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LINEARLY DEPENDENT AND CONCISE SUBSETS OF

A SEGRE VARIETY DEPENDING ON k FACTORS

Edoardo Ballico

Abstract. We study linearly dependent subsets with prescribed cardi-

nality s of a multiprojective space. If the set S is a circuit, there is an
upper bound on the number of factors of the minimal multiprojective

space containing S. B. Lovitz gave a sharp upper bound for this number.
If S has higher dependency, this may be not true without strong assump-

tions (and we give examples and suitable assumptions). We describe the

dependent subsets S with #S = 6.

1. Introduction

Take k non-zero finite dimensional vector spaces V1, . . . , Vk and consider
V1 ⊗ · · · ⊗ Vk. An element u ∈ V1 ⊗ · · · ⊗ Vk is called a k-tensor with format
(dimV1, . . . ,dimVk) ([9, p. 33]). Two non-zero proportional tensors share many
properties. Thus often the right object to study is the projectivization Pr of
V1 ⊗ · · · ⊗ Vk, where r := −1 + dimV1 × · · · × dimVk. Set ni := dimVi − 1 and
consider the multiprojective space Y := Pn1×· · ·×Pnk . Let ν : Y ↪→ Pr denote
the Segre embedding. Many properties of a non-zero tensor u (e.g., the tensor
rank and the tensor border rank) may be describe in how its equivalence class
[u] ∈ Pr sits with respect to the Segre variety ν(Y ) (see [9, Def. 4.3.5.1] for the
definition of Segre variety). For instance, the tensor rank rY ([u]) (as defined in
[9, Def. 2.4.1.2]) of u is the minimal cardinality of a finite set S ⊂ Y such that
ν(S) spans [u]. We call S(Y, [u]) the set of all S ⊂ Y with minimal cardinality
such that ν(S) spans [u]. Using subsets of Y instead of ordered sets of points
and Pr instead of V1 ⊗ · · · ⊗ Vk we take care of the obvious non-uniqueness in
a finite decomposition u =

∑
i vi1 ⊗ · · · vik, vij ∈ Vj , of a tensor.

Fix an equivalence class q = [u] ∈ Pr of non-zero tensors. Let πi : Y → Pni ,
1 ≤ i ≤ k, denote the projection of Y onto its i-th factor. The width w(q) of
q is the minimal number of non-trivial factors of the minimal multiprojective
subspace Y ′ ⊆ Y such that q ∈ 〈ν(Y ′)〉, where 〈 〉 denote the linear span. For
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any finite set A ⊂ Y the width w(A) of A is the number of integers i ∈ {1, . . . , k}
such that #πi(A) > 1, where #E denotes the cardinality of the finite set E.
By concision we have w(q) = w(A) if A ∈ S(Y, q) ([9, Proposition 3.1.3.1]).

The non-uniqueness of tensor decompositions, i.e., the fact that S(Y, [u])
may have more than one element, may be rephrased as the linear dependency of
certain subsets of Y ([5]). For any finite set S ⊂ Y set e(S) := h1(IS(1, . . . , 1)).
By the definition of Segre embedding and the Grassmann’s formula we have
e(S) = #S − 1 − dim〈ν(S)〉. We say that a non-empty finite set S ⊂ Y (or
that the finite set ν(S) ⊂ Pr) is equally dependent if dim〈ν(S)〉 ≤ #S − 2 and
〈ν(S′)〉 = 〈ν(S)〉 for all S′ ⊂ S such that #S′ = #S−1. Note that S is equally
dependent if and only if e(S) > 0 and e(S′) < e(S) for all S′ ⊂ S, S′ 6= S, i.e.,
if and only if S 6= ∅ and e(S′) < e(S) for all S′ ⊂ S, S′ 6= S. We say that
S is uniformly dependent if e(S′) = max{0, e(S) −#S + #S′} for all S′ ⊂ S.
A uniformly dependent subset is equally dependent, but when e(S) ≥ 2 the
two notions are different (the key Examples 3.1 and 3.2 are equally dependent,
but not uniformly dependent). When e(S) = 1 equal and uniform dependence
coincide. An equally dependent subset with e(S) = 1 is often called a circuit.
Fix an integer e > 0. Let S be a finite subset of a multiprojective space. We
say that S is an e-circuit if e(S) = e and there is a subset S′ ⊆ S such that
S′ is a circuit and #S − #S′ = e − 1. A uniformly dependent set S is an
e(S)-circuit, but the converse does not hold (Example 3.4).

The following result is an immediate corollary of [10, Corollary 14].

Proposition 1.1. Let S ⊂ Y be an e-circuit. Then w(S) ≤ #S − e− 1.

We give examples for any integer s ≥ 6 of an equally dependent set S with
e(S) > 1, #S = s and w(S) arbitrarily large (Example 3.3). This example
shows there is no upper bound for w(S) in term of #S for all equally dependent
sets if e(S) > 1.

The main result of this paper is the classification of all equally dependent
subsets S of a Segre variety with #S = 6 and w(S) > 4. We prove the following
result.

Theorem 1.2. Let Y = Pn1×· · ·×Pnk , n1 ≥ · · · ≥ nk > 0 be a multiprojective
space and S ⊂ Y a concise and equally dependent set with #S = 6. Then
either e(S) ≥ 2 and (Y, S) is in one of Examples 3.1 and 3.2 or w(Y ) ≤ 4 and
Y = (P1)4 if w(Y ) = 4.

The families in Examples 3.1, 3.2 have arbitrarily large width. The case
Y = (P1)4 and e(S) = 1 occurs ([5, Case 3 of Theorem 7.1]). In several cases
we could give a more precise description of the pairs (Y, S), but using too much
ink.

For any q ∈ Pr and any finite set S ⊂ Y we say that S irredundantly spans
q if q ∈ 〈ν(S)〉 and q /∈ 〈ν(S′)〉 for any S′ ⊂ S, S′ 6= S. As a byproduct of
a small part of the proof of Theorem 1.2 we also classify the set of all rank 2
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tensors which may be irredundantly spanned by a set of 3 points (Proposition
4.3).

We work over a field K, since for the examples we only use that P1(K)
has at least 3 points. For the proofs which require cohomology of coherent
algebraic sheaves (like in the quotations of [2, Lemma 5.1] or [4, Lemmas 2.4
and 2.5] or [5]) it is sufficient to work over the algebraic closure K of K,
because dimensions of cohomology of algebraic sheaves on projective varieties
(and in particular the definition of e(S)) are invariants under the extension
K ↪→ K ([6, Proposition III.9.3]). We use Landsberg’s book [9] for essential
properties on Segre varieties related to tensors (e.g., the notion of concision),
in particular concision is [9, Proposition 3.1.3.1] and [9, Ch. 5] contains many
results and references on the secant varieties of the Segre varieties . This book
contains many applications of tensors ([9, Ch. 11, 12, 13, 14]) and additive
tensor decompositions are just a way to state linear combinations of elements
of the Segre variety ν(Y ). The elementary properties of the Segre varieties that
we use do not depend on the base field. For an in-depth study of them over a
finite field, see [7, Ch. 25].

1.1. Motivations for this paper

(a) There is no need to stress the importance of tensors and tensor decom-
positions for the applications of mathematics. Hence the importance of the
solution sets S(Y, q), q ∈ Pr. Outside Kruskal’s bound it is very difficult to
prove that an irredundant decomposition of a tensor T associated to q, say
q ∈ 〈ν(S)〉, evinces the tensor rank of T , i.e., rY (q) = #S. Thus it seems
important to study irredundant decompositions without assuming that they
evince the tensor rank, i.e., to study all solution sets S(Y, q, t), t ≥ rY (q), i.e.,
all S ⊂ Y such that #S = t and ν(S) irredundantly spans q. It is known that
even if Y is minimal for S, q may not be concise for Y ([3, Theorem 3.8]).
Proposition 4.3 classifies all triples (Y, q, S) with rY (q) = 2, #S = 3 and Y
minimal for S, but not always for q. This result is proved studying dependent
subsets with cardinality 5.

(b) Take as K a finite field, Fq. Any S ⊂ Pk−1(Fq) such that 〈S〉 = Pk−1(Fq)
gives an [n, k]-code C over Fq, where n := #S. Circuits S′ ⊂ S arise in the
computation of the minimum distance of S. Equally defined sets S′ ⊂ S with
e(S′) ≥ 2 arise in the computation of the generalized Hamming weights of C
introduced by Wei ([8, §7.10]).

(c) In the proofs in [1] we needed to classify some rational normal curves
contained in a Segre variety X. These curves occur implicitly when we quote
[1] and explicitly (plus degenerations/variations of them like reducible conics
or unions of 2 disjoint lines) in Example 3.2 and Remarks 5.1 and 5.2. It is
easy to see that being contained in the linear span of a certain curve C ⊂ X
often gives that #S(Y, q, t) > 1 for some small t. When C is irreducible it
is often easy to construct e-circuits S ⊂ C. More general curves, e.g. elliptic



256 E. BALLICO

curves, should occur for larger t, but a full classification of the set S should be
too long. In our opinion the classification of the curves (and if K is finite the
computation of their number) seems to be interesting.

1.2. Outline of the proof of Theorem 1.2

In Section 3 we describe the examples mentioned in the statement of The-
orem 1.2. Take S ⊂ Y such that #S = 6 and S is equally dependent. We
fix a partition S = A ∪ B with #A = #B = 3 and hence A ∩ B = ∅. In
Section 5 we assume that at least one among ν(A) and ν(B) is linearly depen-
dent. In that section we get Examples 3.1 and 3.2. Then we assume ν(A) and
ν(B) linearly independent. Since A ∩ B = ∅, the Grassmann’s formula gives
dim(〈ν(A)〉 ∩ 〈ν(B)〉) = e(S)− 1. Thus 〈ν(A)〉 ∩ 〈ν(B)〉 6= ∅. We fix a general
q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉. Since q ∈ 〈ν(A)〉, we have rY (q) ≤ 3. We discuss the
cases rY (q) = 1, rY (q) = 2, rY (q) = 3 in Sections 6, 7 and 8, respectively. For
the case rY (q) = 3 we use [5, Theorem 7.1].

Remark 1.3. In the set-up of Theorem 1.2 the case k = 1 is possible with
Y = Pn for any 2 ≤ n ≤ 4 (any 6 points spanning Pn partitioned in two sets
of 3 elements no 3 of them collinear). The case Y = P1 was obtained when
e(A) > 0 and e(B) > 0. When Y = Pn we have e(S) = 6− n− 1.

Thus in Sections 5, 6, 7 and 8 we silently assume k > 1.
Thanks are due to the referees for useful comments and to Benjamin Lovits

for correspondence related to [10].

2. Preliminaries, notation and the proof of Proposition 1.1

For any subset E of any projective space let 〈E〉 denote the linear span
of E. For any multiprojective space let ν denote its Segre embedding. Let
Y = Pn1 × · · · × Pnk be a multiprojective space. Let πi : Y → Pni be the
projection of Y onto its i-th factor. Set Yi :=

∏
j 6=i Pnj and let ηi : Y → Yi

be the projection. Thus for any p = (p1, . . . , pk) ∈ Y , πi(p) = pi is the i-
th component of p, while ηi(p) = (p1, . . . , pi−1, pi+1, . . . , pk) deletes the i-th
component of p.

For any i ∈ {1, . . . , k} let εi ∈ Nk (resp. ε̂i) be the multiindex (a1, . . . , ak) ∈
Pk with ai = 1 and ah = 0 for all h 6= i (resp. ai = 0 and ah = 1 for all
h 6= i). Thus OY (εi) and OY (ε̂i) are line bundles on Y and OY (εi)⊗OY (ε̂i) ∼=
OY (1, . . . , 1).

If needed we usually call Pr the projectivization of the space of tensors with
prescribed format we are working, i.e., the projective space in which the given

Segre sits. For instance, if the given Segre is ν(Y ) we take r = −1+
∏k
i=1(ni+1).

For any q ∈ Pr let rY (q) or rν(Y )(q) denote the tensor rank of q. For any finite
set A ⊂ Y the minimal multiprojective subspace of Y containing A is the mul-

tiprojective space
∏k
i=1〈πi(A)〉 ⊆ Y . For any positive integer t let S(Y, q, t)

denote the set of all S ⊂ Y such that q ∈ 〈ν(S)〉, #S = t and S irredundantly
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spans q. The set S(Y, q) := S(Y, q, rν(Y )(q)) is the set of all tensor decom-
positions of q with minimal length. By concision given any A ∈ S(Y, q) the
minimal multiprojective subspace of Y containing A is the minimal multipro-
jective subspace Y ′ ⊆ Y such that q ∈ 〈ν(Y ′)〉 ([9, Proposition 3.1.3.1]).

Remark 2.1. Take S ⊂ Y such that e(S) > 0 and #S ≤ 3. Since ν is an
embedding, we have #S = 3, e(S) = 1 and (by the structure of linear subspaces
contained in a Segre variety) there is i ∈ {1, . . . , k} such that #πh(S) = 1 for
all h 6= 1, πi|S is injective and πi(S) is contained in a line.

Lemma 2.2. Fix a multiprojective space Y and any finite set Z ⊂ Y with
z := #Z ≥ 3 and concise for Y . Set e(Z) := z − 1 − dim〈ν(Z)〉. We have
e(Z) ≤ z − 2 and equality holds if and only if Y = P1.

Proof. Since ν is an embedding, ν(Z) is a set of z ≥ 2 points of PN and hence
dim〈ν(Z)〉 ≥ 1. The Grassmann’s formula gives e(Z) ≤ z−2 and that equality
holds if and only if ν(Z) is formed by collinear points. Since the Segre ν(Y )
is cut out by quadrics and z ≤ 3, we get 〈ν(Z)〉 ⊆ ν(Y ). Since the lines of a
Segre variety are Segre varieties, the concision assumption gives Y = P1.

The converse is trivial, because h0(OP1(1)) = 2. �

The following construction was implicitly used in the proof of [3, Theorem
3.8].

Definition. Fix a multiprojective space Y = Pn1 × · · · × Pnk , nh > 0 for all
h 6= i, and i ∈ {1, . . . , k} (we allow the case ni = 0 so that Pni may be a single
point). Fix an integer mi such that ni ≤ mi ≤ ni+ 1; if ni = 0 assume mi = 1.
Let W ⊇ Y be a multiprojective space with Pnj as its j-th factor for all j 6= i
and with Pmi as its i-th factor. Thus W = Y if mi = ni and dimW = dimY +1
if mi = ni + 1. If W 6= Y we identify Y with a multiprojective subspace of W
identifying its factor Pni with a hyperplane Mi ⊂ Pmi . Fix a finite set E ⊂ Y
(we allow the case E = ∅) and o = (o1, . . . , ok) ∈ Y \E. Set Ei := πi(E) ⊂ Pni .
Fix any ui ∈ Pmi \ (Ei ∪ {oi}) and any vi ∈ 〈{oi, vi}〉 with vi /∈ Ei. Set
u = (u1, . . . , uk) and v := (v1, . . . , vk) with uh = vh = oh for all h 6= i. Set
F := E∪{o} and G := E∪{u, v}. We say that G is an elementary increasing of
F with respect to o and the i-th factor. Note that #G = #E+2, #F = #E+1
and 〈ν(F )〉 ⊆ 〈ν(G)〉. If ni > 0 we have w(Y ) = w(W ), while if ni = 0 we have
w(W ) = w(Y )+1. Thus an elementary increasing may increase the width, but
only by 1 and only if ni = 0.

Remark 2.3. Let U ⊂ Y be a finite set, W ⊇ Y any multiprojective space and
V ⊂ W any set obtained from U making an elementary increasing. For any
finite set G ⊂W either w(V ∪G) = w(U ∪G) or w(V ∪G) = w(U ∪G)+1, but
the latter may occur only if w(V ) = w(U) + 1. Even when w(V ) = w(U) + 1
it is quite easy to see for which G we have w(V ∪G) = w(U ∪G) + 1.

Proof of Proposition 1.1. Set s := #S. If e = 1, then we apply [10, Corollary
14]. Assume e > 1 and take U ⊂ S such that #U = e − 1 and S \ U is
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a circuit. Let Y ′ be the minimal multiprojective space containing S \ U . By
[10, Corollary 14] we have w(S\U) ≤ (s−e+1)−2. Since h1(IS\U (1, . . . , 1)) =

h1(IS(1, . . . , 1)) − #U , 〈ν(S \ U)〉 = 〈S〉. Thus ν(S) ⊆ 〈ν(Y ′)〉. Concision
([9, Proposition 3.1.3.1]) gives S ⊂ Y ′. Thus w(S) = w(S \ U). �

3. The examples

Example 3.1. Fix an integer k ≥ 2 and integers n1, n2 ∈ {1, 2}. We take
Y = Pn1 × Pn2 × (P1)k−2. Take o = (o1, . . . , ok) ∈ Y and p = (p1, . . . , pk) ∈ Y
such that pi 6= oi for all i. Take u = (u1, . . . , uk) ∈ Y , v = (v1, . . . , vk) ∈ Y ,
w = (w1, . . . , wk) ∈ Y and z = (z1, . . . , zk) ∈ Y such that ui = vi = oi for
all i 6= 1, wi = zi = pi for all i 6= 2, #{u1, v1, o1, p1} = #{o2, p2, w2, z2} = 4.
If n1 = 2 (resp. n2 = 2) we also require that 〈{u1, v1, o1}〉 ⊂ P2 is a line
not containing p1 (resp. 〈{w2, z2, p2}〉 ⊂ P2 is a line not containing o2). Set
S := {o, p, u, v, w, z}. By construction #S = 6, S is concise for Y , and e(S) = 2.
It is easy to check that e(S′) = 1 (but S′ is not a circuit) for any S′ ⊂ S such
that #S′ = 5. The family of these sets S has dimension n1 + n2 + 2. If k > 2
instead of taking the first two factors of Y we may take two arbitrary (but
distinct) factors and obtain another family of sets S not projectively equivalent
to the one constructed using the first two factors. A small modification of the
construction works even if oi = pi for some i ∈ {1, 2}, but in that case we are
forced to take ni = 1.

Example 3.2. Fix integers n ∈ {1, 2, 3} and k ≥ 1. Set Y := Pn × (P1)k−1.
If k > 1 fix any oi, pi ∈ P1, 2 ≤ i ≤ k, such that oi 6= pi for all i. Fix
lines L ⊆ Pn and D ⊆ Pn. If n = 2 assume L 6= D. If n = 3 assume
L ∩D = ∅. Fix 3 distinct points o1, u1, v1 ⊂ L and 3 distinct points w1, p1, z1
of D. If n = 1 assume #{o1, p1, u1, v1, w1, z1} = 6. If n = 2 assume L ∩
D /∈ {o1, p1, u1, v1, w1, z1}. Set o := (o1, o2, . . . , ok), u := (u1, o2, . . . , ok), v :=
(v1, o2, . . . , ok), p := (p1, p2, . . . , pk), w := (w1, p2, . . . , pk), z := (z1, p2, . . . , pk),
A := {o, u, v}, B := {p, w, z}, and S := A ∪B. The decomposition S = A ∪B
immediately gives that S is equally dependent. If k = 1 we have e(S) = 5− n.
Now assume k > 1. Since neither ν(A) nor ν(B) are linearly independent and
A ∩ B = ∅, we have e(S) ≥ 2. Take D ∈ |Ip(ε2)|. By construction we have
S ∩D = B. Thus the residual exact sequence of D gives the exact sequence

(1) 0→ IA(ε̂2)→ IS(1, . . . , 1)→ IB,D(1, . . . , 1)→ 0.

It is easy to check that h1(IA(ε̂2)) = 1 and that h1(D, IB,D(1, . . . , 1)) = 1.
Thus (1) gives e(S) ≤ 2. Thus e(S) = 2. A small modification of the construc-
tion works even if o1 = p1, but in this case we take n < 3.

Example 3.3. Assume k > 1. Fix n ∈ {1, 2, 3} and an integer s ≥ 6 and set
Y := Pn × (P1)k−1. We mimic the proof of Example 3.2 taking 3 points on L
and s− 3 points on Y \L. We get S ⊂ Y concise for Y and such that #S = s,
e(S) = s− 4 and e(S′) < e(S) for all S′ ⊂ S, S′ 6= S. We get examples similar
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to Example 3.1 taking instead of two points a fixed set S′ of points and get a
set with #S′ + 2 points.

Example 3.4. Take Y = P2. Fix a line L ⊂ P2, any E ⊂ L such that #E = 3
and a general G ⊂ P2 \L such that #G = 2. Set S := E∪G. We have e(S) = 2
and for any p ∈ E, the set S \ {p} is a circuit. However, E shows that S is not
uniformly dependent.

4. 4 ≤ #S ≤ 5

In this paper we often use two results from [1] which give a complete classi-
fication of circuits S with #S ≤ 5 ([1, Theorem 1.1 and Proposition 5.2]). In
this section we extend them to the case of equally dependent subsets S ⊂ Y
with e(S) ≥ 2. Sometimes we will use them later, but the key point is that the
cases with arbitrarily large width and fixed s := #S occur exactly when s ≥ 6.
We always call Y = Pn1 × · · · × Pnk the minimal Segre variety containing S.

Fix a set S ⊂ Y such that #S ≤ 5, e(S′) < e(S) for all S′ ⊂ S, S′ 6= S, and
e(S) ≥ 2. We put the last assumption because we described all circuits (i.e.,
the case e(S) = 1) in [1, Proposition 5.2] (case #S = 4) and [1, Theorem 1.1]
(case #S = 5).

Now the two new observations for the case e(S) ≥ 2. We always assume
that S is concise for Y .

Remark 4.1. Assume #S = 4 and e(S) ≥ 2. By Lemma 2.2 we have e(S) = 2
and Y = P1. Any union F of 4 distinct points of P1 has e(F ) = 2 and it is
equally dependent. For the existence of this case we need #K 6= 2.

Remark 4.2. Assume #S = 5. If e(S) ≥ 3, then e(S) = 3, Y = P1 and S is
an arbitrary subset of P1 with cardinality 5 (Lemma 2.2). Assume e(S) = 2.
Thus for all o ∈ S we have e(S \ {o}) = 1. Let So ⊆ S \ {o} the minimal
subset with e(So) = 1. Each So is a circuit. Let Y [o] ⊆ Y be the minimal
multiprojective subspace containing o. The plane 〈ν(S)〉 contains at least 5
points of ν(Y ). Since ν(Y ) is cut out by quadrics either 〈ν(S)〉 ⊆ ν(Y ) (and
hence Y = P2 by the assumption that Y is the minimal multiprojective space
containing S) or 〈ν(S)〉 ∩ ν(Y ) is a conic. In the latter case the conic may be
smooth or reducible, but not a double line. In this case Y = P1 × P1. To show
that this case occurs we take an element C ∈ |OP1×P1(1, 1)| and take a union
S of 5 points of C, with no restriction if C is irreducible, with the restriction
that no component of C contains 4 or 5 points of S if C is reducible. To get
examples with C irreducible we need #K ≥ 4, but even if #K ∈ {2, 3} there
are examples contained in a reducible C.

In the last part of this section we classify the quintuples (W,Y, q, A,B),
where W and Y are multiprojective spaces, Y ⊆ W , q ∈ 〈ν(Y )〉, rν(Y )(q) = 2,
A ∈ S(Y, q), B ⊂ W and B ∈ S(W, q, 3). We assume that q is concise for Y .
By [9, Proposition 3.1.3.1] this assumption is equivalent to the conciseness of
A for Y . We assume that B is concise for W , but we do not assume W = Y .
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Since Y is concise for A and #A = 2, we have Y = (P1)k for some k > 0.
Since rν(Y )(q) 6= 1, we have k ≥ 2. Since W is concise for B and #B = 3 we
have W = Pm1 × · · · × Pms for some s ≥ k and mi ∈ {1, 2} for all i = 1, . . . , s.
We see the inclusion Y ⊆ W , fixing for i = 1, . . . , k a one-dimensional linear
subspace Li ⊆ Pmi and for i = k + 1, . . . , s fixing oi ∈ Pmi .

We prove the following statement.

Proposition 4.3. Fix q ∈ Pr with rank 2 and take a multiprojective space
Y = (P1)k concise for q. Take a multiprojective space W ⊇ Y and assume the
existence of B ∈ S(W, q, 3). Fix A ∈ S(Y, q). Then one of the following cases
occurs:

(1) A∩B 6= ∅, B is obtained from A making an elementary increasing and
either W = Y or W ∼= P2 × (P1)k−1 or W ∼= (P1)k+1;

(2) A ∩ B = ∅; in this case either W ∼= P2 × P1 or W ∼= P1 × P1 or
W ∼= P1 × P1 × P1.

The multiprojective spaces W ’s listed in (2) of Proposition 4.3 are the ones
with k > 1 in the list of [1, Theorem 1.1].

For more on the possibles B’s in case (1), see Lemma 4.5. For the proof of
Proposition 4.3 we set S := A ∪ B. Our working multiprojective space is W
and cohomology of ideal sheaves is with respect to W . Since ν(A) and ν(B)
irredundantly spans q, we have e(S) > 0. Note that k > 1, because we assumed
that the tensor q has tensor rank 6= 1.

Lemma 4.4. If A ∩ B = ∅, then S is irredundantly dependent and either
e(S) = 1 or e(S) = 2, Y = P1 × P1 and S is formed by 5 points of some
C ∈ |OP1×P1(1, 1)|.

Proof. Since A ∩ B = ∅, we have e(S) − 1 = dim(〈ν(A)〉 ∩ 〈ν(B)〉). Since
ν(A) (resp. ν(B)) irredundantly spans q, we have 〈ν(A \ {a})〉 ∩ 〈ν(B)〉 ⊂
〈ν(A)〉∩〈ν(B)〉 (with strict inclusion) for all a ∈ A and 〈ν(A)〉∩〈ν(B \{b})〉 ⊂
〈ν(A)〉 ∩ 〈ν(B)〉 (with strict inclusion) for all b ∈ B. Thus e(S′) < e(S) for all
S′ ⊂ S, S′ 6= S, by the Grassmann’s formula. Assume e(S) ≥ 2. Since k > 1 we
have e(S) = 2 (Lemma 2.2). Since e(S) = 2, Remark 4.2 givesW = Y = P1×P1

and that S is formed by 5 points of any smooth C ∈ |OP1×P1(1, 1)|. For the
existence of this case we need #K ≥ 4. �

Lemma 4.5. If A ∩B 6= ∅, then B is obtained from A making an elementary
increasing of A with respect to the point A \A ∩B and one of the coordinates.
In this case for any Y = (P1)k concise for q the concise W for B is either Y
or isomorphic to P2× (P1)k−1 in which we may prescribe which of the k factors
of W has dimension 2. For any rank 2 point q ∈ 〈ν(Y )〉, any A ∈ S(Y, q),
any point a ∈ A and any i ∈ {1, . . . , k} we get a 2-dimensional family of such
sets B’s with W = Y and a 3-dimensional family of such B’s with dimW =
dimY + 1.
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Proof. Assume A ∩ B 6= ∅. Since ν(A) and ν(B) irredundantly span q, A is
not contained in B. Thus A ∩ B 6= A. Assume A ∩ B = {o} with A = {o, p}.
Thus #S = 4. Since q 6= ν(o), and q ∈ 〈ν(B)〉, we get 〈ν(B)〉 ⊃ 〈ν(A)〉 and in
particular ν(p) ⊂ 〈ν(B)〉.

First assume that S is equally dependent. Since S is equally dependent and
s ≥ k ≥ 2, by Remark 4.1 and [1, Proposition 5.2] we get W = Y = P1 × P1

and the list of all possible S’s. In this list ν(p) /∈ 〈ν(S \ {p}〉, a contradiction.
Now assume that S is not equally dependent. The proof of Lemma 4.4 gives

that e(S′) = e(S) only if S′ = S \ {o}. Since #S′ = 3, there is i ∈ {1, . . . , s}
such that #πh(S′) = 1 for all h 6= i. We see that B is obtained from A keeping
o and making an elementary increasing with respect to p to get two other points
of B. �

5. ν(A) or ν(B) linearly dependent

Recall that #S = 6, Y is concise for S and we fixed a partition S = A ∪ B
such that #A = #B = 3. In this section we assume that at least one among
ν(A) and ν(B) is linearly dependent, while in the next sections we will always
assume that both ν(A) and ν(B) are linearly independent. Just to fix the
notation we assume e(A) > 0. Thus ν(A) is the union of 3 collinear points and
there is i ∈ {1, . . . , k} such that #πh(A) = 1 for all h 6= i and πi(A) is formed
by the points spanning a line (Remark 2.1). With no loss of generality we may
assume i = 1.

Remark 5.1. Assume also e(B) > 0. We want to prove that we are in one of
the cases described in Example 3.1 or 3.2, up to a permutation of the factors
of Y (assuming obviously k > 1). By Remark 2.1 there is j ∈ {1, . . . , k} such
that #πh(B) = 1 for all h 6= j and πj(B) is formed by 3 collinear points.

(a) Assume i 6= j. Up to a permutation of the factors of Y we may assume
i = 1 and j = 2. Fix o = (o1, . . . , ak) ∈ A and p = (p1, . . . , pk) ∈ B. Set
{u1, o1, v1} := π1(A) and {w2, z2, o2, p2} := π2(B). Since #πi(A) = 1 for all
i > 1, πi(a) = oi for all a ∈ A and all i > 1. Since #πi(B) = 1 for all i 6= 1,
πi(b) = pi for all b ∈ B and all i 6= 1. Thus we are as in Example 3.1.

(b) Now assume i = j. Up to a permutation of the factors of Y we may
assume i = 1. In this case we are in the set-up of Example 3.2.

Remark 5.2. Now assume e(B) = 0. Since A ⊂ S, A 6= S and e(A) > 0, we
have e(S) ≥ 2. Take i ∈ {1, . . . , k} as in part (a) and set {oi} := πi(A). By
assumption 〈ν(B)〉 is a plane and either 〈ν(B)〉 ∩ 〈ν(A)〉 = ∅ (i.e., e(S) = 2)
or 〈ν(B)〉 ∩ 〈ν(A)〉 is a point (call it q′) (i.e., e(S) = 3) or 〈ν(B)〉 ⊃ 〈ν(A)〉
(i.e., e(S) = 4). In the latter case we have Y = P1 (Lemma 2.2). Take any
A1 ⊂ A such that #A1 = 2 and set S1 := A1 ∪ B. We have e(S1) = e(S) − 1
and e(S′) < e(S1) for any S′ ⊂ S1 with S′ 6= S1. The set S1 is very particular,
because it contains a subset A1 such that #A1 = 2 and #πi(A) = 1 for k − 1
integers i ∈ {1, . . . , k}, say for all i 6= 1.
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(a) Assume e(S) = 3 and hence e(S1) = 2. We may apply Remark 4.2 to
this very particular S1. Either Y = P2 or Y = P1 × P1. The case Y = P2 may
obviously occur (take 6 points, 3 of them on a line). To get examples with Y =
P1 × P1 we need S ⊂ C ∈ |OP1×P1(1, 1)|, because e(S) = 3. The existence of A
gives C reducible say C = L∪D with L ∈ |OP1×P1(1, 0)| and D ∈ |OP1×P1(0, 1)|
with D ⊃ A. Since h1(IB(1, 1)) = 0, we see that #(B ∩L) = 2, #(B ∩D) = 1
and B ∩D ∩ L = ∅.

(b) Now assume e(S) = 2. Thus e(S1) is a circuit and we may use the list
in [1, Theorem 1.1]. Hence k ≤ 3, k = 3 implies Y = P1×P1×P1, while k = 2
implies n1 + n2 ∈ {2, 3}. Obviously the case k = 1, Y = P3 occurs (6 points of
P3 with the only restriction that 3 of them are collinear).

(b1) Assume Y = P2 × P1. We are in the set-up of [1, Example 5.7], case
C = T1 ∪L1 with L1 a line and #(L1 ∩S1) = 2. This case obviously occurs (as
explained in [1, last 8 lines of Example 5.7]). To get S just add another point
of L1.

(b2) Assume Y = P1 × P1. Here we may take as S1 (resp. S) the union
of 2 (resp. 3) points of any D ∈ |OP1×P1(0, 1)| and 3 sufficiently general points
of Y .

(b3) Assume Y = P1 × P1 × P1. It does not occur here (it occurs when
e(A) = e(B) = 0 and rY (q) = 3), because #(L∩C) ≤ 1 for every integral curve
C ⊂ P1 × P1 × P1 with multidegree (1, 1, 1) and each curve L ⊂ P1 × P1 × P1

such that ν(L) is a line and we may apply [1, part (c) of Lemma 5.8].

6. rY (q) = 1

We recall that q is a general element of 〈ν(A)〉∩ 〈ν(B)〉 and that in Sections
6, 7, and 8 we assume e(A) = e(B) = 0 and k > 1. In this section we assume
rY (q) = 1. Take o ∈ Y such that ν(o) = q and write o = (o1, . . . , ok). Set
A′ = A ∪ {o} and B′ := B ∪ {o}.

(a) Assume o ∈ A. Since ν(o) is general in 〈ν(A)〉 ∩ 〈ν(B)〉 and A has
finitely many points, we have 〈ν(A)〉 ∩ 〈ν(B)〉 = {ν(o)}. The Grassmann’s
formula gives dim〈ν(S)〉 = 4, i.e., e(S) = 1. Since A ∩ B = ∅, we have o /∈ B.
Thus ν(B ∪ {o}) is linearly dependent. Since B ∪ {o} is strictly contained in
S, e(S) = 1 and S is assumed to be equally dependent, we get a contradiction.
In the same way we prove that #B′ = 4.

(b) By step (a) we have #A′ = #B′ = 4. Write o = (o1, . . . , ok). The sets
ν(A′) and ν(B′) are linearly dependent. Assume for the moment the existence
of A′′ strictly contained in A′ such that e(A′′) = e(A′). We have #A′′ = 3,
e(A′′) = 1 and there is i ∈ {1, . . . , k} such that #πh(A′′) = 1 for all h 6= 1.
Since e(A) = 0, o ∈ A′′. Set {b} := A \ A ∩ A′. We see that A is obtained
from {o, b} making an elementary increasing with respect to o and the i-th
factor. But then ν(o) is spanned by ν(A ∩ A′′), contradicting the generality
of q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉 and that S is equally dependent. In the same way we
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handle the case in which there is B′′ strictly contained in A′ such that ν(A′′)
is dependent.

(c) By steps (a) and (b) we may assume that ν(A′) and ν(B′) are circuits.
Let Y ′ =

∏s
i=1 Pmi (resp. Y ′′ =

∏c
i=1 Pti) be the minimal multiprojective

subspace of Y containing A′ (resp. B′). By [1, Proposition 5.2] either s = 1
and m1 = 2 or s = 2 and m1 = m1 = 2, either c = 2 and t1 = 2 or c = 2 and
t1 = t2 = 1.

(c1) Assume s = c = 2. Up to a permutation of the factors we may
assume #πh(A′) = 1 for all h > 1. Call 1 ≤ i < j ≤ k the two indices such
that #πh(B′) = 1 for all h /∈ {i, j}. Note that πh(S) = πh(o) if h /∈ {1, 2, i, j}.
Claim 1. k = j.

Proof of Claim 1. Assume k > j. Since k > j ≥ 2, we have πk(A) = πk(o) =
πk(B). Thus the pair (Y, S) is not concise. �

Claim 2. k ≤ 4 and Y = (P1)4 if k = 4.

Proof of Claim 2. By Claim 1 we have k ≤ 4. Assume k = 4, i.e., assume
i = 3 and j = 4. Assume Y 6= (P1)4, i.e., assume nh ≥ 2 for some h, say for
h = 1. Fix a ∈ A. Since h0(OY (ε1)) = n1 + 1 ≥ 3, there is H ∈ |OY (ε1)|
containing o and at least one point of B. By concision S is not contained
in H. Since A and B irredundantly span q, [2, Lemma 5.1] or [4, Lemmas
2.4 and 2.5] give h1(IS\S∩H(0, 1, 1, 1)) > 0. Since #π1(B′) = 1, we have
B ⊂ H. Thus #(S \ S ∩H) ≤ 2. Since OY (ε1) is globally generated, we get
#(S \S∩H) = 2, i.e., S \S∩H = A\{a}. Since OY1(1, 1, 1) is very ample, we
get #η1(A \ {a}) = 1. Taking another a′ ∈ A instead of a, we get #η1(A) = 1,
i.e., A does not depend on the second factor of Y . Since ν(A) irredundantly
spans ν(o), we get #π1(A′) = 1, a contradiction. �

(c2) Assume s = 2 and c = 1 (the case s = 2 and c = 1) being similar.
We may assume πh(A′) = 1 for all h > 2. Call i the only index such that
#πi(B

′) > 1. As in step (c1) we get k ≤ #{1, 2, 3} ≤ 3.
(c3) Assume s = c = 1. As is step (c1) and (c2) we get k ≤ 2.

7. rY (q) = 2

In this section we assume rY (q) = 2. We fix E ∈ S(Y, q). Set M :=
〈ν(A)〉 ∩ 〈ν(E)〉. Call Y ′ (resp. Y ′′) the minimal multiprojective subspace of
Y containing E ∪A (resp. E ∪B)

Lemma 7.1. If w(Y ) ≥ 4, then either ν(A) and ν(B) irredundantly span q.

Proof. Assume for instance that ν(A) does not span irredundantly q. Since
rY (q) = 2, there is A′ ⊂ A such that #A′ = 2 and A′ ∈ S(Y, q). Since A∩B =
∅, A′ ∩B = ∅. Since w(S) > 2, [5, Proposition 2.3] gives that B irredundantly
spans q. Let W ⊆ Y be the minimal multiprojective space containing A′ ∪ B.
Since q ∈ 〈ν(A′)〉 ∩ 〈ν(B)〉 and A′ ∩ B = ∅, e(A′ ∪ B) > 0. Since S is equally
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dependent, e(S) = e(A′ ∪B) + 1 and 〈ν(S)〉 = 〈ν(A′ ∪B)〉. Since A′ ∩B = ∅,
Proposition 4.3 gives w(W ) ≤ 3. Set {a} := A\A′. Since 〈ν(S)〉 = 〈ν(A′∪B)〉,
a ∈ 〈ν(W )〉. Concision for rank 1 tensors implies 〈ν(W )〉∩ν(Y ) = ν(W ). Thus
a ∈W . Hence W = Y , contradicting the assumption w(Y ) ≥ 4. �

Remark 7.2. By Lemma 7.1 from now on in this section we assume that each
set ν(A) and ν(B) irredundantly spans q.

Lemma 7.3. Take a circuit F ⊂ Y := P1 × P1 × P1 concise for Y and with
#F = 5. Write F = U ∪G with #U = 2 and #G = 3. Then Y is concise for
U .

Proof. By [1, Lemma 5.8] F is contained in an integral curve C ⊂ Y of tridegree
(1, 1, 1). Each map πi|C : C → P1 is an isomorphism. Thus each πi|U is
injective. �

Lemma 7.4. E ∩ A 6= ∅ (resp. E ∩ B 6= ∅) if and only if either w(S) ≤ 3 or
A (resp. B) is obtained form E making an elementary increasing.

Proof. It is sufficient to prove the lemma for the set A. The “if” part follows
from the definition of elementary increasing, because #E > 1.

Assume E∩A 6= ∅. Since ν(A) irredundantly spans q (Remark 7.2), we have
E is not contained in A. Write E ∩A = {a}, E = {a, b} and A = {a, u, v}. We
need to prove that there is i such that πh(a) = πh(u) = πh(v) for all h 6= i,
while πi({a, u, v}) spans a line.

(a) First assume that E∪A is not equally dependent. Since #(E∪A) = 4, we
have e(E∪A) = 1 and there is F ⊂ E∪A such that #F = 3 and e(F ) = 1. By
Remark 2.1 there is i such that #πh(F ) = 1 for all h 6= i and πi(F ) is formed
by 3 collinear points. Since ν(E) and ν(A) irredundantly span q (Remark 7.2
and the assumption E ∈ S(Y, q)), it is easy to check that (E ∪ A) \ F = {a}.
Thus A is obtained from E applying an elementary increasing with respect to
b and the i-th factor of the multiprojective space.

(b) Now assume that E ∪ A is equally dependent. Since #(E ∪ A) = 4,
[1, Proposition 5.2] says that w(E ∪ A) ≤ 2 and that P1 × P1 is the minimal
multiprojective space containing E ∪ A. Since E ∈ S(Y, q) and rY (q) > 1,
Y ′ ∼= P1 × P1 is the minimal multiprojective space containing E.

(b1) Assume E ∩B 6= ∅ and E ∪B is not equally dependent. By step (a)
applied to B we get that B is obtained from E making a positive elementary
increasing. Thus either w(B) = 2 or P1×P1×P1 is the minimal multiprojective
space containing B (last sentence of Example 3.1) and it contains A, too, since
it contains E. Thus w(S) ≤ 3.

(b2) Assume E∩B 6= ∅ and E∪B equally dependent. Thus Y ′′ ∼= P1×P1

and Y ′′ is the minimal multiprojective subspace containing E. Hence Y ′′ = Y ′

and Y = P1 × P1.
(b3) Assume E ∩B = ∅. We get w(Y ′′) ≤ 3 by Proposition 4.3 and (since

W ⊇ Y ′) we get Y = W . �
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Lemma 7.5. Assume E ∩ A 6= ∅ and E ∩B 6= ∅. Then either w(S) ≤ 2 or S
is as in one of Examples 3.1 and 3.2.

Proof. Assume w(S) > 2. By Lemma 7.4 A and B are obtained from E making
an elementary increasing. Since A ∩ B = ∅, we have #A ∩ E = #B ∩ E = 1
and E ⊂ S. By the definition of elementary increasing it is obvious that S is
as in one of Examples 3.1 and 3.2 (Example 3.2 occurs if and only if we are
doing the elementary increasings giving A and B from E with respect to the
same factor of the multiprojective space). �

Lemma 7.6. Assume E∩A = ∅ (resp. E∩B = ∅). Then E∪A (resp. E∪B)
is equally dependent.

Proof. It is sufficient to prove the lemma for E ∪ A. The assumption is
equivalent to dimM = e(E ∪ A) − 1. Fix a ∈ A. Since q /∈ 〈ν(A \ {a})〉,
〈ν(A \ {a})〉 ∩ 〈ν(E)〉 is strictly contained in M . The Grassmann’s formula
gives e((E ∪ A) \ {a}) < e(E ∪ A). Take b ∈ E. Since q /∈ 〈ν(E \ {b})〉, we
have 〈ν(E \ {b})〉 ∩ 〈ν(A)〉 is strictly contained in M . Thus E ∪ A is equally
dependent. �

Lemma 7.7. Assume E∩A = E∩B = ∅. Then w(S) ≤ 3 and Y ∼= P1×P1×P1

if w(S) = 3.

Proof. By Proposition 4.3 and Lemmas 7.3 and 7.6 we have w(Y ′) ≤ 3, w(Y ′′)
≤ 3 and if one of them, say w(Y ′), is 3, then Y ′ ∼= P1×P1×P1 and P1×P1×P1

is the minimal multiprojective space containing E. Hence w(Y ′′) = 3 and
Y ′ = Y ′′, i.e., Y ∼= P1 × P1 × P1. Now assume w(Y ′) = w(Y ′′) = 2. In
this case both Y ′ and Y ′′ have the same number of factors as the minimal
multiprojective space containing E and exactly the same non-trivial factor,
i.e., if E = {u, v} with u = (u1, . . . , uk), v = (v1, . . . , vk) and ui = vi for all
i > 2, then #πi(Y

′) = #πi(Y
′′) = 1 for all i > 2. Since πi(Y

′) = {ui} = πi(Y
′′)

for all i > 2, we get w(Y ) = 2. �

Lemma 7.8. Either S is as in Examples 3.1 and 3.2 or w(S) ≤ 4 with Y =
(P1)4 if w(S) = 4.

Proof. By the previous lemmas we may assume that exactly one among E ∩A
and E ∩ B, say the first one, is empty. Thus B is obtained from E making
a positive elementary increasing, while w(Y ′) ≤ 3 and Y ′ ∼= P1 × P1 × P1 if
w(Y ′) = 3. First assume w(Y ′) = 3 and Y ′ ∼= P1 × P1 × P1. By Lemma 7.3
Y ′ is the minimal multiprojective space containing E. Hence w(E ∪ B) ≤ 4
and Y ′′ = (P1)4 with Y ⊃ Y ′ if w(Y ′′) = 4 (last part of Example 3.1). We get
w(Y ) ≤ 4 and Y ∼= (P1)4 if S is not as in Examples 3.1 and 3.2. Now assume
w(Y ′) = 2. Thus w(E) = 2. We get that either w(Y ′′) = 2 or Y ′′ ∼= P1×P1×P1

with #π3(A) = 1. Hence w(Y ) ≤ 3. �
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8. rY (q) = 3

The point q ∈ PN has tensor rank 3 and hence ν(A) and ν(B) are tensor
decompositions of it with the minimal number of terms. By concision ([9,
Proposition 3.1.3.1]) Y is the minimal multiprojective space containing A and
the minimal multiprojective space containing B. Hence 1 ≤ ni ≤ 2 for all i. Y
is as in the cases of [5, Theorem 7.1] coming from the cases #S = 6, i.e., we
exclude case (6) of that list. In all cases (1), (2), (3), (4), (5) of that list we
have w(Y ) ≤ 4 and w(Y ) = 4 if and only if Y ∼= (P1)4. The sets S(Y, q) to
which A and B belong are described in the same paper. The possible concise
Y ’s are listed in [5, Theorem 7.1], but we stress that from the point of view of
tensor ranks among the sets S described in one of the examples of [5] there is
some structure. If we start with S with e(S) = 1 and arising in this section
and any decomposition S = A ∪ B with #A = #B = 3, the assumption
e(S) = 1 and e(A) = e(B) = 0 gives that 〈ν(A)〉 ∩ 〈ν(B)〉 is a single point by
the Grassmann’s formula. Call q this point. If we assume rX(q) = 3, then in [5]
there is a description of all S ∈ S(Y, q). Changing the decomposition S = A∪B
change q and hence all sets associated to S using the point q. Thus if e(S) = 1
and there is a partition S = A ∪ B of S such that the point 〈ν(A)〉 ∩ 〈ν(B)〉
has tensor rank 3, then to S and the partition S = A ∪ B we may associate a
family S(Y, q) of circuits associated to q.

End of the proof of Theorem 1.2. In the last 4 sections we considered all pos-
sible cases coming from a fixed partition of A ∪ B. We summarized the case
rY (q) = 2 in the statement of Lemma 7.8. �

References

[1] E. Ballico, Linearly dependent subsets of Segre varieties, J. Geom. 111 (2020), no. 2,
Paper No. 23, 19 pp. https://doi.org/10.1007/s00022-020-00534-7

[2] E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese

varieties via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), no. 2, 215–250.
https://doi.org/10.1515/apam-2013-0015

[3] E. Ballico, A. Bernardi, L. Chiantini, and E. Guardo, Bounds on the tensor rank, Ann.
Mat. Pura Appl. (4) 197 (2018), no. 6, 1771–1785. https://doi.org/10.1007/s10231-

018-0748-6

[4] E. Ballico, A. Bernardi, M. Christandl, and F. Gesmundo, On the partially symmetric
rank of tensor products of W -states and other symmetric tensors, Atti Accad. Naz.

Lincei Rend. Lincei Mat. Appl. 30 (2019), no. 1, 93–124. https://doi.org/10.4171/

RLM/837

[5] E. Ballico, A. Bernardi, and P. Santarsiero, Identifiability of rank-3 tensors, arXiv:

2001.10497.
[6] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[7] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Mathematical

Monographs, The Clarendon Press, Oxford University Press, New York, 1991.

[8] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge Uni-
versity Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511807077

https://doi.org/10.1007/s00022-020-00534-7
https://doi.org/10.1515/apam-2013-0015
https://doi.org/10.1007/s10231-018-0748-6
https://doi.org/10.1007/s10231-018-0748-6
https://doi.org/10.4171/RLM/837
https://doi.org/10.4171/RLM/837
https://doi.org/10.1017/CBO9780511807077


SEGRE VARIETIES 267

[9] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics,

128, American Mathematical Society, Providence, RI, 2012. https://doi.org/10.1090/

gsm/128

[10] B. Lovitz, Toward a generalization of Kruskal’s decomposition on tensor decomposition,

arXiv:1812.00264v2.

Edoardo Ballico
University of Trento

Via Sommarive 14

38123 Trento (TN), Italy
Email address: edoardo.ballico@unitn.it

https://doi.org/10.1090/gsm/128
https://doi.org/10.1090/gsm/128

