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A B S T R A C T

The deployment of autonomous driving technology is hindered by ‘‘corner cases’’: unusual nuanced conditions
that the self-driving software cannot understand and act fully. We argue that some corner cases originate from
a ‘‘narrow AI’’ approach, which lacks the general knowledge that humans exploit when dealing with these
cases. We propose an alternative that can be seen as a step toward features of Artificial General Intelligence.

We exploit the biological principle of affordance competition in layered control architectures to create
an artificial agent that realizes emergent, adaptive, and logical behaviors without programming case-specific
rules or algorithms. We give six different examples of simple and complex emergent behaviors. For the case
study of merge scenarios, we contrast the approach of this paper with an algorithmic solution of the literature.
The ideas presented here (if not the whole agent’s sensorimotor organization) could be used to improve the
robustness and flexibility of self-driving technology.
1. Introduction

The notion of self-driving vehicles is old-fashioned, but is still an
active field of industrial research. A CB Insight report (CB Insights,
2015–2020) listed more than 40 companies that work on autonomous
vehicles in 2020.

The main motivations for automating driving are:

(1) Safety. Under the assumption that humans are bad drivers and
that it is possible to automate driving.

(2) Providing new mobility services to reduce traffic congestion,
energy consumption and pollution, and for people who cannot
drive.

(3) Maintaining technological and market leadership.

For decades, the achievement of self-driving vehicles has been a mi-
rage; it has become closer recently (but not without issues), in parallel
with the rapid advancement of Artificial Intelligence (AI) powered by
deep neural networks.

1.1. Autonomous vehicles within AI

It is natural to ask what role AI plays in the research on autonomous
vehicles (AV); more specifically, can AV technology be considered part
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of Artificial General Intelligence (AGI)? At first glance, the answer
appears to be negative. According to Ben Goertzel, who introduced
the concept of AGI (Goertzel, 2014; Goertzel, Iklé, & Wigmore, 2012;
Goertzel & Pennachin, 2006), the main characteristic of AGI is the
ability to perform a variety of tasks in many different contexts and
environments. AGI differs from the so-called ‘‘narrow AI’’ research,
which aims to create intelligent artifacts specialized in one task. From
this point of view, autonomous driving appears to fall precisely within
the field of narrow AI as it pursues a single specialized task: driving a
vehicle.

In this paper, we argue that the main limitations of mainstream
research on AV come from its account as narrow AI. The idea of de-
veloping AV as an application of narrow AI makes it almost impossible
to attain a higher level of driving autonomy.

Our claim is supported by the weakness of the assumption at point
1 of the above list. In contrast to shallow perception, human beings are
excellent drivers. The fatality rate of an ‘‘average’’ driver in the United
States or the EU is one fatality per 100 million miles driven and one
severe accident every 12 million miles (Kalra & Paddock, 2016). The
40.000 deaths per year in the EU and 33.000 in the US, if not seen with
the vast driven distances in the nations, may cause the false perception
that humans are bad drivers. If automated vehicles were to be designed
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to meet the safety goal (point 1), it would be clear that these systems
should be significantly more reliable than human drivers. That would
raise the bar to the level of one death every 1–10 billion miles (which
still means about 400 deaths per year in the EU) or even more.

However, the recent development of autonomous driving technol-
ogy appears to be impeded by the continued emergence of many
edge and corner cases (Adams, 2020; Anderson, 2020; Arieff, 2021;
Eliot, 2021; The New York Times, 2021a, 2021b). The prototypes of
driverless vehicles show a long tail of unexpected situations in which
cars are unable to act (Boggs, Arvin, & Khattak, 2020; Dixit, Chand,
& Nair, 2016; Lv et al., 2018), or act dangerously (Marshall & Davies,
2019; US National Transport Safety Board, 2019).

The difference between narrow and general intelligence becomes
crucial when dealing with edge- and corner-cases. During unexpected
situations and emergencies, the most appropriate reaction might come
from a broad knowledge of objects in the world and intuitive cognition
of the physics that rules their motion and interactions (we will give
an example in Section 2.1). However, note that there is no interest in
developing AV capable of performing other tasks in addition to driving.
For this reason, it may never fully belong to a strict definition of AGI.
Still, we believe that advanced autonomous driving systems should be
at an intermediate point in the intelligence spectrum between narrowly
specialized AI models and AGI.

1.2. Paper contribution

The work presented here attempts to move from narrow AI to AGI
by using certain architectural principles belonging to AGI, with the
objective of better coping with driving situations requiring high-level
intelligence.

The industrial approach to dealing with corner cases relies on
large-scale research and development programs (Connected Automated
Driving, 2021) that combine experiments, simulation, and standardiza-
tion activities; for example, the PEGASUS (Project PEGASUS, 2019) and
HEADSTART (EU project HEADSTART, 2019) projects in the EU.

This paper presents an agent’s sensorimotor architecture that pro-
duces polite behavior as an emergent feature of the sensorimotor
system. We speculate that such a property may ease the burden of
dealing with corner cases.

Among the various approaches to AGI (Goertzel, 2014), the agent
presented here loosely embraces three of them. First, the agent takes
inspiration from several features of brain organization regarding per-
ception and action selection. Second, we are in agreement with the
‘‘emergentist approach’’, in which internal representations of concepts
and behavioral schemes emerge from lower-level dynamics. Third,
our agent follows the embodied perspective in which intelligence is
something that physical moving agents do in physical environments.

The novel contribution is found in Section 4. It is preceded by a
summary of the agent’s architecture in Section 3, which was published
previously, but is summarized here to the extent necessary to explain
the contribution of Section 4.

1.3. Paper organization

In the next Section, we review the two main approaches to AV
that follow the narrow AI account: in Section 2.1, the approach based
on an engineering decomposition of the overall system into sequential
modules (e.g., sense–think–act); in Section 2.2, the opposite approach
known as end-to-end. We argue that both are brittle and harbor seeds
for corner cases.

In Section 2.3 we present the layered control architecture, a biolog-
ical solution capable of generating emergent adaptive behavior with
successful robotics applications. We clarify how our layered control
architecture with affordance competition works in Section 3. Finally,
Section 4 constitutes the core of the paper. It gives six different ex-
amples of emergent behaviors, in most cases for non-trivial scenarios
(when possible, recalling examples of the same scenarios handled in a

traditional way). Multimedia materials support the demonstrations.
Fig. 1. The sense–think–act architecture.

2. State-of-the-art of self-driving architectures

2.1. The sense–think–act architecture

The architecture almost universally used for self-driving software is
the sense–think–act shown in Fig. 1 (Claussmann, Revilloud, Gruyer,
& Glaser, 2019; González, Pérez, Milanés, & Nashashibi, 2016; Ka-
trakazas, Quddus, Chen, & Deka, 2015; Paden, Čáp, Yong, Yershov, &
Frazzoli, 2016; Pendleton et al., 2017). Interestingly, as a model for
human intelligence, it is also known as the Cartesian model, but its
ability to explain natural cognition is questioned, for example, Barsalou
(2008), Brooks (1991), Keijzer (2002), Seitz (2000), Van Gelder (1995).

From an engineering perspective, the scheme of Fig. 1 is a conve-
nient decomposition of a system’s functions, which works fine when the
system states can be modeled perfectly beforehand (which is the case
of many engineered systems).

However, it shows weaknesses when faced with situations that
cannot be perfectly specified in advance. In this model, a designer
decides how to ‘‘represent’’ the world and, in particular, the symbols
used for that representation (for example, the classes of objects, such
as cars, pedestrians, etc.). These symbols are abstract labels (Keijzer,
2002) that do not contain any information about how real things work.
The self-driving behaviors — what to do with given classes — are
programmed by a human designer.

The reasons why we argue that the scheme of Fig. 1, as an artifi-
cial cognitive system, is brittle are at least twofold: (1) the inherent
deficiency of narrow-AI and (2) the complexity of programming every
behavior.

2.1.1. Inherent narrow-AI deficiency
Fig. 2 gives an example of a typical outcome of a narrow-AI per-

ceptual system that turns out to lack important information. It shows
the output of a state-of-the-art semantic segmentation network, where
the object labels lack any inferential meaning representation, unlike an
AGI system.

The front minivan is classified as a vehicle not different from
the others. Information about the dangerousness of the minivan load,
which could fall onto the road through the open door, is lost. The
reason is that the neural network’s output symbols have been prede-
fined without considering this unusual situation (and many others).
Even if we could retrain the network with one additional class for the
special vehicle (which would be a considerable undertaking), a quick
Internet search reveals an infinite number of hanging-load situations,
some requiring urgent action and others with little danger. Therefore,
the class in itself still says nothing about which behavior is required: the
meaning of the symbols and, consequently, action planning, is left to
a human programmer with limited cues about what to do for virtually
infinite variants of unforeseen situations.

2.1.2. Complexity of behavior programming
Even if the output coding of the perceptual system might include

some meaningful content of objects, decision-making can still be prob-
lematic. Behavior selection and optimization are typically non-convex,
and many special maneuvers are often handled by systems of rules or ad

hoc algorithms. For example, negotiation in a merge scenario is solved
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Fig. 2. A driving scenario in which a vehicle with a dangerously open door is confused with the others.
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Fig. 3. Layered control architecture.

ith a specific algorithm (which requires the creation of a phantom
bstacle) in Kreutz and Eggert (2021). For the same courtesy merge
xample, the complexity related to behavior generation may also be
limpsed in a recent Ph.D. thesis (Menéndez-Romero, 2021), which
hows how the function breaks down into a plethora of subcases.

.2. End-to-end architectures

A recent alternative to the traditional sequential decomposition
f autonomous driving tasks lies in the extreme opposite. End-to-end
earning approaches train a (deep) neural network controller by giving
xpert driver demonstration examples. A notable demonstration by
VIDIA is the lane keeping function (Bojarski et al., 2016), where a
eep neural network realizes a sensorimotor loop that produces control
ommands in response to raw camera data. The network learns patterns
hat could be considered as symbols created on purpose, not a rigid set
f symbols like in the sense–think–act paradigm (Bojarski et al., 2017).

However, because of the narrow AI scope, the most appealing
eature of the end-to-end strategy — dispensing with programmed
nternal representations and algorithms — is also a major source of
rouble. It is impossible to acquire an implicit knowledge of objects
nd the world phenomena from a single narrow task of driving. The
nd-to-end approach struggles with the vastness and diversity of the
raining set necessary ‘‘to train a generalizable model which can drive
n all different environments’’ (Bansal & Ogale, 2018), which is related
o another recently discovered issue: the so-called causal confusion,
.e. the inability to grasp the ‘‘causal structure of the interaction between
he expert and the environment ’’ (De Haan, Jayaraman, & Levine, 2019).

Finally, human actions are a superintended choice between different
ffordances (Marti, Morice, & Montagne, 2015; Pezzulo & Cisek, 2016).
his level of explanation is lacking with end-to-end approaches: it
emains unclear which alternative actions have been evaluated and
hy they have been discarded.

.3. Layered control architectures

Layered control architectures are shown in Fig. 3. They combine
subsumption architecture (Brooks, 1986) (the violet stack on the

eft) with the affordance competition principle (Cisek, 2007; Prescott,
edgrave, & Gurney, 1999).

At any given time, the largest number of potential actions that an
gent detects in the environment — also called affordances (Gibson,

1986) — are simultaneously primed by the violet stack, creating a large

pool of opportunities (the light orange circle). e
The optimal action is then selected from the pool (action selection)
through a robust centralized competition process (Cisek, 2007). The pool
of actions instantiated before the final choice explains which alternative
affordances were considered.

3. Our implementation of layered control

We have realized a self-driving agent with a layered control archi-
tecture, which is described in detail in Da Lio, Donà, Papini, and Gurney
(2020).

For the reader’s convenience, we summarize its operation here.
However, we remark that this summary should not be considered a
complete self-contained description of the agent. This description is
limited to what is necessary to understand the novel contributions of
the paper, which will be presented in Section 4. The Appendix A gives
further details linked to the previous literature.

Technically speaking, the layers of the subsumption stack are ‘‘in-
verse models’’ that link the sensory effect to the motor command that
causes it. In principle, they can be learned via generalized motor bab-
bling, i.e., by producing exploratory motor commands and observing
the sensory effects. Examples of bootstrapping subsumption architec-
tures in this way were studied in the European projects COSPAL (EU
project COSPAL, 2007) and DIPLECS (EU project DIPLECS, 2010). In
biology, learning cerebellar inverse models from sensory-motor pairs is
explained in Porrill, Dean, and Anderson (2012).

In driving environments, testing actions in the real world may be
dangerous. In the EU Dreams4Cars project (EU project Dreams4Cars,
2019), we used an indirect approach that synthesizes the inverse mod-
els via ‘‘mental simulation’’ processes (Da Lio, Donà, Papini, Biral, &
Svensson, 2020a), that is, interacting in a safe sandbox created with
pre-learned forward models (the agent’s offline operation). The process
is inspired by human mental synthesis that occurs in various mental
states, including when thinking about new actions and during sleep and
dreams.

3.1. Online operation

During action (the agent’s online operation), the inverse models in
the subsumption stack respond to different affordances offered by the
environment. For example, in Fig. 4, the sensorimotor model labeled
‘‘lane follow’’ reacts to the affordance corresponding to traveling in the
lane (𝑎1). The inverse model labeled ‘‘lane change left’’ reacts to the
possible action of traveling in both the current and the left lane (𝑎2).
ach inverse model estimates the salience 𝑄𝑖(𝑟0, 𝑗0) for affordance 𝑎𝑖 as:

𝑖
(

𝑟0, 𝑗0
)

= max
𝑟(𝑡),𝑗(𝑡)

E
[

𝑅𝑖[𝑟(𝑡), 𝑗(𝑡)]
]

,

𝑠.𝑡.

𝑟(0) = 𝑟0, 𝑗(0) = 𝑗0,

(1)

here 𝑟(𝑡), 𝑗(𝑡) are the lateral and longitudinal control, 𝑡 is the discrete
ime and 𝑅𝑖[.] is the reward for using 𝑟(𝑡), 𝑗(𝑡) for 𝑎𝑖, beginning with the

nvironment and state of the vehicle of 𝑎𝑖.
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Eq. (1) emphasizes the choice of instantaneous control 𝑟0, 𝑗0 over
he future 𝑟(𝑡), 𝑗(𝑡). 𝑄𝑖(𝑟0, 𝑗0) is a topographic encoding of action values
hat tells the value of choosing 𝑟0, 𝑗0 for each 𝑎𝑖.

Fig. 4 shows that each inverse model is made up of excitatory and
nhibitory loops. The formers activate regions of the 𝑟0, 𝑗0 plane corre-

sponding to free navigable spaces. The latter loops suppress subregions
that correspond to close encounters (yellow) or collisions with obstacles
(red), Da Lio et al. (2020, Section III.C).

For action selection, the individual 𝑄𝑖 are aggregated into a single
𝑄 function.

𝑄(𝑟0, 𝑗0) = max(𝑤𝑖𝑄𝑖(𝑟0, 𝑗0), 𝑖 ∈ affordances). (2)

where 𝑤𝑖 are weights that can steer affordance selection. We have
shown how this weighting mechanism can be used to navigate the land-
scape of affordances proactively and implement legal rules in Da Lio
et al. (2020), long-term prudent behavior (Rosati Papini, Plebe, Da Lio,
& Donà, 2022), and to realize human–vehicle interactions (Da Lio,
Donà, Papini, & Plebe, 2022b).

The final action selection is carried out with multihypothesis sequen-
tial probability ratio test algorithm (MSPRT) (Baum & Veeravalli, 1994;
Draglia, Tartakovsky, & Veeravalli, 1999), which is an algorithm that
maximizes the probability of making the highest-salience choice in
noisy situations and within a maximum decision time constraint.

4. Emergent behaviors

This section demonstrates emergent behaviors. These can be quite
complex and look like what one might logically expect. The section
presents six examples (simulated in IPG CarMaker and post-processed
in Wolfram’s Mathematica): merge, follow and overtake, reaction to
cut-in, incorrect pedestrian crossing, traffic not giving way, and navi-
gating an unusual wide lane with parallel traffic and an obstacle. These
examples are presented in a supplement video, and the salient moments
are commented on here. When possible, we compare the traditional
sense–think–act solutions.

4.1. Format of videos

Fig. 5 shows the format of the videos. There are several data
visualizations organized in panes. On the top left, the bird’s eye view
pane shows the legal corridors (the portion of the road that the self-
driving vehicle is legally allowed to use) and other objects on the road.
On the top right, there is the corresponding camera view showing
the whole road (in this example, the legal corridor is the rightmost
lane) and the same objects present in the bird’s eye view. In the upper
middle, a panel representing the longitudinal intention/state of the self-
driving agent is shown. It shows four alternative conditions that are: (a)
free flow, if the vehicle longitudinal control is not limited by objects,
legal speed limits, or curves, (b) car-following (when the longitudinal
control is constrained by the need to comply with an obstacle ahead,
not necessarily a car), (c) speed limit (when the speed must be adapted
to the next legal limit), (d) curve (when the speed must be reduced for
a next curve). The current state is highlighted. At the bottom left, there
is a panel concerned with the lateral state/intention. The panel shows
three distinct affordances: remaining on the current legal corridor or
moving to an adjacent corridor to the left or right. In the example, there
are no legally affordable corridors on both sides; hence, the squares
are gray. When there are choices (see Section 4.3 in frame labeled
‘‘3’’), they are shown here. The chosen affordance is highlighted and
the others are dimmed.1 For every affordable corridor, there are two

1 There is a fourth affordance not shown in the pane, which corresponds
o the entire drivable road. It represents a nonlegal option that has very low
riority and is used only when legal rules must be broken to avoid accidents
see Da Lio et al. (2020, Section III-C)).
sub-panels. The bottom one shows a representation of the 3D salience
map (the top one is an intermediate step in the computation of the
lateral salience map, which is related to the estimated probability of
time-to-lane-crossing (TTLC) given a particular lateral control choice —
see Appendix). On the right, there are two final panes. In the middle,
the lateral salience, which visualizes the range of lateral control for
remaining in the corridor. At the bottom, a chart shows the inhibitions
(absolute in red, partial in yellow) produced by the obstacles shown
in the bird’s eye and camera views. The inhibited regions indicate the
combination of lateral and longitudinal control at risk of collision. The
lateral salience map and the inhibition map are related to the selected
affordance (highlighted in the lateral state pane). The lateral salience is
the lateral cross section of the 3D salience map. The inhibition map is a
contour density map of the 3D salience, where red means zero salience.
The green–white boundary on the inhibition map visualizes the position
of the maximum longitudinal salience.

A tiny blue circle indicates the instantaneous longitudinal and lat-
eral control selected by the agent. This choice, propagated backward
in the lateral state and longitudinal state panels, identifies which loop
in the subsumption architecture corresponds to the chosen control,
i.e., the agent’s longitudinal and lateral intentions (the reactivation of
the subsumed loops permits the generation of behavior in every detail).

An interesting observation related to the inhibition chart is that the
inhibited neurons (in a neural implementation) corresponding to the
obstacles may influence the agent’s decision: if the inhibitions are close
enough, they reduce the likelihood of the choice (close actions reinforce
each other, and distant actions compete against each other). Between
choices with close inhibitions and similar-valued options without inhi-
bitions in the neighborhood, the agent will tend to prefer the latter,
achieving robust behavior.

4.2. Emergent merge behavior

Fig. 6 shows three salient moments of the merge video example. In
frame ‘‘1’’, two vehicles on the motorway (not shown yet in the camera
view) are going to collide with the self-driving vehicle: they produce
inhibitions that approach the action chosen by the agent. In frame
‘‘2’’, the inhibitions of the obstacles overlap the range of lateral control
that permits the vehicle to remain in the lane. The only option for the
agent to stay in the lane is to choose a longitudinal control toward the
bottom of the chart, which means decelerating. The selected action is
also shown in the 3D salience chart. The chosen longitudinal control is
at the bottom edge of the partial inhibition, automatically producing
an emergent car-following behavior. As the gap opens, the self-driving
vehicle resumes speed approaching the speed limit and merges with the
motorway (‘‘3’’). Similar examples found in the literature may be Kreutz
and Eggert (2021), Menéndez-Romero (2021). They use an elaborate
algorithm to produce an analogous behavior.

4.3. Follow and overtake

Fig. 7 shows three salient frames of the follow and overtake ex-
ample. At ‘‘1’’, after completing the approach phase, the self-driving
vehicle enters the car-following state (the selected action touches the
obstacle inhibition and it would not be possible to travel faster). The
two vehicles ahead proceed at the same speed (longitudinal inhibitions
have a matching bottom), and there is no added value in moving to the
left lane. The change left affordance exists but is not selected (dimmed
colors). At ‘‘2’’, the obstacle on the left accelerates. Immediately, its
inhibition in the control space moves upward and the change left
affordance wins (the winner peak is shown in the lateral state panes).
Therefore, the intention of the agent changes to the left lane change
(the planned trajectory is shown in the bird’s eye view), while the
longitudinal state remains ‘‘car following’’ (following the left car).
When the lane change is completed at ‘‘3’’, the agent has two options:
staying on the left lane or returning to the right. The latter wins (lanes
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Fig. 4. Dreams4Cars implementation of layered control with affordance competition. In this example, the green car has two options: traveling in the lane (𝑎1) or moving to the
eft lane (𝑎2). For each option, a map is created, which represents the reward 𝑄𝑖(𝑟0 , 𝑗0) for using the instantaneous control 𝑟0 , 𝑗0 (respectively, lateral and longitudinal control).
he contour lines on the reward map are filled with green. The more intense the color, the higher the value, which peaks around the optimal control choice. Red and yellow
epresent regions inhibited by obstacles (with zero or diminished value). The value maps are aggregated into a final decision map 𝑄(𝑟0 , 𝑗0), weighted by weights 𝑤𝑖 that can be
sed for a variety of purposes described in the text and Appendix A. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
Fig. 5. Format of videos. This graphical interface summarizes the agent’s computations using several real-time data charts The bird’s view shows a scheme of the relevant objects
n the environment. The axes labels are: ‘‘x (m)’’ forward direction in meters (range −50 m to 150 m), and ‘‘y (m)’’ lateral direction in meters (range −30 m to + 30 m). The
ongitudinal states box shows four conditions that affect the speed choice: free flow, speed limit, curve, and car-following. The inhibition map is the aggregated salience chart
(𝑟0 , 𝑗𝑜) of Fig. 4. The axes labels are: ‘‘r (1/m/s)’’ lateral control in the trajectory curvature rate (m−1∕s) (range −0.009 m−1∕s to 0.009 m−1∕s) and ‘‘j m/s3 ’’ longitudinal — jerk

control (range −2 m∕s3 to + 2 m∕s3). The lateral states box shows the 𝑄𝑖(𝑟0 , 𝑗0) for the three legal lanes. The probabilistic TTLC (Time To Lane Crossing) subgraph shows the
ime when the probability of leaving the corridor in absence of corrections exceeds two thresholds (see Appendix). The axes labels are: ‘‘r (1/m/s)’’ and ‘‘T (s)’’ (range 0 to 6
). The 3D salience map shows 𝑄𝑖(𝑟0 , 𝑗0) with the elevation axis (labeled ‘‘1/J’’) being the salience (see Appendix). Finally, the lateral salience map shows the function 𝑓 (𝑟0) (see
ppendix).
i
o the right are slightly biased to favor the legal recommendation to
eturn to the right when possible). The winner peak in the lateral
 a
ntention pane corresponds to a path that will reenter the right lane
fter clearing the obstacle to the right, as can be seen in the video.
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Fig. 6. Emergent negotiation in a merge scenario.

Note that the intention of returning to the right after completing the
overtake is taken very early, well before the right obstacle is cleared.

4.4. Reacting to cut-in

Fig. 8 illustrates the reaction to a cut-in maneuver. At ‘‘1’’, a vehicle
arriving from the rear in the fast left lane is detected first. It blocks the
lane change option (only the trajectories that do not complete the lane
change survive on the salience map of the left panel.2) At ‘‘2’’, the fast
ehicle frees the lane: the salience map for the left lane change widens,
ncluding complete lane change maneuvers. However, the agent does
ot move leftwards, as the current lane is free. At ‘‘3’’, the obstacle
ecelerates and moves toward our lane (cut-in). The winner action is
ow the lane change: at ‘‘3’’, as soon as the predicted obstacle path
ndicates cut-in, the agent plans to overtake. The rest of the video shows
he completion of the overtake maneuver with a return to the right lane,
imilar to the example in Section 4.3.

2 Recall that left and right affordances include both the current and the
earby lane.
Fig. 7. Alternating opportunistic overtaking and car-following.

4.5. Pedestrian crossing incorrectly

Corner cases may arise from the incorrect behavior of other road
users (it is difficult to imagine every possible incorrect behavior).
In this example, a pedestrian crosses the road when the traffic light
turns red for the pedestrian and green for the self-driving vehicle.
The salient frames are shown in Fig. 9. At ‘‘1’’, the self-driving vehi-
cle stops because of the inhibition produced by the red traffic light.
Crossing traffic produces additional inhibition to the same motor space
region. When the traffic light turns green (‘‘2’’), and the crossing traffic
stops, that motor region would become free, allowing the vehicle to
start. However, the movement of the pedestrian keeps that region re-
inhibited (in fact, the path of a moving entity is predicted regardless
of whether it is correct, as explained in the Appendix). Thus, the self-
driving vehicle does not start regardless of the green traffic light. We
had a chance to compare the same situation with traditional self-driving
software. The comparison is shown at EU project Dreams4Cars (2018).
The traditional system starts when the traffic light turns green and
brakes when the pedestrian is about to enter the lane. This example
does not mean that every traditional self-driving system will behave
the same way in that situation. However, it indicates that rule-based

systems may be fragile and rigid.
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Fig. 8. Emergent reaction to cut-in.

4.6. Traffic not giving way

Fig. 10 shows a similar case: the crossing traffic does not give way. A
safe stop maneuver emerges from the inhibition caused by the crossing
vehicles.

4.7. Unusual wide lane with parallel traffic and obstacle

The situation shown in Fig. 11 combines a few unusual elements.
The lane is 25 m wide. There is a stationary vehicle far ahead in
the lane (with an abundance of room to pass on either side). Two
vehicles follow the self-driving vehicle closely on both sides, at slightly
different distances. The traditional self-driving software used for the
pedestrian example (Section 4.5) would stop the car behind the stopped
vehicle because it is a busy lane (without considering the unusual width
of the lane). Such behavior is dangerous because people would not
expect that (we again remark that this is the case of the particular
implementation that we could use for Section 4.5 and here). Common
sense would suggest letting the closest rear car on the left pass and
then moving on the left to pass the stopped obstacle on the left. This
behavior is emergent, and explained with Fig. 11 and Fig. 12. Vehicles
start from rest. At low speed (time 5 s in Fig. 12) the entire action

space is affordable. The agent accelerates under free flow conditions,
Fig. 9. Pedestrian crossing the road illegally.

Fig. 10. Stop in traffic that does not yield.

remaining in the center of the lane (the vehicle speed is visible on the
tachometer in the camera view). At about 8.4 s, the nearby vehicles
— with increased speed — restrict the affordable control choices. At
about 8.5 s the front obstacle is detected, which divides the affordable
space into two parts (𝑎1 and 𝑎2). Between 8.5 s and 8.8 s (frame ‘‘1’’
n Fig. 11 is between the two times) the agent opts for the faster 𝑎1,
orresponding to passing in front of the right car and to the right of
he obstacle. However, the vehicle on the right is getting closer until,
t time 9.6 s, 𝑎1 vanishes. At about time 10 s the agent reverts the
ecision to 𝑎1, which is tailing (and stopping) behind the front obstacle
frame ‘‘2’’). As the speed decreases, at time 12 s the left vehicle is fast
nough to create another affordance, 𝑎3 (frame ‘‘3’’), which corresponds

to tailing the left vehicle and passing to the left of the obstacle (note
that the left vehicle is still on the side, but the motor space is based on
future predicted position and therefore anticipates possible actions).

5. Discussion and conclusion

Section 3 presented a self-driving agent characterized by creating

emergent behaviors, and we gave six examples of emergent behaviors
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Fig. 11. Complex emergent behavior.

(from Section 4.2 to Section 4.7). The principles used here are bor-
rowed from biology and can be seen as a proposed step toward AGI,
an alternative to the traditional narrow AI approaches mentioned in
Section 2.

The implementation of the agent as described in Section 3.1, is
limited to the strict extent necessary for this paper; but a complete
description is found in Da Lio et al. (2020). Here, we want to comment
on two points:

(1) The biological principles exploited in the agent and their impli-
cations for the agent’s operation.

(2) How this approach compares to the ones based on narrow AI;
and what might be the advantages for development/maintenance
and scalability.

5.1. Biological principles exploited in the agent

Cisek’s Affordance Competition hypothesis (Cisek, 2007) is the main
idea. Parallel action priming and selection through a competitive pro-
cess is the theoretical element that informs the agent’s sensorimotor sys-
tem (Fig. 4 vs. Cisek (2007, Fig. 1)). Continuous competition between
affordances forms the basis for emergent adaptive behavior.
Fig. 12. Timeline of events and decisions..

Another important idea is the topographic organization of the motor
space, where affordances are encoded by hills of activity with the
heights of the hills that encode the action value (or the salience, (2)).
Trajectories that begin with similar control lie close to each other in
the motor space and reinforce each other. Hence, by selecting one
particular instantaneous control, the agent commits to a family of
future maneuvers (beginning with a similar control and possibly diverg-
ing later) rather than selecting just one. This minimum commitment
principle further maximizes adaptability because alternative maneuvers
with high values may exist close to the highest-valued one.

Finally, the whole system is organized hierarchically (Fig. 4) with
different branches dedicated to high-level goals. The branches are
aggregated into a unique action-value map 𝑄(𝑟0, 𝑗0) with weights that
allow one to navigate the affordance landscape according to Pezzulo’s
hypothesis (Pezzulo & Cisek, 2016). This allows the agent’s behavior
to be guided by high-level directives, effectively modulating the value
function 𝑄(𝑟0, 𝑗0). This flexibility (i.e., a modulable reward function)
does not normally exist in traditional reinforcement learning implemen-
tations. Even if not shown here, we must mention that this mechanism
was used for the implementation of traffic regulations (Da Lio et al.,
2020), long-term cautious behavior (Rosati Papini et al., 2022), and
human–agent interactions (Da Lio et al., 2022b). Thus, the emergent
behavior characteristic of this agent does not prevent controlling the
agent’s higher-level behaviors with directives (or rules), for example,
to comply with a highway code.
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Fig. 13. Speed adaptation on ramps obtained as an emerging behavior: time to collision
(TTC) after merging with different relative longitudinal positions (𝛥𝑥) and different
relative speed (𝛥𝑣). The graph is directly comparable to (Kreutz & Eggert, 2021, Fig.
7).

5.2. How does this approach compare to narrow AI ones

Most traditional motion planning methods work by selecting one
trajectory from a pool of alternatives; however, not with the sophis-
tication of the above principles. In particular, while local trajectory
optimization is obtained with various methods, among which optimal
control, the choice among alternative higher-level behaviors is typically
produced with ad hoc algorithms.

As an example, consider the merge scenario Section 4.2. An al-
gorithm to deal with this situation was mentioned earlier (Kreutz &
Eggert, 2021). It adapts the Intelligent Driver Model (IDM) to modulate
the speed of a vehicle on a ramp entering the main road. The paper
proposes a modified IDM (GIDM) and shows, with various performance
indicators, that it works to regulate vehicle entrance. Although the
ramp is adjacent to the road, the vehicle enters the road only at the end;
therefore, it is equivalent to the situation in Section 4.2. We replicated
the study with our agent, performing simulations spanning the same
conditions described in the paper (Kreutz & Eggert, 2021, Section VI.B)
to find that a fine adaptation of the speed in the ramp is automatically
obtained for all the conditions considered. For example, Fig. 13 shows
the time-to-collision (TTC) after merge obtained with different relative
longitudinal positions of the vehicle and obstacle (𝛥𝑥) and with differ-
ent relative speeds (𝛥𝑣). The graph is directly comparable to (Kreutz &
ggert, 2021, Fig. 7). The top-left region occurs when the agent merges
n front of the obstacle. The bottom-right region occurs when the agent
erges behind (this latter part is not considered in Kreutz and Eggert

2021)). The white color occurs when the tailing vehicle (either the
gent or the obstacle) is slower than the leading vehicle (therefore, TTC
oes not exist), or TTC is greater than 20 s.

This example shows that the principles commented on in Section 5.1
ay be an alternative to programmed algorithms. Algorithms are based

n schematic situations and may have limitations. For example, as
iscussed in Kreutz and Eggert (2021, Section IV) the algorithm is
n adaptation of one-dimensional dynamics to the reality and needs
arious schematizations which are explained in subsections B to E. Of
ourse, more complex algorithms are possible, for example (Menéndez-
omero, 2021), which are more difficult to develop, test, and vali-
ate. Thus, in our view, having behaviors that emerge from biological
rinciples is an attractive perspective.
5.3. Limitations of this study and future plans

The main limitation of this study is its anecdotal nature. On the
one hand, we show nontrivial emergent behaviors. On the other hand,
the limited number of examples given here does not permit one to
claim that emergent behaviors will be correct for any possible situation
(but this problem holds also for algorithms). The testing and validation
of self-driving software for long-term driving is a major undertaking
for current autonomous driving development programs. For example,
the recent EU project SUNRISE (Safety assUraNce fRamework for con-
nected, automated mobIlity SystEms) (EU project SUNRISE, 2022) aims
at developing test scenarios and test cases to address validation in the
long term, inheriting the findings of many previous projects.

Note that, as explained in the Introduction, the presented work pro-
poses a bridge between narrow AI and AGI, although it is not possible
for it to fully belong to the latter. This is because the agent must give
importance to the restricted set of affordances that are meaningful
in the driving context. On the other hand, in the case of a human
driver, behaviors can emerge from the knowledge of a wider variety
of contexts, in which the social aspect has a significant weight. Despite
this limitation, the agent architecture shown here produces behaviors
that would otherwise require careful programming (Section 5.2, and
Sections 4.5, 4.7 where they mention the outcome of a traditional
software).

So what if we discover situations where the behaviors are not
acceptable? Algorithmic solutions would call for modification of the
algorithms and re-testing. In contrast, the agent above can exploit the
affordance navigation and biasing mechanism (Section 5.1) to learn
better high-level choices. An example of how this may work was given
in Rosati Papini et al. (2022) for learning the speed choice in the case
of distracted pedestrians.
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Appendix A

This appendix provides additional information on our implementa-
tion (to be considered as an example) and links to previous literature.

The agent recognizes up to three legal corridors (Da Lio et al.,
2020, Section II-C.1,3): staying in the current lane or moving to a
nearby lane on the left or right (we assume that a double lane change
is always carried out in two single lane changes). In addition to the
legal corridors, the whole drivable surface is also considered a fourth
possibility, but the weight (𝑤 in Fig. 4) assigned to this option is very
low, to use it only as a last resource if there are no collision-free
solutions in the legal lanes.

For each of the (up to) four affordable corridors, the agent evaluates
the salience 𝑄𝑖(𝑟0, 𝑗0) according to principle (1). In practice, we simplify
the computation assuming that lateral and longitudinal dynamics are
weakly coupled, which is a usual simplification in non-extreme vehicle
dynamics conditions. Hence:

𝑄(𝑟0, 𝑗0) ≊ 𝑓 (𝑟0)𝑔(𝑗0). (3)

where 𝑓 (𝑟 ) is the lateral salience and 𝑔(𝑗 ) the longitudinal salience.
0 0
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The lateral salience is evaluated as follows: for every instantaneous
control, 𝑟0, a stochastic motion model,3 is considered to produce a
family of possible trajectories, some of which may trespass the lane
borders. The lateral salience is taken as the time when the probability
of leaving the lane exceeds a low threshold: the longer this is, the
more time the agent has to carry out corrections4 and the easier and
smoother the lane-following task is. For 𝑓 (𝑟0) we rescale the TTLC (and
in particular subtract 2 s from the time).

The longitudinal salience is evaluated as follows: a simplified ver-
sion of the human longitudinal motion model (calibrated on experimen-
tal data) (Da Lio, Mazzalai, Gurney, & Saroldi, 2018b) is considered
and, for every instantaneous longitudinal control 𝑗0, various subgoals
are examined (e.g., stopping at some stop line; see examples in Da Lio,
Mazzalai, and Darin (2018a)). The cost (Da Lio et al., 2018b, Equation
4) is used for the inverse of 𝑔(𝑗0). Obstacles are managed in two
steps (Da Lio et al., 2020, Section II-C.5): first prediction of their
likely path and then inhibition of the motor space regions leading to
the spatio-temporal locations (for the latter step, motor primitives for
the lateral and longitudinal control above are reused). For standing
pedestrians (who do not have a predicted path), a cautious approaching
speed is obtained by reinforcement learning considering how they
might move (Rosati Papini et al., 2022).

For decision-making, the value maps of the individual corridors are
aggregated into a unique action-value motor chart with (2). In the
aggregation process, the original rewards 𝑄𝑖 are weighted with weights
𝑤𝑖. These weights may be scalar quantities (in which case decision
making is steered toward one of the 𝑖th affordances, or they may be
functions 𝑤𝑖(𝑟0, 𝑗0) that can be used to bias particular regions on the
motor space (for example, faster travel). The idea of steering decision-
making in this way derives from Pezzulo and Cisek (2016). Biasing is
intrinsically safe because collision trajectories are completely inhibited
in 𝑄𝑖 and cannot be selected regardless of the biases 𝑤𝑖. A discussion
of this mechanism is found in Da Lio et al. (2020, Section II-E),
while Da Lio et al. (2020, Section III-C) demonstrates using proactive
lane change on motorways and Da Lio et al. (2022b) demonstrates
emergent human–robot interactions based on the same principle.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cogsys.2022.12.007.
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