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Chapter 1  
Introduction 

1.1 Effects of dietary fat in the small intestine 

Overconsumption of high caloric diet and sedentary lifestyle promote overweight and 

obesity (Balwierz et al. 2009; Cheung & Mao 2012; Desmarchelier et al. 2012; Walley et 

al. 2006; Zhang et al. 2009). From 1980 to 2013, the percentage of adults with body mass 

index (BMI) of 25 kg/m2 or greater increased from 28.8% and 29.8% to 36.9% and 38.0% 

in men and women, respectively (Ng et al. 2014). Obesity is associated with multiple 

comorbidities such as insulin resistance and type 2 diabetes (Khaodhiar et al. 1999). The 

incidence of both obesity and overweight were estimated to cause 3.4 million deaths and 

3.8% of disability-adjusted life-years (i.e., the number of years lost due to premature death, 

poor health or disability) globally in 2010 (Ng et al. 2014; Lim et al. 2012). The cost for 

obesity worldwide amounts to $2 trillion annually (Dobbs et al. 2014). Diet and lifestyle 

are relevant for determining the health status of individuals, but also gut microbiota plays a 

key role in health and disease of human (O’Hara & Shanahan 2006). For example, it 

modulates lipid metabolism by modifying bile acid metabolism (Martin et al. 2007) and 

influences energy balance by promoting energy harvest from the diet and energy storage 

into the host (Bäckhed et al. 2004, 2007). Diet plays an essential role in shaping intestinal 

microbiota and high-fat diet exerts a major influence on it (Hotamisligil 2006; de La Serre 
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et al. 2010). An obese individual is characterized by lower bacterial diversity with 

increased proportion of harmful (Firmicutes) in contrast with health-promoting 

(Bacteroidetes) gut microbiota; this condition is termed as dysbiosis (Bäckhed et al. 2004; 

Clemente et al. 2012; Fleissner et al. 2010; de La Serre et al. 2010; Turnbaugh et al. 2008, 

2009). Such reduced bacterial diversity and the presence of dysbiotic conditions were also 

observed in individuals consuming western style diet (De Filippo et al. 2010; Yatsunenko 

et al. 2012). A typical western diet consists of approximately 40% of calories from fat 

although the recommended range is 20-30% (Institute of Medicine 2005; Niot et al. 2009; 

Werner et al. 2000). Individuals that experience weight loss or follow non-western style 

diets (i.e., rich in fiber content) exhibit an opposite pattern of bacterial diversity if 

compared to obese individuals (Bäckhed et al. 2004; De Filippo et al. 2010; Ley et al. 

2006; Turnbaugh et al. 2008; Yatsunenko et al. 2012). Obesity and related metabolic 

complications cause chronic or low-grade inflammation (Hotamisligil 2006). Chronic 

inflammation is triggered by the increased proportion of lipopolysaccharide containing gut 

microbiota, also known as metabolic endotoxemia (Cani et al. 2007). Increased 

endotoxemia is observed during excessive high-fat intake, which dysregulates 

inflammatory signal and leads to weight gain and diabetes (Cani et al. 2007). Dysregulated 

inflammatory signal is responsible for the high-fat mediated hyperphagia and obesity 

(Hotamisligil 2006; de La Serre et al. 2010).  

The small intestine functions as a mediator between the internal and the external 

environment of the body, and is essential for the digestion and the absorption of fat (Kondo 

et al. 2006; Petit et al. 2007). Mice fed with high-fat diet exhibit prominent up-regulation 

of lipid metabolism related genes in the small intestine and show significant predisposition 

to obesity (Kondo et al. 2006; de Wit et al. 2011). The intestine displays regionalized 

distribution in functionality and its longitudinal axis is divided into three sections (from the 

most proximal to the most distal section): duodenum, jejunum, and ileum. Jejunum 
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consists of maximal absorptive surface and the size of lumen decreases from the duodenum 

to the ileum (DeSesso & Jacobson 2001). When mice are fed with dietary fat gradient (i.e., 

10%, 20%, 30%, or 45% kcal from fat), the small intestine displays a buffer capacity in fat 

handling up to an intake of fat that represents 20% of energy demand (de Wit et al. 2011). 

Beyond such a 20% threshold, a shift towards an obese phenotype is observed (i.e., 

significant increase of body weight). The most striking effect in fat-induced differential 

gene expression is detected when the relative contribution of fat (compared to total energy 

demand) is between 30% and 45% (de Wit et al. 2011).The small intestine displays 

adaptability to the lipid content by enhancing cell proliferation and up-regulating the genes 

involved in its uptake (Niot et al. 2009; Petit et al. 2007). For example, the up-regulation of 

fatty acid transport protein (FAT)-4 promotes the uptake of long-chain fatty-acids across 

intestinal enterocytes (Herrmann et al. 2001). Permeability across intestine occurs either 

through the enterocytes (i.e., transcellular) or via the intraepithelial tight junctions (i.e., 

paracellular; Balzan et al. 2007). Enhanced paracellular permeability is observed during 

excessive high-fat intake, obesity and diabetes (Balzan et al. 2007; Cani et al. 2008; de La 

Serre et al. 2010). This is due to the modulation of gut microbiota during high-fat 

overconsumption. Such modulation modifies bile acid metabolism, thus leading to the 

breach in intestinal permeability by up-regulation of farnesoid X receptor (FXR) and tumor 

necrosis factor (TNF) while repressing the expression of tight junction proteins (zonula 

occludens-ZO-1, occludin, claudin-1, and claudin-3; see Cani et al. 2008; Martin et al. 

2007; Stenman et al. 2012; Suzuki & Hara 2010). Disruption in intestinal permeability 

consequently increases metabolic endotoxemia that triggers inflammation and metabolic 

disorders. Therefore, investigation of the gene expression patterns in the small intestine in 

response to dietary fat intake is of key interest for better understanding the relationships 

between fat mediated modification of intestinal lipid metabolism and susceptibility to 

obesity (Kondo et al. 2006; Petit et al. 2007; de Wit et al. 2011). Figure 1.1 illustrates the 
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complex interplay that characterizes dietary fat overconsumption, gene expression, 

microbiota, and disease onset in the small intestine. 

 

Figure 1.1 Consequences of high-fat overconsumption on small intestine. (a) Excessive consumption of 

high-fat diet with minimal physical activity represents a major contributing factor to the global obesity 

epidemic. High-fat diet exhibits section-specific impacts on the small intestine. The intestinal epithelial cells 

consist of absorptive enterocytes, goblet cells, Paneth cells, enteroendocrine cells and microfold cell. The 

maximum absorption and digestion occurs in the small intestine due to the presence of folds (plicae), 

depressions (crypts) and fingers like projections (villi). The magnified diagram of the structure of intestinal 

barrier in (a) is adapted from (Garrett et al. 2010; Mowat & Agace 2014; Mowat 2003; Peterson & Artis 

2014). (b) In the small intestine of mice, a high-fat diet overexpresses genes involved in the lipid metabolism 

(de Wit et al. 2011). However, these genes exhibit limited change in other metabolic organs such as the liver, 

muscle, and white adipose tissue (Kondo et al. 2006). (c) High-fat overconsumption also impacts the 

microbiota; this promotes the dysbiotic condition during which Firmicutes increase at the cost of 

Bacteroidetes (Bäckhed et al. 2004; Turnbaugh et al. 2008, 2009). Such condition reportedly increases energy 

harvest from the diet by the microbiota and impairs the balance between energy harvest and storage (Bäckhed 

Tenzin
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et al. 2004, 2007). Both modulation of fat metabolism (b) and disruption of microbiota homeostasis (c) are 

characterized by intestinal barrier breach and reduced bacterial diversity (whilst supporting the dysbiotic 

condition). (d) Such condition (i.e., dietary fat mediated breach in intestinal barrier and dysbiosis) triggers 

inflammatory cascade, which promotes extra-intestinal and intestinal disorders (Carding et al. 2015; Fasano 

& Shea-Donohue 2005). 

1.2 Small intestine morphology and physiology 

The small intestine displays spatial differences in morphology and physiology. Its 

absorptive surface is greatly maximized by the presence of folds (plicae), depressions 

(crypts) and fingers like projections (villi; DeSesso & Jacobson 2001). Intestinal epithelial 

cells are lined by a single layer of columnar epithelium (they mainly refer to absorptive 

enterocytes, but also include goblet cells, Paneth cells, enteroendocrine cells and microfold 

cells) while intraepithelial cells are sealed together by tight junctions (Figure 1.1a). The 

intestinal epithelium renews every 4 days in human and 3 days in mice (Kaminsky & 

Zhang 2003; Petit et al. 2007). Among the three sections of the intestinal epithelium (i.e., 

duodenum, jejunum and ileum), jejunum displays the maximal surface area; the height of 

villi decreases from jejunum to the ileum, and lumen size decreases from proximal 

duodenum to distal ileum (DeSesso & Jacobson 2001). The small intestine displays high 

variability in gene-expression and this is due to three factors: (1) cell-type differences; (2) 

changes along the longitudinal axis; (3) differences in developmental stages. George et al. 

(2008) found high expression levels of innate antimicrobials (alpha defensin 5 - Hd5, and 

regenerating islet-derived 3 alpha - Reg3A) exclusively in the ileum-crypt cells. The lipid 

sensing mechanism of the upper intestine suppresses glucose production to maintain 

energy balance and regulate food intake (Wang et al. 2008). Adenosine deaminase (ADA) 

is activated significantly in the duodenal epithelium of mice during the suckling-weaning 

transition (2-3 weeks; Dusing et al. 2000).   
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Among the macronutrients, gastric emptying is faster for carbohydrates and slower for fats. 

The transit time for chyme (a partially digested food from the stomach) in the small 

intestine takes about 3-4 hours. An increase in transit time enhances absorption, especially 

for poorly absorbed substances (except anticholinergic; DeSesso & Jacobson 2001). The 

intestinal morphology shows adaptability to the nutritional status. Along with the decline 

in cell proliferation, fasting leads to gradual atrophy of rat intestinal epithelium (Dunel-Erb 

et al. 2001). Refeeding activates cellular proliferation and dietary lipids are the strongest 

stimulators (Buts et al. 1990). In mice, dietary fat-content mediated intestinal adaptation 

occurs through two complementary events: (1) fatty-diet enhances the height of the villi 

and shows strongest effect on the intestinal trophism (i.e., crypt-to-villus migration, during 

epithelial cell renewal); (2) high-fat diet leads to up-regulation of dietary-fat responsive 

genes that play a significant role in the intestinal fatty acid uptake (i.e., fatty acid transport 

protein 4 - FATP4, fatty acid transport protein - FAT/CD36, intestinal fatty acid binding 

protein - I-FABP, and liver fatty acid binding protein - L-FABP) and lipoprotein secretion 

(i.e., microsomal triglyceride transport protein - MTP, and apolipoprotein - apoA-IV; (Petit 

et al. 2007). For example, FATP4 up-regulation promotes long-chain fatty acid uptake by 

the enterocytes (Herrmann et al. 2001).  

The activity of the small intestine is regulated via a complex interplay of different organs. 

The gut-brain-liver axis, together with the oral cavity, provides cumulative sensory inputs 

to maintain metabolic health. Both rodents and humans have developed intestinal lipid-

sensing mechanisms (through vagal afferent neurons in the intestinal walls) that regulate 

food intake and maintain energy homeostasis (Ding & Lund 2011; de Lartigue et al. 2011). 

In rodents, a raise in lipid concentration in the upper part of small intestine lowers glucose 

production through the intestine-brain-liver neurocircuitry (Wang et al. 2008). Such signal 

mediates satiety via the cholecystokinin (CCK) pathway and its impairment promotes 

hyperphagia (Ding & Lund 2011). High-fat fed rats (i.e., with lard-oil-enriched diet) 
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increase caloric intake rapidly and, after three days, acquire defects in brain’s lipid sensing 

mechanism (defects in glucose production; Pocai et al. 2006; Wang et al. 2008). Wang et 

al. (2008) have proposed that the lipid-sensing mechanism of the intestine provides one of 

the first lines of metabolic defense against nutrient excess by inhibiting food intake and 

maintaining energy balance. Furthermore, reduced satiety during high-fat feeding can be 

due to: (1) oral sensory input (this is because rats on high-fat diet reduce oral fat sensitivity 

with decreased expression of oral CD36 transporter; Newman et al. 2013); (2) malfunction 

in gut nutrient sensors like G protein-coupled receptors (GPCR, expressed in 

enteroendocrine cells; Janssen & Depoortere 2013)(Janssen & Depoortere 2013). On a 

high-fat diet, lipid metabolism related genes are prominently over-expressed in the small 

intestine while a limited change can be detected in the liver, muscle, and white adipose 

tissues (Kondo et al. 2006; see Figure 1.1b). 

1.3 Lipid absorption and digestion in small intestine 

Dietary fat belongs to a variety of lipid classes and each class exhibits unique metabolic 

phases in different cellular environments. The lipid classes are categorized based on the 

chain length or the interaction with water. Based on the chain length (C2 to C24), fatty 

acids have been grouped into four classes: saturated, monounsaturated, n-6 polyunsaturated 

and n-3 polyunsaturated (Nassir & Abumrad 2009). The solubility of lipids in water plays 

a key role in their uptake across membranes and, based on interaction with water, lipids are 

categorized as non-polar (e.g., cholesteryl oleate) and polar (e.g., triacylglycerols; Phan & 

Tso 2001; Schulthess et al. 1994; Werner et al. 2000). In a western diet, almost 40% of the 

calories are contributed by the dietary fat (i.e., about 90-95% triacylglycerols , 4.5% 

phospholipids and sterols; Niot et al. 2009; Werner et al. 2000). Most of the phospholipids 

in intestinal lumen are from the bile, while only a small amount comes from the diet (Phan 

& Tso 2001; Werner et al. 2000). Most of the dietary sterol is cholesterol (animal origin) 
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and only a small amount from plants (mainly beta-sitosterol). Beta-sitosterol is efficiently 

released from the enterocytes into the intestinal lumen, due to intestinal half-transporters 

ATP-binding cassette (ABC) transporters G5 (ABCG5) and G8 (ABCG8; see Berge et al. 

2000). Mammalian cells cannot synthesize a specific group of lipids called essential fatty 

acids, which must be obtained from the diet. The fat-soluble vitamins (A, D, E and K) are 

essential for the normal functioning of cells and organs. The absorption rates are higher for 

vitamins A, D and K compared to vitamin E. It has been suggested that competition 

between these fat-soluble vitamins can exist for what concerns intestinal absorption and 

transport (Phan & Tso 2001; Werner et al. 2000). The intestinal lipid absorption occurs via 

two successive events: intraluminal and intracellular processes (Werner et al. 2000).  

1.3.1 Intraluminal lipid absorption 

Multiple physico-chemical changes involve dietary lipids before the uptake from the 

intestinal lumen to the enterocytes (Werner et al. 2000). Intraluminal lipid absorption 

includes: (1) emulsification and lipolysis; (2) solubilization; (3) uptake of lipolytic 

products by enterocytes (Phan & Tso 2001; Werner et al. 2000).  

(1) Emulsification and lipolysis. Dietary fat digestion begins in the stomach with 

mechanical emulsification and partial triacylglycerols hydrolysis by the acid lipases 

(lingual and gastric lipases; Phan & Tso 2001; Werner et al. 2000). Most of the 

triacylglycerols digestion occurs in the duodenum and the first part of the jejunum by the 

combined action of bile and pancreatic lipase (Borgström 1977; Werner et al. 2000). 

Pancreatic lipase hydrolyzes triacylglycerols into monoglycerides and fatty acids (Nassir et 

al. 2007). When triacylglycerols droplets are covered with bile salts, pancreatic lipase 

requires the cofactor pancreatic co-lipase for adequate triacylglycerols hydrolysis (Werner 

et al. 2000). The digestion of phospholipids occurs mainly in the duodenum by the 

pancreatic phospholipase A2 (PLA2) which yields fatty acids and lyso-
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phosphatidylcholine (Iqbal & Hussain 2009; Werner et al. 2000). Dietary cholesterol is 

mostly available in the form of free sterol, with only 10-15% cholesterol ester. Before 

absorption, cholesterol esters must be hydrolyzed in the duodenum by pancreatic 

cholesterol esterase (ChEt; see Iqbal & Hussain 2009; Phan & Tso 2001; Werner et al. 

2000). Pancreatic ChEt in humans shows wide specificity (it acts on triacylglycerols, 

cholesterol esters and phosphoglycerides) and its activity is considerably amplified by the 

presence of bile salts (Lombardo et al. 1980; Phan & Tso 2001; Werner et al. 2000). 

(2) Solubilization. The luminal content (nutrients and bacteria) of small intestine is 

separated from the intestinal epithelial cells by the unstirred water layer, which is secreted 

by the mucin producing cells (e.g., goblet cells; Turner 2009). In order to pass through the 

unstirred layer, dietary fats need to be solubilized into mixed micelles by the bile acids 

(Wang et al. 2013). Mixed micelles act as transporters by delivering emulsified dietary fat 

to the apical enterocytes for the uptake (Iqbal & Hussain 2009; Schwenk et al. 2010; Wang 

et al. 2013). 

(3) Uptake of lipolytic products by enterocytes. The diffusion of fatty acids across the 

enterocytes was believed to depend on simple passive-diffusion (Iqbal & Hussain 2009; 

Schwenk et al. 2010; Wang et al. 2013). However, fatty acid uptake occurs mainly by 

membrane-associated FABP (Schulthess et al. 1994; Wang et al. 2013). There are three 

main mechanisms for the uptake and transport of fatty acids across the enterocytes (Wang 

et al. 2013). These mechanisms govern fatty-acid uptake and are mediated by membrane-

associated FABP; they refer to: (1) CD36 (also known as fatty acid translocase); (2) 

FATP4; (3) combined action of Niemann-Pick C1 like 1 protein (NPC1L1), ABCG5 and 

ABCG8 (Wang et al. 2013). CD36 is a multifunctional protein homologous to the class B 

scavenger receptor (SR-B1; Niot et al. 2009). It is abundantly expressed at the major site of 

fat absorption, the duodeno-jejunum (Poirier et al. 1996). Rat and human studies show a 

precise localization of CD36 in the apical enterocytes. The magnitude of CD36 expression 
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exhibits a clear positive relationship with dietary-lipid content, with significant up-

regulation in rats fed with high-fat diet (Iqbal & Hussain 2009).CD36 is also up-regulated 

in case of genetic obesity and diabetes mellitus (Greenwalt et al. 1995; Iqbal & Hussain 

2009). CD36-null mice show abnormal lipid processing with the accumulation of lipids in 

the proximal small intestine; thus, CD36 plays a vital role in both secretion and clearance 

of intestinal lipoproteins (Drover et al. 2005). The activity of CD36 is enhanced by the 

plasma membrane-associated FABP (FABPpm) that facilitates medium- and long-chain 

fatty acid uptake across the apical membrane of the enterocytes (Wang et al. 2013). After 

uptake, fatty acids are bound by the cytoplasmic FABP (FABPc) and enter various 

metabolic pathways (e.g., oxidation in mitochondria; Georgiadi & Kersten 2012; Wang et 

al. 2013). FATP4 transports medium- and long-chain fatty acids (Wang et al. 2013). 

FATP4 is more expressed in mature apical enterocytes than in crypts cells (where its 

expression is low or almost negligible); higher expression levels are usually found in 

jejunum than duodenum (Stahl et al. 1999). Its relevance in the in vivo fat absorption 

remains unclear but a role in the triacylglycerols processing is suggested. This is because 

FATP4-null mice show increased accumulation of triacylglycerols in the enterocytes (Shim 

et al. 2009). Intestinal cholesterol can also be maintained by the combined effects of 

NPC1L1 and ABC half-transporters (ABCG5 and ABCG8; Iqbal & Hussain 2009; Wang 

et al. 2013). NPC1L1 facilitates sterol influx at the apical enterocytes, whereas cholesterol 

and plant sterol efflux into the intestinal lumen is actively promoted by ABC half-

transporters (Wang et al. 2013). NPC1L1 deficient mice show reduced cholesterol 

absorption (Altmann et al. 2004). Moreover, the deletion of Cd36 in mice results in up-

regulation of NPC1L1 in the middle and distal sections of small intestine (Nassir et al. 

2007). Cholesterol absorption is minimally affected in Abcg5 and Abcg8 deficient mice 

that show reduced biliary cholesterol secretion and increased absorption of dietary plant 

sterol (Yu et al. 2002). 
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1.3.2 Intracellular lipid absorption 

After crossing the apical enterocytes, dietary lipids are directed into the endoplasmic 

reticulum where they are converted into the bio-inert triacylglycerols. Conversion into 

triacylglycerols is needed since lipolytic products (especially free fatty acids present in 

high concentrations) are toxic to the intestinal cells that are thus exposed to be damaged 

(Mansbach & Nevin 1998). As a countermeasure to toxic damages, FABP aids in the 

transport of absorbed fatty acids (FABP is more available in the villi than in the crypts and 

more expressed in the jejunum than in the ileum; Ockner et al. 1972; Ockner & Manning 

1974). In the proximal section, FABP is expressed in two forms: L-FABP and I-FABP. 

The fate of unbound fatty acids from the intestinal cytosol mainly follows two ways: (1) L-

FABP activates a storage mechanism for the free fatty acids and monoacylglycerol; (2) 

when L-FABP is overwhelmed by excess free fatty acids fluxing into the enterocyte, then 

free fatty acids and monoacylglycerol are rapidly esterified into triacylglycerols (Mansbach 

& Dowell 2000). However, Vassileva et al. demonstrated that I-FABP is not essential for 

the dietary fat absorption but rather maintains energy homeostasis; I-FABP performs such 

function by acting as a lipid-sensing component that alters body weight gain in a gender-

specific manner (Vassileva et al. 2000).  

The absorbed cholesterol is dispatched into the free cholesterol pool inside the enterocytes 

and is mostly transported into the lymphatic system as cholesterol ester, which is esterified 

by the pancreatic ChEt and acyl-CoA cholesterol acyltransferase (ACAT; Clark & Tercyak 

1984). Higher activity of ACAT has been observed in the jejunum compared to the ileum 

(Phan & Tso 2001) and two types of ACAT have been identified: ACAT-1 and ACAT-2. 

The expression of ACAT-2 is more restricted to small intestine and liver. Its role in the 

intestinal cholesterol absorption and esterification is demonstrated, with ACAT-2 knockout 

mice that are resistant to diet-induced hypercholesterolemia (Buhman et al. 2000). In the 

smooth endoplasmic reticulum, newly synthesized triacylglycerols and cholesterol esters 
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are packaged into a lipoprotein particle called chylomicron (Werner et al. 2000). These 

nascent chylomicrons are covered with phospholipids, cholesterol and apolipoproteins 

(apoA-I, apoA-IV and apoB-48). The gradual rise of fat absorption and triacylglycerols 

resynthesis increases the size and number of lipoprotein particles, which are packaged in 

vesicles filled with pre-chylomicrons. After modification of the pre-chylomicrons into 

mature chylomicrons in the Golgi apparatus, these vesicles translocate to the lateral 

enterocytes to be exocytosed into the interstitium and the lymph. Then, they enter the 

thoracic duct via the mesenteric lymph duct and finally reach the systemic circulation 

(Werner et al. 2000). During postprandial period, an increase in circulating chylomicrons 

induces the peak of triglycerides. This peak in plasma triacylglycerol is highest in obese 

and diabetic individuals (Georgiadi & Kersten 2012). Circulating chylomicrons are further 

hydrolyzed by the endothelial lipoprotein lipase (LPL) and then fatty acids are distributed 

to the peripheral tissues (muscles and adipose tissues; Georgiadi & Kersten 2012; Iqbal & 

Hussain 2009; Niot et al. 2009). 

1.4 High-fat diet and microbiome in intestine 

In the human body, most of the interactions between host and microbial cells occur along 

the mucosal surface, and gut is densely populated by commensal and symbiotic bacteria 

(O’Hara & Shanahan 2006; Shen et al. 2013). The ensemble of microbial cells that are 

harbored by the human body constitutes the microbiota and all genes encoded by them are 

the microbiome. In the gut, the microbiome includes 3.3 million non-redundant genes (i.e., 

they represent an amount of genes that is 150 times larger than the human gene 

complement; Clemente et al. 2012; Qin et al. 2010). Metabolism and survival of these two 

coevolved genomes (human and microbiome) are inextricably interwoven, and microbiota 

performs a major role in health and disease of human (Clemente et al. 2012; O’Hara & 

Shanahan 2006). The gut microbiota composition is highly influenced by diet (Fleissner et 
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al. 2010), but its plasticity (i.e., adaptability) in response to diet is also affected by the 

genome of the host (Parks et al. 2013). When the balanced activity of health-promoting and 

deleterious/neutral gut microbiome is disrupted, a condition called dysbiosis emerges 

(Figure 1.1c). This promotes the development of obesity, inflammatory bowel disease, 

diabetes and other metabolic complications (Clemente et al. 2012; Shen et al. 2013). 

The microbiota of a healthy human gut is composed of six main bacterial phyla: 

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria and 

Verrucomicrobia (Eckburg et al. 2005; Shen et al. 2013; Zhang et al. 2009). However, 

more than 90% of the total gut microbiota comprises Firmicutes and Bacteroidetes 

(Clemente et al. 2012; Garrett et al. 2010; Shen et al. 2013; Velagapudi et al. 2010).The 

composition (species/strains members and their abundance) of gut microbiota is unique for 

each individual (Lozupone et al. 2012; Shen et al. 2013; Zoetendal et al. 1998). Bacterial 

diversity is lower in obese individuals, with higher abundance of Firmicutes compared to 

Bacteroidetes (Bäckhed et al. 2007; Clemente et al. 2012; Fleissner et al. 2010; de La Serre 

et al. 2010; Turnbaugh et al. 2008, 2009). In presence of weight loss there is an increased 

proportion of Bacteroidetes with a reduction in Firmicutes (Bäckhed et al. 2007; Ley et al. 

2006; Turnbaugh et al. 2008). Dietary habits play an essential role in shaping the gut 

microbiota community. For example, the fecal microbiome of western populations (i.e., 

from US metropolitan areas) shows less bacterial diversity than the one of populations 

from non-western areas, and even the phylogenetic composition varies significantly 

according to the geographical location (when this well approximates different feeding 

behaviors; Yatsunenko et al. 2012). The gut microbial composition of African children 

(consuming fiber rich, non-western diet) is enriched in Bacteroidetes and depleted in 

Firmicutes if compared to European children (consuming western-style diet; De Filippo et 

al. 2010). In general, western style diet is associated with the reduction of bacterial 

diversity in the gut and promotes dysbiotic conditions. 
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1.5 Dietary fat intake and diseases in intestine 

Obesity and other metabolic disorders such as diabetes are characterized by a chronic or 

low-grade inflammation (Hotamisligil 2006). A condition called metabolic endotoxemia, 

during which there is an increased proportion of lipopolysaccharides containing gut 

microbiota, is the causative factor for the associated inflammatory state (Cani et al. 2007). 

Excess high-fat intake increases the proportion of lipopolysaccharides, which trigger body 

weight gain and diabetes by dysregulating the inflammatory signal (Cani et al. 2007). 

Lipopolysaccharides regulate the insulin sensitivity and the onset of diabetes and obesity 

by binding to the CD14-dependent TLR4 complex of the innate cells (Cani et al. 2007; 

Wright et al. 1990). Moreover, TLR4 seems to be the molecular link among nutrition, 

lipids and inflammation such that its deletion partially protects mice from high-fat diet-

induced insulin resistance (Shi et al. 2006).Gut microbiota has influence over both sides of 

the energy balance (i.e., energy harvest from the diet and energy storage into the host) and 

high-fat diet induced microbiota composition exhibited enhanced energy harvest from the 

diet (Bäckhed et al. 2004, 2007). Mice fed with high-fat diet show increased intestinal 

permeability with the down-regulation of the epithelial tight junction proteins ZO-1 and 

occludin, a condition that leads to liver inflammatory damages by increasing 

lipopolysaccharides levels in the portal blood (Brun et al. 2007; Cani et al. 2008). Gut 

microbiota is involved in this mechanism and its relevance is corroborated by the fact that 

when mice fed with high-fat diet are treated with antibiotic they display normal intestinal 

integrity and down-regulation of several inflammatory markers such as plasminogen 

activator inhibitor-1 (PAI-1), Interleukin 1 family (IL-1), and tumor necrosis factor alpha 

(TNF-α; Cani et al. 2008). The intestinal barrier disruption (a process that is triggered by 

environmental factors such as dietary or microbial antigens) can stimulate the immune 

response in extra-intestinal organs such as liver, pancreas, kidney, the skeletal system and 
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the brain (Fasano & Shea-Donohue 2005). Moreover, dysbiotic gut microbiota has 

consequences on both (1) extra-intestinal disorders (e.g., obesity, cardiovascular diseases, 

metabolic syndrome, asthma, and allergy) and (2) intestinal disorders (e.g., inflammatory 

bowel diseases like Crohn’s disease, irritable bowel syndrome and coeliac disease (Carding 

et al. 2015; see Figure 1.1d). Many disorders display regionalized distribution along the 

longitudinal axis of small intestine. Microarray transcriptomic data analysis has revealed 

that, during dietary fat-induced development of obesity and insulin resistance, the most 

pronounced effects are in the middle small intestine (with most of the differentially 

expressed genes that are related to lipid metabolism; de Wit et al. 2008). Among the 

intestinal inflammatory disorders, Crohn’s disease tends to be restricted to distal small 

intestine and colon, while coeliac disease is more characteristic of duodenum and upper 

small intestine (Knights et al. 2013; Meresse et al. 2012). Crohn’s disease displays aberrant 

inflammatory response to commensal bacteria whereas coeliac disease is triggered by 

dietary gluten (Knights et al. 2013; Meresse et al. 2012).In patients with ileal Crohn’s 

disease, the function of Paneth cells is compromised and results in a decrease of 

antimicrobial peptide production (i.e., NOD2, ATG16L1 and immunity-related GTPase 

family M protein 1 - IRGM-1; see Knights et al. 2013; Mowat & Agace 2014; Peterson & 

Artis 2014; Vaishnava et al. 2008). In patients with coeliac disease, dietary gluten 

enhances intestinal permeability by MyD88 dependent up-regulation of zonulin, which is 

followed by antigen-specific adaptive immune response (Fasano et al. 2000; Fasano & 

Shea-Donohue 2005; Thomas et al. 2006). The complex relationship involving different 

environmental factors such as diet and microbiota can alter the balance between immunity 

and tolerance thus playing an important role for the onset of metabolic and intestinal 

disorders. Dysbiotic conditions can be improved by treating the patients with antibiotic, 

prebiotic (increased consumption of dietary fiber) and probiotics (dietary supplements 

containing beneficial bacteria; see Cani et al. 2008; Everard et al. 2011; Serino et al. 2009). 
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Prebiotic treatment enhanced the production of GLP-1 and GLP-2 from the 

enteroendocrine L cells, which play a vital role in the regulation of gut barrier function and 

glucose homeostasis (Delzenne & Cani 2011). Oligofructose increased the abundance of 

Akkermansia muciniphila, which reversed metabolic disorders induced by high-fat diet 

(such as metabolic endotoxemia and insulin resistance; Everard et al. 2013). Malt 

counteracted the fat mediated increase in the mRNA expression of tight junction proteins 

and TLR in the small intestine and distal colon (Zhong et al. 2015). 

1.6 Nonlinear transcriptomic response to dietary fat intake 

Dietary fatty acids act as signaling molecules and influence metabolic processes by 

stimulation/inhibition of DNA transcription (Georgiadi & Kersten 2012). The 

transcriptional regulation of genes associated with the fatty acid metabolism has a pivotal 

role in modulating the long-term regulatory mechanism that controls lipid homeostasis. 

This control is executed by means of transcription factors such as sterol regulatory element 

binding protein (SREBP), PPAR and other nuclear receptors (Desvergne et al. 2006). 

In molecular nutrition, most studies investigate linear gene expression changes in response 

to treatments or dietary interventions (Dawson et al. 2005). However, it has been shown 

that many biological interactions between genes and environment (e.g., diet) reportedly 

occurs in a nonlinear fashion (Chen et al. 2001; Nicholson et al. 2004; Pácha 2000). In the 

small-intestine, long-chain fatty acids and vitamins undergo concentration-dependent, 

nonlinear transport across the enterocytes (and such process can even be saturated; see 

Chen et al. 2001; Pácha 2000). Also,, the relevance of nonlinear responses is considered by 

the dual intervention point model (Speakman et al. 2011). Such model identifies upper and 

lower limits at which maximal physiological regulations take place (whereas minimal or no 

regulations occur within the range of these two limits) and has been proposed to explain 

the regulation of body weight (and fatness). The upper limit to body fat accumulation in 
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mice suggests the presence of genetic mechanisms that are activated when a certain limit is 

attained (Bäckhed et al. 2004; Parks et al. 2013). However, in presence of continual 

feeding there are some mice strains that display a disrupted set-point mechanism (i.e., fat 

accumulation is not constrained and continues throughout the whole feeding period; Parks 

et al. 2013). These studies suggest that the genetic mechanism regulating fat mass gain 

reacts to the continual feeding with both saturated (logarithm) and unsaturated 

(exponential) responses. Therefore, the exclusive focus on linear response patterns can 

represent a limit for the understanding of different biological processes that link food 

intake to gene expression. An alternative approach that seems particularly suitable for 

studying gene expression in the small-intestine is to model transcriptomic response to 

varying concentrations of dietary fat intake using linear and nonlinear fitting, by 

considering fat intake as the independent variable and gene expression intensity as the 

dependent one. Nonlinear response types can be used to assess the presence of dose-

dependent thresholds (e.g., upper limits to gene expression that can be modelled with the 

logarithmic function). The presence of upper limit thresholds can be related to excessive 

fat intake and used to quantify small intestine metabolic capacity.  

1.7 Thesis objective 

This thesis investigates whether various gene expression response types (i.e., linear and 

nonlinear) characterize the longitudinal axis of the small intestine as a function of dietary 

fat doses (i.e., dietary fat intake represents the independent variable and gene expression is 

the dependent variable). Gene expression is analyzed as a continuous function of fat intake. 

The aim is categorizing the changes in the response types of differentially expressed genes 

(i.e., linear response; nonlinear response: logarithmic, exponential, quadratic and cubic) 

along the small intestine axis. The motivation behind the adoption of these models lies in 

the idea that excessive fat intake can result in the saturation of some absorptive and 
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digestive processes. In particular, the linear and exponential responses are associated to 

processes that are not constrained by any saturation (with the latter referring to an increase 

of the biological efficiency in presence of high-fat concentration), while the logarithmic 

response implies a limited capacity of the small intestine to withstand excessive fat intake. 

This idea is further corroborated by the presence of physiological and anatomical 

differences from the proximal to the distal section of the small intestine (DeSesso & 

Jacobson 2001). Such differences are reflected by changes in gene expression and can be 

related to the following biological mechanisms: 

(1) Lipid absorption. Clear differences can be observed for what concerns the absorption 

capabilities of small intestine, with the middle part known to be particularly active (de Wit 

et al. 2008). These differences suggest that the efficiency of the most responsive part (i.e., 

the middle small intestine, in case of absorptive processes) can be saturated by excessive 

amounts of fat (i.e., logarithmic response). 

(2) Lipid transportation. A high-fat diet leads to excess of cholesterol and phospholipids. 

In the small intestine, this excess concomitantly increases the demand for bile acids that 

are essential for chylomicron assembly and for a proper fat digestion and absorption. The 

chylomicron is required for lipid transportation and is accompanied by changes in the 

transcriptomic levels of genes related to its formation (Desmarchelier et al. 2012). 

Therefore, modelling gene expression as continuous function of dietary fat intake is 

relevant to understand whether chylomicron formation can be saturated by excessive fat 

intake (i.e., logarithmic response) or can promptly respond to it (i.e., either with a linear or 

exponential response). 

(3) Buffer capacity. The development of an obese phenotype occurs beyond the buffer 

capacity of the small intestine in fat handling (i.e., such buffer capacity has been observed 

until 20% kcal from fat; see de Wit et al. 2011). Prominent fat-induced differential gene 

expression was triggered when fat intake exceeded 30% of energy consumption. This 
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behavior could be due to the fact that fat absorption and transportation are particularly 

responsive to increasing levels of fat intake (i.e., exponential response), without being 

associated to comparable changes for what concerns digestive mechanisms (i.e., saturation 

patterns with logarithmic response). 

1.8 Thesis overview 

The thesis is organized into five Chapters. Chapter 1 introduces the morphology and 

physiology of small intestine, and explains how gene expression responses are modulated 

by dietary fat intake along its axis. It mainly discusses the reasons and motivations behind 

the approach utilized for the analysis of two different microarray datasets that measure 

gene expression along the longitudinal axis of small intestine in C57BL/6J mice. This 

Chapter also explains why the nonlinear modelling of intestinal transcriptomic response to 

dietary fat intake is particularly relevant for understanding the consequences of high-fat 

intake. 

Chapter 2 describes the methods used for the analysis of the microarray datasets. Two 

different gene expression datasets were analyzed and are detailed separately in Chapters 3 

and 4. Both datasets measured the genome-wide regulation of mRNA abundance in 

response to dietary lipid and the samples were collected from the intestinal mucosa of 

C57BL/6J mice.  

Chapter 3 reports the results of the analysis performed on the dietary fat responsive gene 

expression in three sections of the small intestine of C57BL/6J mice. Intestinal 

transcriptomic data were collected after four weeks of dietary intervention during which 

mice were fed with different levels of fat (i.e., 10%, 20%, 30% and 45% kcal from fat). 

Due to the regionalized physiology (i.e., differences in absorption and digestive capability 

in each of the three sections) and the availability of higher amount of fat in the proximal 

section, linear and nonlinear (i.e., logarithmic, exponential, quadratic or cubic) 
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transcriptomic responses to dietary fat intake were tested along the longitudinal axis of the 

small intestine. The objective was investigating the presence of: (1) gene-specific response 

types for which a particular gene exhibits the same response type regardless of the 

intestinal section; (2) section-specific response types, meaning that a particular gene 

displays unique response types in different intestine sections. We found that: (1) the middle 

section was the most responsive to dietary fat intake; (2) the relative importance of 

logarithmic and exponential response was highest in the proximal and distal section, 

respectively; (3) the majority of the genes were linearly responsive to the fat intake; (4) 

there was gene-specific, linear response of inflammation related processes in the whole 

intestine, while the processes related to cholesterol transport and efflux were regulated 

with exponential response in the middle section. 

Chapter 4 is about the analysis of transcriptomic data collected from ten sections of the 

small intestine of C57BL/6J mice. These mice were fed with three kinds of diet (i.e., high-

fat, low-fat or chow) and the dietary intervention lasted 2 weeks. The consumption of 

dietary fat is essential as it represents a metabolic fuel and plays a key role in the structure 

of cell membranes. However, when fat is consumed in excess the intestine can adapt to it 

and increase its absorption (i.e., by increasing the secretion of bile acid for fat digestion). 

Therefore, three main kinds of transcriptomic response (i.e., linear, logarithmic or 

quadratic) to dietary fat intake were tested along the longitudinal axis of the small 

intestine. The main findings were: (1) high-fat intake over-expresses processes related to 

lipid metabolism and transport, while down-regulating carbohydrate metabolism; (2) 

middle and distal sections are sensitive to fat whereas the proximal section is responsive 

irrespective of the diet; (3) transport and metabolic processes were more representative of 

saturated logarithmic and linear response, respectively.  
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Chapter 5 provides the conclusions of thesis and describes how our new approach can give 

new clues to understand the relationships between fat mediated modification of intestinal 

lipid metabolism and predisposition to obesity.
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Chapter 2  
Materials and methods 

2.1 Transcriptome microarray 

This section briefly introduces the fundamentals of genomic expression and the Affymetrix 

GeneChip technology. The main aim is to describe the transcriptomic datasets that were 

used to investigate the patterns of gene expression response types (i.e., linear and 

nonlinear: logarithmic, exponential, quadratic or cubic) as a function of dietary fat gradient 

along the longitudinal axis of the murine small intestine. 

2.1.1 Affymetrix GeneChip technology 

Gene expression quantification is mainly performed using Affymetrix GeneChip 

oligonucleotide microarray and cDNA microarray. The datasets analyzed in this thesis 

were produced using Affymetrix GeneChip microarrays. These GeneChip arrays were 

manufactured using spatially patterned, light-directed combinatorial chemical synthesis 

(Lipshutz et al. 1999). Each array contains up to hundreds of thousands different 

oligonucleotide probes, which are complementary to the target transcripts. Sets of probe 

pairs called probesets interrogate particular transcripts. A probe pair consists of a set of 

two features called perfect match (PM) and mismatch (MM) where the former shows 

perfect complementarity to the target sequence (cRNA prepared from mRNA) whereas a 
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single base in the middle of the later shows a mismatch (i.e., the MM probe differs from 

the PM by a change in the central nucleotide). The benefit for having MM probes and 

probesets is that they reduce the effects of non-specific hybridization/binding and 

background signal (Murphy 2002). The intensity of the hybridization between the target 

sample and the probe array is computed for each probe cell (location for each probe). The 

image of this probe array is stored as .DAT file. The pixel values per probe cell are 

calculated and used to produce another (.CEL) file containing the probe intensity. This 

thesis is based on the analysis of data stored in .CEL files.

2.1.2  Microarray data 

This thesis investigates the genome wide effects of dietary lipids in the small-intestine 

using two distinct microarray transcriptomic datasets. The data were collected from the 

intestinal mucosa of male C57BL/6J mice. Two experiments were carried out; they were 

based on two types of dietary intervention. For the first dataset, different doses of dietary 

fat (i.e., 10%, 20%, 30% or 45% kcal from fat) were supplied. For the second dataset, three 

kinds of diets (i.e., high-fat, low-fat or chow) were used.  

In the first case study, transcriptomic data refer to three sections of the small intestine (i.e., 

proximal, middle and distal). Mice aged 12 weeks were initially fed with a control diet 

containing 10% energy intake from fat for 4 weeks. The dietary intervention was carried 

out for another 4 weeks during which mice were fed with diet containing 10%, 20%, 30% 

or 45% kcal from fat. Table 2.1 details the composition of the diet. Mice were sacrificed at 

the end of the intervention. In total, we analyzed 120 samples that represent ten biological 

replicates for each dietary group in each of the three intestinal sections. The GeneChip 

arrays used for the analysis were European Nutrigenomics Organization (NuGO) 

customized Affymetrix arrays (nugomm1a520177mmentrezg); each array contained 

16,269 probesets. The microarray data are available at GEO (accession number 
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GSE26300) and are MIAME (Minimum Information About a Microarray Experiment) 

complaint. Chapter 3 presents the results obtained by analyzing this dataset. 

 

 10E% fat 20E% fat 30E% fat 45E% fat 

 gm% kcal% gm% kcal% gm% kcal% gm% kcal% 

Protein 19 20 20 20 22 20 24 20 

Carbohydrate 67 69 60 60 53 50 40 35 

Fat 4 10 9 20 14 30 24 45 

Other 10 1 11 1 11 1 12 1 

Total 100 100 100 100 100 100 100 100 

kcal/gm 3.8  4.1  4.3  4.7  

         

Ingredient gm kcal gm kcal gm kcal gm kcal 

Casein, lactic 200 800 200 800 200 800 200 800 

L-Cystine 3 12 3 12 3 12 3 12 

         

Corn Starch 427.2 1709 325.8 1303 224.3 897 72.8 291 

Maltodextrin 100 400 100 400 100 400 100 400 

Sucrose 172.8 691 172.8 691 172.8 691 172.8 691 

         

Cellulose, BW200 50 0 50 0 50 0 50 0 

         

Soybean Oil 25 225 25 225 25 225 25 225 

Palm oil 20 180 65.2 586 110.2 992 177.5 1598 

         

Mineral Mix S10026* 10 0 10 0 10 0 10 0 

DiCalcium Phosphate 13 0 13 0 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 5.5 0 5.5 0 

Potassium Citrate, 1 

H2O 
16.5 0 16.5 0 16.5 0 16.5 0 

         

Vitamin Mix V10001* 10 40 10 40 10 40 10 40 

Choline Bitartrate 2 0 2 0 2 0 2 0 

         

Total 1055 4057 999 4057 942 4057 858 4057 

 

Table 2.1: Diet composition of the intervention used for the case study discussed in Chapter 3. Main 

ingredients are in bold (e.g., palm oil is the main source of saturated fats whereas corn starch is the main 

source of carbohydrates). 
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In the second case study, transcriptomic data were collected from ten sections of the small 

intestine of male C57BL/6J mice. The microarray platform used for this study was 

customized Affymetrix mogene11stmmentrezg arrays. Mice received diets containing 

high-fat (HF), low-fat (LF) or chow. The detailed composition of diet is summarized in 

Table 2.2. Each diet group contained four biological replicates in the ten sections of the 

small intestine. Altogether we analyzed 120 arrays and each array consisted of 21,266 

probesets. Chapter 4 presents the results of this analysis. 

 

 Chow LF HF 

Protein % 24 20 20 

Fat% 

C16:0 

C18:0 

C18:1 

C18:2 

6 

1.2 

0 

2.2 

2.6 

10 

2.8 

0.4 

3.2 

3.6 

45 

18.7 

1.8 

17.4 

7.1 

CHO% 

Sugar 

Starch 

Fiber 

Nitrogen-free extract 

64 

 

 

4 

60 

70 

27 

42 

1 

 

35 

27 

7 

1 

 

Ash % 6   

Total 100 100 100 

 

Table 2.2: Dietary intervention used for the case study presented in Chapter 4. Three types of diet were 

used: chow, low-fat (LF) and high-fat (HF). 

2.2 Background correction and quality assessment 

Objective of microarray technology is to quantify the specific hybridization between the 

target and the probe sequence. However, the measured probe intensities can be confounded 
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by variations from sources such as technical (non-specific hybridization or optical noise) or 

manual handling. Therefore, it is necessary to perform preprocessing before obtaining 

significant biological information. Data preprocessing and quality assessment was 

performed using the interactive environment provided by the affyPLM package (Bolstad 

2004). This package is an updated version of the affy package and is part of BioConductor 

software project (Gentleman et al. 2004) that is based primarily on the R Statistical 

Environment (R Core Team 2015).The fitPLM function of the affyPLM package was used 

to fit probe level linear model to Affymetrix data. This function fits robust Probe Level 

Linear Models to each probeset and converts Affymetrix GeneChip probe level data 

(AffyBatch) into a PLMset (Probe Level Linear Models fitted to Affymetrix GeneChip 

probe level data). The standard series of steps adopted for the preprocessing of raw data 

are: (1) background adjustment and normalization (to reduce variability within or between 

arrays), and (2) summarization (a probeset consists of multiple probes and summarization 

combines these intensities to an expression value). In GeneChip arrays, multiple probes in 

a probeset represent a given transcript and intensity values are summarized into an 

expression value. 

2.2.1 Background adjustment 

Affymetrix introduced MM probe sequences in order to reduce non-specific binding. The 

default background noise correction involves subtracting MM from PM intensity. 

However, Irizarry et al. found that this strategy can lead to over-estimation of the 

expression variance (Irizarry et al. 2003). Therefore, they proposed a new procedure called 

robust multi-array average (RMA) that corrects the PM intensities whilst neglecting MM. 

This preprocessing algorithm (RMA) is widely used for Affymetrix microarrays. It 

includes background correction and also performs quantile normalization and 

summarization (McCall et al. 2010). Background correction for the dataset presented in 
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Chapter 4 was implemented using RMA (i.e., it is based on global background 

adjustment). Using the normalization and the summarization methods of RMA, Wu et al. 

(2012) proposed another background adjustment algorithm called GCRMA. GCRMA 

adjusts the intensities via estimators derived from a statistical model that relies on probe 

sequence information. The dataset analyzed in Chapter 3 was preprocessed using GCRMA. 

Both RMA and GCRMA produce output data with expression values measured in log 2 

base scales. The affyPLM package provides multiple quality assessment tools such as 

Relative Log Expression (RLE) and Normalized Unscaled Standard Error (NUSE) plots. 

The Relative Log Expression tool computes RLE values for each probeset in each array by 

comparing the expression value of a probeset against the median expression value of the 

probeset across all arrays (Brettschneider et al. 2008). This approach assumes that, in a 

given array, only a few genes are differentially expressed and therefore RLE values are 

centered near 0. The Normalized Unscaled Standard Error considers the differences in 

variability; the standard error estimates for each gene in the PLMset are normalized such 

that the median standard error for a probeset across all arrays equals 1 (Brettschneider et al. 

2008). The quality of the datasets of Chapter 3 was assessed using RLE and NUSE plots. 

2.2.2 Variability adjustment and quality assessment 

Variations in expression between multiple arrays are categorized into interesting variations 

and obscuring variations. Interesting variations are contributed by biological differences 

(e.g., differences between disease and normal tissues), while obscuring variations depend 

on other factors that are of no biological interest but exist in almost all microarray data 

(i.e., they can be due to sample preparation, hybridization condition and scanner 

differences; see Bolstad et al. 2003). Therefore, in order to compare measurements 

between multiple arrays it is necessary to normalize the obscuring variations, which would 

otherwise lead to misleading results (Irizarry et al. 2003). Normalization of arrays can be 
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performed with several methods. There are methods which use information from all arrays; 

these methods are called complete data methods and include cyclic loess, contrast based 

method and quantile normalization. Other approaches use baseline arrays such as scaling 

and non-linear methods (Bolstad et al. 2003). Bolstad et al. (2003) compared the 

performance of these normalization methods for Affymetrix GeneChip. The comparison 

showed that the quantile method performs better than the others in terms of speed, variance 

and bias criteria (Bolstad et al. 2003). Quantile normalization transforms the probe 

intensities of arrays to have the same distribution. This approach can impose problems to 

the signals in the tail. However, empirical evidence does not suggest any drawback with 

this normalization method in practice (Bolstad et al. 2003; Irizarry et al. 2003). Therefore, 

the usage of this method is preferred over the other methods. This normalization method 

was applied to the datasets analyzed in in Chapters 3 and 4. Additionally, another 

normalization technique called UPC (Universal exPression Code) was applied to the 

dataset presented in Chapter 4. This method uses linear models to correct technological and 

experimental biases by modelling the genomic base composition and the length of target 

regions (Piccolo et al. 2013). It assumes that genes of same molecular characteristics 

constitute same background expression levels and estimates the transcriptional activation 

level using the mixture model (a specific model used by the function). The mixture model 

is applied separately for each sample. Furthermore, for the dataset presented in Chapter 4 

genes with low variability across samples (usually considered not expressed in cells) are 

filtered using genefilter library (Bourgon et al. 2010; Gentleman et al. 2012). In general, 

unexpressed genes are detected as the ones that display low variability across all samples. 

These genes are filtered and excluded from the study for differential expression to increase 

the power of the analysis. 



   
 Regression models 

 

42 
 

2.3 Regression models 

Linear regression model was applied to describe the relationship between the 

dependent/response variable (i.e., gene expression) and the independent/predictor variable 

(i.e., dietary intervention). The linear relation could also be expressed as: 

𝑦௜ =  𝛽଴ +  𝛽ଵ𝑥௜ +  𝜀௜ 

Or 

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒௜ =  𝛽଴ +  𝛽ଵ𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛௜ + 𝜀௜ 

Where 𝑦௜: The predicted value of the response variable 
 𝛽଴: The intercept or response value when the predictor variable equals zero 
 𝛽ଵ: The slope that quantifies the relation between the predictor variable and the 

response variable 
 𝑥௜: The independent or predictor variable    
 𝜀௜: The residual error 
 

However, in addition to linear response patterns we also investigated different nonlinear 

functions. This is because nonlinear processes might be particularly useful to describe fat 

absorption and digestion in the small intestine (i.e., by modelling how gene expression 

changes as a function of dietary fat intake when moving along the longitudinal axis of 

small intestine). Therefore, by combining linear and nonlinear analysis different aspects 

might be investigated: (1) which is the predominant relationship linking gene expression to 

dietary fat intake (i.e., linear vs. nonlinear patterns)? (2) Are different biological processes 

associated to specific response types? (3) How does gene expression change along the 

longitudinal axis of the small intestine (i.e., gene-specific vs. section-specific responses)? 

Gene-specific responses are constantly associated to some genes, irrespective of the section 

where the differential expression occurs. Section-specific responses depend on the section 

where the genes are differentially expressed (e.g., the same gene can respond either in 

linear or nonlinear way, and the type of functional response depends on the section where 

the gene is differentially expressed) and not on the identity of the gene. Linear and 
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nonlinear gene expression in response to dietary fat intake was modelled in the R 

Statistical Environment (R Core Team 2015) by using the syntax summarized in Table 2.3. 

 

Response Model R syntax 
Linear 𝑦௜ =  𝛽଴ + 𝛽ଵ𝑥௜ lm(y~x) 
Logarithmic 𝑦௜ =  𝛽଴ + 𝛽ଵlog (𝑥௜) lm(y~log(x)) 
Exponential 𝑦௜ =  𝛽଴ + 𝛽ଵexp (𝑥௜) lm(y~exp(x)) 
Quadratic  𝑦௜ =  𝛽଴ + 𝛽ଵx + 𝛽ଶ𝑥ଶ lm(y~poly(x,2)) 
Cubic 𝑦௜ =  𝛽଴ + 𝛽ଵx + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ lm(y~poly(x, 3)) 

 

Table 2.3 R syntax for testing linear and nonlinear responses. Biological interpretations of these models 

is that the consumption of excessive fat may result in the saturation (i.e., logarithmic) of some biological 

processes (i.e., absorption or digestion). However, some processes that are not constrained by any saturation 

may be measured by linear and exponential responses, which describe increased efficiency in presence of 

highest fat concentration. Quadratic and cubic functions measure processes that follow hyperbolic and 

oscillating responses, respectively. 

2.4 Analysis of differentially expressed genes 

In this thesis, the relationship linking gene expression to dietary fat intake along the 

longitudinal axis of the small intestine was investigated. The transcriptomic data presented 

in Chapter 3 was fitted with linear and nonlinear (logarithmic, exponential, quadratic and 

cubic) responses by using dietary fat doses (10%, 20%, 30% and 45% of energy intake) as 

a continuous predictor of gene expression (i.e., gene expression levels were analyzed as a 

continuous function of fat intake). Gene expression intensity and fat doses were considered 

as the dependent and independent variable, respectively. Linear regression was performed 

on the pre-processed data (i.e., log 2 transformed gene expression); data were pre-

processed using the limma library (Smyth 2005). The nonlinear responses were tested by 

modelling expression as a function of logarithmic, exponential quadratic and cubic 

transformed fat intake. Multiple test correction of p-values were performed using 

Benjamini and Hochberg’s method (Benjamini & Hochberg 1995) and the significance 
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threshold for the adjusted p-values was at 0.1. When a gene was significant in more than 

one response type, the one with the lowest adjusted p-value was selected. In Chapter 4, the 

transcriptomic data was fitted with linear and nonlinear (logarithmic and quadratic) 

responses as a function of the interaction between diet and intestinal sections (i.e., both diet 

and intestinal section are the independent variables; gene expression is the dependent 

variable). This analysis investigated the transcriptomic response to distinct diets (i.e., high-

fat, low-fat, or chow) along the small intestinal axis. The reasons behind the fitting of 

logarithmic and quadratic responses are: (1) when the amount of fat reaching the intestine 

is highest, the metabolic processes may display saturated (i.e., logarithmic) response; (2) 

the digestion process and the microbiota effects are expected to be highest in the most 

proximal and distal sections, respectively; as such these activities could be effectively 

modelled with a quadratic response that describes the highest expression in the proximal 

and distal sections (and lowest in the middle). Diet was represented as ordered categorical 

values (i.e., chow < low-fat diet < high-fat diet) to illustrate the increasing energy content 

of fat. The intestinal sections were considered as continuous numerical values (i.e., values 

from 1 to 10 refer to the longitudinal axis of the small intestine, moving from most 

proximal to the most distal section). The limma library was used to perform linear 

regression on the pre-processed data (i.e., log 2 transformed gene expression; see Smyth 

2005). For the nonlinear responses, gene expression was modelled as a function of the 

interaction between diet, and logarithmic or quadratic transformed intestinal sections. Lists 

of dietary fat responsive (differentially expressed) genes were obtained by making 

comparisons between samples (i.e., high-fat diet vs. low-fat diet; low-fat diet vs. chow). 

The p-values were adjusted for multiple test correction using Benjamini and Hochberg’s 

method (1995) and the adjusted p-value threshold of 0.1 was considered. In the case that 

both linear and nonlinear responses were significant then the one with the lowest adjusted 

p-value was selected. Various nonlinear functions were associated to specific processes 
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and have different biological explanations: (1) the logarithmic response reports the 

presence of saturation mechanisms; (2) the exponential response corresponds to extremely 

efficient processes in the presence of high-fat intake; (3) the quadratic response refers to 

enzyme kinetics; (4) the cubic response is expected to be associated to circadian rhythms 

with oscillating trends. The limma library computes moderated t-statistics for each probe 

(and for each contrast). It differs from the ordinary t-statistics because: (1) the standard 

errors across genes are moderated to a common value by using the simple Bayesian model 

(i.e., the standard error measured from the estimated log-fold changes are moderated 

towards a common value by borrowing information across genes); (2) the degrees of 

freedom are increased to be consistent with the smoothened standard errors (Smyth 2005). 

2.5 Correlation network analysis 

The correlation patterns of the diet responsive differentially expressed genes were analyzed 

by constructing a co-expression network (i.e., each node represents the gene expression 

profile and the pairwise correlation between expressions are used to generate the edges 

between genes) using the WGCNA library (Langfelder & Horvath 2008). The hierarchical 

clustering method implemented in the WGCNA library was used to identify clusters of 

highly interconnected genes (in graph theory, these clusters are also called modules) in the 

dataset analyzed in Chapter 4 (Kaufman & Rousseeuw 1990; Langfelder & Horvath 2008). 

The topological overlap measure of the expression data was inferred from the adjacency 

matrix (i.e., calculated from the co-expression similarity by using the principle of scale-

free topology) and this was used to define the interconnectedness of clusters. In order to 

avoid identifying clusters with similar expression profiles, the co-expression similarities of 

all clusters were further evaluated by grouping the correlated clusters on the basis of their 

eigengene profiles (i.e., the most characteristic gene expression profile is considered as the 

representative of the module - it is the first principal component of the module; see 
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Langfelder & Horvath 2008). Most biologically interesting clusters (i.e., clusters that 

showed significant correlation with the ten intestinal sections) were obtained by finding the 

most significant association between the eigengene profiles of each cluster with the ten 

intestinal sections (Langfelder & Horvath 2008). 

2.6 Functional annotation of the differentially expressed genes 

The functional annotation of the differentially expressed genes found with both datasets 

(i.e., in Chapters 3 and 4) were performed with two different libraries in R. The over-

represented Gene Ontology Biological Processes (GOBP) relative to each section (and for 

each response type) in the first dataset (i.e., Chapter 3) were investigated using the 

hypergeometric test. This test was performed using HTSanalyzeR library, which tests for 

the overlap between hits and gene sets (such as Gene Ontology, MSigDB, and KEGG; see 

Wang et al. 2011). The p-values were adjusted using Benjamini and Hochberg’s method 

and the significance threshold was 0.1 (Benjamini & Hochberg 1995). Each significant 

cluster identified with correlation network analysis (i.e., the second dataset; see Chapter 4) 

was tested for enriched GOBP terms using the gage library (Luo et al. 2009). Three kinds 

of GOBP enrichment tests were performed for each cluster: (1) by ignoring the dietary 

effect, the processes that were enriched along the longitudinal axis of the small intestine 

were obtained; (2) high-fat diet responsive processes were investigated by considering 

high-fat diet samples as the target and the low-fat diet samples as the reference; (3) low-fat 

diet responsive processes were investigated by taking low-fat diet samples as the target and 

chow diet samples as the reference. For each analysis, three kinds of outputs were obtained 

based on the regulatory direction of the GOBP: (1) up-regulated processes; (2) down-

regulated processes; (3) processes which include gene regulation in both directions, such as 

canonical signaling pathways (Luo et al. 2009). The Benjamini and Hochberg’s method 

was used to obtain adjusted p-values and the significance threshold was at 0.1. For each 
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cluster, the enriched GOBP terms were grouped based upon GO similarities (i.e., by 

considering information content measure of GO terms within a specific ontology - 

biological process in our case) as implemented in GOSim library (Fröhlich et al. 2007). 

The information content values for each GO term are precomputed. These values are based 

on the number of times a specific GO and its gene products or neighboring (i.e., direct or 

indirect) offspring are annotated into the GO. In order to test the nonlinear responses in 

each network cluster the over-represented GO terms that refer to metabolic and transport 

processes were selected for further analysis. Also, the clusters that showed the highest 

significance to diet-responsive GOBP and that displayed the highest correlation with the 

ten intestinal sections (i.e., as computed using WGCNA library) were considered for the 

subsequent analysis (i.e., to find the predominant transcriptomic responses for each 

enriched process and examine which intestinal segments are most responsive to diet). Each 

of these clusters was characterized by the GO term with the highest information content 

value. This selection was made by identifying more specific GOBP terms (e.g., lipid 

metabolic process prevails over general terms like metabolic process).  

2.7 Biological process trend analysis 

In order to check if specific response types (i.e., linear, logarithmic, exponential, quadratic 

or cubic) are representative of certain biological processes or change their relative 

importance along the small intestine axis, GOBP trends were analyzed from the most 

proximal to the most distal section (results of such analysis are presented in the Chapter 3). 

In the Chapter 3 we aimed at finding: (1) the GOBP terms that were composed of genes 

that preserved their response type in all intestine sections (i.e., proximal: linear – middle: 

linear – distal: linear); (2) the GOBP terms that included genes that changed the shape of 

their response type along the different small intestine sections (e.g., proximal: linear – 

middle: logarithmic; middle: logarithmic – distal: linear; middle: linear – distal: 
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exponential). Two additional analyses were performed in Chapter 4 to identify dietary 

mediated predominant response types in each of the ten sections. First, the most 

characteristic (gene-level) response pattern of each GOBP per cluster was considered as 

the dominant one (i.e., the linear or nonlinear response type for which the highest gene 

count was recorded). Second, for each gene the intestinal sections with the highest 

frequency of high/low expression values were considered to be most responsive to diet.  
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Chapter 3  
Nonlinear transcriptomic response 
to dietary fat intake in the small 
intestine of C57BL/6J mice1 

3.1 Background 

Overconsumption of food that are rich in saturated fats leads to excessive energy intake 

and is strongly linked to metabolic disorders such as obesity, diabetes, cardiovascular 

diseases and some forms of cancer (Balwierz et al. 2009; Cheung & Mao 2012; 

Desmarchelier et al. 2012; Walley et al. 2006; Zhang et al. 2009). As the primary source of 

dietary fat uptake, the small intestine plays a key role in governing nutritional health 

(Kaminsky & Zhang 2003; Kondo et al. 2006; Petit et al. 2007; Thomson et al. 1986; de 

Wit et al. 2008). The intestinal absorptive capacity is enhanced by numerous fingers like 

projections of the mucosal membrane called villi, and there exist regionalized anatomic 

and physiological differences from proximal duodenum to distal ileum (Figure 1.1). The 

middle section has longer villi in comparison with the proximal and distal sections. It 

covers nearly half of the intestinal length and is characterized by the highest absorptive 

                                                 
1 Chapter 3 includes the findings of the following manuscript: Nyima, T. et al., Nonlinear transcriptomic 
response to dietary fat intake in the small intestine of C57BL/6J mice. Under revision in BMC Genomics. 
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capacity. The distal section contains shorter villi and less absorptive capacity 

(Desmarchelier et al. 2012; Goncalves et al. 2015).  

The small intestine acts as a gatekeeper between the diet and the body and can directly 

metabolize or block the uptake. Recent studies have demonstrated a strong intestinal 

transcriptomic response to dietary fat intake. Kondo et al. (2006) found high fat-induced 

up-regulation of lipid metabolism-related genes (e.g., Mod1, Cyp4a10, Acot1 and Acot2) in 

the small intestine of C57BL/6J mice, with negligible effects observed in the liver, muscle 

and white adipose tissue. Fat intake triggers the down-regulation of ABC half-transporters 

(Abcg5 and Abcg8) in liver and intestine thus leading to increased levels of sterols in 

diabetic rats (Bloks et al. 2004). Biological processes like inflammatory response and cell 

cycle were highly up-regulated in the small intestine of C57BL/6J mice during dietary fat 

induced development of obesity and insulin resistance (de Wit et al. 2008). The absorption 

capacity of intestine displays adaptability in response to dietary fat composition such as 

enhanced intestinal cell proliferation, synchronization of fatty acid uptake and lipoprotein 

secretion, and altered transport processes (Petit et al. 2007; Thomson et al. 1986).Section-

wise studies focused on gene-specific responses: (I) Simon et al. (2011) found increased 

distal gut hormone response to a high fat diet in apoA-IV knockout mice; (II) Nassir et al. 

(2007) observed sharp decreasing gradient in CD36 levels from proximal to distal 

intestine. de Wit et al. (2011) showed prominent effect of dietary-fat doses on gene 

expression, mainly in the proximal and middle sections. They concluded that differentially 

expressed genes correlated with the development of obesity, and the main shift towards an 

obese phenotype was observed when an amount of energy included between 20% and 30% 

was derived from fat. Previous research studies investigated the consequences of fat intake 

on transcriptomic response of intestine by individual, pairwise comparisons between 

control (i.e., baseline) diets and treatments (e.g., high fat vs. low fat; see Kondo et al. 2006; 

Westergaard & Dietschy 1974; de Wit et al. 2008). Their goal was detecting a significant 
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difference between control and treatments, rather than quantifying the strength of the 

response as a function of different levels of fat intake. Our work is a re-analysis of the data 

produced by (de Wit et al. 2011). We propose a novel approach to study whether linear or 

nonlinear response types characterize gene expression in the small intestine (i.e., dietary fat 

intake represents the independent variable and gene expression level is the dependent 

variable). We investigate dose-dependent transcriptomic response to dietary fat along the 

horizontal axis (proximal, middle and distal sections) of the small intestine of C57BL/6J 

mice. Mice were fed with 10%, 20%, 30% or 45% of energy (E%) derived from fat for 

four weeks (n = 10 mice/diet) and corresponding gene expression levels served to fit dose-

dependent responses. Due to the unique morphological and functional characteristics of 

each intestinal section (Desmarchelier et al. 2012; Hollander & Truscott 1976; Shaw-Smith 

& Walters 1997; Thomson et al. 1986; Westergaard & Dietschy 1974; Westergaard & 

Dietschy 1976), we expect to observe variations in transcriptomic response from proximal 

to distal section (Figure 1.1a). Our focus is mainly upon evaluating possible nonlinear 

relationships between gene expression and dietary fat percentage in the three sections. We 

aim at categorizing changes in the response types of differentially expressed genes (i.e., 

linear response; nonlinear responses: logarithmic, exponential, quadratic or cubic) among 

each of the three sections of the small intestine (Figure 3.1). The main advantage of 

studying continuous transcriptomic responses as a function of dietary fat intake is related 

to the chance of combining the information of different treatments into a unique picture. 

This helps in better understanding how the response to highest levels of fat intake is 

attained. Thus, we can investigate whether biological processes are overloaded by highest 

levels of fat content (i.e., logarithmic response type) or modulated in order to cope with 

them (i.e., exponential response type). The presence of a constant, linear response type 

along the whole small intestine can indicate spatial-independent mechanisms (i.e., this 

applies to processes that respond in a gene-specific manner, independently of the intestine 
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section where they occur). For example, such an approach can be used to illustrate whether 

an obese phenotype (I) corresponds to a 'tipping point' of the system (i.e., exponential 

response vs. linear and logarithmic responses) or (II) is limited by the metabolic capacity 

of the system (i.e., logarithmic response vs. linear and exponential responses). Moreover, 

distinguishing among the shape of the response types in differentially expressed genes adds 

a further qualitative level to the description of the biological processes (i.e., in addition to 

the magnitude and direction of the regulation). The broadest goal of our study was 

investigating whether the response types are gene-specific (i.e., a given gene always 

exhibits the same response type, regardless of intestinal section) or intestinal section-

specific (i.e., for the same gene, the response type displays unique patterns in the three 

intestine sections).  
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Figure 3.1: Comparison between classical and novel approach for identifying differentially expressed 

genes. We use as a reference the case study of mice fed with four levels of fat representing 10%, 20%, 30% 

and 45% of total energy intake; gene expression is measured in three sections of small intestine: (a) in the 

classical approach, the total number of differentially expressed genes is determined by comparing the control 

diet (10 E%) with treatments (20 E%, 30 E% and 45 E%); (b) in the novel approach, all expression levels of 

each gene (in the three sections) are considered to fit linear or nonlinear (i.e., logarithmic and exponential, in 

this case) response types. Three hypothetical patterns are described in (b): (I) gene type A preserves a linear 

response in the three sections of small intestine; (II) gene type B displays saturation (i.e., logarithmic 

response) in the proximal and middle sections; (III) gene type C shows exponential responses in most 

downstream sections (i.e., middle and distal parts of small intestine). Transcriptomic response of gene type A 

is gene-specific while the patterns observed for gene type B and C are section-specific.
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3.2 Materials and methods 

3.2.1 Ethics statement 

The institutional and national guidelines for the care and use of animals were followed. 

The experiment was approved by the Local Committee for Care and Use of Laboratory 

Animals at Wageningen University. 

3.2.2 Dietary intervention 

At twelve weeks of age, mice were fed for an initial period of four weeks with a control 

diet containing 10% of energy intake from fat. The main reason for this relatively long run-

in period was that we wanted to be sure that the effects of chow diet were highly 

diluted/not present when starting the dietary intervention. In addition, since we wanted to 

investigate the effect of diet-induced obesity in adults, we choose to start the experiment 

when the mice were 16 weeks old (mice aged 12 weeks are considered young adults that 

are still growing). After the initial period, mice were divided into four groups that received 

10%, 20%, 30% or 45% kcal from fat (see Table 2.1 for dietary composition). The dietary 

intervention lasted four weeks and then mice were killed by cervical dislocation after five 

hours fasting and anesthesia with 1.5% isoflurane. The isoflurane was evaporated in a 

vaporizer using a mixture consisting of 70% nitrous oxide and 30% oxygen. Ten biological 

replicates were carried out for each diet group in the three sections of the small intestine 

(i.e., altogether we analyzed 120 samples). 

3.2.3 Microarray data 

We analyzed microarray transcriptomic data from the intestinal mucosa of male C57BL/6J 

mice. The small intestine was divided in three equal parts: proximal, middle and distal 
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sections. These three parts were chosen because of practical reasons; when dissecting the 

small intestine one has to process the tissue quickly to avoid RNA degradation. The 1st 

part (i.e., proximal section) consists of the duodenum plus proximal jejunum, the 2nd part 

(i.e., middle section) corresponds to jejunum, and the 3rd part (i.e., distal section) includes 

the distal jejunum and ileum. Detailed protocols on dietary intervention and RNA 

extraction are described by de Wit et al (de Wit et al. 2011). The microarray platform used 

for this study is nugomm1a520177mmentrezg, a custom Affymetrix mouse array 

containing 16,269 probesets. The NuGO arrays are custom designed Affymetrix GeneChip 

arrays, designed by the European Nutrigenomics Organisation (NuGO) and manufactured 

by Affymetrix. These arrays contain in part common probe sets that are also present on 

standard Affymetrix arrays and in part newly designed probe sets (GEO platform 

GPL7440). The microarray data used for our analyses are MIAME compliant, available at 

GEO (accession number GSE26300). Data pre-processing and quality assessment, 

statistical analysis to identify differentially expressed genes and pathway analysis have 

been carried out in the R Statistical Environment (R Core Team 2015). 

3.2.4 Data pre-processing and quality assessment 

We used the affyPLM (PLM = Probe Level Model) library for data preprocessing and 

quality assessment. We applied the fitPLM function that fits iterative reweighted least 

square M-estimation regression to the probe intensity (Bolstad 2004). Background 

intensities (optical noise and non-specific binding) were adjusted with the GCRMA library 

(Wu et al. 2007). Such adjustment is obtained via estimators derived from a statistical 

model that uses probe sequence information. The GCRMA library has been shown to 

perform particularly well in adjusting background intensity in Affymetrix Genechips (Kroll 

et al. 2008). After background adjustment, technical variability between arrays was 

adjusted by quantile normalization (Bolstad 2001). The quality of the PLMset object was 
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assessed by plotting Relative Log Expression (RLE) and Normalized Unscaled Standard 

Error (NUSE; Brettschneider et al. 2008). Genes with low variability across samples are 

usually considered as not expressed. This is motivated by the observation that, in general, 

unexpressed genes are detected most reliably through low variability of their features 

across samples. Non-specific filtering of the genes was made with the genefilter library 

(Bourgon et al. 2010; Gentleman et al. 2012). The pOverA R function was used for 

variance-based filtering; genes with unlogged intensity above five, in at least five arrays, 

were chosen for the subsequent analysis. Genes without Entrez Gene ID and Affymetrix 

quality control probe-sets were excluded. After data pre-processing and quality assessment 

we selected 14,952 genes in the proximal section, 14,933 in the middle and 14,925 in the 

distal.  

3.2.5 Statistical analysis to identify differentially expressed genes 

We investigated the statistical relationship between gene expression and dietary fat intake. 

We fitted linear and nonlinear (i.e., logarithmic, exponential, quadratic and cubic) 

responses describing gene expression levels (dependent variable) as a function of dietary 

fat intake (independent variable). We considered nonlinear responses that reflect: (I) 

blunted differential expression at higher fat intake, which may indicate overloading of the 

relevant biological process (logarithmic curve); (II) progressively stronger differential 

expression with increasing fat intake (exponential curve); (III) parabola-like differential 

expression (quadratic function); (IV) oscillating trends (cubic function). The array data 

were log2 transformed (GCRMA normalized data). All responses (i.e., linear and 

nonlinear) were tested by modelling log2 transformed expression as a function of fat intake 

(i.e., with fat providing 10, 20, 30 or 45 E%). When comparing the diets of 40 mice (n = 10 

mice per diet group), there was no significant difference with respect to total food intake in 

grams per day (see Table 3.1). However, caloric intake increased with increasing fat 



   
 Materials and methods 

 

57 
 

percentage (and a linear relationship existed between the % of kcal from fat intake and the 

actual grams of fat intake - i.e., soybean oil and palm oil). Fat intake (the independent 

variable) is considered as continuous predictor of log2 transformed gene expression. We 

used the limma library (Smyth 2005) to perform linear regression on GCRMA normalized 

data (i.e., log2 transformed gene expression), and tested nonlinear responses by modeling 

expression as a function of logarithmic-, exponential-, quadratic- and cubic-transformed fat 

intake. To identify differentially expressed genes we performed multiple testing correction 

using Benjamini and Hochberg's false discovery rate (1995; FDR, with 0.1 significance 

threshold). It should be noticed that many studies regularly adopt an adjusted p-value 

threshold of 0.1 for identifying differentially expressed genes (e.g., Daves et al. 2011; 

Stevens et al. 2013). In the case that both linear and nonlinear responses were significant 

for a given gene, we selected the one with the lowest p-value. The robustness of our 

analysis was then tested by comparing the results obtained with two criteria of model 

selection (i.e., using p-values and Akaike’s information criterion - AIC). 

 

Feed intake in grams per day (mean and SEM, n = 10) 
10E% fat 20E% fat 30E% fat 45E% fat 

MEAN SEM MEAN SEM MEAN SEM MEAN SEM 
3.396 0.060 3.279 0.072 3.404 0.034 3.196 0.073 

 
Caloric content feed (kcal/gm) 

3.8 4.1 4.3 4.7 
 

Caloric intake (kcal per mouse per day); mean (n = 10) 
12.905 13.443 14.635 15.020 

 

Table 3.1 Food and caloric intake in week 4. Data refer to the week the mice were killed. We summarized the mean 

and standard error of the mean (SEM), based on n = 10 per diet group. The caloric intake consistently increased from 10 

to 45% diets, but the absolute amounts of food intake varied in a non-significant way. 

  



   
 Materials and methods 

 

58 
 

3.2.6 Functional analysis 

We investigated whether fat-responsive genes were enriched within distinct biological 

processes (defined as Gene Ontology Biological Process - GOBP), and tested whether each 

intestinal section displayed unique transcriptomic response to fat intake. We performed 

hypergeometric tests to functionally characterize groups of differentially expressed genes. 

We investigated over-represented Gene Ontology Biological Process (GOBP) in each 

section (adjusted p-value < 0.1; such threshold is commonly used for gene set enrichment 

analysis - e.g., Harris et al. 2009; Raymond et al. 2010) using the library HTSanalyzeR 

(Wang et al. 2011). To understand whether specific response patterns (i.e., linear, 

logarithmic, exponential, quadratic or cubic) characterize certain biological processes, or 

change according to the intestinal sections, we assessed trends of GOBP terms passing 

from the proximal to the distal region. We studied GOBP terms that preserved the same 

response pattern in different intestinal sections (e.g., proximal: linear - middle: linear - 

distal: linear), and analyzed those changing response pattern between the sections (e.g., 

proximal: linear - middle: logarithmic; middle: logarithmic - distal: linear; middle: linear - 

distal: exponential). A flowchart of the overall analysis is shown in Figure 3.2. 
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Figure 3.2 Schematic representation of workflow adopted for the analysis of microarray data. We 

identified linear and nonlinear response patterns for significantly over-represented GOBP terms. Trends for 

the response patterns specific to each term were examined from proximal to distal section.  

3.3 Results 

3.3.1 Linear and nonlinear gene expression  

The count of genes that respond in a significant way (either linear or nonlinear) to fat 

intake varies between the three sections (Table 3.2).  
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Response 

(Gene 

expression 

vs. Fat 

intake) 

Proximal Middle Distal 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

 

Linear 

 

 

1053 

 

53.29 25 1410 56.65 27 185 59.11 26 

Logarithmic 

 

678 

 

34.31 

 

1 

 

458 

 

18.40 

 

22 

 

26 

 

8.31 

 

- 

 

Exponential 

 

139 

 

7.03 

 

- 

 

499 

 

20.05 

 

9 

 

84 

 

26.84 

 

8 

 

Quadratic 

 

61 

 

3.09 

 

- 

 

87 

 

3.50 

 

7 

 

9 

 

2.88 

 

- 

 

Cubic 

 

45 

 

2.28 

 

- 

 

35 

 

1.41 

 

2 

 

9 

 

2.88 

 

- 

 

 

Table 3.2: Count of genes that respond in a significant, dose-dependent way to fat intake. Results were 

extracted using the limma library and are specific to each section of small intestine; adjusted p-value < 0.1. 

Genes are classified based on the mathematical function used to fit their expression in response to fat intake 

(linear, logarithmic, exponential, quadratic or cubic). For each section, we summarize the relative percentage 

of genes characterized by the five response types (%) and the number of significant GO terms (Biological 

Processes - GOBP) found with hypergeometric test (adjusted p-value < 0. 1). Only GOBP terms with, at 

least, six differentially expressed genes (in the whole small intestine) have been taken into account. 

 

The highest number of genes showing linear, exponential or quadratic transcriptomic 

response to fat intake was found in the middle section, but the highest number of genes 

displaying either logarithmic or cubic patterns of expression in response to fat intake was 

in the proximal section. The lowest number of differentially expressed genes, for all five 
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response types, was observed in the distal section. The proportion of differentially 

expressed genes exhibiting a significant linear relationship with the dietary fat intake was 

always above 53%. In the proximal and distal sections, the relative importance of 

logarithmic and exponential response, respectively, was the highest. Both quadratic and 

cubic response types are of marginal importance in all intestine sections (hereafter, given 

the fact that quadratic and cubic responses are associated with around 5% of differentially 

expressed genes, the focus will be on linear, logarithmic and exponential patterns only). 

The number of genes displaying a logarithmic response to fat intake dropped from the 

proximal to the distal section (the percentage decreases from 34.31% in the proximal to 

8.31% in the distal section). The opposite trend is found for the exponential response: the 

percentage increases from 7.03% in the proximal to 26.84% in the distal section. Thus, 

although the highest number of genes responding in an exponential way to fat intake was 

in the middle section, an increasing relative importance of this response is observed from 

the proximal to the distal part of the small intestine (Figure 3.3). In the three sections, if we 

consider the changes in gene expression that were significantly associated with varying 

levels of fat intake we observed a prevalence of up-regulated genes (Figure 3.4). These 

results were not affected by the model selection criteria chosen for the analysis (the trends 

of differentially expressed genes identified using AIC are summarized in the Table 3.3. 
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Figure 3.3: Percentages of differentially expressed genes that respond in a linear, logarithmic and 

exponential way to fat intake. Histograms are grouped according to response type, while different colors 

are associated to three small intestine sections. Linear response is highly represented in all sections, while the 

relative importance of logarithmic (exponential) response decreases (increases) from the proximal to the 

distal part of small intestine. 

 

 

Figure 3.4: Differentially expressed genes that are up- or down-regulated in response to increasing fat 

intake. Results were obtained using the limma library, modeling gene expression as a function of raw fat 

intake data (i.e., linear model), logarithm-, exponential-, quadratic- or cubic-transformed fat intake values; 

adjusted p-value < 0.1. In each plot, y-axis represents the gene count and x-axis corresponds to response 

types (linear, logarithmic, exponential, quadratic and cubic).  
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3.3.2 Functional annotation 

In the previous section, we classified the genes according to their category of response to 

fat intake (i.e., using linear, logarithmic, exponential, quadratic and cubic response types). 

We found two main classes: (I) genes that preserve linear responses along the whole 

longitudinal axis of small intestine; and (II) genes that alter the shape of their 

Response 

(Gene 

expression 

vs. Fat 

intake) 

Proximal Middle Distal 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

Gene 

(count) 

Relative 

% 

GOBP 

(count) 

Linear 1219 48.18 6 1439 50.03 16 366 50.76 3 

Logarithmic 719 28.42 7 443 15.40 11 45 6.24 - 

Exponential 148 5.85 2 461 16.03 17 121 16.78 6 

Quadratic 212 8.38 - 326 11.34 - 85 11.79 - 

Cubic 232 9.17 1 207 7.20 - 104 14.42 4 
 

Table 3.3 Count of genes that responded in a significant, dose-dependent way to fat intake (model 

selection based on AIC). We identified the significant responses in three sections of small intestine (limma 

library, adjusted p-value < 0.1). Differential gene expression was modelled as either a linear or nonlinear 

(i.e., logarithmic, exponential, quadratic or cubic) function of dietary fat intake. For each section, we reported 

the percentage of genes per response type (%) and the number of significant GO terms (Biological Processes 

- GOBP; hypergeometric test, adjusted p-value < 0. 1). Only GOBP terms with, at least, six differentially 

expressed genes (in the whole small intestine) have been taken into account. Outcomes obtained by using 

AIC for model selection were coherent with the model selection based on the lowest p-value (see Table 3.2). 

In particular, with AIC we found: (I) the prevalence of linear-responding genes in all intestine sections; (II) 

the decreasing relative importance of the logarithmic response when moving from the proximal to the distal 

section (while the opposite pattern holds for the exponential response); (III) the marginal relevance of other 

response types (i.e., quadratic and cubic functions). 
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transcriptomic response, depending on intestinal section. Due to the progressive absorption 

that occurs in the small intestine the amount of fat decreases from the proximal to the distal 

section. This pattern correlates well with the decrease of the relative importance of 

overload/logarithmic response, and with the increase in relative importance of exponential 

response. The broadest objective of our study was to characterize the biological processes 

that are associated with: (I) genes that maintain linear response types (gene-specific 

processes), and (II) genes that change their transcriptomic response as a function of fat 

availability (section-specific processes). To this aim we applied hypergeometric test to 

investigate the presence of GOBP terms that are significantly enriched with fat-responsive 

genes. We analyzed lists of genes associated with different response patterns to fat intake 

(i.e., linear, logarithmic or exponential). First, we considered full lists of genes, including 

both up- and down-regulated ones. Second, we performed gene set enrichment analysis by 

taking into account the direction of change (i.e., using either up- or down-regulated genes 

only). We found terms that are over-represented in more sections and, in some cases, they 

are characterized by changes in the response type along the longitudinal axis of small 

intestine (section-specific processes). This served to understand whether GOBP terms in 

different sections preserve their response type (e.g., APR, acute-phase response exhibited a 

linear response type in all three sections, including both up- and down-regulated genes, and 

can be classified as a gene-specific process: thus, fat intake triggered the same response 

pattern, independently of intestinal sections; Tables 3.4 – 3.6) or showed some changes 

(e.g., cholesterol homeostasis was characterized by linear response in the proximal section 

and changed to logarithmic in the middle; mostly up-regulated genes, Tables 3.4 – 3.6). 

The complete list of genes associated with specific processes (i.e., we do not include 

details on three generic GOBP terms: metabolic process - GO:0008152; oxidation-

reduction process - GO:0055114; transport - GO:0006810) that displayed unique patterns 

along different sections of the small intestine is summarized in Table 3.6 (details on up- 



   
 Results 

 

65 
 

and down-regulated genes are available). The Tables 3.7 – 3.10 list GOBP terms and genes 

with characteristic response types along the small intestine; they refer to strictly up- and 

down-regulated processes, respectively. We identified distinctive patterns for 

inflammation-related pathways (i.e., acute-phase response and negative regulation of 

caspase activity) and cholesterol-related processes (i.e., cholesterol transport, cholesterol 

homeostasis and cholesterol efflux).  

(I) Acute-phase response (GO:0006953): genes belonging to this GOBP term showed a 

constantly linear response in all three sections of small intestine, with mixed direction of 

regulation (i.e., both up- and down-regulated genes; see Table 3.6). The only gene 

differentially expressed in all three sections was Serpina1b (up-regulated). 

(II) Negative regulation of caspase activity (GO:0043154): caspase activity plays an 

essential role in apoptosis and inflammation. This is a section-specific process: from 

middle to distal section we observed a change from linear to exponential expression (Table 

3.4). The genes Birc5 (up-regulated) and Igbp1 (down-regulated) were significantly 

responsive in the middle and the distal sections. Prdx3 and Gpx1 were differentially 

expressed and up-regulated in the middle section only. 

 (III) Cholesterol transport (GO:0030301): the response of differentially expressed 

genes related to this GOBP term changed from linear to exponential when passing from the 

proximal to the middle section (Table 3.4). The gene Abca1 was down-regulated in both 

proximal and middle small intestine. Cd36 showed up-regulation proximally, while all 

differentially expressed genes that showed an exponential response in the middle section 

were down-regulated (e.g., Abcg1 and Scarb1). 

(IV) Cholesterol homeostasis (GO:0042632): up-regulated genes involved in this process 

exhibited overload in the middle section only (i.e., they were linearly significant 

proximally and in the distal section, but displayed logarithmic response in the middle; 

Tables 3.7 – 3.8). Most of the genes involved in cholesterol homeostasis were up-regulated 
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(Tables 3.6 – 3.8). For example, the gene Pla2g10 was up-regulated in both proximal and 

middle section, and the same positive regulation was displayed by Apoa4 when moving 

from the middle to the distal part of small intestine (Table 3.8). These findings may 

illustrate how excessive fat intake can have detrimental consequences (i.e., logarithmic 

response with an upper limit to gene expression) in processes involved in the maintenance 

of the cholesterol steady state in cells, especially in the middle section. 

(V) Cholesterol efflux (GO:0033344): this GOBP term shares many genes with 

cholesterol transport and homeostasis, but exhibits a less sharply defined behavior. Up-

regulated genes showed logarithmic and linear response in the middle and distal sections, 

respectively (e.g., Apoa4). Down-regulated genes displayed linear and exponential 

response in proximal and middle parts, respectively (e.g., Abca1). The overload of the 

process that regulates steady state of cholesterol within cells (i.e., cholesterol homeostasis) 

represents a bottleneck, and the negative, exponential response found for cholesterol 

transport should be considered in relation to it (with the sharp down-regulation that is 

triggered by the highest level of fat intake only; i.e., 45E%). It seems that the directed 

movement of cholesterol into or between cells is impaired when cholesterol level reaches 

its carrying capacity. 

In summary, by completing the analysis of transcriptomic response patterns (i.e., linear and 

nonlinear response types) with functional annotation we highlighted three main 

mechanisms of action in the small intestine: (I) acute-phase response (an inflammatory-

related process) is not section-specific and exhibits a linear regulation along the whole 

small intestine; (II) lipid absorption and transportation are particularly active in the middle 

section, but the coupling with other overloaded functions can limit the processing capacity 

(see the logarithmic, up-regulation of cholesterol homeostasis and associated exponential, 

down-regulation of cholesterol transport); (III) in the distal section, an exponential 
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response characterizes the interplay between up- and down-regulated genes involved in the 

negative regulation of caspase activity, likely having a role in apoptosis and inflammation. 

Section 
and 

Responses 
GO ID GOBP 

Proximal Middle Distal 

Set 
Size 

Hi
ts 

Adjusted 
p-value 

Set 
Size 

Hi
ts 

Adjusted 
p-value 

Set 
Size 

Hi
ts 

Adjusted 
p-value 

Prox – Mid 
– Dist 

(all linear) 

GO:00
06953 acute-phase response 22 5 0.09 22 6 0.08 21 3 0.03 

Prox – Mid 
(lm - lm) 

GO:00
06629 

lipid metabolic 
process 184 33 <0.01 183 46 <0.01    

GO:00
06631 

fatty acid metabolic 
process 68 19 <0.01 67 28 <0.01    

GO:00
06635 

fatty acid beta-
oxidation 21 9 <0.01 21 11 <0.01    

GO:00
06637 

acyl-CoA metabolic 
process 19 7 <0.01 19 6 0.04    

GO:00
07040 lysosome organization 18 5 0.03 18 6 0.04    

GO:00
15031 protein transport 386 45 0.01 387 60 <0.01    

GO:00
22900 

electron transport 
chain 69 14 <0.01 69 18 <0.01    

GO:00
55085 

transmembrane 
transport 390 42 0.07 391 57 0.02    

Prox – Mid 
(lm - log) 

GO:00
42632 

cholesterol 
homeostasis 33 11 <0.01 33 4 0.10    

Prox – Mid 
(lm - exp) 

GO:00
30301 cholesterol transport 15 7 <0.01 15 4 0.03    

Mid – Dist 
(lm - lm) 

GO:00
06520 

cellular amino acid 
metabolic process    16 5 0.07 16 2 0.05 

GO:00
16042 lipid catabolic process    69 14 0.05 69 5 0.03 

GO:00
51262 protein tetramerization    17 5 0.09 17 2 0.05 

Mid – Dist 
(lm - exp) 

GO:00
43154 

negative regulation of 
caspase activity    36 10 0.02 36 2 0.06 

Mid – Dist 
(log - lm) 

GO:00
06644 

phospholipid 
metabolic process    17 4 0.01 17 2 0.05 

GO:00
06749 

glutathione metabolic 
process    24 4 0.04 24 2 0.08 

GO:00
45859 

regulation of protein 
kinase activity    16 4 0.01 16 2 0.05 

 

Table 3.4: Over-represented Gene Ontology Biological Process (GOBP) terms that can be found in 

various intestinal sections. We summarize total number of genes corresponding to a given GO term in the 
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microarray gene expression (gene set size, labelled as Set Size), count of genes extracted with our analysis 

(observed hits, labelled as Hits) and adjusted p-values (values have been rounded-up to two decimal points; 

adjusted p-value < 0.1). Intestine sections: Prox = proximal; Mid = middle; Dist = distal. Response types: lm 

= linear; log = logarithm; exp = exponential. GOBP terms showing quadratic and cubic response types have 

been excluded as they can be found in the middle section only (i.e., there are no spatial trends along the small 

intestine axis; see Table 3.2). 

 
Section and 
responses Gene set name Gene set term Set 

size 
Observed 

hits 
Adjusted 
p-value 

Proximal 
(Linear) 

GO:0006631 fatty acid metabolic process 68 19 <0.01 

GO:0006629 lipid metabolic process 184 33 <0.01 

GO:0006635 fatty acid beta-oxidation 21 9 <0.01 

GO:0042632 cholesterol homeostasis 33 11 <0.01 

GO:0030301 cholesterol transport 15 7 <0.01 

GO:0033344 cholesterol efflux 17 7 <0.01 

GO:0006695 cholesterol biosynthetic process 18 7 <0.01 

GO:0006637 acyl-CoA metabolic process 19 7 <0.01 

GO:0006694 steroid biosynthetic process 42 11 <0.01 

GO:0016126 sterol biosynthetic process 16 6 <0.01 

GO:0022900 electron transport chain 69 14 <0.01 

GO:0016192 vesicle-mediated transport 134 21 0.01 

GO:0010718 positive regulation of epithelial to mesenchymal transition 15 5 0.01 

GO:0015031 protein transport 386 45 0.01 

GO:0042157 lipoprotein metabolic process 15 5 0.01 

GO:0008203 cholesterol metabolic process 50 10 0.02 

GO:0034968 histone lysine methylation 22 6 0.02 

GO:0071300 cellular response to retinoic acid 17 5 0.02 

GO:0007040 lysosome organization 18 5 0.03 

GO:0055085 transmembrane transport 390 42 0.07 

GO:0006665 sphingolipid metabolic process 15 4 0.08 

GO:0006953 acute-phase response 22 5 0.09 
Proximal 

(Logarithm) GO:0006917 induction of apoptosis 131 16 0.06 

Middle 
(Linear) 

GO:0006631 fatty acid metabolic process 67 28 <0.01 

GO:0006629 lipid metabolic process 183 46 <0.01 

GO:0006635 fatty acid beta-oxidation 21 11 <0.01 

GO:0005975 carbohydrate metabolic process 141 32 <0.01 

GO:0022900 electron transport chain 69 18 <0.01 

GO:0015031 protein transport 387 60 <0.01 

GO:0042542 response to hydrogen peroxide 18 7 0.01 

GO:0009058 biosynthetic process 39 11 0.01 

GO:0043154 negative regulation of caspase activity 36 10 0.02 

GO:0055085 transmembrane transport 391 57 0.02 
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GO:0050796 regulation of insulin secretion 21 7 0.02 

GO:0006006 glucose metabolic process 38 10 0.03 

GO:0007040 lysosome organization 18 6 0.04 

GO:0045471 response to ethanol 29 8 0.04 

GO:0006637 acyl-CoA metabolic process 19 6 0.04 

GO:0045444 fat cell differentiation 24 7 0.04 

GO:0016042 lipid catabolic process 69 14 0.05 

GO:0032091 negative regulation of protein binding 15 5 0.05 

GO:0043161 proteasomal ubiquitin-dependent protein catabolic process 32 8 0.07 

GO:0006520 cellular amino acid metabolic process 16 5 0.07 

GO:0034612 response to tumor necrosis factor 16 5 0.07 

GO:0001890 placenta development 22 6 0.08 

GO:0006953 acute-phase response 22 6 0.08 

GO:0051262 protein tetramerization 17 5 0.09 

Middle 
(Logarithm) 

GO:0071230 cellular response to amino acid stimulus 22 7 <0.01 

GO:0007160 cell-matrix adhesion 40 8 <0.01 

GO:0051259 protein oligomerization 22 6 <0.01 

GO:0007155 cell adhesion 341 25 <0.01 

GO:0006644 phospholipid metabolic process 17 4 0.01 

GO:0018149 peptide cross-linking 17 4 0.01 

GO:0045859 regulation of protein kinase activity 16 4 0.01 

GO:0034446 substrate adhesion-dependent cell spreading 18 4 0.01 

GO:0043065 positive regulation of apoptosis 165 14 0.01 

GO:0007229 integrin-mediated signaling pathway 55 7 0.02 

GO:0006749 glutathione metabolic process 24 4 0.04 

GO:0001937 negative regulation of endothelial cell proliferation 16 3 0.06 

GO:0030574 collagen catabolic process 16 3 0.06 

GO:0009411 response to UV 29 4 0.07 

GO:0043627 response to estrogen stimulus 29 4 0.07 

GO:0045766 positive regulation of angiogenesis 57 6 0.07 

GO:0030334 regulation of cell migration 30 4 0.08 

GO:0030168 platelet activation 19 3 0.09 

GO:0007179 transforming growth factor beta receptor signaling pathway 47 5 0.10 

GO:0042632 cholesterol homeostasis 33 4 0.10 

GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 47 5 0.10 

GO:0051897 positive regulation of protein kinase B signaling cascade 33 4 0.10 

Middle 
(Exponential) 

GO:0007243 intracellular protein kinase cascade 56 8 0.03 

GO:0030301 cholesterol transport 15 4 0.03 

GO:0006468 protein phosphorylation 426 27 0.08 

GO:0007049 cell cycle 411 26 0.08 

GO:0009615 response to virus 59 7 0.08 

GO:0031532 actin cytoskeleton reorganization 22 4 0.08 

GO:0006919 activation of caspase activity 50 6 0.09 

GO:0007067 mitosis 166 13 0.09 

GO:0008630 DNA damage response. signal transduction resulting in 
induction of apoptosis 15 3 0.09 
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Distal 
(Linear) 

GO:0051260 protein homooligomerization 70 7 <0.01 

GO:0006953 acute-phase response 21 3 0.03 

GO:0016042 lipid catabolic process 69 5 0.03 

GO:0043085 positive regulation of catalytic activity 25 3 0.03 

GO:0006099 tricarboxylic acid cycle 16 2 0.05 

GO:0006520 cellular amino acid metabolic process 16 2 0.05 

GO:0006644 phospholipid metabolic process 17 2 0.05 

GO:0007200 
activation of phospholipase C activity by G-protein coupled 
receptor protein signaling pathway coupled to IP3 second 
messenger 

17 2 0.05 

GO:0008654 phospholipid biosynthetic process 37 3 0.05 

GO:0033344 cholesterol efflux 17 2 0.05 

GO:0042157 lipoprotein metabolic process 16 2 0.05 

GO:0045859 regulation of protein kinase activity 16 2 0.05 

GO:0051262 protein tetramerization 17 2 0.05 

GO:0051402 neuron apoptosis 16 2 0.05 

GO:0060271 cilium morphogenesis 16 2 0.05 

GO:0006869 lipid transport 43 3 0.06 

GO:0006958 complement activation. classical pathway 20 2 0.06 

GO:0008202 steroid metabolic process 41 3 0.06 

GO:0030307 positive regulation of cell growth 44 3 0.06 

GO:0006888 ER to Golgi vesicle-mediated transport 22 2 0.06 

GO:0009725 response to hormone stimulus 22 2 0.06 

GO:0006749 glutathione metabolic process 24 2 0.08 

GO:0016049 cell growth 24 2 0.08 

GO:0007224 smoothened signaling pathway 25 2 0.08 

GO:0008203 cholesterol metabolic process 50 3 0.08 

GO:0045785 positive regulation of cell adhesion 25 2 0.08 

Distal 
(Exponential) 

GO:0000910 cytokinesis 31 4 <0.01 

GO:0001824 blastocyst development 16 2 0.01 

GO:0043967 histone H4 acetylation 15 2 0.01 

GO:0019882 antigen processing and presentation 18 2 0.02 

GO:0030218 erythrocyte differentiation 24 2 0.03 

GO:0032313 regulation of Rab GTPase activity 27 2 0.03 

GO:0032851 positive regulation of Rab GTPase activity 28 2 0.03 

GO:0043154 negative regulation of caspase activity 36 2 0.06 

 

Table 3.5: Over-represented Gene Ontology Biological Process (GOBP) terms associated to 

differentially expressed genes in the three intestinal sections. Genes are classified as linear, logarithmic or 

exponential, according to the best (i.e., with the smallest adjusted p-value) response type describing their 

expression pattern. For each significant GOBP term (described by Gene set name and Gene set term) we 

summarize number of genes corresponding to the process (Set size), number of genes found with our analysis 

(Observed hits) and adjusted p-value. Universe size: proximal = 14,952; middle = 14,933; distal = 14,925.  
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Sections and responses GOBP Proximal significant 
genes 

Middle significant 
genes Distal significant genes 

Prox – Mid – Dist (all 
linear) 

GO:0006953: acute-
phase response 

UP: Saa3, Serpina1b 
 
DOWN: Reg3b, Reg3g, 
Stat3 

UP: Serpina1b 
 
DOWN: Reg3b, Reg3g,  
Saa2, Stat3, Sigirr 

UP: Serpina1b 
 
DOWN: Saa1, Saa2 

Prox – Mid 
(all linear) 

GO:0006629: lipid 
metabolic process 

UP: Acadl, Acadvl, 
Acads, Apoc2, Cpt2, 
Crat, Ldlr, Acer1, 
Acot2, Acot4, Acaa1b, 
Slc27a2, Acot1, Plcxd1, 
Ech1, Acaa2, Gde1, 
Hacl1, Pnpla8, Abhd5, 
Adipor2, Arv1, Crot, 
Acsl3, Echs1, Hadha 
 
 
 
 
 
DOWN: Plcb3, Daglb, 
Scap, Npc1l1, Apob, 
Asah2, Serinc1 

UP: Tecr, Hdlbp, Acadl, 
Acadvl, Acox1, Cpt1a, 
Cpt2, Crat, Fdxr, Gpx1, 
Hsd17b4, Lipa, Acer1, 
Acot4, Mttp, Pck1, 
Soat2, Acaa1b, Slc27a2, 
Slc27a4, Acot1, 
Hsd17b6, Acsl5, Ech1, 
Echdc2, Acaa2, Gde1, 
Hacl1, Lpin2, Lpin3, 
Pnpla8, Adipor2, 
Acot12, Gpcpd1, Acsl3, 
Acox2, Echs1, Hadha 
 
DOWN: Pafah1b2, 
Ppard, Daglb, Gdpd5, 
Napepld, Asah2, Plb1, 
Plce1 

 

GO:0006631: fatty acid 
metabolic process 

UP: Acadl, Acadvl, 
Acads, Apoa2, Cd36, 
Cpt2, Crat, Prkar2b, 
Acaa1b, Slc27a2, Ech1, 
Acaa2, Pnpla8, Abhd5, 
Adipor2, Crot, Acsl3, 
Echs1, Hadha 
 

UP: Acadl, Acadvl, 
Acox1, Cd36, Cpt1a, 
Cpt2, Crat, Faah, 
Fabp2, Hsd17b4, Lipa, 
Acaa1b, Slc27a2, 
Slc27a4, Mecr, Acsl5, 
Ech1, Echdc2, Acaa2, 
Lpin2, Lpin3, Pnpla8, 
Adipor2, Acot12, Acsl3, 
Acox2, Echs1, Hadha 

 

GO:0006635: fatty acid 
beta-oxidation 

UP: Acadvl, Eci1, 
Slc25a17, Eci2, Acaa2, 
Decr1, Bdh2, Echs1, 
Hadha 
 

UP: Acadvl, Acox1, 
Hsd17b4, Pex5, 
Slc25a17, Eci2, Acaa2, 
Bdh2, Acox2, Echs1, 
Hadha 

 

GO:0006637: acyl-CoA 
metabolic process 

UP: Hmgcl, Acot8, 
Acot2, Acot4, Acot1, 
Oxsm 
 
DOWN: Ces1d 

UP: Hmgcl, Acot8, 
Acot4, Acot1, Oxsm, 
Acot12 
 
DOWN:  

 

GO:0007040: lysosome 
organization 

UP: Cln8 
 
DOWN: Abca1, Tpp1, 
Hexa, Cln6 

UP: Acp2, Fam160a2 
 
DOWN: Tpp1, Hexa, 
Hexb, Ppt1 

 

GO:0015031: protein 
transport 

UP: Kdelr3, Bet1, 
Nacad, Rab1, Rab6, 
Mcfd2, Sec22b, Sec23a, 
Timm17b, Vps45, 
Atg4d, Rabep1, Rab9, 
Vps29, Apba3, Cope, 
Xpo7, Sar1b, Gpr89, 
Yif1a, Golt1a, Snx4, 
Pex13, Senp2, Snx7 
 
 
 
 
 
 
 
DOWN: Sft2d2, Gdi1, 
Cog1, Myo1c, Rab12, 
Vps33b, Rab8b, 
Scamp2, Gga3, Agap1, 
Copg2, Nup210, 
Sec61a2, Rab37, Rab32, 
Kdelr1, Ap2b1, Gga2, 
Chmp4b, Rrbp1 

UP: Chmp7, Kdelr3, 
Sec13, Vps4a, Ap1m1, 
Arf4, Bet1, Pex5, 
Sec22b, Sec23a, Stam, 
Arcn1, Timm17a, 
Timm17b, Cox18, 
Bcap31, Eif5a, Serp1, 
Timm13, Ipo8, Uevld, 
Copg, Pex14, Copz1, 
Gosr2, Apba3, Rab2a, 
Cope, Tomm6, Sar1b, 
Kdelr2, Derl1, Yif1a, 
Golt1a, Sec62, Dopey2, 
Tmem48, Fam160a2, 
Senp2, Sil1 
 
DOWN: Arrb1, Ap3d1, 
Gdi1, Mtm1, Ppt1, 
Rab17, Rab19, Rab33b, 
Rab3ip, Rufy1, Vps33b, 
Rab8b, Sec61a2, Rab37, 
Tomm40l, Duoxa2, 
Rab32, Rab27b, Rrbp1, 
Cog8 

 

GO:0022900: electron 
transport chain 

UP: Ndufb11, Etfb, Etfa, 
Ndufa4, Ndufs8, Ndufs6, 
Cyb561d2, Ndufa7, 
Cyb5b, Uqcrfs1, Etfdh 

UP: Etfb, Etfa, Fdxr, 
Ndufs8, Ndufs2, Ndufb6, 
Ndufs6, Cyb561d2, 
Ndufs5, Ndufa9, Cyb5b, 
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DOWN: Cmah, Cyb561, 
Cyba 

Uqcrfs1, Etfdh, Ndufa5 
 
DOWN: Cyb561, Frrs1, 
Enox2, Cyb561d1 

GO:0055085: 
transmembrane 
transport 

UP: Slc30a9, Aqp7, 
Aqp8, Cacna1d, Slc6a3, 
Sfxn1, Slc22a1, 
Slc23a1, Slc25a17, 
Slc6a2, Mfsd6l, 
Timm17b, Slc6a20b, 
Slc4a11, Gpr172b, 
Xpo7, Slc16a13, Abcb6, 
Senp2, Mfsd2a 
 
 
 
 
 
 
DOWN: Abca1, Atp8a1, 
Slc7a1, Itpr3, Myo1c, 
Slc12a7, Slc19a1, 
Slc2a2, Mfsd4, Slc36a1, 
Slc7a9, Atp2a3, Slc4a4, 
Nup210, Abcb10, 
Sec61a2, Cacna1h, 
Slc30a7, Slc39a8, 
Slc29a3, Hvcn1, Rrbp1 

UP: Slc25a45, Slc30a9, 
Slc35b1, Sec13, Aqp3, 
Aqp7, Abcc2, Slc6a3, 
Slc26a3, Sfxn1, Slc1a3, 
Slc22a1, Slc23a1, 
Slc25a17, Slc7a7, 
Mfsd7c, Timm17a, 
Timm17b, Catsper1, 
Slc6a20b, Slc16a12, 
Mfsd7a, Eif5a, Serp1, 
Timm13, Gpr172b, 
Pex14, Slc47a1, Sec62, 
Slc16a13, Slc39a11, 
Slc39a5, Tmem48, 
Abcb6, Abcb8, Senp2, 
Sil1 
DOWN: Slc26a2, 
Kcnu1, Slc24a6, Slc1a1, 
Slc2a2, Slc5a1, Spns2, 
Trpm6, Slc5a9, Slc17a5, 
Slc7a9, Atp9b, Sec61a2, 
Tomm40l, Hiatl1, 
Mfsd1, Spns1, Hvcn1, 
Rrbp1, Slc4a10 

 

Prox – Mid  
(linear - logarithmic) 

GO:0042632: 
cholesterol homeostasis 

UP: Apoa2, Ldlr, 
Nr1h3, Pla2g10, Npc2 
 
DOWN: Abca1, Npc1, 
Npc1l1, Apob, Abcg5, 
Abcg8 

UP: Apoa4, Cav1, 
Pla2g10 
 
 
DOWN: Cyp7a1 

 

Prox – Mid 
(linear - exponential) 

GO:0030301: 
cholesterol transport 

UP: Apoa2, Cd36, Ldlr, 
Npc2 
 
DOWN: Abca1, Npc1l1, 
Apob 

UP:  
 
 
DOWN: Abca1, Abcg1, 
Scarb1, Stard3 

 

Mid – Dist  
(all linear) 

GO:0006520: cellular 
amino acid metabolic 
process 

 

UP: Cth, Acy1, Ddc, 
Got1 
 
DOWN: Ccbl2 

UP: Cth 
 
DOWN: Tat 

GO:0016042: lipid 
catabolic process  

UP: Lipa, Pla2g2c, 
Nceh1, Pnpla8, Ddhd2 
 
DOWN: Ddhd1, 
Pafah1b2, Pla2g2a, 
Pld2, Ppt1, Daglb, 
Plb1, Plbd1, Plce1 

UP: Apoc2 
 
 
DOWN: Pla2g2a, 
Daglb, Pla2g2f, Plce1 

GO:0051262: protein 
tetramerization  

UP: Me1, Pex5, Txnrd1 
 
DOWN: Igf1r, Sbf2 

UP: Me1 
 
DOWN: Sbf2 

Mid – Dist 
(linear - exponential) 

GO:0043154: negative 
regulation of caspase 
activity 

 

UP: Prdx3, Birc5, Gpx1, 
Igf1, Por 
 
DOWN: Arrb1, Bcl2l1, 
Naip1, Igbp1, Usp47 

UP: Birc5 
 
 
DOWN: Igbp1 

Mid – Dist 
(logarithmic - linear) 

GO:0006644: 
phospholipid metabolic 
process 

 UP: Pla2g2d, Pla2g10, 
Pla2g12a, Ppap2b 

DOWN: Pla2g2a, 
Pla2g2f 

GO:0006749: 
glutathione metabolic 
process 

 

UP: Gpx3, Gstm1, 
Gstm3, Gstk1 
 
DOWN:  

UP: Cth, Hagh 
 
 
DOWN:  

GO:0045859: regulation 
of protein kinase 
activity 

 
UP: Prkar2b, Mtor 
 
DOWN: Tsc1, Akap13 

UP: Ect2 
 
DOWN: Plce1 

 

Table 3.6: Over-represented Gene Ontology Biological Process (GOBP) terms that can be found in 

various intestinal sections. For each GOBP term we specify up- and down-regulated genes (adjusted p-

value < 0.1; most of the results of gene set enrichment analysis fall well below this threshold - see Table 3.5).
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Section and 
responses GO ID GOBP 

Proximal Middle Distal 

Set 
size 

Hi
ts 

Adjusted 
p-value 

Set 
size 

Hi
ts 

Adjusted 
p-value 

Set 
size 

Hi
ts 

Adjusted 
p-value 

Prox – Mid – 
Dist 

(all linear) 
 

GO:00
06749 

glutathione metabolic 
process 24 5 0.01 24 6 0.01 24 2 0.04 

GO:00
06888 

ER to Golgi vesicle-
mediated transport 22 4 0.05 22 5 0.02 22 2 0.03 

Prox – Mid – 
Dist 

(lm – log -
lm) 

 

GO:00
06749 

glutathione metabolic 
process 24 5 0.01 24 4 <0.01 24 2 0.04 

GO:00
42632 

cholesterol 
homeostasis 33 5 0.06 33 3 0.04 33 2 0.08 

Prox – Mid 
(lm - lm) 

 

GO:00
06629 lipid metabolic process 184 26 <0.01 183 38 <0.01 

 

GO:00
06631 

fatty acid metabolic 
process 68 19 <0.01 67 28 <0.01 

GO:00
06635 

fatty acid beta-
oxidation 21 9 <0.01 21 11 <0.01 

GO:00
06637 

acyl-CoA metabolic 
process 19 6 <0.01 19 6 <0.01 

GO:00
06695 

cholesterol 
biosynthetic process 18 5 <0.01 18 4 0.04 

GO:00
08610 

lipid biosynthetic 
process 81 10 0.01 81 11 0.02 

GO:00
16192 

vesicle-mediated 
transport 134 13 0.03 134 19 <0.01 

GO:00
22900 

electron transport 
chain 69 11 <0.01 69 14 <0.01 

GO:00
45454 cell redox homeostasis 47 6 0.07 47 9 <0.01 

GO:00
51289 

protein 
homotetramerization 38 7 <0.01 38 6 0.07 

Prox – Mid 
(lm - log) 

 

GO:00
22900 

electron transport 
chain 69 11 <0.01 69 5 0.03 

Prox – Mid 
(log - lm) 

 

GO:00
06631 

fatty acid metabolic 
process 68 6 0.07 67 28 <0.01 

Mid – Dist 
(log - lm) 

 

GO:00
33344 cholesterol efflux 

 

17 2 0.04 17 2 0.02 

GO:00
42325 

regulation of 
phosphorylation 34 3 0.04 34 2 0.08 

 

Table 3.7: Over-represented Gene Ontology Biological Process (GOBP) terms completely up-regulated 

and found in various intestinal sections. For each GOBP term we summarize: the total number of genes in 

the microarray (gene set size, labelled as Set size), the count of genes extracted with our analysis (observed 

hits, labelled as Hits), and the adjusted p-values. Intestine sections: Prox = proximal; Mid = middle; Dist = 

distal. Response types: lm = linear; log = logarithm; exp = exponential. 
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Section and responses GOBP Proximal significant 
genes 

Middle significant 
genes Distal significant genes 

Prox – Mid – Dist 
(all linear) 

GO:0006749: 
glutathione metabolic 
process 

Cth, Glo1, Hagh, Gstz1, 
Idh1 

Cth, G6pdx, Ggt1, 
Hagh, Gpx1, Gstz1 Cth, Hagh 

GO:0006888: ER to 
Golgi vesicle-mediated 
transport 

Bet1, Rab1, Sec22b, 
Sec23a 

Sec13, Bet1, Sec22b, 
Sec23a, Lmf1 Sec22b, Lman1 

Prox – Mid – Dist 
(linear – logarithmic - 

linear) 

GO:0006749: 
glutathione metabolic 
process 

Cth, Glo1, Hagh, Gstz1, 
Idh1 

Gpx3, Gstm1, Gstm3, 
Gstk1 Cth, Hagh 

GO:0042632: 
cholesterol homeostasis 

Apoa2, Ldlr, Nr1h3, 
Pla2g10, Npc2 Apoa4, Cav1, Pla2g10 Apoa4, Mttp 

Prox – Mid 
(all linear) 

GO:0006629: lipid 
metabolic process 

Acadl, Acadvl, Acads, 
Apoc2, Cpt2, Crat, Ldlr, 
Acer1, Acot2, Acot4, 
Acaa1b, Slc27a2, Acot1, 
Plcxd1, Ech1, Acaa2, 
Gde1, Hacl1, Pnpla8, 
Abhd5, Adipor2, Arv1, 
Crot, Acsl3, Echs1, 
Hadha 

Tecr, Hdlbp, Acadl, 
Acadvl, Acox1, Cpt1a, 
Cpt2, Crat, Fdxr, Gpx1, 
Hsd17b4, Lipa, Acer1, 
Acot4, Mttp, Pck1, 
Soat2, Acaa1b, Slc27a2, 
Slc27a4, Acot1, 
Hsd17b6, Acsl5, Ech1, 
Echdc2, Acaa2, Gde1, 
Hacl1, Lpin2, Lpin3, 
Pnpla8, Adipor2, 
Acot12, Gpcpd1, Acsl3, 
Acox2, Echs1, Hadha 

 

GO:0006631: fatty acid 
metabolic process 

Acadl, Acadvl, Acads, 
Apoa2, Cd36, Cpt2, 
Crat, Prkar2b, Acaa1b, 
Slc27a2, Ech1, Acaa2, 
Pnpla8, Abhd5, 
Adipor2, Crot, Acsl3, 
Echs1, Hadha 

Acadl, Acadvl, Acox1, 
Cd36, Cpt1a, Cpt2, 
Crat, Faah, Fabp2, 
Hsd17b4, Lipa, Acaa1b, 
Slc27a2, Slc27a4, Mecr, 
Acsl5, Ech1, Echdc2, 
Acaa2, Lpin2, Lpin3, 
Pnpla8, Adipor2, 
Acot12, Acsl3, Acox2, 
Echs1, Hadha 

 

GO:0006635: fatty acid 
beta-oxidation 

Acadvl, Eci1, Slc25a17, 
Eci2, Acaa2, Decr1, 
Bdh2, Echs1, Hadha 

Acadvl, Acox1, 
Hsd17b4, Pex5, 
Slc25a17, Eci2, Acaa2, 
Bdh2, Acox2, Echs1, 
Hadha 

 

GO:0006637: acyl-CoA 
metabolic process 

Hmgcl, Acot8, Acot2, 
Acot4, Acot1, Oxsm 

Hmgcl, Acot8, Acot4, 
Acot1, Oxsm, Acot12  

GO:0006695: 
cholesterol biosynthetic 
process 

Ebp, Hmgcs2, Nsdhl, 
Pmvk, Tm7sf2 

Ebp, G6pdx, Hmgcs2, 
Tm7sf2  

GO:0008610: lipid 
biosynthetic process 

Hsd17b11, Ebp, H2-
Ke6, Hmgcs2, Hsd17b2, 
Nsdhl, Acss2, Pmvk, 
Oxsm, Tm7sf2 

Tecr, Hsd17b11, Ebp, 
Hmgcs2, Mecr, 
Hsd17b12, Acss2, 
Ptplad2, Oxsm, Tm7sf2, 
Lass2 

 

GO:0016192: vesicle-
mediated transport 

Kdelr3, Bet1, Rab1, 
Rab6, Mcfd2, Sec22b, 
Sec23a, Vps45, Cope, 
Sar1b, Ap4b1, Yif1a, 
Golt1a 

Kdelr3, Sec13, Vps4a, 
Ap1m1, Arf4, Bet1, 
Sec22b, Sec23a, Arcn1, 
Bcap31, Copg, Copz1, 
Gosr2, Rab2a, Cope, 
Sar1b, Kdelr2, Yif1a, 
Golt1a 

 

GO:0022900: electron 
transport chain 

Ndufb11, Etfb, Etfa, 
Ndufa4, Ndufs8, Ndufs6, 
Cyb561d2, Ndufa7, 
Cyb5b, Uqcrfs1, Etfdh 

Etfb, Etfa, Fdxr, Ndufs8, 
Ndufs2, Ndufb6, Ndufs6, 
Cyb561d2, Ndufs5, 
Ndufa9, Cyb5b, 
Uqcrfs1, Etfdh, Ndufa5 

 

GO:0045454: cell redox 
homeostasis 

1810046J19Rik, Ddit3, 
Txnrd2, 
2810407C02Rik, 
Txndc15, Glrx5 

1810046J19Rik, Gpx1, 
Txnrd1, 
2810407C02Rik, 
Txndc15, Pdia6, Pdia5, 
Glrx5, Erp44 

 

GO:0051289: protein 
homotetramerization 

Acacb, Cth, Acadl, 
Acads, Aldoc, Dhps, 
Decr1 

Cth, Acadl, Aldh1a1, 
Aldoc, Ide, Cda  

Prox – Mid 
(linear - logarithmic) 

GO:0022900: electron 
transport chain 

Ndufb11, Etfb, Etfa, 
Ndufa4, Ndufs8, Ndufs6, 
Cyb561d2, Ndufa7, 
Cyb5b, Uqcrfs1, Etfdh 

Txn2, Ndufb9, Ndufc1, 
Ndufa7, Steap2  
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Prox- Mid 
(logarithmic - linear) 

GO:0006631: fatty acid 
metabolic process 

Fabp2, Hsd17b4, 
Slc27a4, Acsl5, Acot12, 
Acox2 

Acadl, Acadvl, Acox1, 
Cd36, Cpt1a, Cpt2, 
Crat, Faah, Fabp2, 
Hsd17b4, Lipa, Acaa1b, 
Slc27a2, Slc27a4, Mecr, 
Acsl5, Ech1, Echdc2, 
Acaa2, Lpin2, Lpin3, 
Pnpla8, Adipor2, 
Acot12, Acsl3, Acox2, 
Echs1, Hadha 

 

Mid – Dist 
(logarithmic - linear) 

GO:0033344: 
cholesterol efflux  Apoa4, Cav1 Apoa4, Apoc2 

GO:0042325: regulation 
of phosphorylation  Pik3r3, Srpx2, Rptor Pik3r3, Rptor 

 

Table 3.8: Over-represented Gene Ontology Biological Process (GOBP) terms that include up-

regulated genes only. Such GOBP terms can be found in various intestinal sections; lists of (up-regulated) 

differentially expressed genes associated to each GOBP term are summarized (adjusted p-value < 0.1). 

 

Section and 
responses GO ID GOBP 

Proximal Middle Distal 
Set 
size 

Hi
ts 

Adjusted 
p-value 

Set 
size 

Hi
ts 

Adjusted 
p-value 

Set 
size 

Hi
ts 

Adjusted 
p-value 

Prox – Mid – 
Dist 

(all linear) 

GO:00
45785 

positive regulation of 
cell adhesion 26 4 0.05 26 5 0.08 25 2 0.03 

Prox – Mid – 
Dist 

(lm – exp - 
lm) 

GO:00
03333 

amino acid 
transmembrane 
transport 

39 5 0.05 39 3 0.09 39 2 0.07 

Prox – Mid 
(lm - lm) 

GO:00
07040 

lysosome 
organization 18 4 0.02 18 4 0.08 

 

GO:00
09615 response to virus 59 7 0.03 59 9 0.07 

GO:00
30335 

positive regulation of 
cell migration 83 10 0.01 83 10 0.08 

Prox – Mid 
(lm - exp) 

GO:00
07243 

intracellular protein 
kinase cascade 56 7 0.03 56 6 0.01 

GO:00
09615 response to virus 59 7 0.03 59 5 0.04 

GO:00
30301 cholesterol transport 15 3 0.05 15 4 <0.01 

GO:00
33344 cholesterol efflux 17 4 0.01 17 3 0.03 

GO:00
42632 

cholesterol 
homeostasis 33 6 0.01 33 3 0.07 

GO:00
46777 

protein 
autophosphorylation 91 9 0.04 90 5 0.09 

GO:00
71300 

cellular response to 
retinoic acid 17 5 <0.01 17 3 0.03 

Prox – Mid 
(log - lm) 

GO:00
09615 response to virus 59 6 0.04 59 9 0.07 

Prox – Mid 
(log - log) 

GO:00
43029 T cell homeostasis 15 3 0.03 15 2 0.08 

Prox – Mid 
(log - exp) 

GO:00
09615 response to virus 59 6 0.04 59 5 0.04 

GO:00
16358 dendrite development 18 4 0.01 20 2 0.09 

Mid - Dist 
(lm - lm) 

GO:00
06953 acute-phase response 

 
22 5 0.07 21 2 0.02 

GO:00
16042 

lipid catabolic 
process 69 9 0.08 69 4 0.02 

 

Table 3.9: Over-represented Gene Ontology Biological Process (GOBP) terms with down-regulated 

genes only. Data refer to GOBP terms that can be found in various intestinal sections. For each GOBP term 
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we indicate: total number of genes in the microarray (gene set size, labelled as Set size), count of genes 

extracted with our analysis (observed hits, labelled as Hits), and adjusted p-values. Intestine sections: Prox = 

proximal; Mid = middle; Dist = distal. Response types: lm = linear; log = logarithm; exp = exponential. 

 
Section and responses GOBP Proximal significant 

genes 
Middle significant 

genes Distal significant genes 

Prox – Mid – Dist 
(all linear) 

GO:0045785: positive 
regulation of cell 
adhesion 

Fgf1, Cx3cl1, Tgm2, 
Vegfa 

Fgf1, Itgav, Pld2, 
Cx3cl1, Tgm2 Saa1, Tgm2 

Prox – Mid – Dist 
(linear – exponential - 

linear) 

GO:0003333: amino 
acid transmembrane 
transport 

Slc7a1, Slc1a5, 
Slc36a1, Slc7a9, 
Serinc1 

Slco4a1, Slc3a2, 
Slc36a1 Slc1a1, Slc7a9 

Prox – Mid 
(all linear) 

GO:0007040: lysosome 
organization 

Abca1, Tpp1, Hexa, 
Cln6 Tpp1, Hexa, Hexb, Ppt1  

GO:0009615: response 
to virus 

Pml, Mst1r, Mavs, 
Ddx58, Oas1b, 
Unc93b1, Ifih1 

Bcl2l1, Ifit1, Ddx58, 
Rnasel, Trim56, Irf7, 
Zbp1, Ifih1, Zc3hav1 

 

GO:0030335: positive 
regulation of cell 
migration 

Acp5, Adam10, 
Adam17, Bmp2, Fgf1, 
Igf1r, Ptk2b, Cx3cl1, 
Vegfa, Zfp703 

Adam10, Bmp2, Fgf1, 
Igf1r, Itgav, Pik3r1, 
Pld2, Ptk2b, Cx3cl1, 
Zfp703 

 

Prox – Mid 
(linear - exponential) 

GO:0007243: 
intracellular protein 
kinase cascade 

Socs3, Fgf1, Smpd2, 
Wnk1, Rps6ka4, Tnik, 
Dapk1 

Socs3, Jak2, Mknk1, 
Slc9a1, Ick, Tnik  

GO:0009615: response 
to virus 

Pml, Mst1r, Mavs, 
Ddx58, Oas1b, 
Unc93b1, Ifih1 

Mx1, Mx2, Pml, Mst1r, 
Mavs  

GO:0030301: 
cholesterol transport Abca1, Npc1l1, Apob Abca1, Abcg1, Scarb1, 

Stard3  

GO:0033344: 
cholesterol efflux 

Abca1, Npc1, Abcg5, 
Abcg8 Abca1, Abcg1, Scarb1  

GO:0042632: 
cholesterol homeostasis 

Abca1, Npc1, Npc1l1, 
Apob, Abcg5, Abcg8 Abca1, Abcg1, Scarb1  

GO:0046777: protein 
autophosphorylation 

Clk2, Igf1r, Uhmk1, 
Lyn, Pak2, Wnk1, 
Map3k1, Taok3, Tnik 

Jak2, Lyn, Pak1, Pim3, 
Tnik  

GO:0071300: cellular 
response to retinoic acid 

Abca1, Lyn, Ptk2b, 
Ptk6, Mll5 Abca1, Lyn, Rxrb  

Prox –Mid 
(logarithmic - linear) 

GO:0009615: response 
to virus 

Ifit1, Rnasel, Trim56, 
Irf7, Zbp1, Polr3f 

Bcl2l1, Ifit1, Ddx58, 
Rnasel, Trim56, Irf7, 
Zbp1, Ifih1, Zc3hav1 

 

Prox – Mid 
(all logarithmic) 

GO:0043029: T cell 
homeostasis Bcl2l11, Fas, Stat5b Bcl2l11, Gimap5  

Prox – Mid 
(logarithmic - 
exponential) 

GO:0009615: response 
to virus 

Ifit1, Rnasel, Trim56, 
Irf7, Zbp1, Polr3f 

Mx1, Mx2, Pml, Mst1r, 
Mavs  

GO:0016358: dendrite 
development 

Mecp2, Pak1, Reln, 
Abi2 Pak1, Ss18l1  

Mid – Dist 
(all linear) 

 

GO:0006953: acute-
phase response 

 

Reg3b, Reg3g, Saa2, 
Stat3, Sigirr Saa1, Saa2 

GO:0016042: lipid 
catabolic process 

Ddhd1, Pafah1b2, 
Pla2g2a, Pld2, Ppt1, 
Daglb, Plb1, Plbd1, 
Plce1 

Pla2g2a, Daglb, 
Pla2g2f, Plce1 

 

Table 3.10: Over-represented down-regulated Gene Ontology Biological Process (GOBP) terms that 

can be found in various intestinal sections. For each term we specify the associated differentially expressed 

genes (adjusted p-value < 0.1). 
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3.4 Discussion 

Excessive saturated fat intake leads to metabolic disorders (Balwierz et al. 2009; Cheung & 

Mao 2012; Desmarchelier et al. 2012; Walley et al. 2006; Zhang et al. 2009). Especially in 

the small intestine, studies have shown connections to altered lipid metabolic functions or 

illustrated its role in the development of obesity and diabetes (Kondo et al. 2006; de Wit et 

al. 2008). However, it is quite rare to find analyses on intestinal section-specific response 

to dietary fat. Differences in the absorption capabilities of intestine sections are caused by 

changes in gene expression (Chen et al. 2001; Simon et al. 2011). de Wit and colleagues 

analyzed the transcriptomic variation between dietary groups (e.g., 20% vs. 10%, 45% vs. 

10% calories from fat), specific to three sections of small intestine of mice (de Wit et al. 

2011). In their experiment, mice were fed diets that differed in dietary fat and carbohydrate 

content; the respective diets contained 10%, 20%, 30% or 45% kcal fat, which was termed 

as fat intake (within the field of nutrition it is generally accepted to refer to macronutrient 

content of the diets as percentage of calories derived from fat). Our goal was to re-analyze 

their data to assess linear and nonlinear transcriptomic response to fat intake by modeling 

gene expression as a function of fat intake %. The percentage of calories derived from fat 

intake represented the independent variable, even though such percentage might have been 

different from the relative amount of calories from fat that was effectively sensed by 

enterocytes. Moreover, the absorption capacity of enterocytes could be modulated by 

dietary fat (but in our study the type of fat that varied was always palm oil; i.e., C16:0).  

3.4.1 Gene- and section-specific transcriptomic response to dietary fat intake 

We investigated whether the transcriptomic response type was related to specific intestine 

sections (thus being potentially triggered by fat availability along the longitudinal axis), or 

uniquely associated to specific genes and biological processes (and preserved in all 
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intestine sections, without any change along the longitudinal axis). Due to progressive 

absorption along the intestine, we expected higher amount of fat to be available in the 

proximal section and a progressive decrease towards the distal section. Furthermore, it can 

be the case that the quantity of dietary fat exceeds the absorption capacity of the proximal 

section, and thus “overflows” to the middle and distal sections. Moreover, the middle 

section has greater absorptive area than proximal and distal sections, and is known to be 

highly affected by the dietary fat (de Wit et al. 2008). Our results corroborate previous 

findings, confirming that the highest number of differentially expressed genes is in the 

middle section of small intestine (the proximal part has a relevant metabolic role, while the 

middle and distal sections are mainly dedicated to fat absorption and transportation 

processes). However, two new and clear patterns emerged from our analysis: (I) most of 

the genes characterized by a significant relationship between expression levels and dietary 

fat intake exhibited linear responses (i.e., their activity was not overloaded, even at high fat 

concentration), and the prevalence of linear relationships was persistent along the whole 

small intestine; (II) the relevance of nonlinear relationships linking fat intake to gene 

expression levels was section-specific and reflected the progressive reduction of fat 

availability (due to intestinal absorption) along the longitudinal axis of the small intestine 

(i.e., the relative importance of logarithmic responses, which can be associated with 

overload mechanisms, decreased from proximal to distal section, while the relative 

importance of exponential responses increased when moving towards the distal part). The 

relevance of quadratic and cubic response types was marginal both in absolute and relative 

terms, in all sections. Throughout the small-intestine, we observed biological processes 

that responded to fat intake in a single section, and other processes with either unaltered 

(e.g., acute-phase response is linear in all three sections; Table 3.4) or varying responses 

across the sections (e.g., cholesterol transport changes from linear response in the proximal 
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section, with both up- and down-regulated genes, to exponential response in the middle 

section, with down-regulated genes only; Table 3.6).  

(1) Gene-specific acute-phase response to fat. When analyzing differentially expressed 

genes, we observed that over-representation of APR was linked to fat intake through a 

linear relationship in all three intestinal sections (Table 3.4). Increasing dietary fat intake 

caused intestinal inflammatory transcriptomic response and led to linear increase in APR. 

This response does not show a univocal pattern and is associated to both up- and down-

regulated genes (e.g., Serpina1b is up-regulated; Reg3b and Reg3g are down-regulated). 

Serine protease inhibitor (Serpina1b) was found to be differentially expressed and up-

regulated in all three sections. Some studies have shown that the presence of 

lipopolysaccharide (LPS) in the small intestine stimulates pro-inflammatory mediators that 

are activators of insulin resistance (Cani et al. 2007; Ding et al. 2010) (Cani et al. 2007; 

Ding et al. 2010). The resultant inflammatory reaction causes APR and its prolonged 

activation is seen with increased plasma levels of small, low-density lipoproteins (LDLs; 

Khovidhunkit et al. 2000, 2003). Moreover, during inflammation plasma triglyceride and 

very low-density lipoprotein (VLDL) levels rise, while high-density lipoprotein (HDL) 

level declines (Khovidhunkit et al. 2000). In the present study, Reg3g and Reg3b are down-

regulated both in proximal and middle small intestine. The protein encoded by these genes 

(REG3G and REG3B) belong to the family of C-type lectins and are secreted by epithelial 

cells and Paneth cells. Their expression is reduced in the small intestine of mice fed 

alcohol compared with control mice, and the effect is more pronounced in the proximal 

part (Hartmann et al. 2013). REG3G and REG3B play a protective role against gram-

positive and gram-negative bacteria, respectively (Abreu 2010; van Ampting et al. 2012). 

REG3G is essential for maintaining a zone that physically separates the luminal bacteria 

from the small intestinal epithelial surface (Schnabl 2013). Dysregulation of a 

microorganism-induced program of epithelial cell homeostasis and repair can result in 
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chronic inflammatory responses, and is associated with the development of colon cancer 

(Abreu 2010; Khovidhunkit et al. 2000). Down-regulation of Reg3g and Reg3b is likely to 

result in increased bacterial colonization of the intestinal epithelial surface, with 

consequent induction of inflammation. The oncogenic transcription factor Stat3 is down-

regulated in both the proximal and the middle section, and the same pattern holds in middle 

and distal sections for Saa2, a member of the family of APR proteins that is usually up-

regulated during infection, tissue damage or inflammation disease (Ivanov et al. 2009).  

(2) Section-specific cholesterol processing through the intestinal length. A complex 

scenario characterizes cholesterol, with a prevalence of up- and down-regulation for what 

concerns cholesterol homeostasis and transport, respectively (Tables 3.5 – 3.10). In the 

middle section, cholesterol homeostasis was overloaded (i.e., logarithmic response), while 

cholesterol transport was particularly impaired in presence of highest levels of fat intake 

(i.e., exponential response). In the middle section, we observed the up-regulated, 

logarithmic response in the expression of cholesterol homeostasis genes (i.e., Apoa4, Cav1 

and Pla2g10), except for what concerns Cyp7a1 (down-regulated, logarithmic). In 

different parts of the small intestine, we found down-regulation of ABC transporters: 

Abca1 in proximal as well as in the middle section, Abcg1 in middle section, and Abcg5 

and Abcg8 in the proximal section (Table 3.6).These genes displayed fat-responsive 

expression pattern and are involved in cholesterol transport and cholesterol efflux. They 

are characterized by a change in the response pattern from proximal (linear response) to 

middle (exponential response) section. These data suggest that high fat concentrations 

available in the proximal small intestine down-regulate ABC transporters involved in 

cholesterol efflux (Abca1, Abcg5 and Abcg8; Tables 3.6, 3.8 and 3.10). The linear response 

of these down-regulated genes stands for relevant effects also in presence of low fat 

intakes. The negative exponential response observed in the middle section for Abca1 and 

Abcg1 illustrates how only the highest level of fat intake results in the sharp impairment of 
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cholesterol absorption. This is in line with the fact that the middle section is characterized 

by a higher uptake capacity than the proximal section. Sections that are downstream the 

proximal small intestine (which consists of the duodenum plus the proximal jejunum) are 

exposed to smaller amounts of fat and less pronounced effects (except for the case of 

highest fat content in the diet; i.e., 45 E%). The highest fat concentration is the only one 

that triggered a strong change, leading to the down-regulation of two ABC transporters in 

the middle section.  

(3) Section-specific negative regulation of caspase activity. The negative regulation of 

caspase activity shows a transition from linear response in the middle section to 

exponential response in the distal part. This process does not present a univocal response 

pattern and includes both up- and down-regulated genes. In the middle and distal sections, 

there was up-regulation of the gene Birc5 (baculoviral IAP repeat-containing 5, also 

known as survivin). Birc5 is bifunctional, plays a key role in inhibition of apoptosis and 

regulation of mitosis, and is essential for cell division (Blanc-Brude et al. 2007; Chiou et 

al. 2003; Fukuda & Pelus 2006). Birc5 is mostly linked with carcinogenesis; during early 

atherogenesis, it shows elevated expression in inflamed macrophage-rich areas (Blanc-

Brude et al. 2007). Linear and positive transcriptomic response of genes Prdx3 (that 

encodes the protein thioredoxin-dependent peroxide reductase, mitochondrial) and Gpx1 

(that encodes the enzyme glutathione peroxidase 1) was confined to the middle, small 

intestine. Bellafante et al. (2014) have shown that PGC-1E overexpression in enterocytes 

enhances antioxidant enzymes such as Sod2, Gpx4, Prdx3, Prdx5, Txn2 and Sirt3. Up-

regulation of these enzymes has an antiapoptotic role both in normal mucosa and 

protumorigenic conditions, and causes a greater increase in the length of the villi of the 

small intestine. Chu et al. (2004) have observed that the targeted disruption of Gpx1 and 

Gpx2 harms two glutathione peroxidase (GPX) isoenzymes. GPX isoenzymes reduce 

hydroperoxidases in intestinal epithelium and their impairment increases the sensitivity of 
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ileum and colon to bacteria-associated inflammation and cancer. Our results show linear, 

up-regulation of Prdx3 and Gpx1 in the middle section of small intestine; this can activate 

antioxidant processes that are relevant for bacteria-associated inflammation, cancer-

promoting conditions and tumor progression. Our result suggests that these biological 

processes are not overloaded in the middle and distal sections, possibly due to the 

absorption that contributes, in a progressive way, to reduce the amount of fat in the small 

intestine lumen. The linear, positive responses found in the middle part illustrate the 

relevance of antiapoptotic processes, even in presence of low fat intake. The exponential, 

positive response identified in the distal section (specific to Birc5) is descriptive of an 

outstanding activation, only for most extreme values of fat intake. 

(4) Transcriptomic response in small intestine: a comparative analysis with other 

metabolic organs. Our study aimed at identifying changes in differentially expressed 

genes in three small intestine sections as a response to dietary fat intake. Kondo et al. 

(2006) analyzed differential gene expression among multiple metabolic organs, including 

small intestine. They showed that some lipid metabolism-related genes (i.e., Mod1, 

Cyp4a10, Hmgcs2, Acot1, Acot2, Pdk4, Acaa1b, Cpt1, Fabp1, and Acadl) were 

significantly up-regulated in the intestine of both A/J (obesity-resistant) and C57BL/6J 

(obesity-prone) mice fed with high fat diet. They observed that in the liver of A/J mice, 

high fat feeding significantly decreased the expression of Mod1 and Cyp4a10. Also, the 

expression of Mod1, Hmgcs2, Acot2 and Pdk4 was not increased during high fat feeding in 

the muscle and white adipose tissue. We found that: (I) Fabp1 was up-regulated and 

linearly responsive in all the three sections of the small intestine; (II) Hmgcs2, Acot1, 

Acaa1b and Acadl were linearly responsive and up-regulated in the proximal and middle 

sections; (III) in the proximal and middle sections, the expression of Pdk4 was up-

regulated and displayed a logarithmic response; (IV) Acot2 was up-regulated and linearly 

responsive in the proximal section only. Al-Dwairi et al. (2014) reported that during diet-
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induced obesity, ME1 over-expression in small intestine promoted the expression of 

hepatic genes associated with lipogenesis, cholesterol synthesis and cholesterol uptake. 

This suggests gatekeeper functionality of the small intestine, with changes in the 

expression of ME1 that influence metabolic processes in the liver. In our study, the gene 

Me1 was up-regulated and logarithmically responsive in the proximal section, while the 

up-regulation was associated with linear response in the middle and distal sections. 

Moreover, we found that processes related to cholesterol homeostasis were particularly 

active in the middle small intestine and only highest fat intake impaired cholesterol 

transport and efflux (with a key role played by the down-regulation of ATP binding 

cassette transporters). In the small intestine, de Wit et al. reported that high fat modulates 

the expression of secreted proteins such as Il18, Fgf15, Mif, Igfbp3 and Angptl4 (de Wit et 

al. 2008). They suggested that these signaling molecules might have metabolic effects in 

liver, muscle and adipose tissue that underlie the development of the metabolic syndrome. 

In our study, the gene expression of Il18 was down-regulated (changing from logarithmic 

response in the proximal to linear response in the middle section), while Igfbp3 was 

linearly up-regulated in the middle section only.  

3.5 Conclusions 

Our approach to modelling nonlinear transcriptomic signatures in the small intestine 

revealed that - for a range of biological processes including cholesterol transport and 

homeostasis - there exists a 'tipping point' for fat intake, beyond which the relationship 

between fat intake and gene expression either weakens (logarithmic curves) or strengthens 

(exponential curves). For example, the shift from linear to exponential response observed 

for down-regulated ABC transporters (from the proximal to the middle section; see Table 

3.11) is representative of the intense absorption capability of the middle section (i.e., only 
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extreme levels of fat intake down-regulate ABC transporters, while no effect is detected for 

fat intake ≤ 30E%). 

 

Section Response Genes  GOBP 

Proximal Linear 
Cd36 Cholesterol transport 

Abcg5; Abcg8  Cholesterol efflux 
Cholesterol homeostasis 

Middle Exponential Abcg1 Cholesterol transport 
Proximal - Middle Linear - Logarithm Pla2g10 Cholesterol homeostasis 
Proximal - Middle Linear - Exponential Abca1 Cholesterol transport 

Middle - Distal Linear - Exponential Birc5 Negative regulation of caspase 
activity 

Proximal - Middle - Distal Linear - Linear - Linear Serpina1b Acute-phase response 
 

Table 3.11: Fat-responsive differentially expressed genes and the associated Gene Ontology Biological 

Process (GOBP) terms. Red colored genes: up-regulated; yellow colored genes: down-regulated. For each 

gene, site of expression (i.e., Section) and response type/trend (i.e., Response) are shown. These eight genes 

are the most representative for acute-phase response (and inflammatory processes, in all three intestine 

sections), cholesterol-related processes (i.e., cholesterol homeostasis, transport and efflux: in proximal and 

middle section) and negative regulation of caspase (in middle and distal section). 

 

Our results highlight the relevance of nonlinear analysis for modelling more precisely the 

effects of diet on molecular activity in the small intestine. The observation of increasing 

relative importance of exponential responses and decreasing relative importance of 

logarithmic responses from the proximal to distal section is in agreement with the 

hypothesis that when the absorptive capacity of the intestinal epithelia is overloaded, the 

remaining fat will overflow to more distal sections (i.e., section-specific behavior). 

Although most of the genes related to inflammatory processes preserved their linear 

expression pattern along the whole small intestine (i.e., gene-specific behavior; e.g., see 

Serpina1b and Cd36), fat intake regulated in a section-specific fashion the transcriptomic 

response of Birc5 (Table 3.11). The regionalized behavior of Birc5 suggests that 

antiapoptotic mechanisms are particularly relevant in the middle section of small intestine 

and can represent an adaptation to counteract the lipotoxic effect of high fat diets on 
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intestinal cells (Desmarchelier et al. 2012; Gniuli et al. 2008). Future studies should assess 

whether the nonlinear patterns observed here are influenced by other factors (e.g., 

microbiome composition), and study the relevance of nonlinear responses in other tissues 

and clinically relevant markers.  
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Chapter 4  
High fat perturbed pathways along 
the gut axis of C57BL/6J mice 

4.1 Introduction 

Dietary fat is an energy rich nutrient. Approximately 95% of dietary lipids in human diet 

are triacylglycerols that primarily contain long-chain fatty acids (with carbon number 16 or 

above), while the remaining are phospholipids (4.5%) and sterols (Niot et al. 2009). Fatty 

acids are essential components of the cell membrane, influence the transport activity across 

cell membranes (i.e., by influencing receptor and channel function), and modulate gene 

expression (Duplus et al. 2000). However, chronic fat overconsumption has been shown to 

increase the risk of a wide range of diseases including metabolic disorders. Even though 

the activity of the small intestine is crucial for fat absorption and digestion, its role is often 

underappreciated in the study of nutritional health and diseases (Niot et al. 2009). 

The small intestine is a continuously proliferating epithelium with complex geographic 

differences in gene expression (Figure 1.1a). This is due to the fact that the structure of the 

intestinal epithelium differs along the cephalocaudal (duodenum to ileum) and crypt 

(undifferentiated) to villus (differentiated) axes (Gordon 1989). Peculiar differences in 

gene expression characterize each of the three small intestine axes (Figure 1.1b). Thus, the 
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number of expressed genes (or level of expression) is affected both by the epithelial cell 

lineage and by the location with respect to the three axes (Dusing et al. 2000; Gordon 

1989). Murine small intestine shows adaptable cell proliferation and gene regulation in 

response to the dietary fat content (Niot et al. 2009). Such lipid-mediated intestinal 

adaptation is double edged with positive effects during food scarcity, whereas the risks and 

the progression of metabolic related diseases are maximized during food surplus (Figure 

1.1d).  

Considering the intricate architecture of the small intestine, we hypothesized three kinds of 

transcriptomic response to low- and high-fat diet intervention in mice. We characterized 

the differentially expressed genes intro linear and nonlinear (i.e., logarithmic and 

quadratic) response, as a function of the interaction between diet and 10 sections of the 

small intestine. Since dietary fat is both an important metabolic fuel and an integral part of 

the cell membrane, we examined diet-responsive metabolic and transport processes that 

were enriched from the proximal to the distal section of small intestine. After having 

identified the lists of significantly over-represented biological processes, we assessed the 

predominance of specific transcriptomic responses (i.e., either linear or nonlinear 

functions) with respect to either metabolic or transport processes. Since our main interest 

was related to the investigation of regional differences, we checked whether the 10 sections 

of small intestine were commonly affected by the fat content (i.e., showing gene-specific 

responses) or displayed peculiar transcriptomic patterns (i.e., section-specific responses). 

4.2 Materials and methods  

4.2.1 Microarray data 

We analyzed microarray transcriptomic data from the intestinal mucosa of C57BL/6J male 

mice in 10 sections. The mice were fed with three kinds of diet for two weeks: high fat 
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(HF), low fat (LF) and chow (see Table 2.2 for dietary composition). The data contained 

21,266 genes and 120 arrays (n = 4 per site, but 4 arrays were removed during the phases 

of data preprocessing and quality assessment, and therefore we analyzed 116 arrays). The 

Affymetrix mouse array used for this study is mogene11stmmentrezgprobe. 

4.2.2 Data pre-processing 

We used affyPLM (Bolstad 2004) library in R (Gentleman et al. 2004; R Core Team 2015) 

for data preprocessing and quality assessment. Background correction was performed 

using RMA (Robust Multichip Average; see Irizarry et al. 2003), whereas data 

normalization was achieved by using the quantile (Bolstad 2001) and UPC (Universal 

Probability of expression Codes) function of the SCAN.UPC library (Piccolo et al. 2013). 

Non-specific filtering of the genes whose intensity was above 0.50 (which corresponded to 

UPC output values ranging from 0 to 1) in at least four arrays were chosen for further 

analysis (i.e., differential gene expression analysis) with the genefilter library (Gentleman 

et al. 2012). 

4.2.3 Differential gene expression analysis 

To find differentially expressed genes (DEG) through the small intestine while using the 

resolution of 10 sections, we have modelled gene expression as a function of the 

interaction between diet and site (using the limma library; see Smyth 2005).The 

independent variable diet was considered as a categorical parameter (i.e., HF, LF, and 

Chow). For modelling the geographical location along the longitudinal axis of small 

intestine (from the proximal to the distal section) we assigned continuous numerical values 

from 1 to 10 to the independent variable called site. We fitted linear and nonlinear (i.e., 

logarithmic and quadratic) responses to model gene expression as a function of: (1) the 

level of fat intake; and (2) the small intestine section.  
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Figure 4.1 illustrates three theoretical examples (i.e., for the linear, logarithmic and 

quadratic response types) where the expression of an up-regulated gene is described either 

with linear or nonlinear response, as a function of the intestinal sections. We used 

Benjamini and Hochberg’s false discovery rate (1995) for multiple test correction and the 

significance threshold was 0.1(adjusted p-value = 0.1). After having found which genes 

responded in a significant way to linear and nonlinear response types (i.e., linear, 

logarithmic and quadratic), we obtained diet responsive DEG by applying contrast tests. 

Contrast tests have been carried out between: (1) HF vs. LF; (2) LF vs. Chow. When a 

significant DEG was associated with more than one response, we selected the response 

with the lowest adjusted p-value.  
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Figure 4.1: Theoretical response types. (a) The linear response portrays gradual increase in expression 

from the proximal to the distal section. (b) The logarithmic response represents a saturation behavior that is 

particularly pronounced along the most downstream sections. (c) The quadratic response describes major 

contribution of the proximal and distal sections in terms of gene expression. The response types are 

illustrated for three hypothetical, up-regulated genes. 

4.2.4 Weighted co-expression network analysis 

We performed hierarchical clustering by using the mean expression value of the 1,650 

DEG in the 30 samples (i.e., 10 samples per dietary interventions). This served to check 

associations (and similarities) in gene expression across samples collected from the ten 

intestinal sections. Using the WGCNA (Weighted correlation network analysis; see 

Langfelder & Horvath 2008) library we defined clusters (i.e., modules) of highly correlated 

DEG and investigated their relation with the 10 intestinal sections (i.e., to see whether 

these modules responded in a coherent way along the longitudinal axis of small intestine). 

Then, gene set enrichment test was carried out to detect over-represented Gene Ontology, 

Biological Processes in each module separately. 

4.2.5 Gene set enrichment test 

We performed Gene Ontology Biological Process (GOBP) enrichment test to functionally 

annotate each of the modules that were significantly correlated with the small intestine 

longitudinal axis (we selected the modules that displayed a correlation ≥ 0.85 with the 10 
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sections; p-value threshold = 0.1); gene set enrichment was tested using the gage library 

(Generally Applicable Gene-set Enrichment; see Luo et al. 2009). Three kinds of analysis 

were performed per module by: (1) ignoring the diet effect (abbreviated as ND that stands 

for non-diet); (2) focusing on HF responsive processes (HF vs. LF); (3) studying LF 

responsive processes (LF vs. Chow). For each analysis, three lists of over-represented 

GOBP terms were obtained, according to the direction of regulation of DEG: (1) processes 

composed of up-regulated genes only; (2) processes including down-regulated genes only; 

(3) processes that were enriched in genes regulated in both directions (i.e., both up- and 

down-regulation). Within each module, GOBP that displayed two regulatory directions 

were classified by giving preference to the lowest q-value. Then unique GOBP terms 

described by specific regulatory directions were obtained. To reduce the complexity, each 

GOBP output was clustered based on the pairwise GO-term similarity using the GOSim 

library (Fröhlich et al. 2007). Since we aimed at finding dietary-fat perturbed biological 

functions along the gut axis, we focused our subsequent analysis on clusters that were 

relevant to metabolism and transport processes only. 

4.2.6 KEGG disease pathway enrichment test 

Using gage library (Luo et al. 2009), KEGG (Kyoto Encyclopedia of Genes and Genomes) 

disease pathway enrichment tests were performed for the modules that presented 

significant correlation with the ten intestinal sections. Three kinds of analysis were 

performed: (1) ND; (2) HF vs. LF; and (3) LF vs. Chow. For each analysis, outputs were 

classified in three groups of KEGG disease pathways that differ in regulatory direction of 

the DEG: (1) pathways with up-regulated genes only; (2) pathways with down-regulated 

genes only; and, (3) pathways consisting of both up- and down-regulated genes.  
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4.2.7  Dominant response-type and intestinal section 

For the significant GOBP terms found in each cluster (i.e., each cluster was characterized 

separately for transport and metabolic processes), we considered the response with the 

highest value of gene count as the dominant. The section (i.e., within the first to the tenth 

section) that has the number of differentially expressed genes (i.e., associated to a specific 

GOBP term) either highest (termed as Max Site) or lowest (termed as Min Site) was 

considered as being actively or passively responsive to diet, respectively.  

4.3  Results  

4.3.1 Diet responsive DEG 

After data pre-processing and quality assessment we obtained a set of 9,432 

transcriptionally active genes. We found 1,650 diet responsive DEG. The final count of 

total DEG (as well as the count of DEG for each response type) in the HF vs. LF contrast 

was considerably higher than in the LF vs. Chow contrast. The majority of the HF 

responsive DEG belonged to the logarithmic response (Figure 4.2).  
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Figure 4.2: Up- and down-regulated DEG. We obtained diet responsive DEG and response types using the 

limma library (adjusted p-value = 0.1). Red and green bars represent up- and down-regulated counts of DEG, 

respectively. For each pair of bars, the x-axis label is written with the following format: experimental diet, 

control diet and response type. Diets: lf = LF; hf = HF; response types: lin = linear; log = logarithmic; quad = 

quadratic. 

4.3.2 Significant modules 

The hierarchical clustering of the 30 samples was defined by relying on the mean 

expression value of 1,650 DEG in 10 samples per dietary intervention. Such clustering 

suggested high similarities in the site 1 of the small intestine in case of Chow and LF diet 

while a different behavior was found in presence of HF diet. However, site 1 showed 

higher similarities among each of the three dietary interventions than what could be 

observed with the more downstream parts (Figure 4.3). Section 2 through 6 in HF was 

more similar to section 2 to 4 in LF and Chow. Section 7 through 9 in HF and LF differed 

slightly from Chow.  
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Figure 4.3: Hierarchical clustering of transcriptomic data of ten samples per dietary intervention. Ten 

samples are considered for each diet: high-fat – HFD; low-fat – LFD; and chow. Each sample is labelled as 

intestinal section number followed by diet type. For example, sample collected from first section of the 

intestine with the intervention of HFD was labelled as, “i1_hfd”. The relationships between diet and ten 

samples were further illustrated with heat maps (i.e., for ten sections – Ten_Sections; and for dietary 

interventions – Three_Diets) below the dendrogram.  

 

As implemented in the WGCNA library (Langfelder & Horvath 2008), the Pearson 

correlation between eigengene values of each module and the ten intestinal sections (i.e., 

continuous numerical value ranging from 1 through 10) was calculated, including the 

corresponding p-values. The threshold for correlation is > 0.7. Since the correlation values 

of modules blue, brown and green were larger than 0.8 (and associated p-values 

significant), they were considered as highly correlated (Figure 4.4). The three significant 

modules were: (1) blue, which was positively correlated (i.e., 0.89) with the longitudinal 

axis of small intestine; (2) brown, which was negatively correlated (i.e., -0.91) with the 10 
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intestinal sections; (3) green, which showed a negative correlation (i.e., -0.92) along the 

small intestine. The majority of the genes were HF-responsive and HF vs. LF contrast had 

the highest count of DEG in comparison with LF vs. Chow (Table 4.1). The highest 

number of DEG in both the blue and the green module showed logarithmic response as a 

function of the small intestine site whereas the brown module had the highest number of 

genes responding in a linear way (Figure 4.5). 

 

 

Figure 4.4: Associations between module eigengene and ten intestinal sections. The vertical axis 

represents eigengene profile of each module (i.e., ME for module eigengene followed by the color code of 

each module; e.g., MEblue – color cording is used to name the modules but has no biological meaning). The 

color in each cell corresponds to the correlation (i.e., between module eigengene and the ten intestinal 

sections); color legend is on the right side. The correlation (upper value) and p-value (bottom value within 

parenthesis) between module eigengene and the ten intestinal sections are displayed within each cell.  
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Figure 4.5 Genes that respond significantly to diet and ten intestinal sections. Using weighted co-

expression network analysis, three main modules were identified: (1) the green module contains genes 

involved in metabolic and transport processes that are modulated by HF, with a prevalence of logarithmic 

responses; (2) the brown module includes a predominant group of DEGs that respond in a linear way to HF; 

(3) logarithmic responsive DEGs not enriched with any biological process related to dietary fat are in the 

blue module. For this illustration, the network was constructed using the protein interactions from Biogrid 

(Stark et al. 2011). First, the giant component (i.e., the connected sub-network that includes the largest 

number of proteins) was extracted and used as a scaffold to show the genes identified with weighted co-

expression network analysis. Second, topological communities were found using the "spinglass.community" 

function from the R package igraph (Csardi & Nepusz 2006). Third, the topological community most 

significantly enriched with genes from the green, brown and blue modules (i.e., modules that were previously 

characterized with weighted co-expression network analysis) was visualized and nodes color coded according 

to the color of the module (i.e., blue, brown and green). 
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Contrasts Response Green Brown Blue 

HF vs. LF 

Linear 

Quadratic 

Logarithmic 

250 

29 

262 

85 

5 

66 

33 

0 

147 

LF vs. Chow 

Linear 

Quadratic 

Logarithmic 

31 

7 

0 

27 

1 

2 

3 

0 

1 

                     Total 579 186 184 

 

Table 4.1: DEG counts per module. We reported the counts of DEG concerning three modules (Green, 

Brown, and Blue); they refer to genes responsive to HF (HF vs. LF) and LF (LF vs. Chow) diets. Modules 

were extracted using the WGCNA library. Red colored numbers represent the highest counts in each column. 

4.3.3 Enriched GOBP 

The number of enriched GOBP terms differed considerably among the three modules 

(Table 4.2). The green module had the most diet-responsive GOBP terms and was 

followed by the brown, whereas the majority of GOBP terms in the blue module belonged 

to ND (i.e., non-diet) processes. 
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Analysis Regulation Green Brown Blue 

ND 

Up 

Down 

Both 

- 

142 

160 

- 

27 

28 

- 

11 

24 

HF vs. LF 

Up 

Down 

Both 

11 

187 

58 

5 

8 

11 

- 

- 

- 

LF vs. Chow 

Up 

Down 

Both 

120 

8 

35 

3 

- 

14 

- 

10 

- 

 

Table 4.2: Count of significant GOBP terms per module. The enrichment test was performed using the 

gage library and refers to three modules (Green, Brown, and Blue). Three analyses (ND - non-diet, HF 

responsive, and LF responsive) were conducted to find diet-responsive and diet-independent GOBP terms. 

Three outputs were obtained from each analysis: Up – up-regulated processes; Down – down-regulated 

processes; and Both – processes that show regulatory patterns involving both up- and down-regulated genes. 

 

We analyzed GOBP terms in clusters based on their pairwise GO-term similarity (i.e., the 

enriched GOBP terms were categorized into clusters). One of our goals was to find dietary-

fat perturbed biological processes along the gut axis. Therefore, we considered only GOBP 

clusters that consisted of metabolic and transport processes (separately for the green the 

brown modules; see Table 4.3). Our main focus was on the green module as it contained 

the highest number of diet-responsive GOBP terms and DEG (Table 4.3). Moreover, the 

green module was the one with the most significant and strongest correlation with the ten 

sections of the small intestine (Figure 4.4).  
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Modules Analysis Regulation 
Count 

Clusters Transport 
processes DEG Clusters Metabolic 

Processes DEG 

Green 

HF  
vs.  
LF 

Up 1 2 35 1 8 63 

Down 3 6 40 12 46 165 

Both 2 3 69 7 13 82 

LF  
vs.  

Chow 

Up 2 4 40 8 26 226 

Down 1 1 35 1 4 26 

Both 1 2 70 3 9 65 

Brown 

 
HF  
vs.  
LF 

Up - - - 3 5 45 

Down - - - 2 6 78 

Both 1 5 25 1 3 17 

LF  
vs.  

Chow 

Up 1 3 11 - - - 

Down - - - - - - 

Both 1 3 19 2 6 49 

 

Table 4.3 Count of significant GOBP terms and the corresponding DEG per module. Within each 

module (i.e., Green and Brown), per analysis group (for example, HF vs. LF), clusters of GOBP terms 

representing transport and metabolic processes were considered. The count of GOBP terms were reported 

separately for up- and down-regulated processes. 

 
In case of HF diet, the green module showed over-representation of processes related to 

lipid metabolism and transport (Table 4.4). Other processes that are not related to lipid 

metabolism were down-regulated (Table 4.4). The response of the green module to LF was 

the opposite if compared to the response in presence of HF diet: we observed up-regulation 

of various processes related to carbohydrate metabolism (Table 4.4) and under-

representation of lipid metabolism and transport processes (Table 4.4).   



Results 
 

100 
 

Diet 
Clus 

ID 
Type Regulation GOBP Qval ICval count Response:count 

HF 1 TP Up 

GO:0016192 vesicle-mediated 

transport 
<0.01 4.51 35 

Hf-lin:13; Hf-log:15; 

Lf-lin:6; Lf-quad:1 

GO:0006897 endocytosis 0.06 5.38 14 
Hf-lin:7; Hf-log:6; 

Lf-quad:1 

HF 2 MP Up 

GO:0044242 cellular lipid catabolic 

process 
0.01 6.62 12 

Hf-lin:6; Hf-log:5; 

Hf-quad:1 

GO:0006631 fatty acid metabolic 

process 
0.01 5.41 27 

Hf-lin:11; Hf-log:12; 

Hf-quad:2; Lf-lin:2 

GO:0006644 phospholipid 

metabolic process 
0.01 5.86 14 Hf-lin:5; Hf-log:9 

GO:0016042 lipid catabolic process 0.01 5.97 14 
Hf-lin:6; Hf-log:7; 

Hf-quad:1 

GO:0045834 positive regulation of 

lipid metabolic process 
0.03 6.91 10 

Hf-lin:7; Hf-log:1; 

Hf-quad:1; Lf-lin:1 

GO:0046486 glycerolipid metabolic 

process 
0.03 5.89 15 Hf-lin:8; Hf-log:7 

GO:0032787 monocarboxylic acid 

metabolic process 
0.06 5.17 32 

Hf-lin:12; Hf-log:15; 

Hf-quad:2; Lf-lin:3 

GO:0046434 organophosphate 

catabolic process 
0.07 8.99 24 

Hf-lin:10; Hf-log:11; 

Hf-quad:2; Lf-lin:1 

HF 

48 

TP Down 

GO:0055085 transmembrane 

transport 
0.02 3.98 31 

Hf-lin:13; Hf-log:15; 

Hf-quad:3 

GO:0034220 ion transmembrane 

transport 
0.03 4.50 15 

Hf-lin:3, Hf-log:9; 

Hf-quad:3 

49 

GO:0006812 cation transport 0.03 4.24 17 
Hf-lin:3; Hf-log:10; 

Hf-quad:3; Lf-lin:1 

GO:0006811 ion transport 0.03 3.56 30 
Hf-lin9; Hf-log16; 

Hf-quad:4; Lf-lin:1 

GO:0030001 metal ion transport 0.03 4.46 11 
Hf-lin:3; Hf-log:5; 

Hf-quad:3 

61 
GO:0043269 regulation of ion 

transport 
0.03 5.41 10 

Hf-lin2; Hf-log:5; 

Hf-quad:2; Lf-lin:1 

HF 11 MP Down 

GO:0010557 positive regulation of 

macromolecule biosynthetic process 
<0.01 4.04 32 

Hf-lin20; Hf-log:8; 

Hf-quad:3; Lf-lin:1 

GO:0010628 positive regulation of 

gene expression 
0.01 4.11 27 

Hf-lin:15; Hf-log:8; 

Hf-quad:3; Lf-lin:1 
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GO:0010604 positive regulation of 

macromolecule metabolic process 
0.01 3.68 54 

Hf-lin:30; Hf-log:18; 

Hf-quad:3; Lf-lin:3 

GO:0045944 positive regulation of 

transcription from RNA polymerase 

II promoter 

0.01 4.71 22 
Hf-lin:12; Hf-log:6; 

Hf-quad:3; Lf-lin:1 

20 

GO:0045935 positive regulation of 

nucleobase-containing compound 

metabolic process 

<0.01 4.08 32 
Hf-lin:18; Hf-log:10; 

Hf-quad3; Lf-lin:1 

GO:0045893 positive regulation of 

transcription, DNA-dependent 
0.01 4.19 27 

Hf-lin:15; Hf-log:8; 

Hf-quad:3; Lf-lin:1 

GO:0051254 positive regulation of 

RNA metabolic process 
0.01 4.17 28 

Hf-lin16; Hf-log:8; 

Hf-quad:3; Lf-lin:1 

GO:0051173 positive regulation of 

nitrogen compound metabolic 

process 

0.01 4.06 34 
Hf-lin:18; Hf-log:11; 

Hf-quad:3; Lf-lin:2 

25 

GO:0005996 monosaccharide 

metabolic process 
<0.01 5.64 23 

Hf-lin:8; Hf-log:11; 

Hf-quad:2; Lf-lin:2 

GO:0019318 hexose metabolic 

process 
0.01 5.85 22 

Hf-lin8; Hf-log:11; 

Hf-quad:2; Lf-lin:1 

GO:0006006 glucose metabolic 

process 
0.01 6.08 18 

Hf-lin:6; Hf-log:10; 

Hf-quad:1; Lf-lin:1 

GO:0044262 cellular carbohydrate 

metabolic process 
0.07 5.05 16 

Hf-lin:7; Hf-log:6; 

Hf-quad:1; Lf-lin:2 

29 

GO:0010605 negative regulation of 

macromolecule metabolic process 
0.01 4.12 36 

Hf-lin:21; Hf-log:12; 

Hf-quad:2; Lf-lin:1 

GO:0031324 negative regulation of 

cellular metabolic process 
0.01 4.16 39 

Hf-lin:22; Hf-log:13; 

Hf-quad:3; Lf-lin:1 

GO:0010629 negative regulation of 

gene expression 
0.05 4.39 23 

Hf-lin:14; Hf-log:7; 

Hf-quad:2 

GO:2000113 negative regulation of 

cellular macromolecule biosynthetic 

process 

0.05 4.45 23 
Hf-lin:13; Hf-log:8; 

Hf-quad:2 

GO:0010558 negative regulation of 

macromolecule biosynthetic process 
0.06 4.41 26 

Hf-lin:15; Hf-log:9; 

Hf-quad:2 

GO:0031327 negative regulation of 

cellular biosynthetic process 
0.1 4.37 27 

Hf-lin15; Hf-log:9; 

Hf-quad:3 

30 
GO:0031399 regulation of protein 

modification process 
0.01 4.42 40 

Hf-lin:21; Hf-log:15; 

Hf-quad:1; Lf-lin:3 
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GO:0051246 regulation of protein 

metabolic process 
0.04 3.99 48 

Hf-lin:26; Hf-log:18; 

Hf-quad:1; Lf-lin:3 

GO:0051247 positive regulation of 

protein metabolic process 
0.05 5.02 30 

Hf-lin:17; Hf-log:10; 

lf_chow_lin3 

GO:0031401 positive regulation of 

protein modification process 
0.06 5.48 28 

Hf-lin:15; Hf-log:10; 

Lf-lin:3 

GO:0032268 regulation of cellular 

protein metabolic process 
0.06 4.17 46 

Hf-lin:25; Hf-log:17; 

Hf-quad:1; Lf-lin3 

GO:0032270 positive regulation of 

cellular protein metabolic process 
0.08 5.25 29 

Hf-lin:16; Hf-log:10; 

Lf-lin:3 

33 

GO:0005975 carbohydrate 

metabolic process 
0.01 4.69 39 

Hf-lin:12; Hf-log:22; 

Hf-quad:2; Lf-lin:3 

GO:0016051 carbohydrate 

biosynthetic process 
0.05 6.38 10 

Hf-lin:4; Hf-log:5; 

Lf-lin:1 

36 

GO:0060255 regulation of 

macromolecule metabolic process 
0.01 2.56 101 

Hf-lin:57; Hf-log:37; 

Hf-quad:3; Lf-lin:4 

GO:0006355 regulation of 

transcription. DNA-dependent 
0.02 3.04 61 

Hf-lin:36; Hf-log:21; 

Hf-quad:3; Lf-lin:1 

GO:0010556 regulation of 

macromolecule biosynthetic process 
0.03 2.93 73 

Hf-lin:43; Hf-log:26; 

Hf-quad:3; Lf-lin:1 

GO:2000112 regulation of cellular 

macromolecule biosynthetic process 
0.04 2.97 69 

Hf-lin:41; Hf-log:24; 

Hf-quad:3; Lf-lin:1 

GO:0010468 regulation of gene 

expression 
0.05 2.86 71 

Hf-lin:42; Hf-log:25; 

Hf-quad:3; Lf-lin:1 

45 

GO:0051252 regulation of RNA 

metabolic process 
0.02 3.01 61 

Hf-lin:36; Hf-log:21; 

Hf-quad:3; Lf-lin:1 

GO:0006351 transcription, DNA-

dependent 
0.02 2.72 62 

Hf-lin:37; Hf-log:21; 

Hf-quad:3; Lf-lin:1 

GO:0032774 RNA biosynthetic 

process 
0.02 2.72 62 

Hf-lin:37; Hf-log:21; 

Hf-quad:3; Lf-lin:1 

GO:0019219 regulation of 

nucleobase-containing compound 

metabolic process 

0.07 2.86 71 
Hf-lin:42; Hf-log:24; 

Hf-quad:3; Lf-lin:2 

70 

GO:0045934 negative regulation of 

nucleobase-containing compound 

metabolic process 

0.05 4.45 23 
Hf-lin:14; Hf-log:7; 

Hf-quad:2 

GO:0051172 negative regulation of 

nitrogen compound metabolic 
0.05 4.44 23 

Hf-lin:14; Hf-log:7; 

Hf-quad:2 
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process 

GO:0051253 negative regulation of 

RNA metabolic process 
0.07 4.51 22 

Hf-lin:13; Hf-log:7; 

Hf-quad:2 

GO:0045892 negative regulation of 

transcription, DNA-dependent 
0.07 4.56 21 

Hf-lin:12; Hf-log:7; 

Hf-quad:2 

GO:0000122 negative regulation of 

transcription from RNA polymerase 

II promoter 

0.09 5.17 12 
Hf-lin:6; Hf-log:4; 

Hf-quad:2 

71 

GO:0001933 negative regulation of 

protein phosphorylation 
0.05 7.24 10 

Hf-lin:5; Hf-log:4; 

Hf-quad:1 

GO:0010563 negative regulation of 

phosphorus metabolic process 
0.05 6.79 10 

Hf-lin:5; Hf-log:4; 

Hf-quad:1 

GO:0042326 negative regulation of 

phosphorylation 
0.05 6.83 10 

Hf-lin:5; Hf-log:4; 

Hf-quad:1 

GO:0045936 negative regulation of 

phosphate metabolic process 
0.05 6.79 10 

Hf-lin:5; Hf-log:4; 

Hf-quad:1 

38 
GO:0044723 single-organism 

carbohydrate metabolic process 
0.01 NA 30 

Hf-lin:10; Hf-log:16; 

Hf-quad:2; Lf-lin:2 

73 
GO:1901135 carbohydrate 

derivative metabolic process 
0.07 NA 45 

Hf-lin:15; Hf-log:24; 

Hf-quad:3; Lf-lin:2; 

Lf-quad:1 

HF 

10 

TP Both 

GO:0006869 lipid transport <0.01 5.87 10 
Hf-lin:7; Hf-log:2; 

Hf-quad:1 

GO:0010876 lipid localization 0.02 5.70 12 
Hf-lin:8; Hf-log:3; 

Hf-quad:1 

14 
GO:0071702 organic substance 

transport 
0.03 4.70 68 

Hf-lin:33; Hf-log:23; 

Hf-quad:3; Lf-lin:7; 

Lf-quad:2 

HF 

1 

MP Both 

GO:0008202 steroid metabolic 

process 
<0.01 5.46 10 

Hf-lin:4; Hf-log:4; 

Hf-quad:1; Lf-lin:1 

GO:0044255 cellular lipid 

metabolic process 
<0.01 4.50 45 

Hf-lin:17; Hf-log:22; 

Hf-quad:3; Lf-lin:3 

GO:0006629 lipid metabolic 

process 
<0.01 3.92 54 

Hf-lin:19; Hf-log:27; 

Hf-quad:4; Lf-lin:4 

GO:0008610 lipid biosynthetic 

process 
0.03 4.89 33 

Hf-lin:15; Hf-log:14; 

Hf-quad:2; Lf-lin:2 

4 
GO:0044283 small molecule 

biosynthetic process 
<0.01 4.65 30 

Hf-lin:13; Hf-log:12; 

Hf-quad:2; Lf-lin:3 
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GO:0006633 fatty acid biosynthetic 

process 
0.08 6.32 12 

Hf-lin:5; Hf-log:5; 

Hf-quad:1; lf-lin:1 

6 
GO:0006066 alcohol metabolic 

process 
<0.01 4.91 19 

Hf-lin:9; Hf-log:7; 

Hf-quad:1; lf-lin:2 

8 

GO:0010565 regulation of cellular 

ketone metabolic process 
<0.01 7.14 11 

Hf-lin:7; Hf-log:2; 

Hf-quad:1; lf-lin:1 

GO:0042180 cellular ketone 

metabolic process 
<0.01 4.39 11 

Hf-lin:7; Hf-log:2; 

Hf-quad:1; lf-lin:1 

9 

GO:0019216 regulation of lipid 

metabolic process 
<0.01 6.11 15 

Hf-lin:8; Hf-log:4; 

Hf-quad:2; lf-lin:1 

GO:0046890 regulation of lipid 

biosynthetic process 
<0.01 6.94 12 

Hf-lin:7; Hf-log:2; 

Hf-quad:2; lf-lin:1 

29 GO:0033993 response to lipid 0.1 8.22 18 
Hf-lin:11; Hf-log:5; 

Hf-quad:1; lf-quad:1 

2 
GO:1901615 organic hydroxy 

compound metabolic process 
<0.01 NA 23 

Hf-lin:11; Hf-log:7; 

Hf-quad:1; lf-lin:4 

LF 

29 

TP UP 

GO:0055085 transmembrane 

transport 
0.01 3.98 31 

Hf-lin:13; Hf-log:15; 

Hf-quad:3 

35 

GO:0006812 cation transport 0.04 4.24 17 
Hf-lin:3; Hf-log:10; 

Hf-quad:3; lf-lin:1 

GO:0006811 ion transport 0.06 3.56 30 
Hf-lin:9; Hf-log:16; 

Hf-quad:4; lf-lin:1 

GO:0043269 regulation of ion 

transport 
0.09 5.41 10 

Hf-lin:2; Hf-log:5; 

Hf-quad:2; lf-lin:1 

LF 

1 

MP UP 

GO:0005975 carbohydrate 

metabolic process 
<0.01 4.69 39 

Hf-lin:12; Hf-log:22; 

Hf-quad:2; lf-lin:3 

GO:0016051 carbohydrate 

biosynthetic process 
<0.01 6.38 10 

Hf-lin:4; Hf-log:5; 

lf-lin:1 

GO:0046390 ribose phosphate 

biosynthetic process 
0.07 9.95 12 

Hf-lin:2; Hf-log:9; 

Hf-quad:1 

2 

GO:0005996 monosaccharide 

metabolic process 
<0.01 5.65 23 

Hf-lin:8; Hf-log:11; 

Hf-quad:2; lf-lin:2 

GO:0019318 hexose metabolic 

process 
<0.01 5.85 22 

Hf-lin:8; Hf-log::11; 

Hf-quad:2; Lf-lin:1 

GO:0006006 glucose metabolic 

process 
<0.01 6.08 18 

Hf-lin:6; Hf-log:10; 

Hf-quad:1; Lf-lin:1 

GO:0044262 cellular carbohydrate 

metabolic process 
<0.01 5.05 16 

Hf-lin:7; Hf-log:6; 

Hf-quad:1; Lf-lin:2 
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GO:0016052 carbohydrate catabolic 

process 
0.01 6.59 12 

Hf-lin:3; Hf-log:7; 

Hf-quad:1; Lf-lin:1 

GO:0019320 hexose catabolic 

process 
0.01 7.10 12 

Hf-lin:3; Hf-log:7; 

Hf-quad:1; Lf-lin:1 

GO:0046365 monosaccharide 

catabolic process 
0.01 7.08 12 

Hf-lin:3; Hf-log:7; 

Hf-quad:1; Lf-lin:1 

21 

GO:0016311 dephosphorylation <0.01 5.31 20 

Hf-lin:9; Hf-log:8; 

Hf-quad:1; Lf-lin:1; 

Lf-quad:1 

GO:0006468 protein 

phosphorylation 
0.02 3.95 46 

Hf-lin:23; Hf-log:17; 

Hf-quad:2; Lf-lin:4 

GO:0016310 phosphorylation 0.02 3.56 70 
Hf-lin:31; Hf-log:31; 

Hf-quad:2; Lf-lin:6 

GO:0006793 phosphorus metabolic 

process 
0.09 3.40 125 

Hf-lin:51; Hf-log:59; 

Hf-quad:6; Lf-lin:8; 

Lf-quad:1 

32 

GO:0031324 negative regulation of 

cellular metabolic process 
0.03 4.16 39 

Hf-lin:22; Hf-log:13; 

Hf-quad:3; Lf-lin:1 

GO:0010605 negative regulation of 

macromolecule metabolic process 
0.04 4.11 36 

Hf-lin:21; Hf-log:12; 

Hf-quad:2; Lf-lin:1 

GO:0009892 negative regulation of 

metabolic process 
0.06 4.02 43 

Hf-lin:24; Hf-log:15; 

Hf-quad:3; Lf-lin:1 

34 

GO:0019222 regulation of 

metabolic process 
0.04 2.32 127 

Hf-lin:65; Hf-log:47; 

Hf-quad:6; Lf-lin:7; 

Lf-quad:2 

GO:0006357 regulation of 

transcription from RNA polymerase 

II promoter 

0.1 4.06 30 
Hf-lin:17; Hf-log:9; 

Hf-quad:3; Lf-lin:1 

40 

GO:0045944 positive regulation of 

transcription from RNA polymerase 

II promoter 

0.07 4.71 22 
Hf-lin:12; Hf-log:6; 

Hf-quad:3; Lf-lin:1 

GO:0051173 positive regulation of 

nitrogen compound metabolic 

process 

0.09 4.06 34 
Hf-lin:18; Hf-log:11; 

Hf-quad:3; Lf-lin:2 

GO:0051254 positive regulation of 

RNA metabolic process 
0.09 4.17 28 

Hf-lin:16; Hf-log:8; 

Hf-quad:3; Lf-lin:1 

GO:0010628 positive regulation of 

gene expression 
0.09 4.11 27 

Hf-lin:15; Hf-log:8; 

Hf-quad:3; Lf-lin:1 
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GO:0045893 positive regulation of 

transcription. DNA-dependent 
0.09 4.20 27 

Hf-lin:15; Hf-log:8; 

Hf-quad:3; Lf-lin:1 

43 
GO:0006520 cellular amino acid 

metabolic process 
0.09 5.21 20 

Hf-lin:10; Hf-log:6; 

Hf-quad:2; Lf-lin:2 

4 
GO:0044723 single-organism 

carbohydrate metabolic process 
<0.01 NA 30 

Hf-lin:10; Hf-log:16; 

Hf-quad:2; Lf-lin:2 

LF 3 TP Down 
GO:0016192 vesicle-mediated 

transport 
0.01 4.51 35 

Hf-lin:13; Hf-log:15; 

Lf-lin:6; Lf-quad:1 

LF 2 MP Down 

GO:0044242 cellular lipid catabolic 

process 
0.01 6.62 12 

Hf-lin:6; Hf-log:5; 

Hf-quad:1 

GO:0006644 phospholipid 

metabolic process 
0.01 5.86 14 Hf-lin:5; Hf-log:9 

GO:0016042 lipid catabolic process 0.01 5.97 14 
Hf-lin:6; Hf-log:7; 

Hf-quad:1 

GO:0030258 lipid modification 0.06 6.62 10 
Hf-lin:6; Hf-log:3; 

Hf-quad:1 

LF 6 TP Both 

GO:0071702 organic substance 

transport 
0.02 4.70 68 

Hf-lin:33; Hf-log:23; 

Hf-quad:3; Lf-lin:7; 

2Lf-quad: 

GO:0032940 secretion by cell 0.08 4.83 18 
Hf-lin:8; Hf-log:8; 

Lf-lin:2 

LF 

2 

MP Both 

GO:0008202 steroid metabolic 

process 
0.01 5.46 10 

Hf-lin:4; Hf-log:4; 

Hf-quad:1; Lf-lin:1 

GO:0044255 cellular lipid 

metabolic process 
0.09 4.50 45 

Hf-lin:17; Hf-log:22; 

Hf-quad:3; Lf-lin:3 

3 

GO:0010565 regulation of cellular 

ketone metabolic process 
0.01 7.14 11 

Hf-lin:7; Hf-log:2; 

Hf-quad:1; Lf-lin:1 

GO:0042180 cellular ketone 

metabolic process 
0.01 4.39 11 

Hf-lin:7; Hf-log:2; 

Hf-quad:1; Lf-lin:1 

GO:0006066 alcohol metabolic 

process 
0.03 4.91 19 

Hf-lin:9; Hf-log:7; 

Hf-quad:1; Lf-lin:2 

GO:0044283 small molecule 

biosynthetic process 
0.04 4.65 30 

Hf-lin:13; Hf-log:12; 

Hf-quad:2; Lf-lin:3 

1 

GO:1901615 organic hydroxy 

compound metabolic process 
<0.01 NA 23 

Hf-lin:11; Hf-log:7; 

Hf-quad:1; Lf-lin:4 

GO:1901617 organic hydroxy 

compound biosynthetic process 
<0.01 NA 11 

Hf-lin:5; Hf-log:3; 

Hf-quad:1; Lf-lin:2 

GO:0044711 single-organism 0,04 NA 30 Hf-lin:13; Hf-log:12; 
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biosynthetic process Hf-quad:2; Lf-lin:3 

 

Table 4.4: Diet responsive GOBP terms. Two types of diet are considered: HF and LF. GOBP terms can be 

either up- or down-regulated (Regulation), and be associated to linear, logarithmic or quadratic response 

types. GOBP terms refer to either metabolic (MP) or transport processes (TP). Results were obtained using 

the gage library. GOBP terms with the same cluster ID (ClusID) belong to the same cluster (this was based 

on GO term similarity, measured using the GOSim library). For each GOBP term, the results include: the 

multiple test correction computed using the Benjamini and Hochberg false discovery rate (Qval); the 

information content value (ICval) that was calculated for each GO term using GOSim; the number of DEGs 

(count); the response specific count of the DEGs and the corresponding response name for each count of 

responses (Response:count). For example (in the first row), GO:0016192 vesicle-mediated transport 

contained 35 DEG (count), out of which 13 (Response:count) were HF and linear responsive (Hf- lin); the 

dominant response (in red color) represents the response with the highest gene count; e.g., in the first column, 

15 (Response:count) out of 35 (count) genes were HF and logarithmic responsive (Hf-log). 

4.3.4 KEGG disease pathways 

Among the three modules, only one HF (i.e., HF vs. LF) responsive disease pathway was 

enriched. The over-represented term was pathways in cancer (mmu05200); it consists of 

genes that are both up- and down-regulated and was found in the green module (Table 4.5). 

Disease KEGG pathway p.geomean stat.mean p.val q.val set.size genes 

mmu05200: Pathways in 

cancer 
0.16 1.04 <0.01 <0.01 12 

Adcy6, Bcl2, 

Bcl2l1, Bmp2, 

Csf2ra, Fgf1, 

Fos, Lamb3, 

Slc2a1, Sufu, 

Map2k2, Mtor 

 

Table 4.5 HF responsive KEGG disease pathway in the green module. The statistical results include: 

geometric mean of the individual p-values (p.geomean); mean of gene-set directional changes (stat.mean); 

global p-value (p.val); multiple test correction using Benjamini and Hochberg false discovery rate (q.val); the 

number of DEG (set.size). More details on statistics used in the columns are available in Luo et al. (2009). 
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4.3.5 Dominant response types 

To associate either linear or nonlinear functions to all significantly over-represented 

biological processes, we considered as dominant the responses with the highest gene count 

per GOBP in each cluster (Table 4.4). Logarithmic and linear responses were the most 

dominant (Tables 4.4 and 4.6). Logarithmic response was characteristic of transport 

processes whereas linear response was mainly associated to metabolic processes. 

 

Modules Analysis Regulation 

Clusters 

Transport Processes Metabolic Processes 

Response 
Max 

Site 

Min 

Site 
Response 

Max 

Site 

Min 

Site 

Green 

HF Vs. LF 

Up 
Lin (1) 

Log (1) 

2 1 Lin (3) 

Log (5) 

10 1 

Down 
Log (6) 5 1 Lin (39) 

Log (7) 

1 1 

Both 
Lin (3) 5 1 Lin (11) 

Log (2) 

10 1 

LF Vs. Chow 

Up 
Log (4) 9 1 Lin (15) 

Log (11) 

9 1 

Down 
Log (1) 1, 9 2, 3, 

7 

Lin (2) 

Log (2) 

1 10, 9 

Both 
Lin (2) 9 3 Lin (8) 

Log (1) 

9 9 

 

Table 4.6 Dominant response types and intestinal sections. For each significant GOBP term, the response 

type with the highest gene count was defined as dominant. The Max site is the one where the highest number 

of differentially expressed genes associated to a specific GOBP term was found, while the Min site is the 

section where the lowest number of differentially expressed genes (for a given GOBP term) was observed. 

4.3.6 Dominant intestinal sections 

Within the first to the tenth section: site with the highest number of differentially expressed 

genes associated to a specific GOBP term was considered as actively responsive to diet, 
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which was called as Max site; and, the site with the lowest number of differentially 

expressed genes (for a given GOBP term) as being passively responsive to diet, which was 

termed as Min site (Table 4.6).With HF diet, sections 1-2, 5 and 10 were the most active. 

Sections 2 and 5 had the highest number of high expression values related to transport 

activities whereas sections 1 and 10 had the highest counts of high expression values 

specific to metabolic processes. With LF diet, sections 1-3, 7 and 9-10 were the most 

active. Sections 1 and 9 had the highest activity for both transport and metabolic processes. 

4.4 Discussion 

Over-consumption of energy dense fatty food combined with a sedentary and inactive 

lifestyle has evidenced a predisposition to chronic diseases (Cheung & Mao 2012; 

Desmarchelier et al. 2012; Walley et al. 2006). Studies have shown the importance of the 

gut in the maintenance of fat homeostasis and energy balance, with this regulation that is 

impaired in obesity and diabetes (Cheung & Mao 2012; Walley et al. 2006). The lipid 

sensing mechanism of small intestine is one of the first metabolic defenses against nutrient 

excess and contributes to maintain energy and metabolic balance (Wang et al. 2008). 

However, excessive fat intake is suggested to induce a delayed onset of satiety and 

promotes high fat diet hyperphagia (Little et al. 2007). The small intestine plays a key role 

in both absorption and digestion of dietary fat. Along the longitudinal axis, the small 

intestine shows regionalized differences in the absorptive capabilities and in the expression 

of genes encoding metabolic enzymes (Dusing et al. 2000; Gordon 1989). In consideration 

of the role of fatty acids as a metabolic fuel and as an integral part of the cell membrane 

(Gordon 1989; Niot et al. 2009), our main goals were: (1) to identify which metabolic and 

transport processes were fat-responsive; (2) to understand whether the prevalence of over-

expressed metabolic and transport processes was unevenly distributed from the proximal to 

the distal small intestine. Our broadest objective was investigating which intestinal sections 
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displayed similar response patterns and whether they were commonly affected by the fat 

content. The regionalized behavior of the small intestine was modelled by proposing 

characteristic response patterns (either linear or nonlinear - i.e., logarithmic or quadratic) 

of diet sensitive biological processes to take into account how varying levels of fat could 

affect gene expression. Contrast statistical analysis between HF and LF showed significant 

impact of HF on the differential gene expression in small intestine. Irrespective of the 

response type, approximately 93% of the DEGs were HF responsive whereas about 6.9% 

responded to LF (Table 4.7). Taking into account the response of each DEG, a remarkable 

43% was up-regulated and showed logarithmic response to HF (Table 4.7). This confirms 

high influence of HF within the intestinal milieu and suggests that excess fat in the lumen 

can be associated to a saturated response in terms of gene expression intensity. Excessive 

amounts of fat that reach the middle and the distal parts of small intestine can exceed the 

organ capacity. Such behavior describes a saturation response, which could set upper limits 

to digestion and absorption.  



Discussion 
 

111 
 

Test Response Regulation DEG count Relative % Total % 

HF vs. LF 

Linear 
Up 267 16.18 

93.08 

Down 298 18.06 

Quadratic 
Up 36 2.18 

Down 14 0.84 

Logarithmic 
Up 709 42.97 

Down 212 12.85 

LF vs. Chow 

Linear 
Up 43 2.61 

6.91 

Down 51 3.09 

Quadratic 
Up 8 0.48 

Down 9 0.55 

Logarithmic 
Up 1 0.06 

Down 2 0.12 
 

Table 4.7: Response specific DEG counts. Using the limma library we obtained diet and response specific 

DEGs along the longitudinal axis of murine small intestine (adjusted p-value = 0.1). We summarized the 

relative percentage of DEGs counts per response types. 

 

The proximal small intestine is vital for nutrient digestion and absorption. During acute 

lipid intake, the upper intestinal lipid sensing mechanism suppresses glucose production 

(i.e., by the activation of intestine-brain axis) to negatively regulate food intake and 

maintain energy balance (Wang et al. 2008). Conversely, increased levels of carbohydrate 

intake suppress lipid metabolism but increase carbohydrate metabolism (Jeukendrup 2003). 

We observed an inverse relation between numerous biological processes that responded to 

either HF or LF along the longitudinal axis of the small intestine (Table 4.8). Both lipid 

metabolism and transport related processes were highly represented in HF while being 

repressed in LF. Processes related to carbohydrate metabolism and ion transport were up-

regulated in LF and down-regulated in HF. The intestinal feedback varied considerably 

between HF and LF. In response to HF, we observed the prevalence of metabolic activities 

in the upper proximal and lower distal sections, whereas upper proximal and middle 
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sections had the highest number of transport activities. In LF diet, the upper proximal and 

lower distal sections were particularly active in both transport and metabolic processes. 

The proximal intestine was always particularly active, even with low levels of fat intake, 

while the most downstream sections were more sensitive to dietary fat. Linear and 

logarithmic response types were the most dominant in both metabolic and transport 

processes. The logarithmic response was more characteristic for the transport processes 

while the linear response was mainly associated to metabolic processes (Table 4.6). 

BP Rel GOBP 
HF LF 

pgmean smean p.val q.val ssize pgmean smean p.val q.val ssize 

MP 

HFup 
vs. 

LFdown 

GO:0044242 
cellular lipid 
catabolic process 

0.09 1.28 <0.01 0.01 12 0.08 -1.35 <0.01 0.01 12 

GO:0006644 
phospholipid 
metabolic process 

0.11 1.22 <0.01 0.01 14 0.10 -1.27 <0.01 0.01 14 

GO:0016042 lipid 
catabolic process 0.10 1.19 <0.01 0.01 14 0.10 -1.22 <0.01 0.01 14 

HFdown 
vs. 

LFup 

GO:0010628 
positive regulation 
of gene expression 

0.11 -1.07 <0.01 0.01 27 0.23 0.66 0.02 0.09 27 

GO:0045944 
positive regulation 
of transcription 
from RNA 
polymerase II 
promoter 

0.12 -1.02 <0.01 0.01 22 0.21 0.71 0.01 0.07 22 

GO:0045893 
positive regulation 
of transcription, 
DNA-dependent 

0.11 -1.07 <0.01 0.01 27 0.23 0.66 0.02 0.09 27 

GO:0051254 
positive regulation 
of RNA metabolic 
process 

0.11 -1.07 <0.01 0.01 28 0.22 0.67 0.02 0.09 28 

GO:0051173 
positive regulation 
of nitrogen 
compound 
metabolic process 

0.11 -1.03 <0.01 0.01 34 0.23 0.67 0.02 0.09 34 

GO:0005996 
monosaccharide 
metabolic process 

0.11 -1.11 <0.01 <0.01 23 0.08 1.41 <0.01 <0.01 23 

GO:0019318 
hexose metabolic 
process 

0.11 -1.09 <0.01 0.01 22 0.09 1.35 <0.01 <0.01 22 

GO:0006006 
glucose metabolic 
process 

0.14 -0.99 <0.01 0.01 18 0.12 1.16 <0.01 <0.01 18 

GO:0044262 
cellular 
carbohydrate 
metabolic process 

0.24 -0.65 0.02 0.07 16 0.13 1.15 <0.01 <0.01 16 

GO:0010605 
negative 
regulation of 
macromolecule 
metabolic process 

0.10 -1.02 <0.01 0.01 36 0.20 0.80 0.01 0.04 36 

GO:0031324 
negative 
regulation of 
cellular metabolic 

0.12 -0.94 <0.01 0.01 39 0.19 0.83 <0.01 0.03 39 
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process 

GO:0005975 
carbohydrate 
metabolic process 

0.11 -1.00 <0.01 0.01 39 0.06 1.48 <0.01 <0.01 39 

GO:0016051 
carbohydrate 
biosynthetic 
process 

0.23 -0.71 0.01 0.05 10 0.09 1.38 <0.01 <0.01 10 

GO:0044723 
single-organism 
carbohydrate 
metabolic process 

0.13 -0.97 <0.01 0.01 30 0.08 1.40 <0.01 <0.01 30 

HFboth 
vs. 

LFboth 

GO:0008202 
steroid metabolic 
process 

0.05 1.70 <0.01 <0.01 10 0.10 1.23 <0.01 0.01 10 

GO:0044255 
cellular lipid 
metabolic process 

0.07 1.42 <0.01 <0.01 45 0.22 0.75 0.01 0.09 45 

GO:0044283 
small molecule 
biosynthetic 
process 

0.07 1.40 <0.01 <0.01 30 0.13 0.96 <0.01 0.04 30 

GO:0006066 
alcohol metabolic 
process 

0.07 1.39 <0.01 <0.01 19 0.15 1.02 <0.01 0.02 19 

GO:0010565 
regulation of 
cellular ketone 
metabolic process 

0.10 1.31 <0.01 <0.01 11 0.13 1.17 <0.01 0.01 11 

GO:0042180 
cellular ketone 
metabolic process 

0.10 1.31 <0.01 <0.01 11 0.13 1.17 <0.01 0.01 11 

GO:1901615 
organic hydroxy 
compound 
metabolic process 

0.05 1.60 <0.01 <0.01 23 0.07 1.50 <0.01 <0.01 23 

TP 

Hfup 
vs. 

LFdown 

GO:0016192 
vesicle-mediated 
transport 

0.04 1.69 <0.01 <0.01 35 0.06 -1.23 <0.01 0.01 35 

HFdown 
vs. 

LFup 

GO:0055085 
transmembrane 
transport 

0.16 -0.83 <0.01 0.02 31 0.16 0.96 <0.01 0.01 31 

GO:0006812 
cation transport 0.19 -0.83 <0.01 0.03 17 0.19 0.80 0.01 0.04 17 

GO:0006811 ion 
transport 0.18 -0.82 <0.01 0.03 30 0.19 0.76 0.01 0.06 30 

GO:0043269 
regulation of ion 
transport 

0.19 -0.79 0.01 0.03 10 0.22 0.68 0.02 0.09 10 

Hfboth 
vs. 

LFboth 

GO:0071702 
organic substance 
transport 

0.14 0.95 <0.01 0.03 68 0.13 1.06 <0.01 0.02 68 

 

Table 4.8 GOBP terms in HF and LF. Each row represents a particular biological process (BP), either 

metabolic (MP) or transport (TP). Often, such processes were characterized by an inverse relationship 

between HF and LF. The nature of each relation is in column “Rel”. For example, the first row of column 

“Rel” represents three metabolic GOBP terms that were up-regulated in HF and down-regulated in LF. The 

statistical results include: geometric mean of the individual p-values (pgmean); mean of gene-set directional 

changes (smean); global p-value (p.val); multiple test correction using Benjamini and Hochberg false 

discovery rate (q.val); the number of DEGs (ssize). More details on statistics used in the columns are 

available in (Luo et al. 2009). The statistical results are reported for both HF (HF vs. LF) and LF (LF vs. 

Chow).  
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4.5 Conclusions 

HF western style diet showed high impact on the differential gene expression in the small 

intestine of C57BL/6J mice. Increased HF intake repressed carbohydrate metabolism and 

led to over-expressing genes involved in lipid metabolism. The middle and the distal 

sections were particularly sensitive to fat content while the proximal section was proactive 

irrespective of the diet. The transport processes responded to increased levels of fat content 

with a saturated logarithmic response. In both HF and LF there was high metabolic activity 

in the upper proximal and in the lower distal small intestine although the enriched 

pathways showed opposite trends of regulation (i.e., lipid metabolic processes were up-

regulated on a high-fat diet but the same processes were down-regulated on a LF diet). 

Such responses could be due to the lipid-mediated small intestine adaptation (i.e., 

increased levels of fat triggers higher absorption) and lead to chronic metabolic disorders.  
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Chapter 5  
Conclusions 

Nonlinear modelling can be used as an investigative tool to describe different types of 

physiological responses triggered by external (i.e., environmental) stimuli. This approach 

is particularly suitable to characterize the genetic mechanisms of expression involved in 

the regulation of biological processes as fat absorption and digestion in response to various 

dietary habits or to microbiota activity (i.e., with the term microbiota we indicate the 

ecological community of microorganisms of our body). In molecular nutrition, the small 

intestine plays a key role in the absorption and digestion of food, but its relevance has 

often been overlooked. The small-intestine consists of a large surface area that functions as 

the main portal for nutrient absorption, with physiological differences from the proximal to 

the distal section. The small intestine is colonized by a large and heterogeneous community 

of microorganisms (i.e., the microbiota that includes both beneficial and harmful 

populations) and performs the simultaneous functions of (1) nutrient absorption and (2) 

barrier against the entry of harmful antigens (such as pathogenic bacteria or allergens). 

Breaches in the small intestinal boundary disturb the intestinal homeostasis and excess 

high-fat intake compromises intestinal barrier sealing functions by down-regulating tight 

junction proteins (i.e., ZO-1 and occludin; see Cani et al. 2008). This triggers inflammatory 

damages until reaching extra-intestinal sites (e.g., the liver - Carding et al. 2015; Fasano & 
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Shea-Donohue 2005; see Figure 1.1). Such a complex interplay between physiological and 

environmental reactions (e.g., the relationships that link the diet to the activity of the 

luminal antigens) can be studied with nonlinear modelling. Also the modulation of gene 

expression mechanisms driven by fat availability can be studied effectively by using 

nonlinear models that mimic the consequences of fat overload (e.g., the saturation of 

dietary fat absorption in response to excessive amounts of fat intake can be described by 

modelling gene expression as a logarithmic function of different levels of fat intake). 

5.1 Nonlinear regulation of fat intake 

The importance of studying nonlinear responses to dietary fat intake in the small intestine 

is justified by evident morphological and physiological differences that characterize its 

longitudinal axis (DeSesso & Jacobson 2001). Also, the small intestine is capable of 

accommodating excess fat with increased absorption and this response is coordinated at the 

level of gene expression. Dietary fat mediated up-regulation of genes (i.e, FATP4, I-FABP 

or L-FABP) facilitates intestinal fatty acid uptake (Niot et al. 2009; Petit et al. 2007). This 

activity can be measured using nonlinear logarithmic or exponential functions that depict 

saturation or proactive absorption responses to fat intake, respectively. The approach based 

on nonlinear patterns perfectly matches the need of modelling the regionalized responses 

of small intestine to the intake of dietary fat gradients (i.e., by considering the modulations 

that involve absorptive and transport processes).  

5.1.1 Consequences of fat intake on the transcriptomic response along the 

longitudinal axis of small intestine 

The Chapter 3 of this thesis investigated the linear and nonlinear gene expression 

responses to dietary fat doses (i.e., 10%, 20%, 30% or 45% of kcal from fat) along the 
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longitudinal axis of the small intestine. The linear gene expression represents a constant 

raise in response to increasing fat intake. The logarithmic response illustrates the presence 

of overload mechanisms. The exponential response stands for enhanced gene expression 

behavior as a consequence of highest levels of fat intake. The quadratic response measures 

parabolic functions that are typical for enzyme kinetics. The cubic response refers to an 

oscillating behavior that can be associated to circadian rhythms. The study of Chapter 3 

aimed at analyzing the presence of either gene-specific or section-specific responses to fat 

doses. A gene-specific response explains expression of genes exhibiting a constant pattern 

in each of the three intestinal sections. For example, we found that Serpina1b was up-

regulated and linearly responsive to fat doses in the whole small intestine (Table 3.11). 

Section-specific responses characterize those genes that modulate their behavior depending 

on the intestine sections where the differential expression occurs. For example, Abca1 

changed from being linearly responsive in the proximal to be exponentially responsive in 

the middle section (always down-regulated). The main reasons that motivate the 

application of this novel approach are: (1) to provide dynamic understanding of the 

influence of dietary fat on intestinal lipid metabolism; (2) to understand which factors lead 

to fat mediated adaptations of intestinal lipid metabolism thus triggering the development 

of metabolic disorders (e.g., obesity). 

We found that an increased intake of high-fat diets exerts significant impact on the 

differential gene expression patterns of the small intestine (Tables 3.2 and 4.7). The middle 

section is known to be the most responsive to fat intake (de Wit et al. 2011) and this was 

corroborated by the findings of our analysis. By studying both linear and nonlinear 

responsive genes, we showed that the middle section of the small intestine contained the 

highest number of differentially expressed genes. Conversely, the lowest number of 

differentially expressed genes was found in the distal section (Table 3.2). As illustrated by 
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the study of Chapter 4, the intake of a high-fat diet mainly resulted in the over-expression 

of processes related to metabolism and transport of lipid, while there was down-regulation 

of carbohydrate metabolism. Such pattern suggests that an adaptation mechanism is at play 

in the small intestine and can result in enhanced levels of fat absorption; this mechanism is 

likely to be driven by fat availability (Petit et al. 2007). The whole small intestine 

displayed the prevalence of linear gene expression responses as a function of increasing 

levels of dietary fat doses (Table 3.2 and Figure 3.3). The availability of highest amounts 

of fat in the proximal section stimulated the highest relative importance of saturated 

logarithmic responses (Table 3.2 and Figure 3.3). The overflow of (decreasing amounts of) 

excess fat into the distal region resulted in the highest relative importance of unsaturated, 

exponential responses (Table 3.2 and Figure 3.3). Along the intestinal axis, logarithmic and 

linear responses were the most representative in case of transport and metabolic processes, 

respectively (Table 4.6). In each of the three sections of the small intestine, there was gene-

specific linear response of processes related to inflammatory reaction (Table 3.11). 

Processes related to cholesterol transport and efflux exhibited section-specific responses. 

In the middle section, there was inhibition (with negative, exponential response) of 

cholesterol transport and efflux processes in response to the intake of highest amounts of 

fat. The distal section showed an enhanced expression (with positive, exponential 

response) in terms of negative regulation of caspase activity (i.e., Birc5; see Table 3.11). 

This suggests that the small intestine activated some measures to counterbalance the excess 

lipid overflow into the distal section (Desmarchelier et al. 2012). In this way the intestine 

is able to cope by means of apoptosis the lipotoxic effect stimulated by excess fat 

(Desmarchelier et al. 2012). However, disease enrichment analysis suggested a significant 

over-representation of pathways related to cancer (Table 4.5). 
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5.2 Applicability beyond intestinal system 

This thesis introduced the use of linear and nonlinear modelling to describe the changes of 

gene expression in response to dietary fat intake. Therefore, the novelties of the approach 

implemented in the Chapter 3 and 4 consist in: (1) describing the carrying capacity of each 

section of the small intestine in response to a gradient of dietary fat intake; (2) providing a 

dynamic characterization of the expression pattern of the genes, where each response 

pattern explains a unique state of gene expression to varying levels of fat intake; (3) 

illustrating the presence of gene- and section-specific responses to fat intake along the 

longitudinal axis of the small intestine. Thus, our study draws a map concerning the 

carrying capacity of genes and intestinal sections to different doses of dietary fat (i.e., 

using linear and nonlinear modelling, fat intake was studied as a continuous predictor of 

gene expression). As potential future applications, we suggest that this approach can be 

promising to investigate the differences in the efficacy of various treatments (e.g., a 

particular drug can be more effective in a group of individuals only and its consequences 

can be measured by the fact it determines unsaturated or saturated gene expression 

response patterns) or to model individual-level responses to increased levels of nutrients 

(e.g., in the case of fat intake it can be used to investigate for which reasons some 

individuals are more resistant to weight gain than others). These studies (i.e., based on the 

differences among individuals) could serve to identify peculiar response types in specific 

genes as potential biomarkers. Such biomarkers could model continuous responses (i.e., 

gene expression) as a function of external, environmental factors (e.g., various drug doses 

or different concentrations of micronutrients) and serve to examine: (1) differences in 

response patterns among individuals; (2) spatial or temporal trends in the responses within 

different regions of the organs (e.g., in this thesis we have illustrated that the small 

intestine displays regionalized functions). 
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5.3 Outlook 

The investigation of the diet-mediated physiological and pathological changes represents 

the key for better understanding the onset of metabolic disorders. Previous studies have 

demonstrated high-fat mediated long term effects such as chronic inflammation, weight 

gain and obese phenotype (Cani et al. 2007; Garrett et al. 2010; de Wit et al. 2011), 

showing the high individual-level variability that characterizes these responses (e.g., 

individualized response to weight gain; see Speakman et al. 2011). In my work, the 

transcriptomic response was modelled as a function of dietary fat doses, and DEGs 

displayed regionalized expression along the longitudinal axis of small intestine. A possible 

extension of the study could be based on (1) investigating individualized responses to 

treatments, and (2) identifying specific biomarkers that are robust to individual-level 

variability. Also epigenetics could be taken into account to consider how high-fat diets 

influence the methylation state of genes (Amaral et al. 2014; Milagro et al. 2009). 

The large surface area of intestine is a hotbed for both beneficial and harmful pathogens 

(O’Hara & Shanahan 2006; Shen et al. 2013). Influence of diet on the composition of gut 

microbiota has been widely documented, with western-style high-fat diets that reduce 

bacterial diversity and lead to dysbiosis (Bäckhed et al. 2004; Bäckhed et al. 2007). This 

triggers the development of metabolic complications such as obesity, inflammatory bowel 

disease and diabetes (Clemente et al. 2012; Shen et al. 2013), suggesting that gene 

expression can be influenced by various external factors (e.g., diet, microbiome and their 

interactions). Thus, gene expression in intestine depends on: (1) cell types (i.e., 

enteroendocrine vs. absorptive cells), (2) location (i.e., the crypt-villus axis), and (3) 

luminal factors (e.g., diet and microbiota). This thesis takes into account the role of diet on 

gene expression and could be integrated by new, multi-factorial experiments to consider 

the interactions between diet and microbiota. 
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