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A B S T R A C T   

Background/Objective. Enlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) 
are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in 
SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship be-
tween LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of 
MIR137’s essential role in neurodevelopment. Methods. Participants were 1224 SZ probands and 1466 unaffected 
controls from the GENUS Consortium. Brain MRI scans, genotype, and clinical data were harmonized across 
cohorts and employed in the analyses. Results. Increased LV volumes and decreased CC central, mid-anterior, and 
mid-posterior volumes were observed in SZ probands. The MIR137-regulated ephrin pathway was significantly 
associated with CC:LV ratio, explaining a significant proportion (3.42 %) of CC:LV variance, and more than for 
LV and CC separately. Other pathways explained variance in either CC or LV, but not both. CC:LV ratio was also 
positively correlated with Global Assessment of Functioning, supporting previous subsample findings. SNP-based 
heritability estimates were higher for CC central:LV ratio (0.79) compared to CC or LV separately. Discussion. Our 
results indicate that the CC:LV ratio is highly heritable, influenced in part by variation in the MIR137-regulated 
ephrin pathway. Findings suggest that the CC:LV ratio may be a risk indicator in SZ that correlates with global 
functioning.   

Introduction 

Schizophrenia (SZ) is a major neurodevelopmental disorder affecting 
1 % of the population worldwide (Velligan & Rao, 2023). Clinical 
manifestations include psychotic symptoms, cognitive, global and social 
dysfunctions. Increases in the volume of the lateral ventricles (LV) were 
among the first identified abnormalities in SZ (Johnstone et al., 1976) 
and since then, increases in LV volume remain among the most reliable 
volumetric abnormalities reported in SZ (del Re et al., 2016a; Kelly 
et al., 2018; Kempton et al., 2010; Konishi et al., 2018; Lizano et al., 
2019; van Erp et al., 2018). Increases are found throughout the course of 
SZ (del Re et al., 2016a; Nakamura et al., 2007). SZ-related abnormal-
ities in the corpus callosum (CC) have also been described, specifically 
reduced midsagittal surface area in chronic and first episode patients 
with psychosis (Arnone et al., 2008; Keshavan et al., 2002), and reduced 
central CC volume (del Re et al., 2016a). However, few studies have 
looked at the relationship between LV and CC in the same investigation 
in SZ, a surprising fact as both LV and CC abnormalities are hallmark 
features of SZ and anatomically interlinked. 

In SZ, markedly abnormal volume of the LV indexes poor-outcome, 
unremitting SZ, characterized by severe disturbances in social func-
tioning, negative symptoms and cognitive deterioration (Cahn et al., 
2006; DeLisi et al., 1992; Mitelman & Buchsbaum, 2007). Also of note, 
within 1 year of psychosis onset, enlarged LV indexes greater change in 
the Brief Psychosis Rating Scale withdrawal-retardation score (Naka-
mura et al., 2007) while in early SZ (up to three years after psychotic 
outbreak), LV changes index longitudinal change in global functioning 
(del Re et al., 2016a). Reduced connectivity based on tract segmentation 

of the CC has also been reported in SZ (Kubicki et al., 2008) as has fiber 
geometry alterations in the CC in SZ, suggesting a transcallosal 
misconnection (Whitford et al., 2011). In investigating white matter 
anomalies, fractional anisotropy (FA), a measure of the direction of 
diffusion in the brain, shows that decreased FA of the CC indexes higher 
symptomatology (del Re et al., 2019). Data from our team have also 
shown that FA of the central CC inversely correlates with LV volume in 
SZ (del Re et al., 2019) (see also (Lett et al., 2013)). Mild ven-
triculomegaly detected prenatally has also been associated with larger 
mean and radial diffusivity and reduced FA of the CC, which persist in 
neonates (Gilmore et al., 2008). There is also evidence that prenatal LV 
width significantly and negatively correlates with a measure of cognitive 
development at a mean age of 21 months (Bloom et al., 1997), pre-
dicting postnatal neurocognitive development. 

The heritability of SZ estimated from twin studies is relatively high 
(~81 %; Baselmans et al. (2021)). Nonetheless, the neural mechanisms 
underlying SZ are still largely unknown. Genome-wide association 
studies (GWAS) have contributed insight into the pathophysiology of SZ 
(Bergen & Petryshen, 2012). Several neurodevelopmental disorders 
show aberrations in genes associated with risk of SZ and/or bipolar 
disorder in GWAS (Wijmenga & Zhernakova, 2018). Here we examine 
MIR137 and MIR137-regulated pathways for the genetic association 
with LV and CC measures. The MIR137 SZ associated variant (single 
nucleotide polymorphism; SNP) is one of the strongest SZ associated 
SNPs from the GWAS by the Psychiatric Genomic Consortium (PGC) 
(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 
2014; Trubetskoy et al., 2022). The rationale for including this gene in 
the current study is that as a microRNA, MIR137 is a short non-coding 
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RNA molecule that functions to regulate the expression levels of other 
genes. MIR137 regulates gene transcription, with a prime role in 
development (Miller et al., 2012), in adult neural stem cell maturation 
and migration in the subventricular zone, which is in close proximity to 
the LV. This gene further regulates gliogenesis, which is crucial to white 
matter neurodevelopment (Wright et al., 2013), underscoring the 
involvement of both ventricular and white matter development and its 
potential role in SZ. 

Homozygous MIR137-knockout mice do not survive the embryonic 
stage, while heterozygotes seemingly develop normally, indicating 
MIR137’s essential role in development, with biological compensatory 
mechanisms in place (Crowley et al., 2015). Partial MIR137 loss in mice 
causes repetitive behavior, lack of sociability and impaired learning 
(Yan et al., 2019), while overexpression in transgenic mice causes 
behavioral deficits and transcriptome profiles related to SZ (Arakawa 
et al., 2019). Gene sets of potential MIR137 targets (Hill et al., 2014) are 
enriched with variants associated with SZ risk, including TCF4, involved 
with enlargement of LV, hypoplasia of CC and mental delays (Goodspeed 
et al., 2018; Kim et al., 2020; Zollino et al., 2019; Zweier et al., 2007); 
cortical expansion and neuronal differentiation (Tomasello et al., 2022); 
GRIN2A, involved in the NMDA receptor pathway (Gandal et al., 2012; 
Harrison & Bannerman, 2023) and possibly associated with negative 
symptoms (Coyle & Tsai, 2004; Javitt et al., 1994; Poltavskaya et al., 
2023); CACNA1C, a risk factor also for bipolar disorder and major 
depression (Green et al., 2010; Wang et al., 2023); and ZNF804A, central 
to cognition (del Re et al., 2014; Novaes de Oliveira Roldan et al., 2023). 
Many of these MIR137-regulated and SZ-associated risk genes demon-
strate genetic overlap with syndromes such as Pitt-Hopkins (TCF4) 
(Jung et al., 2018; Peippo & Ignatius, 2012; Teixeira et al., 2021), in 
which LV enlargement, CC hypoplasia and mental delays are present. 

The frequent co-occurrence of LV and CC changes in such syndromes 
and in SZ, suggests that changes in the ratio of CC and LV volume may be 
a sensitive indicator of developmental alterations in the brain. De-
viations from typical ratios may indicate disruptions in normal neuro-
development, which could be influenced by genetic factors such as 
MIR137. By assessing the ratio in addition to absolute volumes, we may 
be able to detect subtle variations and genetic associations that may be 
missed when considering each structure independently. 

Therefore, we combined two approaches, a pathway- and polygenic 
score-based approach, to determine the impact of MIR137-regulated 
genes on LV and CC measures, including their ratios. Whereas poly-
genic scoring captures great variability in the sample and provides a 
polygenic score (PGS) for each subject, this approach does not identify 
underlying biological pathways. The pathway analyses, on the other 
hand, can implicate specific gene networks involved in disease patho-
genesis. MIR137-regulated pathways, enriched with MIR137-regulated 
SZ risk variants, include axonal guidance signaling, ephrin receptor 
signaling, long-term potentiation (LTP), pre-synaptic plasticity, and 
protein kinase A (PKA) signaling (Kwon et al., 2013; Wijmenga & 
Zhernakova, 2018). 

Here, we present novel SNP-based heritability of LV, CC and of CC:LV 
ratio utilizing the Massively Expedited Genome-wide Heritability 
Analysis (MEGHA), an accurate genome-wide SNP methodology for 
heritability estimates of phenotypes (Ge et al., 2015). We rely on data 
from the GENUS Consortium (Blokland et al., 2018), including 1224 SZ 
patients and 1466 healthy controls (HC), for volumetric and genetic 
analysis of the CC and LV and their relationship to symptoms and gen-
eral functioning. 

Based on our previous studies, we hypothesize that MIR137, and its 
regulated genes, are associated with LV and CC abnormalities in SZ that 
underlie symptoms and impaired functioning. 

Methods 

Participants: genus data collection 

The GENUS Consortium is a collaborative SZ neurogenetics project 
(Blokland et al., 2018). Eleven sites worldwide have contributed MRI 
data, along with GWAS, cognitive, and symptom data, from SZ patients 
(n = 1224) and HC (n = 1466), and familial high-risk individuals (FHR; n 
= 256). Inclusion and exclusion criteria by cohort have been described 
elsewhere (Blokland et al., 2018). The lead principal investigator for 
each sample verified approval from their institutional ethics committee 
for sharing human subject data. All research participants provided 
written informed consent (or legal guardian consent and subject assent). 
Ethics approval for the GENUS Consortium study at the central site, 
including genotyping of DNA samples for several cohorts, was obtained 
from the Partners Healthcare (USA, now Mass General Brigham) Insti-
tutional Review Board. All data were anonymized prior to transfer to the 
central site. A non-WMO declaration (in line with the Medical Research 
Involving Human Subjects Act) from the Medical Ethical Review Com-
mittee at MUMC+ was obtained to continue the research in Maastricht, 
the Netherlands, with fully deidentified data. 

MRI processing and standardization 

To maximize compatibility of imaging data across sites, all scans 
were reprocessed using the same processing pipeline. Quality checks of 
12 T1-weighted scans (partial volume coverage, wrap-around and mo-
tion artifacts, etc.) from each site were employed to determine scan 
quality. Scans were masked to separate brain from surrounding tissue 
using manual tracing, or using a novel automated multi-atlas brain 
segmentation (MABS) technique that performs similar to gold-standard 
manual tracing (del Re et al., 2016b). FreeSurfer version 5.3 (Fischl, 
2012) was used to extract region-of-interest gray and white matter 
volumes using the Desikan-Killiany atlas (Desikan et al., 2006; Fischl 
et al., 2004). Ratios of CC subregion volumes relative to LV volumes 
were calculated from the FreeSurfer-extracted volumes. 

Subsequently, Z scores, comparable across samples, were calculated 
(Zi = (xi - MHC) / SDHC, where i represents the individual, and MHC and 
SDHC represent the within-cohort control mean and standard deviation), 
thereby providing a single consistent variable for FreeSurfer measures. 
Outliers >= 6 SD from the mean were removed, and remaining outliers 
>= 4 SD from the mean were winsorized. 

Genotype data 

Genome-wide SNP genotype data were obtained by each site using 
different SNP arrays (See Blokland et al. (2018) for details). Quality 
control (QC) analyses of raw genotype data were carried out using 
PLINK 1.9 (Chang et al., 2015; Purcell et al., 2007). To increase genome 
coverage and generate a uniform dataset from the multiple genotyping 
arrays used for the samples, genotypes were imputed to the 1000 Ge-
nomes Phase III reference panel (The 1000 Genomes Project Consortium 
et al., 2015), using IMPUTE2 software with pre-phasing by SHAPEIT2 
(Delaneau et al., 2013; Howie et al., 2012) using the Rapid Imputation 
and COmputational PIpeLIne for GWAS (RICOPILI) (Lam et al., 2020). 

Genetic analyses 

Pathway Polygenic Risk Scoring and Association Analyses. Polygenic 
Risk Scores (PRSs) were calculated using the PGC SZ GWAS (Schizo-
phrenia Working Group of the Psychiatric Genomics Consortium, 2014) 
as the discovery set, due to the availability of leave-one-out summary 
statistics. For pathway PRS, we utilized previously described MIR137 
pathways: Ephrin receptor signaling, synaptic long-term potentiation, 
PKA signaling and axonal guidance signaling (see (Wright et al., 2015) 
for a description of where and how the gene sets were defined). 
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Additionally, as described in Cosgrove et al. (2017), we constructed the 
MIR137 downstream pathway based on the set of 1016 genes whose 
expression was identified as being altered by MIR137 manipulation (Hill 
et al., 2014); 831 of these genes could be unambiguously mapped to the 
autosomes and this gene set was used to generate PRS. 

To test the aggregate effect of each pathway, a score was calculated 
for each subject applying published methods (Purcell et al., 2009; Ter-
wisscha van Scheltinga et al., 2013; Walton et al., 2013) using PLINK 1.9 
(Chang et al., 2015). For each gene in a pathway, all SNPs within 20 kb 
of the gene were identified. For each of these SNPs, a score was assigned 
to the individual that depends on whether the individual carries 0, 1, or 
2 alleles associated with SZ risk in the PGC GWAS meta-analysis 
(Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium, 2014) weighted by the log of the PGC GWAS allele odds ratios. 
Summing the scores for all SNPs in a pathway results in an aggregate 
score for each individual. The overall polygenic risk identified in the 
PGC SZ GWAS meta-analysis was examined using a similar approach, 
calculating a score for each individual using all SNPs associated with SZ. 
As customary for polygenic risk scoring, scores were calculated for 
different sets of SNPs that surpass increasingly more stringent statistical 
thresholds in the PGC GWAS. These analyses were considered one test 
for multiple testing correction. See Supplementary Table 1 for a sum-
mary of the composition of the risk scores. 

Linear regression analyses per cohort were performed using R 
version 3.5.3 to test association between the PGC-SZ2-defined PRS 
(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 
2014), the MIR137 gene, 5 MIR137 biological pathways, MIR137 tar-
gets, and 7 primary neural phenotypes: Volume of LV, volumes of 5 CC 
sections and total CC, and (6) ratios of CC (sections) to LV. Covariates 
used to adjust for potential biases include age, sex, age2, age × sex, age2 

× sex, total brain volume, scanner dummies for multi-scanner cohorts, 
and 4 multi-dimensional scaling (MDS) ancestry principal components 
against population stratification (obtained using PLINK). Linear 
regression results from the individual cohorts (betas and standard er-
rors) were submitted to inverse-variance weighted meta-analysis using 
the R ‘metafor’ package version 4.3–7 (Viechtbauer, 2010). False Dis-
covery Rate (FDR) correction for the effective number of tests per-
formed, based on the correlations between phenotypes, and correlations 
between PRSs (Derringer, 2018; Nyholt, 2004) was applied (p = 0.05 / 
[1 SNP + 1 PRS + 5 pathways] × 7 CC and LV variables]). The ratio 
variables were not considered independent phenotypes for FDR, and the 
associations with PRS generated at different discovery GWAS thresholds 
were not considered independent tests. 

Primary analyses were performed by analyzing SZ cases and HC 
together (European ancestry only), since genetic variation may have the 
same effect in healthy and diseased states, and to increase analytical 
power, owing to a larger sample size and greater phenotypic variance. 
Sensitivity association analyses were carried out for a few data config-
urations: cases, controls, and FHR individuals combined for European 
ancestry only; and for European + East Asian ancestry; cases and con-
trols separately for European ancestry only, and for European + East 
Asian ancestry; males and females separately for European ancestry 
only, and for European + East Asian ancestry. 

SNP-based Heritability and Co-heritability. SNP-based heritability of 
LV and CC was assessed using MEGHA (Ge et al., 2015). Using a linear 
mixed effects model, MEGHA uses the GWAS SNP association data for 
LV and CC volume to estimate how much of the variance in these 
measures is due to common genetic variants (SNPs). Covariates were as 
above. 

Clinical and cognitive measures 

Symptom ratings based on the Positive and Negative Syndrome Scale 
(PANSS) (Kay et al., 1987) or Scales for the Assessment of Negative/-
Positive Symptoms (SANS/SAPS) (Andreasen, 1983, 1984), Global 
Assessment of Functioning (GAF) (American Psychiatric Association, 

1994), current chlorpromazine equivalent antipsychotic medication 
dosage, age at onset, duration of illness in years, premorbid and current 
IQ were available. Premorbid IQ was estimated from single word 
reading tests, or the Wechsler Adult Intelligence Scale (WAIS) Vocabu-
lary subtest. Current IQ was estimated based on one to eight WAIS 
subtests. See (Blokland et al., 2018) and Supplementary Materials for 
details on the medication and symptom data processing and tests used 
per cohort. 

Due to significant deviations from normality for several clinical 
measures, Spearman partial correlations, adjusted for age and sex, were 
calculated between the clinical and cognitive measures and LV and CC 
neuroimaging phenotypes. 

Results 

Sample descriptives 

Demographic characteristics. Significant differences in age, education 
level, premorbid and current IQ, male-female distributions, and ancestry 
distributions between SZ and HC diagnostic groups were observed 
(Table 1; see Supplementary Table 2 for comparisons with the FHR 
group). 

LV and CC. All phenotypes displayed the expected SZ/HC differences 
(Fig. 1), with increased LV volumes in SZ (mean ~ 0.5 SD above con-
trols), and decreased CC volumes in SZ (mean ~ 0.5 SD below controls). 
Differences for the FHR group are shown in Supplementary Figure 1. 

MIR137 pathway and SZ PRS associations 

All association results are shown in Supplementary Table 3. Associ-
ation results in HC and SZ combined (European ancestry only) are 
shown in Fig. 2 and Supplementary Table 3a. 

A MIR137 gene score alone explained on average 1.17 % (CC Mid- 
Posterior), 3.98 % (CC Mid-Anterior) and 5.19 % (LV) of the variance 
in the LV and CC volumes, but the associations did not reach significance 
(pFDR > 0.05). 

Among the 5 pathway PRS, the most significant associations were 
found between the ephrin pathway and multiple LV and CC volumes and 
ratios, specifically LV (β ± SE = 0.54 ± 0.02, average R2 across cohorts 
= 3.71 %); CC Mid-Ant:LV (β ± SE = −0.35 ± 0.02, average R2 

= 2.65 
%); CC Mid-Post:LV (β ± SE = −0.37 ± 0.02, average R2 

= 2.93 %); CC 
Central:LV (β ± SE = −0.37 ± 0.02, average R2 

= 3.12 %), and CC:LV (β 

± SE = −0.35 ± 0.02, average R2 
= 3.42 %). These effects were 

observed most clearly at a p < 1e-4 polygenic threshold, except for LV 
(0.05 threshold). 

Other notable associations were between the axon guidance pathway 
and LV (β ± SE = 0.54 ± 0.02, average R2 

= 4.87 %) and CC Posterior: 
LV (β ± SE = −0.15 ± 0.03, average R2 

= 5.0 %); between the LTP 
pathway and LV (β ± SE = 0.10 ± 0.03, average R2 

= 5.38 %); between 
the PKA pathway and CC Mid-Posterior (β ± SE =−0.09 ± 0.03, average 
R2 

= 2.26 %); and between the MIR137 targets and CC Mid-Posterior (β 

± SE = 0.10 ± 0.02, average R2 
= 1.85 %). 

Overall, CC (subregion):LV ratios and LV volume showed the highest 
percentages variance explained by the pathway PRS (6.24 % for LV), and 
the ephrin pathway was associated with most phenotypes. The ephrin 
pathway effects were observed most clearly at the p < 1e-5 and p < 1e-4 
polygenic thresholds. 

The PGC-SZ2 PRS was significantly associated with nearly all LV and 
CC volumes and ratios and explained on average 0.68 % (CC Central) to 
5.7 % (LV) of the variance in the LV and CC volumes. These effects were 
observed most clearly at a p < 5e-8 polygenic threshold, although sig-
nificant results were observed at all thresholds analyzed. 

Results did not change significantly when including East Asian 
ancestry (Supplementary Table 3 g). Results for other data configura-
tions (see above) are shown in Supplementary Tables 3b-3l 
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MEGHA heritability 

MEGHA heritability estimates ranged from 0.36 for CC posterior up 
to 0.76 for the CC:LV ratio and 0.79 for the CC central:LV ratio (Fig. 3). 

Role of clinical and cognitive variables 

Spearman partial correlations between LV and CC and clinical/ 
cognitive variables were estimated (Fig. 4). Correlations were high be-
tween neuroimaging phenotypes. Of the clinical variables, the GAF score 
significantly correlated with multiple CC subregions, LV and most 
strongly with CC:LV ratio (see Supplementary Figure 2 for correlations 
including the FHR group). 

Discussion 

By examining genetic associations of MIR137-regulated pathways 
with LV and CC abnormalities in SZ, and the role of cognitive, symptom 
and functional measures in these brain phenotypes, within a large 
collection of SZ and HC individuals from the GENUS Consortium, we 
show that the ratio of CC:LV indexes psychopathology and functioning 
beyond the CC and LV measures considered separately. Polygenic score 
associations furthermore point to the ephrin pathway as an essential 
regulator of the white matter tracts comprising the CC. These results also 
indicate that different pathways regulated by MIR137 associate specif-
ically to different portions of the CC and/or LV, or alternatively with LV/ 
CC ratio. In validating the data, all phenotypes displayed the expected 
SZ/HC differences, with increased LV volumes (~ 0.5 SD above con-
trols), and decreased CC volumes in SZ (~ 0.5 SD below controls). This is 

consistent with previous studies that report increased LV volumes (e.g., 
(del Re et al., 2019, 2016b; Heller et al., 2021)) and reduced callosal 
volumes in large samples of SZ patients (Francis et al., 2016; Patel et al., 
2015). The CC:LV ratio was significantly and positively associated with 
the GAF in this case-control sample, thereby confirming our results in a 
small sample of probands (CIDAR) (del Re et al., 2016b). 

Importantly, MIR137, an established susceptibility locus in schizo-
phrenia GWAS (Schizophrenia Working Group of the Psychiatric Ge-
nomics Consortium, 2014; Trubetskoy et al., 2022), acts as a regulator of 
several genes that are themselves significantly associated with SZ 
(Collins et al., 2014; Cosgrove et al., 2017; Kwon et al., 2013). Our 
hypothesis was that MIR137 and its regulated pathways would be 
associated with LV, CC, and their ratio, and explain a significant portion 
of the variance in these regions. The findings largely confirm this hy-
pothesis and indicate that CC (portion):LV ratios show some of the 
strongest associations with the pathway PRS, in addition to LV volume. 
Among the 5 pathway PRSs, including ephrin, LTP, PKA, axon guidance 
signaling, and the MIR137-target pathway (Hill et al., 2014), the ephrin 
pathway associated with the most phenotypes, with the highest per-
centage of variance explained in the LV volume and CC (portion):LV 
ratios. Novel SNP-based heritability estimates of the CC subregions and 
CC:LV ratios in particular, indicate high heritability of the endopheno-
types, with the highest heritability for the CC:LV ratio. Ven-
triculomegaly as well as abnormalities of the CC are present in several 
neuropsychiatric disorders including Alzheimer’s disease, dementia, SZ, 
bipolar disorder, major depression, as well as Parkinson’s and Hun-
tington’s disease (Duy et al., 2022; Kelly et al., 2018; Maxfield et al., 
2023; Thompson et al., 2020), suggest partially common mechanisms of 
these diseases. While in some instances enlarged LV might index 

Table 1 
Demographic and clinical characteristics of the GENUS Consortium subset with MRI and genetic data that was included in the primary polygenic risk score (PRS) 
analyses. a.   

Patients Controls Statistic (F) df p e 

N Mean ± SD 
(Range) 

N Mean ± SD (Range) 

Age (years) 720 35.2 ± 11.8 
(16–76) 

912 35.9 ± 12.9 
(15–86) 

1.1 1, 1630 0.29 

Education Level (years) b 671 12.5 ± 2.7 
(3–22) 

702 14.5 ± 2.4 
(7–21) 

210.6 1, 1371 <0.001 

Premorbid IQ 373 103±14.4 
(56–145) 

388 111.8 ± 10.7 
(74.4–138) 

92.1 1, 759 <0.001 

Current IQ 365 99.4 ± 16.6 
(58–155) 

410 116.9 ± 14 
(77–155) 

256.4 1, 773 <0.001 

Age at Onset (years) 633 23.5 ± 7.3 
(9–58) 

— — — — — 

Illness Duration (years) 641 11.6 ± 11.6 
(0–53) 

— — — — — 

PANSS Positive c 531 14±6 
(7–41) 

— — — — — 

PANSS Negative c 528 13.7 ± 6.1 
(7–42) 

— — — — — 

PANSS General 456 28.3 ± 11.7 
(0–93) 

— — — — — 

Global Assessment of Functioning 117 14.6 ± 19.3 
(0–103) 

— — — — — 

Chlorpromazine equivalent d current antipsychotic dose 
(mg) 

120 20.5 ± 19.4 
(0–103) 

— — — — —  

N % N % Statistic (χ
2) df p 

Sex (female / male) 208 / 512 28.9 / 71.1 439 / 473 48.1 / 51.9 62.3 1 <0.001 
Ancestral Population (EUR / EAS) 571 / 149 79.3 / 20.7 891 / 21 97.7 / 2.3 145.8 1 <0.001 
Medication status (medicated / unmedicated / unknown) 503 / 116 / 101 69.9 / 16.1 / 14.0 — — — — — 

Abbreviations: EAS = East Asian; EUR = European; IQ = Intelligence quotient; PANSS = Positive and Negative Syndrome Scale; SD = Standard Deviation. 
a All available MRI data were used for standardization and covariate adjustment, regardless of availability of genetic data. See Supplementary Table 2 for de-

mographic and clinical characteristics for the full MRI dataset. 
b Education level is measured in years from age 6, i.e., 12 years of education indicates high school completion (in most countries). 
c Composite of PANSS and SANS/SAPS, calculated according to van Erp et al. (2014), is reported instead of scores from these scales separately, to increase sample 

size and reduce the multiple testing burden. 
d Antipsychotic dose equivalent to 100 mg chlorpromazine. 
e P-value from t-test (quantitative variables) or chi-squared test (categorical variables). 
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Fig. 1. Covariate-adjusted standardized means and distributions of volumes of lateral ventricles and corpus callosum in the GENUS consortium.  
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neurodegenerative syndromes with loss of brain matter, in neuro-
developmental syndromes it might index atypical neurodevelopment. 

Our overall findings are consistent with previous reports suggesting 
that MIR137-associated risk for SZ may relate to broader downstream 
genetic effects (Cosgrove et al., 2017) since MIR137 acts as a critical 
upstream regulator of neurodevelopmental genetic pathways that affect 
morphometric brain changes. In this context, the most notable result 
concerns the ephrin pathway as an essential regulator of the white 
matter tracts composing the CC. Ephrin receptor tyrosine kinases and 
their ligands, the ephrins, which are abundant in the developing brain, 
regulate developmental processes that are crucial for correct brain for-
mation, including complex short-range cell-cell and long-range in-
teractions. Gene mutations of the ephrin family are also implicated in 
neurodevelopmental disorders such as lissencephaly, polymicrogyria, or 
heterotopia, and ZIGA virus neurodevelopmental abnormalities, 
although the underlying molecular mechanisms remain to be elucidated 
(Gerstmann & Zimmer, 2018). 

Molecularly engineered EphB1 and B2 receptors in mice (Robichaux 
et al., 2016), preferentially produce rostral, vs caudal or rostral plus 
caudal, partial agenesis of the CC, according to different genotypes, 
suggesting specific mechanisms of ephrins in the development of the 
anterior versus posterior portions of the CC. In post-mortem SZ patient 
tissues (Saia-Cereda et al., 2016), and in organoids obtained from 
SZ-derived IPCs cells (Nascimento et al., 2022), the ephrin-B is one of the 
top dysregulated pathways in SZ. 

Other studies have focused on other brain regions in relation to 
MIR137 in SZ. Patel et al. (2015), for example, in a sample that partly 
overlaps with this study (MCIC, TCD, NUIG), found that the homozygous 
MIR137 risk genotype in SZ was associated with an attenuated reduction 
of mid-posterior CC volume, along with trend-level effects in the 

adjacent central and posterior CC, although this study did not investi-
gate genetic pathways regulated by MIR137, such as ephrin. 

Cosgrove et al. (2018), in a sample also included in this study (TCD), 
observed a nominally significant association between increasing 
MIR137 PRS and decreasing brain volume, independent of diagnosis 
status, although there was no significant association between MIR137 
PRS and cortical thickness, surface area or hippocampal volume, 
yielding only suggestive evidence of MIR137 impact on cortical struc-
ture. On the other hand, other studies have shown a relation between 
MIR137 and hippocampal volumes (Lett et al., 2013). Cosgrove et al. 
(2017), in another sample included in this study (TCD, NUIG), found 
that increased polygenic risk (p < 0.05) within the empirically derived 
MIR137 regulated gene score associated with lower performance on 
working and episodic memory, and IQ. 

In a further study of a sample that also partly overlaps with this study 
(MCIC), SZ patients homozygous for the MIR137 risk allele showed 
significant decreases in occipital, parietal and temporal lobe GM con-
centration (GMC), with increasing MIR137-regulated PRS, whereas 
those carrying the protective minor allele showed significant increases 
in GMC with PRS (Wright et al., 2016). No correlations of GMC and PRS 
were found in HC. 

In a Chinese cohort, Kuswanto et al. (2015) found that patients 
diagnosed with SZ who carry the risk homozygous genotype for one of 
two intronic MIR137 risk variants had decreased FA (i.e., decreased 
brain WM integrity) in the fronto-striatal regions compared to hetero-
zygous genotype carriers. They also had worse attention and processing 
speed, and worse negative symptoms compared with the non-risk allele. 
Finally, Cummings et al. (2013), in a sample included in this study (TCD, 
NUIG), found that carriers of the MIR137 rs1625579 risk allele had 
lower scores for a positive symptom factor derived from the Operational 

Fig. 2. MIR137 ephrin pathway polygenic risk score (PRS) associations with volumes of lateral ventricles and corpus callosum, for patients and controls combined, 
excluding familial high-risk – European ancestry. For each phenotype, each of the six dots represents the beta value of the PRS calculated at a different discovery 
GWAS p-value threshold. A higher p-value means the PRS contains more SNPs. 
Abbreviations: Ant = Anterior, CC = corpus callosum, LV = lateral ventricles, Post = Posterior. * p < 0.05, FDR-corrected for 13 phenotypes and 7 PRSs. 
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Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT+) 
and lower scores on a lifetime measure of psychosis incongruity. 

Limitations 

This study has limitations associated with sample diversity. The PRS 
itself only captures a proportion of genetic risk, and the PGC datasets are 
largely based on European ancestry samples. Therefore, PRS may not be 
accurate for other populations in GENUS, which include ~25 % non- 
European ancestry participants. However, our sensitivity analyses 
comparing the analysis of European individuals only with the analysis of 
European+East Asian individuals provided some evidence of cross- 
ancestry effects. 

Summary 

Notwithstanding limitations, we observed that the CC:LV ratio 
positively correlates with global functioning, as found in our previous 
small sample (del Re et al., 2016b). It is also consistent with the central 

and supportive role that the CC and LV provide for the rest of the brain, i. 
e. serving as a conduit for inter-hemispheric information transmission, 
and helping keep the brain buoyant, cushioned, nourished, and cleared 
of waste, respectively. We also highlight the importance of specific 
MIR137-regulated pathways in the morphometry of both LV and CC; 
with specific effects of pathways for different portions of the CC. We add 
here measures of heritability for the regions of interest, calculated with 
MEGHA. These findings indicate high heritability of these variables, 
including the CC:LV ratio. A major strength of this study is its size. A 
further important strength is the heritability finding that suggest that the 
highly heritable CC:LV ratio, with variance explained by the 
MIR137-regulated ephrin pathway, is a biomarker of SZ that correlates 
with global functioning. 
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Fig. 3. SNP-based heritability estimates for volumes of lateral ventricles and corpus callosum obtained using Massively Expedited Genome-wide Heritability Analysis 
(MEGHA). 
Abbreviations: Ant = Anterior, CC = corpus callosum, CI = confidence interval, LV = lateral ventricles, Post = Posterior, SNP = single nucleotide polymorphism. * p 
< 0.05, FDR-corrected. 
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