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Polarization and multiscale structural balance in
signed networks

Szymon Talaga 1B Massimo StellaZ, Trevor James Swanson3 & Andreia Sofia Teixeira® 4

Polarization, or a division into mutually hostile groups, is a common feature of social systems.
It is studied in Structural Balance Theory in terms of semicycles in signed networks. However,
enumerating semicycles is computationally expensive, so approximations are often needed.
Here we introduce the Multiscale Semiwalk Balance approach for measuring the degree of
balance (DoB) in (un)directed, (un)weighted signed networks by approximating semicycles
with closed semiwalks. It allows selecting the resolution of analysis appropriate for assessing
DoB motivated by the Locality Principle, which posits that patterns in shorter cycles are more
important than in longer ones. Our approach overcomes several limitations affecting walk-
based approximations and provides methods for assessing DoB at various scales, from graphs
to individual nodes, and for clustering signed networks. We demonstrate its effectiveness by
applying it to real-world social systems, which leads to explainable results for networks with
expected patterns (polarization in the US Congress) and a more nuanced perspective for
other systems. Our work may facilitate studying polarization and structural balance in a
variety of contexts and at multiple scales.
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neering for modeling complex systems. Depending on the

context, they may be undirected (ties are bidirectional) or
directed and weighted (ties have weights that usually indicate
strength) or unweighted!. Moreover, some networks are signed,
or have links that are either positive or negative, and thus can be
used to model valenced relations such as liking and disliking, or
alliances and war?=>. Signed networks are commonly used for
representing systems capable of polarization, or clustering into
groups with positive in-group and negative out-group ties. As a
result, they have long been important to social scientists inter-
ested in polarization and differentiation processes inherent to the
formation of groups, attitudes and opinions>%-°. However, signed
networks are also used in other disciplines for modeling diverse
phenomena such as brain activation!?, ecological interactions!!,
and financial time series!2. Moreover, it is often not only the signs
that matter but also the weights indicating the intensities of
particular relations. Therefore, principled methods for analyzing
signed networks, possibly with weights, are important for many
applications.

Since signed networks represent valenced relations, a funda-
mental question concerns the degree to which positive and
negative ties are consistent with respect to notions of (anti)
transitivity, and whether these microscopic patterns give rise to a
polarized macroscopic organization into mutually antagonistic
clusters. Both problems are studied in Structural Balance Theory
(SBT)!>14, which originated from Gestalt psychology and the
work of Fritz Heider!?, from which one can deduce that positive
relations should be transitive (a friend of my friend is my friend)
and negative relations antitransitive (an enemy of my enemy is
my friend), e.g., two positively (negatively) linked nodes should
have identical (opposite) signs on their ties to shared neighbors.
These considerations were later formalized and generalized in
graph-theoretic terms and used to demonstrate that (anti)tran-
sitivity of (negative) positive relations is directly linked to the
properties of cycles and as a result to clustering and polarization.
Namely, polarized systems clustered in exactly two antagonistic
groups, in which in-group ties are exclusively positive and out-
group ties negative, require that all cycles are positive, or that the
products of the signs of their edges are positive!? (strong balance
property; see Fig. 1 for a visual explanation and some examples).
Systems clustered into b > 2 antagonistic blocks require that there
are no cycles with exactly one negative edge (weak balance
property)1®. See “Methods: Overview of Structural Balance The-
ory”, for the main definitions and theorems of SBT, including
their general form applicable to directed networks based on the
notion of semicycles.

SBT specifies strict requirements for signed networks to be
balanced (partitioned into antagonistic groups), but real-world
systems are rarely organized neatly enough to satisfy them
completely. This is why a lot of work in SBT is concerned with
measures of the Degree of Balance (DoB), or partial balance!”?,
which can be seen as indicators of a “distance” from the perfectly
balanced state. Such measures are typically directly or indirectly
related to the relative frequencies of positive and negative cycles
(or cycles with exactly one negative edge in the case of weak
balance).

However, measuring structural balance in practice is not trivial.
While defining DoB at the level of cycles of a particular length k is
simple, since in this case, the raw proportion of balanced cycles is
meaningful, any global DoB measure has to integrate information
across cycles of many different lengths and it is not immediately
clear how this should be done. The difficulty comes from the fact
that typically longer cycles will be much more numerous than
shorter ones, so a simple proportion will be determined primarily
by patterns found in long cycles, but this may not be a desirable

N etworks are used in many branches of science and engi-

property. Indeed, already Cartwright and Harrary hypothesized
that shorter cycles should matter more when evaluating DoB!3.
Moreover, this intuition has been later justified empirically by
demonstrating that it is easier for people to memorize the
valences of ties in shorter cycles!8. More recently, analyses based
on counting simple cycles demonstrated that real networks often
have a relatively low cycle length threshold after which DoB
measures quickly decrease, indicating that structural balance is
found primarily in structures at smaller scales!®.

Applying SBT in practice is further complicated by the fact that
enumerating and counting cycles is computationally expensive,
especially for large graphs. This problem can be partially alle-
viated with novel algorithms and sampling methods, but exact
solutions will always remain prohibitively expensive due to the
nature of the problem. Moreover, the current state-of-the-art
sampling methods!? are limited to “grayscale” measures which
quantify DoB for cycles of particular lengths and they do not offer
any principled way for aggregating them into a single global DoB
index. This is an important limitation since it is typically easier
and more meaningful to compare a scalar DoB value between
different networks. Moreover, global measures, being scalar
values, are probably more useful for designing clustering or
community detection methods.

Thus, various approximations have been proposed, which can
roughly be divided into two families of local and global measures.
Local measures attain efficiency by focusing only on cycles of
particular, usually short, lengths, such as 3-cycles (triads). They
can be fast, but provide only a limited description of the real
structure of a network. Hence, we argue that global measures are
preferable.

Several global approaches have been proposed. Some bypass
the problem of counting cycles entirely, and instead search for
partitions minimizing frustration?® (the number or relative
weight of edges incompatible with the SBT assumptions), but they
suffer from similar computational constraints due to their com-
binatorial nature. Others leverage spectral properties of signed
graphs and are therefore computationally efficient, but measure
only strong balance and quantify DoB using the smallest eigen-
value of the signed Laplacian matrix?!, which is not normalized
and can be difficult to compare between networks. The last major
approach is based on approximating cycle counts with counts of
closed walks which can be calculated, or at least approximated,
very efficiently with standard linear algebra®22, Moreover, it can
produce both local and global measures®?3 as well as capture
strong and weak balance properties®.

However, walk-based approximations can be potentially mis-
leading as they may combine patterns found at very different
cycle lengths!®. On the other hand, one can put forth arguments
based on the theory of dynamical consensus on signed networks
and argue that closed walks provide a fuller picture of structural
balance?4.

Here we propose Multiscale Semiwalk Balance (MSB): an
approach applicable to (un)directed, (un)weighted signed net-
works. It is multiscale as it provides both grayscale measures
approximating DoB at particular cycle lengths, as well as global
indicators aggregating local measures across multiple scales in a
principled manner. Namely, it enforces what we call the Locality
Principle (LP) and ensures that global DoB estimates are
weighted averages of estimates at specific lengths such that DoBs
for shorter cycles are assigned with non-decreasing weights.

Our work builds on the Walk Balance (WB) approach pro-
posed by Estrada and Benzi?, which tends to underestimate DoB,
especially in large networks!®22. We show that this is caused by
too much weight being placed on long cycles and can be fixed by
introducing a formal resolution parameter. Namely, we demon-
strate how the inverse temperature, f3, considered briefly already
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Fig. 1 Examples of high and low polarization and its general connection to frequencies of balanced and unbalanced cycles. The two networks depict bill
co-sponsorship relations in the U.S. Senate. Positive ties (blue) link senators, who tended to promote the same bills together more often than by chance,
and negative ties (red) correspond to those who collaborated less often than at random (see “Results: Polarization in the U.S. Congress” for the data
description and a detailed analysis). The four triad diagrams depict four possible strongly (un)balanced undirected 3-cycles. Positive ties are marked with
blue and negative with red dashed lines. a 96th Congress (1979-81, Carter administration) was a period of low polarization with frequent positive between-
party and negative within-party links. b 114th Congress (2015-17, Obama administration) featured high polarization with in-group ties being almost
exclusively positive and out-group ties negative. € Schematic depiction of the relationship between relative frequencies of (un)balanced cycles and low
polarization, which is characterized by comparable frequencies, or more rarely by a majority, of unbalanced cycles (note that, even though only 3 cycles are
depicted, the general relationship pertains to cycles of all lengths). d Relationship between (un)balanced cycles and high polarization, which implies that

there is a clear majority of balanced cycles.

by Estrada and Benzi*, can be reinterpreted and used to deter-
mine an appropriate weighting scheme for aggregating DoB
measures across different cycle lengths that satisfies LP. It also
allows our MSB approach to be applicable and meaningful in the
context of weighted signed networks. Additionally, we generalize
the WB approach to capture both strong and weak balance, as
well as define DoB measures not only at the level of entire graphs
but also for particular nodes and pairs of nodes to enable the
development of effective SBT-aware clustering (community
detection) methods. Last but not least, by using semiwalk-based
approximations our methods are more directly linked to both
undirected and directed SBT theorems and therefore meaningful
also for directed signed networks. We demonstrate the utility of
our approach in two case studies of polarization in social systems.
The first is a re-analysis of the famous Sampson’s Monks
dataset?°, in which we show that the commonly accepted “ground
truth” partition is not SBT-optimal by finding better ones, which
also shed some additional light on the underlying social
dynamics. In the second study, we use our methods to provide
evidence for increasing polarization in the U.S. Congress based on
bill co-sponsorship data®.

Results

Preliminaries. Before introducing the proposed framework we
first introduce the notation and state the core problems our work
is supposed to solve in a more formal fashion for the sake of
clarity.

Notation. Here we consider weighted graphs G = (V, E, w) with
n = |V] vertices and m = |E| edges and no self-loops or multilinks,
where V and E C V x V are vertex and edge sets respectively, and
w : E — R is a function assigning weights to edges. The weights
can be negative, so the above definition captures all (un)signed,
(un)weighted and (un)directed graphs.

The adjacency matrix of a graph G is given by a square n x n
matrix A(G) such that A; = w;; = w(i,§) if (i,j) €E or otherwise
A;;=0. Whenever possible without introducing ambiguity, we
will drop the explicit dependence on G and prefer a simpler
notation, A. We will use |A| to denote the unsigned counterpart
of A such that |A];; = |w;|. Additionally, P and N will denote non-
negative n x n matrices corresponding to positive and negative
parts of A such that A=P—N and |[A|=P+N. When
discussing network partitions, we will use B to denote nxb
block-partition matrix such that B;,=1 when the ith node
belongs to the uth block (group) or otherwise B;, = 0. Matrix
trace operator will be denoted by tr. In particular, trace of the kth
power of a square matrix X will be denoted by trX*. Hadamard
(elementwise) matrix product will be denoted by ©.

All measures defined later in this paper will depend on a
particular graph G. Thus, for the sake of simplicity, whenever
possible, we will omit this general dependence in the notation.

Aggregating DoB measures. The difficulty with defining a
meaningful global Degree of Balance (DoB) can be easily seen
by first considering DoB measures for cycles of particular
lengths. For a signed graph G we define k-balance (DoB for
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cycles of length k) as:

B, = py (k) )
py (k) +p_(K)
where p, (k) and p_(k) are respectively counts of balanced and
unbalanced cycles of length k. This measure is easy to interpret
since it is concerned with only one specific class of cycles (those
of length k), so in this context, it is justified to treat every cycle
equally.

However, defining a global DoB measure integrating structural
balance information across different cycle lengths is more
difficult, since there are infinitely many ways to do it. A
reasonable solution is to assume that global DoB should be a
weighted average of k-balance scores:

B= Ekj w; By )

where wy’s are normalized weights (w;2>0 and > jwir=1)
assigned to different balance scores at different lengths k.
However, it is not clear how the weights should be chosen in
order to produce a meaningful global DoB measure.

Importantly, let us note that the above generic definitions are
appropriate for both the strong and weak notions of balance. In
what follows we will derive particular operationalizations of these
generic formulas.

Finding clusters in signed networks. While it is useful to know the
DoB of a network, which tells how close it is to being perfectly
balanced and therefore clusterable, it is arguably even more useful
to be able to find clusters (network communities) such that they
agree with SBT to the greatest extent possible. This compatibility
of a given partition of a signed network with respect to the
structure theorems of SBT (see “Methods: Overview of Structural
Balance Theory” for details) can be measured with frustration
ratio, which can be defined as the sum of absolute weights of
negative in-group and positive out-group ties relative to the sum
of all absolute edge weights?, which can be expressed succinctly in
the matrix form as:

1" [(BB)ON+ (117 —=BBT) 0 P]1
171A]1

where 1 is a vector of ones of an appropriate length, B € R"*? is
a block-partition matrix and P and N are positive and negative
parts of the adjacency matrix A. Note that frustration ratio can
also be seen as a normalized version of frustration count, which is
used to define frustration index as the minimal frustration count
over all partitions of a network?®,

Frustration ratio is a very straightforward measure of the extent
to which a given partition produces a balanced network
configuration. It ranges from 0 for balanced partitions to 1 for
maximally unbalanced ones (Fig. 2).

It is important to note that the frustration ratio, while closely
related to DoB, measures something different. DoB is a property

F(B) = (3)

Balanced partition Max. unbalanced partition

Q Q Q Q
Q Q Q Q
O O O O
0 7B > 1

Fig. 2 Relationship between frustration ratio, F(B), and structural balance
in signed networks. Positive ties are blue and negative are red and dashed.
Different groups are marked with circles.

of a network as such, which, thanks to the structure theorems of
SBT, is informative of the extent to which a given network is
clusterable. On the other hand, the frustration ratio is a property
of a network and a specific partition and is directly related to how
close a given partition is to being perfectly balanced. That is why
we argue that it is an appropriate measure of the quality of a
partition vis-a-vis the tenets of SBT. Thus, the DoB and
frustration ratio are closely related but not equivalent?4. However,
the crux is that in the limiting case of the perfect balance, DoB
equal to 1 implies that there is a partition with zero frustration
and vice versa. The farther a network is from this ideal case the
fuzzier this relationship gets, but in general the two measures will
always be related. We will use this insight to develop a clustering
method utilizing DoB-like scores.

Approximating (semi)cycles with closed (semi)walks. Counting
cycles is computationally very expensive, so in practice approx-
imations are necessary. A very general and flexible approach is
based on approximating cycles with closed walks, which can be
counted much more efficiently using the powers of adjacency
matrix. However, SBT in its most general form applicable to both
directed and undirected networks is formulated in terms of closed
semipaths, or semicycles!3. A semipath is a path, in which edge
directions can be ignored, but any edge can still be traversed only
once. This property has an important consequence for directed
networks, in which in general semicycles correspond to cycles in
the associated undirected multigraph (obtained by making every
link bidirectional) with the exception of 2-cycles, which require
both i —j and j — i links to be present (Fig. 3).

Thus, we argue that semicycle counts should be approximated
using semiwalks, which are simply walks on the corresponding
undirected multigraph (i.e., ignoring edge directions)°. However,
an additional correction factor should be used to account for the
fact that non-reciprocated directed edges do not generate any
2-semicycles.

Multiscale semiwalk balance. Here we introduce the Multiscale
Semiwalk Balance (MSB) approach which provides solutions to
all of the above-mentioned problems. We first develop it without
considering the role of edge weights, which, as we discuss later,
appear in our approach naturally also in the context of
unweighted networks. Once the core framework is established, we
show that it automatically extends to weighted graphs in a
meaningful way. Moreover, here we focus on the undirected
version of MSB and strong balance. In “Results: Directed mea-
sures” we generalize our approach to directed signed graphs and
in “Methods: Weak balance” to the weak notion of structural
balance.

In what follows we will use the fact that for a graph G walks of
length k between nodes i and j are counted by the elements of the
k-th power of its (unsigned) adjacency matrix, |[A[¥ (in the
weighted case |A[k gives weighted counts such that each walk is
assigned a weight equal to the product over its constitutive edges).
Importantly, such matrix powers can be calculated and
approximated easily using eigendecomposition, especially for
symmetric matrices and here we will use only such.

We will be particularly interested in weighted sums of matrix
powers of the following form:

Kinax

k
WA Bk ) = 55 By AF 2 o @
k=i K!

where k iterates over a sequence of consecutive non-negative
integers, k., .- , Koo and the second approximate equality is
exact when k_;, = 0 and k_,, = oo. In what follows we will use a
simpler notation, W(A, f8), whenever it is clear from the context,

4 COMMUNICATIONS PHYSICS| (2023)6:349 | https://doi.org/10.1038/s42005-023-01467-8 | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01467-8

ARTICLE

OO0
0200

()

a
N
C Balanced

. ®

@—@

b
°e

Unbalanced

ONSO
OO

@

@

Fig. 3 Relationship between cycles and semicycles. a Symmetric (reciprocated) dyads generate two (semi)cycles. b Asymmetric dyads generate no
(semi)cycles, since a semicycle of the form i — j — i would have to cross the directed i — j link twice. € An example of the connection between directed
cycles and semicycles in signed networks. A single directed triad can generate several different balanced and unbalanced 2- and 3-semicycles (which here
are marked with two-way arrows). Positive ties are blue and negative red and dashed.

or unimportant, what k,_;, and k_,, are. Moreover, any function
depending on W(...) is also implicitly parametrized by k_; and
k... but we will omit this in the notation for the sake of brevity.
Note that here § is a free parameter that can be used to control
the weights assigned to different powers of A. We will use this fact
later. Moreover, both W(A, f8) and its trace can be approximated
in an accurate and efficient manner based on m leading
eigenvalues of A (see “Methods: Numerical approximations and
efficiency”).

Strong balance. Following Estrada and Benzi*, we note that
powers of signed adjacency matrix, AX, give differences between
counts of positive and negative walks of a given length, while
powers of unsigned adjacency matrix, |A[¥, count all walks of the
given length. Thus, the sum of differences between weighted
counts of positive and negative walks of a lengths k=
Kins - s kpax 1S given by W(A, 8). Similarly, W(|A][, B) gives the
corresponding sum of weighted counts of all walks.

In the case of undirected networks considered here, we have
that k,;, = 3, since 2-cycles in undirected signed networks are
always trivially balanced. On the other hand, it should be that
kpnax < 1, since no cycle can be longer than the number of nodes in
a network, it is not obvious what is the proper exact choice for
k... However, any moderately large value will do, since the
higher-order terms in Eq. (4) are quickly killed by the inverse
factorial factor. In Supplementary Note 3, we show that typically
k. =10 is enough to get practically error-free results. However,
to stay on the safe side in all following analyses we always use
k,. = 30.

Counts of closed walks are given by the diagonal elements, so
the overall counts are given by appropriate matrix traces. Thus, to
measure structural balance in a signed network one can use
Balance Index?, or the ratio of the difference between weighted
counts of balanced (u) and unbalanced (¢_) closed walks to the
weighted count of all closed walks:

—H_ trW(Av )
R = et TP %)
ot tW(ALB)
A conceptually simpler measure is the Degree of Balance
(DoB), proposed already by Cartwright and Harary!3, which
represents the proportion of balanced walks:

Mm=7&—=§WQm+ﬂ (6)

LU

Following Estrada and Benzi* again, we can define node-level
measures, also known as local balance?3, simply by calculating

diagonals instead of traces:

_ W(A>ﬁ)ii
O =Waal.p, 7
b8 =3 ) +1] ®)

Note that we use lowercase letters to denote quantities describing
individual nodes instead of the global properties of entire graphs.
We will follow this convention also when defining other node-
level measures.

Measures of k-balance (DoB at a particular length k) can also
be easily defined:

trAF
R =2 9
7 tr|Alf ©)

Bi=5 R+ 1) (10)
Note that these measures do not depend on 3, since, even if they
did, the same weighting factor would have to appear in both the
numerator and denominator. This shows that § indeed controls
only the amount of weight put on different cycle lengths, but does
not influence the degree of balance at particular lengths.

Contribution profiles and Locality Principle. Importantly, one can
assess the contribution of closed walks of length k to the total

weighted sum of closed walk counts for lengths k., ... , k.

B tr|A|¥
OB =1 WAl p) )

In other words, Eq. (11) measures the ratio of the weighted
sum of closed walks of length k to the total weighted sum of
closed walks over a specified range of lengths. It is normalized by
construction, so C(f) € [0, 1] and >, Ci(B) = 1.

The contribution score clearly depends on f3, which can be used
for controlling the influence of different length scales on the
overall calculations. This is a crucial feature of our approach as it
allows for a straightforward operationalization of the Locality
Principle (LP): shorter cycles should generally matter no less than
longer ones.

Definition 1. (Locality Principle) A graph G, a resolution para-
meter fB>0 and a sequence of consecutive integers
2<k , k. satisfy the Locality Principle if and only if the

mins ***
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Fig. 4 Contribution and k-balance profiles in four real-world networks. See “Methods: Network datasets” for dataset descriptions. Measures obtained
with the original Walk Balance (WB) approach of Estrada and Benzi# are labeled as =1, and Multiscale Semiwalk Balance (MSB) measures as Brax:
Approximations based on m =10 leading eigenvalues from both ends of the spectrum were used. Numbers of nodes are denoted by n, and DoB values
according to WB and MSB approaches by B(1) and B(B,,,,) respectively. a Contribution scores at different closed walk lengths. In the case of the WB
approach peaks of the contribution profiles are marked with stars. b Balance scores at different closed walk lengths.

following set of inequalities holds:
G B=... B)

Thus, LP allows for the identification of a range of “reasonable”
values of 8, which is given by a set (0, [)’max}, where 8. >0 is the
largest value still satisfying LP. Crucially, 8, ..

‘max

always exists for
graphs that contain at least one closed walk for lengths

Kmins - > Kmax-
Theorem 1. Let 2<k =k, ;,, ... , k., De a sequence of con-
secutive integers and G a graph such that tr|A[¥>0 for all k’s.
Then, there exists a value ___ such that Def. 1 holds for values

max

0 < < Bnax and does not hold for values >, .

Proof. Using Eq. (11) the condition for LP can be rewritten as:
k et 1
ﬁ—tr|A|k > P
k! (k+1)!

which after some straightforward algebra gives the following
condition for f3:

tr|A|k+l

tr|A|*
tr| A|k+1
Now we note that the right-hand side of the above inequality is

always positive, so there is a maximal value 8 >0 satisfying all
inequalities:

B<(k+1)

tr|A|*
tr|A|k+1

As a result, a f value satisfies LP if and only if § € (0,
which ends the proof.

Finally, following the parsimony principle, we choose the
weakest LP assumption possible and set f:=pf . . This is a
simple heuristic and we do not make any claims regarding its
optimality. We chose to use it here as developing a more
principled method for selecting 8 is beyond the scope of this
paper and we plan to address this problem in the future.

Brax = mkin(k +1)

max] >

However, as we later show through empirical analyses of real-
world datasets, this heuristic seems to work very well in practice.
Moreover, using B still yields markedly right-skewed con-
tribution profiles, even though it can be argued that for this
choice LP “barely” holds, but this is true only in the sense of the
entire set of inequalities for all pairs of lengths (k, k + 1), and does
not imply that contribution scores assigned to short closed walks
are only marginally higher than those assigned to long walks (cf.
Fig. 4).

Our results also explain why the original WB approach*
underestimates DoB in large networks. Namely, it does so
because without determining the characteristic scale of a network
by tuning f the contribution profile may peak over very long
cycles. As Fig. 4 shows, WB places most of the weight on very
long cycles (k= 100) in large networks, which clearly violates LP.
As a result, it produces much lower DoB estimates than MSB,
since products of signs over very long closed walks are arguably
mostly random. Only in the case of the directed Epinions network
WB produces an estimate close to the one given by MSB.
However, as balance measures at particular cycle lengths show,
this happens only because of the very particular structure of the
network resulting in high DoB at cycle lengths of approximately
100. Moreover, this seems to be a statistical artifact that
disappears almost completely when the balance is assessed based
on semiwalks (MSB) instead of ordinary walks (WB) (see
“Results: Directed measures” for the generalization to directed
measures based on semiwalks). Crucially, this problem is likely to
affect any other walk-based methods, which do not use a well-
tuned resolution parameter. Moreover, without a measure akin to
Eq. (11), it is hard to know for sure whether a given method will
produce correct results for a given network.

Importantly, global DoB is a weighted average of k-balance
values with weights equal to the corresponding contribution
scores. Thus, Eq. (6) satisfies the requirement postulated in
“Results: Aggregating DoB measures”.

Theorem 2. Let G be a signed graph, § > 0 a resolution parameter

and 2<k =k k.. @ sequence of consecutive integers.

miny *** 5 max
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Then:
BB) = S CupIBy

Proof. It is given in Supplementary Note 1.

Node contributions. Starting from similar ideas, one can also
define node-level, or local, contribution scores measuring the
influence of a node i on the overall DoB calculations:

_ W(ALP),
)= WOALp (12

Note that by construction ¢(f)€[0,1] and > ic(f) =1, so it
enjoys the same normalization property as the global contribution
score. Importantly, node-level contribution scores, together with
local DoB, can be useful for defining and measuring various
notions of node centrality in signed networks.

Pairwise cohesion and clustering. Note that off-diagonal elements
of W(A, p) also convey important information. Namely, they
measure the difference between weighted counts of positive and
negative walks between nodes i and j. We use this fact to define
the pairwise Cohesion Index:

_ W(A7ﬁ; kmin = 2)1']‘
i) = WAL Bk = 2)

(13)

and a corresponding (pairwise) degree of cohesion measuring the
fraction of positive walks between nodes i and j:

b, =5 (ryB)+1) (14)

Note that the cohesion index uses k,;, = 2. This facilitates dif-
ferentiating between frustrated and non-frustrated edges. If there
are many positive walks between i and j, but i ~ j edge is negative,
then the (4, j) pair generates many unbalanced closed walks and
therefore the i ~ j edge should be considered a frustrated in-group
tie rather than an out-group tie, and an analogous argument can
be made for negative walks. Thus, direct links by themselves do
not provide the evidence necessary for partitioning nodes and
therefore should not be used for determining pairwise cohesion.

We use the same letters r and b we used to denote (local)
balance measures for the sake of consistency as balance and
cohesion are based on the same idea. Indeed, all balance scores
can be seen as measures of “self-cohesion”. To see this, let us
consider a cycle and a node i that sends a bit of information to its
left neighbor, who passes it further to its left neighbor, and so on
until the bit comes back to i. Moreover, let us assume that the bit
is flipped when crossing negative edges. Now, it is easy to see that
the bit will return to the original sender unchanged if and only if
the cycle is balanced. In this sense, structural balance is measuring
the consistency between sent and returning signals.

Cohesion measures are important because they allow to
develop SBT-aware clustering methods. We leave a detailed
study of this idea for future work. However, in what follows we
combine them with standard agglomerative hierarchical
clustering?’ (see “Methods: Hierarchical clustering with pairwise
DoB measures” for details) to show that the MSB approach
produces meaningful results and allows for detecting interpre-
table low frustration network partitions.

Weighted measures and B as average edge weight. Importantly, f3
can be interpreted in terms of an average edge weight. Any
unweighted network can be seen as a weighted network with
uniform absolute edge weights of 1. Note that in this case, the
absolute product over a closed walk of any length is always equal
to 1, so every walk is considered equal, and it is only § that

controls and re-scales edge weights inducing nonuniform walk
weights (through BF scaling). Thus, a convenient way to handle
non-unitary weights is to re-scale them, so the average absolute
weight is equal to 1:

T Yoyl

where wj; is the original weight of the (i, j) edge and |E| is the
number of edges.

This retains the interpretation of § in terms of an average edge
weight and ensures that in a network with a completely uniformly
random topology (i.e., Erdos-Rényi random graph with randomly
and independently assigned signs and absolute weights) the
expected absolute value of a walk weight (i.e., the product of the
corresponding edge weights) gets fixed to 1 when = 1. Results in
the “Re-analysis of Sampson’s Monastery dataset” section suggest
tentatively that this approach to incorporating edge weights may
be indeed effective and produce better results than analogous
unweighted methods (e.g., find partitions with lower frustration).

(15)

Directed measures. Here we extend all the previously defined
measures to directed signed networks. To do so, we first note that
the structure theorems of SBT in their most general form are
formulated in terms of semipaths and semicycles (they are listed
in “Methods: Overview of Structural Balance Theory”). Thus, our
approach can be extended to directed networks by simply using
semiwalks instead of ordinary walks.

Definition 2. (Semiwalk) A semiwalk is a sequence of adjacent
edges such that for every two consecutive edges (i, ) and (k,]) it
holds that k € {i, j} or I € {i, j}.

More intuitively, semiwalks are just ordinary walks ignoring
edge directions® or walks on an undirected multigraph derived
from a given directed graph by making all edges bidirectional.
Thus, semiwalks between all pairs of nodes in a graph G are
counted by powers of its semiadjacency matrix, which is defined
as the symmetric part of the adjacency matrix:

S(A) = % (A+AT) (16)
Note that S is symmetric and S(A) = A when A is symmetric,
which jointly means that S[S(A)] =S, so the semiadjacency
operator is idempotent. In what follows, we will use a simpler
notation without the explicit dependence on A and we will use S
to denote S(A) and |S| to denote S(JA|).

Importantly, S is not a lossless representation of the adjacency
matrix of the undirected multigraph underlying a given directed
signed network, but it is lossy in a way that does not affect any
balance-related calculations. First, reciprocal edges with opposite
signs cancel each other out in S(A). However, this does not affect
the difference between counts of positive and negative semiwalks,

4 — y_, since each symmetric dyad with opposite edge signs will
be included in the same number of positive and negative
semiwalks between 7 and j (Fig. 5). Second, the 1/2 factor means
that S approximates the adjacency matrix of the multigraph
divided by 2, but, again, this does not matter as in our approach

@)

Positive semiwalks Negative semiwalks

—®O-@ @O0
@@H@@@@@@

Fig. 5 Semiwalks in directed signed networks. Positive and negative
semiwalks passing through symmetric dyads with opposite edge signs
cancel each other out. Positive ties are blue and negative red and dashed.
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edge weights are reweighted by the § parameter, which sets the
average edge weight, anyway. The gain from using the 1/2 factor
is that S is idempotent and equal to A for undirected graphs.
As a result, directed balance measures are obtained simply by
substituting A with S and |A| with [S| in all the formulas.
However, to account for the fact that 2-cycles in directed signed
networks are not trivial (i.e., they may be both balanced and
unbalanced), an additional correction is needed. As explained in
“Results: Approximating (semi)cycles with closed (semi)walks”,
asymmetric dyads do not span any 2-semicycles, while symmetric
ones do. Thus, in the case of directed networks one needs to
apply a correction to Eq. (4) to count proper 2-semicycles:

W(A, p) _Ey +W(S, B) (17)

2
where W still uses k,;, = 3.

Re-analysis of Sampson’s Monastery dataset. Sampson’s Mon-
astery study?> produced one of the most famous network datasets
studied in Social Network Analysis (SNA) in general, and SBT in
particular. It describes the evolution of the social structure in a
group of postulants and novices in a monastery in New England
in the 1960s. Namely, a network of liking (positive) and disliking
(negative) relations was measured at five points in time. The ties
are directed and weighted in the —3:3 range, with weights indi-
cating the ordinal ranking of the preference toward or against a
given person typical for sociometric studies (see “Methods:
Sampson’s Monastery dataset” for details). The dataset is parti-
cularly valuable because, as the study was being conducted, the

a @ Loyal Opposition

group went through a major conflict, which eventually led to
either resignation or expulsion of the majority of the members of
the congregation. Moreover, Sampson identified a partition into
three groups, which later were independently validated with
analytic SBT-motivated clustering methods?, and therefore is
commonly recognized as the “ground truth” solution.

The most important events happened at times t = 2, 3, 4, which
correspond to a period of differentiation and polarization? that
eventually led to an open conflict and disintegration of the group.
At t =2, 12 new members joined the monastery, while some older
members left after ¢ =1, so the new group consisted of 18 men in
total. This perturbation led to the emergence of two competing
groups (Loyal Opposition and Young Turks) as well as a group of
peripheral members, who were not fully accepted by the rest
(Outcasts). The network at time t =4 depicts the structure just
before the open conflict and disintegration. At t=5, only 7
members remained in the monastery, and those who stayed (they
are marked with red labels in Fig. 6¢c, t=4) belonged almost
exclusively to the Loyal Opposition, which clearly “won” the
conflict.

Here we use the MSB approach to demonstrate that the
“ground truth” partition is not SBT-optimal, or maximally
consistent with Theorem 4. This can be measured using the
frustration ratio, F(B). Figure 6a shows both the “ground truth”
and the MSB network partitions for times t=2,3,4 (see
“Methods: Hierarchical clustering with pairwise DoB measures”
for details of the clustering method). They differ only in a few
details, which are, nonetheless, very informative about the
unfolding dynamics. First, according to the “ground truth”

@ MSB partition b

@ Young Turks @ Outcasts © "Ground truth"
t=2 t=3 t=4
o®, 00 a,3°
Basil
P (0J0) @ “ ® 0.4
. John@)sa' JohngBosco '
Gregsv D o John Bosco 05 =@~ B(Brmax)
. w Basil : A= W(Brax)
Gregory Amand - B(1)
Anamd o Basil
Amand' ‘ 0.0
(020) ) 1 2 3 4 5
C 2 d 0.35
@ 0.30
[¢] .
1 © o Jo0 ©° W ad ®
Q Gregon Basil 0.25
00°® Basil Am@@d. ’.& y Basil g o
0 Aﬁi.éﬁa 777777777777 ; [ @ 0.20
Gregor °
i ® ey o Gregpry 0.15
© 9] Amand v
v 0.10
_ @ John Bosco @- F FU
2 JohnBosco © 0.05 158 8 Fiss
John Bosco © A= Fuws - For
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Fig. 6 Re-analysis of Sampson's Monastery networks using Multiscale Semiwalk Balance (MSB) approach. Full spectra were used in computations
(exact results). a Signed sociograms at times t = 2, 3, 4. Left side colors denote block membership according to the “ground truth” partition and right side
colors correspond to MSB partitions. Positive ties are blue and negative are red. Individuals whose “ground truth” and MSB block memberships differ
(Amand, Basil and John Bosco) as well as the leaders of Young Turks (John Bosco and Gregory) are labeled. Network layout was determined with the
Kamada-Kawai algorithm using only positive ties with weights (distances) on cross-block ties rescaled by a factor of 5. b Time series of strong and weak
Degree of Balance (DoB) measures for t=1,..,, 5 using MSB, denoted by B(8,,,,) and W(B,,,) respectively, as well as strong DoB based on the Walk
Balance (WB) approach of Estrada and Benzi4, which is equivalent to MSB approach with g =1 using ordinary adjacency matrix (denoted by B(1)). ¢ Weak
local balance expressed as z-scores relative to the overall distribution. Points are sized proportionally to local contributions and ordered first by block
membership and then by balance scores. Members who remained at the monastery after the culmination of the conflict (t = 5) are marked with red labels
on the subplot for t = 4. d Time series of frustration ratios for t =1, ..., 5 according to partitions obtained with MSB and WB (f =1) approaches as well as
the “ground truth” solution (which is defined only for times t =2, 3, 4). F%SB denotes frustration values using the unweighted MSB approach.
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partition, Basil was a member of the Outcasts. However, MSB
analysis indicates that initially (f=2) he interacted mostly with
the Young Turks and only later was rejected and became one of
the Outcasts. Second, Amand, a member of the Loyal Opposition
according to the “ground truth”, was consistently identified as
one of the Outcasts by our MSB clustering procedure. Most
importantly, according to MSB, John Bosco, who was considered
one of the two leaders of the Young Turks (the second one was
Gregory), became one of the Outcasts just before the disintegra-
tion of the monastery (¢ = 4). This says a lot about why the Young
Turks “lost” the competition against the Loyal Opposition, of
which core constituted most of the group that remained at the
monastery.

As evident in Fig. 6c, the local weak balance scores of John
Bosco were consistently low and at time t =4 also Gregory, the
second leader, attained low local balance (see “Methods: Weak
balance” for the details of the weak balance measures). This was
largely driven by the tension in their personal relationship (at
t=4 the Gregory — John Bosco tie is positive and John
Bosco — Gregory is negative), which then propagated through
the entire group (note that both of them had high local
contribution scores, Fig. 6¢) leading, probably, to its decomposi-
tion. As Fig. 6a shows, over time John Bosco established more
positive connections with Outcasts and developed negative
feelings toward Gregory. At the same time, the core of Loyal
Opposition strengthened internal connections and became very
cohesive at time t = 4, as indicated by the high weak local balance
scores of most of the individuals with red labels in Fig. 6c.

Importantly, MSB measures of DoB (Fig. 6b) are clearly high
during the evolution of the conflict (t=2,3,4), with the
maximum at t=4, while analogous WP measures, which are
not based on LP, yielded markedly lower DoB values that cannot
be readily interpreted as indicative of a conflict, as they are not
much greater than 1/2 (which can be expected for a random
assignment of edge signs). Similarly, frustration values (Fig. 6d)
obtained with MSB clustering are consistently lower than those of
the “ground truth” partition, and at times t=1,2,3,4 is also
lower than the ones obtained using WB. On the other hand,
frustration ratios obtained when ignoring edge weights (F{s;) are
markedly higher, indicating that our approach uses edge weight
information effectively leading to better results, ie., partitions
with lower frustration.

Thus, the analysis indicates that MSB can produce useful and
interpretable results, including finding low frustration partitions
of signed networks. Moreover, by combining global and local
measures applied to time series of network snapshots, insights
into the impact of microscopic changes (e.g., edge sign switching)
on the meso- and macroscopic structure can be gained.

Polarization in the U.S. Congress. It is often claimed that
political life in contemporary democracies has polarized sig-
nificantly over the last few decades. Arguably, this debate is
particularly relevant for the U.S., because of its largely two-party
political system, for which the notion of (bi)polarization is par-
ticularly well-defined. Such a hypothesis is also supported by a lot
of empirical evidence (cf. refs. 928 and references therein).

Here we use the MSB approach to study polarization in both
chambers of the U.S. Congress based on patterns of bill co-
sponsorship between 1973 and 2016 (93rd to 114th Congress)°.
The dataset consists of two sequences of undirected signed
networks inferred from co-sponsorship data, where positive ties
indicate a statistically significant tendency of two representatives/
senators to promote the same bills and negative ties the opposite
tendency to avoid promoting the same projects (see “Methods:
Co-sponsorship relations in the U.S. Congress” for details).

Our analysis indicates that polarization increased markedly in
both the House of Representatives. This is evident in the steadily
increasing strong DoB values (Fig. 7a) meaning that co-
sponsorship networks became easier to bipartition in time. The
increasing trend seems to materialize during the second Congress
of Carter’s administration and be stable, notwithstanding some
transient perturbations. Interestingly, and consistently with our
previous analysis of the importance of the Locality Principle, the
WB approach yielded almost exclusively very low DoB values,
and thus would not capture the true trend. This is, of course, the
consequence of the violation of LP.

In both chambers frustration ratios clearly converge (Fig. 7b)
meaning that best bipartitions and clusterings (in k groups) based
on the MSB approach (“Methods: Hierarchical clustering with
pairwise DoB measures”), as well as partitions following partisan
affiliations are becoming more and more consistent with the SBT
theorems and therefore also similar. This is evident in the time
series of the similarity between MSB and partisan partitions
measured with Adjusted Mutual Information (AMI) score’
(Fig. 7c). Moreover, even in k-clusterings with k large, most of
the nodes tend to belong to the two largest clusters, indicating,
again, an increasingly bipolar structure organized along the party
lines. Note that even in the extreme case of the House of
Representatives during the 96th Congress (the second congress of
Carter’s administration), where we found 147 distinct “clusters”,
271 or around 61% of the representatives belong to the two
largest blocks, meaning that the rest of the clusters correspond to
the other 171 representatives, for whom the average cluster size
was about 1.18. Thus, in this period many members of the
congress were effectively functioning in-between the two main
blocks, and from the perspective of the clustering procedure, they
were outliers forming many small clusters, very often composed
of only one node. This result is consistent with the fact that this
was a period of the lowest polarization, for which the partisan
cleavage should not be very pronounced.

To sum up, the results point to a strong consistency between
global DoB measures and the quality of optimal partitions.
Namely, the higher the DoB the lower the frustration of optimal
partitions found by our clustering algorithm. Moreover, the fact
that in time all empirical partitions become more and more
similar to the partisan affiliations and the majority of nodes
always belong to the two largest clusters jointly means that the
MSB partitions we obtained are meaningful and consistent with
the partisan polarization hypothesis. In other words, we indeed
find that in time it becomes easier to find low frustration network
partitions that largely overlap with partisan affiliations. Thus, the
patterns of cooperation between the senators and representatives
become more and more constrained by their party membership.

Discussion

Polarization is often considered a salient, and perhaps worrying,
feature of contemporary societies®*2830, It can result in a sharp
divergence of popular beliefs or attitudes (ideological polariza-
tion) as well as in-group favoritism and out-group hostility
(affective polarization)?8. Crucially, the latter implies clustering of
social networks into 2 or more groups with primarily positive in-
group and negative out-group ties. This structural aspect of
polarization is studied in Structural Balance Theory (SBT), which
links it to properties of semicycles in signed networks and pro-
vides strict criteria for measuring polarization!3:16,

Here we introduced the Multiscale Semiwalk Balance (MSB)
approach for measuring both strong and weak degrees of bal-
ance (DoB), which is applicable to any kind of (simple) signed
networks, including directed and weighted ones. MSB is com-
putationally efficient by approximating semicycles with

COMMUNICATIONS PHYSICS| (2023)6:349 | https://doi.org/10.1038/s42005-023-01467-8 | www.nature.com/commsphys 9


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01467-8

House of Representatives

Degree of Balance

1.0 “Nixon{Ford Carter iReagan Bush  iClinton Obama

0.8-

O=Q..
{ i =
B @ -8 -0 B -E f a0 A R B P i)

19741977 1981 1989 1993 2001 2009

Frustration ratio
0.6- ;

e e e

19741977 1981 1989 1993

c i O_Clusterings and party structure

0.5-

0.0 === e — —
19741977 1981 1989 1993 2009

Clustering structure

== Number of clusters minimizing F(B)
1504 OB | ! !

‘ N g OO~ o O e O O
AT =i i |
a 3 |

; D O OO O G e e O OO = O™ OO - 09
19741977 1981 1989 1993

-100%

Senate

=@= B(Bmax)  =E= B(1)
l'O_Nixon‘FordiCarter iReagan

Bush

{Bush iClinton

0.8- =
/
06- @ : ! i oy
- S B HE - - - e B A e e B T 2 - SRR
0.4- H H H H H
19741977 1981 1989 1993 2001 2009
6. O F2) @~ F(B) i FP)

0.0- t h
19741977

1.0- =@= AMI(2,P) =@= AMI(B,P)

0.5-

19741977 1981 1989

1993

== Percent of nodes in two largest clusters
H H H H 1 i 1 ~100%
40- f DTN O e~ D

o |
/Yty

20- -50%

A

07 -0%

1989 1993 2009

1981

19741977 2001

Fig. 7 Polarization in the U.S. Congress between 93rd and 114th Congress (1973-2016). Panels are divided into regions corresponding to subsequent
White House administrations with colors denoting Republican (red) and Democratic (blue) presidents. Approximations based on m =10 leading eigenpairs
from both ends of the spectrum were used. All results are reported for both the House of Representatives and the Senate. a Degree of Balance time series
based on the Multiscale Semiwalk Balance approach, B(8,,,,,), and Walk Balance of Estrada and Benzi4, B(1). b Frustration ratios computed for best

partitions into 2 clusters, F(2), general partitions into k clusters, F(B), and partitions based on partisan affiliations, F(P). ¢ Similarity between party-based
partitions and best bipartitions, AMI(2, P), as well as best partitions into k clusters, AMI(B, P), using Adjusted Mutual Information (AMI) score2°. The
closer a value is to 1, the better the match between two clustering solutions. d Numbers of clusters in the solutions minimizing F(B) (left y-axis), as well as

the fraction of nodes within the two largest clusters (right y-axis).

semiwalks, which can be counted using standard linear algebra,
and defines DoB measures not only for entire graphs but also
specific nodes and pairs of nodes, which in turn allows for
implementing effective signed community detection methods
motivated by SBT. Crucially, MSB is multiscale in the three
following senses:

1. It proposes a principled way of aggregating multiple k-
balance scores for particular cycle lengths to produce a
single global DoB estimate motivated by the Locality
Principle (LP). The resolution of analysis, or the weighting
scheme for aggregating k-balance scores, is controlled by a
single parameter, 8, which can be tuned based on first
principles to capture the characteristic scale of a network at
which its DoB should be assessed. This is a crucial feature of
our framework, as even though many other approaches
apply some decaying weights to longer cycles, typically the
decay rate is fixed or controlled by a free parameter with no
principled way of selecting an appropriate value®>17:19:22,

2. It provides methods for measuring strong and weak DoB
for entire graphs, closed walks of particular lengths,
individual nodes and pairs of nodes.

3. Thanks to the pairwise measures it facilitates the develop-
ment of methods for finding mesoscopic structures in
signed networks, ie., clusters or groups of nodes with
primarily positive in-group and negative out-group ties.

Unlike many other approaches to SBT#>22, MSB is formulated
explicitly in terms of semiwalks as an approximation to semipaths
and semicycles. This connects it more directly to the structure
theorems!>16, and as a result, facilitates meaningful analyses of
directed networks. Crucially, semiwalk-based k-balance scores
tend to be similar to values produced by cycle-based k-balance
measures introduced by Giscard et al.1 (see “Methods: Accuracy
of semiwalk-based approximations” for details). Thus, the fun-
damental approximation on which our approach is based seems
to introduce little extra noise relative to cycle-based measures.
Similarly, the error introduced by using only leading eigenvalues
and eigenvectors is also typically very small (Supplementary
Note 3). On the other hand, being based on (semi)walks that can
be counted easily using standard linear algebra, MSB computa-
tions can be remarkably fast (Supplementary Note 5).

Furthermore, there are also theoretical reasons for preferring
walk-based over cycle-based DoB measures. First, let us note that
in a signed graph all cycles are balanced if and only if all closed
walks are balanced, so for measuring perfect structural balance
walk- and cycle-based DoB measures are equivalent. Further-
more, in opinion dynamics (diffusion) on a signed graph two
groups can reach different consensus states if and only if the
graph is balanced, but the diffusion process depends not only on
purely cyclic structures but also on acyclic ones, as well as
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“artificial cycles” produced by backtracking walks?4. Thus, it can
be argued that partial DoB measures defined in terms of (semi)
walks paint a fuller picture of structural balance, especially as far
as the interplay between network structure and diffusion
dynamics is considered.

Thus, our perspective is different from other works on the
multilevel assessment of structural balance3!, which are focused
exclusively on strong balance, and in which microlevel DoB
analysis is equated with the triad-level DoB, mesolevel with the
cohesiveness of the network partitions as such (which is fully
compatible with our framework), and finally, macrolevel is
equated with the line index (or frustration index), but computed
only for partitions into two groups. Furthermore, our approach
tries to follow the structure theorems of SBT as closely as possible
given its approximate walk-based nature. Directed MSB measures
are based on semiwalks, and thus they ignore edge directions,
except for the special case of dyads (2-cycles), in which directions
of both edges are considered (this is accounted for by corrections
defined in Egs. (17) and (20)). This design choice follows directly
from the fact that SBT was formulated in terms of semicycles,
which are simply cycles in which edge directions are ignored as
long as each edge is traversed at most once. On the other hand,
other directed approaches®! often use edge direction information
in a more complex fashion, which, of course, may be insightful
but is not necessary from the vantage point of SBT theorems and
the problem of network partitioning.

Locality Principle is justified not only by its usefulness as a
heuristic guiding DoB methods, but also by a long history of social
and psychological research. In particular, experimental research on
the perception of structural balance in social networks indicates
that people pay more attention to small-scale structures!8, This is in
line with other seminal results stressing the importance of proxi-
mity (both physical and social) for social phenomena such as social
impact theory32 and Dunbar’s numbers33, which are closely related
to the fact that social networks tend to be sparse and composed of
ties that are localized within some physical and/or social space34.
Moreover, studies of structural balance using alternative cycle-
based methods show that real-world networks tend to have a cycle
length threshold after which k-balance scores suddenly decrease to
random-like values (around 0.5)!°. In other words, structural bal-
ance typically manifests itself at the level of small- and medium-
sized structures, so DoB measures should account for that. This is
exactly what LP does.

Importantly, 8 can be endowed with a physical interpretation,
which helps to explain its role as a resolution parameter. Note
that the cohesion index defined in Eq. (13), from which all other
MSB measures may be derived, can be approximated by a ratio of
elements of two matrix exponentials, ri]—(ﬁ) ~ (eﬁA)i]- / (eﬁw),—j, and
the exponential of a rescaled adjacency matrix, such as f}A, is
known as communicability, which is a general measure of con-
nectedness defined in terms of the weighted sums of walks of
different lengths between pairs of nodes®. In this context, 8 can
be interpreted as the inverse temperature of a thermal bath in
which a network is submerged. More generally, the thermal bath
may represent an “external situation”, e.g., the level of agitation of
the system, which manifests itself by rescaling edge weights with
the 8 factor. As a result, when 8 — 0 (hot regime), there is no
communicability between nodes, and when f — oo (cold regime),
then there is infinite communicability between all pairs of
nodes3®. Note that in both cases the actual network topology
ceases to matter. Thus, network structure is accounted for in DoB
calculations only for appropriately chosen intermediate values of
B, and in this context, LP provides an effective heuristic for fine-
tuning f and finding the most relevant range of cycle lengths at
which DoB should be assessed.

This stresses the importance of multiscale approaches to SBT
and network science more generally. By linking structural balance
to communicability3>3%, our results suggest that, perhaps, other
network descriptors defined in terms of walks, or powers of
adjacency matrices, such as multiscale network entanglement’,
can be informed by the Locality Principle. Note that contribution
scores defined in Eq. (11), and used for operationalizing LP, can
be calculated for any, also unsigned, network. Thus, LP is a
heuristic for determining the characteristic intensity and length of
internode correlations, and this determines the appropriate
weighting scheme for aggregating walk-based measures across
multiple scales. More generally, our results also contribute to the
research on the importance of local structures in networks38-40,

Our work, of course, does not come without limitations. First,
even though cohesion measures are defined in Egs. (13) and (14)
seem to open up new possibilities for designing clustering or
community detection methods for signed networks, the actual
clustering algorithm we used here is rather naive. Developing more
mature methods derived from first principles will not be an easy
task and we leave it for future work. Moreover, it can be argued that
an even better approach for tuning 8 could be based on setting it to
a value that minimizes the frustration of the best partition. How-
ever, a proper solution to this problem would require a solid
theory-driven clustering method parametrized by 3, which we do
not currently have, so the choice 8 := f_ .. should be considered
the best working heuristic for selecting an optimal value for 8 for
now, but it should be replaced with more mature solutions as they
arrive. Furthermore, even though some in-depth insights regarding
similarities and differences between cycle- and walk-based DoB
measures vis-a-vis the tenets of SBT have been offered by Estrada®4,
one can argue that the debate on whether the former or the latter
should be preferred is not yet settled. Perhaps, an interesting
“middle ground” perspective could be gained by studying DoB
measures based on non-backtracking (Hashimoto) matrices*!?

Methods

Overview of Structural Balance Theory. Here we state the main
definitions and theorems of SBT concerned with bi-clusterability
as formulated by Cartwright and Harrary!3. We use the general
formulation based on semipaths and semicycles, so the theorems
are applicable to both undirected and directed graphs. Thus, we
first define semipaths and semicycles.

Definition 3. (Semipath) A semipath is a walk in which each
(directed) edge can be traversed both ways but only once and
each node is visited exactly once.

Definition 4. (Semicycle) A semipath starting and ending at the
same node (which in this case is allowed to appear twice).

Corollary. Notions of paths/cycles and semipaths/semicycles are
equivalent in undirected graphs since an undirected edge is
treated in this context as two directed edges pointing in opposite
directions.

Definition 5. (Strong balance property) A signed graph is
balanced if and only if every semicycle it contains is positive (the
product over all edge signs is positive).

Theorem 3. (Strong structure theorem) A signed graph is
balanced if and only if its vertices can be partitioned into two
subsets such that positive edges connect vertices from the same
subset and negative ones link vertices from different subsets.

The above results were later generalized by Davis!®, who
provided necessary and sufficient conditions for b-clusterability
(where b =2 is an unknown integer).
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Definition 6. (Weak balance property) A signed graph is weakly
balanced if and only if no semicycle contains exactly one
negative edge.

Theorem 4. (Weak structure theorem) A signed graph is weakly
balanced if and only if its vertices can be partitioned into b
subsets such that positive edges connect vertices from the same
subset and negative ones link vertices from different subsets.

Weak balance. Following Kirkley et al.’, we define non-negative
matrices P(A) and N(A) corresponding to positive and negative
parts of the signed adjacency matrix such that A=P — N and
|A| =P + N. In what follows we will use the simpler notation
without the explicit dependence on A, but it is important to
remember that P and N are functions of A.

Weak balance is defined in terms of the extent to which a
network is free of cycles with exactly one negative edge. This
single negative link can be placed anywhere along a path starting
at node i. Hence, we first define a matrix counting weakly
unbalanced walks of length k between nodes i and j in a signed
graph G as:

k
V.(A) = > PINPF!
=1

= i QA'Q'NQAM QT (18)
=1

=Q Ké L(k, l)) 0 M} QT

where QAQT is the eigendecomposition of P, M is a shorthand
for the product QTNQ that appears in the middle of the second
line, and L(k,]); = Aﬁfllffl. Moreover, we used the fact that
AFIMA =Lk, ) o M.

Now, a matrix with weighted sums of counts of walks of
lengths k =k k. joining nodes i and j is given by:

min> *** » Mmax

ﬁk
V(A,B) = zk:EVk(A)

:Q{

In the directed case we also apply the correction discussed in
“Results: Directed measures” leading to:

ﬂk k (19)
Z—'ZL(k, D
x kli=1

@M}QT

- ﬁ’2

V(A B) = = (PN + NP) + V(S, B) (20)
Next, we can use Eq. (19) to calculate the overall weighted

sums of counts of unbalanced closed walks from appropriate

traces:

k
trV(A, f) = Zk:%trvk(A) (21)
trv,(A) = k gml)tf.“lMﬁ (22)

where we used the fact that trace is invariant under cyclic
permutations and Q is orthonormal. The weighted sum of counts
of closed walks at a node i is similarly given by the diagonal
elements, V(A, ).

Now, Egs. (4) and (21) can be used to define the measure of the
overall weak balance:

u,+u_ - tW(ALP)

where pyy, is the sum of weighted counts of weakly unbalanced

(23)

closed walks. Weak pairwise cohesion scores are given by ratios of
individual matrix elements:

W(|A|’ﬁ7 kmin = 2);]

Wij(ﬁ) =1

with local (node-level) weak DoB given by the diagonal elements,

W;i(B; Ky = 3)- Similarly, weak k-balance is given by considering

only closed walks of a particular length k:
tr|AJ*

k=

(25)

Importantly, as in the case of strong balance, global weak DoB
can be expressed as a weighted average of weak k-balance with
weights given by the corresponding contribution scores (see
Supplementary Note 2 for the proof).

Last but not least, the trace of the matrix series defined in Eq.
(19) used for counting unbalanced closed walks always converges,
so it is well-defined. Note that:

k oo Rk
0< Zﬁ— S PINPF s Y ﬁ—tr(P + N =tefA (26)
x kl =1 k=0 k!

where it is known that the rightmost matrix exponential and its
trace always converge, so the middle part of the inequality must
converge too.

Hierarchical clustering with pairwise DoB measures. Here we
will use the following naive, yet effective, clustering procedure for
signed networks based on pairwise cohesion measures (see
“Results: Pairwise cohesion and clustering” and “Methods: Weak
balance”). Let DiSj =1—b;(B,,) and DZV =1—=wy(Bx) be
pairwise dissimilarity matrices (so Disi = va := 0) based on the
notions of strong and weak balance respectively, and let N, be the
maximum number of clusters one is willing to consider. Then, for
b = 1, cony N b

1. Run Hierarchical Clustering (HC)?7 algorithm for b clusters
using DS as input and calculate frustration index according
to Eq. (3) for the obtained block-partition matrix B.

2. Run HC for b clusters using DW as input and calculate the
corresponding frustration index.

3. Store the lower of the two frustration indices and its
corresponding block partition.

Finally, choose the partition with the lowest frustration index.

Accuracy of semiwalk-based approximations. MSB approach
approximates semicycles with closed semiwalks. This is a fun-
damental design decision ensuring high computational efficiency,
but it comes at the price of introducing a discrepancy relative to
cycle-based methods. Here we present a comparison of k-balance
methods provided by MSB and the cycle-based approach of
Giscard et al.!” based on several small and mid-sized networks.
The results indicate a strong similarity between the walk-based
and the cycle-based DoB estimates (Fig. 8). Thus, it seems that the
error introduced by walk-based approximations relative to cycle-
based estimates is typically small. This should not come as a
surprise as, thanks to the Locality Principle, our MSB approach
ensures that DoB measures are driven primarily by patterns
found in short closed walks, which coincide with cycles much
more often than long walks (e.g., closed walks of length 3 are
equivalent to 3-cycles).

Numerical approximations and efficiency. All computations of
MSB can be implemented in a computationally efficient and
accurate manner using approximations based on m leading
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Fig. 8 Accuracy of semiwalk-based approximations relative to cycle-based Degree of Balance (DoB) estimates. Cycle-based DoB scores were computed
using methods from ref. 1% and congruence was assessed based on Pearson correlation coefficients, r, and relative error € = EL . a "Grayscale” (k-

balance) measures based on semiwalks (MSB) and proper cycles in small networks studied in this paper (see “Methods: New Guinea

ighlands tribes” and

“Sampson's Monastery dataset”). In this case, DoB values are reported for all possible cycle lengths and both MSB and cycle-based estimates are exact.
b Pearson correlations and relative errors for different cycle lengths calculated over co-sponsorship networks from the U.S. Congress (“Methods: Co-
sponsorship relations in the U.S. Congress”). In this case, MSB approximations are based on m =10 leading eigenvalues, and cycle-based estimates are
approximated using sampling based on 10,000 samples. Only cycles of length up to 15 were considered.

eigenvalues and eigenvectors from both ends of the spectrum.
Leading eigenpairs can be found very efficiently using modern
linear algebra routines such as implicitly restarted Arnoldi
method*243, Moreover, numerical stability can be guaranteed by
conducting all computations in the log-space and using log-sum-
exp trick (to avoid overflow when counting closed walks). This
requires a bit of extra care as some eigenvalues may be non-
positive. However, zero eigenvalues can be ignored altogether,
since no measure defined here depends on the zeroth powers of
adjacency matrices, so the calculations can be done over the field
of complex numbers, where the logarithm of any number with
non-zero modulus is well-defined, and cast back to real values
only at the very end. As a result, MSB methods can be remarkably
efficient, even when applied to very large systems. Supplementary
Notes 3 and 5 present empirical analyses of the accuracy and
efficiency of our implementation. Supplementary Note 4 discusses
the theoretical basis for approximations based on leading eigen-
values and eigenvectors.

A more in-depth discussion of implementation details is
beyond the scope of this paper, but we invite the interested reader
to study our source code (see: Code availability).

Network datasets

New Guinea Highlands tribes. An undirected unweighted signed
network of friendships among tribes of the Gahuku-Gama alliance
structure of the Eastern Central Highlands region in New
Guinea®4. Edge sign indicates either friendship or enmity. Accessed
from: https://networks.skewed.de/net/new_guinea_tribes.

Epinions trust network. This is a who-trust-whom online social
network (directed, unweighted and signed) of a general consumer
review site Epinions.com. Members of the site can decide
whether to “trust” each other. All the trust relationships interact
and form the Web of Trust which is then combined with review
ratings to determine which reviews are shown to the user.
Accessed from: https://snap.stanford.edu/data/soc-Epinions1.html.

Wikipedia adminship vote. A directed unweighted signed network
of votes on Request for Adminship (RfA) elections from a
2008 snapshot of Wikipedia%6. Nodes represent editors, and a
directed edge (7,) indicates that editor i voted on editor j. Edge

sign indicates the direction of the vote: positive = for, and
negative = against. Edges are timestamped. Accessed from:
https://networks.skewed.de/net/elec.

Slashdot Zoo network. A directed unweighted signed network of
interactions among users on Slashdot (slashdot.org), a
technology news website*’. Users name each other as friends
(positive tie) or foe (negative tie). The friend label increases the
scores of post, and the foe label decreases the score. Accessed
from: https://networks.skewed.de/net/slashdot_zoo.

Sampson’s Monastery dataset. Time series of 5 signed directed
weighted networks measuring positive and negative relations
between postulants and novices in a New England monastery in
1960s2°. We used a version of the dataset studied in ref. 2 in
which edges have weights between —3 and 3 corresponding to the
ranking of the least and most (dis)liked/(dis)esteemed colleagues.
Accessed from: http://vlado.fmf.uni-lj.si/pub/networks/data/esna/
sampson.htm.

Co-sponsorship relations in the U.S. Congress. Series of undirected
unweighted signed networks inferred from the data on bill co-
sponsorships in both chambers of the U.S. Congress (House of
Representatives and Senate) using Stochastic Degree Sequence
Model®#8. The data covers the period from 1973 (93rd Congress)
to 2016 (114th Congress). Edges are signed, indicating the pre-
sence of a significant tendency to co-sponsor, or tendency to not
co-sponsor, bills. See Supplementary Table 1 for descriptive sta-
tistics. Accessed from: https://figshare.com/articles/dataset/A_
Sign_of_the_Times/8096429.

Data availability

Sources of the data used in the paper are described in “Methods: Network datasets”. The
downloaded datasets as used in the reported analyses are also provided in a GitHub
repository (https://github.com/sztal/msb).

Code availability

The code and instructions for replicating the analyses, including a packaged Python code
implementing all MSB methods in a user-friendly manner, are available at GitHub
(https://github.com/sztal/msb).
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