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Abstract—Building extraction in VHR RSIs remains a chal-
lenging task due to occlusion and boundary ambiguity problems.
Although conventional convolutional neural networks (CNNs)
based methods are capable of exploiting local texture and context
information, they fail to capture the shape patterns of buildings,
which is a necessary constraint in the human recognition. To
address this issue, we propose an adversarial shape learning
network (ASLNet) to model the building shape patterns that
improve the accuracy of building segmentation. In the proposed
ASLNet, we introduce the adversarial learning strategy to ex-
plicitly model the shape constraints, as well as a CNN shape
regularizer to strengthen the embedding of shape features. To
assess the geometric accuracy of building segmentation results,
we introduced several object-based quality assessment metrics.
Experiments on two open benchmark datasets show that the
proposed ASLNet improves both the pixel-based accuracy and
the object-based quality measurements by a large margin. The
code is available at: https://github.com/ggsDing/ASLNet.

Index Terms—Building Extraction, Generative Adversarial
Networks (GANs), Image Segmentation, Convolutional Neural
Network, Deep Learning, Remote Sensing

I. INTRODUCTION

Shape is an important pattern in the process of visual
recognition. Direct modeling of shape patterns in images is
challenging since it requires a high-level abstract of the object
contours. Among the real-world applications of image recog-
nition techniques, building extraction in very high resolution
(VHR) remote sensing images (RSIs) is one of the most
interesting and challenging tasks that can benefit greatly from
learning the shape patterns. It is important for a wide variety
of applications, such as land-cover mapping, urban resources
management, detection of illegal constructions, etc.

Conventional building extraction algorithms are based on
handcrafted features that often fail to model high-level context
information and are highly dependent on parameters. Recently,
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Fig. 1: Illustration of the benefits of the proposed shape
learning. Conventional CNN models lead to boundary ambi-
guity problems, whereas the proposed method produces shape-
regularized results.

with the emergence of convolutional neural networks (CNNs)
and their applications in semantic segmentation tasks (e.g.,
vehicle navigation [1], scene parsing [2], medical image seg-
mentation [3]), a large research interest has been focused on
adapting these CNN models to building extraction in VHR
RSIs. The CNN-based building extraction methods employ
stacked convolution operations to extract the intrinsic content
information of images, thus they are more effective in ex-
ploiting the context information while they are less sensitive
to domain changes. A variety of CNN designs for the semantic
segmentation of buildings have been introduced with good
results [4], [5].

However, some critical challenges in building extraction
remain unsolved even with the use of the recent CNN-based
methods. First, occlusions (caused by trees and shadows) and
intra-class diversity are common problems in VHR RSIs,
which often cause fragmentation and incomplete segmentation.
Second, it is common to have boundary ambiguity problems.
Due to the effects of shadows and building profiles, an accurate
localization of the building boundaries is difficult (especially
in the low-contrast areas). Conventional CNN-based methods
produce ambiguous probability values in these areas, which
often cause rounded or uneven building boundaries after
thresholding. Last but not least, the segmentation maps gen-
erally suffer from over-segmentation and under-segmentation
errors caused by these fragmentation and boundary-adhesion
problems. Due to these limitations, post-processing algorithms
are often required to optimize the building extraction results
[6], [7].
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Another important issue is that previous works on CNN-
based building extraction pay more attention to the extrac-
tion of texture and context information in RSIs, whereas
the explicit modeling of building shapes has rarely been
studied. In most cases, buildings in VHR RSIs are compact
and rectangular objects with sharp edges and corners. Their
rectangularity is very discriminative compared to other ground
objects. Learning this shape prior is beneficial for not only
inpainting the occluded building parts but also reducing the
boundary ambiguities and regularizing the segmentation re-
sults. An example is shown in Fig. 1 to illustrate the limitations
of conventional CNNs and the benefits of the shape modelling.

In this work, we aim to address the previously mentioned is-
sues and to improve the extraction of buildings by introducing
an adversarial learning of their shape information. In greater
detail, the main contributions of this work are as follows:

1) Proposing an adversarial shape learning network
(ASLNet) to learn shape-regularized building extraction
results. It includes a shape discriminator to exclude
redundant information and focus on modelling the shape
information, as well as a shape regularizer to enlarge
the receptive fields (RFs) and explicitly model the local
shape patterns.

2) Designing three object-based quality assessment met-
rics to quantitatively evaluate the geometric properties
of the building extraction results. These metrics take
into account both the under-segmentation and over-
segmentation problems and the shape errors of the
predicted building items.

3) Achieving the state-of-the-art performance on the In-
ria and Massachusetts building extraction benchmark
datasets. Without using sophisticated backbone CNN
architectures or post-processing operations, the proposed
ASLNet outperforms all the compared literature methods
in both pixel-based and object-based metrics.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related works on building extraction
and adversarial learning. Section III illustrates the proposed
ASLNet. Section IV describes the implementation details and
the experimental settings. Section V presents the results and
analyzes the effect of the proposed method. Section VI draws
the conclusions of this study.

II. RELATED WORK

A. CNN-based Building Extraction

Literature work focus on CNN for building extraction can
be roughly divided into three types based on the studied
perspectives: supervisions, architecture designs and the devel-
opment of post-processing algorithms. To begin with, while
binary ground truth maps are widely used to compute the
segmentation losses, several papers have explored the use
of other kinds of supervisions. In [8], the supervision of
signed distance map (SDM) is introduced to highlight the
difference between building boundaries and inner structures.
In [9] signed distance labels are also introduced but in the
form of classification supervision. This SDM has also been
used in [10] as an auxiliary supervision.

Most CNN models for building extraction are variants of the
well-known architectures for image classification and semantic
segmentation. In [4], the ResUNet has been introduced for
building extraction from VHR RSIs, which combines ResNet
[11] with the UNet [3] structure. The MFCNN in [6] is also a
symmetric CNN with ResNet as the feature extractor, whereas
it contains more sophisticated designs (such as dilated convo-
lution units and pyramid feature fusion). In [12], a Siamese
UNet with two branches is designed to extract buildings from
different spatial scales. In [13] a hybrid network with multiple
sub-nets is introduced to exploit information from the multi-
source input data. In [5], the MAPNet is proposed, which
is a HRNet-like architecture with multiple feature encoding
branches and channel attention designs. In [14], the global
multi-scale encoder-decoder network (GMEDN) is proposed,
which consists of a UNet-like network and a non-local mod-
elling unit.

Since conventional CNN models only produce coarse seg-
mentation results, post-processing operations are often re-
quired to obtain detailed results. In [4], guided filters are used
to optimize the segmented building boundaries and to remove
noise. In [7] and [15], regularization algorithms are developed
to refine the segmentation maps. These algorithms perform
object-based analysis on the edges and junction points to gen-
erate building-like polygons. In [6], a regularization algorithm
is designed based on morphological operations on the rotated
segmentation items. In [16], a graph-based conditional random
field (CRF) model is combined with the segmentation network
to refine the building boundaries.

B. Adversarial Learning
1) Generative Adversarial Networks (GANs) [17]: GANs

typically consist of two important components: a generator and
a discriminator. The aim of the generator is to generate realistic
results from the input data, while the discriminator is used to
distinguish between the real data and the generated one. Since
the discriminator is also a CNN, it is capable of learning the
intrinsic differences between the real and fake data, which can
hardly be modeled by human-defined algorithms. Therefore,
the GANs have been widely used for a variety of complex
tasks in the computer vision field, such as image generation
[18], [19], [20], [21], semantic segmentation [22], [23], object
detection [24], [25], depth estimation [26], and image/action
recognition [27], [28].

2) Adversarial Learning for Building Extraction: Several
literature works have introduced the adversarial learning strat-
egy for building extraction. The segmentation model can be
seen as a generative network, thus the building segmentation
results can be learned in an adversarial manner by employing
a CNN discriminator. The work in [29] is an early attempt
on using the adversarial learning for building extraction. It
forwards the masked input RSIs to the discriminator and
uses an auto-encoder to reconstruct it. In [30] the GAN has
been used to generate synthetic depth maps, thus improving
the accuracy of building segmentation. In [31] the generative
adversarial learning is introduced to improve the accuracy of
building segmentation by employing a discriminator to distin-
guish whether the segmentation map is the ground truth (GT)
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Fig. 2: Architecture of the proposed Adversarial Shape Learning Network (ASLNet) for building extraction. We designed an
explicit shape regularizer (SR) to model the shape features, and a shape discriminator (SD) to guide the segmentation network.
The SD discriminates whether its input is the prediction map (P ) or the label map (L).

map or the segmentation results. In [32], a multi-scale L1 loss
is calculated from the discriminator to train the segmentation
network. In [33], a conditional Wasserstein GAN with gradient
penalty (cwGAN-GP) is proposed for building segmentation,
which combines the conditional GAN and Wasserstein GAN.

In general, the literature papers on the use of adversarial
learning for building extraction combine the segmentation
maps and the RSIs as input data to the discriminator, whereas
they do not exploit the shape of segmented items.

C. CNN-based Shape Modelling

There is a limited number of papers on CNN-based mod-
elling of 2D shapes. To begin with, the work in [34] shows that
CNNs can recognize shapes in binary images with high accu-
racy. In [35], the modelling of shape information is studied for
the segmentation of kidneys from ultrasound scan images. In
this work, a CNN auto-encoder is introduced to regularize the
CNN output, which is pre-trained to recover the intact shape
from randomly corrupted shapes. The shape regularization
network is trained by three loss terms that measure the distance
between the input segmentation map, regularized segmentation
map, and the ideal segmentation map. In [36], a gated shape
CNN is proposed for the semantic segmentation. It contains
an explicit shape stream that deals with the object boundary
information.

Several works use binary mask features to preserve and
model the shape information. In [37], the shape priors are
modeled to improve the instance segmentation. The label
masks are cluttered to generate class-wise shape priors. These
priors are then weighted by a learnt vector of parameters to
estimate the coarse instance region. In [38], a shape-variant
convolution is proposed for the semantic segmentation. It uses
a novel paired convolution to learn context-dependent masks to
limit the receptive fields (RFs) on interested image regions. In
[39], the modeling of object contour polygons is studied for the

instance segmentation. The polygons are first generated with
a segmentation CNN and then transformed in a transformer
network to fit to the object contours.

To the best of our knowledge, there is no existing work
that explicitly models shape constraints for the segmentation
of remote sensing images.

III. ADVERSARIAL SHAPE LEARNING NETWORK

Typical CNN models [4], [6] for building segmentation
exploit only the local texture and context information, thus
the fragmentation and boundary ambiguity problems remain
unsolved. Since buildings in VHR RSIs usually have clear
shape patterns, it is meaningful to use the shape constraints
to alleviate these problems. To this end, we propose the
adversarial shape learning network (ASLNet) to explicitly
model these shape constraints. In this section, we describe in
detail the architecture, loss functions, and the CNN modules
of our ASLNet.

A. Network Architecture

Fig. 2 illustrates the architecture of the proposed ASLNet
for building extraction, which consists of a segmentation
network and a discriminator network. The segmentation net-
work itself is capable of segmenting buildings, while the
discriminator is employed to guide the training of the segmen-
tation network. The segmentation network follows the classic
encoder-decoder structure in literature papers [3], [40], [41].
The encoder network contains down-sampling operations to
extract high-level semantic features from image local patches,
whereas the decoder network recovers the spatial resolution
of encoded features. The choice of the encoder network is not
the focus of this work, thus we simply adopt the ResNet [42]
as the feature encoder. It has been widely used for feature
extraction in building segmentation [43], road segmentation
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Fig. 3: The designed shape regularizer. Dilated convolutions
and deformable convolutions are employed to enlarge the RFs
and learn the shape features.

[44], and other semantic segmentation related tasks [45]. The
selected ResNet version is ResNet34, which can be replaced
by other versions based on the complexity of the dataset.

Apart from the output features from the late layers of the
ResNet (with 1/8 of the original GSD), the early features (with
1/4 of the original GSD) are also employed in the decoder
to learn finer spatial details. This is a commonly adopted
design in segmentation networks [41], [40]. This ResNet with
encoder-decoder structure is a modified version of FCN [2],
denoted as ED-FCN. Compared with the plain FCN, the ED-
FCN models the spatial features at a finer resolution, which is
essential for the segmentation of VHR RSIs. It is therefore
set as the baseline method of our segmentation network.
Building on top of the ED-FCN, we further designed a shape
regularizer at the end of the segmentation network in the
proposed ASLNet to produce shape-refined outputs.

B. Shape Regularizer

Although using a simple ResNet as the segmentation net-
work is feasible for the adversarial shape learning, it is
beneficial to model the shape features at finer spatial scales.
Therefore, we design an explicit shape regularizer in the
decoder of the segmentation network to enable a better adapta-
tion to the shape constraints (see Fig. 3). The shape regularizer
is placed at the spatial scale of 1/4 of the GSD, which operates
on the fused multi-scale features in the ED-FCN. This spatial
resolution for shape modeling is adopted following the practice
in [41] and [40], which is a balance between accuracy and
computational costs. At this spatial scale, a conventional 3×3
convolutional kernel has the RF of around 12 × 12 pixels,
which is too small for modelling the local shape patterns.
Therefore, we introduce the dilated convolution (DC) and
deformable convolution (DFC) [46] layers to enlarge the RFs
and to learn shape-sensitive transformations.

Both the DC and DFC are based on the idea of enlarging
the coverage of convolutional kernels. Let us consider a
convolutional operation for pixel x(r, c) as:

U(r, c) =
∑
i,j

xr+i,c+j · ki,j , (1)

where ki,j denotes the kernel weight. In a standard 3 × 3
convolution, i, j ∈ {−1, 0, 1}. However, in a 3× 3 DC, i, j ∈
{−r, 0, r} where r is the dilation rate. In the designed SR,
two 3× 3 DCs are connected in a residual manner as in [11],
composing a dilated residual unit. The residual branch allows

the unit to gather information in different spatial ranges. In
this way, the RF is enlarged to over 36× 36 pixels.

A DFC is further employed to exploit the shape information,
defined as:

Udf (r, c) =
∑
i,j

xr+i+u(r,c),c+j+v(r,c) · ki,j , (2)

where u(r, c) and v(r, c) are position parameters learned by
the additional convolutions, as follow:

u(r, c) =
∑
i,j

xr+i,c+j · k
′

i,j , v(r, c) =
∑
i,j

xr+i,c+j · k
′′

i,j . (3)

The DFC is placed at the end of the convolutional module (SR)
as in [46]. This enables the SR to perceive and adapt to the
local shape patterns. Finally, a 1 × 1 convolution is followed
to project the learned features into a segmentation map.

C. Shape Discriminator

A CNN model (even equipped with the SR) trained by
the standard pixel-wise losses is not shape-aware, since each
pixel is considered separately. To address this limit, we in-
troduce a shape discriminator (SD) to drive the model to
learn shape patterns. Although several literature works have
introduced the adversarial learning for building extraction,
most of them combine CNN outputs and input RSIs to train
the discriminators [33], [30], [31], [32]. Under this condition,
the discriminators are unlikely to learn the shape information,
since they are affected by the redundant information in input
RSIs. In the proposed ASLNet, the discriminator focuses only
on the shape features, thus we exclude the use of input RSIs.

Training a shape discriminator with only binary inputs is
challenging. Let I denote an input image, P be its corre-
sponding prediction output and L be the ground truth map.
Since in I there are usually mixed pixels (due to the sensor
resolution) and discontinuities in objects representations (due
to occlusions and low illumination conditions), it is common
to have fuzzy areas in especially the building contours in
the normalized prediction map σ(P ), where σ is the Sig-
moid function. However, in L the human-annotated building
contours have ’hard’ edges, i.e. L ∈ {0, 1}. Mathematically,
let σ(P ) ∈ [0, 1] be a smooth/fuzzy representation of the
contours. This difference between σ(P ) and L can be easily
captured by the discriminator and causes failure to the shape
modelling. In some literature works [29] a thresholding (or
argmax) function T is employed to binarize σ(P ) as:

R = T [σ(P )], (4)

where R is the binary segmentation map. Although the ob-
tained R ∈ {0, 1}, the T is non-differential in most cases,
thus training the segmentation network with R and L will
lead to zero-gradient problems.

In the designed shape discriminator we managed to elim-
inate this boundary difference and model only the shape
information by adding a down-sampling operation Fd in the
discriminator D. Fig. 4 illustrates the designed shape discrim-
inator. After applying Fd, the building boundaries in Fd(L)
are ’softened’ (Fd(L) ∈ [0, 1]) and the boundary difference
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Fig. 4: The designed shape discriminator. The input maps
are down-scaled to exclude the impact of ‘hard’ building
boundaries in reference maps.

between Fd(σ(P )) and Fd(L) is excluded. Specifically, four
layers of strided convolution and activation functions are then
employed to reduce the spatial size of feature maps and learn
the local discriminative shape information. The output results
are related to 1/32 of the original GSD.

The discriminator is trained with the Binary Cross Entropy
(BCE) loss function. It is calculated as:

LDis =EL∼pdata(L)[logD(L)]
+EP∼pdata(P )[log(1−D(σ(P )))]
=− y log(p)− (1− y) log(1− p),

(5)

where E is the expected value for different types of input
samples, y is the encoded signal that depending on the input
map to the discriminator can be L or σ(P ) (‘1’ and ‘0’,
respectively), and p is the output of the discriminator. We
employ the Mean Squared Error (MSE) loss function to
calculate the LShape as:

LShape = {D(L)−D[σ(P )]}2, (6)

where D is the shape discriminator. In this way, the LShape is
related to the L, thus the segmentation network is constrained
by the ground truth conditions.

D. Optimization Objective of ASLNet

Let LSeg be the loss function for the CNN-based segmenta-
tion of buildings. In conventional CNNs, LSeg is only related
to the pixel-wise accuracy, which does not consider the image
context. In order to model the shape of objects with CNNs,
it is essential to define a shape-based loss function LShape.
Previous works on shape analysis are often object-based [47],
[48]. They include non-differential operations to calculate the
shape measures, which are difficult to be incorporated into
CNNs. Although there are also literature papers that use CNNs
to regularize the shape of predictions [35], pre-training is often

required and the regularization is limited to certain functions
(e.g., inpainting of object contours). Since CNNs themselves
can be trained to discriminate different shapes, we introduce
the idea of adversarial learning to learn the LShape to guide
the segmentation network.

LSeg =α · LPix + β · LShape

=α · [L− σ(P )]2 + β · {D(L)−D[σ(P )]}2,
(7)

where LPix = [L − σ(P )]2 is the supervised pixel-based
reconstruction loss, α and β are two weighting parameters.
The first term in this formula drives the segmentation network
to segment pixel-based P in order to fit L, while the second
term strengthens the local shape similarities between P and L.

IV. DESIGN OF EXPERIMENTS

In this section, we describe the experimental dataset, the
implementation details, and the considered evaluation metrics.

A. Dataset Descriptions

We conduct building extraction experiments on two VHR
RSI datasets, i.e., the Inria dataset [49] and the Massachusetts
Building dataset [50]. These are two of the most widely
studied building extraction datasets in the literature [6], [29],
[14], [43].

1) Inria Dataset [49]: This is an aerial dataset with the
GSD of 0.3 m per pixel, covering 810 km2. Each image has
5,000 × 5,000 pixels. There is a total of 360 images in this
dataset, among which 180 are provided with the ground truth
labels. These 180 images were collected in five different cities:
Austin (U.S.), Chicago (U.S.), Kitsap (U.S.), Tyrol (Austria),
and Vienna (Austria). Following the practice in [6], [14], we
use the first 5 images in each city for testing and the rest 31
images for training.

2) Massachusetts (MAS) Building Dataset [50]: This is an
aerial dataset collected on the Boston area. It has a GSD of 1.2
m per pixel, covering around 340 km2. The imaged regions
include urban and suburban scenes where there are buildings
with different sizes. This dataset consists of a training set with
137 images, a validation set with 4 images, and a test set with
10 images. Each image has 1,500 × 1,500 pixels.

B. Implementation Details

The experiments were conducted on a workstation with
32 GB RAM and a NVIDIA Quadro P6000 GPU (23GB).
Since it is impossible to train directly the large RSIs, they
are randomly cropped into 512 × 512 patch images during
the training process. The performed data preprocessing and
augmentation operations include data normalization, random
cropping, and image flipping. The training batch size is set
to 8 and the number of training epochs is 50. The validation
and test sets are evaluated on the original size RSIs to avoid
the impact of cropping parameters. The hyper-parameters α, β
in the Eq. (7) are set to 5.0, 1.0, respectively. The choice of
hyper-parameters is discussed in Section V-A.
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C. Evaluation Metrics

1) Pixel-based Evaluation Metrics: We adopt several com-
monly used evaluation metrics in building extraction [6], [10]
and other binary segmentation tasks [44] to assess the accuracy
of the results. These metrics are based on statistical analysis
of the classified pixels, including: overall accuracy (OA),
Precision (P ), Recall (R), F1 score, and mean Intersection
over Union (IoU). The calculations are:

P =
TP

TP + FP
, R =

TP

TP + FN
, (8)

F1 = 2× P ×R
P +R

, OA =
TP + TN

TP + FP + TN + FN
, (9)

IoU =
TP

TP + FP + FN
, (10)

where TP , FP , TN , and FN represent true positive, false
positive, true negative, and false negative, respectively.

2) Object-based Evaluation Metrics: Although the pixel-
based evaluation metrics present the overall classification
accuracy of the results, they fail to consider the thematic
and geometrical properties of the segmented units [47]. To
overcome this limitation, we designed three object-based
evaluation metrics, including the matching rate (MR), the
curvature error (Ecurv), and the shape error (Eshape). These
metrics are variants of the literature works [51], [48] to adapt
to the assessment of building extraction results.

In order to compare the geometric quality of a segmented
object Sj on the prediction map P and a reference object Oi

on the GT map L, it is essential to first discriminate if they
are representing the same physical object. If Sj and Oi are
overlapped, there are three possible overlapping relationships
between them, as illustrated in Fig. 5. Therefore, for each
Oi (i = 1, 2, 3, · · · , n) and Sj (j = 1, 2, 3, · · · , n′), their
matching relationship M(Oi, Sj) is calculated based on the
over-segmentation error (Eos) and under-segmentation error
(Eus) [51]:

M(Oi, Sj) =

{
0, Eos(Oi, Sj) > T ||Eus(Oi, Sj) > T
1, Eos(Oi, Sj) 6 T &Eus(Oi, Sj) 6 T

(11)

Eos(Oi, Sj) = 1− |Sj ∩Oi|
|Oi|

, Eus(Oi, Sj) = 1− |Sj ∩Oi|
|Sj |

,

(12)
where T is a threshold value (empirically set to 0.3). The
matching rate (MR) of P is the numeric ratio between the
matched objects in L and all the Oi in L:

MR =

∑
i,j M(Oi, Sj)

NOi

. (13)

After finding the matched item Mi in P for Oi, two
geometric measurements are further calculated to measure the
differences between Mi and Oi. First, Ecurv is introduced to
measure the differences in object boundaries. It is calculated
as:

Ecurv(Oi,Mi) = ||fc(Mi)− fc(Oi)||, (14)

(a) (b) (c)

Fig. 5: Illustration of three overlapping relationships between
a segmented object Sj (colored region) and a reference ob-
ject Oi (dotted region). (a) Over-segmentation, (b) Under-
segmentation, and (c) Matching.

(a) (b)

Fig. 6: Examples of the reference object Oi (dotted region)
and its matched segmented object Mi (colored region) that
have: (a) high curvature error (Ecurv), and (b) high shape
error (Eshape).

where fc denotes the contour curvature function [52]. Since
Oi is human-annotated, fc(Oi) is usually small. A large
Ecurv(Oi,Mi) indicates that the boundary of fc(Mi) is un-
even. The second measurement Eshape is introduced to assess
the difference in shape, calculated as:

Eshape(Oi,Mi) = ||fs(Mi)− fs(Oi)||, fs(Mi) =
4π|Mi|
p2Mi

,

(15)
where pMi is the perimeter of Mi. The value of fs(Mi) is 1
for a circle and pi/4 for a square [48], [52]. Two examples of
the curvature and shape errors are illustrated in Fig. 6.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained on
the two VHR building datasets. First, we present the ablation
study to quantitatively evaluate the improvements brought by
the proposed method. Then the effects of the shape regularizer
(SR) and the shape discriminator (SD) are analyzed in greater
detail on some significant sample areas. Finally, the proposed
ASLNet is compared with several state-of-the-art CNN models
for building extraction.

A. Ablation Study

Influence of Hyper-Parameters. The hyper-parameters α and
β in Eq. (7) balance Lpix and Lshape. To find which set of
hyper-parameters leads to the best performance, we conduct
an experiment on the Inria dataset. We set the value of one
of the parameters to 1 and change the other one. The mIoU
obtained with different hyper-parameter values are reported in
Table I. We find that setting Lpix as the primary loss (i.e.,
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Hyper-parameter 1 3 5 10
α(β = 1) 77.56 78.58 79.30 78.82
β(α = 1) 77.56 76.00 75.21 65.97

TABLE I: The mIoU under different hyper-parameters tested
on the Inria dataset.

Adversarial Loss OA(%) F1(%) mIoU(%)
BCE 96.67 86.23 76.26

BCE + FM [53] 96.20 84.67 73.81
Perceptual [54] 96.09 84.38 73.35

Multi-scale L1 [32] 96.45 85.67 75.39
MSE (adopted) 97.15 88.27 79.30

TABLE II: The accuracy obtained by training with different
adversarial losses on the Inria dataset.

α > β) leads to higher accuracy. The ASLNet obtains the
best accuracy when α = 5, β = 1. Therefore, these hyper-
parameters are fixed in adversarial training of the ASLNet in
all the experiments.
Choice of Adversarial Losses. There are a variety of loss
functions available for the adversarial training. We test some of
the commonly used losses for our task, including: 1) BCE loss.
It is calculated between the outputs of the discriminator and
the domain labels (i.e., whether inputs to the discriminator are
predictions or GT maps); 2) Feature Matching (FM) loss [53].
It is an auxiliary loss commonly used to stabilize the training
of GANs. It matches the moments of the activation on an
intermediate layer of the discriminator; 3) Perceptual loss
[54]. It calculates the distance between features extracted from
generated and GT images using a pretrained network; 4) Multi-
scale L1 loss [32]. It calculates the L1 distance of features in
the discriminator extracted from the prediction and GT maps;
and 5) MSE loss. It is calculated as in Eq. (6).

The obtained accuracy is reported in Table II. The BCE loss
(either w/ or w/o auxiliary loss) causes training instability and
leads to unsatisfactory results, as it encourages the segmen-
tation network to generate fake predictions unrelated to the
GT situations. The perceptual loss drives the segmentation
network to pay more attention to the boundary of objects
(instead of the shape), since the pretrained network is not
sensitive to shape features. On the contrary, the multi-scale
L1 loss aligns only the features without considering the
segmentation maps, thus the trained network fails to optimize
the building boundaries. The MSE loss successfully drives the
segmentation network to learn shape patterns, leading to the
highest accuracy. Therefore, it is adopted as the LShape to
train the segmentation network.
Quantitative Results. We conduct extensive ablation stud-
ies to assess the effectiveness of the proposed ASLNet. To
compare the results before and after the use of SR and SD,
the original FCN [2] and the baseline method ED-FCN are
also included in the comparison. The quantitative results are
reported in Table III. The baseline ED-FCN outperforms the
FCN in terms of mean IoU by 0.21% and 4.87%, respectively
in the Inria and the MAS dataset, which is attributed to the
concatenation of low-level features in its decoder. Since the
MAS dataset has lower spatial resolution, the improvements

of the ED-FCN is more noticeable. The ASLNet w/ the SR
but w/o the SD has slight accuracy improvements over the
ED-FCN. Meanwhile, after introducing the adversarial shape
learning, the ASLNet (w/o the SR) has the mean IoU improve-
ments of 1.56% and 2.63% on the two datasets. The complete
ASLNet with both the SR and the SD provides improvements
of 2.73% and 3.26% in mean IoU compared to the baseline
ED-FCN. Fig. 9 shows a comparison of the OA values of the
segmented probability maps versus different binarization (T
in Eq. (4)) thresholds. Since the ASLNet directly segments
near-binary regularized results, its OA curves are close to
horizontal, and are sharply above the baseline methods.

The improvements are even more significant in terms of
object-based metrics. The baseline FCN encountered severe
over-segmentation problems, which lead to low MR values.
The ED-FCN and the ASLNet (w/o the SD) slightly improve
the three object-based metrics. The ASLNet (w/o the SR) has
improvements of around 3% in both Ecurv and Eshape in the
two datasets. The complete ASLNet further improves the MR
values of around 4% on the two datasets.
Qualitative Results. Fig. 7 shows the results of the ablation
study on several sample areas. The segmentation results of the
ED-FCN are generally round-edged. However, after adding
the SD, the building edges became sharper and the object
shapes became more rectangular. Moreover, the object shapes
are modelled in a wider image range, thus the edges are more
straight and some missing parts are inpainted. More specif-
ically, Fig. 7(a) and Fig. 7(e) show two cases of occlusions
caused by trees and shadows, respectively. Fig. 7(c) shows
a case of under-segmentation. In these cases the ASLNet
has successfully recovered the complete buildings. Fig. 7(b),
(d), and (f) show several examples of the improvements in
shapes. It is worth noting that the ASLNet managed to improve
the segmented shape of compact small objects (e.g., houses),
irregular large object (e.g., factories), and long bar-like objects
(e.g., residential buildings). However, a side-effect of the
ASLNet is that it fails to segment some round objects (e.g., oil
tanks) that are unseen in the training set. The learned shape
bias drives the ASLNet to optimize the rectangular contour
of buildings. Some of examples of these cases are shown in
Fig. 8. Considering the objective of the proposed method, this
drawback has minor impacts. Note that the proposed shape-
driven training could also be adapted to other general shapes
to suit different applications.

As a conclusion of the ablation study, the modeling of shape
features in the ASLNet leads to three significant benefits: 1)
inpainting of the missing parts of buildings; 2) providing a
joint segmentation and regularization of the building contours;
3) mitigating the under-segmentation and over-segmentation
problems. These advantages are verified by both the accuracy
metrics and visual observation.
ASLNet with SOTA Backbones. For assessing the perfor-
mance of the proposed techniques, the ASLNet is designed
on top of a simple ED-FCN. However, replacing the ED-FCN
with more advanced segmentation networks may potentially
improve its accuracy. To test this, we integrate the SR and SD
modules into two well-known and widely used segmentation
backbones, i.e., the DeepLabv3+ [41] and the HRNet [55].
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(a)

(b)

(c)

(d)

(e)

(f)

Test Image GT ED-FCN Proposed ASLNet
(w/o SR) Proposed ASLNet

Fig. 7: Examples of segmentation results obtained by the different methods (ablation study). (a)-(c) Results selected from the
Inria dataset, (d)-(f) Results selected from the Massachusetts dataset.

The SR module is placed at the end of each segmentation
backbone, while the SD module is used in the same way
as in the original ASLNet. The resulting variants of the
ASLNet are referred to as the ASLNet-DL and the ASLNet-
HR, respectively.

The quantitative results are reported in Table IV. Both

ASLNet-DL and ASLNet-HR obtain sharp accuracy improve-
ments over their baselines (DeepLabv3+ and HRNet), proving
that the proposed shape training method is effective on dif-
ferent segmentation backbones. Compared to the ASLNet, the
ASLNet-HR obtains slight accuracy improvements on the two
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TABLE III: Results of the ablation study on the two considered data sets.

Dataset Method Components Pixel-based Metrics Object-based Metrics
SR SD OA(%) P(%) R(%) F1(%) mIoU(%) MR(%) Ecurv Eshape

Inria

FCN [2] 96.72 89.41 83.78 86.33 76.36 55.37 7.66 6.63
ED-FCN 96.69 87.87 85.29 86.46 76.57 60.38 7.26 6.29

Proposed ASLNet (w/o SD)
√

96.71 87.18 86.77 86.82 77.06 57.36 7.42 6.21
Proposed ASLNet (w/o SR)

√
96.94 88.98 86.32 87.50 78.13 60.36 3.86 4.36

Proposed ASLNet
√ √

97.15 90.00 86.85 88.27 79.30 64.46 3.53 3.66

MAS

FCN [2] 92.39 78.46 78.73 78.56 64.82 26.87 11.56 7.79
ED-FCN 93.81 84.83 79.57 82.09 69.69 53.62 8.78 7.45

Proposed ASLNet (w/o SD)
√

93.95 85.47 79.45 82.31 70.03 55.04 8.69 7.11
Proposed ASLNet (w/o SR)

√
94.38 85.70 81.17 83.91 72.32 62.39 7.36 4.30

Proposed ASLNet
√ √

94.51 85.92 82.83 84.32 72.95 67.28 7.19 4.01

Test Image GT ED-FCN Proposed
ASLNet

Fig. 8: Examples of the failure cases. The ASLNet segments
rectangular items for even the round objects, given its building-
shape driven training.

(a) (b)

Fig. 9: Accuracy curves versus different binarization threshold
of (a) Inria dataset, and (b) Massachusetts dataset.

considered datasets, whereas accuracy of the ASLNet-DL is
decreased on the MAS dataset. This suggests that the atrous
convolutions operated on high-level features is not effective
on the MAS dataset (which has a relatively lower GSD).

B. Comparative Experiments

Quantitative Results. We further compare the proposed
ASLNet with several literature works to assess its effective-
ness. Three classic models for the semantic segmentation
are compared, including the UNet [3], the baseline method
FCN [2] and the Deeplabv3+ [41]. The cwGAN-gp [33]
that uses GAN for building extraction is also compared.
Moreover, we compare the proposed method with several

TABLE IV: Results obtained using SOTA segmentation back-
bones.

Dataset Method Backbone OA(%) F1(%) mIoU(%)

Inria

DeepLabv3+ [41] DeepLabv3+ 96.85 86.97 77.30
ASLNet-DL (Proposed) 97.18 88.26 79.31

HNRet [55] HNRet 96.90 87.18 77.68
ASLNet-HR (Proposed) 97.20 88.40 79.54

MAS

DeepLabv3+ [41] DeepLabv3+ 93.27 80.53 67.52
ASLNet-DL (Proposed) 94.41 83.88 72.31

HNRet [55] HNRet 94.34 83.33 71.55
ASLNet-HR (Proposed) 94.61 85.00 73.99

state-of-the-art methods for building extraction, including the
ResUNet [4], the MAPNet [5], the GMEDN [14] and the FC-
DenseNet+FRCRF [16] (which includes a CRF-based post-
processing step). The quantitative results on the Inria dataset
and the MAS dataset are reported in Table V and Table VI,
respectively.

Let us first analyze the pixel-based metrics. The ResUNet,
which is a variant of UNet for the building extraction, out-
performs the classic semantic segmentation models (UNet,
FCN and Deeplabv3+) by a large margin on the MAS dataset.
The accuracy of cw-GAN-gp is higher than that of the FCN
on the MAS dataset but it is lower on the Inria dataset. on
the The MAPNet obtains competitive results on the Inria
dataset, whereas its performance is inferior to the ResUNet
and the Deeplabv3+ on the MAS dataset. On the contrary, the
GMEDN obtains better accuracy on the MAS dataset. The
FCN-DenseNet+FRCRF achieves the second best accuracy
on the MAS dataset. The proposed ASLNet outperforms all
the compared methods in almost all the metrics (except for
the precision and recall on the MAS dataset), although its
baseline method (the ED-FCN) is inferior to most of them.
The advantages of the ASLNet are particularly noticeable on
the Inria dataset, where the ASLNet improves the mean IoU
of 1.51% with respect to the second best method. The reason
for which the ASLNet has higher improvements on the Inria
dataset can be attributed to the higher GSD of this dataset,
where the building shape information is more discriminative.

In terms of object-based metrics, there are remarkable
differences in the MR values. The cw-GAN-gp and the Re-
sUNet obtained the third best MR values among the literature
methods on the Inria dataset and the MAS dataset, respec-
tively. The FCN-DenseNet+FRCRF obtained the second-best
accuracy in all the object-based metrics due to its boundary-
refinement CRF operations. All the other compared literature
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(a)

(b)

(c)

(d)

(e)

(f)

Test Image GT ResUNet cwGAN MAPNet GMEDN FC-DenseNet
+FRCRF

Proposed
ASLNet

Fig. 10: Examples of segmentation results obtained by the different methods (comparative experiments). (a)-(c) Results selected
from the Inria dataset, (d)-(f) Results selected from the Massachusetts dataset.

methods obtained very high Ecurv and Eshape values. This
indicates that they all suffer from irregular shapes and uneven
boundaries problems. On the contrary, the proposed ASLNet
shows significant advantages in terms of all these three met-
rics. Due to its learned shape constraints that regularize the
segmented items and sharpen the building boundaries, the
ASLNet exhibits great advantages in Eshape and Ecurv in both
datasets.

Qualitative Results. Fig. 10 shows comparisons of the seg-
mentation results obtained by the compared methods. One can
observe that the proposed ASLNet exhibits several advantages
in different scenes. It is capable of accurately segmenting
the individual buildings in Fig. 10(a), the occluded houses
in Fig. 10(c) and the large-size factories/supermarkets in
Fig. 10(b) and Fig. 10(e). When it deals with dense residential
buildings as shown in Fig. 10(d), the over-segmentation and
under-segmentation errors are reduced. It also excludes some
uncertain areas by considering the shape patterns (e.g., the

colored opening space in Fig. 10(a) and the parking lot in
Fig. 10(f)).

VI. CONCLUSIONS

Recent works on CNN-based building extraction exhibit
severe limitations resulting in two main issues: 1) incomplete
segmentation of objects due to occlusions and intra-class
diversity; 2) geometric regularization of the building extraction
results. To address these issues, we introduce the adversarial
training strategy to learn the shape of buildings and propose an
ASLNet. Specifically, we designed a SR with shape-sensitive
convolutional layers (DCs and DFCs) to regularize the feature
maps, as well as a SD to learn the shape constraints to guide
the segmentation network. The SR and SD allow an accurate
modelling of the shape information contained in the considered
images. To the best of our knowledge, this is the first work
that learns adversarial shape constraints for the segmentation
of RSIs. To quantitatively evaluate the thematic properties of
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TABLE V: Results of the comparative experiments on the Inria dataset.

Method Pixel-based Metrics Object-based Metrics
OA(%) P(%) R(%) F1(%) mIoU(%) MR(%) Ecurv Eshape

UNet [3] 95.52 81.76 82.76 82.03 70.03 43.87 10.89 7.84
FCN [2] 96.72 89.41 83.78 86.33 76.36 55.37 7.66 6.63

Deeplabv3+ [41] 96.85 89.17 85.09 86.97 77.30 58.63 7.12 6.29
ResUNet [4] 96.50 88.33 83.60 85.68 75.41 55.72 7.47 6.50

cwGAN-gp [33] 96.54 86.43 85.61 85.94 75.76 61.51 7.10 5.47
MAPNet [5] 96.96 88.58 86.04 87.24 77.79 59.75 6.26 6.16

GMEDN [14] 96.23 87.03 81.37 83.88 72.95 52.65 8.43 5.54
FC-DenseNet+FRCRF [16] 96.74 89.55 83.68 86.36 76.34 63.43 4.31 4.13

ASLNet (proposed) 97.15 90.00 86.85 88.27 79.30 64.46 3.53 3.66

TABLE VI: Results of the comparative experiments on the Massachusetts dataset.

Method Pixel-based Metrics Object-based Metrics
OA(%) P(%) R(%) F1(%) mIoU(%) MR(%) Ecurv Eshape

UNet [3] 92.18 84.71 70.29 76.75 62.34 40.02 10.23 7.10
FCN [2] 92.39 78.46 78.73 78.56 64.82 26.87 11.56 7.79

Deeplabv3+ [41] 93.27 82.28 78.95 80.53 67.52 47.15 9.82 7.67
ResUNet [4] 94.32 86.16 81.25 83.59 71.87 60.22 7.91 7.16

cw-GAN-gp [33] 93.00 81.03 79.64 80.29 67.15 51.94 9.37 6.74
MAPNet [5] 93.47 87.88 72.77 79.50 66.20 53.70 8.05 7.63

GMEDN [14] 93.29 84.09 77.49 80.63 67.61 51.20 9.20 7.26
FC-DenseNet+FRCRF [16] 94.48 85.28 83.16 84.18 72.77 67.21 7.92 6.66

ASLNet (proposed) 94.51 85.92 82.83 84.32 72.95 67.28 7.19 4.01

the building extraction results, we also designed three object-
based metrics: the matching rate, the curvature error and the
shape error.

Experimental results on two VHR building datasets show
that the proposed ASLNet has obtained significant improve-
ments over the conventional CNN models in both pixel-based
metrics and object-based metrics. These improvements can
be attributed to two factors. First, learning the shape priors
is beneficial to inpaint the missing building parts. Second,
the shape constraints force the ASLNet to produce shape-
regularized results, thus the segmented objects have rectangu-
lar shape and smooth boundaries. Additionally, we observed
that the ASLNet greatly reduces the over-segmentation and
under-segmentation errors (proved by the higher MR values).
One of the limitation of the ASLNet is that it reduces its
accuracy on the segmentation of objects with shape that are not
rectangular (e.g., round buildings), which is due to its learned
shape constraints.

The adversarial shape learning is potentially beneficial for
other segmentation-related tasks with the RSIs, where the
ground objects exhibit certain geometric patterns. In future
studies, we will investigate to use the adversarial shape
learning to model other types of object shapes in different
tasks (e.g., road extraction, change detection and land-cover
mapping in RSIs).
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