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Abstract
Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechani-
cally robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artifi-
cial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, 
such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we 
introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic 
acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. 
The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w 
magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of 
fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical 
properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed 
herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics 
applications.
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1  Introduction

Actuators find applications in soft robotics, medical devices, 
and wearables. However, there is a large need for innovative, 
environmentally friendly materials capable of being crafted 
into devices with milli/micrometric dimensions [1, 2]. 
These materials must possess dual characteristics, inducing Gabriele Greco and Benjamin Schmuck contributed equally to this 
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strain and exhibiting mechanical resilience while retaining 
strength throughout their operation [3–5]. Fibrous magnetic 
materials are particularly intriguing since they can generate 
mechanical motion without being tethered to an external 
power source [6–9].

Typically, synthetic polymers are used for making actua-
tors, offering softness but often lacking high strength and 
Young’s modulus [6, 10–12]. In this context, native silk 
presents a promising solution as it combines softness and 
desirable mechanical properties [13, 14], and indeed, native 
silk has shown great potential as magnetic actuator materi-
als [15–17]. However, challenges arise from the difficulty in 
producing native silk materials in large quantities, attributed 
to the cannibalistic nature of spiders and the negative envi-
ronmental impact of silkworm cultivation [18, 19]. Despite 
these challenges, native silk–nanomaterial composites have 
been designed but the need for post-spinning treatment 
resulted in several setbacks, e.g., excessive fiber plasticiza-
tion caused by the solvent in which the nanomaterials are 
dispersed [14, 16, 20, 21].

An alternative to the use of native silk would be to turn to 
recombinant production methods to produce the silk proteins 
and artificially spin the silk fibers. This alternative comes 
with concerns related to production levels and costs [22], 
but recent technological advancements have showcased the 
scalability of producing a small genetically engineered spi-
der silk protein (NT2RepCT) [23], so-called minispidroin, 
in bioreactor cultivations [24]. This minispidroin can also 
be purified and spun into artificial silk fibers using an eco-
friendly protocol [24]. Continuous fibers made from this 
minispidroin have micrometric diameters, are cytocompat-
ible [25], and they possess good mechanical properties that 
can be tuned by altering the spinning conditions [26, 27]. 
However, they lack magnetic properties, posing a challenge 
for actuator applications.

An interesting way forward would be to design a com-
posite made from recombinant minispidroins and magnetic 
nanomaterials [28]. Preferably, the nanomaterials would be 
mixed with the spinning dope (soluble minispidroins) before 
spinning to enable the generation of composite fibers with 
homogeneously distributed nanomaterials, which is neces-
sary to avoid reducing fiber’s mechanical properties [29, 
30]. Early attempts to spin artificial silk fibers containing 
nanomaterials have only resulted in fibers with compromised 
mechanical properties, possibly due to that the methods 
employed rely on harsh solvents that are incompatible with 
natively folded proteins [31–35]. The use of water as the sole 
solvent to make protein-nanomaterial composites is chal-
lenging because the nanomaterials are not easily dispersed 
in a range of pH 6–8. However, magnetite nanoparticles 
coated with meso-2,3-dimercaptosuccinic acid (DMSA) are 
dispersed well in aqueous solutions, also at physiologically 
relevant pHs [36].

Herein, we pioneer the design and manufacturing of 
magnetic artificial spider silk fibers using only water-based 
solutions. The composite fibers were easily spun at a scale 
of hundreds of meters and maintained their mechanical 
properties even at high magnetite concentrations (up to 
20% w/w). Notably, they offer tunable magnetic functional-
ity and exhibit the highest actuation stress among described 
magnetic fiber actuators. Their versatility extends to form-
ing self-supporting macro devices, enhancing their potential 
applications.

2 � Results and discussion

To achieve a uniform dispersion of nanomaterials in the 
protein spinning dope, we used magnetite nanoparticles 
that were coated with meso-2,3-dimercaptosuccinic acid 
(DMSA), which makes the surface negatively charged and 
hydrophilic [36]. The nanoparticles had a mean diameter 
of ~ 18 nm (Fig. S1, Table S1) and could successfully be 
dispersed in aqueous solutions. Composite artificial spider 
silk fibers were produced using the recombinant spider silk 
protein NT2RepCT [23], which can be produced in scal-
able bioreactor cultivations at significant yields ( ∼ 15 g of 
pure protein per liter of microbial cell culture) and spun 
into artificial silk fibers with an eco-friendly protocol using 
water as the sole solvent [24]. Composite spinning dopes 
containing 0.2–20% w/w magnetite were extruded with a 
syringe pump via a pulled glass capillary into a bath con-
taining an acetate buffer at pH 5 (Fig. 1a). The spinning 
of the protein-nanoparticle solution was continuous, which 
made it possible to produce hundreds of meters of fibers 
and collect them into bundles. Notably, the spinning process 
remained effective even at a magnetite concentration of 20% 
w/w (Fig. 1b, Supplementary video 1). This is impressive 
considering that previously reported manufacturing methods 
have resulted in silk composites with less than 2% w/w nano-
particles (Table S2). High concentrations of nanoparticles in 
fibrous composites can also be achieved through electrospin-
ning [37–40]. However, these methods typically use organic 
solvents, such as chloroform, which further underscores the 
quality of our approach.

The presence of nanoparticles did not affect the over-
all morphology of the fibers (Fig. 2a and Fig. S2), which 
displayed an average diameter between 8 and 15 µm. High 
magnification and resolution SEM images indicated that the 
magnetite nanoparticles were homogeneously dispersed in 
the fibers (Fig. 2b and Fig. S3). Furthermore, results from 
energy-dispersive X-ray (EDX) analysis confirmed that iron 
was found in the protein matrix in a stoichiometric ratio 
compatible with the nominal values, even at the highest 
concentration (Fig. S4). This is noteworthy considering the 
natural tendency of nanoparticles to form agglomerates [41] 
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and prompted us to obtain further evidence using magnetic 
measurements.

The magnetic properties of the composite fibers were 
studied by SQUID magnetometry methods, which also 
informed on inter-particle interaction effects (Figs. 3 and 
S5–S7, supplementary section S1). Magnetic loops were 
measured at different temperatures (Figs. 3a and S6), and, 
by comparing the value of the saturation magnetization to 
that of the DMSA-coated nanoparticles alone (Fig. S5), we 
estimated the concentration of magnetite in the fibers. These 
estimates were in good agreement with the nominal values 
for all samples (Table S3). At 300 K, no magnetic hyster-
esis was observed in the composite fibers, i.e., coercivity 
and remanent magnetization were null (Fig. 3a), in contrast 
to what was found at 5 K (Fig. S6). This result is compat-
ible with a superparamagnetic behavior of the nanoparticles 
at room temperature. The magnetic moment of an isolated 
single-domain nanoparticle can undergo magnetic relaxa-
tion, possibly culminating in the superparamagnetic behav-
ior at a critical temperature (blocking temperature) at which 

the thermal energy is comparable to the magnetic energy 
required for its reversal [42]. The onset of the superparamag-
netic regime implies that the nanoparticle magnetic moment 
flips randomly between different spatial orientations.

Next, the magnetic relaxation of the nanoparticles in the 
fibers was studied through the analysis of the thermorema-
nent magnetization vs. temperature and corresponding tem-
perature derivative curve [42]. The latter is a figure of the 
distribution of blocking temperature values for the assembly 
of embedded nanoparticles. In all samples, the thermore-
manent magnetization went to zero with increasing tem-
perature (Fig. 3b), confirming the progressive entrance into 
the superparamagnetic regime of the whole nanoparticle 
assembly. For magnetite concentrations up to 5% w/w, the 
derivative curves in Fig. 3c feature a narrow profile, and the 
peak temperature coincides with the blocking temperature 
predicted for the magnetite nanoparticles when considered 
individually relaxing magnetic elements (more details can 
be found in section S1). This indicates that the nanoparti-
cles are homogeneously dispersed in the protein matrix and 

Fig. 1   Spinning of the magnetic 
artificial silk fibers. a Sche-
matic of the spinning setup. 
The nanoparticles were mixed 
with the recombinant spider silk 
protein solution (300 mg/mL 
in Tris–HCl pH 8) to gener-
ate spinning dopes containing 
0.2–20% w/w magnetite. The 
solutions were spun into fibers 
by extrusion through a glass 
capillary into a 0.75 M NaAc 
buffer at pH 5 [27]. The fibers 
were reeled at constant speed by 
a rotating wheel. The spinning 
was continuous and allowed the 
collection of bundles of mag-
netic silk fibers. The scale bar 
for the capillary in a is 20 µm. 
b Pictures of composite fibers 
containing different nominal 
w/w magnetite concentrations
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sufficiently distant from each other to make dipolar inter-
actions negligible. The derivative curves of fibers contain-
ing 10% and 20% w/w magnetite were broader and slightly 
shifted to higher temperatures, which is consistent with the 
presence of inter-particle dipolar interactions and suggests 
that the nanoparticles are well distributed spatially although 
not as homogeneously as in fibers with lower magnetite 
concentration [42, 43]. This was further supported by the 
results of the field dependence of the remanent magnetiza-
tion (ΔM plots analysis at 20 K, Fig. S7). Therefore, despite 
inter-particle dipolar interactions, which in the samples with 
higher magnetite concentration slightly increase the blocking 
temperature, the whole nanoparticle assembly in all fibers is 
in the superparamagnetic regime at room temperature. This 
implies that the composite fibers are not permanently mag-
netized, but their magnetic response can be switched on and 
off by an external magnetic field. This could be an important 
property for materials intended for soft robotics applications 
for which the material must also have sufficient mechanical 

properties to withstand the stresses associated with comple-
tion of the intended task [7, 8]. For this reason, we investi-
gated the mechanical properties of the composite fibers.

Nanomaterial composites often display reduced strength, 
maintained Young’s modulus, and a strain at break that can 
be higher or lower compared to the pristine material [32, 
52–59]. This is due to that the nanomaterials act as defects 
in the composite when there is no or poor mechanical com-
munication between the nanomaterials and the surrounding 
matrix [60]. In line with this, the strength and the toughness 
modulus of the composite fibers were reduced compared 
to fibers without nanoparticles (Fig. 4a, b). Surprisingly, at 
magnetite concentrations higher than 0.2% w/w, no further 
deterioration of the strength and toughness modulus was 
detected (Figs. 4, S8–S9, and datasheet). The highest strain 
at break for all fibers investigated was obtained for fibers 
containing 0.2% w/w magnetite which remains to be ration-
alized but agrees with previous findings for silk composites 
(Fig. 4c, Supplementary Table S2). Young’s modulus of the 

Fig. 2   a Representative light 
microscopy images of the 
magnetic artificial silk fibers 
with different nominal w/w 
magnetite concentrations. 
Scale bars are 50 µm. b High 
magnification SEM images 
of the NT2RepCT fibers (i.e., 
fibers containing no nanopar-
ticles) and 20% w/w (nominal) 
of magnetite, which indicates 
homogeneous dispersion of the 
nanoparticles
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composite fibers was not significantly affected compared to 
that of the pristine material (Fig. 4d).

In order to better understand the effects of the nanoparti-
cles on the mechanical properties of the composite, we ana-
lyzed our results using the model developed by Zare [29] for 
Young’s modulus and strength of the composite fibers (see 
supplementary section S2, Figs. S10–S11). In this model, 
specific attention is devoted to the role of the interphase 
between the matrix (in our case NT2RepCT) and the filler 
(magnetite core of the nanoparticles). The interphase is in 
this case represented by the interface between the magnet-
ite and the DMSA, the DMSA coating, and the interface 
between the DMSA and the silk proteins. According to the 
model, the mechanical strength and stiffness of the inter-
phase (σinterphase and Einterphase, respectively) as well as its 
thickness (t, which is estimated to be less than 1 nm for our 
nanoparticles) influence the resulting mechanical properties 
of the composite material (Fig. S10a). If the strength and 
the stiffness of the interphase are much lower than those 
of the matrix, the presence of the nanoparticles (up to 20% 
w/w magnetite concentration) will reduce the strength of 
the composite while leaving Young’s modulus unaffected, 
which agrees with the experimental data (Fig. S10b-e, see 

supplementary section S2 for details regarding the choice of 
values for Einterphase, σinterphase, and t). For Young’s modulus, 
the model shows that the values of Einterphase must be much 
higher than those we used to fit the model to significantly 
stiffen the composite fibers with respect to the pristine mate-
rial (Fig. S10b). Likewise, the concentration of magnetite 
has to be much higher than 20% w/w to induce a further 
decline of the strength of the composite fiber with respect 
to the pristine material, which aligns well with the experi-
mental data (Fig. S10c–e). Thus, the experimental values 
we obtained for the mechanical properties of the composite 
fibers can be explained by the model when using low values 
for the interphase mechanical properties and implies that 
there is only a weak mechanical coupling between the nano-
particles and the surrounding protein matrix.

Another way of investigating the level of mechanical 
coupling between the nanoparticles and the protein matrix 
could be to analyze the shape of the stress-strain curves 
and, in particular, the presence and degree of necking. For 
polymeric fibers, necking is associated with the presence 
of defects in the material since these alter the distribution 
of the stress, leading to localized deformations and thus an 
overall reduction of the measured load [61, 62]. Indeed, the 

Fig. 3   Magnetic properties 
of the magnetic artificial silk 
fibers. a Magnetization M vs. 
magnetic field H measured at 
T = 300 K (curves corrected 
for the magnetic signal from 
the NT2RepCT matrix; see 
“Materials and methods” and 
Fig. S15). b Thermoremanent 
magnetization (TRM) vs. T 
(magnetic field previously 
applied to the samples H = 4 
kA/m); the curves are normal-
ized to their initial value at 
T = 20 K. c Derivatives of the 
curves in b, normalized to 
their area. The different colors 
indicate different nominal w/w 
magnetite concentrations
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fibers containing the nanoparticles displayed a higher degree 
of necking compared to the control, supporting the idea that 
there is only a weak mechanical coupling between the protein 
matrix and the magnetite, thus reducing the strength of the 
composite (Fig. S12). The lack of mechanical coupling could 
be due to the absence of interaction between the protein matrix 
and the nanoparticles, which is also supported by the fact that 
the protein solution remained soluble after the addition of 
the nanoparticles. In the case of strong interactions between 
the two, the nanoparticles would have acted as cross-linkers, 
likely causing aggregation of the proteins or solidification of 
the spinning dope. The absence of any significant interaction 
between the DMSA-coated nanoparticles and the proteins was 
further confirmed using a surface plasmon resonance assay 
(see supplementary section S3 and Fig. S13). The lack of 

interaction also supports the notion that the nanoparticles do 
not alter the secondary structure of the silk in the composite 
fiber. For instance, a recent study on silk fibroin film mixed 
with iron oxide nanoparticles, using Fourier-transform infrared 
spectroscopy analysis, confirmed that the nanoparticles do not 
affect the secondary structure of the silk [63].

While the weak interactions between the nanoparticles 
and the protein matrix in the fibers can explain the reduced 
strength of the composite fibers compared to the pristine fib-
ers, the composite fibers presented herein have outstanding 
mechanical properties compared to commercial fibers used 
for actuation in soft robotics, especially when considering 
magnetic actuators (Fig. 4e, f) [6–9, 44–51].

The properties of the composite fibers presented here 
make them interesting for applications in soft robotics. As a 

Fig. 4   Mechanical properties 
of the magnetic artificial silk 
fibers. a Strength, b toughness 
modulus, c strain at break, d 
Young’s modulus. The values 
of the mechanical properties are 
here reported vs. nominal values 
of magnetite concentrations. 
Asterisk (*) indicates p < 0.05, 
**p < 0.01, and ***p < 0.001. 
e Representative stress-strain 
curves of the NT2RepCT and 
composite fibers that were ten-
sile tested. f Ashby plot of the 
mechanical properties of com-
mercial polymeric fiber actua-
tors and the mechanical proper-
ties of the actuator developed 
in this work. The data from the 
literature are from references 
[9, 44–51]. The actuation of the 
strain was induced by electrical 
(blue), thermal (orange), and 
magnetic stimuli (yellow) or 
when the fibers were immersed 
in a solvent (gray)
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proof of their usefulness, we performed magnetic actuation 
experiments on single fibers, using a custom-made setup pre-
sented previously [16]. From these experiments, the actua-
tion stress generated in the composite fibers when exposed to 
an external magnetic field gradient was determined. In gen-
eral, actuation stresses in fibers can be obtained by immer-
sion in a solvent [15, 45, 67, 68], application of a voltage 
[44, 64, 65], or exposure to high temperatures [48–51, 66] 
or magnetic fields (Fig. 5a). When comparing the perfor-
mance of our magnetic spider silk fibers to the fibrous mag-
netic actuators described in literature for which the actua-
tion stress was measured, it is evident that the actuation 
stress mediated by our fibers is impressive (Fig. 5a) [16, 46, 
47, 69]. This combined with the fibers’ good mechanical 
properties (Fig. 4) also in relation to other materials used 
for actuation (Fig. 4e, f and Fig. S14) [15, 44–51, 64–69] 
encouraged us to build a device from a bundle of fibers and 
sponge cubes, which mimics a robotic finger (Fig. 5b, c). 
The device was self-supporting and responded to magnetic 
actuation (Fig. 5c and Supplementary video 2). Importantly, 
the induced actuation was reversible, and the system dis-
played a spontaneous shape recovery which is a desirable 
characteristic for specific actuators. This creates a solid 

foundation for developing future in-depth studies focused 
on the magnetic actuation properties of our fibers [70].

To summarize, the negative environmental impact of 
materials used in soft electronics and robotics has to be tack-
led at the design level [4, 5, 71]. In line with this, we herein 
present a manufacturing process of spider silk composite 
fibers that employ only water-based solvents and ambient 
temperature. The composite fibers have properties that out-
perform most currently used fibrous magnetic actuators and 
can be produced in large quantities. Given the tunable mate-
rial properties, fiber dimensions, and actuation capabilities, 
magnetic artificial spider silk fibers should serve well for 
several applications in the soft robotics and related fields.

3 � Concluding remarks

In this work, we develop a novel fiber—a magnetic arti-
ficial spider silk fiber—designed with a specific focus on 
soft robotics applications. These fibers exhibit high strength 
and flexibility, offering a sustainable, large-scale production 
process that avoids the need for harsh chemicals. Notably, 
their magnetic characteristics and exceptional actuating 

Fig. 5   Actuation properties 
of the magnetic artificial silk 
fibers. a Maximum actuation 
stresses measured for fibrous 
actuators induced by electri-
cal, thermal, and magnetic 
stimuli or when the fibers were 
immersed in a solvent. ND 
means that the actuating mag-
netic field was not declared. The 
material presented in this work 
has the highest actuation stress 
among magnetic fibrous actua-
tors. The data were obtained 
from the following references 
[15, 44–51, 64–68]. b Bundles 
of magnetic artificial silk fibers. 
Scale bars are 2 cm. c Proof of 
concept that the magnetic fibers 
can be used for the design of a 
macroscopic actuator device. In 
this case, a bundle of magnetic 
silk fibers (10% w/w magnetite 
concentration) was activated 
by a magnet which induced a 
finger-like motion. When the 
magnet was removed, the fiber 
bundles retained their original 
shape
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stress levels surpass the performance of conventional fibrous 
magnetic actuators. Consequently, these fibers possess the 
essential attributes necessary for a wide range of applica-
tions, particularly in scenarios demanding untethered device 
operation.

4 � Materials and methods

4.1 � Synthesis and coating of the nanoparticles

Nanoparticles were produced and coated as described 
in Ovejero et al. [72] and Roca et al. [73], respectively. 
Briefly, magnetite nanoparticles were synthesized by ther-
mal decomposition of Fe(acac)3 in the presence of oleic acid 
and oleylamine as surfactants and organic solvents with dif-
ferent boiling points. In particular, iron(III) acetylacetonate 
99% (Acros Organics, Geel, Belgium) was decomposed in 
benzyl ether (99%; Acros Organics, Geel, Belgium) in the 
presence of oleic acid (OA; 80%; GPR Rectapur®, VWR, 
Leicestershire) and 1,2-dodecanediol 90% (ODA; Sigma-
Aldrich, San Luis, MO, USA). We used a molar ratio of 
1:3:2 (Fe(acac)3:OA:ODA) and a concentration of the iron 
precursor of 0.1 M. The solution was heated up to 200 °C 
for 120 min with mechanical stirring and under a nitrogen 
flow. Then, we heated the solution to reflux (bp 254 °C) for 
30 min in an N2 atmosphere. Once at room temperature, the 
solution was mixed with ethanol and centrifuged at 5650 g 
for 10 min. The supernatant was then discarded. Lastly, we 
mixed the nanoparticles with 40 mL of hexane and 0.1 mL 
of oleic acid and centrifuged twice at 5650 g for 10 min. 
After this, we obtained a stable hydrophobic suspension. 
Then, we employed a ligand exchange reaction of oleic acid 
for dimercaptosuccinic acid (DMSA) to make magnetite 
nanoparticles hydrophilic and thus dispersible in water. We 
first coagulated the nanoparticles from the hydrophobic sus-
pension by adding ethanol and centrifugation at 2825 g for 
10 min to eliminate the solution. Then, we added a solu-
tion of toluene (25 mL) and a solution of 90 mg DMSA in 
5 mL of dimethyl sulfoxide (DMSO) sonicated for 5 min and 
mechanically stirred for 24 h. Then, we added toluene and 
centrifuged again, discarding the supernatant containing the 
oleic acid–coated particles. We then mixed and centrifuged 
with ethanol and acetone several times to remove the free 
oleic acid molecules. The nanoparticles were then dispersed 
in alkaline water and then dispersed at pH 7. The dispersion 
was then dialyzed and filtered through a 0.2 µm pore size 
syringe.

The magnetite nanoparticles were characterized by 
transmission electron microscopy (TEM, JEOL JEM 
1011, Peabody, MA, USA), X-ray powder diffrac-
tion (XRD, Bruker D8 Advance, Billerica, MA, USA), 

thermogravimetric analysis (TG-DTA, Q600 TA Instru-
ments, New Castle, DE 19720, USA), and photon correla-
tion spectroscopy (PCS, Zetasizer Nano, Malvern Pana-
lytical, Malvern, UK) (Fig. S1, Table S1).

4.2 � Spinning the artificial silk (w and w/o 
nanoparticles)

The minispidroin NT2RepCT [23] (with 6xHis-tag) was 
expressed in a bioreactor in a fed-batch culture and puri-
fied in native conditions with a 20 mM Tris–HCl buffer 
at pH 8 and by using immobilized ion metal chromatog-
raphy (IMAC) as described earlier [24]. After elution of 
NT2RepCT from the IMAC column with 20 mM Tris–HCl 
and 200 mM imidazole, NT2RepCT was dialyzed against 
20 mM Tris–HCl (pH 8). To prepare the spinning dope, 
NT2RepCT was concentrated to ~ 300 mg/mL (which rep-
resents an optimum in order to maximize the mechani-
cal properties of the fiber [27]) with an Amicon Ultra-15 
centrifugal filter unit (Merck-Millipore, Darmstadt, Ger-
many) at 4000 × g and 4 °C using an ultracel-10 membrane 
(10 kDa cutoff). After recovering the spinning dope from 
the centrifugal filter unit and transferring 500 µL to a new 
filter unit, DMSA-coated magnetite nanoparticles in an 
H2O suspension (12–50 mg/mL Fe3O4) were added. The 
NT2RepCT and magnetite blend were re-concentrated to 
a final volume of 500 µL, corresponding to the original 
volume of the spinning dope before adding the magnetite 
suspension to the centrifugal filter unit. Although it was 
difficult to judge due to the very viscous consistency and 
blackness of the spinning dope, independent of the nano-
particle concentration, no agglomerates were observed 
with the naked eye. Thus, the dope was prepared in a 
way to expect a final protein concentration of 300 mg/
mL in the spinning dope, while expecting a magnetite 
(Fe3O4) concentration in the dry fiber of 0.2%, 1%, 5%, 
10%, or 20% w/w. Then, the final dope was transferred 
into a 1-mL syringe with a Luer lock tip (BD, Franklin 
Lakes, NJ, USA). To make fibers, a recently developed 
optimized spinning protocol was used [27]. The syringe 
with the spinning dope was mounted in a neMESYS low-
pressure (290 N) syringe pump (CETONI, Korbußen, Ger-
many) where it was connected to a pulled glass capillary 
via polyethylene tubing. The glass capillary had a tapered 
tip with an orifice diameter of 50 ± 10 µm and was used to 
extrude the NT2RepCT/magnetite blend into a spinning 
bath containing 4 L 0.75 M acetate (Na) at pH 5. As soon 
as the spinning dope entered the spinning bath, it solidi-
fied, and a fiber was formed. The fibers were continuously 
collected at the end of the 0.8 m long bath with a rotating 
wheel at 0.58 m/s.
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4.3 � SEM and EDX

A Zeiss SUPRA 40 field emission scanning electron micro-
scope was used to investigate the morphology of the fibers 
with the secondary electron detectors. The samples were 
coated with an alloy Pt:Pd (80:20) utilizing a Quora Q150 
and mounted on a standard Zeiss stab. Further, SEM and 
EDX characterization was performed with a FEI VERIOS 
460 and an EDAX Octane Plus.

4.4 � Magnetic measurement

The magnetic study was carried out using a Quantum Design 
MPMS-XL superconducting quantum interference device 
(SQUID) magnetometer, which can measure the magnetic 
moment of a sample as a function of magnetic field (maxi-
mum applied field H = 4 × 103 kA/m) and temperature T 
(5–300 K range). To calculate the magnetization M (mag-
netic moment/sample mass), the mass of the sample was 
measured with a precision of 10−8 kg. The fibers loaded 
with DMSA-coated nanoparticles were measured by taking 
a certain amount of material and manually forming a small 
bundle, which was inserted directly into the sample holder 
for SQUID supplied by Quantum Design. NT2RepCt fib-
ers without magnetic nanoparticles were also analyzed as 
reference material; DMSA-coated nanoparticles alone were 
measured in powder form.

The spidroin matrix exhibited a paramagnetic behavior 
at very low temperatures, while at T = 300 K a diamagnetic 
signal predominated (Fig. S15). Therefore, to estimate the 
weight fractions of magnetite in the fibers, first, the hyster-
esis loops of the samples—particularly those with low mag-
netic load, i.e. 0.2% and 1% w/w—were corrected for the 
magnetic signal of the spidroin matrix; then, the MS values at 
T = 300 K were compared to that obtained for the magnetite 
phase in the nanoparticles alone at the same temperature (MS 
at T = 300 K was considered to minimize the influence of 
the low-temperature paramagnetic signal from the spidroin 
matrix, which, being temperature dependent, was rather dif-
ficult to reliably remove from the measured loops).

The thermoremanent magnetization (TRM) was meas-
ured following this procedure: the sample was cooled from 
T = 300 K down to T = 20 K in an applied magnetic field 
H = 4 kA/m. At T = 20 K, the field was removed, and the 
remanent magnetization was measured as a function of the 
increasing temperature up to 300 K (heating rate = 3 K/min). 
The recorded TRM curve was normalized to its initial value.

The ΔM plots were built starting from the curves of iso-
thermal remanent magnetization (IRM) and dc demagnetiza-
tion remanence (DCD), measured at T = 20 K using a stand-
ard procedure [43]. In particular, in the IRM measurement 
procedure, an initially demagnetized sample is progressively 
magnetized by a positive magnetic field increasing from 0 

kA/m up to 1.6 × 103 kA/m. The recorded remanence values 
are plotted as a function of the previously applied magnetic 
field, and the obtained curve is normalized to its final value. 
The DCD measurement is similar except that initially the 
sample is negatively saturated and the curve of remanence 
vs. H is normalized to its initial value (Fig. S16). The ΔM 
plot is obtained by plotting the parameter ΔM(H) = DCD(H)-
[1- 2 IRM(H)] as a function of H (see supplementary 
section S1).

4.5 � Mechanical measurement

All the fibers were tested at room temperature and 25–30% 
relative humidity (RH) 2 weeks after they were spun. During 
this period, they were stored in a dry cabinet (Dry Keeper 
SUNPLATEC) below 20% RH. Single fibers were mounted 
on paper frames (1 × 1 cm open square window) providing 
a ~ 1 cm gauge length. The fiber diameter was measured in 
five randomly picked spots by means of light microscopy 
and then averaged as previously described. An Instron Single 
Column 5943 was used to tensile test the artificial silk fibers, 
with a strain rate of 6 mm/min. The engineering stress was 
calculated assuming a circular cross-sectional area. From 
the engineering stress and strain curves, Young’s modulus 
was obtained from linear regression in the initial elastic part 
of the curve (by 2% of strain); the strength was obtained as 
the stress at fracture and the toughness modulus as the area 
under the curve. The tested fibers were obtained from at least 
3–5 different spinning occasions, from which we tested at 
least 10 fibers. Thus, the mechanical properties reported in 
this study represent an average of 30–50 fibers. Single one-
tail pairwise ANOVA was run with Excel®.

4.6 � Light microscopy

Light microscopy inspection was performed using a Nikon 
Eclipse Ts2R-FL microscope equipped with a DFKN-
ME33UX264 5 MP camera and a CFI Plan Fluor DL-10X 
objective. The captured images and the diameters were 
measured with Nikon NIS-Elements BR software.

4.7 � Measurement of the density of the fibers

Density measurements of about 35 mg of NT2RepCT fibers 
were carried out in a Micromeritics® AccuPyc 1330 helium 
pycnometer (Norcross USA), at 23.0 °C, performing at least 
99 measurements.

4.8 � Surface plasmon resonance (SPR) assay

To study if there is an interaction between the DMSA-coated 
nanoparticles and NT2RepCT, we set up an SPR assay 
using a Biacore 8 K + (Cytiva) and with a Ni2+-charged 
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carboxymethylated dextran pre-immobilized with nitrilotri-
acetic acid (NTA) Sensor S type chip (Cytiva). The instru-
ment was controlled, and the assay was designed with the 
Biacore 8 K control software version 3.0.12.15655. The 
immobilization of NT2RepCT on the NTA-coated gold sur-
face was achieved with the 6xHis-tag. We have not chosen 
covalent coupling methods usually employed to immobi-
lize the ligand in SPR assays due to the pH sensitivity of 
NT2RepCT.

The temperature of the system was 25 °C throughout 
the entire experiment. To immobilize, 0.5 M NiCl2 (NTA 
Reagent Kit, Cytiva) was injected with a contact time of 
60 s at a flow rate of 10 µL/min, after which the surface 
was washed with a running buffer containing 3 mM EDTA. 
Thirty-five micromolar NT2RepCT dimer was captured with 
a contact time of 300 s also at a flow rate of 10 µL/min. A 
maximal immobilization level of 8000 RU when the running 
buffer was HSB-N (Cytiva) or 3000 RU with 20 mM Tris-
HCl buffer (pH 8) was reached. On the reference surface, 
no nickel was injected to not capture the ligand and detect 
unspecific binding of ligand and analyte.

Analyte solution with a magnetite concentration of 
4.5 µg/mL, 0.45 µg/mL, and 0.045 µg/mL was injected over 
the surface with a contact time of 120 s and a dissociation 
time of 600 s at 30 µL/min. Regeneration of the chip sur-
face was achieved with 350 mM EDTA (NTA Reagent Kit, 
Cytiva), using a contact time of 60 s and a flow rate of 30 
µL/min.

4.9 � Magnetic actuation measurements

The magnetic actuation measurements were done with the 
same custom-made setup reported by Spizzo et al. [16]. 
Briefly, the fibers were kept in tension (0.5% strain level) 
with the support of Agilent Technologies T150 UTM. A 
commercial set of cubic nickel-plated N42 NdFeB magnets 
was used to create a non-uniform magnetic field to apply a 
drag force to the fiber. The intensity of the magnetic field 
was measured using a FW-Bell 9500 Gaussmeter using a 
1-axis Hall probe (the maximum magnetic induction field 
achieved was B = 0.23 T). During the approaching of the 
magnet, the load on the fiber was recorded with the Agilent 
technologies T150 UTM. The load recorded was converted 
in engineering stress assuming the cross-section circular. 
Every measurement was repeated five times per fiber.

Supplementary information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s42114-​024-​00962-y.
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Figure S1: a) TEM image of the DMSA-coated magnetite nanoparticles, b) nanoparticle core size distribution, 
obtained by measuring about 800 particles, c) X-ray diffraction and d) thermogravimetric analysis.  
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Figure S2: SEM images of the artificial magnetic spider silk fibers with different nominal w/w magnetite 
concentrations. Scale bars are 20 μm.  

 

 

Figure S3: Representative high magnification SEM images of the NT2RepCT fibers (i.e., fibers containing no 
nanoparticles) and 20% w/w (nominal) of magnetite, which indicates homogeneous dispersion of the 
nanoparticles.  
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Figure S4: EDX spectra of the fibers having a 20% w/w nominal concentration of magnetite. According to the 
spectra, these fibers contain 12% w/w Fe, which corresponds to ~17% w/w magnetite.  

Supplementary section S1: Magnetic properties of the fibers  

For brevity, in this section and in Table S3, the composite fibers have been labeled as DX, 
where D stands for DMSA and X is a number referring to the nominal magnetite 
concentration. Magnetic loops, i.e. curves of magnetization M vs. magnetic field H, were 
measured on the whole set of composite fibers and on the nanoparticles alone by SQUID 
magnetometer, at T = 5 K and 300 K. For the nanoparticles alone (Fig. S5), the 

magnetization at H = 4103 kA/m (taken as the saturation magnetization MS) was corrected 

for the presence of the non-magnetic DMSA coating ( 5 % w/w) in order to estimate the MS 

of the magnetite phase alone. Hence, the obtained values were MS = (71.3  0.7) Am2/kg at 

5 K and MS = (62.8  0.6) Am2/kg at 300 K. 
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Figure S5: Magnetic loops measured at T = 5 K and 300 K on the DMSA-coated nanoparticles (i.e. the 
nanoparticles alone); the inset is a close-up of the central region of the loops.  

The loops measured on the fiber samples at T = 5 K and 300 K are shown in Fig. S6 and 

Fig. 3, respectively. The values of saturation magnetization MS at the two temperatures are 

reported in Table S3 together with the weight fractions of magnetite in the fibers (calculated 

by comparing the values of MS to that obtained for the magnetite in the nanoparticles alone). 

The estimated concentrations are in good agreement with the nominal ones.  

At T = 5 K, the coercivity HC of samples D02, D1, and D5 is in the 27.1  27.8 kA/m range, 

i.e. equal within the experimental errors; HC for D10 and D20 is slightly lower, 25.5  25.7 
kA/m.  At T = 300 K, no magnetic hysteresis is observed either in the nanoparticles alone or 
in the fiber samples, i.e. HC and the remanent magnetization are null (Fig. 3a). This is 
consistent with a superparamagnetic behavior of the magnetic moments of the 
nanoparticles, in the adopted experimental conditions. In fact, it is known that the magnetic 
moment of an isolated single-domain nanoparticle can undergo magnetic relaxation, possibly 
culminating in the superparamagnetic behavior when the thermal energy is comparable to 
the anisotropy energy barrier for its reversal[1]. The blocking temperature TB, above which a 
magnetic nanoparticle enters the superparamagnetic regime, is given by the relation: 

TB = KV/[kB ln( tmf0)]    (1) 
 
where KV is the anisotropy energy barrier (K magnetic anisotropy coefficient, V volume of 
the nanoparticle), kB is the Boltzmann constant, tm is the measuring time characteristic of the 
adopted analysis technique and f0 is a frequency factor[1]. For SQUID measurements, tm and 

f0 are usually taken equal to 100 s and 109 s-1, respectively, and therefore ln(tmf0) ~ 25[2,3]. 
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Figure S6: Left: Magnetic hysteresis loops measured at T = 5 K on the set of composite fibers, corrected for the 
magnetic signal from the spidroin matrix. Right: close-up of the central region of the loops. Different colors 
indicate different nominal w/w magnetite concentrations.  

Information on the relaxing behavior of the nanoparticles in the fibers was gained through 
the analysis of the thermoremanent magnetization (TRM) vs. T and corresponding 
temperature derivatives curve, i.e. [-d(TRM)/dT] vs. T[1,4,5]. The latter provides a figure of 
the distribution of anisotropy energy barriers associated with the assembly of nanoparticles 
embedded in the fibers and, based on equation (1), also of the distribution of blocking 
temperatures TB. The results are shown in Fig. 3b,c.  In all samples, TRM goes to zero with 
increasing temperature, confirming the progressive entrance of the nanoparticles into the 
superparamagnetic regime. For samples D02, D1, and D5, the derivative curves exhibit a 
similar profile, consistent with a quite narrow anisotropy energy barrier distribution with a 
peak temperature of 70-80 K (Fig. 3c), which can be taken as a mean blocking temperature 
<TB>. From equation (1), considering that the mean size of the magnetic core of the 

nanoparticles is ~ 17 nm (Table S1) and setting K equal to that of bulk magnetite (1.0104 
J/m3), a value <TB> ~ 72 K is obtained. This good agreement between the measured and 
predicted average blocking temperature indicates that, in the samples with low magnetic 
load, the nanoparticles are very homogeneously dispersed and are far apart from each 
other, so that dipolar magnetic interactions are not strong enough to affect their relaxing 
behavior. A slightly different situation is observed for samples D10 and D20, which show 

broader distributions reaching a maximum at 100 K and 110 K, respectively (Fig. 3c). The 
shift to a higher temperature of the anisotropy energy barrier distribution is to be ascribed to 
the existence of non-negligible interparticle dipolar interactions[1–3,6–9]. Since dipolar 
interactions are demagnetizing in nature, their presence can also account for the smaller HC 
of D10 and D20 at T = 5 K, compared to the other samples (Table S3). To evaluate to what 
extent the magnetic behavior of the nanoparticles is affected by dipolar interactions, a mean 
effective magnetic anisotropy <Keff> can be calculated from equation (1), taking the peak 

temperature of the distribution as the <TB> value. The obtained results are <Keff> = 1.4104 

J/m3 for D10 and <Keff> = 1.5104 J/m3 for D20, significantly larger than that of bulk 
magnetite. However, they are very similar, which is unexpected if one considers that, with 
doubling the fraction of nanoparticles, the interparticle distance should reduce and therefore 
the strength of dipolar interactions should increase. Indeed, these findings reveal that a less 
homogeneous spatial distribution of the nanoparticles is attained in D10 and D20, compared 
to the fibers with lower magnetic load. The existence of regions with different local 
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concentrations of nanoparticles in the spidroin matrix can explain the observed broadening 
of the distribution of anisotropy energy barriers (i.e., of effective barriers). On the other hand, 
an inhomogeneous arrangement of the nanoparticles may also imply that on average the 
interparticle distance is similar in the two samples, thus accounting for the close values of 
<Keff>.  
This description is supported by the analysis of the ΔM plots, which is a powerful method to 

gain information on the nature of magnetic interactions in nanoparticle assemblies [2,3,5]. In 

particular, a negative ΔM plot indicates the existence of dipolar interactions and the absolute 

peak value of ΔM provides qualitative information on their strength. Hence, the ΔM plots 

collected on the composite fibers at T = 20 K, shown in Fig. S7, confirm the existence of 

dipolar interactions whose strength tends to increase with increasing the nanoparticle load, 

but is substantially similar in samples D10 and D20. 

0 10 20 30 40 50
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00


M

H (kA/m)

 0.2%

  1%

  5%

 10%

 20%

 
Figure S7: M-plots at T = 20 K for the composite fibers. Different colors indicate different nominal w/w 

magnetite concentrations. The M parameter is calculated as M(H) = DCD(H)-[1- 2IRM(H)]. 
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Figure S8: Representative stress-strain curves of composite fibers with different levels of nominal w/w magnetite 
concentrations.  
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Figure S9: Diameters of the magnetic artificial silk fibers vs. the nominal magnetite concentration (w/w). * Indicate 
p-value <0.05, ** p-value <0.01, and *** p-value < 0.001.  
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Figure S10: a) Schematic of the model used to interpret the impact of the mechanical properties of the interphase 
on the mechanical properties of the composite fibers. The relative dimensions between the nanoparticles and the 
secondary structure is only for representation purposes. Plot of the experimental values of the mechanical 
properties and the theoretical lines obtained from the model, and in particular for equation b) 2, c) 3, d), 4, and e) 
5. To plot the model, the protein matrix (NT2RepCT) has been considered with a strength of 125 MPa and a 
Young’s modulus of 2.5 GPa. For panel d), a value of Einterphase = 0 GPa was used. For panel e), a value of 
σinterphase = 0.1 MPa was used.  

Supplementary section S2: Analytical model of the composite 

The analytical model to explain the effect of the nanoparticle volumetric concentration on the 

mechanical properties of the magnetic artificial silk fiber was developed by Zare[10], which is 

an extension of Maxwell[11] and Pukànsky[12] theories for composites (for Young’s modulus 

E and strength σC of the composite respectively). Fig. S10a depicts the geometry of the 

system: thickness of the interphase (t), and radius of the nanoparticle (R). In this model, we 

assumed that the nanoparticles are homogeneously dispersed in the matrix, which agrees 
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with the experimental findings. Furthermore, we consider the properties of the interphase as 

a combination of the DMSA coating mechanical properties, the interface interactions 

between the magnetite and the DMSA, and the interface interactions between the DMSA 

and the protein.  

In the model is added a third phase (the interphase between the filler and the matrix). The 

equations for Young’s modulus of the fibrous composite and the strength are 

𝐸 = 𝐸𝑚

1 +
2𝜙𝑓(𝐸𝑓/𝐸𝑚 − 1)

𝐸𝑓/𝐸𝑚 + 2
+

2𝜙𝑖(𝐸𝑖/𝐸𝑚 − 1)
𝐸𝑖/𝐸𝑚 + 2

1 −
𝜙𝑓(𝐸𝑓/𝐸𝑚 − 1)

𝐸𝑓/𝐸𝑚 + 2
−

𝜙𝑖(𝐸𝑖/𝐸𝑚 − 1)
𝐸𝑖/𝐸𝑚 + 2

 

 (2) 

𝜎𝑅 =
𝜎𝑐

𝜎𝑚
=

1 − 𝜙𝑓

1 + 2.5𝜙𝑓
exp [(𝜙𝑓 + 3𝜙𝑓 (

𝜙𝑖

𝜙𝑓
+ 1)

1
3

− 3𝜙𝑓) ln (
𝜎𝑖

𝜎𝑚
)] (3) 

where Em, Ei, and Ef are the Young’s moduli of the matrix, the interphase and the filler, ϕf 

and ϕi are the volumetric fractions of the filler and the interphase respectively, and finally σR, 

σc, σm, and σi are the relative strength of the composite, the strength of the composite, the 

matrix, and the interphase respectively.  

Equations 2 and 3 can be also written in terms of t and R. They become 

𝐸 = 𝐸𝑚

1 +
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 (4) 
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)

]
 
 
 
 

 (5) 

To plot equations 2-5, we calculated the volume fractions of magnetite (Table S4) 

considering the mass density values of bulk magnetite ( 5 x 103 kg/m3), DMSA ( 1.6 x 103 

kg/m3, see ref[13]), and artificial spider silk fibers (measured value [1.41 ± 0.09] x 103 kg/m3, 

Fig. S11). The volumetric fraction of the interphase is here assumed to be the volumetric 

fraction of the DMSA coating. Furthermore, we also considered that the DMSA coating 

constitutes 5% w/w of the nanoparticle (Fig. S1). This data is important to estimate the 

thickness of the interphase, i.e., the thickness of the DMSA coating, which can be obtained 

by geometrical considerations and turns out to be  0.4 nm. To plot the graph, we used 

values between 0.1-2.1 nm to show a broader range. Furthermore, the parameters that can 

be extrapolated from experimental data are the radius of the magnetite nanoparticle (~9 nm 

including DMSA coating), the strength and Young’s modulus of the matrix (125 MPa and 2.5 

GPa from the mechanical data obtained with tensile tests) and Young’s modulus of the 

magnetite (300 GPa from literature[14]). The unknown parameters are the strength and 

Young’s modulus of the interphase. We thus used different numbers to show their effect on 

the mechanical properties of the composite fiber. Once these parameters are defined, the 
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strength and Young’s modulus of the composite fiber can be plotted vs. volumetric magnetite 

fraction (Fig. S10). From this model and in the conditions that we explored to fit the graphs, it 

is possible to state that, to have a significant reinforcement, the strength and Young’s 

modulus of the interphase have to be much higher compared to the matrix. In particular, to 

produce a significant increase of Young’s modulus at low magnetite concentrations the 

interphase must have a Young’ modulus >>10 GPa (Fig. S10b). To lead to an increase in 

strength, the strength of the interphase must be at least >125 MPa (equation 3, Fig. S10c). 

Moreover, the thickness of the DMSA coating seems to have a minor effect in the explored 

range and at volumetric magnetite concentrations lower than 20% (Fig. S10d, e). This also is 

consistent with the estimation of the DMSA coating thickness (0.4 nm).  

 
Figure S11: Density measurements of about 35 mg of NT2RepCT fibers carried out in a pycnometer at 23.0°C. 

The obtained value of density is (1.41 ± 0.09) x 103 kg/m3.   

 

 

Figure S12: Representative necking of a representative stress strain curve of a silk fiber and necking values vs. 
the nominal magnetite concentration (w/w).   

Supplementary section S3: Surface Plasmon Resonance (SPR)-assay 
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The basic principle of an SPR assay is that the reflection angle of a light beam away from a 

gold surface is influenced by the refractive index of the surface, which is directly correlated 

with the weight of the molecules on a gold chip. Thus, the presence of additional weight on a 

gold surface can be detected label-free, by directing a polarized light beam with a single 

wavelength onto the bottom of the gold surface.  

Since immobilization of the ligand, NT2RepCT, on the gold surface of the sensor chip 

increased the weight, an increase in the relative response was detected (Fig. S13 A). In fact, 

an immobilization level of more than 3000 RU was achieved, which is close to the upper limit 

of this chip, also indicated by the fact that a substantial amount of NT2RepCT leaks from the 

surface after the injection event (indicated by an arrow). To detect the presence or absence 

of an interaction between the spidroin and the magnetite nanoparticles, the nanoparticles are 

subsequently injected over the same surface, which is available to be captured by the 

NT2RepCT. If both entities interact, this will add an additional weight to the gold surface, 

which should increase the response relative to a reference surface where no ligand is 

bound. The sensorgram shown in Fig. S13 is reference subtracted (on the reference surface 

NT2RepCT was not immobilized) and shows the point where the analyte (the nanoparticles) 

was injected (Fig. S13B). Even though a very high immobilization level of NT2RepCT and a 

high concentration of nanoparticles (4.6 µg/mL) was used in this particular assay, the 

instrument did not detect any additional weight on the sensor surface compared to the 

reference and the blank sample. This indicates that NT2RepCT and the nanoparticles do not 

interact or the interaction is very weak.   

 

Figure S13: Sensorgram obtained with an SPR-assay to detect if there is an interaction between the DMSA-

coated magnetite nanoparticles and NT2RepCT. (A) Complete sensorgram featuring the events of nickel binding 

to an NTA-chip, followed by washing and injection of the ligand (NT2RepCT), and finally injection of the 

nanoparticles. These events are indicated by dashed lines. (B) Zoom in on the sensorgram shown in A. Injection 

of Analyte (DMSA coated nanoparticles) onto NT2RepCT immobilized on a gold chip in an SPR-assay. The 

injection event of 4.6 µg/ml (dark blue), 0.46 µg/ml (blue), 0.046 µg/ml (light blue), and 0 nM (black) magnetite 

starts at t=0s.  

 

 



14 
 

 

Figure S14: Mechanical properties plotted vs. the maximal actuation stress generated by standard fibrous 

materials, the data were obtained from[15–28].  
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Figure S15: Curves of Magnetization M vs. magnetic field H measured on the NT2RepCT fibers (i.e., fibers 
containing no nanoparticles) at the indicated temperatures.  
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Figure S16: Isothermal remanent magnetization (IRM) and dc demagnetization remanence (DCD) curves, 
measured at T = 20 K on fibers with 20% w/w magnetite.  
 
Table S1: Physical properties of the DMSA-coated magnetite nanoparticles. 

Core Coating Average 
nanoparticle 
core size  
TEM (nm) 

Crystal size 
X-ray (nm) 

Hydrodynamic 
size  
(nm) 

Z-
Potential  
(mV) 

Fe3O4 Dimercaptosuccinic acid 16.7 (σ=0.16) ~13 74(PDI= 0.23) -27 
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Table S2: The nanomaterial concentrations that were used to achieve the optimal mechanical properties of 
different silk-nanomaterials composites.   

Type of nanomaterial Concentration to obtain 
maximum strain at 

break or strength (w/w) 

Max concentration 
explored (w/w) 

Reference 

Single-walled carbon 
nanotubes 

1% 2% [29] 

Multiwalled carbon 
nanotubes 

1% 1.5% [30] 

Carbon nanotubes <0.5% <0.5% [31] 

Carbon nanotubes 0.2% 1% [32] 

Single-walled carbon 
nanotubes 

0.2% 1% [33] 

Graphene oxide 0.1% 0.2% [34] 

Magnetite nanoparticles 0.2-1% 20% This study 

 
 
Table S3: Magnetization and magnetic coercivity of the artificial silk fibers and estimated w/w magnetite 
concentrations.  

Sample Nominal magnetite 
fraction  
(w/w %) 

MS  
at T = 5 K 
(Am2/kg) 

  3% 

MS  
at T = 300 K 

(Am2/kg) 

 3% 

HC  
at T = 5K 
(kA/m ) 

 0.4  

Estimated magnetite 
fraction 
 (w/w %) 

 5% 

D02 
 

0.2 
 

0.172 0.148  27.1 0.24 

D1 
 

1 0.88 0.74  27.1 1.18 

D5 
 

5 4.1 3.50  27.8 5.6 

D10 
 

10 6.5 5.7  25.5 9.1 

D20 
 

20 14.3 12.5  25.7 20 

 

Table S4: Estimated magnetite volume fractions in the magnetic artificial silk fibers. 

Nominal magnetite fraction 
(w/w %) 

Estimated magnetite fraction (% volume) 

 10% 
0.2 0.07 
1 0.33 
5 1.63 
10 2.7 
20 6.5 
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