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Abstract: In this paper, we introduce the CapERA dataset, which upgrades the Event Recognition in
Aerial Videos (ERA) dataset to aerial video captioning. The newly proposed dataset aims to advance
visual–language-understanding tasks for UAV videos by providing each video with diverse textual
descriptions. To build the dataset, 2864 aerial videos are manually annotated with a caption that
includes information such as the main event, object, place, action, numbers, and time. More captions
are automatically generated from the manual annotation to take into account as much as possible the
variation in describing the same video. Furthermore, we propose a captioning model for the CapERA
dataset to provide benchmark results for UAV video captioning. The proposed model is based on
the encoder–decoder paradigm with two configurations to encode the video. The first configuration
encodes the video frames independently by an image encoder. Then, a temporal attention module
is added on the top to consider the temporal dynamics between features derived from the video
frames. In the second configuration, we directly encode the input video using a video encoder
that employs factorized space–time attention to capture the dependencies within and between the
frames. For generating captions, a language decoder is utilized to autoregressively produce the
captions from the visual tokens. The experimental results under different evaluation criteria show the
challenges of generating captions from aerial videos. We expect that the introduction of CapERA will
open interesting new research avenues for integrating natural language processing (NLP) with UAV
video understandings.

Keywords: unmanned aerial vehicles (UAVs); aerial videos; video captioning; transformers

1. Introduction

Unmanned aerial vehicles (UAVs) have witnessed a dramatic advancement over the
last decade. The technological improvements in acquisition sensors and avionics systems
have made these platforms a popular tool for mapping and monitoring environments.
Compared with satellites and manned aerial vehicles, UAVs offer an inexpensive and
easy-to-deploy platform for aerial data acquisition with high-resolution and real-time
streaming capabilities. In addition, UAVs can fly at various altitudes, speeds, and over
different locations, offering higher flexibility and mobility to complete missions over
inaccessible areas. As a result of these peculiarities and features, the use of UAVs has
proliferated over recent years, and aerial data have been utilized in various applications
such as traffic management, reconnaissance operations, and environmental monitoring.

With the increasing number of videos generated by UAVs, there is a growing demand
for automating the interpretation of these videos to understand their content. Deep learning
is currently the mainstream tool of the most successful automatic scene-understanding
approaches because it can extract high-level semantic knowledge from the given data.
However, the success of many deep learning methods is highly dependent on the availabil-
ity of large-scale annotated datasets, and it is a key factor for these models to learn useful
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information from the data. Datasets such as Microsoft COCO [1] and ImageNet-21K [2]
have greatly contributed to the development of the current deep-learning models in com-
puter vision. Unfortunately, annotating large datasets is an expensive, time-consuming,
and tedious process, and for the same reasons, constructing aerial datasets remains a
major challenge.

Over the past years, researchers have started to pay attention to applications that
involve analyzing images and videos collected from UAVs. Consequently, UAV-captured
datasets have been created to serve different applications such as object detection [3],
semantic segmentation [4], and anomaly detection [5]. However, existing datasets have
limitations in multiple aspects. First, most of the UAV datasets are primarily focusing
on the tasks of object detection and tracking [6–8], which both aim to locate a specific
object in the image or the video at hand, such as a vehicle [9] or plant [10]. Secondly,
the available UAV datasets are annotated with a single semantic label about the main
subject in the image or video [11], with some efforts to concurrently detecting the presence
of multiple objects [12–16]. However, it would be preferable if the recognition system
is able to recognize not only the main subject appearing in the UAV scene, but also to
provide a thorough and complete scene description that reflects the human cognitive
skill of giving a concise description. However, there already exist UAV caption datasets
that provide human-like interpretation for the whole scene. These datasets have been
created for applications within restricted environments such as generating descriptions
from construction sites [17]. These limitations in terms of the tasks, the subjects, and the
environments bring urgent demand to a benchmark that serves general surveillance and
monitoring applications.

Among the existing datasets, the Event Recognition in Aerial Videos (ERA) dataset [11]
has been built for the overall understanding of aerial scenes and videos in more open and
unconstrained environments. This dataset contains UAV images and videos that represent
diverse scenarios in our daily life such as traffic, security, disasters, sports, social activity,
and normal nonevent videos. Different benchmark models based on 3D-CNN have been
evaluated for event recognition by using this dataset [11]. Other works have utilized the
ERA dataset and proposed different methods for recognizing the main event in the video.
In [18], the authors proposed the formulation of the problem of recognizing UAV videos
in unconstrained environments as an open-set problem in which a non-event video is
classified as an unknown. Jin et al. [19] proposed a two-path model, one path for generating
a holistic representation and the other for modeling the temporal relations between frames.
The ERA dataset was built for describing the dominant event in the aerial video with the
goal of assigning each video with a coarse label such as ‘fire’ or ‘traffic collision’. However,
a UAV video contains a large quantity of information, which cannot be fully described
with a single label. Giving a caption to the UAV video can provide a further level of
understanding of its content that includes different objects, their attributes, as well as the
ongoing dynamics therein. Hence, integrating NLP with video understanding is critical to
completely capturing the high-level content of the video.

Given a UAV video, the caption-generation task aims to automatically describe its
visual content with a text in natural language. The caption is expected to comprehen-
sively interpret what is going on in the video from a high-level perspective, including the
scene, events, objects, their attributes, their evolution over time, and the interrelationships
between them. Providing a description for a video recorded by a UAV helps to gain a
deeper insight for its visual content, which could be the cornerstone for more advanced
applications such as intelligent visual surveillance, fine-grained event recognition, and
urban and rural scene understanding. The task of caption generation has been previously
investigated for static UAV imagery [20]. Nevertheless, the development of UAV video cap-
tioning methodologies is still limited due to the lack of publicly available video–language
datasets. Consequently, building a UAV video captioning benchmark is pivotal to advance
visual–language integration research in remote sensing.
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Generating a description for a video recorded by a UAV is particularly challenging due
to several factors. Generally, these videos have varying spatial resolutions of the subjects
and noticeable motion blur and present varied and wide viewing angles. This is mainly
due to the flexibility of the platform that results from fast motion and constantly changing
attitudes during flight. In contrast to image captioning, which aims to describe a static scene
captured by UAV, a video consists of a sequence of frames that typically record interactions
between people or objects that evolve over time. Hence, video captioning is more difficult
in that the dynamics between consecutive frames must be understood in addition to spatial
information from each frame to generate a descriptive sentence. Thus, the development of
captioning methods should take into consideration these unique characteristics.

To address these issues, we present CapERA, which is a new dataset (publicly available
at: http://www.github.com/yakoubbazi/CapEra (accessed on 23 November 2022)) that
extends the ERA dataset to the context of video captioning [11]. The dataset consists of
2864 videos and 14,320 captions, where each video is paired with five unique captions.
This dataset is constructed for UAV video captioning, but it can possibly empower other
video–language integration tasks (e.g., content-based text-videos retrieval, video question
answering). The ground-truth captions are carefully annotated by a human expert and
augmented by automatic caption generation methods to alleviate the heavy workload
of annotation. We also propose two caption generation models for this task to provide
benchmarks for UAV video captioning. In summary, our contributions are mainly two-fold:

(1) We introduce a UAV video-caption dataset named CapERA, which is an extension
to the ERA dataset with diverse textual descriptions. To the best of the author’s
knowledge, no labeled dataset is available for captioning UAV videos. The proposed
dataset is comprehensive and challenging that will serve as a new benchmark for the
community and can promote vision–language research for UAV videos, including
text-video retrieval and Visual Question Answering (VQA).

(2) We design an encoder–decoder architecture for UAV video captions with two configu-
rations for encoding the video. The first models the spatiotemporal features directly
from the input video, while the second is based on learning spatial-frame-based fea-
tures and modeling the temporal features with a time attention module. The features
generated by either configuration are fed directly to a GPT-like language decoder for
caption generation.

The remainder of this paper is organized as follows. In Section 2, we describe the
CapERA dataset including the annotation process. Next, in Section 3, the benchmark
models are described in detail. Section 4 describes the experimental setup and presents the
results. Section 5 presents a discussion of the results with several ablation studies. Finally,
Section 6 concludes the paper.

2. CapERA Dataset

In this section, we present the CapERA dataset. We first introduce the pipeline for
providing the captions in detail and present the overall statistics of the dataset. The CapERA
dataset is an upgrade of the Event Recognition in Aerial Videos (ERA) dataset [11], which
was released in 2020 for the task of event recognition. The original ERA dataset contains
2864 videos captured with UAV platforms related to 25 events, namely, post-earthquake,
flood, fire, landslide, mudslide, traffic collision, traffic congestion, harvesting, ploughing,
constructing, police chase, conflict, baseball, basketball, boating, cycling, running, soccer,
swimming, car racing, party, concert, parade/protest, religious activity, and nonevent. Each
video is five seconds long and recorded at 30 frames per second (fps) with a resolution of
640 × 640 pixels. The dataset contains 2864 videos split into 1473 and 1391 video samples
for training and testing, respectively.

The ERA dataset has been collected from YouTube videos captured by various UAV
platforms from various locations around the globe, hence featuring extensive diversity in
terms of the subjects, environment, resolution, illumination, weather, background, camera
motion, and flying attitude. Such unconstrained scenarios represent the complexity of the

http://www.github.com/yakoubbazi/CapEra
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real world more closely, which is crucial for developing robust surveillance and analyzing
models for videos.

To address the lack of available datasets for captioning aerial videos, we propose the
CapERA dataset, which is built by providing captions for each video in the ERA dataset.
To construct the annotation, we ask a human annotator to provide a concise description for
each video. The annotation is written to include all information present in the clip such
as the main event, object, place, action, numbers, and time. The total time of the manual
annotation process is about 36 h. In the CapERA dataset, we provide five captions for
each video to take into account as much as possible the variation in describing the same
video. However, collecting five captions is resourcefully expensive. Therefore, caption
augmentation is employed to alleviate the heavy workload of annotation. We specifically
employ two automatic augmentation approaches: back-translation and paraphrasing. In
both approaches, the manually given caption is used to guide the automatic generation of
the augmented captions. Figure 1 presents a flowchart of the caption generation process.
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Figure 1. Pipeline for constructing CapERA dataset.

In the backtranslation, the manual caption is first translated into eight different com-
mon languages, namely, Arabic, French, Turkish, Russian, German, Spanish, Simplified
Chinese, and Hindi. Then, all the translated captions are translated back into English.
This step generates eight captions with similar meaning but expressed differently. In the
paraphrasing approach, a deep paraphrasing model [21] is used to generate eight captions
that express the manual caption in different words without altering the meaning. Then, the
captions generated by the two augmentation methods are put together and the redundant
captions are discarded. Next, all captions are sorted in ascending order based on the BiLin-
gual Evaluation Understudy (BLEU) score [22]. Specifically, we take each caption one by
one and compare it against all the other captions including the manual one. This will order
all captions based on the N-gram similarity and retain the most different captions compared
to the other captions on the top. Finally, the top four captions are taken, in addition to the
original human-annotated caption for constructing the final dataset. Ultimately, we obtain
a total of 14,320 captions, where each video is associated with five captions.

Figure 2 shows three frames of sample videos from the dataset along with their corre-
sponding captions. The first caption is human-annotated, while the rest are automatically
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generated. In addition, Table 1 shows some statistics of the dataset. Similar to the original
ERA dataset, CapERA contains 2864 videos, 1473 in the training set, and 1319 in the test set.
The total number of captions in the dataset is 14,320 with an average length of 9.67 words.
The size of the vocabulary is 1890, which means that the captions contain a diverse variety
of words.
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Person riding a bicycle next to green areas.
Man riding bicycle beside green field.
There is a person riding a bicycle.
Person rides a bicycle.
Man on bike next to green spaces.

Mountain road surrounded by trees beside the sea.
Mountain path surrounded by trees by the sea.
Road next to the sea.
Mountain road by the sea surrounded by trees.
Mountain road surrounded by trees next to the sea.

Large group of people surrounded cars and buses.
People are standing around vehicles.
Large crowd surrounded cars and buses.
People are near vehicles.
People surround cars.

A police car chases a white car while trying to stop it.
A police car chases a car.
A police car follows him while trying to stop a white car.
A white car is being pursued by a police car.
A police car chases a white car.

A river runs through green fields.
A river passes through lush green fields.
A river goes through fields.
The river runs through the fields.
There is a river in a field.

People gathered around a river.
People are near a body of water.
People are outdoors.
People are outside.
People are near a river.

Players play on a baseball field in the evening.
Players are playing baseball.
People are playing a sport in the evening.
Group of players playing ball on baseball field at night.
People are playing baseball in the dark.

A road with flood water and a car trying to cross the road.
A car is trying to cross a road with flood water around it.
Flood water road and a car trying to cross the road.
A car tries to cross a flooded road.
A car tries to cross a road that is flooded.

Wheat harvesting machine.
Wheat harvesting machine is outdoors.
Wheat harvesting machine is in use.
Wheat harvesting machine.
Machine is harvesting wheat.

Beach with people and small umbrellas.
People on a beach.
The beach has people on it.
People are on a beach.
Beach with group of people and small umbrellas.

Figure 2. Samples from CapERA dataset. Each video is annotated with five captions. The first caption
is manually annotated by a human, while the rest are automatically generated.

Table 1. Statistics from CapERA dataset.

Video Caption Avg. Caption Length Vocabulary Size

CapERA 2864 14,320 9.67 1890
Train 1473 7365 9.93 1283
Test 1319 6955 9.39 1471
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3. Description of the Proposed Captioning Models

Let X ∈ RT×H×W×3 be a video from the CapERA dataset with T sampled frames each
of dimension H ×W × 3, and y is the corresponding caption of the video. We propose two
configurations for mapping the input video into the sequence of words of the caption y.
In the first configuration, which is described in Section 3.1, frames are evenly extracted
from the input video and encoded independently into features using an image encoder.
The frame-level features are fused using concatenation. Then, a temporal attention module
is added to consider the temporal dynamics between features derived from the video
frames. In Section 3.2, we describe the second configuration in which the video is encoded
directly using a video encoder that employs spatial and temporal attention alternatively to
model the dependencies within the video. Section 3.3 describes the decoding stage of both
configurations, in which a language decoder plays the role of the captioner, which uses the
visual feature representation from the whole video to generate the caption y.

3.1. Frames Encoder with Temporal Attention

Figure 3 shows the architecture of the first configuration of the captioning model. In
this configuration, T frames are uniformly extracted from the input video
X = {X1, X2, . . . , XT}, where each frame Xt ∈ RH×W×3 is considered as an indepen-
dent RGB image, and t = 1, . . . , T denotes the index of the frame in the video.
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Figure 3. An illustration of the first proposed captioning model. The figure illustrates an example
of sampling four frames from a video (T = 4) and extracting frame-level features from each frame.
The frames’ features are concatenated together and passed to an attention module to consider the
temporal information.

We use MaxViT [23] as a backbone model to extract features from the frames. However,
any other vision-model can be used as a backbone. The main motivation for choosing
MaxViT is that it is a hybrid CNN-Transformer architecture that benefits from both the
inductive bias of the convolution and the global feature learning of the attention mechanism.
MaxViT applies a combination of convolution, local window attention, and global sparse
attention to capture both local and global features from the frame. Specifically, the MaxViT
backbone starts with a few convolutional layers, followed by multiple multi-axis self-
attention (Max-SA) blocks. This block has a MBConv layer [24], a block local attention layer,
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and a grid global attention layer. These layers work together to allow global–local spatial
interactions with a linear complexity.

For a frame Xt, the spatial feature is obtained by propagating the frame into a MaxViT
encoder. We specifically utilize the output of the global average pooling layer. Next, we
use a fully connected layer with a GELU activation function [25] to obtain the feature
representation st ∈ R1×768:

st = GELU(Linear(MaxViT(Xt))) (1)

For a video X = {X1, X2, . . . , XT} with T frames, S ∈ R1×768×T represents the global
representation of the whole video obtained by concatenating the spatial visual tokens for
each frame in the video, where T represents the length of the visual sequences and 768
represents the feature dimension:

S = Concat(s1, s2, . . . , sT) (2)

In addition to modeling spatial features within each frame, the temporal information
is essential to devise the contextual relationship between frames and, hence, to describe
the dynamics in the video when the caption is generated. To model the temporal aspect,
a transformer layer with a self-attention module is added on top of the frame backbone.
First, following the process used in [26,27], the obtained frame-level representations are
embedded by a linear layer E ∈ R768×768. Then, a global learnable token sclass ∈ R1×768

is concatenated with the output representation. The positional information of each frame
in the video Epos ∈ R(T+1)×768 is added to it to capture the sequential information. The
resulting sequence z is given by this equation:

z = [sclass; s1E; s2E; . . . ; sTE] + Epos (3)

This sequence is passed to a one-layer transformer encoder with multi-head self-
attention (MHSA) and multi-layer perceptron (MLP) blocks. The latter block consists
of two linear layers with a GeLU activation between them. Each of the two blocks of
the encoder employs residual skip connections and is preceded by a normalization layer
(LN) [25], as expressed by these equations:

z′ = MHSA(LN(z)) + z (4)

FX = MLP
(

LN
(
z′
))

+ z′ (5)

The temporal dependencies between frames are extracted by the MHSA module,
which consists of multiple attention heads. First, three matrices—the query Q, key K, and
value V—are generated from the representation z using three learnable layers WQ, WK, and
WV ∈ R768×768, such that Q = WQz, K = WKz, and V = WVz. Then, the attention weights
for a single head are computed by the following equation:

Attention(Q, K, V) = so f tmax
(

QKT
√

768

)
V (6)

The results of all the attention heads are concatenated together and then projected
through a feed-forward layer. Then, the output is passed to the MLP block (Equation (5)).
Finally, the output of the MLP is considered as the feature representation FX ∈ R1×768×T of
the entire video clip X. This representation is supplied as an input to the language decoder,
which decodes it into a caption.

3.2. Video Encoder with Spatial and Temporal Attention

The architecture of the second configuration is illustrated in Figure 4. In this model,
the video is encoded directly using a pre-trained video encoder known as TimeSformer,
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which is a vision model proposed for video understanding [28]. TimeSformer utilizes
the self-attention mechanism for capturing long-term dependencies. This idea was first
proposed for sequence-to-sequence machine translation [27], and recently adopted for
image and video understanding tasks.
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Figure 4. An illustration of the second configuration of the proposed captioning framework for
CapERA dataset. The figure illustrates the example of sampling four frames from a video (T = 4).
These frames are embedded and augmented with positional information and then encoded using a
video encoder that employs spatial and temporal attention.

Given a video X = {X1, X2, . . . , XT}, each frame Xt is represented by N non-
intersecting patches of size P× P, where N = H × W

P2 . Then, the patches are flattened and

reshaped as a vector x(p, t) ∈ R3P2
, where p = 1, . . . , N denotes the position of the patch in

frame t, and t = 1, . . . , T denotes the index of the frame in the video. Given the sequence
of patch representation, TimeSformer applies divided self-attention mechanism to the time
and the space dimension separately to capture the content of the video. First, each patch
x(p, t) is transformed into visual tokens of the model dimension D by a linear embedding

layer E ∈ RD×3P2
:

z(0)
(p, t) = E

(
x(p, t)

)
+ Epos

(p, t) (7)

where z(0)
(p, t) ∈ RD, and Epos

(p, t) ∈ RD is a learnable spatial–temporal positional embedding
added to each patch representation to preserve its positional information within the space
and time dimensions. In addition, a special learnable token z(0)

(0, 0) ∈ RD is prepended to
the sequence. This token will serve as the global representation of the input video, which
establishes the interaction between the spatial and temporal features.

The sequence is then passed to the video encoder with L consecutive layers. In
each layer l = 1, . . . , L, given the sequence z (l−1)

(p, t) , TimeSformer utilizes factorized
space–time attention, which employs a separate MHSA block for time and space to simplify
the computation. Specifically, each layer l has a series of temporal MHSA, spatial MHSA,
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and MLP blocks. Each block uses a normalization layer (LN) [25] and skip connections.
Formally, the factorized space–time attention is described as follows:

z(l)time
(p, t) = MHSAtime

(
LN

(
z (l−1)
(p, t)

) )
+ z (l−1)

(p, t) (8)

z(l)space
(p, t) = MHSAspace

(
LN

(
z(l)time
(p, t)

))
+ z(l)time

(p, t) (9)

z(l)
(p, t) = MLP

(
LN

(
z(l)space
(p, t)

) )
+ z(l)space

(p, t) (10)

Analogs to the MHSA block are used in the first configuration. Both the temporal
attention and the spatial attention are formulated as the scaled dot-product attention
defined in Equation (6). First, the MHSAtime takes three sets of input elements, the query
Q, key K, and value V computed from z(l−1)

(p, t) using learnable embedding matrices W(l)
Q ,

W(l)
K , and W(l)

V ∈ RD×D, respectively, such that:

Q = W(l)
Q z(l−1)

(p, t) , K = W(l)
K z(l−1)

(p, t) , V = W(l)
V z(l−1)

(p, t) , l = 1, . . . , L (11)

MHSAtime is used to detect the relationship between one patch and patches on the
same position across different time frames. Thus, K and V are sampled across the dif-
ferent frames of the video. The next MHSAspace block uses spatial attention to identify
relationships between different patches located within the same frame. For this, Q, K, and
V vectors are computed from z(l)time

(p, t) using embedding matrices W ′(l)Q , W ′(l)K , and W ′(l)V ,
respectively, where K and V are sampled from the same frame.

The output representation z(l)space
(p, t) is then passed to the MLP block, which consists of

two linear layers separated by a GELU non-linearity activation. We use the representation
z(L)
(0, 0) ∈ R1×768 obtained from the output of the final layer L. This representation is

considered as the global token of the video that jointly encodes the spatial and the temporal
information. In addition, to fully utilize the rich information of the video, extra tokens are
obtained by applying global average pooling on the spatial feature vector of each frame
obtained by the last layer of the TimeSformer:

st =
1
N ∑N

p=1 zL
(p,t) (12)

where st ∈ R1×768. Thus, T tokens are obtained from the video X. These tokens are
concatenated together with the global token z(L)

(0, 0) generated by the TimeSformer encoder.

The final representation FX ∈ R1×768×(T+1) is considered as the spatiotemporal feature
representation of the input video X, which is passed to the language decoder to generate
the caption:

FX = Concat
(

z(L)
(0, 0), s1, . . . , sT

)
(13)

3.3. Language Decoder

The goal of the language model is to generate a natural language sentence that best
describes the given UAV video based on the video feature representation FX . The decoder
is implemented as a masked transformer decoder with a GPT-like architecture [29]. The
decoder produces the caption word by word in an auto-regressive manner where the predic-
tion of the next word is conditioned on a sequence of the prior words. To learn the decoder
to generate captions from the UAV video, we take the spatiotemporal representation of
the video from one of the two video configurations and use it as a context for generating
the caption.
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To train the decoder, the caption y is first split into a sequence of tokens (w1, w2, . . . wm),
where m is the maximum length of the caption tokens. The tokens are concatenated with
two special tokens [CLS] and [SEP] to mark the beginning and the end of the sequence.
Then, each token is embedded with a word embedding layer to embed it into a vector in
a high-dimensional space. In addition, a positional embedding is added to supply the
sequence with information about the position of each token.

As shown in Figure 5, the language decoder consists of four layers, and each layer
has MHSA and MLP blocks in addition to two normalization layers and skip connections.
The MHSA block is leveraged to capture the dependencies between the textual tokens of
the captions as well as the given spatiotemporal representation of the video. The decoder
specifically employs a masked MSA block that learns the dependencies within the caption
tokens without taking into account future tokens. This helps the model predict the next
word based on the sequence of previous tokens only. The decoder is followed by a softmax
layer that turns the output of the decoder into probabilities, where the word with the
highest probability is chosen to be the next word in the caption.
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Figure 5. The architecture of the language decoder.

The full model in both configurations is trained by finetuning the parameters of the
language decoder by optimizing it on the auto-regressive language modeling objective
function conditioned on the spatiotemporal representation of the video from one of the two
video modeling configurations. Formally, the objective function is defined as:

L = −∑m
i=1 logP(wi|w1 . . . wm−1, FX) (14)

4. Results

In this section, we present the experimental results of the video captioning models on
the CapERA dataset. In Section 4.1, we describe the training details and the experimental
settings. Evaluation metrics are introduced in Section 4.2, and we report the results in
Section 4.3.

4.1. Experimental Settings

For the frame encoder in the first configuration, we use a MaxViT-S model pretrained
on ImageNet-21K and finetuned on ImageNet-1K. The model has a size of 69 M and uses
an input frame of size 224 × 224 and a window size and grid size of seven. The temporal
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module closely follows the architecture of a one-layer vision transformer model [26] with
8 attention heads, a dimension of 768, and an MLP of size 512.

In the second configuration, we employ a TimeSformer as a backbone. Specifically, we
use a TimeSformer model with l = 12 encoder layers, each with 12 attention heads. The
embedding dimension in the model is D = 768, and the MLP is 3072. We use a TimeSformer
model pretrained on the howTo100M dataset with divided space–time attention. For
preprocessing, each sampled frame is resized to 224 × 224, and the frame-level patch P has
a size of 16 × 16 pixels with a sequence length of 196.

The language decoder for both models uses the Bert-base-uncased tokenizer to tok-
enize the caption. The sequence can take up to 120 token lengths with a vocabulary size of
50,257. The number of decoder layers is four, and it has 768-hidden-feature representation
and 12 attention heads. We train the model by finetuning the language decoder only. The
model is trained for 50 epochs on the CapERA dataset with a mini batch of size 10. We
optimize the model with Adam optimizer [30] and set the learning rate to 3 × 10−4. We
implement all the experiments with the PyTorch framework using a PC workstation with a
Core(TM) i9-7920X CPU, GeForce RTX 1080 Ti 11 GB, and 64-GB RAM.

4.2. Evaluation Metrics

To quantitatively evaluate the benchmark models in generating captions, several
evaluation metrics are utilized. The first metric is the BLEU [22] score, which is an automatic
evaluation metric that measures the matching n-grams (i.e., consecutive words) between
the predicted caption and the ground-truth caption. The value of n is selected to be between
1 and 4. The second is the Metric for Evaluation of Translation with Explicit Ordering
(METEOR) [31], which is computed by building an alignment between the words of the
generated caption and the ground-truth caption. METEOR computes the F1 score on
the matching results, which combines the precision and recall. In addition, we compute
the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [32], which measures
the F-measure of the longest common subsequence between the generated caption and
ground truth captions. Finally, we provide the results in terms of the Consensus-based
Image Description Evaluation (CIDEr) score [33] which sums the weighted cosine similarity
between n-grams found in the generated caption and ground truth captions. CIDEr applies
term frequency-inverse document frequency (TF-IDF) weights for every n-gram so that the
frequently used words are given less weight.

4.3. Results

The experimental results of the first configuration are presented in Table 2. In this
table, we show the results of the model with a variable number of frames. In addition, we
examine the effectiveness of the temporal attention module placed on top of the encoded
per-frame spatial features and compare it with simply concatenating the features without
considering the temporal information. We also measure the actual training and testing time
for all experiments.

Table 2. Results of the first proposed captioning model.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L CIDEr Train Time Test
Time

Without
Temporal
Module

4 Frames 47.76 34.61 26.75 20.50 19.45 41.34 49.17 15.94 0.63
8 Frames 47.53 34.44 26.79 20.82 19.50 41.50 48.42 19.02 0.67
16 Frames 46.34 33.43 25.90 19.87 18.53 41.29 44.92 25.44 0.74
32 Frames 46.94 34.11 26.52 20.43 18.63 41.91 48.09 38.10 0.86

With
Temporal
Module

4 Frames 48.31 35.20 27.20 20.99 20.09 41.93 53.09 18.81 0.67
8 Frames 49.13 35.92 27.95 21.74 19.82 42.79 53.43 21.67 0.71
16 Frames 48.03 34.90 27.08 21.07 19.48 42.04 48.36 27.87 0.77
32 Frames 47.92 34.82 27.01 20.91 19.36 41.88 50.29 41.11 0.89
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The results show that using the temporal attention module yields an improvement of
the performance in all metrics regardless of the number of sampled frames. This proves
that capturing the temporal information is a key factor for understanding the content of
the video, hence improving the quality of the generated description. However, adding
the temporal information increases the time required to train the model and the time to
generate the caption. As shown in the table, adding the temporal attention increases the
training time by an average of 2.74 h and the testing time by 0.03 h.

We further investigate how the number of input frames affects the performance of the
model by evaluating the model with a variant number of sampled frames
T = {4, 8, 16, 32}. The results show that for the model without the temporal module,
fewer frames are generally better. Specifically, the best BLEU1, BLEU2, and CIDEr scores
are achieved with only four frames, and sampling eight frames shows the best scores in
BLEU3, BLEU4, and METEOR. For the model with temporal attention, the performance
of the model gradually improves as the number of the sampled frames increases from
four to eight in almost all metrics, except the METEOR where the best score is achieved
with only four frames. However, the performance degrades with more input frames. This
observation demonstrates that four frames are not sufficient to fully capture the temporal
context, but more than eight input frames degrade the performance, which can be caused
by temporal information redundancy.

Table 3 shows the results of the second proposed CapERA captioning model with
varying numbers of sampled frames. The results of this model also show that sampling
eight frames demonstrates the best results in all metrics, except the METEOR where four
frames achieve slightly better results. By comparing the results of Tables 2 and 3, we see
that for the same number of frames, the second model, which uses TimeSformer to jointly
capture temporal and spatial information, provides better results in all metrics compared to
the model that fuses the temporal information in a later stage. However, the second model
takes a longer time for training and generating the description for the videos. We can see
that the second model increases the training time by an average of 3.01 h and the testing
time by three minutes. We also see that for more frames sampled from the video, the model
takes a longer training and testing time to learn and generate results.

Table 3. Results of the second proposed model.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L CIDEr Train Time Test Time

4 Frames 49.82 36.66 28.64 22.20 21.41 43.79 59.40 21.44 0.72
8 Frames 50.43 37.26 29.24 22.90 21.16 43.90 60.42 25.12 0.76

16 Frames 50.10 36.75 28.48 22.01 20.97 43.47 58.55 30.89 0.82
32 Frames 50.13 36.92 28.78 22.30 21.17 43.93 59.31 44.35 0.94

In order to qualitatively evaluate the captioning model, Figure 6 shows examples of
the generated caption of random videos from the test set of the CapERA dataset along with
the five ground-truth captions. These examples are generated by the second configuration.
From the first example of a fire event, we can notice that the caption generated by our model
contains all the semantic information present in the video. We can also see that although the
generated caption does not perfectly match the ground-truth captions, it expresses objects,
attributes, and details in the video that are not present in the ground-truth captions such
as ‘thick black smoke rising’ and ‘green trees’. The second example shows the predicted
caption for a baseball field video. The caption perfectly describes the main event and the
environment shown in the video, despite the model failing to detect the people playing in
the baseball field, which is a quite challenging due to the small region they occupy in the
frames. The third example shows an accurate caption that describes a video of a group of
people playing basketball. The caption perfectly matches the ground-truth captions with
more details such as ‘in a field surrounded by trees’. The last example shows the caption
for a video from a conflict event. The generated caption provides an accurate and realistic
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description of the video. These results confirm that the model is effective in describing a
complex UAV video due to its ability capture the spatiotemporal information.
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5. Discussion

In this section, we conduct a thorough ablation analysis of the model architecture and
investigate different factors affecting the performance of the captioning model. Specifically,
we study three main elements: the effect of changing the number of decoder layers, the im-
provements resulting from changing the video backbone model, and the effect of fixing and
finetuning the TimeSformer backbone. In all experiments, unless otherwise mentioned, we
use the second model pre-trained on howTo100M with fixed weights, with eight uniformly
sampled frames per input video, and a language decoder with four layers.

5.1. The Effect of Changing the Number of Decoder Layers

In this experiment, we investigate the optimal number of layers in the language
decoder that yields the best performance. Table 4 summarizes the experimental results
of using a variant number of language decoder layers ranging from two to four on the
CapERA dataset. From Table 4 it can be observed that the decoder with four layers achieves
the best performance in all metrics except the METEOR and the ROUGE_L, where using
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two layers only shows a slightly better performance. However, increasing the number of
decoder layers increases the complexity of the model and, hence, consumes more time
for training and testing the model. As shown in the table, adding one layer increases the
training time by around one hour, and the testing time by 1.2 min.

Table 4. Results of changing the number of decoder layers.

Number of Layers BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L CIDEr Train Time Test Time

2 49.93 36.60 28.43 21.93 21.39 44.06 59.88 22.92 0.70
3 49.62 36.67 28.61 22.20 21.20 43.86 58.92 24.02 0.72
4 50.43 37.26 29.24 22.90 21.16 43.90 60.42 25.12 0.74

5.2. The Effect of Changing the Video Backbone Model

The proposed CapERA dataset is composed of 2864 UAV videos only. Therefore,
training the captioning model from scratch is difficult and more likely leads to overfitting
problems. A common practice for learning visual representations for such relatively small
datasets is to employ transfer learning by using a vision model pre-trained on a large-scale
dataset. In this experiment, we aim to explore the effect of changing the dataset used for
pre-training the video backbone model on the captioning results. We compare between
a model pre-trained on howTo100M [34] and Kinetics600 [35,36] datasets. HowTo100M
is a large-scale action recognition dataset composed of 136 million narrated web videos
of humans performing different tasks, while the Kinetics600 dataset is a video human
action classification dataset with 600 action classes. The results in Table 5 demonstrate that
extracting features from a model pre-trained on either dataset is effective as the results do
not show a significant difference. However, using a TimeSformer backbone pre-trained on
the Kinetics600 dataset performs slightly better than the one pre-trained on HowTo100M in
all metrics except the BLEU1. In addition, it requires less time for training and generating
the captions.

Table 5. Results of changing the video backbone model.

Pretrained Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L CIDEr Train Time Test Time

HowTo100M 50.43 37.26 29.24 22.90 21.16 43.90 60.42 25.12 0.74
Kinetics600 50.37 37.35 29.41 23.08 21.65 44.16 61.05 23.13 0.72

5.3. The Effect of Fixing and Finetuning the TimeSformer Model

As mentioned in Section 5.2, it is often advantageous to employ transfer learning when
the available dataset is small. Transfer learning can be implemented either by fixing the
model’s weights and extracting features from the fixed model or by finetuning the model
on the specific dataset at hand. In this experiment, we compare the performance of the
captioning model when the weights of the TimeSformer are fixed or finetuned. In Table 6,
we observe that compared to the finetuned model, extracting features from the fixed model
improves the performance of all metrics by 0.8–2% except CIDEr, which is improved by
around 6%. We argue that due to the small size of the CapERA dataset, this dataset is
not suitable for the model finetuning, and that the features learned by related datasets are
sufficient to be applicable for the UAV captioning task.

Table 6. Results of fixing and finetuning the TimeSformer weights.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE_L CIDEr

Fixed model 50.43 37.26 29.24 22.90 21.16 43.90 60.42
Finetuned model 48.55 35.27 27.38 21.19 20.35 42.68 54.44
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6. Conclusions

In this paper, we introduce a new caption dataset, termed CapERA, for generating
textual descriptions from aerial videos. This dataset provides five captions for 2864 UAV
videos. The CapERA dataset represents diverse scenarios in our daily life and thus supports
different vision–language applications in the remote sensing video domain. Based on this
dataset, we present two benchmarks for aerial video captioning. First, the visual features
from the video are obtained by a video encoder or a frame-based encoder to generate rich
features from the video. Afterward, these features are used as a context to guide a language
decoder to generate the caption from the UAV video. We experimentally evaluate the
performance of the proposed models over our CapERA dataset. We also conduct extensive
ablation studies to evaluate the effectiveness of the proposed models. The experimental
results demonstrate the challenge of generating captions for aerial videos.
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