  

the  limitations  of traditional  low  through-put  techniques  (i.e.  conventional  

cultureware),  with  the  promise  to  develop complex  platforms  for  combined  

biomolecule/substrate  discovery.   However, despite the versatility afforded by 

current microarray technologies, the incorporation of multiple signals within 

engineered microarrays remain limited.  Meanwhile the integration of current 

combinatorial microarray technologies in three-dimensions, coupled with other 

biophysical properties, such as tunable stiffness and geometry, have yet to reach 

fruition. 

For this objective, we postulated that the presentation of ECM proteins on 3D 

matrices with tunable stiffness will augment the differentiation of MSCs to vascular 

lineages. To address this, we established a high-throughput ECM platform based on 

soft, fibrous matrices meanwhile highly-tunable in elasticity and 3-dimensional 

geometry.  The technology we demonstrate here is amenable to manipulation of 

several matrix properties, such as elasticity and geometry, in concert with 

customizable ECM protein micro-dot combination.  Altogether, we demonstrate the 

practical adaptation of high-throughput technology to facilitate the screening of 

various tunable mechano-ligand microenvironments in three dimensions with the aim 

to optimize stem cell fate decisions. 
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2.2.4. Aim 4 
Stem cell (SC) therapy promises to revolutionize the treatment of various 

diseases with the potential to regenerate functional tissues in vitro or in vivo. Several 

recent studies have demonstrated that cellular microenvironments such as ligand-

activated cell-matrix interactions and/or matrix physical properties such as elasticity 

and geometry have significant role in directing the differentiation processes in stem 

cells (Lutolf, 2009; Wingate, 2012). Microarrays have emerged as an important tool 

for studying stem cell processes in a high-throughput manner (Gupta, 2010; Gobba, 

2011). Nevertheless, most of the existing ECM arrays being either 2-D or shallow 3-

D are not able to capture the effects of biophysical and chemical cues on stem-cell 

fate completely. 

Here we hypothesize that the integration of ECM-derived small engineered 

peptides into 3D soft matrices may refine the differentiation of MSCs to vascular 

phenotypes, and further successfully recapitulate the complex vascular niche 

necessary for specific and efficient MSC differentiation into vascular lineages.  In line 

with this, we report the development of a microarray platform based on electrospun 

nanofibrous hydrogels of photoclickable thiol-ene poly(ethylene glycol) (PEG) 

hydrogels. Thiol-ene polymerizations proceed by an orthogonal, step-growth 

mechanism where one thiol reacts with one ene leading to a highly homogenous 

distribution in crosslinks, thus imparting tunable substrate stiffness with high fidelity 

(Hoyle, 2010). Furthermore, it allows for the subsequent covalent post-modification 

of PEG thiol-ene hydrogel substrates with small engineered peptides with high 

reactivity and specificity. Taken together, the manipulation of the matrix properties, 

such as stiffness and geometry, in concert with engineered peptides will facilitate the 

interrogation of multiple and distinct SC microenvironments. To this end, we 

demonstrate the potential application of this high-throughput technology for 

screening of a variety of engineered 3D microenvironments for stem cell fate 

optimization.  
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Chapter III 

Carbon Dioxide Induced Silk Protein Gelation 

for Biomedical Applications 
Part of this chapter has been published in: 

 
Michael L. Floren, Sara Spilimbergo, Antonella Motta, Claudio Migliaresi.  “Carbon Dioxide 

Induced Silk Protein Gelation for Biomedical Applications”.  Biomacromolecules, 13 (2012) 
2060-2072. 

 
Abstract: We present a novel method to fabricate silk fibroin hydrogels using high 

pressure carbon dioxide (CO2) as a volatile acid without the need for chemical 

crosslinking agents or surfactants.  The simple and efficient recovery of CO2 post 

processing results in a remarkably clean production method offering tremendous 

benefit towards materials processing for biomedical applications.  Further, with this 

novel technique we reveal that silk protein gelation can be considerably expedited 

under high pressure CO2 with the formation of extensive β-sheet structures and 

stable hydrogels at processing times less than 2 hours.  We report a significant 

influence of the high pressure CO2 processing environment on silk hydrogel physical 

properties such as porosity, sample homogeneity, swelling behavior and 

compressive properties.  Microstructural analysis revealed improved porosity and 

homogenous composition amongst high pressure CO2 specimens in comparison to 
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the less porous and heterogeneous structures of the citric acid control gels. The 

swelling ratios of silk hydrogels prepared under high pressure CO2 were significantly 

reduced compared to the citric acid control gels, which we attribute to enhanced 

physical crosslinking.  Mechanical properties were found to increase significantly for 

the silk hydrogels prepared under high pressure CO2, with a 2 and 3 fold increase in 

the compressive modulus of the 2 and 4 wt% silk hydrogels over the control gels, 

respectively. We adopted a semi-empirical theoretical model to elucidate the 

mechanism of silk protein gelation demonstrated here.  Mechanistically, the rate of 

silk protein gelation is believed to be a function of the kinetics of solution acidification 

from absorbed CO2 and potentially accelerated by high pressure effects.  The 

attractive features of the method described here include the acceleration of stable 

silk hydrogel formation, free of residual mineral acids or chemical crosslinkers, 

reducing processing complexity, and avoiding adverse biological responses, whilst 

providing direct manipulation of hydrogel physical properties for tailoring toward 

specific biomedical applications. 

 
3.1.    Introduction 
 

Hydrogels are networks of polymer chains that are stabilized either by chemical 

or physical crosslinking and dispersed throughout an immobilized water phase.  The 

stability of the polymer network allows for the penetration and uptake of water 

(swelling) without dissolving, thus lending itself to a variety of attractive and practical 

applications.  Hydrogels have become excellent material candidates for a wide 

selection of biomedical applications because of their high water content (allowing for 

efficient transport of biological molecules), improved biocompatibility and innate 

similarity to the physiochemical nature of natural tissues (Drury, 2003; Peppas, 

2006). 

Much of the performance of hydrogels depends on the selection of the 

appropriate material to address the necessary design prerequisites.   Synthetic 

polymers are widely chosen for hydrogel fabrication as their properties can be 

precisely controlled whilst being readably reproducible (Drury, 2003); by comparison, 

hydrogels prepared from naturally derived sources generally lack versatility in 

tunable chemistries and reproducibility when compared to their synthetic 
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counterparts.  However, despite these limitations, natural polymers generally present 

improved biocompatibility and cellular interactivity, thereby enhancing their utility in 

the fabrication of biomaterials (Lee, 2001).  

Among naturally derived proteins, silk fibroin, the primary structural protein of 

Bombyx mori (mulberry silkworm) silk fibers, is a natural polymer that has been 

studied extensively for biomedical applications due to its excellent mechanical 

properties, biocompatibility, and controllable degradation rate (Altman, 2003).  The 

high content of hydrophobic domains in silk proteins allows for the self-assembly and 

formation of strong intra- and intermolecular β-sheet structures, providing the basis 

for the exceptional strength observed in natural silk fibers (Bini, 2004).  The 

combination of the impressive mechanical performance in its natural form as well as 

excellent biocompatibility and controllable degradation highlights silk fibroin as an 

ideal biomaterial candidate meeting several therapeutic requirements.  Silk proteins 

have been fashioned into several material formats such as films (Servoli, 2005; 

Motta, 2002; Motta, 2011), sponges (Nazarov, 2004; Kim, 2005; Li, 2001), fibrous 

networks (nano and micrometric) (Unger, 2004; Bondar, 2008; Silva, 2008; Kim, 

2003; Jin, 2002), microspheres (Wang, 2007), and hydrogels (Ayub, 1993; Kim, 

2004; Wang, 2008; Motta, 2004; Silva, 2008; Fini, 2005; Zhang, 2011).  Remarkable 

progress has been reported toward the application of silk hydrogels for tissue 

engineering and drug delivery therapies.  Fini et al. demonstrated the healing of 

confined critical-sized cancellous defects in the femoral condyles of New Zealand 

rabbits using injectable silk hydrogels (Fini, 2005).  Silk hydrogels have also found 

value as drug delivery vehicles.  Zhang et al. combined sonicated silk hydrogels with 

vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-

2) to successfully palliate defects in the rabbit maxillary sinus floor (Zhang, 2011).  In 

light of these advances, the future and relevance of silk hydrogels for therapies 

catered to the biomedical community are believed to be great (Motta, 2012). 

The mechanism of silk fibroin gelation occurs primarily through the 

encouragement of macromolecular interactions from the hydrophobic side chains, 

initiating hydrogen bonding and resulting in physical crosslinking of the silk proteins 

(Ayub, 1993).  Aqueous solutions of silk fibroin with ample protein concentration (>25 

wt%) can form hydrogels directly through protein self-assembly, resulting in physical 



35 

crosslinking and a stabilized hydrogel network.  Conversely, at modest protein 

concentrations (<5 wt%) gelation is particularly time expensive, requiring days to 

reach complete gel formation.  The sol-gel transition of aqueous silk fibroin solutions 

can be improved through the manipulation of the physiochemical environment such 

as protein concentration, temperature, ionic strength, low pH, or, alternatively, by 

physical methods such as sonication, shear vortexing and electrogelation (Ayub, 

1993; Kim, 2004; Wang, 2008; Motta, 2004; Silva, 2008; Fini, 2005; Zhang, 2011; 

Motta, 2012; Matsumoto, 2006; Hanawa, 1995; Yucel, 2009; Servoli, 2008).  For 

instance, reports have demonstrated a significant reduction in gelation time, from 

days to  a matter of hours, at reduced solution pH near to the isoelectric point of silk 

fibroin (pH = 3.8-4.0) (Ayub, 1993; Matsumoto, 2006; Hanawa, 1995).  However, the 

addition of solution electrolytes at non-physiological concentrations, such as mineral 

acids or metal ions, may have unfavorable effects on cellular activity and function 

when placed in a living subject; therefore, ideally the fabrication of such materials 

should proceed without the necessity for chemical processes. 

High pressure carbon dioxide (CO2) has emerged in recent years as an 

environmentally benign alternative to conventional organic solvents commonly 

employed for fashioning various biomaterials, such as facilitating porosity in tissue 

scaffolds as well as processing materials with thermally sensitive therapeutic agents 

(proteins) (Kazarian, 2000; Howdle, 2001; Floren, 2011).  Recently, porous natural-

based hydrogels have been chemically crosslinked under high pressure CO2 without 

the necessity for surfactants or co-solvents (Partap, 2006; Annabi, 2009; Annabi, 

2010).  Hydrogels produced using high pressure CO2 generally exhibit greater 

porosity and improved crosslinking, resulting in improved gel stiffness as well as an 

enhanced capacity to support cell and tissue infiltration (Annabi, 2010).  

Nonetheless, although these improvements are significant, it is important to note that 

residual crosslinking agents not recovered after processing or released during 

material degradation may result in adverse effects to biological systems 

(Jayakrishnan, 1996).   

An alternative approach involves directly employing CO2 as a volatile 

electrolyte to invoke changes in the physicochemical environment, influencing the 

sol-gel transition of proteins and the formation of stable gel networks.  Carbon 
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dioxide has been used extensively as a volatile electrolyte for the controlled 

isoelectric precipitation of food proteins such as soy and casein (Hofland, 2000; 

Hofland, 1999).  Volatile acids are advantageous to conventional mineral acid 

processing, such as sulfuric and hydrochloric acids which are frequently employed 

by conventional precipitation processes, as their high volatility in atmospheric 

conditions allows for their efficient recovery (Thiering, 2001).  Additionally, unlike 

conventional mineral acids, solution pH can be maintained simply by tuning the 

electrolyte solubility within solution, which here is a function of pressure and 

temperature.  Appreciable pH drops of aqueous solutions have been reported at 

modest fractions of dissolved CO2 (Bortoluzzi, 2011).  Li et al. reported the pH of 

CO2-H2O systems approaching 4 at modest pressures (5 bar) (Li, 2007).  The slow, 

homogenous acidification of aqueous solutions by CO2 has generally been reported 

to improve the precipitation and recovery of proteins or molecules which exhibit 

sensitivity to extreme drops in pH (Thiering, 2001).  Thus, the ability to experience 

considerable drops in solution pH at relatively low fractions of absorbed CO2 permits 

its utility as a viable alternative to conventional mineral acids.  The potential of CO2 

to induce silk protein gelation without the need for extensive chemical processes, 

circumventing complex materials fabrication protocols and avoiding complications to 

biological systems, would presumably be of considerable value to the biomaterials 

community. 

Here, for the first time, we present a novel technique for the preparation of silk 

hydrogels directly from high pressure CO2 environments without the need for 

crosslinking agents or additional additives such as surfactants or co-solvents.  

Through this novel method, we demonstrate the utility of CO2 as a volatile 

electrolyte, capable of sufficiently influencing the sol-gel transition of silk proteins, 

resulting in the formation of stable hydrogels with properties suitable for biomedical 

applications.  The influence of CO2 pressure, silk protein concentration and 

processing time were investigated in regard to the gelation kinetics, physical and 

mechanical properties of the prepared gels.  Gelation time could be significantly 

improved depending on the processing conditions employed.  Moreover, the physical 

and mechanical properties of silk hydrogels prepared under high pressure CO2 

exhibited superior qualities in comparison to the control gels prepared by 
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conventional acid titration.  Mechanistically, reduction in solution pH by CO2 

absorption, governed by diffusion limitations, and potentially the high pressure 

environment, both influence the gelation of silk proteins as presented here.  The use 

of high pressure CO2 as a volatile electrolyte to precisely control and accelerate silk 

protein gelation, providing the direct tailoring of hydrogel physical properties, whilst 

being readily recoverable post processing, potentially offers tremendous benefit as a 

clean and efficient method toward silk hydrogel fabrication. 

 
 

3.2.    Materials & Methods 
 
3.2.1. Preparation of Silk Fibroin Solution 

Neat silk fibroin was obtained from cocoons of Bombyx mori silkworms and 

subsequently degummed to remove the exterior sericin proteins.  Degumming was 

achieved by washing the extracted silk fibroin in boiling solutions of Na2CO3 at 1.1 

g/L and 0.4 g/L both for 1.5 hours.  Fibroin solution was prepared by dissolving the 

obtained fibers in 9.3M LiBr (Fluka Chemicals, Buchs, Switzerland) aqueous solution 

(10% w/v) at 65 °C for 4 hours and filtered to eliminate impurities.  Filtered fibroin 

solution was then placed in Slide-A-Lyzer cassette (Pierce, 3500 Da MWCO) and 

dialyzed against distilled water for 3 days at room temperature to remove the 

residual salts.  Following dialysis, solution protein concentration was determined 

using a NanoDrop ND-1000 spectrophotometer (Delaware).  Solution volume was 

adjusted with distilled water to reach the desired concentration, namely 2 and 4 wt%. 

 
3.2.2 Fabrication of Silk Hydrogels 
 
3.2.2.1 Atmospheric Conditions 

Silk hydrogels prepared at atmosphere using a conventional acid titration 

method were employed as a control gel in this study.  Silk fibroin solution (2 and 4 

wt%) was titrated below the isoelectric point (pH 3.8-4.0)19 using a citric acid 

solution (0.1M) and kept at 37 °C until gelation occurred (approximately 8 hours).  

After gelation, silk hydrogels were placed in PBS solution and stored at 4 °C to be 

utilized for further analysis. 
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3.2.2.2 High Pressure Conditions 
A schematic of the high pressure CO2 processing protocol is detailed in Figure 

1.  The high pressure apparatus consisted of two configurations: a large volume 

steel reactor (450 ml) custom fabricated in house for the preparation of large 

specimens, and a smaller volume (200 ml) high pressure quartz view cell reactor 

(Separex, France) which allowed for direct in situ observation during processing.  

Vessel temperature was controlled via an internal water-jacketed heat exchanger fed 

from an external water bath (MPM Instruments, Italy).   The high pressure CO2 

atmosphere was achieved via a HPLC pump (Gilson, mod 307 drive module with a 

maximum flow rate of 25 ml/min) set to the desired operating pressure. The high 

pressure vessel consisted of both a temperature and pressure transducer which 

allowed for accurate monitoring of both variables over the experimental times.  Silk 

fibroin solution (5 ml) at different concentrations (2 & 4 wt%) were syringed into a 25 

ml Teflon beaker ( h: 35 mm, Ø 30mm)  and placed into the high pressure vessel.  

Once the system had been sealed and thermal equilibrium established (40 °C), CO2 

was introduced into the vessel under various pressures, namely 5, 30, 60, 100 and 

150 bar.  Once pressure and temperature had reached stability, specimens were 

isolated and maintained at the set conditions for specific processing times (0-8 

hours). Following processing, the system was depressurized slowly (approximately 

30 minutes) to avoid sample rupture due to the high pressure release and maintain 

hydrogel integrity.  Collected hydrogel specimens were immediately placed in 

distilled water and stored at 4 °C for future characterization. 

Two sample preparations, hydrated and dry specimens, for the silk hydrogels 

were utilized for the measurements in this study.  Hydrated samples were taken 

directly from the high pressure CO2 apparatus and characterized without further 

modification for the ESEM, swelling ratio and mechanical compression 

measurements.  To prepare dry hydrogel specimens, wet silk hydrogels were first 

quenching in liquid nitrogen for 5 minutes and subsequently lyophilized for 48 hours 

to remove water.  Dry hydrogel specimens were used to perform the structural and 

SEM analysis.   
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Figure III - II. Schematic diagram of silk gelation using high pressure CO2.  Phase 1: 

Pressurization, Phase 2: Acidification through carbonic acid formation, Phase 3: Protein 
aggregation and gelation. 

 

 
3.2.2.3 Determination of Gelation Kinetics  

To establish the gelation time of silk fibroin solution under different conditions of 

high pressure carbon dioxide, 5 ml volumes of silk fibroin 2 and 4 wt% were pipetted 

into a 25 ml Teflon beaker and exposed to high pressure carbon dioxide (5-150 bar) 

at constant temperature 40 °C.  Gelation time was determined upon examination of 

specimens removed from the high pressure environment at set pressures and 

processing times.  Gelation was confirmed by the formation of a homogenous, 

opaque gel lacking sufficient viscosity to flow from an inverted beaker. 

 
3.2.3 Gel Physical Properties 
 
3.2.3.1 Structural Analysis by Fourier Transform In frared 
Spectroscopy 

Silk hydrogel structural characteristics were investigated using Fourier 

Transform Infrared Spectroscopy (FTIR) Spectrum One (Perking Elmer, Waltham, 

MA, USA) with a zinc selenide crystal. To monitor the kinetics of silk structural 
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transition during gelation, 5 ml volumes of 2 wt% silk solutions , 0.6cm thickness, 

were submitted to high pressure CO2 (60 bar) for 0-2 hours and collected every 15 

minutes for structural characterization.   A second set of samples was used to 

access the structural features of the silk hydrogels after 8 hours processing time.  To 

preserve the secondary structure of the obtained silk hydrogels, specimens were 

immediately quenched in liquid nitrogen after treatment by high pressure CO2 and 

subsequently lyophilized for 48 hours to obtain dry samples for characterization.  We 

performed preliminary experiments comparing the spectra of lyophilized and 

hydrated gels obtained directly after processing in high pressure CO2 and found 

similar data produced by both conditions.  Structural data was acquired by loading 

lyophilized silk hydrogel specimens onto the IR apparatus and sample spectrums 

were collected as a mean of 32 acquisitions (between 4000 cm−1 and 400 cm−1) 

with a spectral resolution of 4 cm−1.   

 
3.2.3.2 Environmental Scanning Electron Microscopy 

To evaluate silk hydrogel surface morphology in the native state, wet 

specimens were examined using an environmental scanning electron microscope 

(ESEM, Philips XL 30 ESEM, Philips, Eindhoven, Netherlands) at a working distance 

10-15 µm and voltage of 15 kV.  Gel specimens were observed without any further 

treatment at a vacuum range (5-7 Torr) at constant temperature (5 °C). 

 
3.2.3.3. Scanning Electron Microscopy 

Dry imaging of hydrogel specimens was obtained using a scanning electron 

microscope (SEM) (Quanta 200 Scanning Electron Microscope – FE – operating 

mode: low vacuum, gaseous secondary electron GSE detector).  Wet silk hydrogels 

were first quenched in liquid nitrogen for 5 minutes and subsequently lyophilized for 

48 hours to prepare dry cross sections for imaging.  Prior to imaging, lyophilized 

cross sections were sputter coated (Biorad SC500, Hemel Hempstead, UK) with a 

thin layer of gold to avoid charging of the sample. 

 
3.2.3.4. Swelling Ratio 

The swelling behavior of hydrogel specimens was performed by submerging 

hydrated samples in PBS at 37 °C for  24 hours.  Once removed, the wet weight of 
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the swollen silk hydrogels was recorded (Wwet).  Subsequently, the samples were 

quenched in liquid nitrogen for 5 minutes followed by lyophilization for 48 hours to 

obtain the dry mass (Wdry).  The swelling ratio was then calculated from the 

following relation: 

 

Swelling Ratio �g PBS g protein⁄ � = 	
�Wwet − Wdry�

Wdry

 

 
3.2.3.5. Mechanical Properties in Compression 

The mechanical performance of hydrated specimens was performed in the 

unconfined state by a uniaxial compression mechanical tester (Bose ELF3400) with 

a 50 N load cell.  For testing specimens, cylindrical plugs (10 mm diameter, 6-7 mm 

height) were punched out of a large volume silk hydrogel (5 ml) and subsequently 

submersed in PBS at room temperature.  Samples were let to stand no more than 1 

hour prior to the mechanical testing.  The mechanical properties of the gel samples 

were tested in the wet state, in PBS, at room temperature. Strain (mm) and load (N) 

were recorded using Wintest software at a cross speed of 20 µm/s up to 60% strain 

level. To ensure proper sample placement and flatness, samples were cyclically 

preconditioned at 1% strain for 10 cycles.  From the collected data, a stress-strain 

plot was rendered and the compressive modulus extrapolated from the tangent slope 

at 10% strain of the stress-strain curve.   

 
3.2.4. Statistical analysis 

All tests were performed in triplicate. Statistical significance of collected data 

was determined at each condition using an independent Student’s t-test.  Data are 

presented as mean ± standard deviation (SD) and was considered statistically 

significant at 95% confidence (p < 0.05). 

 

3.3. Results and Discussion: 
 
3.3.1. Gross Examination of Prepared Silk Hydrogels  

The macrostructure of silk hydrogels prepared using high pressure CO2 and 

from the citric acid control are presented in Figure 2.  The hydrogels prepared under 

high pressure CO2 Figure 2(b) displayed superior homogeneity in comparison to the 
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soft, heterogeneous consistency of hydrogels prepared at atmospheric conditions 

using citric acid (Figure 2(a)).  Mechanical integrity as well as elastic properties was 

also apparent from the 4 wt% silk hydrogels prepared under high pressure (Figure 2 

(c,d)).  Gel consistency and rigidity between the two protein concentrations was 

noticeably different, with higher concentrations (4 wt%) exhibiting more resilient 

mechanical stiffness compared to lower concentrations (2 wt%) which were often too 

soft for simple handling.  The mechanical performance of silk hydrogels prepared 

under high pressure CO2 will be further evaluated in the mechanical properties 

section of this paper. 

 

 
Figure IIII - 2. Silk hydrogels at 2 wt% protein concentration prepared by conventional citric 

acid titration (a) and under high pressure CO2 (b).  Demonstration of the handling properties of 
a 4 wt% silk hydrogel prepared under high pressure CO2 (c,d). 

3.3.2. Gelation Kinetics 

3.3.2.1. In situ observation 

Silk fibroin aqueous solutions at 2 and 4 wt% protein concentrations were 

processed under high pressure carbon dioxide at several pressures (5-150 bar) and 

processing times (2-8 hours).  In situ gelation observations permitted from the high 

pressure quartz view cell reactor are presented in Figure 3.  The introduction of high 

pressure CO2 resulted in a transition of the transparent silk solution to a slightly 

turbid consistency at short processing times (1 min.), followed by a progressive 

increase in turbidity with time (60 min.) and finally reaching complete gelation with 

the formation of an opaque gel (90 min.).  The presence of a turbid solution prior to 

gelation is consistent with other reports for silk protein gelation and is likely due to 

the formation of small (<10 µm) protein precipitates rich in β-sheet crystals 

(Matsumoto, 2006).  Interestingly, turbidity was detectable upon the immediate 

contact with high pressure CO2 as evidenced in Figure 3.  As the diffusion of CO2 
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into the solution under stagnant conditions can be considered slow even at elevated 

pressures (Thiering, 2001), the evidence of a turbid solution immediately upon 

submission to high pressure CO2 indicates the potential role of the hydrostatic 

pressure environment,   the effects of which will be discussed further in the 

phenomenological section of this paper.   

 

 
Figure IV - 3. In situ observation of silk protein gelation induced under high pressure CO2.  

Conditions: 2 wt% silk fibroin solution, Pressure (CO2) = 60 bar. 

3.3.2.2. Gelation Screening  

Figure 4 reports the gelation time for silk solutions submitted to several CO2 

pressures.  To ascertain the role of solution concentration on gelation kinetics, two 

solution concentrations were prepared, 2 and 4 wt%, and evaluated under the 

various processing conditions.  When pressure was increased, gelation time was 

markedly reduced from approximately 6-8 hours for samples prepared at atmosphere 

(citric acid control) to less than 2 hours at pressures above 60 bar regardless of the 

starting concentration.  For each pressure step, gelation time reduced significantly 

up to 60 bar (p<0.05), after which the application of higher pressures was found to 

have no significant impact on gelation time.  Interestingly, silk gelation could not be 

achieved at low CO2 pressures (5 bar, data not shown), which is likely a 

consequence of the poor CO2 solubility in water at reduced pressures (Li, 2007).  

Short processing times (< 1.5 hours) resulted in incomplete gelation regardless of 

the operating pressure.  These findings suggest that a potential minimum reaction 

time under high pressure CO2 is required to achieve full gelation.  Protein 

concentration is generally reported to influence the rate of silk protein gelation (Ayub, 

1993; Kim, 2004) which is evident here from the spread of gelation times found at 

both concentrations from the citric acid control gels.  However, contrary to previous 

findings we report negligible differences in gelation time between the 2 and 4 wt% 
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concentrations when processed under high pressure CO2.  Such an observation 

indicates that other processing parameters, rather than protein concentration, 

impose a considerable influence on silk protein assembly.  The mechanistic effects 

of high pressure CO2 processing on silk protein assembly will be elucidated further in 

the phenomenological section of this paper.   

 

Figure III – 4. Gelation kinetics of silk fibroin solutions (2 and 4 wt%) submitted to various 
pressures CO2.  Constant sample volume of 5 ml and thickness of 0.6 cm were utilized.  Values 
presented as mean ± standard deviation.  Significance determined by performing a student t-
test on all samples compared to 60 bar processing condition (*p < 0.05).  Abbreviations: (a) 
citric acid control samples prepared at atmosphere. 

3.3.3. Monitoring of Silk Structural Changes by FTI R 
To investigate the structural transition of the silk proteins during the gelation 

process, sample silk solutions were collected periodically after processing under high 

pressure CO2 and studied by FTIR.  Preliminary results comparing spectra of 

hydrogels obtained from different protein concentrations produced similar data, thus 

the results presented here will be reserved to the 2 wt% silk samples.  Figure 5 

depicts the spectra obtained for 2 wt% silk solutions processed under high pressure 

CO2 (60 bar) from 0-8 hours and compared against the citric acid control.  Here the 

infrared region (1700-1500 cm-1) was investigated encompassing assignments for 

amide I (1700-1600 cm-1) and amide II (1600-1500 cm-1) peptide backbones both 

commonly utilized in the study of silk fibroin secondary structures (Ayub, 1993; 
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Hanawa, 1995; Hu, 2006).  Several structural resonances have been identified for 

the amide I and amide II spectral domain including β-sheet structures (Hu, 2006; Hu, 

2011) (1620-1630 cm-1, 1697-1700 cm-1, amide I; 1515 cm-1, amide II ), random 

coils (Hu, 2006, Um, 2001) (1640-1649 cm-1, amide I; 1540 cm-1, amide II), α-helix 

(Hu, 2006) (1652 cm-1, amide I), turns (Hu, 2006) (1663-1696 cm-1, amide I) and 

side chain residues (1605-1615 cm-1, amide I) (Hu, 2006).  The presence of β-sheet 

structures is believed to play a critical role in the formation of silk hydrogels 

(Matsumoto, 2006).  Initially, the unprocessed silk solution exhibited peaks centered 

at 1552 cm-1 (Amide II)  and 1640 cm-1 (Amide I) which constitute random coil 

structures, and 1654 cm-1 (Amide I) which indicates α-helix structures.  After 

submission to high pressure CO2, the formation of peaks centered at 1610-1630 cm-

1 and 1700 cm-1 (Amide I) appeared signifying the presence of β-sheet structures.  

Simultaneously, the 1510-1520 cm-1 (Amide II) peak increased indicating the dense 

packing of β-sheet structures (Hu, 2011).  Concomitant to the formation of β-sheet 

structures, a decrease in the α-helix (1654 cm-1) and random coil (1552 cm-1, 1640 

cm-1)  peak contributions was realized.  Based on the progressive augmentation of 

the β-sheet structure peaks, increasing processing time under high pressure CO2 

encouraged the formation of β-sheet structures with the preparation of stable silk 

hydrogels attained after 90 minutes processing.  Notably, the strong β-sheet 

absorbance peak centered at 1623 cm-1 attains the greatest intensity increase 

between 60 and 90 minutes processing time, with processing times longer than 2 

hours resulting in only trivial changes to the absorbance intensity.  These transitions 

are in agreement with the gelation data presented in the previous section, whereby 

stable silk hydrogels were only achievable after a minimum of 90 minutes processing 

under high pressure CO2 (60 bar).   The structural transitions observed here are 

consistent with previous studies on silk hydrogels produced in acidic environments 

(Ayub, 1993; Hanawa, 1995), which suggests that the transition to the stable β-sheet 

conformation under high pressure CO2 may proceed in a analogous fashion.  

Curiously, varying the processing pressure did not result in significant changes to the 

hydrogel secondary structure upon inspection after 8 hours processing time (data not 

shown), indicating that the effect of different pressures had no considerable outcome 

on the obtained protein secondary structure.  This is consistent with previous studies 
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on the high pressure CO2 (<200 bar) treatment of aqueous α-elastin solutions, 

whereby negligible changes to the protein secondary structure were reported both 

during and post high pressure processing (Dehghani, 2008).  Thus, the application of 

pressure, at least at the magnitude applied in this study, does not seem to invoke 

significant modifications to the silk structural conformations.  It is obvious that a more 

comprehensive study is necessary to establish these findings, in particular the 

probing of silk structural changes whilst submitted to high pressure environments.  A 

high pressure study employing in situ spectroscopy techniques as recently described 

(Dehghani, 2008) may better elucidate the events during the gelation of silk proteins 

under high pressure CO2.   

 

Figure III – 5. Dynamic β-sheet formation during silk gelation evaluated by FTIR for 2 wt% silk 
solutions submitted to high pressure CO2 (60 bar): (a) 0 min, (b) 30 min, (c) 60 min., (d) 75 
min., (e) 90 min., (f) 2 hrs., (g) 8hrs., (h) citric acid control.  Constant sample volume of 5 ml 
and thickness of 0.6 cm were utilized. 

3.3.4. Hydrogel Physical Characteristics 
 
3.3.4.1. Microstructure 
 

Hydrogel microstructures were evaluated both in the wet and dry state to 

ascertain the effects of the processing conditions on microstructure formation.  

Environmental scanning electron microscopy (ESEM) was employed to image wet 

samples directly following processing with no further modification (Figure 6).  ESEM 
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analysis demonstrated that silk hydrogels prepared under high pressure CO2 were 

distinctly more homogenous when compared to the citric acid controls.  By 

comparison, hydrogels prepared at atmospheric conditions with citric acid were 

considerably more heterogeneous, seemingly comprised predominantly of 

aggregate-like structures.   

 

Figure III – 6. Environmental Scanning Electron Microscopy (ESEM) images of wet silk 
hydrogels prepared by citric acid titration (a) 2 wt% and (b) 4 wt% and under high pressure CO2 
(c) 2 wt% and (d) 4 wt%. 

Dry imaging was also performed using conventional scanning electron 

microscopy (SEM) techniques to better investigate the microstructures of the 

prepared hydrogels at various pressures (Figure 7).  Comparison of the micrographs 

of silk hydrogels prepared by high pressure CO2 or by citric acid at atmosphere 

indicated the formation of homogenous pores and reduced pore size for the 

specimens prepared with high pressure CO2.   Utilizing image analysis software 

(ImageJ) the equivalent pore diameter of the pores was obtained.  Specimens 

prepared at higher protein concentration exhibited an increase in the average pore 

size from 2.22 ± 0.5 µm to 5.62 ± 1.4 µm for 2 and 4 wt% respectively.  By 

comparison, average pore sizes for silk hydrogels prepared at atmospheric 
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conditions with citric acid could not be measured as the specimens lacked a 

sufficient population of pores for tabulation. The disordered network observed for the 

hydrogels prepared with citric acid indicates a lack of homogenous gelation when 

compared to the more homogenous microstructure displayed by the samples 

prepared under high pressure CO2.   

 

Figure III – 7. Scanning Electron Microscopy (SEM) images of lyophilized silk hydrogels 
prepared by citric acid titration (a) 2 wt% and (b) 4 wt% and under high pressure CO2 (c) 2 wt% 
and (d) 4 wt%.  Insets represent 4000X magnification with 5 µm scale bars respectively. 

Pore microstructures with high interconnectivity and reduced pore sizes have 

been reported for several natural polymer hydrogels fabricated under high pressure 

CO2 such as chitosan (Ji, 2011), dextran (Palocci, 2007), alginate (Partap, 2006) and 

α-elastin (Annabi, 2009).  The mechanism of pore formation under high pressure 

CO2 compared to atmospheric conditions is believed to proceed by a phase 

inversion process in which CO2, acting as an anti-solvent, partitions the solution into 

a polymer-rich and polymer-lean phase (Annabi, 2009).  The subsequent removal of 

CO2 from the aqueous phase (polymer-lean phase) during the depressurization 

process results in the formation of a porous construct (polymer-rich phase) (Annabi, 

2010).  Carbon dioxide has a weak affinity for water, therefore the rate of diffusion 
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between the nonsolvent (CO2) and solvent (water) is poor, inhibiting pore nucleation 

and resulting in the tendency for reduced pore size. 

Recently authors have reported on the capacity to modify hydrogel 

microstructures prepared under high pressure CO2 by manipulating the 

depressurization rate (Annabi, 2010).  Annabi et al. employed both slow and fast 

venting rates (1 bar/min and 60 bar/min respectively) in the preparation of 

recombinant tropoelastin/α-elastin hydrogels under high pressure CO2 and reported 

a significant decrease in pore size attained under the fast venting rate when 

compared to the slower rate (Annabi, 2010).  We performed preliminary experiments 

by adjusting the venting rate of the silk hydrogels prepared here ranging from 1 

bar/min. to 10 bar/min. and found no significant modifications to the obtained 

hydrogel microstructure.  It should be noted that in the present work we chose to 

avoid venting rates faster than 10 bar/min. as this often resulted significant shearing 

effects from the rapid escape of CO2 sufficient to rupture the silk hydrogels.  

Nevertheless, despite our preliminary findings, we anticipate that further 

manipulations to the degassing stage during silk gelation may result in the fabrication 

hydrogels with a diversity of properties.  The optimization of the CO2 venting rate and 

its relation to silk hydrogel microstructure and properties will be the topic of a future 

paper.    

 

3.3.4.2. Hydrogel Swelling Behavior  
The swelling properties of silk hydrogels prepared at various protein concentrations, 

processing media and processing times are presented in Figure 8.  The processing 

media had a profound effect on the swelling nature of the prepared gels.  Silk 

hydrogels prepared under 60 bar high pressure CO2 at 2 and 4 wt% absorbed 32.4 ± 

1.4 g and 20.0 ± 1.9 g PBS/g protein respectively after 8 hours processing time.  By 

comparison, hydrogels prepared under atmospheric conditions with citric acid 

absorbed 42.6 ± 0.5 g and 25.36 ± 1.8 g PBS/ g protein at 2 and 4 wt% respectively.   

Adjustment of the processing pressure did not result in a significant change on 

hydrogel swelling capacity (data not shown).  The reduced swelling observed for the 

high pressure CO2 specimens may be correlated to a higher degree of crosslinking 

(Anseth, 1996).  Interestingly, no significant variation in hydrogel swelling was found 
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for specimens processed at different processing times under high pressure CO2, 

despite the 2 wt% specimens prepared at 2 hours.  Presumably, this is a result of the 

gel locking in its structure upon initial gelation, which is observed at times 

considerably less than 8 hours under high pressure CO2.  Hydrogels prepared at 

greater protein concentrations exhibited a two-fold decrease in absorbed PBS than 

at lower protein concentration, regardless of the processing environment.  Generally, 

hydrogels with greater protein concentration have more polymer chains available to 

participate in crosslinking; thus, the resultant gel network is stiffer, thereby effectively 

reducing the capacity to absorb fluid. 

 
Figure III – 8. Swelling ratio of silk hydrogels produced by citric acid titration and under high 
pressure CO2 environments (a) and at various processing times using high pressure CO2 (60 

bar)(b).  Student’s t-test performed on the groups with a significance *p < 0.05 and **p < 0.005 
reported. 
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Swelling properties reported here are generally higher than those reported for 

other natural polymer hydrogels prepared under high pressure CO2 (see Table 1).  

The swelling ratio of 2 wt% silk hydrogels prepared here (32.4 ± 1.4 g PBS/ g 

protein) was significantly higher than those reported for 1.5 wt% chitosan hydrogels 

crosslinked with genipin or gluteraldehyde under high pressure CO2 (17.2 and 25.7 g 

PBS/g protein for genipin and gluteraldehyde crosslinkers respectively) (Ji, 2011).  

The decreased swelling properties of chemically crosslinked natural polymers 

compared to the silk hydrogel prepared here is potentially a result of different 

crosslinking mechanisms.  It is important to note that an obvious deviation in the 

absorbed fluid could be a result of the individual and unique chemistries of the 

different natural polymers.  Nonetheless, the comparable swelling properties of silk 

hydrogels prepared here to other natural-based hydrogel systems demonstrates the 

capacity to retain several of the attractive features of high pressure CO2 processing 

without the necessity for crosslinking agents. 

 

3.3.5. Properties in Compression 
To ascertain the mechanical performance of silk hydrogels prepared under high 

pressure CO2, mechanical compression experiments were performed and the 

resultant elastic moduli computed and presented in Figure 9.  The compressive 

modulus increased for hydrogels prepared under high pressure CO2 when compared 

to the specimens produced at atmosphere using citric acid Figure 9(a).  The 

compressive moduli of silk hydrogels produced at 60 bar high pressure CO2 for 8 

hours processing time were 18.91 ± 2.34 and 63.98 ± 2.97 kPa for 2 and 4 wt% 

respectively.  By comparison, the moduli computed for the 2 and 4 wt% silk 

hydrogels prepared at atmospheric conditions were 9.40 ± 1.89 and 15.96 ± 0.89 

kPa respectively.  The compressive moduli were higher for silk hydrogels with 

greater protein concentration both prepared under high pressure CO2 and 

atmospheric conditions.  This is to be expected as the greater protein concentration 

will result in higher degree of crosslinking and improved mechanical properties 

(Anseth, 1996).  Interestingly, the compressive properties of silk hydrogels prepared 

under different processing pressures were not found to have a significant impact on 

hydrogel mechanical properties (data not shown), suggesting that the improved 
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mechanical properties reported here may be a result of other mechanisms.  Silk 

hydrogel compressive properties were also monitored over different processing times 

as shown in Figure 9(b).  As processing time increased from 2 to 8 hours, the 

compressive moduli increased from 14.12 ± 2.88 kPa to 18.91 ± 2.34 kPa and 39.70 

± 3.24 kPa to 63.98 ± 2.97 kPa for 2 and 4 wt% silk hydrogels respectively.  Thus, 

as a consequence of longer processing times, the silk hydrogels produced under 

high pressure CO2 became stiffer.   

 
Figure III – 9. Compressive moduli of silk hydrogels prepared by citric acid titration and under 
high pressure CO2 environments (a) and at several processing times under high pressure CO2 

(60 bar) (b).  Student’s t-test performed on all specimens compared to the citric acid controls (a) 
and (b) at 2 hours processing time.  Significance was reported for *p < 0.05 and **p < 0.005 

respectively. 
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Generally, hydrogel mechanical performance is intimately linked to the swelling 

properties of the said material, namely that the swelling ratio negatively correlates to 

gel stiffness (Anseth, 1996).  Remarkably, in comparison with the swelling data 

presented in the previous section, as processing time increases mechanical 

performance of the hydrogel increases at no significant expense to the swelling 

properties.   A potential explanation for this result is the ability for residual protein 

chains, not already associated with the gel network, to coat and crosslink with the 

preformed gel network after prolonged processing times.  Verheul et al. postulated 

that only a fraction of available proteins are initially involved in forming the primary 

structural network of heat-induced whey protein isolate gels (Verheul, 1998).  After 

which, prolonged processing times resulted in the coating of these residual proteins 

onto available gel surfaces. The condensation and decoration the porous gel with 

residual free proteins reinforces the gel network at modest expense to the overall gel 

spatial structure.  We propose that a similar phenomenon to that reported by Verheul 

et al. is likely to have occurred here as well for silk hydrogels processed under high 

pressure CO2.  At extended processing times under high pressure CO2, residual free 

silk proteins will associate and condense onto the free surfaces within the gel 

network, improving mechanical properties while maintaining the fluid content.  

Presumably, this effect would be more pronounced for hydrogels prepared under 

high pressure CO2, as the local solution pH is believed to be homogenous at all 

points of space (Thiering, 2001).  Utilizing a mineral acid would not achieve this as 

the presence of local proton-rich domains would in fact trigger protein nucleation 

points, and once gelation has completed the diffusion of free protons amongst the 

formed aggregates would be significantly hindered (Hofland, 2003).  The lack of 

available free protons to participate in the gelation of the residual proteins would thus 

inhibit gelation at later stages of processing.   

Silk proteins have been studied extensively for biomaterial applications in part 

due to the exceptional mechanical properties found in natural silk fibers.  The 

physical properties of several natural polymer hydrogels prepared under high 

pressure CO2 are presented in Table 1. 
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Table III - 1 .  Comparative physical properties of several naturally derived 

hydrogels fabricated under high pressure CO2  

Natural Polymer Crosslinking 

agent/Surfactant 

Swelling Ratio 

(g PBS/ g protein) 

E (kPa) Ref 

Silk Fibroin - 19.5-34.8 14.1-

64.0 

This 

study 

Chitosan GP 17.2 73.9 (Ji, 2011) 

 GA 25.7 41.6 (Ji, 2011) 

Alginate CaCO3 / PFPE-

NH4 

- 33.8 (Partap, 

2006) 

Tropoelastin/α-elastin GA 4.6-7.0 4.9-11.8 (Annabi, 

2010) 

 HDMI/DMSO 6.81 8.62 (Annabi, 

2009) 

Abbreviations:  E: Compressive Modulus (kPa), GP: Genipin, GA: Glutaraldehyde, PFPE-NH4: 

Ammonium perfluoropolyether, HDMI: Hexamethylene diisocyanate, DMSO: Dimethyl sulfoxide. 

 

When compared to other natural polymer hydrogels produced under higher 

pressure CO2, such as crosslinked tropoelastin/α-elastin, chitosan, or alginate gels, 

silk fibroin hydrogels exhibited either comparable or improved mechanical 

performance.  Concomitantly, silk hydrogels produced under high pressure CO2 also 

displayed high levels of fluid retention coupled with improved mechanical properties.  

Compared to other hydrogels processed under high pressure CO2, the silk hydrogels 

prepared here performed formidably without the need for chemical crosslinking 

agents.  Thus, the method described here to produce silk hydrogels may offer a clean 

and time efficient alternative to several other naturally derived hydrogel systems 

produced under high pressure CO2, which otherwise require chemical processes. 

 

3.3.6. Phenomenological Description 
In this study, the potential of utilizing high pressure carbon dioxide as a volatile 

acid for the isoelectric gelation of silk fibroin was investigated.  The considerably more 

rapid gelation of silk proteins under high pressure CO2 warranted further inquiry into 
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the specific stimulus of the processing environment such as solution acidification 

through carbonic acid formation and submission to high hydrostatic pressure. 

 

3.3.6.1. Acidification Kinetics using Carbon Dioxid e 
The acidification of an aqueous solution with CO2 proceeds through two 

equilibrium steps: an interfacial mass transfer step of gaseous CO2 into the liquid (eq. 

1) and a subsequent aqueous phase reaction to form carbonic acid (eq 2) (Thiering, 

2001).   

CO	�g) ↔CO2�aq)     		
�                                          (1) 

CO	 + H2O ↔ H2CO3    		
                                           (2)  

H2CO3 ↔ HCO3
� + H

�						
	                                           (3) 

HCO3
�

↔ CO3
�	 + H

�							
�                                           (4) 

This acidic process is an outcome of carbon dioxide reacting with water to form 

carbonic acid and other constituent ions in solution (eq. 3 and 4) (see Figure 1 for 

illustration).  Henry’s Law dictates that the driving force for dissolution and reaction of 

carbon dioxide in water is enhanced at higher pressures; therefore, pressure will 

have a direct impact on the rate of acidification.  

The kinetics of CO2 dissolution, reaction to form carbonic acid and subsequent 

diffusion of free protons (H+) is generally perceived to be rapid (Salt, 1982); 

therefore, the acidification of an aqueous solution by CO2 is rate-limited by the 

interfacial transport across the vapor/liquid-phase boundary (eq. 1).  It is generally 

supported that through the steady addition of CO2, combined with the rapid rate of 

proton diffusion throughout the bulk fluid, that the solution experiences a controlled, 

homogenous reduction in pH with all proteins exhibiting identical net electrostatic 

charge at all points of time (Salt, 1982).  This homogenous acidification cannot be 

achieved with conventional mineral acids without inducing localized regions of high 

ion concentration, resulting in pH overshoots which can potentially induce damage to 

the protein structure (Thiering, 2001).   

Herein we adopt a semi-empirical mathematical approach to elucidate the 

events which lead to aqueous solution acidification in contact with CO2.  The 

approach employed here is to rely on the calculation of absorbed CO2 within the bulk 

solution over time, coupled with the dissociation reaction kinetics of the formation of 
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carbonic acid to yield a prediction of free protons in solution.  Once knowledge of the 

free protons in the bulk solution is obtained the pH may be estimated.  We introduce 

this model with the following assumptions: 

1. pH reduction is presumed to occur homogenously at all points of time 

within the bulk protein solution. 

2. Mass transport of CO2 into the bulk solution may be modeled by 

conventional Fickian diffusion constraints. 

3. Pressure effects on the equilibrium constants may be considered 

negligible. 

4. Solubility and activity of CO2 in silk fibroin solution can be approximated 

by CO2-H20 binary data obtained from the literature. 

The prediction of the CO2 mass fraction in solution over a specific diffusion 

length and time begins with the diffusion equation. The mass transport of CO2 into a 

non-agitated liquid phase may be defined by a mass balance in the unsteady-state 

condition expressed by Fick’s second law of diffusion (Walas, 1991): 

��
��
= � ���

���
                                        (5) 

where D is the gas phase diffusivity of CO2 and C represents the concentration 

of CO2 in the liquid phase at a given distance (x) and time (t).  In our system, there is 

only one accessible face for diffusion thus the boundary conditions may be 

constrained to a semi-infinite region: 

���, 0� = 0,				intially 

��0, �� = ��,			at the surface 

��∞, �� = 0,			at infinity	

where Cs represents the soluble concentration limit of CO2 in water at the 

surface, which is both a function of pressure and temperature. The solution to 

equation 5 may be obtained using a combination of variables approach and can be 

written as such: 

���,��

��
= 1 − erf( � √4��⁄ )                                    (6) 
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where erf represents the error function of x⁄√4Dt.   Duan et al. provided 

tabulated solubility data of CO2-H20 binary systems at several temperatures and 

pressures (Duan, 2006).  To obtain CO2 solubility data for this model, we chose an 

interpolation routine based on the CO2 solubility data reported by Duan et al. (see 

Table 2). Using the interpolated solubility limits of CO2 in water at specific pressures, 

we can obtain a discreet solution to equation 6 at various diffusion lengths.  Figure 

10 plots solutions for dimensionless CO2 concentration at several diffusion lengths 

over time at constant pressure.  Clearly evident is the prohibitively long time scale 

required for CO2 diffusion to reach even modest distances under stagnant 

conditions.  With the CO2 concentration profile defined, calculation of the bulk 

absorbed CO2 fraction in solution can be obtained, and an expression for the pH as a 

function of time can be formulated. 

 
Figure V – 10.  Dimensionless CO2 concentration (C/Cs) over time at various diffusion lengths 
(0.2-1.0 cm). 

 

Several modeling approaches have been proposed to predict the pH of 

complex aqueous solutions in contact with carbon dioxide (Bortoluzzi, 2011; Li, 

2007; Meyssami, 1992).  Generally, the pH of a complex solution of discreet ions (i) 

can be defined by an electroneutrality condition: 

∑ #$$ %$ = 0              (7) 
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where v is the valence and m the molality associated with the individual ions.  In 

the case of an aqueous solution in contact with high pressure CO2, eq 7 can be 

written as: 

�&' − �(&) − �&�(*) − 2��(*)� = 0                 (8) 

where C is the molal concentration of component i in mol kg-1.  Regarding 

complex aqueous solutions, the need to account for the buffer capacity of the 

additional constituents (proteins) becomes essential.  Hofland et al. proposed a 

method to account for the buffer capacity of proteins in solution by calculating the 

total proton uptake from the proteins in solution obtained from an experimental 

titration curve (Hofland, 1999).  By subtracting the number of protons in free solution 

from the number of protons added during titration the authors were able to calculate 

the total number of protons buffered by the protein.  To avoid elaborate modeling, we 

chose to adopt a method similar to that proposed by Hofland et al.(Hofland, 2003) for 

the prediction of the pH of silk protein solutions in contact which CO2.  Accounting for 

the buffer capacity of silk proteins, the electroneutrality condition may be modified:   

�&' − �(&) − �&�(*) + Silk,-�./0�&'� = 0             (9)                                  

where Silk,-�./0�&'�(mol H+/g silk protein) is the amount of protons absorbed 

per a mass of silk protein which can be obtained by a titration curve (Coleman, 1947) 

and is expressed as such: 

Silk,-�./0�&'� = 0.002534�	.56	       (10)   

The concentration of protons in solution (�&') may be correlated to solution pH 

by the following expression: 

�&' = 10�-& 7⁄                         (11) 
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where γ is the activity coefficient of the monovalent ions in solution.  Adopting the 

description by Hofland et al. (Hofland, 2003) equation 9 may be represented as 

follows: 

8)9:

;
− <=

8)9:;
��(� + Silk,-�./0�&'� = 0            (12)                        

where Ka is the overall dissociation constant of CO2 and ��(� is the solubility of 

carbon dioxide in solution at time t.  The relevant variables employed from literature 

to solve equations 6 and 12 are presented in Table 2. 

 

Table III - 2.  Summary of variables Employed for pH Model Prediction of Complex 
Solutions 

Parameter Value Ref 

D (Diffusivity CO2(g)) (m2/s) 1.91×10-9 (Weast, 2010) 

Ka (Overall dissociation constant of CO2) 5.02x10-7 (Edwards, 1978) 

γ (Activity Coefficient H+) (kg/mol) 0.830  (Meyssami, 1992) 

CO2 Solubility in Water (mol/ kg H2O)*  (Duan, 2006) 

5 bar 0.12 - 

30 bar 0.57 - 

60 bar 0.98 - 

100 bar 1.24 - 

150 bar 1.32 - 

*Data obtained by interpolation  

 

The solution to equation 12 provides a theoretical pH time profile for a complex 

aqueous solution with a known fraction of absorbed CO2, which here is a function of 

time, diffusion length and the equilibrium CO2 solubility (pressure).  To demonstrate 

the buffering capacity of the silk proteins, we prepared a data plot of the theoretical 

pH time profile at different protein concentrations in comparison to pure water (Figure 

11(a)).  As can be seen from the model, solution pH reduces exponentially in the 
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early time frame (<60 minutes) for the experiments followed by asymptotic behavior 

at longer time points (>120 minutes).  The kinetic behavior exhibited here for solution 

acidification using CO2 is in agreement with other model predictions and empirical 

data available from the literature (Bortoluzzi, 2011; Li, 2007; Meyssami, 1992). As 

demonstrated by the theoretical pH calculation, protein content significantly affects 

the magnitude of the pH reduction achievable.  At silk protein concentrations 2 and 4 

wt%, the equilibrium pH increased to 3.72 and 3.92 under 60 bar CO2 respectively.  

By comparison, the equilibrium pH prediction of pure water under 60 bar CO2 was 

3.21.  It can therefore be projected that even at modest protein concentrations 

significant perturbations in solution pH may be anticipated.  From a processing 

perspective, if such a phenomenon holds true, then it is entirely plausible that a 

critical upper limit for protein concentration may exist for processing of silk fibroin 

under high pressure CO2.  This is an inherent consequence of the weak acidic 

properties of CO2 in water. 
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Figure III – 11.  Theoretical pH time profiles estimated from eq. 12.  a) equilibrium pH as a 
function of protein concentration at 60 bar CO2.  Estimated pH time profiles for silk solutions 2 
and 4 wt% (b,c) submitted to various pressures CO2. 
 

We further investigated the influence of processing parameters (pressure) on 

the rate of solution acidification with potential ramifications on the reported gelation 

times.  The predicted pH time profiles at several pressures of CO2 over time for the 

different protein concentrations are presented in Figure 11(b,c).  Under stagnant 

conditions, it is clear that considerable lengths of time are required to reduce the 

solution pH to near the isoelectric point of silk fibroin (pH: 3.8-4.0)19  regardless of 

solution starting concentration.  Solution acidification is more strongly influenced at 

lower pressures (5-60 bar) compared to elevated pressures where only modest 

adjustments to final pH are reported (Chen, 2007).  Characteristic to all pressures 
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utilized, solution pH experienced rapid reductions early in the processing time 

followed by an asymptotic behavior at extended times.  

To investigate the processing times associated with sufficient pH for silk 

gelation, we calculated the estimated processing time to achieve a theoretical 

solution pH of 4 for 2 and 4 wt% silk solutions (Figure 12).  Evident from the 

theoretical pH time profiles, for the 2 wt% silk solution a pH of 4 is attained at 

approximately 120 and 35 minutes for 30 and 60 bar respectively and 20 minutes for 

both 100 and 150 bar pressure.  By comparison, the 4 wt% protein solutions 

exhibited considerably longer times to reach a pH of 4 with 180, 90 and 80 minutes 

for 60, 100 and 150  bar respectively; at 30 bar it was only capable of achieving an 

equilibrium pH of 4.11.  The kinetic data reported for the 2 wt% silk hydrogels 

prepared under high pressure CO2 (Figure 4) generally agree with the model 

prediction, with the onset of suitable pH reduction followed by a period of time (lag 

phase) prior to final gelation.  Previous reports have postulated a three phase 

nucleation dependent mechanism for silk protein gelation.  Using time-resolved FTIR 

studies on ethanol stabilized silk fibroin films, Chen et al. proposed a three phase 

conformational mechanism of silk protein assembly: a lag phase characterized by 

the propagation of β-sheet formation and nucleation, followed by a rapid growth of β-

sheet crystals and finally a slowing phase involving a perfection of the β-sheet 

structure (Chen, 2007).  The presence of a lag period prior to rapid gelation is also 

observed here from the time intervals recorded for gelation and the pH model 

predictions for obtaining sufficient pH.  Comparing the model prediction of pH 

reduction with the measured kinetic data we see that as pressure increases the lag 

phase between the onset of the acidic environment with reported gelation is reduced.  

From this viewpoint, it seems appropriate to propose that variations in the lag period 

could be influenced by other external factors such as the hydrostatic pressures 

submitted during processing, as discussed in the following section.   

Interestingly, the theoretical pH time profiles estimated for the 4 wt% silk fibroin 

solutions are considerably longer than the actual kinetic data reported here (Figure 

4).  One reason for this discontinuity is the failure of the model to account for protein 

concentration effects on gelation.  Generally, gelation time is positively correlated to 

protein concentration.  Hanawa et al. observed gelation of silk solutions at various 
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concentrations and reported an approximately inverse relationship to concentration 

Geltime scales 1/C (curve fit from tabulated data) (Hanawa, 19995), i.e. gelation time 

is effectively halved by doubling the protein concentration.  This behavior agrees 

reasonably well with the silk hydrogels prepared under atmospheric conditions with 

citric acid where 4 wt% hydrogels were produced in less than 6 hours, in comparison 

to the 2 wt% hydrogels which required a minimum of 8 hours.  Thus, while the model 

presented here may predict a foreseeable working limit for solution concentrations to 

reach sufficiently reduced pH, it will not be strictly accurate without considering the 

positive correlation between protein concentration and gelation kinetics. 

 

Figure III – 12.  Estimated processing times for 2 and 4 wt% silk solutions at various 
processing pressures CO2 to achieve a solution pH of 4.  Abbreviations: (§) pH of 4.11. 

The protracted theoretical pH time profile illustrates the critical role of the mass 

transport of CO2 into the silk solution to induce gelation.  Clearly the model 

demonstrates that processing times less than 1 hour may result in an inadequate pH 

reduction to achieve silk gelation, which is in agreement with the kinetic data 

presented earlier.  What is more, as the sample thickness plays a vital role in the 

predicted CO2 concentration profiles (Figure 10), processing of samples with 

decreased thickness would conceivably reduce the gelation time.  A systematic 

study adjusting sample thickness in the presence of high pressure CO2 could confirm 

the precision of the model presented here.  
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3.3.6.2. Influence of High Pressure Environment 
Conformational transitions of proteins and the process of assembly 

(aggregation) involve a multitude of molecular processes encompassing both 

protein-solvent and protein-protein interactions.  Similar to temperature, pressure is a 

significant thermodynamic parameter which can have profound implications on these 

protein events.  Pressure is believed to induce changes in the partial molar volume 

of proteins, protein folding mechanics and conformational transitions (Mozhaev, 

1996).  These modifications can be either elastic (reversible) or plastic (irreversible) 

depending on the magnitude of pressure and the protein under study (Gross, 1994).  

The dynamics of protein interactions under pressure can be summarized by Le 

Chatlier’s principal, which dictates that the application of pressure shifts equilibrium 

of the physical system to the state that occupies the lesser volume (Mozhaev, 1996; 

Gross, 1994; Mozhaev, 1994).  Accordingly, under high pressure, those systems 

experiencing transitions which involve a reduction in total volume will be favored as 

compared to those whose total volume increases.  Under high pressures, minimal 

modifications are observed for protein compressibility and internal energy, whereas 

considerable structural deviations of water at the surface of proteins have been 

reported (Kitchen, 1992).  Hydrophobic hydration of proteins results in the formation 

of a densely packed water shell encompassing the protein (Edsall, 1983).  The 

unique structuring and disassembly of water molecules relative to hydrophobic 

hydration permits proteins to exist in an extended/unfolded state under pressure and 

it’s all in accordance with reduced volume states (Urry, 1993).     

Given the breadth of protein events influenced by high pressure, the 

development of a strict mechanistic model for silk protein aggregation under 

pressure is fraught with ambiguities. On this basis, it is likely that several physical 

factors associated with high pressure processing, such as changes in the hydration 

shell as well as the propensity for reduced volume states, could influence the rate of 

protein aggregation.  The interaction of water with silk proteins has been previously 

been reported to play a critical role in the in the natural assembly process of silk 

proteins (Bini, 2004).  Accordingly, it follows that appreciable perturbations of the 

hydration shell of the silk proteins under pressure could result in increased 

hydrophobic interactions and subsequent β-sheet formation.  Recently, the assembly 
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of β-sheet rich silk fibers has been observed through the application of high 

hydrostatic pressure (1-7 kbar) to aqueous silk fibroin solutions (Gebhardt, 2008).  It 

was suggested that under pressure silk proteins unfold due to the penetration of 

water into the interior of the protein chain, enhancing protein solvation and resulting 

in a structural conformation with increased propensity for aggregation.  While these 

findings provide insight into high pressure effects on silk protein assembly, 

considering the magnitude of pressures utilized in this study, approximately two 

orders of magnitude less, it is unclear if such protein unfolding mechanisms still 

prevail here.  In an attempt to better elucidate the role of high pressure processing 

on silk protein assembly, we performed a series of preliminary experiments 

submitting aqueous silk solutions of reduced pH (3.5) to high pressure nitrous oxide 

(N2O) and recorded the respective gelation times.  N20 has previously been revealed 

to have no potential to influence the pH of aqueous media41, therefore, its 

application here allows for the investigation of pressure effects isolated from the 

acidic phenomenon previously discussed with CO2.   Our preliminary findings have 

revealed reduced gelation times for the silk solutions processed in the high pressure 

N2O environment in a fashion similar to that reported here using high pressure CO2 

(unpublished data).  Thus, while no direct mechanistic model for silk protein 

association under high pressure can be arrived at from the current data, it would 

seem that our preliminary experiments provide some credibility to the suggestion that 

high pressure plays some role in the reduced gelation times as reported here.  

Despite these findings, an exact working model for the acceleration of silk protein 

gelation under high pressure is still inundated by a lack of tangible observations.  

Pressure-assisted silk protein association and gelation should be studied further in 

future experiments to elucidate these complex mechanisms.   

 

3.4. Conclusion: 
This work demonstrates the feasibility to produce silk fibroin hydrogels using high 

pressure CO2 as a volatile acid without the necessity of crosslinking agents or 

chemical additives, resulting in a remarkably clean process.  It also illustrates several 

appealing features of using high pressure CO2 to fabricate silk hydrogels.  Firstly, 

gelation time was expedited to less than 2 hours depending on the processing 
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conditions and regardless of protein concentration.  Structural analysis of the 

aforementioned silk hydrogels confirmed the presence and growth of extensive β-

sheet structures coinciding with the formation of stable hydrogels.  Secondly, silk 

hydrogel microstructure and porosity was improved, thereby offering several benefits 

for a variety of biomaterial applications.  Lastly, the mechanical properties of silk 

hydrogels prepared under high pressure were enhanced considerably compared to 

the control citric acid gels.  Further, the properties of the silk hydrogels prepared 

here performed formidably against other naturally derived hydrogels fabricated using 

high pressure CO2, whilst avoiding the necessity for chemical processing.  

Mechanistically, the absorbed CO2 reduced the solution pH in a slow fashion, 

governed predominantly by diffusion limitations, with pressure effects potentially 

contributing to the accelerated gelation.  In final, the findings reported here suggest 

that silk hydrogels produced under high pressure CO2 may offer an appealing 

processing alternative to conventional silk materials fabrication, providing a simple 

and pure production method, and avoiding potential biological complications 

associated with chemical additives. 
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Chapter IV 

Human MSCs Cultured on Silk Hydrogels with 
Variable Stiffness and Growth Factor 

Differentiate into Mature SMC Phenotype  
 

Part of this chapter has been submitted to:  Acta Biomaterialia – August 2015 
 
Michael Floren, Walter Bonani, Anirudh Dharmarajan, Anotnella Motta, Claudio Migliaresi; Wei 

Tan.  “Human MSCs Cultured on Silk Hydrogels with Variable Stiffness and Growth 

Factor Differentiate into Mature SMC Phenotype”. Submitted Acta Biomaterialia – August 
2015 

 

Abstract: Cell-matrix  and  cell-biomolecule  interactions  play  critical  roles  in  a 

diversity  of  biological  events including  cell  adhesion,  growth,  differentiation,  and  

apoptosis.  Evidence suggests that a concise crosstalk of these environmental 

factors may be required to direct stem cell differentiation toward matured cell type 

and function.  However, the culmination of these complex interactions to direct stem 

cells into highly specific phenotypes in vitro is still widely unknown, particularly in the 

context of implantable biomaterials.  In this study, we utilized tunable hydrogels 

based on a simple high pressure CO2 method and silk fibroin (SF) the structural 

protein of Bombyx mori silk fibers.   Modification of SF protein starting water solution 

concentration results in hydrogels of variable stiffness whilst retaining key structural 

parameters such as matrix pore size and β-sheet crystallinity.  To further resolve the 

complex crosstalk of chemical signals with matrix properties, we chose to investigate 

the role of 3D hydrogel stiffness and transforming growth factor (TGF- β1), with the 

aim of correlating the effects on the vascular commitment of human mesenchymal 

stem cells.  Our data revealed the potential to upregulate matured vascular smooth 

muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing 

appropriate matrix stiffness and growth factor (within 72 h).  Overall, our 

observations suggest that chemical and physical stimuli within the cellular 

microenvironment are tightly coupled systems involved in the fate decisions of 
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hMSCs.  The production of tunable scaffold materials that are biocompatible and 

further specialized to mimic tissue-specific niche environments will be of 

considerable value to future tissue engineering platforms. 

 

4.1.    Introduction 

Loss of vascular function associated with cardiovascular disease, such as 

atherosclerosis, represents the leading medical epidemic in the United States and 

typically requires surgical intervention through synthetic or autologous vascular 

grafts (Laslett, 2012).  To overcome the limitations associated with adult cell 

sources, which are often restricted by source or compromised by disease, 

mesenchymal stem cells (MSCs) have emerged as potential candidates for vascular 

tissue engineering (Bajpai, 2012).  However, despite their growing application, 

several MSC-based vascular regeneration strategies have been met with 

inconsistent results, and in some cases resulted in abridged vascular function.  For 

instance, direct bolus delivery of MSCs to injured vasculature can lead to a 

dysfunctional endothelium, resulting in a higher incidence of vessel occlusion 

compromising vessel mechanics (O’Shea, 2010). Likewise, MSCs injected at the site 

of infarcted hearts resulted in increased levels of calcification and ossification of the 

surrounding cardiac tissue (Breitbach, 2007).  These findings suggest a lack of 

fundamental understanding of the complex vascular niche environment and 

mechanisms accredited to MSC differentiation towards mature, functional vascular 

tissues. 

Cell interactions with the local microenvironment are recognized in several 

important biological events including cell adhesion, growth, differentiation, and 

apoptosis (Discher, 2009; Kuraitis, 2012).  In particular, substrate biophysical 

properties such as rigidity (Engler, 2006; Discher 2005), geometry (Cukierman, 2001; 

Huebsch, 2010) biological ligand (Suzuki, 2010; Gong, 2008), soluble factor (Narita, 

2008), or combination thereof (Wingate, 2014) have been revealed to influence MSC 

differentiation events.  Evidence suggests that a concise crosstalk of these 

environmental factors may be required to direct MSC differentiation toward desired 

cell type and function.  These findings are supported by recent reports which reveal 

MSCs acquiring tissue-specific characteristics when co-cultured with mature cells 
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types or exposed to preformed biological matrices in vitro, highlighting the important 

regulatory role elicited by the specific signals of the microenvironment towards stem 

cell differentiation (Philp, 2005).  However, current methods to regulate stem cell 

differentiation are often executed independently of other factors, i.e. stiffness or 

growth factor individually, or lack the amenity to integrate these parameters into a 

tailorable milieu.  A biomimetic approach, incorporating several environmental 

signals, such as cell-matrix and cell-biomolecule interactions, will help to establish 

more robust and specific MSC differentiation protocols. 

Integration of complex cellular signaling environments into biomaterial scaffolds 

presents a considerable challenge to the tissue engineering community (Kim, 2012).  

A variety of synthetically-formulated as well as natural materials have been 

evaluated for 3D biomaterial scaffolds (Place, 2009). Synthetic materials are 

attractive for their cost, reproducible fabrication and facile manufacturing yet their 

lack of cell-recognition sites as well as potential for toxic degradation products 

causing undesirable inflammation are often disadvantageous (Laflamme, 2011). On 

the contrary, natural materials represent an attractive scaffold platform as they have 

excellent biological properties, such as cellular recognition, biocompatibility and the 

potential to degrade through known metabolic processes (Bouten, 2011; Stegemann, 

2007).  

Silk fibroin (SF), a natural protein extracted from Bombyx mori silkworms, is an 

attractive material for tissue engineering due to its excellent mechanical properties, 

biocompatibility, tunable degradation rate, and mild inflammatory response in vivo 

(Kundu, 2013).  A diversity of regenerative tissues has been reported using SF-

based constructs including bone (Meinel, 2005; Fini, 2005), cartilage (Wang, 2010), 

vascular (Soffer, 2008; Bondar, 2008; Bonani, 2011), skin (Unger, 2004), nervous 

(Yang, 2007), hepatic (Gotoh, 2004) and ocular (Lawrence, 2009) amongst others 

(Kundu, 2013).  We previously developed a technique to produce porous, SF 

hydrogels with tunable stiffness and morphology using the green solvent, carbon 

dioxide (CO2) (Floren, 2012).  Hydrogel elastic moduli approaching soft tissues (E = 

6-30 kPa), combined with ease of fabrication and biocompatibility, motivated us to 

use these SF materials as a platform to instruct stem cell differentiation towards the 

vascular smooth muscle cell (SMC) lineage in a precise manner.   In addition to 
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substrate rigidity, chemical signals are important for vascular development, 

maintenance, and regeneration and collectively constitute a complex process 

involving the interactions of many cellular features in vivo (Carmeliet, 2000). 

However, the effects of stiffness and its interaction with growth factors have yet to be 

sufficiently studied, the resolution of which may provide new insights into processes 

of cellular regeneration and tissue maintenance as they pertain to the cellular 

microenvironment.  

In the present study, we address cellular differentiation on tunable SF 

hydrogels prepared from a solvent-free CO2 processing method.  The transforming 

growth factor β (TGF-β) family is a potent regulator of several cell functions such as 

proliferation, spreading (Derynck, 1997) and is strongly associated with vascular 

smooth muscle cell (vSMC) differentiation of stem cells (Narita, 2008).  Therefore, 

the focus of this work is on exploiting the combined use of substrate stiffness and 

growth factor (TGF- β1) on SF matrices, with the aim of correlating the effects on the 

vascular commitment of human mesenchymal stem cells (hMSCs).  The production 

of tunable scaffold materials that are biocompatible and further specialized to mimic 

vascular niche environments will be of considerable value to future tissue 

engineering platforms.   

 

4.2.    Materials & Methods 

 

4.2.1 SF Hydrogel Preparation  

Aqueous silk fibroin (SF) solutions were prepared from degummed cocoons of 

Bombyx Mori and subsequently dissolving the obtained fibers in 9.3 M LiBr (Fluka 

Chemicals, Buchs, Switzerland) aqueous solution (10% w/v) at 65 °C for 4 hours and 

filtered to eliminate impurities.  The obtained SF solution was then placed in Slide-A-

Lyzer cassette 3500 Da MWCO (Pierce, Thermo Scientific) and dialyzed against 

distilled water for 3 days at room temperature to remove residual salts.  Following 

dialysis SF solution volume was adjusted with distilled water to reach the desired 

concentration.  Silk hydrogels were prepared from a previously published protocol 

using high pressure CO2 (Floren, 2012).  Briefly, SF solutions at different 

concentrations (1.5, 2, 3 & 4 wt%) were syringed into a custom Teflon mold 
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consisting of 12 cylindrical specimens (h: 3 mm, Ø 10 mm) and placed within a 

stainless steel high pressure reaction vessel (BR-300, Berghof Products + 

Instruments, Eningen, Germany). The temperature of the reactor was controlled 

through an electrical heating jacket run by a BDL-3000 temperature controller 

(Berghof).  Once the system had been sealed and thermal equilibrium established 

(40°C), CO2 gas  was  introduced  in  the reactor  and  pressurized  at  a  working  

pressure  of  60  bar  through  a  high-performance  liquid chromatography (HPLC) 

pump (Model 426, Alltech, Deerfield, IL, USA) and isolated for specific gelation times 

(0-8 hours). Following the set gelation period, the system was depressurized slowly 

(approximately 30 minutes) to avoid sample rupture due to the high pressure 

release.  Collected hydrogel specimens were immediately placed in PBS and stored 

at 4°C for future characterization. 

 

4.2.2. Hydrogel Structural Characterization 

 

4.2.2.1. Thermal analysis by differential scanning calorimetry 

Following SF hydrogel formation, specimens were shock frozen in liquid 

nitrogen and subsequently lyophilized to prepare dry samples for thermal analysis.   

Silk hydrogel thermal properties were acquired using a differential scanning 

calorimeter (DSC) (Mettler, Model DSC30, Columbus, OH, USA) with N2 gas flow, at 

a heating rate of 10 °C/min from 0°C to 350°C. 

 

4.2.2.2. Fourier-Transform Infrared Spectroscopy (F TIR) analysis 

Silk protein structural characteristics were investigated before and after high 

pressure CO2 treatment using FTIR Spectrum One (Perking Elmer, Waltham, MA, 

USA) with a zinc selenide crystal. To preserve the secondary structure of the 

obtained silk hydrogels, specimens were immediately quenched in liquid nitrogen 

after treatment by high pressure CO2 and subsequently lyophilized for 48 hours to 

obtain dry samples for characterization.  Structural data was acquired by loading 

lyophilized silk hydrogel specimens onto the IR apparatus and sample spectrums 

were collected as a mean of 32 acquisitions (between 4000 cm−1 and 400 cm−1) with 

a spectral resolution of 4 cm−1.  Fourier Self-Deconvolution (FSD) of the infrared 
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spectra spanning the amide I region (1595–1705 cm−1) was employed to quantify the 

different silk secondary structures within the hydrogel specimens.   Deconvolution 

was performed using parameters described elsewhere (Hu, 2006).  Following 

deconvolution, Gaussian curve fitting was then performed with Origin 8.0 (OriginLab 

Corp., Northampton, MA).   

 

 

4.2.2.3. Morphology Assessment 

Imaging of dry hydrogel specimens was obtained using a scanning electron 

microscope (SEM) (Quanta 200 Scanning Electron Microscope – FE – operating 

mode: low vacuum, gaseous secondary electron GSE detector).  Hydrated silk 

hydrogels were first quenched in liquid nitrogen and subsequently lyophilized for 48 

hours to prepare dry cross sections for imaging.  Prior to imaging, lyophilized cross 

sections were sputter coated (Biorad SC500, Hemel Hempstead, UK) with a thin 

layer of gold to avoid charging of the sample. 

Imaging of wet hydrogel specimens was performed by submerging neat SF 

hydrogel matrices in 0.1 mg/ml Rhodamine123 solution (Sigma) at 4 ̊C for 8 hours 

(Rh123 is a green-fluorescent small molecule excitation 485nm, emission 535 nm) 

and then repeatedly washed in DI water to remove all un-bound dye.  The non-

specific adsorption of Rh123 within the SF matrices allows for visual observation of 

the wet hydrogel morphology (Elliott, 2015).  Gels were then placed on glass slides 

for confocal imaging. Samples were imaged with Argon-ion laser at 488nm coupled 

with a band-pass emission filter 535/15 nm using a confocal microscope Nikon A1 

model. 

 

4.2.2.4. Mechanical Properties in Compression 

Silk hydrogel mechanical properties were tested under compression.  

Compression tests of hydrogel specimens (8 mm diameter × 5 mm depth) were 

performed in the unconfined state by a mechanical tester (MTS) using a 5N load cell.  

The mechanical properties of the gel samples were tested in the wet state, in PBS, 

at room temperature. Strain (mm) and load (N) were recorded using Wintest software 

at a cross speed of 20 µm/s up to 60% strain level. To ensure proper sample 
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placement and flatness, samples were cyclically preconditioned at 1% strain for 10 

cycles.  The compressive modulus was calculated from the tangent slope of the 

linear elastic region of the rendered stress/strain curve. 

 

4.2.3. Cell Culture methods 

Human mesenchymal stem cells (hMSCs) were purchased from Lonza 

(Switzerland) and maintained with Lonza’s MSCGM human Mesenchymal Stem Cell 

Growth BulletKit. Reduced-serum medium consisted of Dulbecco’s Modified Eagles 

Media (DMEM) (Hyclone, Logan/UT), with 1% defined FBS (Hyclone, Logan/UT) and 

1% Penn/Strep (Invitrogen, Carlsbad, CA).  Cells were cultured and maintained at 

37°C and 5% CO2 with medium being replaced every 72 h. Passages 3-6 were used 

for all experiments. Silk gels were briefly incubated in reduced-serum medium in 24-

well plates and medium was aspirated just prior to seeding. hMSCs were seeded at 

5 x 104 cells to the surface of each silk gel using a concentrated cell suspension. 

Cells were incubated for 1.5 h at 37°C and 5% CO2 to allow for initial attachment 

before reduced-serum medium was added to the wells. Recombinant human 

Transforming Growth Factor-β1 (TGF-β1) was supplied by Novoprotein (Summit, NJ) 

and was maintained at 10ng/ml for experimental conditions requiring growth factor 

administration. 

 

4.2.4. Cell Characterization Methods 

 

4.2.4.1. Quantitative real-time polymerase chain re action (qPCR) 

Total RNA was extracted from samples using Trizol-chloroform method 

(Chomczynski, 1987) followed by further purification with RNeasy Kit Microkit 

(Qiagen) per the manufacturer’s instructions. Quantification of RNA was performed 

on a Nanodrop 2000 spectrophotometer (Thermo Scientific). Single-stranded 

complementary DNA (ss-cDNA) was synthesized from RNA with iScript cDNA 

synthesis kit (Bio-Rad) using a Hybaid PCR Express thermal cycler per the 

manufacturer’s instructions.  SYBR RT2-qPCR primer assays from Qiagen were 

used with iTaq Universal SYBR Green Supermix (Bio-Rad) in this study. The primers 

used and their corresponding National Center for Biotechnology (NCBI) Reference 
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Sequence (RefSeq) numbers are listed in Table 1. β-actin was the reference gene.  

Quantitative real-time polymerase chain reaction (qPCR) was performed on either a 

Bio-rad CFX96 or iQ5 under the following reaction conditions: 95°C for 3 min and 40 

cycles of 95°C for 5 s and 60°C for 30 s. Relative expression was calculated using 

quantification cycle (Cq) values as per the ∆∆Cq-method and fold change was 

calculated using 2-∆∆Cq (Livak, 2001). 

 

Table 1     Gene information for qPCR 

Gene Symbol Ref Seq no. 

Actin, beta ACTB NM_001101.3 
Actin, alpha 2, smooth 
muscle, aorta 

ACTA2 NM_001613.2 

Calponin 1, basic, smooth 
muscle 

CNN1 NM_001299.4 

Myosin, heavy chain 11, 
smooth muscle 

MYH11 NM_022844.2 

 

4.2.4.2. Immunofluorescent Staining 

Following cell culture, SF hydrogel samples were fixed with 3.7% formaldehyde 

at room temperature, permeated with 0.1% Triton X-100 and blocked with 3% BSA 

(Sigma)  Immunofluorescent staining of cells for cell nuclei (DAPI)(Sigma) and 

cellular cytoskeleton (Alexa488-phallodin) were utilized to observe cell adhesion and 

spreading respectively.  Primary anti-α-actin (G-12), anti-MYH11 (G-4), and anti-

Calponin 1(CALP) antibodies were supplied through Santa Cruz Biotechnologies.  

Secondary antibodies conjugated with either Alexa 488 or Alexa 647 along with 

Alexa 488-phallodin cytoskeleton stain were acquired through Invitrogen, Inc. 

(Eugene, OR).  Calponin and myosin heavy chain (MYH11) antigenic staining was 

performed to characterize SMC differentiation.  For SMC marker immunostaining, 

samples were first incubated with primary anti-calponin or anti-MYH11 in 1% BSA 

overnight at 4 ̊ C. Following primary antibody coupling, samples were washed 3X in 

PBS and incubated with secondary antibody Alexa 488-IgG or Alexa 647-IgG for 2 h 

at room temperature.  All samples were finally mounted with Fluoro-Gel (Electron 

Microscopy Services, Hatfield, PA) mounting medium and stored at 4 ̊ C for imaging.    
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4.2.4.3. Confocal imaging 

Confocal images were acquired using a Nikon A1R laser scanning confocal 

microscope piloted by NIS-Elements 4.0 and equipped with 405 nm, 488 nm, 561 

nm, and 640 nm laser lines.  Unless otherwise stated, a 10x 0.5NA objective with the 

pinhole set to 1.2 Airy Units (AU) was used.  When needed, multiple z planes were 

acquired in order to capture all of the cells within each SF hydrogel.  A maximum 

intensity projection image or 3-dimensional rendering was then generated using 

ImageJ software. 

 

4.2.5. Statistical analysis 

All tests were performed in triplicate. Statistical significance of collected data 

was determined at each condition using an independent Student’s t-test.  Data are 

presented as mean ± standard deviation (SD) and was considered statistically 

significant at 95% confidence (p < 0.05).  For qPCR, two-way ANOVA with Tukey’s 

test was performed on ∆Cq values using Graphpad’s Prism software. Error is 

represented by standard error of the mean for three replicates. 

 

4.3.  Results 

In this study, the feasibility of using SF hydrogels with growth factor and 

tunable stiffness to promote vascular differentiation was evaluated.  Silk hydrogels 

were prepared using high pressure CO2, whereby gelation proceeds through the 

progressive reduction in solution pH achieved under CO2-water binary systems 

(Floren, 2012).  We found that silk hydrogels prepared by this method require less 

time to gelation and display improved physical properties compared to conventional 

hydrogel fabrication methods.  We note that while our technique allows for stable 

hydrogel formation at low silk protein water solution concentrations, our study 

revealed that silk concentrations less than 1.5 wt% resulted in nonhomogeneous gel 

formation (results not shown) and therefore were not practical for further evaluation.  

Consequently, hydrogels from silk concentrations 1.5, 2, 3 and 4 wt% (SF1.5, SF2, 

SF3, and SF4 respectively) were prepared for this study and assessed for physical 

and mechanical properties.    

 



76 

4.3.1. Hydrogel Fabrication and Characterization 

The macrostructures of hydrogels prepared under high pressure CO2 at various 

silk protein concentrations are shown in Figure 1.  Visual observation of the silk 

hydrogels indicate stable gelation and mechanical integrity are retained for all protein 

concentrations investigated.  Structural changes associated with silk hydrogel 

formation were confirmed by FTIR-ATR and displayed in Figure 2A.  Evaluation of 

the spectral regions within 1700–1500 cm−1 relating to the peptide backbones of 

amide I (1700–1600 cm−1) and amide II (1600–1500 cm−1) are commonly utilized to 

observe the different secondary structures of SF (Hu, 2006).  The unprocessed silk 

solution displayed peaks centered at 1552 cm−1 (amide II) and 1654 cm−1 (amide I) 

indicating random coil and α-helix structures respectively.  In contrast, silk hydrogels 

prepared by high pressure CO2 resulted in peaks at 1625 cm−1 (amide I) and 1518 

cm−1 (amide II) corresponding to silk II secondary structure and confirming the 

presence of extensive β-sheet crystals.  Fourier self-deconvolution (FSD) analysis of 

the respective IR curves indicated a β-sheet content of 35± 2% for the SF1.5 

hydrogel samples with a gradual increase to 46 ± 2% for the SF4 hydrogels.  The 

increase in SF β-sheet content at greater protein concentrations has also been 

observed by others (Matsumoto, 2006) and is likely due to increased protein 

macromolecular interactions resulting in enhanced β-sheet formation.  Figure 2B 

displays the thermal scans obtained by DSC for both unprocessed SF solution (a) 

and silk hydrogels prepared by high pressure CO2 (b-e).  A broad endothermic peak 

between 60-90°C representing bound water was observed for all samples.  

Unprocessed SF solution revealed a non-isothermal crystallization peak at 225°C 

representing the transition of amorphous silk domains into β-sheet structures (Hu, 

2006).   All silk hydrogel specimens lacked a glass transition region as well as 

crystallization peak due to the formation of extensive β-sheet structures during the 

CO2 hydrogel fabrication process. Thermal degradation of the unprocessed silk 

solution occurred at a lower temperature (about 282 °C) compared to the gradual 

increase from 283°C to 289 °C for SF1.5 and SF4 hydrogels respectively.  The lower 

degradation temperature observed for the SF1.5 samples compared to the SF4 

specimens agrees with the lower β-sheet content revealed by FTIR.  Collectively, 
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these observations indicate silk-CO2 hydrogels exhibit extensive β-sheet crystal 

domains, permitting stable gel formation at all protein concentrations investigated. 

 
Figure IV – 1. Gross characterization of SF hydrogel matrices prepared at different protein 
concentrations. 

 

Figure IV -2. Structural properties of SF hydrogels prepared by high pressure CO2. (A) FTIR-
ATR spectra reveal the presence of extensive β-sheet crystalline secondary structures in 
prepared hydrogel specimens; unmodified silk solution (a), prepared silk hydrogels SF1.5 (b), 
SF2 (c), SF3 (d), and SF4 (e). (B) DSC curves demonstrate stability under thermal scans for 
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unmodified silk solution (a) and prepared silk hydrogels SF1.5 (b), SF2 (c), SF3 (d), and SF4 
(e). 

 

4.3.2. Hydrogel Pore Characteristics 

 

 SF hydrogel morphology characteristics were evaluated using SEM in the 

dry state (Figure 3a-d) and compared against wet state imaging (Figure 3e-h) using 

CLSM.  Dry state imaging revealed a porous matrix with average pore sizes ranging 

from 3.40 ± 0.58 - 4.97 ± 1.28 µm for all SF hydrogel concentrations.  A slight 

decrease in pore size was observed for SF2 and SF3 hydrogel specimens at 3.40 ± 

0.58 µm and 3.48 ± 0.42 µm average pore size, respectively.  By comparison, the 

average pore sizes for SF1.5 and SF4 were greater at 4.97 ± 1.28 and 4.92 ± 0.83 

µm, respectively.  Analysis of SF hydrogel pore distributions were not found to be 

significantly different.  Comparison of the dry state pore size and distribution were in 

good agreement with the complimentary measurements achieved using wet state 

imaging.  The average pore sizes reported here correlate well with SF hydrogels 

prepared in our previous work (Floren, 2012).     
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Figure IV – 3.  Morphology assessment of silk hydrogel matrices. (a-d)  Scanning electron 
microscopy images of silk hydrogels in dry state; inset magnification scale bars 5 µm.  (e-h)  
Hydrated silk hydrogel images obtained by confocal laser microscopy. Scale bars 20 µm. (i-l)  
Silk hydrogel pore distributions, with respective Poisson distributions (blue lines), and pore size 
quantified by image analysis of respective micrographs (a-h). 
 

4.3.3. Hydrogel Compressive Properties 

To assess SF hydrogel mechanical properties, we evaluated the mechanical 

response of all specimens in compression.  Figure 4a represents the stress-strain 

curves of SF1.5, SF2, SF3 and SF4 hydrogel specimens tested in compression.  All 

SF hydrogel samples displayed a linear response up to 10% strain level, 

demonstrating the elasticity of fabricated hydrogels.  The compressive modulus of 

the hydrogel samples increased as SF concentration increased (Figure 4b).  The 
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compressive modulus increased by 10-fold from SF1.5 (6.41 ± 0.47 kPa) to SF4 

hydrogels (63.98 ± 2.42 kPa).  The elastic moduli of SF hydrogels displayed here, ~6 

– 64 kPa, represent a biologically relevant stiffness range for native vasculature, 

suggesting their potential use for vascular tissue engineering substrates (Wingate, 

2012).  

 
Figure IV – 4.  Mechanical properties of SF hydrogels prepared by high pressure CO2. (A) 

Stress vs. strain relationships for several hydrogel matrices prepared with different silk protein 
content.  Inset represents linear region used to determine mechanical properties. (B) Elastic 

moduli of these matrices. 
 

4.3.4. Effect of SF Hydrogel Rigidity on hMSC attac hment and 

spreading in Low-Serum or TGF β-1 Fortified Media  

Serum-containing media, including more defined serum mixtures for stem cell 

culture, is often not well defined, incorporating several combinations of factors as 

well as high variability among lots (El-Mounayri, 2013).  From this stance, serum-

based differentiation protocols do not allow for unadulterated manipulation of the 

biochemical milieu necessary to define concise spatiotemporal microenvironments.  
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Therefore, to suppress the potential for compounding effects of soluble factors, we 

chose low-serum (1% defined FBS) culture conditions for all experiments.   

To confirm the biocompatibility of our SF hydrogels, we cultured hMSCs for 72 

h in media either with low serum or TGF-β1 (+) (10ng/ml) supplemented low serum, 

and evaluated cell attachment and spreading (Figure 5a-h).  Human MSC 

attachment was observed for all SF hydrogel formulations.  Utilizing image analysis, 

we measured hMSC density after culturing on SF hydrogels for 72 h with variable 

stiffness.  Human MSC density increased from 150 ± 30 cells/mm2 to 622 ± 87 

cells/mm2 for 6 kPa (SF1.5) and 64 kPa (SF4) hydrogels in low-serum culture 

conditions respectively (Figure 5j).  Likewise, supplementing low-serum media with 

10 ng/ml of TGF-β1 resulted in a significant (p < 0.05) increase in the cell density for 

all SF hydrogel elasticities studied with an increase from 427 ± 28 cells/mm2 to 798 

± 26 cells/mm2 for 6 kPa (SF1.5) and 64 kPa (SF4) hydrogels, respectively.  This 

data suggests that hMSC attachment positively correlates with SF hydrogel stiffness 

and TGF-β1 administration.   

Significant cell spreading was observed (Figure 5a-h) and distinct cellular 

morphologies revealed for all SF hydrogel samples (Figure 5i) irrespective of growth 

factor intervention.  Cell spreading area was quantified using image analysis and 

normalized to the respective cell density of each specimen.  We found no significant 

differences in cell spreading area for SF hydrogels of different stiffness or growth 

factor protocol with the exception of the 6 kPa (SF1.5) hydrogel under low-serum 

conditions.  The discrepancy in cell spreading area for the 6 kPa (SF1.5) low-serum 

condition is likely due to the reduced cell density measured for these samples, which 

could facilitate enhanced cellular spreading throughout the substrate.  Altogether, 

our findings suggest that the SF hydrogels produced here provide a sustainable 

microenvironment for hMSC attachment and spreading in the presence of low-serum 

or TGF-β1 fortified media.    
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Figure IV – 5.  Effects of SF hydrogel stiffness and TGF-β1 on attachment and spreading of 
hMSCs.  (a-h) Confocal stack renderings of hMSCs with (e-h) or without (a-d) TGF- β1 at 
various SF hydrogel elasticities (SF1.5-6kPa, SF2-20kPa, SF3-33kPa, SF4-64kPa).  Cells were 
stained for cell nuclei (DAPI, blue) and F-actin (phalloidin, green), scale bar 300 µm.  (i) 
Individual hMSC morphologies imaged and presented in grayscale with respect to SF hydrogel 
stiffness and TGF- β1 administration; scale bar 50 µm. Cell density (j) and attachment (k) of 
hMSCs for all the hydrogel matrices shown in images a-h were quantified and tabulated.  * P < 
0.05, *** P < 0.001, NS P > 0.05. 
 

4.3.5. Effect of SF Hydrogel Rigidity and TGF- β1 on Vascular 

SMC Commitment of hMSCs 

Myogenic differentiation was evaluated by real time PCR and assessed for 

SMC-specific marker expression of smooth muscle α-actin (αSMA), calponin, and 

smooth muscle myosin heavy chain (MYH11) as shown in Figure 6a-c.  Human 

MSCs cultured without TGF-β1 for 72 h on SF hydrogels displayed non-significant (p 

> 0.05) variation in αSMA and calponin gene expression for all elasticities 

investigated when compared to the culture plate control (Figure 6a-b).  In contrast, in 

the absence of TGF-β1 administration the gene expression of the mature SMC 
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marker, MYH11, was significantly (p < 0.05) upregulated on 33 kPa (SF3) substrate 

compared to the culture plate condition (Fig 6c).     

Interestingly, the inclusion of 10 ng/ml of TGF-β1 did not result in significant 

variation of αSMA transcription levels for all SF hydrogels investigated, Figure 6a.  

However, a significant (p < 0.05) variation in calponin gene expression was recorded 

on 6 kPa soft hydrogel (SF1.5) with and without TGF-β1 as shown in Figure 6b.  By 

comparison, the administration of TGF-β1 significantly (p < 0.001) upregulated 

MHY11 gene expression on 33 kPa (SF3) over all others, 6 kPa (SF1.5), 20 kPa 

(SF2), 64 kPa (SF4) and culture plate (Fig 6c).  Further, a significant (p < 0.05) 

difference was also observed on 33 kPa (SF3) among TGF-β1 (+) and TGF-β1 (-) 

conditions.  The greater variation of MHY11 gene expression for hMCSs cultured on 

SF hydrogels with TGF-β1 compared to TGF-β1 (-) conditions indicates that a 

crosstalk exists between physical cues (stiffness) and chemical stimuli (TGF-β1), 

which regulate hMSC fate decisions. 

 

Figure IV – 6.  PCR assessment of selected vascular markers of hMSCs cultured on silk 
hydrogels of different stiffness for 72 h: (a) smooth muscle α-actin, (B) calponin, and (C) 
MYH11. * indicates significant difference between groups (p < 0.05). ‡ indicates significant (p < 
0.05) difference from the gene expression for hMSCs cultured without TGF-β1 on SF hydrogels 
compared to 33 kPa (SF3) condition. # indicates significant (p < 0.001) difference in gene 
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expression for hMSCs cultured with TGF-β1 on SF hydrogels compared to 33 kPa (SF3) 
condition. 

We further confirmed stem cell lineage commitment using the protein level 

expression of calponin and MHY11 for hMSCs cultured on SF hydrogels with TGF-

β1 for 72 h (Figure 7).  High levels of calponin were detected for SF1.5, SF2, SF3 

hydrogels 6, 20, and 33 kPa stiffness respectively, Figure 7.  Consistent with 

reported gene expression, MHY11 protein expression was detected for all SF 

hydrogel conditions with greatest expression on 33 kPa (SF3) substrate.  Compared 

to softer SF hydrogels, calponin and MHY11 expression were absent on stiff 

condition (SF4).  Altogether, these results suggest that appropriate substrate 

stiffness and growth factor presentation can achieve mature and directed 

differentiation of hMSCs, specifically in the context of vascular SMCs.      
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Figure IV – 7.  Immunostaining of hMSCs cultured with TGF-β1 on SF hydrogels of different 
stiffness for 72 h for select vascular SMC markers: calponin (a-d) (green), MYH11 (e-h) 
(orange).  Scale bar 200 µm.     

4.4.  Discussion: 

Stem cells develop an exquisite relationship with their surroundings which elicit 

an ensemble of cellular events influenced not only by the physical environment, such 

as rigidity (Engler, 2006) and geometry (Huebsch, 2010), but also the chemical 

makeup of their milieu through growth factors (Narita, 2008) and cytokines (Discher, 

2009), amongst others (Phillips, 2010).  Recent evidence suggests a complex 
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interplay whereby matrix physical and chemical stimuli may work synergistically to 

direct highly specialized cellular events and fate outcomes (Park, 2011; Wingate, 

2014).  Therefore, resolving the effects associated with the crosstalk of 

physicochemical stimuli within the in vivo microenvironment may provide a template 

for the rational design of specialized and directed stem cell differentiation platforms.  

We chose to address these queries by examining the vascular fate commitment of 

hMSCs cultured on SF hydrogels of different stiffness in the presence of growth 

factor (TGF-β1) administration. 

To minimize the compounding effects of other biological stimuli, we selected a 

substrate material that allowed for cellular attachment in the absence of defined 

biological ligands or serum proteins.  The tunable properties of SF allow for the 

regulation of format and substrate mechanical properties with high fidelity, 

meanwhile highly biocompatible.  In our hands, we find SF hydrogels prepared from 

a simple CO2 processing technique to be a promising biomaterial platform for 

probing the effects of substrate stiffness and cell maintenance and fate commitment.  

Here we report tunable stiffness of our SF hydrogels by simple adjustment of the 

starting silk protein in water concentration.  This observation is complimentary to 

previous studies using SF protein concentration to modulate substrate mechanical 

properties (Kundu, 2013; Floren, 2012).  When cultured with serum-starved media 

upon our SF hydrogels hMSCs attached and spread for up to 72 h (Supplementary 

Figure 1).  This data suggests that SF is permissive to stem cell adhesion and 

maintenance irrespective to the presentation of adsorbed serum proteins or other 

biological ligands.  The exact mechanism of hMSC adhesion and maintenance in low 

serum media demonstrated here on SF hydrogels is not immediately understood.  

Sengupta et al demonstrated an upregulation of integrin alpha-5 (ITGA5) in hMSCs 

cultured on SF patterned films (Sengupta, 2010), which may be a result of sparse 

RGY and RGV sequences previously identified in SF (Zhou, 2001).  Recent reports 

have also demonstrated a potential CD44 interaction for fibroblasts (Yang, 2010) and 

rat MSCs (Yang, 2014) cultured on SF constructs.  From the cited literature, it is 

likely that hMSC-SF interactions are a result of the unique material chemistry of SF.  

Future studies are needed to elucidate the distinct cellular interactions of specific cell 

lines, particularly stem cells, upon SF-based materials. 



87 

The TGF-β family regulates a diversity of cellular functions during development 

and tissue homeostasis through their effects on cell proliferation, differentiation, 

apoptosis and ECM production (Derynck, 1997; Roelen, 2003).  Several reports 

have implicated TGF-β1 promoting MSC differentiation into SMC lineage (Narita, 

2008; Kinner, 2002), and further evidence suggests that these TGF-β1 pathways 

may form a crosstalk with other signaling events elicited through mechanosensing 

stimuli such as substrate rigidity (Park, 2011).  However, the role that these different 

micro-environmental factors play independently and in concert towards mature 

vascular SMC differentiation has yet to be studied in a relevant platform for potential 

tissue engineering scaffolds such as SF hydrogel matrices. 

The inclusion of 10 ng/ml of TGF-β1 to our cell culture regiment significantly (p 

< 0.05) increased cell density of hMSCs upon the SF hydrogels irrespective of 

stiffness.  This is consistent with other studies that have reported on the cell 

attachment and proliferation of hMSCs on substrates of variable stiffness (Engler, 

2006).  Interestingly, we did not find significant differences of hMSC spreading 

between groups (stiffness and TGF-beta) with the exception of the low stiffness 

condition (6 kPa).  Cell spreading and morphology in two dimensions are strongly 

correlated to stem cell differentiation and lineage commitment (Engler, 2006); 

whereas, recent evidence suggests this phenomenon is less pronounced in three 

dimensions (Huebsch, 2010).  We note that while our porous SF hydrogels do not 

allow deep penetration of cells into the matrices, our system still mimics a three 

dimensional environment which may impart analogous geometrical cues as observed 

in other defined three dimensional substrates; thereby, resulting in similar cellular 

morphologies between groups.  

Strikingly, we demonstrated a significant increase in both the gene and protein 

expression of the mature vascular SMC marker MHY11 for hMSCs cultured on SF 

hydrogel with TGF-β1 within 72 h.  We observed a strong correlation of SF substrate 

stiffness to upregulate MHY11 expression both with and without TGF-β.  For 

instance, MYH11 expression was detected both on the gene and protein level for 

soft (6 kPa, SF1.5) to mid-range stiff (33 kPa, SF3) SF hydrogels.  In particular, we 

observed an approximate 12 and 6 fold increase in MHY11 gene expression for 33 

kPa (SF3) hydrogel with and without TGF-β regiment. In contrast, early SMC 
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markers (αSMA) and (calponin) transcription levels were not significantly upregulated 

for all conditions, with the exception of 6 kPa (SF1.5) soft hydrogel, TGF-β1 (+) and 

TGF-β1 (-) groups.  Consistent with our findings, Park et al. reported transcription 

levels for αSMA and calponin in hMSCs cultured with 10 ng/ml TGF-β on soft (15 

kPa),  two-dimensional gelatin substrates were comparable to transcription levels of 

the culture plate control (Park, 2011). 

Previously, authors have reported on directed hMSC differentiation towards 

myogenic lineage by regulating substrate stiffness (Engler, 2011) or combining with 

TGF-β1 administration (Park, 2011).  However, these studies only investigated early 

(αSMA, calponin) myogenic markers, but often achieving directed stem cell 

differentiation towards a mature status is desired (Andreadis, 2013).  Stem cell 

differentiation into SMC-like populations is repeatedly evaluated by identifying the 

expression of several candidates involved in the contractile apparatus such as 

αSMA, h1-calponin, MYH11 and desmin (Liu, 2013).  However, recent evidence 

suggests that some SMC markers are potentially expressed at measurable levels in 

multipotent MSCs.  For instance, MSCs cultured without differentiation media 

expressed mRNA levels for several SMC markers at levels comparable to primary 

SMCs, with the exception being the mature SMC marker MYH11 (Tamama, 2008).  

Indeed, MYH11 is only expressed late in myogenesis and displays the highest 

specificity of SMC differentiation compared to any other known marker (Owens, 

2004).  Collectively, these recent findings suggest that mature markers such as 

MYH11 logically serve as a reliable indication of mature SMC phenotype in hMSCs 

as shown here.   

Our results support the hypothesis that the convergence of physical and 

chemical environmental cues can lead to specific and directed differentiation of 

hMSCs into matured vascular SMCs.  Our data suggests that proper substrate 

stiffness and growth factor (TGF-β) can significantly upregulate SMC genes and 

protein expression.  We note that one limitation of our method is the potential 

differences of SF hydrogel water content or network density among the different 

hydrogel formulations.  Recently, Wen et al. systematically modulated the porosity, 

ligand density and stiffness of polyacrylamide (PA) hydrogels and observed how 

these properties affect stem cell fate processes (Wen, 2014).  Here the author’s 
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concluded that stiffness rather than porosity or ligand density was the primary 

impetus driving stem cell differentiation.  In line with this, while it is difficult to 

decouple certain physical parameters (i.e. porosity, network density) from our SF 

hydrogel formulations presented here, evidence suggests that substrate stiffness is 

the dominate physical parameter in directing stem cell fate, as demonstrated here. 

Previous studies have highlighted a significant crosstalk between substrate 

rigidity and growth factor activity.  Regulation of MSC commitment into chondrogenic 

or myogenic phenotypes on two dimensional matrices can be modulated based on 

substrate stiffness and TGF-β1 administration (Park, 2010).  Recently, soft (2 kPa), 

three dimensional matrices combined with vascular endothelial growth factor (VEGF) 

were revealed to act synergistically to guide MSC differentiation into mature 

endothelial phenotype while enhancing paracrine signaling (Wingate, 2014).  Indeed, 

there is growing evidence that a tight interplay exists between ECM mechanical 

properties and the activity and availability of several growth factors.  It is well 

established that ECMs provide not only physical support for cellular processes but 

also act as a repository for a plethora of chemical signals (Martino, 2014).  For 

instance, TGF-β1 is believed to form a physical association with numerous ECM 

proteins and only through matrix straining, via cell contractile forces transmitted 

through integrins, is it liberated and active (Hinz, 2015).  In line with this, Wipff et al. 

demonstrated a positive correlation between TGF-β1 activation and polyacrylamide 

hydrogel stiffness for cultured fibroblast and epithelial cells (Wipff, 2007).  Here the 

authors proposed a contraction-mediated activation of TGF-β1 whereby increasing 

ECM stiffness (i.e. polymer stiffness) resulted in increased levels of active TGF-β1.  

Nonetheless, it remains to be resolved how mechanical activation of TGF-β1 is 

achieved using our current SF hydrogel system.  From the cited literature, there is 

evidence to suggest that ECM mechanics play a critical role in the deployment and 

activation of chemical signals in the cellular microenvironment.  Our results are 

complimentary to these findings, whereby stem cell behavior can be regulated based 

on the integration of substrate physical and chemical properties.   

Although others have reported on the differentiation of stem cells towards 

mature SMC lineage, our study advances these previous results in several ways.   

First, we explored the potential to direct specialized hMSC differentiation by 
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modulating stiffness and growth factor using a well-defined biomaterial scaffold 

platform.  In contrast to previous studies, our methodology employs SF, a well-

tolerated biomaterial with an impressive portfolio of tissue engineering applications.  

Secondly, we demonstrate the expression of a mature SMC marker (MYH11) within 

the span of 72 h with appropriate substrate stiffness 33 kPa (SF3) and growth factor 

(10 ng/ml TGF-β1).  By comparison, El-Mounayri et al. derived mature and functional 

human coronary-like vSMCs from embryonic stem cells (ESCs) using a complex 

growth factor regiment across 28 d (El-Mounayri, 2013).  We acknowledge the 

limitation that our study did not show the functional behavior of the SMC line derived 

here from hMSCs; however, our methodology suggests that complex differentiation 

protocols may be simplified by engineering the cellular microenvironment on multiple 

scales, i.e. matrix stiffness with growth factor.  Third, it highlights the significance of 

designing multifaceted biomaterial matrices, culminating physical and chemical cues, 

to direct stem cell differentiation in a highly controlled and specialized approach.   

   

4.5.  Conclusion: 

There is a growing consensus that the next generation of biomaterial platforms must 

adopt a biomimetic approach whereby the integration of physical and chemical 

environmental cues becomes necessary to direct highly specialized cellular 

processes, including stem cell fate decisions.  This study demonstrates the potential 

utility of SF hydrogels as a tunable platform, integrating physical (stiffness) and 

chemical (TGF-β1) stimuli, for directed and specialized differentiation of hMSCs.  

Our results demonstrate that SF hydrogels provide a permissive environment for 

hMSCs in the absence of serum media, meanwhile tunable in stiffness by simple 

adjustment of SF protein content.  Further, we report on the ability to augment hMSC 

differentiation into mature SMCs within modest culture periods (72 h) by combining 

appropriate SF hydrogel stiffness (33 kPa) with growth factor (TGF-β1).  This study 

advances our understanding of how complex multicomponent biomaterials, whereby 

mimicking the intricacy of natural tissue environments, can play a significant role in 

developing optimal stem cell differentiation protocols.  Ultimately, such an 

understanding of how engineered cellular niche environments interact with stem cell 
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fate processes will be instrumental in the design of future tissue engineering 

platforms. 
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Abstract: Local signals from tissue-specific extracellular matrix (ECM) 

microenvironments, including matrix adhesive ligand, mechanical elasticity and 

micro-scale geometry, are known to instruct a variety of stem cell differentiation 

processes.  Likewise, these signals converge to provide multifaceted, 

mechanochemical cues for highly-specific tissue morphogenesis or regeneration. 

Despite accumulated knowledge about the individual and combined roles of various 

mechanochemical ECM signals in stem cell activities on 2-dimensional matrices, the 

understandings of morphogenetic or regenerative 3-dimenstional tissue 

microenvironments remain very limited. To that end, we established high-throughput 

platforms based on soft, fibrous matrices with various combinatorial ECM proteins 

meanwhile highly-tunable in elasticity and 3-dimensional geometry. To demonstrate 

the utility of our platform, we evaluated 64 unique combinations of 6 ECM proteins 

(collagen I, collagen III, collagen IV, laminin, fibronectin, and elastin) on the 

adhesion, spreading and fate commitment of mesenchymal stem cell (MSCs) under 

two substrate stiffness (4.6 kPa, 20 kPa).  Using this technique, we identified several 

neotissue microenvironments supporting MSC adhesion, spreading and 

differentiation toward early vascular lineages. Manipulation of the matrix properties, 

such as elasticity  and  geometry,  in  concert  with  ECM  proteins  will  permit  the  
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investigation  of  multiple  and distinct  MSC  environments. This paper demonstrates 

the practical application of high through-put technology to facilitate the screening of a 

variety of engineered microenvironments with the aim to instruct stem cell 

differentiation. 

 

5.1.    Introduction 

There is abundant evidence suggesting that local signals from tissue-specific 

extracellular matrix microenvironments significantly affect cellular differentiation, 

phenotypic expression and maintenance (Reilly, 2010; da Silva Meirelles, 2008; 

Bajpai, 2012).  Substrate biophysical signals, such as soluble factors (Bajpai, 2012), 

cell-ligand interactions (Suzuki, 2010), matrix elasticity (Engler, 2006; Discher, 2005) 

and geometry (Huebsch, 2010) play critical roles in a diversity of biological events 

including cell adhesion, growth, differentiation, and apoptosis (Huebsch, 2010; 

Wingate, 2012).  Together these signals converge to provide a multifaceted, complex 

mechanochemical signaling environment for highly-specific tissue morphogenesis 

and regeneration. Despite accumulated knowledge regarding individual and 

combined roles of various mechanochemical ECM signals in stem cell activities, the 

intricacy exhibited by cellular microenvironments poses a considerable challenge in 

resolving the mechanisms ascribed to stem cell behavior and fate determination 

processes.  This complexity mandates a systemic approach whereby integrative 

studies must be expanded to capture a more comprehensive understanding of the 

determinants which direct stem cell differentiation toward desired cell type and 

function.  Conventional methods to elucidate these mechanisms have traditionally 

been executed in large scale, two-dimensional tissue culture platforms which are 

often limited by combinatorial brevity, substrate production, and reagent supply.  

Furthermore, these signals, matrix and biophysical, are often observed 

independently to differentiate cells on 2-dimensional substrates, an environment 

vastly different from the way cells are presented naturally in vivo, i.e. a 3-dimensional 

tissue context which elicits multiple signal inputs to regulate cell fate.  

High  through-put  approaches  have  emerged  in  recent  years  to  circumvent  

the  limitations  of traditional  low  through-put  techniques  (i.e.  conventional  

cultureware),  with  the  promise  to  develop complex  platforms  for  combined  
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biomolecule/substrate  discovery.   The salient features of microarray technology 

include the reproducibility and screening of multiple microenvironments with 

significantly less reagent and substrate requirements than traditional methods, while 

lending improved deconstruction of complex multivariable studies (Titmarsh, 2013).  

Several reports have demonstrated ECM protein microarrays (Flaim, 2005), soluble 

factor screening (Ghaedi, 2011), biomaterial chemistry screening (Anderson, 2004; 

Mei, 2010), and multiple signal integration arrays (i.e. elasticity and chemical factor) 

with encouraging results (Gobaa, 2011; Wingate, 2014).  However, despite the 

versatility afforded by current microarray technologies, the incorporation of multiple 

signals within engineered microarrays remain limited.  Meanwhile the integration of 

current combinatorial microarray technologies in three-dimensions, coupled with 

other biophysical properties, such as tunable stiffness and geometry, have yet to 

reach fruition.  Capturing complex, multifaceted 3-dimensional environments in high-

throughput with combinatorial signaling will likely prove instrumental towards the 

design of future tissue regeneration biomaterial platforms. 

To resolve the mechanisms associated with complex matrix signals and stem 

cell behavior and fate decisions, we established a high-throughput ECM platform 

based on soft, fibrous matrices meanwhile highly-tunable in elasticity and 3-

dimensional geometry. The technology we demonstrate here is amenable to 

manipulation of several matrix properties, such as elasticity and geometry, in concert 

with customizable ECM protein micro-dot combination.  Furthermore, selective 

cellular adhesion and isolation afforded by ECM microarrays permits the 

investigation of multiple and distinct cellular microenvironments in the presence of 

specific ECM signaling.  Altogether, we demonstrate the practical adaptation of high-

throughput technology to facilitate the screening of various tunable mechano-ligand 

microenvironments in three dimensions with the aim to optimize stem cell fate 

decisions. 

 

5.2.    Materials & Methods 

 

5.2.1. Materials 
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Polyethylene glycol dimethacrylate (PEGDM) with a molecular weight of 750 

kDa  and polyethylene oxide  (PEO)  (MW  400 kDa)  were  purchased  from  Sigma  

(St.  Louis, MO).  The photointiator Irgacure ® 2959 was purchased through Ciba 

Specialty Chemicals Corp. (Tarrytown, NY).  (3-trimethoxysilyl)propyl  methacrylate 

(TMPMA)  was purchased through Sigma.  Rhodamine-methacrylate was supplied 

by Polysciences, Inc. (Warrington, PA).  Albumin-Cy3 and streptavidin-Cy5 protein 

conjugates we acquired through Life Technologies (Grand Island, NY).  Microarray 

print buffer components, glycerol, triton X-100, were purchased through Sigma.  

Collagen I extracted from rat tail was supplied by Sigma.  Collagen III and collagen 

IV were extracted by human placenta and provided by Sigma. Laminin from 

Engelbreth-Holm-Swarm murine sarcoma basement membrane was acquired 

through Sigma.  Fibronectin purified from human plasma was obtained through EMD 

Millipore Corp. (Temecula, CA.).  α-elastin extracted from bovine ligament was 

purchased from Elastin Products Co (Owensville, Missouri).  Anti-collagen I, anti-

collagen III, anti-collagen IV, anti-laminin, anti-fibronectin and anti-elastin primary 

antibodies were obtained from EMD Millipore Corp.  Secondary antibody Cy3 

conjugate was purchased through EMD Millipore Corp.  Primary rat pulmonary 

arterial smooth muscle cells (PASMCs) were maintained in DME-F12 (Hyclone, 

Logan, UT), with 10% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, 

GA) and 1% Pen/Strep (Hyclone, Logan, Ut).  Rat mesenchymal stem cells were 

maintained in DMEM (Corning, Corning, New York) with 10% defined FBS (Hyclone) 

for MSCs and 1% Penn/Strep (Hyclone).  Bovine serum albumin (BSA) was obtained 

from Sigma.  (4′,6-diamidino-2-phenylindole) DAPI nuclear stain and Alexa488-

phallodin cytoskeleton stain were purchased through Invitrogen, Inc. (Eugene, OR).  

Primary anti-PECAM antibody was supplied through Novus Biologicals (Littleton, 

CO).  Secondary anti-rabbit IgG antibody conjugated with Alexa 555 was acquired 

through Invitrogen, Inc.  Vectashield hard mount mounting media was obtained 

through Vector Laboratories, Inc. (Burlingame, CA). 

 

5.2.2 Fabrication of PEGDM Soft Matrices 

An electrospinning solution composed of 3.2% wt PEGDM 750, 3.4% wt PEO, 

0.4 % wt of Irgacure 2959 and 93% DI H2O was mixed for 30 minutes with magnetic 



95 

stir bar. PEGDM  750  photopolymerizable soft  matrices  were  fabricated  by  

electrospinning  on  a  custom  setup  comprised  of  a  high  voltage power  supply 

(Gamma High Voltage Research, Ormond Beach, FL),  grounded  collecting  

surface,  motorized  syringe  pump (NE-300 New Era Pump Systems, Farmingdale, 

NY),  and  a  14mm  syringe.  The solution (2 ml) was spun at a distance of 26 cm 

from the stationary collecting surface, at the voltage of 30 kV, and a flow rate of 1.10 

ml/hr. Electronspun matrices were deposited onto standard glass slides (25mm X 

75mm, Fischer Scientific Inc.) that were pretreated with TMPMA to present 

methacrylate groups that can bond the matrices to the glass. PEGDM matrices were 

subsequently introduced into an inert argon environment to remove oxygen, and 

then were stabilized with polymerization under UV exposure (352 nm light) with an 

average intensity of 5 mW/cm2 for predetermined time durations. 

 

5.2.3. Characterization of PEGDM Soft Matrices 

 

5.2.3.1. FTIR Analysis 

PEGDM electrospun samples were first loaded into a sealed liquid-cell (Sigma), 

in the presence of an inert argon environment to prevent oxygen contamination 

during IR acquisition. The double bond conversion in PEGDM was evaluated using a 

real-time mid-range Fourier transform infrared spectroscopy  (FTIR)  (Nicolet  4700,  

Thermo Fisher  Scientific,  Waltham,  MA)  by  examining  the disappearance of the 

C=C peak within the methacrylate group (at ~1635nm) over time during 

polymerization under UV  light  (5  mW/cm2).  To account for sample and background 

variation, data were normalized with the C=O peak located in the range from 1650 to 

1726 cm-1.  

 

5.2.3.2. Scanning Electron Microscopy Imaging 

Scanning electron microscopy (FESEM, JSM-7401F, Jeol Ltd, Tokyo, Japan) 

was used to examine the microstructure of the electrospun PEGDM substrates in 

both dry and hydrated states. For hydrated samples, substrates were 

photopolymerized for 15 min and rinsed in DI H2O for 24 hr. To prepare for imaging, 

rinsed samples were shock frozen in liquid nitrogen (-195oC), and lyophilized for 
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approximately 24 hr. ImageJ was used to analyze changes in fiber diameter and 

porosity. 

 

5.2.3.3. Fluorescent Imaging 

To image the structure of PEGDM soft matrices in their hydrated state, 

rhodamine-methacrylate was introduced into the electrospun fibers and 

subsequently stabilized  with  UV  exposure  to  provide  fluorescence  of  the  

fibrous  structure. Matrices with PEGDM-rhodamine conjugates were then visualized 

using either a fluorescent microscope or a confocal laser scanning microscope. 

 

5.2.3.4. Rheology  

Changes  in  the storage  modulus  (G’)  of  PEGDM  substrates  with  respect  

to photopolymerization time were characterized using a rheometer, (ARES TA  

rheometer,  TA  Instruments,  New  Castle,  DE).  PEGDM matrices, with 

approximately 0.3mm in thickness, were deposited onto TMPMA-modified circular 

coverslips (18mm in diameter) and photopolymerized for 2, 5, 10, or 15 min, and 

then rinsed in DI H2O for 24 hr. PEGDM soft matrices were tested with a parallel 

plate configuration. A vertical load of 5 grams was applied to all samples to prevent 

slippage. A strain sweep at a frequency of 1 rad/s and a frequency sweep at a strain 

of 5% were run on each sample. Specimen were inspected for slippage or tearing 

after shearing, and data collected from the linear viscoelastic region in  the  strain 

sweep were used to determine the storage modulus G’.  Elastic modulus was 

calculated using the following relationship:  E = G’(1+ν) where E is elastic modulus, 

G’ is storage modulus measured in shear and ν is the Poisson’s ratio taken as 

approximately zero (Fozdar, 2011). 

 

5.2.4. ECM Protein Array Preparation 

Protein printing efficiency and optimization was developed using control 

proteins albumin-Cy3 and streptavidin-Cy5 conjugates.  A printing buffer consisting 

of 1% glycerol and 0.2% Triton X-100 was utilized for all protein depositions. To 

prepare ECM arrays, stock solutions of collagen I, collagen III, collagen IV, 

fibronectin, laminin, and elastin  were suspended at a concentration of 250 µg/µl in 
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printing buffer. For combinatorial arrays, collagen I is denoted as C1, collagen III as 

C3, collagen IV as C4, fibronectin as Fn, laminin as L, and elastin as E. Samples  

were  deposited  on the fibrous PEGDM matrix using Aushon 2470 arrayer with 185 

micron pins  (Aushon  BioSystems,  Billerica,  MA),  to  achieve  dots with a  nominal  

diameter  of  250  microns. Individual spots with 7 replicates (total of 8) of each 

protein combination were deposited with a 500 µm pitch distance onto the PEGDM 

matrices. Between different sample depositions, the print needles were cleaned by 

sonication in cleaning solution before use. Approximately twenty ECM microarrays 

could be deposited simultaneously in this method within ~1hr.   Prepared ECM 

microarrays were stored at 4°C in a humid environment for 24 h before use.  

 
Figure V - VI. Illustration of ECM Neotissue Fabrication and Utility for Multivariate Cell Culture 

Platforms. 

5.2.5. Cell Seeding and Cell Culture  

 

The microarray slides of fibrous PEGDM matrix containing ECM proteins were 

rinsed in DI H2O for 1 h, followed by sterilization with 70% ethanol for 1hr prior to cell 

seeding. Matrix microarray slides were equipped with 16mm x 16mm silicone 

multiwall chamber (Grace Bio-Labs) to partition individual microarray replicates. Cell 

seeding protocols were optimized using rat mesenchymal stem cells (MSCs) and 

primary cell rat pulmonary arterial smooth muscle cells (PASMCs) obtained from rat 

vascular pulmonary arteries (Figure S1, Supplement Information). Cells with 

passages of 3-8 were used for all experiments. PASMCs were detached from culture 

flask and suspended at a concentration of 106 cells per ml in serum free media. The 
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cell suspension was dispensed onto the 3-dimensional matrix microarray within the 

gasket region at a cell density of 105 cells per array and incubated for 2 hours. The 

arrays were then gently aspirated by submerging into a large chamber filled with pre-

warmed media. Culture media was changed daily.  Rat MSCs were extracted from 

femurs of 10 week old Sprague-Dawley rats weighing approximately 200g each. 

Metaphyseal heads of the femurs were removed and marrow was flushed out with 

ice-cold MSC culture media using 25g needles. Clumps in the marrow were 

dissociated by repeated aspiration with 18g needles and marrow suspension was 

filtered through 40µm nylon strainer. After a brief centrifugation, cells were re-

suspended in warm culture media and seeded. Media was completely replaced after 

24h to remove any unattached cells.  For neotissue cell seeding, a cell suspension of 

passages 2-5 with concentration of 106 cells per ml in serum free media was 

prepared. The cell suspension was dispensed onto the 3-dimensional matrix 

microarray within the gasket region at a cell density of 105 cells per neotissue array 

and incubated for 4 hours. The arrays were then gently aspirated into a large 

chamber filled with prewarmed media. Following aspiration, culture media (10% 

serum) was introduced into the microarray wells.  For cell culture lasting longer than 

24 h, the culture media was changed daily. 

 

5.2.6. Immunofluorescent Staining 

 

Following cell culture, neotissue arrays were samples were fixed with 3.7% 

formaldehyde at room temperature, permeated with 0.1% Triton X-100 and blocked 

with 3% BSA. Immunofluorescent staining of cells for cell nuclei (DAPI) and cellular 

cytoskeleton (Alexa488-phallodin) were utilized to observe cell adhesion and 

spreading respectively.  Platelet endothelial cell adhesion molecule (PECAM-1) 

antigenic staining was performed to characterize vascular differentiation.  For 

vascular marker immunostaining, samples were first incubated with primary anti-

PECAM in 1% BSA overnight at 4 ̊ C. Following primary antibody coupling, samples 

were washed 3X in PBS and incubated with secondary antibody anti-rabbit IgG 

antibody conjugated with Alexa 555 for 2 h at room temperature.  All samples were 
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finally mounted with Vectashield Hard Set mounting media and stored at 4 ̊ C for 

imaging.    

 

5.2.7. Confocal Imaging 

 

Confocal images were acquired using a Nikon A1R laser scanning confocal 

microscope piloted by NIS-Elements 4.0 and equipped with 405 nm, 488 nm, 561 

nm, and 640 nm laser lines.  Typically, the relative z position of the focal plane was 

ensured by using an equipped Nikon Perfect Focus System.  Unless otherwise 

stated, a 10x 0.5NA objective with the pinhole set to 1.2 Airy Units (AU) was used.  

Neotissue array large images were obtained using a motorized XY stage with piezo 

Z-Drive insert for rapid multidimensional (XYZ) imaging.  The image overlap was set 

to 5% and the resulting digital montage was generated using the same NIS-

Elements 4.0 software.  When needed, multiple z planes were acquired in order to 

capture all of the cells within each micro printed well.  A maximum intensity 

projection image was then generated using the piloting software. 

 

5.2.8. Image & Statistical Analysis 

Neotissue image intensities were obtained using National Institute of Health 

(NIH) ImageJ software (v.1.4).  For each neotissue array condition, a minimum of 3 

replicate arrays were imaged for statistical significance.  Replicate dots per a single 

array (8 per condition) were averaged and reported with standard error for each 

intensity evaluated respectively.  Nuclear intensities were normalized to the max 

adhesion values on each array.  F-actin and PECAM intensities were further 

normalized to their respective nuclear intensities to observe cellular spreading and 

vascular differentiation independent to cell number. To evaluate significant 

differences between the different protein and stiffness conditions, a 27 (6 proteins + 

elasticity) full factorial design was performed on all normalized 24 h data using 

Minitab statistical software (Minitab, State College, PA) to determine the magnitudes 

of main and interaction effects and their statistical significance respectively.  A 

minimum of 3 arrays for each experimental parameter investigated were used for all 

factorial analysis. 
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5.3. Results 

 

5.3.1. Characterization of 3-dimensional Fibrous So ft Hydrogel 

Matrix 

Fibrous hydrogels were prepared by electrospinning a photopolymerizable 

polymer (PEGDM) onto a TMSPSA-functionalized glass surface, followed by UV 

stabilization (Figure 1). The presence of methacrylate groups on the glass surface 

allows firm attachment of fibrous hydrogels for substrate stability and longevity after 

multiple rinses in aqueous solution, facilitating unabridged function for extended 

biological assays.  PEGDM (MW 750) was selected for its biocompatibility, ease of 

manipulation, elasticity, anti-fouling, and commercial availability (Zhu, 2009). The 

stabilization of PEGDM substrates is  achieved  via radical chain 

photopolymerization  between the  methacrylate groups  in  the  presence  of  a  

photoinitiator  and  UV  light (352nm).  We employed mid-range  FTIR   to  

characterize  the  degree  of  PEGDM  conversion  by monitoring the disappearance 

of the reactive methacrylate peak at 1637 cm-1 for samples over the course  of 15  

minutes  UV exposure (Figure 2A). Results showed the attenuation of the 

methacrylate peak with up to 46% reduction after 15 minutes of UV exposure. The 

lack of efficient methacrylate conversion is likely due to the occurrence of 

polymerization in the dry state, reducing chain mobility and active crosslinking 

domains for polymerization. 
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Figure V – 2.  Electrospun PEGDM fibrous hydrogel characterization.  (A) Mid-range IR 

identifies methacrylate conversion with UV exposure.  (B) Fibrous architecture was investigated 
using confocal laser microscopy and scanning electron microscopy in both wet and dry states.  
(C)  Shear stress vs. shear strain relationships for several PEGDM substrates prepared under 
different UV exposures.  (D) Translation of shear-strain relationships into elastic modulus using 

a Poisson ratio ν ~ 0 [16]. 

The fibrous architecture of electrospun PEGDM substrates was examined 

using different microscopy techniques (Figure 2B) in both hydrated and dry states. 

Copolymerizing the PEGDM fibrous hydrogels with rhodamine-methacrylate 

permitted the visualization of individual fiber diameter and geometry under confocal 

microscopy. Employing scanning electron microscopy, higher magnification images 

were obtained of the fibrous substrates in dry and wet states. Both imaging methods 

demonstrate the fiber diameter increased after hydration to approximately 0.5 -1µm. 

Lack of beading or webbing of the electrospun nets indicates optimal spinning 

parameters with minimal artifacts. 

To evaluate our capability to regulate the elastic properties of these fibrous 

substrates, mechanical properties were evaluated under shear using a parallel plate 

rheometer for PEGDM specimens prepared under different UV exposures at 2,  5,  

10 or 15 minutes. Results are presented in Figures 2C-2D. The storage modulus 
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increased with the UV exposure time from 400 Pa to 10 kPa after 2- and 15- minute 

UV exposure, respectively. The elastic modulus determined with the shear modulus 

measured here (Figure 2D) are in good agreement with compressive modulus 

determined in our previous work (Wingate, 2012). 

 

5.3.2. Design and Optimization of 3-dimensional Pro tein 

Microarray 

The deposition of protein microdots is illustrated in Figure 3. Array deposition 

produces repeatable distinct microdots of 240 ± 11.4 µm in diameter and 580 ± 16.8 

µm in pitch to pitch distance (Figure 3A). To optimize the presentation, homogeneity 

and longevity of protein dots in the 3-dimensional fibrous PEGDM substrates, we 

have performed iterations with a number of printing buffers using a quality control 

protein, albumin (Figure 3B). The glycerol content in the buffer was found to 

influence printing parameters significantly. With increasing glycerol content, protein 

dot circularity increased whereas the fluorescent intensity of dots decreased. The 

glycerol content of 1% (v/v) was sufficient in retaining dot circularity without markedly 

reducing protein intensity after incubation, and thus was used for all studies here. 

Serial dilutions of quality control proteins, cy3-albumin and cy5-streptavidin, revealed 

strong protein uptake by the fibrous PEGDM hydrogels, with proteins detected at a 

deposition concentration as low as 15 µg/ml (Figure 3C). The fluorescent intensity of 

microdots is correlated well with the deposition concentration. Figure 3D 

demonstrates 3-dimensional presentation of protein microdots with approximately 

200µm in diameter and 50µm in depth penetration of PEGDM fibrous substrates. 

Finally, optimized printing conditions are applied to produce 3-dimensional protein 

array with global deposition over a large area (10mm x 20mm); results show minimal 

perturbations occur in the array organization and layout (Figure 3E). 
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Figure V – 3. Protein Microdot Optimization.  (A)  Array layout depicted through color dye 
control.  (B) Optimization of buffer glycerol content achieves ideal spotting. Inset images scale 
bar 50 µm. (C) Serial dilution of two model proteins (Albumin-Cy3, Streptavidin-Cy5) 
demonstrating distinct dot deposition and periodicity. Scale bar 500 µm.  (D)  Confocal 
microscopy rendering of albumin-Cy3 deposition illustrating 3-dimensional dot presentation. 
Scale bar 50 µm.  (E)  Printing optimization techniques allow for global array deposition onto 
PEGDM substrates.  Scale bar  1 mm.  Inset image scale bar 500 µm. 

To further assess printing efficiency, we used six types of ECM proteins and 

their combinations. Imaging results demonstrate that collagen I microdots could be 

detected at the same resolution – concentrations similar to the quality control 

proteins (i.e. 15-250 µg/ml), which was stable after several days of continuous 

rinsing in PBS (Figure 4A). Figure 4B represents the design of a combinatorial ECM 

protein microarray comprised of 6 ECM proteins, resulting in a total of 64 protein 

conditions (rows) and replicates of eight (columns) for each condition. To ensure the 
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protein retention for all ECM proteins, antigenic immunostaining was performed, with 

immunofluorescence results on collagen I and collagen IV shown in Figures 4C and 

4D (note: all other protein data not shown for brevity). For all proteins investigated, 

we found that the immunofluorescence intensity correlated well with expected protein 

distribution and density. Nevertheless, it should be noted that some detectable 

fluorescence was observed on the protein combinations absent of the 

immunostained protein, for example, as shown on the slide stained with collagen IV 

antibody (Figure 4D).  We attributed this phenomenon to the cross reactivity (<10% 

for collagen I and III) of the collagen IV primary antibody used, as reported by the 

manufacturer (EMD Millipore). To prevent potential for protein carryover between 

depositions, we performed consecutive rinsing and sonication of the array tips 

between each deposition, ameliorating deposition artifacts between replicate dots. 

Therefore, distinct immunofluorescent detection of specific ECM proteins 

demonstrate successful deposition of combinatorial designs without condition 

carryover or contamination.   

 

 
Figure V – 4.  Design and Characterization of Combinatorial Protein Neotissue Array. (A) 
Design of a combinatorial ECM matrix with 6 proteins yielding 64 unique spotting combinations: 
C1 (collagen I), C3 (collagen III), C4 (collagen IV), L (Laminin), Fn (Fibroncetin), E (Elastin). (B) 
Serial dilutions of Collagen I are retained after several rinsing stages and detectable at 
concentrations as low as 15 µg/ml (n=8). Immunostaining of combinatorial ECM matrix for 
collagen I (C) and collagen IV (D) after deposition and rinsing.  Scale bar 1 mm. 

 

5.3.3. Stem Cell Adhesion and Spreading within 3-di mensional 

Neotissue Arrays 

To demonstrate the feasibility of our matrix hydrogel arrays to support cell 

adhesion and spreading for the formation of 3-dimensional engineered 

microenvironments, we developed seeding protocols for MSCs (progenitor/stem 

cells) and PASMCs (primary cells). Images of PASMC arrays were shown in Figure 



105 

S1 (supplemental information). MSCs were seeded onto the soft hydrogel arrays (E 

= 4.6 kPa) in serum-free media for 4 hours at 37oC, followed by gentle aspiration and 

extended culture in serum-containing media for an additional 20 hr. The MSCs 

attached preferentially to the protein deposited regions with little to no cell 

attachment observed on the neat PEGDM fibrous matrix (Figures 5A-5B). Upon 

closer inspection, distinct cellular islands formed 3-dimensional engineered 

neotissue microdomains within specialized matrix microenvironments, showing a 

tissue thickness of approximately 50-100 µm (Figures 5C-5D). MSC attachment and 

spreading are analyzed with fluorescent microscopy imaging, after stained with DAPI 

(nucleus) and phallodin-488 (F-actin). Staining for cell nuclei identified distinct cell 

populations associated with the ECM protein depositions (Figure 5E). Results on 

quantification of MSC adhesion are illustrated in Figures 5F-5G, which show 

preferential matrix conditions for 3-dimensional cell adhesion.  For instance, a 

mixture of collagen I and collagen III yielded approximately 3-fold increase in DAPI 

intensity compared to elastin alone.  High-resolution micrographs of the cells in 

relevant protein matrix environments taken from the DAPI intensity images, 

confirmed the affinity of certain protein conditions that support cell adhesion over 

others. To evaluate matrix effects on cellular spreading and morphology, 

fluorescently labeling of cell F-actin was performed and analyzed with normalization 

to the respective DAPI intensity measurement for each protein condition.  Figure 5H 

demonstrates the strong dependence of MSC spreading on protein environments of 

the matrix. Several protein conditions were identified to significantly influence MSC 

spreading in the neotissue array. The spreading for MSCs cultured on collagen I 

microdots showed nearly 2-fold increase when compared to MSCs cultured on 

elastin microdots.  Notably, eight combinations of a total of 63 combinatorial matrix 

environments exhibited F-actin intensity of less than 1 relative to the DAPI intensity, 

which indicates minimal spreading. Overall, these results highlight the potential of 

using our fabricated neotissue array platform to capture cellular phenomenon in 

precisely-defined microenvironments and to determine cause-effect relationship of 

matrix environments on cells. 
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Figure V – 5. Rat mesenchymal stem cells (MSCs) adhered on neotissue slides (E = 4.6 kPa 
substrate).  (A)  Confocal montage image of neotissue array after 24 h cell culture with distinct 
cellular islands visible for all protein spotting conditions (scale bar 1 mm)(green, f-actin; blue, 
DAPI).  (B)  Magnification of a4 subarray depicting cellular dot circular geometry and periodicity 
(scale bar 500 µm).  (C,D) Confocal 3-dimensional rendering of cell loaded subarray (C)(scale 
bar 250 µm) and of a single cellular dot (D).  (E) Nuclear staining of MSCs seeded on the 
neotissue arrays for image analysis and quantification.  (F)  3-dimensional bar graph 
representing the average nuclear pixel intensities for all protein combinations for image (A).  
(G,H)  Sorted average pixel intensities for adhesion (G) and spreading (H) for all protein 
combinations after 24 h cell culture (n = 3 neotissue arrays); Insets depict cellular dot images 
for adhesion and spreading of representative protein conditions (scale bars 100 µm). 

5.3.4. Effect of Protein Environment and Matrix Ela sticity on MSC 

Adhesion and Spreading 

To investigate the effects of matrix elasticity and ECM protein environment on 

MSC adhesion and spreading, we evaluated MSCs on the 3-dimensional fibrous 

matrix arrays prepared with two UV exposure times, 5 and 15 minutes, which 

produce substrates with different elasticity, 4.6 and 20 kPa, respectively. Figure 6 

shows the distinct patterns of 3-dimesional adhesion and spreading of MSCs on soft 

(4.6 kPa) and stiff (20 kPa) matrix arrays after 24-hour cell culture. Cell attachment 

and spreading on both arrays were confirmed, as illustrated in Figure 6A. Statistical 

analysis of the MSC adhesion and spreading profiles highlighted a diverse set of 

protein combinations that are correlated to either positive or negative influence with 
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respect to different matrix elasticity conditions (Figure 6B).  In an effort to delineate 

the regulatory mechanisms underlying the effects of elasticity, protein environment, 

and their interaction on cell activity, we compared the variations of average MSC 

adhesion and spreading for each protein environment on the 4.6 kPa array with 

those on the 20 kPa array (Figures 6C-6D). Comparison of the average MSC 

adhesion profiles on 4.6 kPa and 20 kPa matrices revealed a nearly linear 

relationship with the exception of few outliers, suggesting cell adhesion in most 

protein environments is independent of matrix elasticity. Among the few outliers, 

MSC adhesion on C1·C4·L was favored in the 20 kPa matrix, whereas C3·C4·Fn 

was favored in the 4.6 kPa matrix. These trends are further illustrated with 

corresponding images which depict distinct adhesion profiles in various elasticity and 

protein environments. MSC spreading was found to be strongly influenced by the 

matrix elasticity (Figure 6D). Compared to the 20 kPa array, MSC spreading on the 

4.6 kPa array significantly increased. Compared to cell adhesion, MSC spreading 

was more synergistically regulated by matrix elasticity and adhesive protein 

environments. Cell spreading in several protein environments (i.e. C1·C4·Fn·E and 

L) favored the 4.6 kPa array and others (i.e. C3·E, Fn·E) favored 20 kPa array. 

Several distinct cell spreading conditions existential to elasticity and protein 

combinations are also illustrated with corresponding images (Figures 6D-6F). 
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Figure V – 6. Cultured MSCs display differential adhesion and spreading characteristics in 
response to protein combination and matrix elasticity.  (A,B) Cellular structures, nuclei and f-
actin, are stained, imaged (A) and quantified using software to produce an average intensity 
map (B) for distinct elastic environments (4.6 kPa;20 kPa). (C,D) Comparison of average 
adhesion (C) and spreading (D) of MSCs on each protein condition for soft (4.6 kPa) and stiff 
(20 kPa) neotissue substrates. Conditions denoted by blue or red significantly favor adhesion or 
spreading for soft (4.6 kPa) or stiff (20 kPa) matrix elasticity respectively, purple denotes both. 
Insets depict adhesion and spreading of representative protein conditions screened from the 
arrays in (A) (scale bars 100 µm).  (E,F) Results of 27 full factorial ANOVA of significant (p < 
0.01) main and interaction effects for DAPI (E) and f-actin (F) intensities supporting either soft 
(4.6 kPa) or stiff (20 kPa) matrix conditions (n = 3 neotissue arrays).  Blue and red dots 
represent prominent protein conditions supporting significant effects only on soft (4.6 kPa) or 
stiff (20 kPa) or both (purple dot) substrates respectively.   

The equivocal activity of several protein combinations and their effects on 

MSCs under different elastic substrates inspired us to perform full factorial design 

and subsequent analysis of variance (ANOVA) for main (1-factor) and interaction (27-



109 

factor) effects with a significance level of p<0.05. Results are shown in Figures 6E-

6F, which respectively demonstrate the effect magnitude for matrix elasticity on cell 

adhesion (Figure 6E) and cell spreading (Figure 6F) in all protein environments (see 

Supplementary Figure S2 for enumeration of all effects). Our results revealed that 

the protein environment exhibiting the most significant upregulation on cell adhesion 

was C4 for both stiffness environments (20 kPa and 4.6 kPa), while few protein 

environments were found to decrease (e.g. C3·C4) cell adhesion on both arrays, with 

protein-regulated variations independent of elasticity. Finally, cell adhesion variations 

for other protein environments were differentially regulated by the matrix elasticity. 

For example, C1 promoted cell adhesion on the 20 kPa array but weakened 

adhesion on 4.6 kPa. Interestingly, we revealed an inverse adhesive profile for 

C1·C3·E condition, whereby enhanced attachment was observed for soft substrate 

when compared to stiff substrate which had reduced adhesion. Similar to adhesion, 

we estimated the contribution of matrix elasticity, protein environment and their 

interaction on MSC spreading variation using factorial ANOVA (Figure 6F).  Cell 

spreading was markedly enhanced by C4 but reduced by Fn·E on both 20 kPa and 

4.6 kPa arrays. Several protein environments, however, significantly influence cell 

spreading only under one matrix elasticity: C3·L·Fn enhanced spreading on 4.6 kPa 

alone, while C1·C3·C4·L·Fn·E enhanced spreading on 20 kPa alone. In contrast, 

reduced spreading conditions were revealed to be C1·C3·C4·Fn and C1·C3·L·Fn·E 

for 4.6 kPa and 20 kPa, respectively. Overall, performing linear regression (Figures 

6E-6F) revealed positive trends for MSC adhesion and spreading on softer 

substrates (4.6 kPa) compared to stiff (20 kPa).  Furthermore, both adhesion and 

spreading array analyses revealed a tendency to support similar significant effects 

on attachment and spreading potential (positive slope) of all protein environments on 

these matrices.VII 

5.3.5. Effects of Matrix Elasticity and Adhesive Pr otein 
Environment on MSC Fate Commitment in 3-dimensional  
Engineered Neotissues 
 

To explore effects of neotissue microenvironments on stem cell 

differentiation, we cultured MSCs within our neotissue arrays for 24 h under two 
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different elasticities and then stained cells for the vascular marker PECAM.  

Representative MSC cultures within neotissue arrays are depicted in Figure 7A, 

stained for cell nuclei (blue), F-actin (green), and PECAM (red). Immunostaining 

for the differentiation marker PECAM resulted in detectable levels after 24 h 

culture on both elastic arrays (Figure 7B). Cell images on several relevant protein 

conditions and as per elasticity are illustrated in Figure 7C. Interestingly, PECAM 

expression intensity was notably greater on stiff (20 kPa) vs. soft (4.6 kPa) matrix 

(Figure 7D). On each elastic array, several protein environments were identified 

to significantly influence PECAM expression. Notably, C1·C4·Fn·E and C1 

provided the greatest difference in PECAM intensity for 4.6 kPa matrix when 

compared to 20 kPa matrix. Likewise, C3·E, C3·L·E, and C4·L·Fn resulted in 

upregulated PECAM expression on 20 kPa matrix and much lower expression on 

4.6 kPa. Of the top ten protein environments that enhanced PECAM expression 

on 4.6 kPa matrix, 2 conditions contained laminin; however, comparison to the 

bottom ten environments, 7 conditions contained laminin, while all other types of 

proteins see nominal fluctuation between the top ten and bottom ten protein 

environments for PECAM. Further, of those 7 conditions, 5 represented 

combinations of laminin and fibronectin. This suggests laminin reduces PECAM 

expression on 4.6 kPa substrate. Comparably, the ten highest PECAM intensities 

for 20 kPa matrices all lacked collagen I, with laminin and elastin constituting the 

greatest frequency at 6 and 5 conditions out of 10 respectively.  Interestingly, the 

ten lowest PECAM intensities for 20 kPa matrices showed a considerable 

increase in collagen I content (5 out of 10) and a significant decrease (2 of 10) in 

elastin frequency.  Altogether, these results suggest that elastin and collagen I 

play important but opposite roles in determining overall PECAM expression on 

stiff matrices, while laminin, in particular laminin mixed with fibronectin, play a role 

in reducing PECAM on soft matrices. 

We estimated the contribution of matrix elasticity, protein environment and 

their interaction on PECAM expression variation using factorial ANOVA for each 

of 128 neotissues assayed Figures 7E-G. Detecting significant effects of those 

factors on PECAM expression level represent PECAM variation for elasticity 

regulation (E), protein environmental effect (P), and elasticity-regulated variation 
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for protein environmental effect (E × P, elasticity-by-environment interaction). A 

total of 67 conditions varied in PECAM expression level between two elasticity 

matrices independently of the protein environment (pE<0.05, pE × P>0.05). This 

is a set of conditions whose PECAM level is regulated by the matrix elasticity but 

this variation is not protein-dependent. The PECAM level of 20 conditions was 

affected by the protein environments independently of the matrix elasticity 

(pP<0.05, pE X P>0.05), which represent roughly 15% of the conditions surveyed. 

Finally, 27 conditions showed significant interaction between the stiffness and the 

environments on PECAM expression (pE × P<0.05).  This latter group represents 

MSC expression of PECAM that responds differently to the protein environments 

examined, depending on the matrix elasticity, and therefore represent engineered 

neotissues with MSC differentiation synergistically regulated by matrix elasticity 

and protein environments.  Notably, C4·L·Fn·E significantly enhanced PECAM 

expression on stiff matrices (20 kPa) alone, while C3·L·Fn on soft matrices (4.6 

kPa) alone.  Further, C1·C3·L·Fn·E significantly reduced PECAM expression on 

stiff matrices alone, while C3·Fn on soft matrices alone. Unlike analysis results for 

cell adhesion, no protein condition resulted in inverse PECAM expression on the 

different elastic matrices. Some of the prominent protein conditions that 

significantly influenced PECAM expression positively and negatively, irrespective 

of elasticity, include C3·L·Fn·E and C3·C4·L·Fn, respectively. Linear regression 

of all significant PECAM effects revealed a positive regression slope suggesting 

significant PECAM expression conditions generally followed similar trends 

between both elastic matrices.  

To further decouple the stiffness effect on cell differentiation from protein 

effects, comparison of the general effects obtained through 27 full factorial 

ANOVA of substrate elasticity over all cellular phenomenon is presented in Figure 

7F. In agreement with our previous findings, MSC adhesion and spreading 

significantly (p < 0.001) correlated negatively for all protein conditions on stiff (20 

kPa) matrix compared to soft (4.6 kPa). Interestingly, despite negative influences 

on adhesion and spreading, stiff matrices significantly (p < 0.05) upregulated 

PECAM expression irrespective of protein condition, when compared to soft 

matrices.  Of the significant (p < 0.05) effects leading to reduced PECAM 
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expression, thirteen conditions were found on 20 kPa substrate versus eighteen 

conditions on 4.6 kPa substrate. We note that of the eighteen significantly 

negative effects on PECAM expression for soft substrate, eight were not shared 

with the stiff substrate (20 kPa).  Investigating the average PECAM intensities for 

both substrates we find the maximum intensity reported for 20 kPa to be 

approximately 15% greater than that measured on 4.6 kPa (data not shown). 

Collectively, these trends suggest that matrix elasticity may have a more 

significant role in PECAM expression of MSCs cultured on our neotissue arrays 

than any of the protein environments presented.   

 

5.4. Discussion 

The need for engineered stem cell niches integrating several extrinsic stimuli 

has become a significant challenge within the research community.  Recent 

evidence suggests that cells react to a complex mechanosensing apparatus whereby 

the interaction of ligand tethering and ECM stiffness can impart differential cellular 

functions (Seo, 2013), including differentiation (Trappmann, 2012).  Indeed, 

emerging reports have highlighted the significance of protein conformational status 

which is influenced by the underlying matrix stiffness (Anita, 2008), or chemistry 

(Klotzsch, 2014) effectively modulating the presentation of binding sites for cell 

receptors and/or growth factors (Hynes, 2009), the entirety of which can significantly 

influence cellular processes (Cole, 2009).    Due to the lack of existing methods to 

accurately and efficiently capture these complex microenvironments, we created a 

high throughput method whereby 3-dimensional matrix physical properties and 

biological ligand could be modulated.  The design of a multivariate protein array for 

screening of stem cell microenvironments required the fabrication of an appropriate 

platform incorporating 3-dimensional substrate with fiber architecture and tunable 

elasticity and finally the integration of a combinatorial ECM protein library upon our 

engineered substrates.   

The choice of neotissue substrate was an important requisite of our design 

which necessitated: 1) tunable elasticity, 2) 3-dimensional architecture, 3) 

reproducible fabrication, and 4) ease of sample production.  For this work, we chose 
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a soft, fibrous hydrogel platform prepared from an electrospinning method as 

previously described (Wingate, 2012; Wingate 2014).  Recent studies have 

highlighted the importance of 3-dimensional, fibrous matrices to optimize stem cell 

niche environments (Carlson, 2012; Lim, 2009), as well as their candidacy as 

platforms for MSC differentiation into vascular lineages (Wingate, 2012; Wingate, 

2014).  We find electrospinning, followed by UV polymerization to represent a highly 

versatile technique whereby stiffness and microstructure can be reproduced with 

high fidelity.  The electrospun matrices produced here require facile production 

techniques, meanwhile providing reproducible elastic moduli of ~3–20 kPa which 

represent biologically relevant stiffness range for native vasculature (Wingate, 2012), 

while avoiding disparity in substrate architecture and geometry. 

We chose a contact style arrayer for the protein deposition which is capable of 

depositing up to 3200 distinct protein dots, of ~240µm diameter and pitch 500µm, 

onto a standard 25mm x 75mm microscope slide.  Protein deposition volume is on 

the order of picoliters (MacBeath, 2000), which represents several orders of 

magnitude less reagent required for traditional-scale cultures.  Tailoring of the 

printing buffer for ECM proteins was found to significantly affect doting efficiency 

upon our unique substrates.  Others have reported buffer reformulations for 2-

dimensional microarray technologies (Flaim, 2005; Soen, 2006).  We found 

significantly less glycerol content was necessary to retain our protein deposits on our 

3-dimensional substrates.  Our methodology requires printing upon a dry electrospun 

surface, whereby the lack of substrate moisture likely assists in dot uptake and 

retention, removing the necessity for increased glycerol concentration.   

The neotissue arrays we prepared here revealed a robust biological response 

of MSCs cultured within these substrates.  MSCs were found to attach preferentially 

to protein deposited microdots, retaining the array structure and periodicity.  In the 

absence of protein spotting, lack of cellular attachment and spreading was ostensible 

due to the inert and anti-fouling properties (Zhu, 2009) of the neat PEGDM 

electrospun matrices.  Furthermore, evidence of 3-dimensional cellular organization 

was detected over a diversity of protein and substrate conditions. Using both stem 

cell and matured cells in our study, we showed the method described here could be 

amenable to virtually any cell line of interest, with minor modification to current 
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protocols.  For this work, we only investigated the cellular response on MSCs over 

24 h and 72hr (Figure S1, Supplemental Information); however, preliminary extended 

cell culture experiments demonstrated that these neotissue arrays retained their 

structure and functionality up to 7 days continuous culture.  Therefore, we suspect 

these neotissue arrays can easily be adapted for longer cell culture regiments, with 

the potential to integrate spatiotemporal signals.   

Our focus on vascular regeneration inspired the choice of proteins employed: 

collagen I, collagen III, collagen IV, laminin, fibronectin and elastin; all of which are 

amply represented in the native vasculature (Davis, 2005) and have distinct roles in 

development and vasculogenesis (Davis, 2005; Wagenseil, 2009).  However, we 

note that our developed technique is adaptable to virtually any protein combination 

or formulation of interest for the end user. The choice of protein concentration 

utilized for cell culture was another important design consideration for our neotissue 

arrays. We found cellular attachment with as little as 15 µg/ml spotting concentration 

of pure collagen I could be achieved on our PEGDM electrospun substrates (data 

not shown). Therefore, we chose a protein dot concentration of 250 µg/ml for our 

experiments in order to ensure sufficient representation of each protein mixture.    

The ability to deposit complex protein combinations onto our engineered soft 

matrices with high reproducibility and accuracy encouraged us to adapt this 

technology towards a high-throughput neotissue platform.  Current cellular 

microarray technologies lack the amenity to observe substrate parameters such as 

elasticity, geometry and biological ligand in synergy. Attempts to integrate multiple 

signals into microarray technologies have been reported previously. Gobaa et al. 

successfully coupled tunable elastic microwells with array spotting technology to 

investigate the effects of cell density, substrate elasticity and protein on the 

adipogenic or osteogenic differentiation of MSCs in 2-dimensions (Gobaa, 2011).  

However, emerging evidence suggests a drastically different ensemble of biological 

signals exists for stem cells when cultured in 3-dimensions (Huebsch, 2010; Battista, 

2005).  Recent attempts at 3-dimensional microarray platforms have emerged with 

promising results (Fernandes, 2010; Dolatshahi-Pirouz, 2014), but the integration 

and independent modulation of several mechano-chemical factors in 3-dimensional 

formats is still a considerable challenge in the microarray community (Ranga, 2012).  
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A key aspect of our neotissue arrays is their ability to incorporate significant matrix 

parameters, including 3-dimensional geometry, elasticity and biological ligand, and 

investigate their effects in synergy or independently on cellular phenomenon in high-

throughput fashion.  However, one limitation of our neotissue arrays, compared to 

other micro-engineered niche environments (Hui, 2007), is that it’s comprised of a 

single medium chamber, thereby allowing cellular crosstalk events among different 

conditions.  Adaption of our technology to a multiwell format (Khetani, 2007) or 

proper spotting randomization (Gobaa, 2011) could obviate this problem.   

Our interest in vascular regeneration prompted us to evaluate the potential of 

our neotissue arrays to instruct vascular commitment of MSCs.  Several reports have 

observed the differentiation of MSCs into vascular lineages in vitro (Oswald, 2004; 

Pittenger, 1999).  The majority of literature regarding stem cell differentiation into 

vascular lineages involves precise soluble factor regiment (Oswald, 2004), 

application of shear (Ahsan, 2010), matrix rigidity (Engler, 2006; Wingate, 2014), 

composition of the ECM (Kniazeva, 2011; Lozito, 2009; Wang, 2013), or multiple 

factors (Wingate, 2014; Portalska, 2012).   For example, it has been shown that the 

administration of vascular endothelial growth factor (VEGF) (Oswald, 2004) or 

combination with shear stress (Wu, 2008) or matrix elasticity (Wingate, 2014) 

instructs MSC differentiation into vascular lineages.  Wang et al demonstrated the 

significance of ECM proteins in determining the vascular commitment of MSCs 

(Wang, 2013).  Others have reported on specific ECM environments for improved 

vascular differentiation of MSCs (Yang, 2010).  However, few studies have 

investigated the role of insoluble matrix factors combined with elasticity in modulating 

vascular commitment of MSCs.  Abdeen et al demonstrated a positive correlation 

between 2-dimensional fibronectin-modified hydrogels and stiffness towards 

proangiogenic signaling of MSCs (Abdeen, 2014).  Despite significant progress in 

defining MSC to vascular differentiation protocols, a fundamental understanding of 

how matrix ligand, in concert with tunable elasticity in 3-dimensional environments, 

as presented in this study, is largely missing.  

We postulated that the merging of biological ligand with appropriate elasticity in 

3-dimensional environment could augment or repress the fate commitment of stem 

cells into specific lineages. Our work revealed a strong dependence of matrix protein 
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composition and elasticity on MSC cellular processes including adhesion, spreading 

and differentiation toward early vascular lineages.  Interestingly, we observed a 

negative correlation between MSC adhesion and spreading with substrate stiffness.  

Though stiffer 2D substrates generally increase receptor-ligand activity leading to 

increased F-actin expression and thus cell spreading, our results showed a different 

trend with 3D matrices which might be caused by different focal adhesion 

mechanisms employed by 3D cell-matrix interaction compared to 2D cell-substrate 

(Cukierman, 2002).  In fact, evidence suggests that the creation of cellular focal 

adhesions on compliant 3-dimensional substrates is abrogated preventing cell 

traction forces, whereas rigid substrate analogs prevent cells from exerting sufficient 

force to deform their matrix (Huebsch, 2010); with these events directly influence 

cellular spreading upon substrates.  In contrast, the inclusion of biological ligands at 

specific densities can result in differential spreading of cells regardless of substrate 

stiffness.  Trappmann and colleagues observed similar spreading of cells on stiff 

substrates with a 5-fold reduction in active ligand binding sites compared to neat soft 

substrates (Trappmann, 2012).  The mechanism by which ECM protein and 

substrate elasticity effects MSC adhesion and spreading here is not fully understood.  

From the cited literature, it is likely protein-elasticity crosstalk influences MSC 

attachment and spreading observed here.  Probing the ability to activate and 

deactivate certain integrin signaling events via protein interaction with substrate 

stiffness may help elucidate these complex phenomena (Chaudhuri, 2014).   

We evaluated the efficacy of our neotissue arrays to instruct MSC 

differentiation towards vascular lineage. Our data revealed a strong dependence of 

matrix protein composition and elasticity on MSC differentiation toward vascular 

lineages.  Indeed, several combinatorial environments were arrived at that 

significantly up- or down- regulate expression of PECAM.  For instance, we observed 

a negative correlation for PECAM expression for laminin on soft matrix, when 

compared to stiff which was comparably positive.  Likewise, we found an inverse 

relationship between collagen I and elastin protein to down and upregulate PECAM 

expression on stiff but not soft substrate respectively.  These findings are in 

agreement with previous observations that report the capacity of MSC differentiation 

in vascular lineages by individual stimuli such as elasticity (Engler, 2006) or 
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biological ligand (Suzuki, 2010; Kniazeva, 2011; Lozito, 2009; Wang, 2013).  For 

instance, the PECAM level affected by collagen I-related environments 

independently of the matrix elasticity may be explained by the lack of collagen I in 

normal endothelium (PECAM+) and increased collagen I content (Dean, 2005) in 

damaged endothelium to promote trans-differentiation of endothelial cells to 

mesenchymal cells (Breitbach, 2007).  We note that unlike previous studies, our data 

revealed the potential to augment or suppress cellular functions by coupling discrete 

protein combinations with appropriate matrix elasticity.  Recent evidence suggests a 

significant crosstalk between ECM protein and underlying matrix elasticity.  

Fibronectin exhibits greater unfolding on stiffer substrates (Antia, 2008), improving 

expression of cell binding domains and cellular attachment of fibroblasts (Seo, 

2013).  Further, it has recently been recognized that focal-adhesion kinase (FAK), a 

mechano-sensing integrin signal important for cellular differentiation (Liao, 2013), 

can be differentially activated based on ECM protein combined with substrate 

stiffness (Seong, 2013).  In line with that, ECM stiffness alone was found to induce 

malignant phenotypes in normal mammary epithelial cells, but this effect could be 

abrogated when accompanied by an increase in basement-membrane ligands 

(Chaudhuri, 2014).  These led to a mechanism whereby substrate stiffness coupled 

with ECM composition can modulate cellular phenotype, suggesting that substrate 

mechanical cues may instruct diverse effects on cell behavior depending on the 

presence and type of integrins presented. Our study reinforce the fact that distinct 

protein environments signal cellular phenomenon diversely when presented on 

matrices of different stiffness.  This group represents MSC expression of PECAM 

that responds differently to the protein environments examined, depending on the 

matrix elasticity, and therefore MSC differentiation can be synergistically or 

antagonistically regulated by matrix elasticity and protein environments. 

While different protein combinations induced differential cellular processes, we 

also demonstrated a significant dependence of matrix elasticity on the up-regulation 

of PECAM independent of the protein combination.  It is widely accepted that matrix 

elasticity directs MSC differentiation and commitment into different lineages (Engler, 

2006; Wingate, 2012).  These findings have been further validated with recent 

observations that stem cell differentiation is predominantly driven by the underlying 
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substrate stiffness even in the presence of protein tethering (Wen, 2014).  Our data 

revealed a significant (p<0.05) up-regulation of vascular marker PECAM on stiff 

substrate (20 kPa) in comparison to soft substrate (4.6 kPa).  The stiffness we report 

here for optimal vascular commitment of MSCs is in agreement with recent studies.  

For instance, Kshitiz et al linked optimum levels of PECAM expression of cardiac 

progenitor cells cultured in 3-dimensional-matrices approaching an elasticity of 16 

kPa (Kshitiz, 2015).  The authors suggested a mechanism by which the expression 

of VEGF receptor (VEGFR2) was enhanced under the effective elasticity observed, a 

mechanosensing pathway previously described for human microvascular endothelial 

(HMVE) cells (Mammoto, 2009).  Another recent study reported a pro-angiogenic 

secretome for MSCs cultured on substrates of 20 kPa stiffness when compared to 

softer substrates (2 kPa) (Seib, 2009).  These studies are complimentary to the 

findings we report here, whereby appropriate stiffness is likely crucial in the fate 

decisions afforded by stem cells in response to their ECM environment and 

specifically in the context of vascular regeneration.   

 

5.5. Conclusion 

We developed a high throughput method that allows for the rapid screening of 

a diversity of engineered microenvironments with tunable matrix elasticity and 

geometry, combined with specific ECM protein combination. This work highlights the 

importance and necessity of employing a systemic approach, whereby incorporating 

several environmental signals becomes necessary to establish optimal MSC 

differentiation protocols.  Collectively, our data suggests that a complex milieu exists 

coupling protein functional behavior with substrate elasticity and that this 

phenomenon may potentially be exploited through proper application of high-

throughput screening methodologies.  Future studies will be focused on adapting this 

technology to instruct specific MSC differentiation processes by expanding the library 

of ECM proteins and experimental parameters employed.   
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Chapter VI 

Nanofibrous Photoclickable Hydrogel 
Microarrays for High-Throughput Screening of 

Cellular Microenvironments  
 

 

Abstract: Stem cell (SC) therapy promises to revolutionize the treatment of various 

diseases with the potential to regenerate functional tissues in vitro or in vivo. Several 

recent studies have demonstrated that cellular microenvironments such as ligand-

activated cell-matrix interactions and/or matrix physical properties such as elasticity 

and geometry have significant role in directing the differentiation processes in stem 

cells (Lutolf, 2009; Wingate, 2012). Microarrays have emerged as an important tool 

for studying stem cell processes in a high-throughput manner (Gupta, 2010; Gobba, 

2011). Nevertheless, most of the existing ECM arrays being either 2-D or shallow 3-

D are not able to capture the effects of biophysical and chemical cues on stem-cell 

fate completely.  Here, we report the development of a microarray platform based on 

electrospun nanofibrous hydrogels of photoclickable thiol-ene poly(ethylene glycol) 

(PEG) hydrogels. Thiol- ene polymerizations proceed by an orthogonal, step-growth 

mechanism where one thiol reacts with one ene leading to a highly homogenous 

distribution in crosslinks, thus imparting tunable substrate stiffness with high fidelity 

(Hoyle, 2010). Furthermore, it allows for the subsequent covalent post-modification 

of PEG thiol-ene hydrogel substrates with small engineered peptides with high 

reactivity and specificity. Taken together, the manipulation of the matrix properties, 

such as stiffness and geometry, in concert with engineered peptides will facilitate the 

interrogation of multiple and distinct SC microenvironments. To this end, we 

demonstrate the potential application of this high-throughput technology for 
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screening of a variety of engineered 3D microenvironments for stem cell fate 

optimization. 

 

 

 

 

6.1.    Introduction 

Stem cells are intrinsically influenced by their microenvironment through ligand-

activated cell-matrix interactions and/or matrix physical properties such as stiffness 

and geometry, collectively eliciting a significant role in directing the differentiation 

processes in stem cells.  The utility of high-throughput microarrays for screening 

various libraries of biomolecules, such as proteins and peptides, has increasingly 

become a popular interrogation platform to study the effects of various molecules 

(biological or synthetic) on cellular behavior (Anderson, 2005; Flaim, 2015; Gobaa, 

2011).  Cellular microenvironments represent a diverse myriad of signaling events 

through soluble (growth factors) and insoluble (matrix proteins) factors; together 

directing highly specialized tissue homeostasis, morphogenesis and differentiation 

(Floren, 2015; Flaim, 2005).  Thus, the ability to screen these matrix cues both 

individually or with interaction against relevant cellular models is of considerable 

interest in tissue engineering and regenerative medicine.  Nevertheless, most of the 

existing cellular microarrays being either 2-D or shallow 3-D are not able to capture 

the effects of biophysical and chemical cues on stem cell fate decisions completely. 

Extracellular matrix (ECM) proteins are comprised of a myriad of physical and 

chemical signaling motifs.  Small engineered peptides (SEPs), based off of 

recognized signaling motifs, have been developed to investigate the effects of 

individual peptide sequences on cellular activity in a highly specific manner.  For 

instance, RGD sequence, widely accepted to participate in integrin-mediated 

adhesion of cells to surfaces (Ruoslahti, 1987), is ubiquitous in nature and found in 

several ECM proteins such as fibronectin, vitronectin, laminin, and collagen 

(Pierschbacher, 1984).  Consequently, several studies have incorporated RGD and 

other adhesive ligands into tissue engineered scaffolds with the aim to tailor the 

biological response of cells (Shu, 2004; Hersel, 2003; Nuttelman, 2005). 
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Microarrays have emerged as an important tool for studying stem cell 

processes in a high-throughput manner (Gupta, 2010; Gobba, 2011). Nevertheless, 

most of the existing ECM arrays being either 2-D or shallow 3-D are not able to 

capture the effects of biophysical and chemical cues on stem-cell fate completely.  

Further, it is often difficult to decouple the compounding effects of multiple integrin 

motifs present in full ECM proteins with regard to stem cell fate decision processes.  

However, combinatorial studies investigating the individual and synergistic role of 

several SEPs on stem cell differentiation in a relevant model, i.e. soft, fibrous matrix, 

are absent. 

To address these issues, we developed soft, fibrous hydrogels based on PEG 

thiol-ene substrates.  The utility of thiol-ene chemistry allows for the incorporation of 

orthogonal reactive groups by exploiting the reactivity of thiols (cysteine residues) 

and therefore offers a diverse library of molecules for functionalization.  We further 

demonstrate the novelty of our technique by developing high-throughput microarrays 

with various thiol-functional molecules or peptides to direct cellular adhesion and 

spreading.  This technique is amenable to a variety of analytes, meanwhile 

presented on a highly tunable hydrogel, via stiffness or geometry, allowing for the 

screening of a wealth of engineered microenvironments correlating to directed 

cellular processes. 

 

6.2.    Materials & Methods 

 

6.2.1. Macromer synthesis 

Four-arm poly(ethylene glycol) norbornene (PEGNB) was synthesized as 

described in detail elsewhere (Roberts, 2013). Briefly, first 5-norbornene-2-carboxylic 

acid (Sigma) (8x molar excess compared to amine-terminated PEG arms) in 

dimethylformamide (DMF) was pre-reacted for 5 minutes under argon with 2-(1H-7-

Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate 

methanaminium (HATU, 4x molar excess, Chem Impex INT’L, Inc) and N,N-

diisopropylethylamine (DIEA, 4x excess, Sigma) at room temperature. The pre-

reacted mixture was then added to 4-arm PEG amine in DMF, and allowed to react 

for 24-48 hours under argon at room temperature. After that, 4-armPEG-NB was 



122 

precipitated in ice-cold ethyl ether, purified by dialyzing against DI H2O for 2-3 days, 

sterile filtered (0.2 µm) and then lyophilized. Using 1H-NMR spectroscopy, 

norbornene conjugation (δ = 5.9 - 6.3 ppm) per 4-arm PEG molecule (δ = 3.4 – 3.9 

ppm) was determined to be 100%. 

 

6.2.2. Electrospinning 

Nanfibrous hydrogel platforms were prepared by electrospinning an aqueous 

solution of 4-armPEGNB (5 kDa, 10 wt%), poly(ethylene glycol dithiol, Sigma) (1 

kDa, thiol: ene = 0.9), poly(ethylene oxide) (5 wt%, MW: 400 kDa), and photoinitiator 

Irgacure 2959 using a custom set up equipped with a 14-mm syringe and a high 

voltage power supply (Gamma High Voltage, Inc). Electrospinning was conducted at 

+16 kV, 0.8 ml/hr, and needle-to-collector distance of 20 cm. Electrospun fibers were 

collecled on a glass slide (25mm X 75mm) previously modified with 3-

(mercaptopropyl) triethoxysilane. Substrates were subsequently exposed to UV (352 

nm light) with an average intensity of 5 mW/cm2 for specific time points.  

 

6.2.3. Scanning electron microscopy  

Scanning electron microscopy was used to examine the microstructure of the 

electrospun hydrogel substrates in both dry and hydrated states using JEOL JSM 

6480-LV at the Nanomaterials Characterization Facility (NCF) at CU-Boulder. For 

hydrating, samples were soaked in deionized water for 1 or 24 hours. Hydrated 

samples were shock frozen in liquid nitrogen and lyophilized for 48 hours. All the 

samples were coated with a thin Au layer prior to imaging to prevent charging. Image 

J was used to measure fiber diameter (two images, 15 fibers per image). 

 

6.2.4. Peptide Synthesis 

All the peptides used in this study (CRGDS, CRGES, YRGDS) were 

synthesized via standard Fmoc solid-phase methodology, rink-amide resin, and 

HBTU/HATU activation using PS3 peptide synthesizer (Protein Technologies, Inc). 

After completion of peptide synthesis, simultaneous cleavage from resin and side 

chain deprotection was achieved by treatment with a trifluoroacetic acid (TFA) 

cocktail for 5 hours. Peptides containing Cys(Trt) were cleaved using 92.5% TFA, 
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2.5% Ethanedithiol (EDT), 2.5% water and 2.5% triisopropylsilane (TIS). For other 

peptides, a cleavage solution of 95% TFA, 2.5% water and 2.5% TIS was used. 

Crude peptide was precipitated and washed (3 times) with ice-cold diethyl ether, and 

then allowed to dry overnight. The dry peptide powder so obtained was then 

dissolved in Milli Q water, filtered using 0.2 µm filter, and then lyophilized. This 

lyophilized powder was used for the experiments without further purification. The 

molecular mass of all the peptides was confirmed by matrix-assisted laser 

desorption, ionization time-of-light (MALDI-TOF) mass spectrometry (Applied 

Biosystems DE Voyager) using α-cyano-4-hydroxycinnamic acid matrix (Sigma). 

MALDI-TOF-MS: [M + 1H]+: CRGDS: Calculated (536.58), Observed (536.34); 

CRGES: Calculated (550.60), Observed (551.10); YRGDS: Calculated (596.61), 

Observed (596.72). 

 

6.2.5. Fluorescent Peptide Synthesis  

CDGEAK peptide was synthesized via standard Fmoc solid-phase 

methodology, rink-amide resin, and HBTU/HATU activation. Further, N-terminal of 

the peptide was capped with acetic anhydride (Ac-CDGEAK), cleaved from the resin 

and processed as described earlier. MALDI-TOF-MS: [M + 1H]+: Calculated 

(663.72), Observed (663.49). Ac-CDGEAK peptide (12.5 mg) was dissolved in DMF 

(2.45 mL) containing Alexa Fluor® 488 carboxylic acid, 2,3,5,6-tetrafluorophenyl 

ester (1 mg) or Alexa Fluor® 568 carboxylic acid, succinimidyl ester (1 mg) with N,N-

Diisopropylethylamine (DIEA, 50 L) and reacted overnight protected from light. The 

samples were concentrated using rotovap, dissolved in Milli Q water, and lyophilized. 

These fluorescently labeled peptides (Ac-CDGEAK(AF488) and Ac-

CDGEAK(AF568)) were used for the experiments without further purification. 

 

6.2.4. Engineered Peptide Array Preparation 

Printing efficiency and optimization was developed using a control  compound 

maleamide-488/586 conjugate.  A printing buffer consisting of 1% glycerol and 0.2% 

Triton X-100 was utilized for all protein depositions. To prepare peptide arrays, pre-

weighed powders of CRGDS, CRGES, YRGDS and CDGEAK-568 were suspended 

into printing buffer to reach the desired concentration.  Subsequently, photoiniator 
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I2959 was added to each peptide solution at a dilution of 0.05% v/v.  Peptides  were  

deposited  on the fibrous PEG thiol-ene matrices using Aushon 2470 arrayer with 

185 micron pins  (Aushon  BioSystems,  Billerica,  MA),  to  achieve  dots with a  

nominal  diameter  of  250  microns with a 500µm pitch distance. Between different 

sample depositions, the print needles were cleaned by sonication in cleaning 

solution before use. Following array printing, PEG thiol-ene peptide arrays were 

subsequently exposed to 5 mW cm2 UV light for 5 minutes under inert atmosphere 

(Argon).  Following UV peptide stabilization, prepared PEG thiol-ene peptide arrays 

were stored at 4°C in a humid environment for 24 h before use.  

 

6.2.5. Cell Seeding and Cell Culture  

Electrospun PEG thiol-ene matrices containing various peptides were rinsed in 

DI H2O for 1 h, followed by sterilization with 70% ethanol for 1hr prior to cell seeding. 

Matrix microarray slides were equipped with 16mm x 16mm silicone multiwall 

chamber (Grace Bio-Labs) to partition individual microarray replicates. Cell seeding 

protocols were optimized using primary bovine pulmonary arterial smooth muscle 

cells (PASMCs) obtained from bovine vascular pulmonary arteries. Cells with 

passages of 3-8 were used for all experiments. PASMCs were detached from culture 

flask and suspended at a concentration of 106 cells per ml in serum free media. The 

cell suspension was dispensed onto the 3-dimensional matrix microarray within the 

gasket region at a cell density of 105 cells per array and incubated for 2 hours. The 

arrays were then gently aspirated by submerging into a large chamber filled with pre-

warmed media. Culture media was changed daily.   

 

6.2.6. Immunofluorescent Staining 

Following cell culture, PEG thiol-ene peptide arrays were fixed with 3.7% 

formaldehyde at room temperature, permeated with 0.1% Triton X-100 and blocked 

with 3% BSA. Immunofluorescent staining of cells for cell nuclei (DAPI) and cellular 

cytoskeleton (Alexa488-phallodin) were utilized to observe cell adhesion and 

spreading respectively.  All samples were finally mounted with Vectashield Hard Set 

mounting media and stored at 4 ̊ C for imaging.    
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6.2.7. Confocal Imaging 

Confocal images were acquired using a Nikon A1R laser scanning confocal 

microscope piloted by NIS-Elements 4.0 and equipped with 405 nm, 488 nm, 561 

nm, and 640 nm laser lines.  Typically, the relative z position of the focal plane was 

ensured by using an equipped Nikon Perfect Focus System.  Unless otherwise 

stated, a 10x 0.5NA objective with the pinhole set to 1.2 Airy Units (AU) was used.  

PEG thiol-ene peptide array large images were obtained using a motorized XY stage 

with piezo Z-Drive insert for rapid multidimensional (XYZ) imaging.  The image 

overlap was set to 5% and the resulting digital montage was generated using the 

same NIS-Elements 4.0 software.  When needed, multiple z planes were acquired in 

order to capture all of the cells within each micro printed well.  A maximum intensity 

projection image was then generated using the piloting software. 

 

6.2.5. Statistical analysis 

All tests were performed in triplicate. Statistical significance of collected data 

was determined at each condition using an independent Student’s t-test.  Data are 

presented as mean ± standard deviation (SD) and was considered statistically 

significant at 95% confidence (p < 0.05). 

 

6.3.  Results 

 

6.3.1. Characterization of 3-dimensional fibrous PE G thiol-ene 

hydrogel matrix 

Fibrous, PEG thiol-ene hydrogels were prepared by an electrospinning process 

(Figure 1A) similar to our previous method (Wingate 2012; Floren, 2015).  We 

thiolated conventional glass slides to allow covalent attachment of the PEG thiol-ene 

matrices which improves sample handling and longevity for cell studies.  PEG thiol-

ene was selected for its biocompatibility, ease of manipulation, soft mechanical 

properties, anti-fouling, commercial availability and selectivity of thiol-radicals 

(Reddy, 2006; Hoyle, 2010; Zhu, 2009). Thiol-ene polymerizations proceed by an 

orthogonal, step-growth mechanism where one thiol reacts with one ene leading to a 
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highly homogenous distribution in crosslinks (Figure 1B), thus engendering tunable 

substrate stiffness (Figure 1E,F) with high fidelity.  

We examined the fibrous architecture of electrospun PEG thiol-ene substrates 

using SEM (Figure 1C,D) in both hydrated and dry states. Microscopy revealed a 

highly fibrous hydrogel structure with average fiber diameter of 647.6 ± 81.4 nm.   

The absence beading or webbing of the electrospun matrices indicates optimal 

spinning parameters with minimal artifacts. 

 
Figure VI – 1.  Fabrication of nanofibrous PEG-thiol-ene hydrogels.  (A) Schematic of 
electrospinning of PEG-thiol-ene pre-polymer solution (B) followed by UV polymerization.  Dry 
(C) and wet (D) SEM imaging of electrospun PEG-thiol-ene nanofibrous matrices.  .  (C)  
Rheological measurements of shear stress vs. shear strain for several PEG-thiol-ene 
substrates prepared under different UV exposures.  (D) Translation of shear-strain relationships 
into elastic modulus using a Poisson ratio ν ~ 0 [16]. 
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6.3.2. Engineered Peptide Synthesis and Array Fabri cation 

The deposition of peptide microdots is illustrated in Figure 2(A).  Following the 

preparation of PEG thiol-ene matrices, peptide printing is achieved using a contact 

style arrayer (Ashon 2470) and subsequently post stabilized via a second UV step.  

Post functionalization of our PEG thiol-ene matrices allows for the covalent 

incorporation of a diversity of biological ligands or other engineered biomolecules.  

To illustrate this, printing optimization strategies employing a fluorescently labelled 

control (maleamide 488/568) are depicted in Figure 2(B-D).  Deposition size was 

found to be approximately 200µm in diameter which is in agreement with our 

previous work utilizing ECM proteins (Floren, 2015).  Figure 2 (C) represents a serial 

dilution of eight concentrations of maleamide-488 (green) and eight concentrations of 

maleamide-568 (red) resulting in sixty-four unique depositions.  Full randomization of 

these sixty-four conditions can be achieved via arraying software as seen in Figure 

2(D). 

 
Figure VI – 2.  Fibrous PEG-thiol-ene hydrogel peptide array fabrication.  (A) Schematic of 
microarray contact printer used to spot different peptide solutions onto electrospun PEG-thiol-
ene coated glass slide.  Crosslinking is achieved via UV light initiated thiol-ene reactions of di-
thiol and norbornene groups on 4-armPEGNB.  (B-D) Representative example of two 
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fluorescently labeled model compounds (maleamide). (B)  Depiction of a single deposition of 
maleamide-488/546 (green/red), ratio 5.5:4.0 µM, illustrating dot circularity and homogeneity.  
(C) Sixty-four unique concentrations of maleamide-488 (green) and maleamide-546.  (D) 
Complete randomization of the sixty-four unique conditions from (C).  Scale bars 500 µm (C,D). 
   

6.3.3. Primary Cell Adhesion and Spreading within P eptide 

Functionalized PEG thiol-ene Matrices  

Following peptide array printing and UV stabilization, PEG thiol-ene peptide 

arrays were rinsed in water for a minimum of one hour and subsequently sterilized 

using 70% alcohol (EtOH) prior to cell culture with PASMCs for 24 h.  As depicted 

from the confocal microscope images in Figure 3, the cells only attached to RGD 

deposited spots with no attachment outside the printing deposition, i.e. neat PEG 

thiol-ene substrate.  We observed cell attachment on YRGDS spots (Figure 3(C); 

however, the cellular density was considerably less when compared to the covalently 

stabilized CRGDS spots (Figure 3A).  This indicates that covalent stabilization of 

RGD (CRGDS) permits greater cellular adhesion than surface adsorbed RGD 

(YRGDS).  In contrast, while CRGES peptide was covalently attached to the PEG 

thiol-ene matrices, the scrambled sequence did not facilitate cell adhesion (Figure 

3B), similar to the neat PEG thiol-ene controls (not shown).  To further confirm the 

covalent stabilization of our engineered peptides, we observed a fluorescently-

labeled peptide (CDGEAK-568) after UV stabilization and shown in Figure 3(D).  The 

fluorescent intensity of the CDGEAK-568 dots correlate well with the deposition 

concentration.  Together, these results imply that post functionalization of PEG thiol-

ene matrices with thiol-ene reactive compounds leads to the fabrication of stable and 

defined peptide arrays.   
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Figure VI – 3.  Confocal images of PASMCs cultured for 24 h on fibrous PEG thiol-ene 
hydrogels functionalized with CRGDS (A), CRGES (scramble) (B), YRGDS (C) and CDGEAK-
568 (D).  Scale bar 100 µm.   Cells only attach and spread in the presence of RGD adhesive 
peptide and is inhibited on RGE (scramble) peptide. 
 

6.3.4. Primary Cell Adhesion and Spreading within P EG thiol-ene 

Peptide Functionalized Arrays  

To further demonstrate the utility of our peptide arrays, we investigated the 

influence of the adhesive ligand (RGD) post functionalized at several dilutions within 

the PEG thiol-ene matrices, as shown in Figure 4(A-C).  We varied CRGD dilution 

range from 0.1 to 15 mM and observed cell attachment of PASMCs after 24 h 

(Figure 4B-C).  Cell attachment positively correlated with CRGDS printing 

concentration.  Similar trends were observed for PASMCs seeded onto randomized 

CRGDS dilutions (Figure 4D-F), indicating that cell-cell paracrine signaling was not a 

significant factor in cell adhesion.  The precision of robotic array spotting allows for 

complex array layout and design over large areas (Figure 4G).  The utility of these 

complex depositions are further supported by localized cellular attachment as shown 

in Figure 4H,I.  We can conclude from these results that advanced peptide array 

designs can be prepared, with cellular recognition at modest peptide concentrations 

(< 1 mM), as well as potential for more complex combinatorial array designs. 
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Figure VI – 4.  Confocal images of primary aortic PASMCs cultured on fibrous PEG thiol-ene 
hydrogels functionalized with CRGDS at several dilutions (A-C).  Complete randomization of 
CRGDS dilution range depicted in A-C (D-F).  Advanced spotting geometry for CRGDS (10 
mM).  (B-H) Cell nuclear staining (DAPI) in greyscale.  (C-I)  Merging of cell nuclei stain DAPI 
(blue) with f-actin stain (green).  Scale bars: 500 µm (A-F), 2 mm (G-H). 
 

6.4.  Discussion: 

The need for engineered stem cell niches with increased complexity has 

become a significant challenge within the research community.  Due to the lack of 

current traditional methods to accurately and efficiently capture these complex 

microenvironments we developed a simple strategy to fabricate high-throughput 

engineered peptide microarrays using thiol-ene chemistry.  This facile method 

provides a platform for the covalent functionalization of PEG thiol-ene substrates 

with either engineered peptides or dye-conjugated compounds with high reactivity 

and specificity. Further, thiol- ene polymerizations proceed by an orthogonal, step-

growth mechanism where one thiol reacts with one ene leading to a highly 

homogenous distribution in crosslinks, thus imparting tunable substrate stiffness with 

high fidelity (Hoyle, 2010).  
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Similar to our previous work using ECM proteins (Floren, 2015), we find 

contact-style array technology to represent a reliable and reproducible method to 

prepare complex array designs using engineered peptides, which may be further 

functionalized via UV stabilization post array printing.  Engineered peptides are 

advantageous over conventionally utilized ECM proteins in that the specificity of the 

desired biological ligands can be highly tuned by the end user.  Here we 

demonstrated the potential to exploit the adhesive ligand (RGD) to influence cell 

attachment and spreading of PASMCs within 24 h.  We observed cellular attachment 

at modest RGD concentrations (< 1 mM), with absence of cells on the negative 

controls (RGE and neat PEG thiol-ene matrix).  While we only investigated the role of 

RGD ligand on cell behavior, we note that post functionalization of our PEG thiol-ene 

matrices can be achieved with any molecule with thiol-ene reactivity, i.e. cysteine 

residues.  Collectively, these results highlight the diverse properties of our 

substrates, whereby stiffness, geometry, and functionalized molecules (biological or 

chemical) can be tuned with high specificity. 

The preparation of multivariate microenvironments to direct cellular processes 

is of considerable interest to the research community.  Here, we demonstrate the 

ability to control primary cell adhesion to soft, fibrous hydrogels functionalized with 

RGD peptide.  However, future work will be focused on designing combinatorial 

peptide studies, whereby, the integration of several biological ligands of interest with 

tunable physical properties can instruct stem cell differentiation in a highly specific 

manner.  The ability to design such microenvironments with tunable physical 

properties, stiffness and geometry, as well as biological affinity, through engineered 

peptides, would conceivably be of great value towards the preparation of future 

tissue engineering platforms.  

 

6.5.  Conclusion: 

We have developed a highly tunable platform with 3-D nanofibrous hydrogels 

based off of thiol-ene coupling chemistry to facilitate high-throughput combinatorial 

screening of engineered microenvironments for optimizing stem cell differentiation.  

Microarray depositions of approximately 250 µm and 500 µm were achieved using 

conventional contact arraying technology.  We further specialized our matrices by 
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post-functionalizing our PEG thiol-ene substrates with biomolecules with thiol-ene 

reactivity.  Collectively, the manipulation of the matrix properties, such as stiffness 

and geometry, in concert with engineered peptides will facilitate the interrogation of 

multiple and distinct SC microenvironments. 

 

 

 

 

 

 

 

 

 

Chapter VII 

Conclusion and Future perspectives  

 

7.1. Conclusions 

This thesis advances the understanding of how different microenvironemntal 

cues effect cell function, particularly in the context of stem cell differentiation, 

establishes a foundation for the development of future biomaterials combining 

physical and chemical signals for highly specialized tissue regeneration outcomes, 

provides a ratinoale for improved stem cell differentiation protocols via multiple signal 

integration, and positions hydrogels based on natural (silk fibroin) or synthetic (PEG) 

polymers as viable candidates, incorporating both physical and chemical stimuli, to 

direct stem cell fate decisions in a relevant platform. 
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The first part of this thesis demonstrated a technique to fabricate silk fibroin 

hydrogels using high pressure CO2 as a volatile acid without the need for chemical 

crosslinking agents or surfactants.  The advantage to this fabrication technique 

resides in the remarkably clean production method, simple and efficient recovery of 

CO2 post processing, at gelation times shoter than other reported gelation shemes.  

Further, we demonstrate that this processing method imparts unique structural 

geometry and porosity thorugh out the prepared hydrogels.  Hydrogel porosity and 

pore structure represent important design criteria for utiliy as tissue engineering 

substrates; we reveal through our novel technique that these features are improved 

over conventional gelation methods.   Lastly, we observed a significant improvement 

in the mechanical properties of silk hydrogels prepared under high pressure CO2.  

We further detail a mechanistic model whereby the rate of silk protein gelation is 

believed to be a function of the kinetics of solution acidification from absorbed CO2 

as well as potentially accelerated by high pressure effects.  

We next chose to exploit the salient properties of silk hydrogels prepared under 

CO2 to investigate the effects of tunable substrate properties on stem cell lineage 

commitment.   The transforming growth factor β (TGF-β) family is a potent regulator 

of several cell functions such as proliferation, spreading (Hui, 2007) and is strongly 

associated with vascular smooth muscle cell (vSMC) differentiation of stem cells 

(Mei, 2010).  Therefore, the focus of this part of the thesis was on exploiting the 

combined use of substrate stiffness and growth factor (TGF- β1) on SF matrices, 

with the aim of correlating the effects on the vascular commitment of human 

mesenchymal stem cells (hMSCs).  One advantage to employing silk fibrion as the 

hydrogel material choice was the inherent biocompatibility and bioreconigtion 

imparted by silks.    When cultured with serum-starved media upon our SF hydrogels 

hMSCs attached and spread for up to 72 h.  This data suggests that SF is 

permissive to stem cell adhesion and maintenance irrespective to the presentation of 

adsorbed serum proteins or other biological ligands.  This observation was critical 

towards our expimental design as previous reports often examine the effects of 

matrix physical properties on stem cells in the presence of serum-media, an 

ambigous cocktail of chemical factors and proteins.  The ability to culture stem cells 

on our silk hydrogels without serum proteins allowed us to investigate the roles of 
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physical and chemcial stimuli independently of one another.  The results we present 

here reveal that hMSC differentiation into mature SMCs can be achieved within 

modest culture periods (72 h) by combining appropriate SF hydrogel stiffness (33 

kPa) with growth factor (TGF-β1).  These findings advance our understanding of how 

complex multicomponent biomaterials, whereby mimicking the intricacy of natural 

tissue environments, can play a significant role in developing optimal stem cell 

differentiation protocols.   

 In addition to soluable factors, insolube microenvironmental cues such as 

matrix proteins play a critical role in how cells interact and ‘observe’ their 

environment.  Recent evidence suggests that cells react to a complex 

mechanosensing apparatus whereby the interaction of ligand tethering and ECM 

stiffness can impart differential cellular functions (Seo, 2013), including differentiation 

(Trappmann, 2012).  To this end, we developed a high throughput method that 

allows for the rapid screening of a diversity of engineered microenvironments with 

tunable matrix elasticity and geometry, combined with specific ECM protein 

combination.  By adopting a combinatorial approach, we observed the effects of 

substrate stiffness and unqiue ECM protein combination on the adhesion, spreading 

and fate commitment of mesenchymal stem cell (MSCs) under two substrate.  Using 

this technique, we identified several microenvironments supporting MSC adhesion, 

spreading and differentiation toward early vascular lineages. One advantage to our 

platform is the ability to manipulate matrix properties, such as stiffness  and  

geometry,  in  concert  with  ECM  protein presentation in a high-throughput manner.  

Our data revealed a strong dependence of matrix protein composition and stiffness 

on MSC differentiation toward vascular lineages.  Indeed, several combinatorial 

environments were arrived at that significantly up- or down- regulate expression of 

PECAM, an early marker for endothelial phenotype.  Collectively, this portion of the 

thesis supports the hypothesis that a complex milieu exists coupling protein 

functional behavior with substrate elasticity and that this phenomenon may 

potentially be exploited through proper application of high-throughput screening 

methodologies.   

Our study investigating the interplay of ECM protein and substrate stiffness 

advanced our understanding of how cells interact with the various componenets of 
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the cellular microenvironments.  Nevertheless, most of the existing ECM arrays are 

not able to capture the effects of biophysical and chemical cues on stem-cell fate 

completely.  For instance, ECM proteins are comprised of a myriad of physical and 

chemical signaling motifs.  Meanwhile, small engineered peptides (SEPs), based off 

of recognized signaling motifs, have emerged to investigate the effects of individual 

peptide sequences on cellular activity in a highly specific manner.  Further, it is often 

difficult to decouple the compounding effects of multiple integrin motifs present in full 

ECM proteins with regard to stem cell fate decision processes.  However, 

combinatorial studies investigating the individual and synergistic role of several 

SEPs on stem cell differentiation in a relevant model, i.e. soft, fibrous matrix, are 

absent.  The final portion of this thesis developed a microarray platform based on 

electrospun nanofibrous hydrogels of photoclickable thiol-ene poly(ethylene glycol) 

(PEG) hydrogels. Thiol- ene polymerizations proceed by an orthogonal, step-growth 

mechanism where one thiol reacts with one ene leading to a highly homogenous 

distribution in crosslinks, thus imparting tunable substrate stiffness with high fidelity 

(Hoyle, 2010).  Furthermore, it allows for the subsequent covalent post-modification 

of PEG thiol-ene hydrogel substrates with small engineered peptides with high 

reactivity and specificity.  Here, we demonstrated the ability to control primary cell 

adhesion to soft, fibrous hydrogels functionalized with RGD peptide.  However, 

future work will be focused on designing combinatorial peptide studies, whereby, the 

integration of several biological ligands of interest with tunable physical properties 

can instruct stem cell differentiation in a highly specific manner.  The ability to design 

such microenvironments with tunable physical properties, stiffness and geometry, as 

well as biological affinity, through engineered peptides, would conceivably be of 

great value towards the preparation of future tissue engineering platforms. 

   

7.2. Future Directions 

 

There is supporting evidence that stem cells develop an intimate relationship 

with their surroundings, whereby cellular events influenced not only by the physical 

environment, such as rigidity (Engler, 2006) and geometry (Huebsch, 2010), but also 

the chemical makeup of their milieu through soluble (growth factors) (Mei, 2010;) and 
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insoluble (ECM proteins, peptides) cues (Flaim, 2005; Floren 2015),.  The work 

presented in this thesis advances our knowledge on how the tight interplay of spatial 

cues elicited through matrix physical and chemical stimuli may influence cellular 

events and fate outcomes.  There is, however, a practical shift amongst the research 

community in which both spatial and temperoal control of biomimetic scaffolds is 

likely critical in recapitulating the complex nature of the stem cell niche.  Indeed, 

recent reports have highlighted a significant regulatory role of stem cell fate 

commitment based off of the temporal expression of matrix physical cues such as 

rigidity (Lee, 2014; Yang, 2014).  Yang et al. concluded that stem cells possess 

mechanical memory, in which temporal shifting of cellular substrate rigidity, i.e. soft 

to stiff and vis versa, can result in differential stem cell fate processes.   The concept 

that past physical environments may be ‘stored’  within the cell as a repositroy of 

information guiding the cells’ fate lends further investigation into the fourth dimension 

(temporal control) of biomaterial design.  The substrates developed in this thesis 

could serve as excellent platforms for this achievement.  In particular, the chemical 

specificity and fidelity imparted by the PEG thiol-ene hydrogel substrates detailed 

earlier (Chapter VI) are amendable to various tunable platforms as well as a myraid 

of post functionalization pathways.   The ability to design complex 

microenvironments tailored with high spatial and temperoal resolution in high 

throughput would constitute a break through in the research community. 

We demonstrated through progression of this thesis a logical approach to 

design complex microenvironments with an emphasis on high throughput capability.  

While we revealed this technology to several cell model systems (primary and stem 

cells), we have certianly promoted the potential to study regenerative systems.  

However, we would be ingenous to not recognize the potential to explore disease 

model systems using our current approach.  The ability to screen pharamacueticals 

or other small molecular systems on disease-induced tissue models is an area of 

active interest and expansion in research.  This can be demonstrated by the recent 

findings of Chaudhuri et al. in which malignant phenotype in mammary epithelial 

cells can be rescued by adjusting substrate stiffness in concert with biological ligand 

presentation (Chaudhuri, 2014).  Further, the ability to study multiple disease-state 

‘micro’ tissues, particularly in case of hepatocyte functinoality, is under active 
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development with promising outcomes (Khetani, 2007).  There is considerable 

evidence to suggest that the cellular microenvironment may progressively stiffen 

(Antia, 2008) or change their protein expression (Dean, 2005) with the progression of 

disease.  The ability for our high throughput systems to integrate tunable rigidity, 

both healthy and disease level stiffness, equally matched with biochemical 

modulation suggests these platforms may provide an ideal foundation for exploratory 

studies in which sevearl microenivronments may be interrogated against their ability 

to promote or disuade disease progression in relevant tissue models. 

 A final note on the tranlation of complex microenvironments into relevant 

biomaterial platforms for in vivo and clincal validation.  Here we demonstrated the 

potential to design complex microenvironments to direct stem cell fate decision in 

both a synthetic or natural polymer setting.  In particular, natural polymers represent 

an exciting portfolio of biomaterials for potential clincial applications, in part due to 

their improved biocompatibility and biodegradation kinetics.  The ability to design 

biomaterials with both spatial and/or temporal control of various stimuli in the context 

of well-tolerated material sources, such as silk fibroin, could represent a paramount 

achievement in tissue engineering.  Indeed, many current clinical-level therapies are 

lacking due to the disconnect between benchscale observation to clinical level proof 

of concept.  These limitations can foreseeably be alleviated through judicious 

material selection, via natural polymer approaches, the result being a cohort of 

biomaterials capable of controlling the regeneration, or repair, of tissues on the 

patient-level. 
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List of abbreviation and acronyms 

(CVD) Cardiovascular Disease 

(ECM) Extracellular Matrix 

(MSC) Mesenchymal Stem Cell 

(iPSC) Induced Pluripotent Stem Cell 

(SMC) Smooth Muscle Cell 

(PEG) Poly ethylene glycol 

(2D) Two dimensional 

(3D) Three dimensional 

(TGF-β) Transforming Growth Factor Beta 

(VEGF) Vascular Endothelial Growth Factor 
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(BMP-2) Bone Morphogenic Protein 2 

(PDGF)  Platelet-Derived Growth Factor 

(bFGF) basic Fibroblast Growth Factor 

(SC) Stem Cell 

(EC) Endothelial Cell 

(CO2) Carbon Dioxide 

(PBS) Phosphat Buffer Solution 

(SEM)  Scanning Electron Microscopy 

(ESEM) Environemntal Scanning Electron Microscopy 

(FTIR)  Fourier-Transform Infrared Spectroscopy 
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