
UNIVERSITY OF TRENTO

DOCTORAL THESIS

New Analytical Methodologies at the
Frontier of Cellular Lipidomics

Author:
Ruggero FERRAZZA

Tutor:
Prof. Graziano GUELLA

Advisor:
Dr. Pietro FRANCESCHI

External Advisor:
Dr. Julian L. GRIFFIN

International Doctoral School in Biomolecular Sciences

29th Cycle

Bioorganic Chemistry Laboratory (Department of Physics)

Centre for Integrative Biology (CIBIO)

Academic Year 2015 – 2016



i

Declaration of Authorship
I, Ruggero FERRAZZA, declare that this thesis titled, “New Analytical Method-
ologies at the Frontier of Cellular Lipidomics” and the work presented in it
are my own. I confirm that:

• This work was done while in candidature for a research degree at this
University;

• Where I have consulted the published work of others, this is always
clearly attributed;

• Where I have quoted from the work of others, the source is always
given;

• I have properly and fully acknowledged all main sources of help;

• Where the work was done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed
myself.



ii

Abstract
New Analytical Methodologies at the Frontier of Cellular Lipidomics

by Ruggero FERRAZZA

Lipids were once thought to only be the building blocks of cell membranes
and to serve as energy reserves. With time however, it became increasingly
clear that they are actually involved in many more roles. Not surprisingly,
the comprehensive characterisation of lipids in cells and tissues has experi-
enced a growing interest worldwide, to the point that the term “lipidomics”
was coined. This field is a subset of metabolomics, and the interesting point
about these two sciences is that they are closest to the phenotype as com-
pared to their “omics” counterparts (genomics, trascriptomics, . . . ), because
metabolites and lipids are the end products of the –omics cascade.

We have investigated mass spectrometry-based lipidomics from different
perspectives: first of all, we have devised a targeted approach in which we
have focused on sphingolipids and their perturbations. We started by work-
ing on neuronal cell cultures where we inhibited GBA, a key enzyme of the
sphingolipid metabolism known to be one of the risk factors for Parkinson’s
disease. We found a significant sphingolipid unbalance characterised by an
accumulation of glycosyl-ceramides. We then moved on by investigating
the effects that LRRK2, an important and complex protein known to be
related to autosomal-dominant forms of the disease, has on sphingolipids.
We worked on mouse models, and we compared the sphingolipid profiles
of wild-type (Lrrk2+/+) and knock-out (Lrrk2–/–) mice, finding a marked
increase in ceramide levels and, more in general, in all lipids downstream of
GBA. Such results hint to a possible interaction between LRRK2 and GBA,
with LRRK2 playing a role in GBA regulation.

In a second lipidomics investigation, we tried to understand whether or
not anti-cancer treatments affect the lipid composition of tumours. Specif-
ically, we concentrated on a common anti-angiogenic drug, whose aim is
to starve cancer cells by inhibiting angiogenesis, a process required by the
tumours to grow. We considered four different adenocarcinoma cell lines,
which were subcutaneously inoculated into mice; the “control” animals
received no treatment, whereas the “treated” ones were periodically given
the drug. Interestingly, we found the treatment to have significant effects
on the cancer lipidome, although the different lines responded unequally to
the drug. Such results may reflect the huge heterogeneity of cancers and of
individual responses to the treatment.

Finally, we developed an informatics algorithm that deals with labelling
experiments. The key point is that mass spectrometry measures isotopic pat-
terns of analytes, which depend on the isotopic distribution of the elements;
consequently, if an analyte incorporates the stable isotope employed in a
labelling experiment, it will show a modified isotopic pattern. Our algorithm
analyses such pattern, estimating the abundance of the incorporated label;
we first tested it over carefully planned samples, and then we used it in a
biochemical application where we wished to establish whether the rate of de
novo lipogenesis is influenced by diet. This was accomplished by designing
an experiment where mice were given partially deuterated water, while
being fed different diets; we were able to ascertain that diet does indeed
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affect de novo lipogenesis, with the lowest rates occurring on fat-rich diets.
We are confident that our tool may find useful applications, considering that
stable isotope-based labelling experiments are becoming more and more
popular.
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Thesis Organisation and Contribution
This PhD Thesis summarises my three years of work in the field of lipi-

domics, during which time I have followed three different projects. Since
there is no common line joining them, I have chosen to dedicate a separate
Chapter to each.

1. Chapter 1 is a general introduction: here I briefly describe the main
aims of lipidomics and the analytical tools more commonly used, with
a focus on the aspects more relevant for this Thesis. In particular, I
point out some critical issues of the lipidomics technique that I had
to face during the PhD. For the sake of keeping the introduction as
general as possible, I do not introduce here the specific biological
questions of the following projects, which instead I have placed at the
beginning of the related Chapters.

2. In Chapter 2 I describe the first project, a targeted lipidomics investi-
gation where we looked for possible sphingolipids perturbations in
either neuronal cell cultures or mouse brains, associated to Gba and/or
Lrrk2 genes. Our interest was motivated by the fact that they seem
to be involved in the development of Parkinson’s disease. The bio-
logical part was carefully planned and carried out by Dr. Nicoletta
Plotegher and co-workers at the Department of Biochemistry, Univer-
sity of Padova (Italy). On the other hand, my work commenced at the
lipid extraction step, and I looked after all the subsequent stages. In
particular, I took care of the analytical part, including the choice of the
targeted approach, the optimisation of the instrumental parameters
and working conditions, and the statistical analysis of the LC-MS data.

3. Chapter 3 is the result of a collaboration with Dr. Stefano Indraccolo
and his research group of the Istituto Oncologico Veneto (Padova,
Italy). His research focuses on anti-angiogenic treatment of cancer,
and our aim here was to understand whether such treatment can
trigger lipidomics alterations and, if so, whether they depend on the
phenotype of the tumour cells. As with the previous project, I did
not conceive the biological experiments, but rather I took care of the
analytical part. A great help here came from Steven Murfitt (Julian L.
Griffin’s group, Department of Biochemistry, University of Cambridge –
UK), who kindly carried out the high-resolution LC-MS measurements.

4. Finally, Chapter 4 describes a non-conventional lipidomics approach
making use of stable isotopes, and I dealt with this project during my
training period abroad at the Department of Biochemistry, University
of Cambridge – UK. My advisor was Dr. Julian L. Griffin, and in
his group they have been using stable isotopes (2H and 13C) to label
metabolites; I developed a software package aimed at analysing MS
isotopic patterns, with the final goal to estimate the amount of label
enrichment within target analytes. We also applied it to experimental
LC-MS data, kindly provided by Dr. Nyasha Munjoma, Dr. N. Zhang
(13C experiments) and Dr. Francis Sanders (2H experiments).
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Glossary

Angiogenesis: The physiological process that generates blood vessels from
pre-existing ones. It is of vital importance in growth and development,
but it is also involved in the transition of tumours from a benign state
to a malignant one;

Conduritol β-Epoxide (CBE): An irreversible inhibitor of the lysosomal en-
zyme β-glucocerebrosidase (GBA);

Collision-Induced Dissociation (CID): A mass spectrometry technique to
induce fragmentation of molecular ions in the gas phase through colli-
sions with an inert gas;

De Novo Lipogenesis (DNL): The enzymatic pathway through which fatty
acids are synthesised from acetyl-coenzyme A, which in turn is an
intermediate product of metabolism of simple sugars such as glucose;

Electrospray Ionisation (ESI): One of the most common ionisation tech-
niques in mass spectrometry, whereby ions are generated by applying
a high voltage to a liquid. As a consequence, it is especially useful
when it comes to coupling mass spectrometric detection to liquid chro-
matography;

Extracted-Ion Chromatogram (XIC): Chromatogram created by plotting the
intensity of the signal observed at a chosen m/z value or set of values
in a series of mass spectra recorded as a function of retention time;

β-Glucocerebrosidase (GBA): A lysosomal enzyme that breaks down glu-
cosyl-ceramides into glucose and ceramides;

Lewy Bodies (LB): Abnormal protein aggregates that develop inside nerve
cells in some neurodegenerative diseases. Their primary structural
component is α-synuclein, which can be associated with other proteins
such as ubiquitin, neurofilament protein, and α-B-crystallin;

Liquid Chromatography (LC): A technique used to separate a sample mix-
ture into its individual components, based on interactions with two
phases, mobile and stationary. In particular, the liquid mobile phase
slowly goes through the solid stationary phase, bringing the separated
components with it. There are many stationary/mobile phase combi-
nations, and therefore several different types of chromatography;

Leucine-Rich Repeat Kinase 2 (LRRK2): A gene encoding for the LRRK2
protein, a member of the leucine-rich repeat kinase family; the protein
is mainly present in the cytoplasm and in the mitochondrial outer
membrane. LRRK2 mutations have been associated with Parkinson’s
disease;

Mass-To-Charge Ratio (m/z): The mass of a charged chemical species di-
vided by the charge of the species itself;



xii

Neurodegenerative Disease (ND): A range of conditions that primarily af-
fect the neurons in the human brain; such diseases are incurable and
debilitating conditions resulting in progressive degeneration and death
of nerve cells, thus causing problems with movement or mental func-
tioning. NDs include Parkinson’s, Alzheimer’s, and Huntington’s
diseases;

Neutral Loss Scan (NL): An MS/MS-based scan carried out with Triple
Quadrupole mass spectrometers, whereby the first and the third mass
analysers are synchronised in such a way as to detect the loss of a spec-
ified neutral fragment. Such scan mode is useful in targeted analyses;

Parkinson’s Disease (PD): One of the most common neurodegenerative
diseases, it mainly affects the motor system, although dementia is
relatively common in the advanced stages. This disease can arise from
a variety of causes, both genetic and environmental;

Precursor Ion Scanning (PIS): A targeted MS/MS-based scan carried out
with Triple Quadrupole mass spectrometers, whereby the product ion
is selected in the second mass analyser, and the precursor masses are
scanned in the first mass analyser. This allows to look for analytes that
lose a specified charged species upon fragmentation;

Triple Quadrupole (QQQ): A mass spectrometer having three quadrupoles
in series, of which the first and the third act as mass filters, whereas
the second one is used to cause fragmentation of the analytes through
interaction with a collision gas;

Retention Time (RT): The amount of time a chemical species is retained on
a chromatographic column;

Total Ion Current (TIC): The sum of all the separate ion currents carried by
the ions of different m/z contributing to a complete mass spectrum;

Unsaturation Index: The average number of unsaturations per carbon atom;

Vascular Endothelial Growth Factor (VEGF): A signal protein produced
by cells that stimulates vasculogenesis and angiogenesis. Its normal
function is to create new blood vessels during embryonic development
and after injury, and when VEGF is overexpressed, it can contribute to
disease.
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Chapter 1

An Introduction to Lipidomics

1.1 Generalities on Lipids

Many scientists have an understanding on what lipids are, although they
have yet to find a universally accepted definition; broadly speaking, lipids
are naturally occurring hydrophobic substances which are soluble in or-
ganic solvents. According to a more rigorous definition, they are small
hydrophobic or amphipathic molecules originating entirely or in part by
carbanion-based condensations of thioesters and/or by carbocation-based
condensations of isoprene units [1]. This definition encompasses a broad

CATEGORY ABBREVIATION

Fatty acyls FA
Glycerolipids GL

Glycerophospholipids GP
Sphingolipids SP

Sterol lipids ST
Prenol lipids PR

Saccharolipids SL
Polyketides PK

TABLE 1.1: List of the 8 categories into which lipids are grouped.

group of molecules with a wide range of polarity, size, and structure. As
a consequence, a lipid classification and nomenclature scheme had to be
introduced: lipids are now grouped under eight categories (Table 1.1), each
one containing classes, subclasses, subgroups and subsets of lipid molecules.
The resulting number of theoretical distinct species is overwhelming and
estimated to be close to 200 000 [2]. Although many lipids serve important
biological functions, below I will only describe the lipid categories more
relevant for the following chapters.

Fatty acyls (FAs) are the building blocks of lipids, consisting of a car-
boxylic acid with an aliphatic tail that can be saturated or unsaturated; the
FA chains usually have an even number of carbon atoms (C14–C26) and
cis-unsaturated double bonds at definite positions, which can be specified
with respect to either the carboxyl group (∆ classification) or the terminal
methyl group (ω classification). In humans, FAs can be synthesised through
the de novo lipogenesis (DNL) process, which mainly produces saturated
and mono-unsaturated species [3]. The desaturation process inserts the first
double bond in the middle of the chain, and further desaturations occur
sequentially toward the terminal group.
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Glycerolipids (GLs) have one to three FA chains linked to a glycerol
backbone in an ester or ether linkage. Important is the case of triacylglyc-
erols (TAGs), which constitute both the body fat in mammals and the veg-
etable fats and oils.

Glycerophospholipids (GPs), or simply phospholipids, are similar to
GLs, but here a phosphate group is esterified to one of the glycerol hy-
droxyl groups. Their naming makes use of the stereospecific numbering
(sn) where the FA substituents are called “radyl” groups; species that lack
one radyl group are called “lyso”. GPs are grouped into classes based their
polar headgroup at the sn-3 position (Figure 1.1), and the most common are
phosphatidylcholines (PCs), which usually make up more than 50% of the
GPs in eukaryotic membranes [4]. In its turn, each GP class is divided into
subclasses on the basis of the sn-1 and sn-2 substituents. For example, FAs at
the sn-1 position can be substituted by ether or vinyl ether moieties, giving
rise to plasmanyl and plasmenyl GPs, respectively.

P O-
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O
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P
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O
HO

OH

Cardiolipine

Structure
(X)

FIGURE 1.1: Scheme of the main glycerophospholipid classes.

Sphingolipids (SPs) are another important lipid category, and their back-
bone is the aliphatic amino-alcohol sphingosine (Figure 1.2). Sphingolipids
are particularly abundant in neural tissues, where they play important roles
in signal transduction and cell recognition [5]. Importantly, ceramides (Cer)
can be phosphorylated to ceramide-1-phosphate, believed to be a potent
pro-inflammatory agent [6]. Also sphingosine and sphingosine-1-phosphate
are highly bioactive molecular species [7].

One of the most striking features of lipids is that they can interact with
one another and with proteins, giving rise to the important biological mem-
branes cells are made of. Different interactions may take place, depending
on the lipids: neutral species interact non-covalently through their chains,
whereas polar molecules exploit hydrogen bonds and electrostatic forces. In
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FIGURE 1.2: Scheme of the main sphingolipid classes.

membranes, lipids are relatively mobile, exhibiting lateral diffusion and rota-
tional motions; however, the movement from one leaflet of the lipid bilayer
to the other is slow because it requires energy to move the polar headgroups
from an aqueous environment into the hydrocarbon domain during the mi-
gration. This is the reason why membranes have an asymmetric distribution
of polar lipids [4].

For many years lipids have been underestimated, since they were be-
lieved to only serve as “bricks” for biological membranes and fuels for
bioenergetics. Now it has been finally recognised that, owing to their great
diversity, lipids play many crucial biological roles. To name just a few, they
are the precursors of important second messengers, they provide the proper
environment for membrane-protein function, and their balance is critical for
health maintenance. From a dietary point of view, many lipids are essential,
meaning that humans cannot synthesise them and have to take them up
through the diet. Among these are the polyunsaturated FAs linoleic (C18:2)
and linolenic (C18:3). At the same time, lipids can also be deleterious for
humans, such as abnormal levels of cholesterol and trans FAs [8]. These
examples also point out an important aspect related to lipids: despite close
analogies among their structures, slightly different lipid species can display
divergent biological properties.

1.2 How to Study Lipids

The discovery of lipids’ many biological roles has recently sparked a growing
interest in their systematic analysis, to the point that the term “lipidomics”
was coined to refer to the large-scale study of lipids and of the factors
that interact with them [9]. Lipidomics is a sub-field of metabolomics (the
comprehensive investigation of the metabolome), and these two sciences are
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important because they are closer to the phenotype than all the other “omics”
sciences [10]. Among the many purposes of lipidomics are (i) to link lipids
and their pathways to metabolic health, and (ii) to interpret changes in lipid
metabolism from a physiological or pathological perspective [11, 12]. One of
the greatest challenges of lipidomics comes from the wide range of physical
properties that lipids have. As a consequence, it is extremely difficult to
extract and analyse the whole lipidome of any biological sample [13].

From an analytical point of view, lipidomics requires three steps:

1. Lipid extraction from the biological samples;

2. Analytical separation through chromatographic methods;

3. Lipid identification and quantification.

The first step aims at extracting as many lipids as possible, at the same time
leaving behind all non-lipid components such as proteins, metabolites and
inorganic salts. The extraction protocols usually couple organic solvents,
where lipids are dissolved, with more polar solvents in order to partition
and get rid of polar compounds. A phase separation is triggered between
immiscible solvents, and lipids are recovered from the hydrophobic phase.
Two common protocols are the Folch [14] and the Bligh & Dyer [15] methods,
both relying on methanol, chloroform and water: the upper phase is polar
and mainly consists of methanol and water, whereas the bottom phase is
rich in chloroform, and lipids dissolve there. Proteins usually accumulate at
the interface between the two.

To the extraction there follow lipid separation and analysis, two usually
intertwined steps. As a matter of fact, the separation is not always carried
out, and recent approaches have now been emerging that analyse the lipid
mixture as it is; they are referred to as “shotgun” lipidomics. As for classical
methods, the oldest one consists of coupling gas chromatographic (GC) sepa-
ration with flame-ionisation detection (FID). However, since GC requires the
compounds to be thermally stable and to have high enough vapour pressure
to volatilise during injection, sample derivatisation has to be performed,
whereby FA chains are first cleaved by hydrolysis and then esterified to
produce fatty-acid methyl esters (FAMEs). With this approach, information
about individual lipid classes is completely lost. A better and more com-
mon alternative is to use high-performance liquid chromatography (HPLC),
which can be easily coupled with different analytical techniques including
mass spectrometry (MS) and UV spectroscopy. Two operating modes are
possible:

Normal-phase LC: The stationary phase is polar and the mobile phase apo-
lar. Lipids are resolved by class, based on the different polar heads;

Reversed-phase LC: The stationary phase is apolar and the mobile phase is
polar. Here the retention times also depend on the composition of the
FA chains [16, 17]: species with shorter and more unsaturated chains
elute faster than analogous species with longer and more saturated
chains [18].

A more recent implementation of HPLC is Ultra-High Performance Liquid
Chromatography (UHPLC): it uses smaller stationary phase particles, with a
diameter of less than 3 µm. Higher pressures are needed to push the mobile
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phase along the column, which results in higher chromatographic efficiency,
reduced elution times and increased sensitivity.

Whether or not chromatographic separations are used, in the end lipids
have to be analysed; lipidomics now relies on techniques such as MS and
Nuclear Magnetic Resonance (NMR) spectroscopy. Whereas MS has been
successfully coupled with HPLC in the popular LC-MS technique, NMR is
not amenable to such direct coupling. As a consequence, this analysis can
be done by either looking at the lipid mixture in its whole complexity, or by
collecting chromatographic fractions and studying them “offline” [19].

1.3 MS-based Lipidomics

Mass spectrometry is currently the technique most commonly employed
in lipidomics, owing to its high sensitivity, specificity and its ability to be
coupled with chromatographic separation techniques [20, 21]. In MS, neutral
analyte molecules are ionised, and the resulting charged species are resolved
according to their mass-to-charge ratio (m/z) by magnetic and/or electric
fields. A mass spectrum is therefore produced, where the ion signal intensity
is plotted against m/z.

In general, all mass spectrometers consist of four essential components
(Figure 1.3): an inlet for sample introduction, an ion source where the molec-
ular species get charged, a mass analyser where the ions are separated and a
detector where the ion signal is measured [22].

FIGURE 1.3: Block scheme of a mass spectrometer.

Sample Introduction

The sample can be introduced into the mass spectrometer in two ways:
with or without a chromatographic step. In the former case, the eluent
flow is sent to the mass spectrometer and a series of time-dependent mass
spectra is created; in the latter case, the sample is directly injected into the
mass spectrometer. Such strategy, referred to as “direct-infusion MS” or
“shotgun lipidomics”, is gaining popularity owing to advances in terms
of MS instrumentation [23–26]. Its main disadvantage comes from ion
suppression issues, where only the most easily ionisable species are detected.
In addition, lipids exist in a variety of isomers that cannot be resolved based
on their m/z alone.

Ionisation Methods

The ionisation process is required to produce gas-phase ions from neutral
molecular species. A number of different methods are available, including
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electron impact ionisation (EI), fast atom bombardment (FAB), electrospray
ionisation (ESI), chemical ionisation (CI), atmospheric pressure chemical ion-
isation (APCI) and matrix-assisted laser desorption/ionisation (MALDI) [27].
In my work I only dealt with ESI, and therefore I will describe this technique
alone here, which is also the by far most widely employed in lipidomics
research.

ESI was developed in the late 1980s by Fenn and co-workers [28]. In
ESI, a fine spray of charged droplets is first obtained by injecting the sample
solution through a capillary needle at a high electric potential. There follows
solvent evaporation, aided by elevated temperatures and by a stream of
nitrogen drying gas, that leads to smaller and smaller charged droplets. This
causes the surface charge density to increase until a critical point is reached,
where ions are ejected in the gaseous phase. These ions are finally taken up
by a skimmer cone and accelerated towards the mass analyser [29].

ESI is considered a “soft” ionisation technique, meaning that little or no
molecular fragmentation occurs. It is therefore easy to relate the observed
m/z values to the mass of the neutral species originating them. ESI can be
used in both positive and negative ion modes: in the first case, it is common
to observe protonated species, as well as adducts with common cations such
as sodium and ammonium (if present in the mobile phase). In negative
mode the ions result from the loss of a proton, or from the addition of anions
such as chlorine, formate or acetate.

Mass Analysers

Just like ionisation methods, also for the mass analysis there is a range of
techniques available on the market; they include quadrupole ion traps, mag-
netic sector instruments, triple quadrupoles, time-of-flight (TOF), Orbitrap
and ion-cyclotron resonance (FT-ICR) mass spectrometers. Below I will just
mention the working principles of some of them, mainly TOF, Orbitrap and
QQQ mass spectrometers, since I only dealt with them during my PhD.

In the TOF mass analyser ions are accelerated in an electric field to get
the same kinetic energy, and are then made to drift along a field-free tube.
Different ions are separated on the principle that low-mass ions reach the
detector before high-mass ions, and therefore the mass spectrum is a simple
recording of the signal as a function of time (t), converted to m/z by the
equation

m/z = 2 Ekin

(
t
l

)2
(1.1)

where l is the length of the tube and Ekin the kinetic energy [30].
Ion Traps have a doughnut-shaped central electrode and two end-cap

electrodes, to which particular direct current (dc) and radio-frequency (rf)
potentials are applied, producing a trapping field where ions are confined.
By manipulation of the field strength, the analyte ions can be captured and
subjected to several analyses including simple m/z scans, MS/MS and MSn

analyses. The Orbitrap is an evolution of the Ion Trap family, characterised
by an impressive high mass resolution; it consists of two outer electrodes
that have the shape of cups facing each other, and one spindle-like central
electrode. A voltage is applied between them, producing a linear electric
field that causes harmonic oscillations of the ions trapped inside. With a
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correct choice of parameters, the ions remain on a circular spiral inside the
trap. At the same time, an axial field triggers harmonic axial oscillations
with frequencies that depend on m/z. As a consequence, m/z differences can
be indirectly obtained by measuring such frequency: the outer electrodes are
used as receiver plates for image current detection of the oscillations, and the
obtained current is Fourier-transformed to get a frequency-domain spectrum.
The conversion of frequency to m/z ensues. In lipidomics, Orbitrap mass
spectrometers have been widely employed [31–33].

Triple quadrupoles (QQQ) are characterised by low mass resolution, and
yet they are broadly used in lipidomics research, owing to their abilities
to carry out targeted scans where reliable quantitative information can be
achieved [34]. These instruments are based on the linear quadrupole, which
consists of four parallel metal rods through which dc and rf potentials are
applied to produce an oscillating field that achieves mass separation by the
oscillatory motions: ions of a fixed m/z pass through the quadrupole rods
only with specific values of the dc and rf potentials. A mass spectrum is
therefore obtained by changing such potentials over time, while keeping
their ratio constant. QQQ instruments employ three quadrupoles, arranged
sequentially: while the first (Q1) and third (Q3) can be operated in the
mass-selective mode using both dc and rf potentials, the second one (Q2)
is operated with only the rf potential to allow all ions above a cut-off m/z
to pass through. Q2 is used as a gas collision cell where ion-molecule
collisions induce ion fragmentations that can provide chemical information.
QQQ instruments can therefore be used in a number of different tandem
experiments performed in space:

Product ion scanning: Precursor ions with particular m/z values are selec-
tively transmitted by Q1, fragmented in Q2, and their product ions are
analysed by Q3;

Precursor ion scanning (PIS): Q3 is set to transmit only ions of a selected
m/z while Q1 scans the precursor ions;

Neutral loss scanning (NL): Q1 and Q3 are scanned together keeping a
fixed m/z difference between them;

Multiple reaction monitoring (MRM): Q1 and Q3 are both set to transmit
a selected precursor and product ion, respectively. This provides great
performances in quantitative analyses.

Untargeted and Targeted Lipidomics

MS-based lipidomics can be either untargeted or targeted: the aim of the
former is to detect as many lipids as possible without any prior information,
whereas targeted approaches focus on specific lipid classes by exploiting
their fragmentation patterns. Targeted lipidomics makes use of tandem-
based (MS/MS) experiments to analyse lipids with structural similarities, in
order to address specific biological questions. Ion fragmentation is usually
achieved by collision-induced dissociation (CID), where the selected pre-
cursor ions are first accelerated through an electric potential drop, and then
collided with inert gas molecules (either He or N2), producing fragment
ions containing chemical information. Table 1.2 reports some of the more
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commonly exploited MS/MS modes in lipidomics, which are very useful
for the detection of only the species of interest.

LIPID CLASS POLARITY SCAN MODE

PC + PIS of m/z 184
PE + NL of m/z 141
PS – NL of m/z 87
PI + NL of m/z 277
PG + NL of m/z 189
PA – PIS of m/z 153
SM + PIS of m/z 184

Ceramides &
+ PIS of m/z 264

Hexosyl-Ceramides

TABLE 1.2: Common MS/MS scanning modes in lipidomics.

Despite the ever improving performances of MS instrumentation, there
exist analytical challenges that MS is not able to address alone, such as
the assignment of double bond configurations [35]. It is for this reason
that analytical techniques such as NMR, although not much popular in
lipidomics research, should not be overlooked, and in the following section
I will describe my brief experience with NMR-based lipidomics.

1.4 NMR-based Lipidomics

NMR spectroscopy is a powerful analytical technique that has been used
in many and disparate applications. When compared to MS, NMR boasts a
series of advantages:

3 It is intrinsically quantitative, since NMR resonances have areas that
are directly proportional to the molar amount of nuclei (1H, 13C, . . . )
giving rise to them;

3 The sample preparation step is simple and rapid;

3 Unlike MS, there is no need to extensively optimise instrumental pa-
rameters;

3 NMR is non-destructive, hence the sample can be completely recovered
after the analysis.

Unfortunately, NMR also has some disadvantages:

7 It has a lower sensitivity when compared to MS;

7 NMR spectra are usually dominated by abundant lipids such as PC
and SM, and therefore resonances of low abundant lipids are difficult
to identify;

7 Owing to the complexity of biological mixtures, many overlapping
resonances may be present;

7 NMR cannot be easily coupled with LC.



Chapter 1. An Introduction to Lipidomics 9

Worth of note, the nuclei commonly accessible to NMR (1H, 13C and 31P) are
also important in lipid chemistry. Interesting is the case of phospholipids:
since each class only contains a single P atom, the analysis can be easily
performed by monitoring the 31P resonances. Crucially, different phospho-
lipid classes can be identified since the chemical environment around 31P
depends on the class itself [36].

Figure 1.4 is an 1H-NMR spectrum of a raw lipid extract (recorded in
our labs), and I have reported it just to give an idea of how complex spectra
of lipid mixtures can be. To note that also the solvent (methanol-d4 here)
has its own resonances (3.31, 3.35 and 4.8 ppm) that contribute to the final
complexity, at the same time masking underlying sample resonances.
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FIGURE 1.4: Example of 1H-NMR spectrum of a raw lipid extract. It was recorded in
deuterated methanol and with a 400 MHz NMR spectrometer.

The signals common to all lipid categories are those related to the FA
chains, mainly:

• 0.88 ppm: terminal – CH3;

• 0.94 ppm: terminal – CH3 of ω3-FAs;

• 1.30 ppm (strong signals): alkyl protons ( – CH2 – );

• 1.55 ppm: protons on β position to carbonyl carbon (CO – CH2 – CH2 – );

• 2.05 ppm: allylic protons ( – CH –– CH – CH2 – );

• 2.35 ppm: protons on α position to carbonyl carbon (CO – CH2 – );

• 2.80 ppm: bis-allylic protons ( –– CH – CH2 – CH –– );

• 5.35 ppm: olefinic protons ( – HC –– CH – ).

These resonances only allow to get general information such as FA chain
unsaturation. More detailed information can be obtained by class-specific
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resonances which, for the lipid classes more relevant in the present thesis,
include1:

• 0.72(s) ppm: – CH3 of sterols;

• 3.21(s) ppm: protons of PC and SM headgroups ( – N – (CH3)3);

• 4.3(q) and 6.0(dt) ppm: plasmenyl-species ( – CH –– CH – O – );

• 4.04(m) and 3.16(m) ppm: PE headgroup ( – O – CH2 – CH2 – NH3);

• 4.13(m), 4.32(m) and 3.78(dd) ppm:
PS headgroup ( – O – CH2 – CH(NH3

+) – COO – );

• 3.85(m), 3.91(m), 3.77(m), 3.62(dd) and 3.54(dd) ppm:
PG headgroup ( – O – CH2 – CH(OH) – CH2 – OH);

• 3.20(dt), 3.38(dd), 3.63(t), 3.76(t), 3.88(dt), 4.18 ppm: PI headgroup.

Based on these premisses, during the very first part of my PhD I tried
to figure out whether it was possible to devise an informatics tool to auto-
matically process NMR spectra of lipid mixtures. The aim was to quickly
get insights into their composition, without the extensive manual interpreta-
tion usually required. Actually, many were the issues that emerged, to the
point that I did not succeed in fully implementing such a practical tool. In
Appendix A is a more extensive explanation, where I also point out some of
the main open challenges.

1.5 Bioinformatics in MS-based Lipidomics

In lipidomics experiments, samples are usually divided into different groups.
After the measurements, they have to be compared in order to look for
possible group differences: a typical case is to have control and treated
samples, these latter having been obtained through the introduction of
some kind of treatment or physiological perturbation. However, before data
analysis a pre-processing is usually required to get coherent data amenable to
comparison; in MS-based experiments this data has to be a single peak table
containing common detected features (m/z values) with related amounts
(peak intensities or areas), which can be obtained following some crucial
steps [37, 38]:

Peak detection and quantification: For each sample the signals are detected
and a list of peaks is produced, where the peaks are characterised
by m/z and retention time. Peak quantification is achieved by either
integration of chromatographic profiles, or measurement of peak in-
tensities;

Peak grouping: Peaks within specified m/z and retention time distances
of each other are searched across sample groups, and assumed to
represent the same analyte. Time alignments are usually required to
correct for retention time shifts;

1The provided values refer to samples dissolved in deuterated methanol, CD3OD.
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Filling of missing peaks: If some samples miss one or more peaks, they
are inserted by assuming to be located at the same position as the
identified peaks in related samples. This procedure avoids missing
values, problematic for statistical analysis;

Isotope correction: Since each analyte shows more peaks (corresponding
to its isotopic pattern), only one of them is kept, usually the base peak;

Compound identification: Compound names are assigned to the peaks,
which is achieved by searching appropriate databases.

The pre-processed data can then be used for statistical analysis, and chemo-
metrics methods such as the Principal Component Analysis (PCA) are now
popular. The introduction of bioinformatics is a crucial step for solving the
challenges related to handling big data sets, but these tools are still emerging
in terms of creation of databases and statistical techniques for the analysis
and interpretation of lipidomics data. An added issue is the absence of a
universal lipid classification scheme, which has led to the birth of differ-
ent lipid-oriented databases, including LipidBank, LIPIDAT, Lipid Library,
Cyberlipids and LIPID Metabolites and Pathway Strategy (LIPID MAPS).

There are many software tools to handle MS-based data: commercial so-
lutions include MarkerLynx (Waters), Lipid Profiler (MDS Sciex), Metabolic
Profiler (Bruker BioSpin) and MarkerView (Applied Biosystems), whereas
among open-source tools are MZmine, xcms, LIMSA, LipidNavigator and
TriglyAPCI. During my PhD I mainly worked with xcms, a freely available R
package [39] developed by Smith and co-workers [40]: it implements useful
tools such as a non-linear retention time alignment, matched filtration, peak
detection and peak matching. In addition, it is very flexible since it allows
data processing coming from several mass spectrometers, the requirement
being that the raw data files are exported in the *.NetCDF, *.mzXML or
*.mzData formats. If they cannot be directly exported through the propri-
etary software, this can be achieved with the freely available MSConvert
tool (from ProteoWizard).

1.6 Lipidomics Applications

Since its birth, lipidomics has witnessed an increasing number of applica-
tions, and here I have summarised just some of them.

Human Diseases and Disease Diagnosis

One of the most important contributions of lipidomics has been in disease
diagnosis: lipid homeostasis is essential for health, and lipid alterations have
been proven to be central to the pathogenesis of neurodegenerative disor-
ders, metabolic syndromes, cancers and infectious diseases [13, 41]. Altered
sulfatide metabolism is an early feature of Alzheimer’s disease [42], signifi-
cant accumulations of TAGs and altered myocardial eicosanoid metabolism
have been identified in diabetes [43], and hyperlipidemia is one of the fac-
tors related to the occurrence of metabolic syndromes [13]. Lipids are also
associated with cancer progression and many of them have been explored as
potential biomarkers, such as phospholipids in ovarian, breast and prostate
cancers [44–46].
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Drug Development

Lipidomics has also found applications in drug development, since in many
cases lipid functions are targeted through therapeutic interventions [47].
Accordingly, an increasing number of drugs have been introduced that
target lipid metabolism or enzymes involved in the synthesis of cholesterol,
fatty acids, phospholipids, sphingolipids and triglycerides [48].

Oxidative Lipidomics

The study and characterisation of oxidised lipids is a novel lipidomics appli-
cation, made possible by the increasing performances of MS platforms. This
new field is particularly challenging, the reason being that oxidised lipids
are usually present in very low amounts as compared to their non-oxidised
counterparts. In addition, high MS resolution is needed to unequivocally
assign molecular formulae. Through oxidative lipidomics it has been found
that apoptosis generates oxidised phospholipids, with selective oxidation of
CL in the mitochondria and of PS outside them [49]. Also traumatic brain
injury was shown to produce oxidised lipids [50].

1.7 Critical Issues

Lipidomics is a promising and powerful discipline, but it has still to face
important issues. Below I will point out just some of them, in particular the
ones that I found to be more critical during my experience in this field.

Quantitative Lipidomics

In lipidomics, it is very common to have samples sorted in groups, and
therefore it is important to apply some normalisation procedure to the
data obtained from MS-based measurements, in order to properly take into
account the different starting biomasses of the several samples. A possible
approach is to normalise the signal intensities or areas within each sample
to its total ion current (TIC), but such strategy makes sense only if relative
lipid amounts have to be compared; on the contrary, it is of no use when
absolute lipid amounts have to be measured. In this more complex case, a
general consensus on the protocol to adopt seems not have been achieved
yet, the main problem being that in ESI-MS different lipid classes have
different response factors. To further worsen things, even FA chain lengths
and unsaturations affect the response factors [51]. Therefore, a rigorous
quantification would require internal standards tailored to the analytes of
interest: ideally, for each species to quantify there should be added its own
standard, represented by the same species but enriched in one or more
stable isotopes, in order to have a different m/z but same retention time
and response factor. Such rigorous approach is clearly not practical, and
a possible alternative is to use external calibration, whereby the standard
solutions are not mixed with the experimental samples, but analysed in
dedicated runs. A further approach, that we have employed in Chapter 3,
is not to convert the signals (areas or intensities) into molar amounts, but
directly use them during the statistical analysis, with the precaution to carry
out a proper normalisation procedure before doing this.
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Another issue regarding quantitative lipidomics comes from fluctuations
in extraction yield across samples. Fortunately enough, this problem can be
easily overcome by using proper internal standards, added to the samples
prior to the extraction, so as to undergo the same extraction steps as the
sample analytes. The standard has to be carefully chosen because, obviously,
it should not be present in the original samples; for this reason, lipids with
odd-numbered or very short FA chains are commonly employed [52]. In our
investigations, when required we used the PC species PC 24:0, whose chains
are much shorter than the ones commonly found in biological lipid extracts.

Studying the Whole Lipidome

An important goal which is difficult to achieve is to completely characterise
the lipidome of biological samples, and there are two main reasons: the first
one, related to MS-based detection, has to do with the range of physical
and chemical properties of lipids, which is so huge that it is impossible to
get a picture of the entire lipidome based on a single MS-based experiment.
In addition, as mentioned above different lipid classes have very different
MS response factors, and therefore analytes that are difficult to ionise are
difficult to detect, too.

The second reason why it is difficult to analyse all lipids within a sample
is related to the extraction protocol: again, considering the very different
physical properties of different lipid categories, a number of extraction
protocols have been devised, each tailored to a particular group of lipids. In
other words, there currently is no universal procedure allowing to recover
all of the lipid components in a single organic phase, even though the Folch
as well as the Bligh & Dyer approaches, which we have broadly used in our
investigations, are reckoned to be quite suitable for most lipid classes.

Biological Variability

Another important lipidomics issue that showed up quite often during
our investigations is associated to the biological variability: similarly to
metabolites, lipids vary between individuals and on a day-to-day basis,
with the result of further complicating comparative studies [53–55]. As a
consequence, it is usually rather difficult to pinpoint significant differences
across sample groups because, even if the treatment under investigation
causes a true lipidomics perturbation, this could be masked by the lipid
natural variability. The only (but often impractical) solution would be to
greatly increase the number of samples per each group [56]. On the other
hand, it is worth pointing out that the biological variability is an intrinsic
issue, that arises also in all the other “omics” sciences.

1.8 Aims of the Thesis

From what introduced above, it is clear that the field of lipidomics is quite
promising, and an increasingly number of scientists all around the world
are starting to practice this scientific discipline.

As a PhD student, I was introduced to this field by my tutor, and during
the past three years I have worked on three different topics, which are de-
tailed in the coming chapters. Although they are all connected by lipidomics,
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these projects are quite different from one another, but I believe that this is
a mere reflection of the many facets that lipidomics has. As a consequence,
the following are stand-alone chapters and can be read independently of
one another.

As already anticipated in the Thesis Organisation Section (page iv), the
aim of Chapter 2 was to assess and characterise possible sphingolipidomics
perturbations related to pathological conditions. In particular, we were
interested in Parkinson’s Disease, considering that it is one of the most com-
mon neurodegenerative diseases, but unfortunately still poorly understood.
To this aim, we worked on both mouse cortical neurons and mouse brain
tissues, and we carried out a “targeted lipidomics” in order to focus on sph-
ingolipids; this type of lipidomics exploits the fact that some lipid classes (in
our case, sphingolipids) undergo specific fragmentation mechanisms upon
collision in mass spectrometry-based investigations, and therefore they can
be easily singled out from all the other lipids.

The aim of Chapter 3 was to understand whether anti-angiogenic treat-
ments of cancer cells have some lipidomics repercussions. In terms of
methodology, this project was completely different from the one in Chapter
2, because here an “untargeted lipidomics” approach had to be carried out:
we were not interested in some particular lipid class, but instead we tried
to look at as many lipids as possible at once, and we attempted to identify
changes in terms of lipid composition, occurring because of the treatment.

Chapter 4 deals with yet another aspect of lipidomics: the bioinformatics
analysis of MS-based data obtained from labelling experiments. Indeed, in
biological experiments stable isotope tracers are more and more commonly
employed, giving rise to lipids where the labels have been partially taken
up. The main aim of this Chapter was to develop an informatics tool able
to handle MS-based data of labelled analytes, providing information about
the amount of labelling within each investigated chemical species. The
details will be given in the following, but the principle behind it is that such
information can be retrieved by analysing the MS isotopic patterns.
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Chapter 2

A Sphingolipidomics
Investigation on the
Association Between GBA and
LRRK2

2.1 Introduction

Parkinson’s Disease

Parkinson’s disease (PD) is a degenerative disorder characterised by the
death of dopaminergic neurons in a part of the midbrain called substan-
tia nigra. This results in low levels of dopamine, a chemical that spreads
messages between the substantia nigra and other parts of the brain, making
humans able to coordinate muscle movements [1, 2]. As a consequence,
the earlier PD symptoms are movement-related (e.g., shaking and difficulty
with walking), but there also follow behavioural problems and, in advanced
stages, dementia. PD is more common in older people, and the majority of
cases take place after the age of 50 [3, 4].

The pathological hallmarks of PD are the so-called Lewy bodies (LBs),
neuronal inclusions where α-synuclein accumulates. This is a protein en-
coded by the synuclein alpha (SNCA) gene and its functions are not yet
fully understood, even though it is known that it interacts with membranes
composed of acidic lipids [5], and it can play roles in vesicular transport
and facilitation of dopamine release [6]. α-synuclein oligomers are known
to be toxic, since they bind to mitochondrial membranes and lead to their
fragmentation followed by neuronal cell death [7, 8]. These oligomers form
when α-synuclein misfolds, changing its conformation from α-helix-rich to
β-sheet structures [9].

In the past, PD was thought to be solely caused by environmental causes,
with epidemiological studies showing associations with factors such as
exposure to chemicals and head trauma [10–12]. Later on, genetic studies
also revealed heritable causes, and to date a number of mutations in several
genes have been linked to PD, although monogenic causes constitute less
than 5 % of all PD cases, whereas sporadic PD is much more common [13,
14].

There exist some palliative treatments for PD, based on the use of lev-
odopa and dopamine agonists. They can improve quality of life, but eventu-
ally they become ineffective. In addition, they produce a complication called
dyskinesia, characterised by involuntary writhing movements [15].
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Although a common theme for pathogenesis has not yet been identified,
it seems that sphingolipid levels are often altered in neurodegenerative
diseases (NDs) [16–19]. Ceramides in particular, components of all major
sphingolipid species in the brain, were found to have a defective homeostasis
in NDs with LBs pathology, including PD [20–22]. Ceramides play an
important role in the regulation of plasma membrane dynamics, and in
the modulation of membrane protein activity and signalling [23]; they also
modulate processes such as autophagy [24] and mitochondrial-mediated
apoptosis [25].

Two key genes involved in PD are β-glucocerebrosidase (GBA) and
leucine-rich repeat kinase 2 (LRRK2): GBA mutations are the most common
risk factor for sporadic PD, and comprise 7 % of all sporadic PD cases [26],
whereas LRRK2 mutations are the most common in autosomal dominant
forms of the disease.

GBA-associated Parkinsonism

The GBA gene encodes GBA, an enzyme abundant in the lysosomes of
cells and responsible for the breakdown of glucosyl-ceramides (Glc-Cer)
to glucose and Cer (Figure 2.1). Like many lysosomal enzymes, GBA is
associated with storage disorders resulting from genetic alterations that
ruin its conformation: so far, more than 300 GBA mutations have been
identified and shown to be linked with Gaucher’s disease (GD), one of
the most common storage disorders characterised by the accumulation of
Glc-Cer within lysosomes [27].

Epidemiological studies have unclosed an association between GD and
PD: the former is a recessive disorder, meaning that heterologous GBA mu-
tation carriers do not develop the disease; interestingly, they were found
5 to 20-fold more likely to develop PD than non-mutation carriers [22, 26,
28]. However, the relationship between GBA and PD is still unclear, and
both gain-of-function and loss-of-function theories have been proposed: ac-
cording to the former, mutant alleles produce a misfolded and dysfunctional
protein, whereas the loss-of-function hypothesis suggests that PD arises as
a consequence of GBA deficiency. Also the prion hypothesis has been pro-
posed, where α-synuclein aggregates would have a prion-like mechanism of
cell-to-cell transmission [9, 29].

As for the relationship between GBA and α-synuclein, a physical interac-
tion between the two has been observed [30], with the hypothesis that GBA
plays a beneficial role in α-synuclein degradation; this mechanism would
be disrupted when GBA is mutated [26]. Worthy of note, also mitochon-
drial disfunctions and oxidative stress related to GBA deficiency have been
reported [28].

LRRK2-associated Parkinsonism

LRRK2 is another key gene for PD, for two reasons: (i) some of its mutations
are responsible for the late-onset dominant PD forms [31], and (ii) common
variations around LRRK2 are susceptibility factors for the disease [32–34].
The encoding protein is large and complex, with multiple domains [31]. As
a consequence, just some of the LRRK2 roles have been understood, such as
its kinase and GTPase activities.
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Many LRRK2 gene mutations have been identified that replace single
amino acids in LRRK2, affecting its structure and function. Of these, at
least 20 mutations have been linked to PD, with the most common being
G2019S [32, 35–37]. Of interest, LRRK2 has been shown to be present in LBs
together with α-synuclein, and to play a role in LB formation [38, 39]. In
addition, it is known that LRRK2 mutations impair chaperone-mediated
autophagy (CMA), implying that cells accumulate CMA substrates such as
α-synuclein [40].

Mouse studies revealed that Lrrk2–/– mice have a normal dopaminergic
system [41], although Lrrk2–/– mouse lungs and kidneys display accumu-
lation of membranous organelles such as lamellar bodies and lysosomes,
respectively, in addition to α-synuclein and ubiquitinated proteins [42–46].

Considering the significance of sphingolipids in neurodegenerative dis-
eases, and taking into account the important roles of both GBA and LRRK2
in PD, we tried to look for possible sphingolipidomics alterations related
to either GBA or LRRK2: in the first part of our investigation, we focused
on GBA-associated alterations by working on cultures of primary cortical
neurons, whereas in the second part we focused on Lrrk2–/– mouse brains.
Ours was a targeted LC-MS lipidomics approach, which we performed with
a triple quadrupole (QQQ) mass spectrometer, operated in precursor ion
scan (PIS) mode.

2.2 Primary Cortical Neurons

2.2.1 Materials and Methods

Sample Collection and Treatment

Neurons were collected from the cerebral cortex of wild type mice, by disso-
ciating the cells through an enzymatic reaction employing papain [47]. The
neuronal cell cultures were then grown in neurobasal medium with 10 %
FBS, fungicides and antibiotics. The samples were divided in two groups:
CTRL and CBE-TRTD. To the latter, after 3 days of culture the GBA inhibitor
conduritol β-epoxide (CBE) was added at a concentration of 50 µM, and the
cells were grown for a further 14 days; the inhibitor was replaced every 3
days, whereas half of the culture medium was replaced once a week. After
the treatment, the neurons were harvested and a small amount was used for
assessing the GBA activity and the total protein content, obtained through a
BCA assay. Overall, 6 CTRL and 6 CBE-TRTD samples were prepared, in
three different experiments:

1. Experiment A: samples CTRL 1,2 and CBE-TRTD 1,2

2. Experiment B: samples CTRL 3,4 and CBE-TRTD 3,4

3. Experiment C: samples CTRL 5,6 and CBE-TRTD 5,6

In other words, the same experiment was repeated three times, on every
occasion using 2 control and 2 treated samples.

In order to be clear about my role, it is a duty for me to point out that
the above-mentioned steps were not performed by myself, but by our col-
laborators at the Department of Biochemistry, University of Padova; my
involvement commenced from the next stage, the lipid extraction procedure.



Chapter 2. Association Between GBA and LRRK2 23

Lipid Extraction

The collected neurons were lysed using 300 µL milliQ water, and the lipids
were extracted through a Folch extraction procedure [48]: the samples were
first immersed in ice and 3 mL chloroform:methanol 2:1 was added, then
they were sonicated for 15 min and centrifuged at 4 ◦C for 10 min to induce
phase separation. The lower phase was finally withdrawn and stored at
–80 ◦C until analysis.

NMR Measurements

Before subjecting the samples to the destructive MS-based analyses, their
NMR spectra were recorded: the samples were dried using rotary evaporator,
and dissolved in 700 µL of methanol-d4 (CD3OD, 99.8 % deuteration degree,
purchased from Merck, Germany). The measurements were taken using a
Bruker-Avance 400 MHz spectrometer operating with a stationary magnetic
field of strength 9.4 T and equipped with a 5 mm BBI probe. The 90◦ proton
pulse length was calibrated and established to be 9.4 µs, with a transmission
power of 0 dB. In all of the measurements, the temperature was kept at
300.2 K; the chemical shift scale was referenced to the residual protonated
methanol-d4 resonance, set at 3.310 ppm.

LC-MS Measurements

The samples were dried again using a rotary evaporator, and dissolved in
150 µL HPLC-grade methanol (Sigma-Aldrich Co.).

The LC-MS measurements were performed in positive ion mode using
a Triple Quadrupole (QQQ) mass spectrometer (Applied Biosystems, API
3000 QQQ) equipped with an electrospray ion source (ESI), and combined
with a Shimadzu High Performance LC system (CBM-20 A, binary pump
LC-20AB, Italy) to have chromatographic separation prior to MS detection.

The analytes were chromatographically resolved working in reversed-
phase (Kinetex C18 column, 100 Å pore size, 4.6 mm ID, 2.6 µm particle
size, 10 cm length, Phenomenex, Italy). The mobile phase was composed of
solvent A, methanol:water (7:3 v/v) with 12 mM ammonium acetate, and
solvent B, methanol with 12 mM ammonium acetate. The gradient elution
program started with 70 % B, reached 100 % B in 45 min, and was maintained
at 100 % B for 20 min, at the steady flow rate of 1.0 mL/ min. The sample
injection volume was 10 µL, and each sample was injected twice.

Because of the targeted aim of the study, the mass spectrometer was op-
erated in PIS mode: PIS of m/z 184 was used to detect phosphatidylcholines
(PC) and sphingomyelins (SM), whereas PIS of m/z 264 allowed to detect the
sphingolipids ceramides (Cer) and glycosyl-ceramides (Gly-Cer) [49], which
include Glc-Cer and Gal-Cer. On reversed-phase, the two isomers cannot be
chromatographically resolved, implying that only their overall amount can
be determined [50].

In Figure 2.2 are the fragmentation mechanisms of some key lipid classes
for our targeted investigation (mainly, Cer and related glycosylated forms,
SMs and PCs). It is thanks to these peculiar patterns that such lipid species
can be easily singled out and investigated through QQQ-based mass spec-
trometers.
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FIGURE 2.2: The main fragmentation patterns exploited in the current targeted MS-
based investigation: Cer (as well as Gly-Cer, not shown here) give rise
to positive ions characterised by m/z 264, whereas SMs and PCs can be
identified through the loss of the phosphocholine headgroup (m/z 184).

To get quantitative information, an external calibration was performed
whereby standard solutions were separately injected into the LC-MS system,
in order to get the response factors required to convert peak areas into
molar quantities. The standards were also used to optimise the instrumental
parameters (for PIS of m/z 184, they were NEB=8, CUR=8, TEM=300, IS=5000,
CAD=4, DP=50, FP=250, EP=10, CE=40, CXP=20; for PIS of m/z 264, they
were NEB=8, CUR=8, TEM=300, IS=5000, CAD=4, DP=50, FP=250, EP=10,
CE=50, CXP=20).

Data Analysis

The extracted-ion chromatograms (XIC) relative to the target sphingolipids
were integrated with the proprietary software Analyst 1.4.2, and the ob-
tained molar amounts were analysed with the R environment for statistical
computing [51].



Chapter 2. Association Between GBA and LRRK2 25

In order to directly compare sphingolipid levels across samples, their
molar amounts were normalised to the total lipid content, set at the arbitrary
value of 100. With this approach, percentage molar fractions are obtained.

2.2.2 Results and Discussion

NMR Profiling

The NMR profiles of the samples didn’t allow us to identify any significant
feature characteristic of either control or treated samples. Figure 2.3 shows
the comparison between two of the spectra; although some differences may
be noted between them, they are not treatment-specific but are the result of
the biological variability in the samples.

Chemical Shift  [ppm]
6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

CTRL
CBE−TRTD

In
te

ns
ity

  [
a.

u.
]

FIGURE 2.3: Comparison between the NMR spectra of CTRL and CBE-TRTD samples.

As I have already pointed out in Chapter 1, the issue with NMR spectra
of raw lipid extracts is that they are dominated by the resonances of the most
abundant species, and therefore minor components are hidden beneath them.
In this case, the sphingolipids we are interested in have no characteristic
signals falling in otherwise resonance-free regions. For this reason, we chose
the more specific and targeted LC-MS approach based on the PIS scans
available in QQQ mass spectrometers.

Relative Distribution Across Sphingolipids

We classified the sphingolipids into the three different groups Cer, Gly-
Cer and SM. The sample comparison of the normalised molar amounts is
in Figure 2.4, where the samples have been classified depending on the
experiment (A, B or C).

In TRTD samples, a significant increase can be seen in Gly-Cer, accom-
panied by a decrease in SM; interestingly, these two classes are on opposite
sides from GBA (see the scheme in Figure 2.1). Specifically, what this anal-
ysis shows is that when GBA is inhibited there is a build-up of its direct
substrates, and a general depletion of the species downstream to this en-
zyme.

Next, in order to get a single p-value from these three combined ex-
periments, we considered all 6 pairs of samples and performed a paired
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FIGURE 2.4: Distribution of sphingolipids across samples (data normalised to the total
lipid content). Each value is the average from two samples, and the error
bars are ± one standard deviation. Significant differences between CTRL
and CBE-TRTD can be seen for Gly-Cer and SM (*: p ≤ 0.05; ***: p ≤ 0.001).

t-test. This confirmed the increase in Gly-Cer (p-value: 6.4× 10–4 ***) and
the decrease in SM (p-value: 0.035 *).

In Figure 2.5 is the principal component analysis (PCA) we performed
with the percentage molar amounts as original variables: interestingly, a
dependence on both the experiment (A, B, or C) and the treatment (CTRL or
CBE-TRTD) appears. As for the treatment, CBE-TRTD samples have lower
PC1 and higher PC2 coordinates than controls. Considering the coordinates
of Gly-Cer and SM in the loadings plot, this result is in fair agreement with
the above observation that the treatment increases Gly-Cer and decreases
SM relative molar amounts.
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Gly-Cer/Cer Ratios

The GBA inhibition by CBE is expected to cause important and opposite
effects in the molar amounts of its direct substrates (Glc-Cer) and products
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(Cer) (see Figure 2.1). Consequently, the Gly-Cer/Cer ratio should be the
ideal parameter allowing to look for possible sphingolipid perturbations.

These ratios, computed for each specific couple (i.e., species with the
same pair of chains), are in Figure 2.6. It is worth noting that, whereas there
is a marked dependence on the treatment, the dependence on the experiment
(A, B or C) disappears. The related box-plots (Figure 2.7) show that CBE-
TRTD samples are associated with statistically higher ratios than CTRL
samples, and this is true for all molecular couples (p < 0.05). In addition, we
also computed the overall Gly-Cer/Cer ratio (Figure 2.8), which turned out
to be significantly higher in CBE-TRTD samples (p = 0.0016 **).
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FIGURE 2.6: Individual Gly-Cer/Cer ratios, for CTRL and CBE-TRTD samples. The
error bars represent the standard deviation of the technical replicates; the
ratios are higher in CBE-TRTD samples.

Our conclusion is that GBA inhibition causes a significant imbalance in
Cer and Gly-Cer relative amounts. Besides, taking into consideration the
results discussed above, this imbalance appears to be mainly caused by the
accumulation of the GBA substrates, Glc-Cer.

The approach of looking at the ratios rather than at the normalised
sphingolipid amounts reduces the dependence on the experiment, and we
further demonstrated this by running another PCA, this time using the
individual Gly-Cer/Cer ratios as original variables (Figure 2.9). The two
groups are mostly resolved along PC1, with CBE-TRTD samples being
displaced to the right as compared to controls; not surprisingly, all the ratios
have positive loadings along PC1.
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Intra-class Distribution

In order to understand whether the treatment is specific for certain acyl
chains, we also made a comparison within each sphingolipid class, where
we used relative molar amounts (we set the overall molar amount of the
investigated class to 100). The resulting distributions are in Figure 2.10,
which highlights no remarkable difference between CTRL and TRTD profiles:
of the 16 t-tests we performed, only in one case was the p-value lower
than the 5 % significance level, which is not enough to state that the two
profiles are different if we consider that to each t-test there corresponds a
5 % probability of getting a significant result just by chance (type I error).
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FIGURE 2.10: Comparison between CTRL and CBE-TRTD samples in terms of their
intra-class distributions (Cer, Gly-Cer and SM). The profiles are not sig-
nificantly different.

These results suggest that the overall imbalance observed between Cer
and Gly-Cer is not chain-specific, but equally affects different molecular
species. As a further confirmation, we computed and compared parame-
ters such as average chain length, average number of unsaturations and
unsaturation index1 (see Appendix B.1), finding no significant difference
between sample groups. After all it is worth mentioning that, to the best
of our knowledge, there is no report in the literature suggesting substrate
specificity for GBA.

2.2.3 Conclusions

With this first, preliminary survey we tried to set up a reliable analytical
methodology to identify and characterise possible sphingolipid imbalances.
As explained in the Introduction, we were motivated by the fact that sph-
ingolipids seem to play crucial roles in NDs, and their imbalances might
therefore be suggestive of ongoing diseased states. It would therefore be
important to have an analytical methodology able to selectively monitor
these species.

We set out by working with primary cortical neurons, and by inhibiting
a key enzyme in the sphingolipid metabolism, GBA, which breaks down
the glycosidic bond of Glc-Cer to obtain glucose and Cer (Figure 2.1). Not
surprisingly, GBA mutations have been associated to both GD, a disease

1We define unsaturation index as the average number of unsaturations per carbon atom.
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characterised by the accumulation of Glc-Cer in the lysosomes of cells, and
PD, where GBA is recognised as a risk factor for sporadic parkinsonism.

We focused on the sphingolipids Gly-Cer, Cer and SM, which we quanti-
fied using the PIS modes made available by QQQ instruments; we observed
a significant increase, in CBE-TRTD samples, in terms of Gly-Cer molar
amounts (Figure 2.4). We then moved on by computing and comparing
individual Gly-Cer/Cer ratios (Figure 2.6 and Figure 2.7), finding significant
variations upon treatment. The same trend we observed for the overall Gly-
Cer/Cer ratio (Figure 2.8). This suggests that such parameter may be used
to assess and monitor possible sphingolipid imbalances; in addition, this
approach has the big advantage that by using ratios, no internal quantitative
reference is required.

Considering the results discussed so far, in principle it should be possible
to pinpoint such changes also from the recorded NMR spectra. Unfortu-
nately though, we were not able to put this into practice, owing to (i) the
complexity of the spectra themselves (Figure 2.3), coupled with (ii) the low
molar abundance of the investigated sphingolipids as compared to the most
common phospholipids. On the contrary, the targeted MS-based approach
turned out to be more successful owing to its great specificity towards sph-
ingolipids.

Taken together, our results suggest that when GBA activity is compro-
mised, significant sphingolipid perturbations can be seen. In particular,
GBA substrate accumulate, since they cannot be processed by this important
enzyme. The observed imbalance turned out not to be chain-specific, con-
sidering that the intra-class profiles were indistinguishable between groups
(Figure 2.10 and Appendix B.1). This means that all Cer and Glc-Cer couples
are equally affected, regardless of their FA chain composition.

The GBA treatment with CBE is both time and dose dependent, and we
chose to extract the lipids only after 14 days to be sure that GBA was properly
inhibited, and also to give cells time to adapt their metabolic networks to
GBA inactivity. It is possible that, had we treated the cells for a shorter
amount of time, we wouldn’t have observed the significant accumulation of
GBA substrates discussed above.

The main conclusion of this first part is that our targeted LC-MS approach
can be useful to tackle the problem of identifying possible sphingolipid
imbalances related to enzyme malfunction or to underlying disease states.

2.3 Lrrk2+/+ and Lrrk2–/– Mice

2.3.1 Materials and Methods

Animal Care and Sample Collection

C57BL/6 LRRK2 wild type (Lrrk2+/+) and knock-out (Lrrk2–/–) mice were
provided by Dr. Heather Melrose. Housing and handling of mice were
done in compliance with national guidelines. All animal procedures were
approved by the Ethical Committee of the University of Padova and the
Italian Ministry of Health (license 46/2012).
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Lipid Extraction

Brains were collected from three male Lrrk2+/+ and three male Lrrk2–/– mice
at 1 year of age. Lipid extraction from brains was performed through a
protocol optimised for ceramides and sphingolipids; briefly, brains were
homogenised in ultra-pure water and incubated on ice. 3 mL Folch solu-
tion (chloroform:methanol 2:1 v/v) was added to the homogenate and the
solution was sonicated for 15 min at 4 ◦C to complete the lipids extraction.
Centrifugation at 16 000 g for 15 min at 4 ◦C followed to recover the liquid
phase.

The extracted samples were dried using a rotary evaporator, dissolved
in 150 µL HPLC-grade methanol (Sigma-Aldrich Co.) and stored in closed
vials at –20 ◦C until analysis.

LC-MS Measurements

The LC-MS procedure was the same described above (Section 2.2.1). How-
ever, considering the different biological origin of the two sample sets, the
species we identified here were dramatically different: through PIS of m/z
184 we identified PC, Lyso-PC, plasmenyl-PC (pPC) and SM, whereas with
PIS of m/z 264 we characterised Cer 18:1, Gly-Cer 18:1, 2-hydroxylated 18:1
glycosyl-ceramides (Gly-Cer 18:1(2-OH)) and sulfatides. Finally, with PIS of
m/z 266 we detected Cer 18:0 and Gly-Cer 18:0. Again, the reversed-phase
chromatography did not allow us to resolve Glc-Cer from Gal-Cer, which is
the reason why we refer to them as Gly-Cer.

Also here we used external standard solutions, so as to convert the LC-
MS peak areas into molar quantities, and also to optimise the instrumental
parameters (the same as before).

Data Analysis

Similarly to above (Section 2.2.1), we handled the LC-MS data with the
proprietary software (Analyst 1.4.2), and then we performed the statistical
analysis by using R [51].

To compare sphingolipid levels across samples, regardless of their orig-
inal biomass availability, we normalised their molar amounts to the total
lipid content. To investigate intra-class variations, we used relative amounts
obtained by normalising the molar amounts in each sphingolipid class to
the overall molar amount in that class, set at the arbitrary value of 100. With
such data, we also computed and compared parameters such as average
chain length, average number of unsaturations and unsaturation index.

2.3.2 Results and Discussion

Relative Distribution Across Sphingolipids

The sphingolipid molar amounts, normalised to the total lipid content, are
in Figure 2.11. The comparison between sample groups shows a significant
difference in Cer 18:1, more abundant in Lrrk2–/– mice. It is also interesting
to note a similar behaviour for SM and sulfatides, downstream of GBA
as well (see Figure 2.1): both tend to be more abundant in Lrrk2–/– mice,
although not significantly (p > 0.05).
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FIGURE 2.11: Inter-class distribution of sphingolipids (data normalised to the total lipid
content). Lrrk2–/– samples have significantly higher Cer 18:1 amounts as
compared to control samples.

These results suggest that the absence of LRRK2 may affect the sphin-
golipid distribution. To note that the results are quite different from those
in the previous investigation (Section 2.2): here, there is an increase in GBA
products, as if the absence of LRRK2 increases the GBA activity or its expres-
sion.

Gly-Cer/Cer Ratios

We then moved on by computing the 18:1 Gly-Cer/Cer ratios for each couple
with the same acyl chains. The results are in Figure 2.12: in most cases, the
ratios are lower in KO as compared to WT samples, although the differences
are not significant (p > 0.05). Similar conclusions hold true for the overall
Gly-Cer/Cer ratio (Figure 2.13). The lack of significance is probably caused
by the small number of samples (n = 3 for each group).

These results confirmed what also observed above, mainly that a possible
sphingolipid imbalance may take place when LRRK2 is missing; the most
important effect is the increase in GBA products (Cer).

GBA Activity Assays and Protein Expression Levels

At the same time as the LC-MS measurements, our collaborators at the De-
partment of Biology, University of Padova, measured total protein concen-
tration by a BCA assay, and assessed in vitro GBA activity. Figure 2.14 shows
their results: they unexpectedly found a significant GBA down-regulation
in Lrrk2–/– brain lysates. In addition, in order to account for the different
GBA levels in Lrrk2+/+ and Lrrk2–/– brain lysates, they computed the GBA
specific activity by normalising the enzymatic activity to the protein level
(measured by western blot). It turned out that GBA specific activity is greater
in Lrrk2–/– brain lysates as compared to Lrrk2+/+ samples.

Therefore, the lack of LRRK2 seems to induce a GBA down-regulation,
resulting in decreased protein levels. At the same time, though, the GBA
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FIGURE 2.12: Individual Gly-Cer/Cer ratios. The group differences are not significant,
although in most cases the ratios are lower in KO (Lrrk2–/–) as compared
to WT (Lrrk2+/+) samples.
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FIGURE 2.13: Overall Gly-Cer/Cer ratio.



Chapter 2. Association Between GBA and LRRK2 34

FIGURE 2.14: A) Western blot of different brain lysates for GBA and LRRK2 protein
levels for Lrrk2+/+ (WT) and Lrrk2–/– (KO) mice. B) Relative quantifica-
tion (n = 9 for each genotype): GBA protein levels are significantly lower
in Lrrk2–/– mice. C) GBA specific activity: it is significantly higher in
Lrrk2–/– samples (*: p ≤ 0.05).

specific activity increases. By taking into account the LC-MS results, the
latter effect seems to be more important, since we observed an increase in
GBA products.

The seemingly contrasting results here obtained are difficult to properly
interpret: on the one hand, from lipidomics studies we have that GBA
products are significantly more abundant in Lrrk2–/– samples, whereas on
the other hand we have that these same samples are characterised by reduced
GBA amount and activity, but an increased specific activity. Of course, we
can only provide putative explanations at this stage, and a possible one is the
following: from what above, LRRK2 seems to be involved in GBA regulation,
and considering that LRRK2 was reported to function as a scaffold for
several kinases and in the Wnt signaling by orchestrating their subcellular
distribution [52], it may be possible that LRRK2 regulates GBA activity by
affecting GBA localisation (for example, its delivery to lysosomes). As a
consequence, despite lower GBA amounts, this latter would turn out to be
more active if properly delivered to the lysosomes.

Intra-class Distribution

We then looked at the intra-class distributions within each sphingolipid class,
to identify possible molecular changes brought about by the treatment: the
profiles in Figure 2.15 show no differences in terms of FA chains between
Lrrk2+/+ and Lrrk2–/– samples.

Similarly to above, our conclusion is that whereas the lack of LRRK2 has
an impact on the sphingolipid relative amounts, the effects are not specific
to certain FA chains. In other words, all molecular species belonging to the
same class are equally affected by the lack of LRRK2. Again, we further
confirmed this observation by computing and comparing the parameters
average chain length, average number of unsaturations and unsaturation
index (Appendix B.2), for which we found no significant differences.

2.3.3 Conclusions

Our targeted approach was motivated by the fact that sphingolipids have
important roles in cell function during disease development and progression.
Not surprisingly, many studies have provided evidence that sphingolipid
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FIGURE 2.15: Intra-class distributions of the sphingolipid classes identified for mouse
brain samples. To ease the visualisation, only the molecular species with a
relative amount higher than 1 % are shown. Overall, there is no difference
between Lrrk2+/+ (WT) and Lrrk2–/– (KO) in terms of FA chains.

levels are often altered in NDs [16–19], and Cer were found to have a defec-
tive homeostasis in NDs with LB pathology, including PD [16, 20–22].

We carried out a targeted LC-MS analysis using a QQQ mass spectrome-
ter which we operated in PIS mode, to identify possible sphingolipid pertur-
bations arising from the lack of LRRK2 protein in Lrrk2–/– mice; to this aim,
we compared the sphingolipidomics profiles of brains from Lrrk2+/+ (WT)
and Lrrk2–/– (KO) mice. Unfortunately, the number of samples was quite
limited (n = 3 for each group), which may have worsened our ability to pick
out significant group differences. However, this did not preclude us from
pinpointing important features.

From the lipidomics analysis, we found Lrrk2–/– mouse brains to be
associated with a significantly higher amount of Cer 18:1 as compared to
Lrrk2+/+ samples (Figure 2.11); more in general, we observed an increase
in all sphingolipids downstream of GBA (Cer, SM and sulfatides). Ac-
cordingly, the Gly-Cer/Cer ratios (Figure 2.12 and Figure 2.13) resulted to
be lower in Lrrk2–/– samples. These sphingolipid perturbations are not
chain-specific, since we found no significant differences in the intra-class
profiles (Figure 2.15), nor did we observe any variation in the parameters
average chain length, average number of unsaturations and unsaturation
index (Appendix B.2).

At the same time, the analyses performed on GBA revealed that the
enzyme is down-regulated when LRRK2 is missing but, interestingly, its
specific activity is increased (Figure 2.14). Taken together, these results and
the LC-MS outcomes suggest that the increased GBA specific activity is
more important than its decreased expression when it comes to sphingolipid
balances. Our results therefore hint to a possible interaction between LRRK2
and GBA, with LRRK2 playing a role in GBA regulation; this conclusion
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finds support from recently published work, where it was reported an
increase in GBA activity in blood samples from LRRK2 G2019S patients [53].
To complicate things is the fact that in idiopathic PD patients and in GBA
mutation carriers, a decrease in GBA level is usually associated with a
decrease in GBA activity [54–59]. However, the association of higher GBA
activity in LRRK2 G2019S patients and in LRRK2 deficient systems may
be caused by a distinct pathogenic mechanism of LRRK2-linked PD that
deserves further investigation.
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Chapter 3

The Effects of Anti-VEGF
Treatments on the Lipidome of
Cancer Cells

3.1 Introduction

The word “cancer” encloses a collection of diseases where some of the body’s
cells start to divide uncontrollably and to spread into surrounding tissues.
In cancer cells, the balance between growth, proliferation and differentiation
is broken through three important steps:

1. Immortalisation: cells acquire the ability to divide indefinitely;

2. Transformation: cells cease to observe the normal constraints of growth,
and develop their own blood supply by way of angiogenesis;

3. Metastasis: cancer cells spread from the tissue of origin to other parts of
the body.

Cancer accounts for one in eight deaths worldwide, making it the leading
cause of death in developed countries and the second leading cause in
developing countries, after heart diseases [1]. The risk of contracting cancer
increases with age, and in rich countries almost 80 % of newly diagnosed
cases involve people older than 55 years of age; this is probably caused
by cancer development requiring many steps, which take place over the
years [2, 3].

All cancers involve genetic abnormalities in cells. Somatic mutations, the
most common, are not hereditary but result from gene damage occurring
during a person’s lifetime. These mutations, however, become a heritable
trait, and they account for about 5 % of cancer cases.

The genetic changes associated with tumorigenesis can be divided into
two categories, depending on whether they result from a gain-of-function
or from a loss-of-function: the former involves inappropriate activation
of oncogenes, which are stimulatory for growth and cause cancer when
hyperactive; conversely, loss-of-function involves inactivation of tumour
suppression genes, which inhibit cell growth [4].

Cancer cells are characterised by three abnormal features:

1. The Warburg effect. Regardless of the oxygen levels, cancer cells get
the energy they need by a high conversion rate of glucose to lactate,
rather than metabolising it through oxidative phosphorylation in the
mitochondria [5]. These cells are reported to have glycolytic rates as
high as 200 times those of normal cells [6].
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2. A high rate of de novo lipogenesis. DNL is the process through which
cells synthesise fatty acids starting from substrates such as glucose
and glutamine; in healthy individuals, this biosynthetic pathway usu-
ally provides a limited amount of fatty acids (FAs) as compared to
those coming from the diet. However, in spite of the extracellular FA
availability, cancer cells can synthesize up to 95 % of FAs by means
of DNL [7–9]. What is still not known is why lipids are not simply
taken from the bloodstream, and one putative explanation is that
DNL increases the resistance of cancer cells to oxidative stress, since
DNL produces saturated and mono-unsaturated FAs, whereas the diet
would provide more unsaturated species, vulnerable to peroxidation.
Indeed, inhibition of lipogenesis was shown to increase peroxidation
products, leading to cells more susceptible to oxidative stress [10]. On
the other hand, unsaturated FAs are essential for proper membrane
fluidity, which may be the reason why stearoyl-CoA desaturase (SCD),
responsible for desaturation during DNL, is usually over-expressed in
cancer cells [11]. As a matter of fact, targeting SCD has been suggested
for cancer treatment [12].

3. A high angiogenesis. In normal physiology, the process of angiogenesis
(the growth of blood vessels from pre-existing vasculature) is highly
regulated and useful in processes such as wound healing, skeletal
growth, the menstrual cycle and pregnancy. In cancer, angiogenesis
is troublesome because cells use it to get a high supply of nutrients
and oxygen as they grow in number [13]. Tumour vasculature is also
required for removing metabolic products that would be toxic for
cells, such as lactic acid [8]. Hypoxia can contribute to angiogenesis:
when the tumour outgrows the tissue blood supply, hypoxia-inducible
factors (HIFs) are activated, and they promote angiogenesis by induc-
ing expression of the vascular endothelial growth factor (VEGF) [14,
15]. HIFs also promote a metabolic switch to anaerobic energy pro-
duction, which in its turn induces uptake of FAs with accumulation
of lipid droplets [16]. Indeed, cancer cells are known to contain a
higher amount of lipid droplets as compared to normal cells, which
presumably they use to produce energy through β-oxidation when the
environmental conditions become difficult [17, 18].

Many therapeutic strategies have been proposed so far to treat cancer,
including surgery, radiation, chemotherapy and immunotherapy. The ap-
proach of interest for this Thesis is the targeting of angiogenesis through
anti-VEGF therapy [19, 20]: VEGF is a potent pro-angiogenic growth factor
expressed by many cancer cells, and it stimulates endothelial-cell prolifera-
tion. Unlike tumour vessels, the normal adult vasculature can survive inde-
pendently from VEGF, and so anti-VEGF therapy is based on the assumption
that tumour vessels can be impacted without harming the others [21]. Un-
fortunately, the benefits of anti-VEGF drugs are still not so clear, especially
when used as monotherapy [22]. On the other hand, anti-VEGF combined
with chemotherapy proved successful to the point that bevacizumab, a hu-
manised VEGF-specific antibody, became the first anti-VEGF agent to be
approved by the Food and Drug Administration for cancer patients [19, 21].

An issue of anti-VEGF drugs is that they do not seem to work on pre-
viously treated cancer patients, probably because of an acquired resistance
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to antiangiogenic drugs. In addition, it was shown that prolonged treat-
ments can affect the glycolytic phenotype of the cancer cells, leading to more
hypoxic and glycolytic tumours [23], as well as to oxidative stress [24]. Pre-
clinical studies have also reported increased tumour growth and metastatic
formation after withdrawal of anti-VEGF agents [25]; another reported side-
effect is the up-regulation of Fatty Acid Binding Proteins (FABP3 and FABP7),
involved in FA uptake, therefore resulting in increased lipid droplet levels
with triacylglycerol (TAG) accumulation [16], that cannot be degraded under
hypoxia via β-oxidation since this process is oxygen-dependent.

The mechanisms by which cancer evades anti-VEGF treatments are not
clear, and several guesses have been made, such as (i) escape via different
modes of vascularisation, (ii) recruitment of pro-angiogenic cells from the
circulation, and (iii) secretion of alternative pro-angiogenic factors [24]. As a
consequence, further research is needed to shed some light on these complex
processes.

Considering that lipids play crucial roles in cancer development and
treatment, in this project we focused our attention on the lipidome composi-
tion of cancer cells, and we looked for possible lipidomics changes associated
with anti-VEGF treatment.

Ovarian Cancer

Ovarian cancer begins in the ovaries, the female reproductive glands. The
ovaries contain 3 types of cells, and each of them can develop into a different
type of tumour:

• Epithelial tumours originate from the cells that cover the outer surface
of the ovary;

• Germ cell tumours begin from the cells that produce the eggs;

• Stromal tumours start from tissue cells that hold the ovary together
and produce the hormones estrogen and progesterone.

In most cases, these tumours are benign and do not spread beyond the
ovary; they can be effectively treated by removing the ovary or simply part
of it. On the other hand, malignant tumours do spread to other parts of the
body. As a consequence, they can be fatal.

Cancerous epithelial tumours are called carcinomas, and about 90 % of
them are epithelial ovarian carcinomas. These tumour cells have several
features, when viewed under a microscope, that are used to classify epithelial
ovarian carcinomas into different types. For example, the serous type is by
far the most common, but there are other types like mucinous, endometrioid,
and clear cell. If the cells don’t look like any of these subtypes, the tumour
is called undifferentiated, and these carcinomas tend to grow more quickly
than the other types. Epithelial ovarian carcinomas are classified by these
subtypes, but they are also given a grade and a stage.

The grade classifies the tumour based on how much it looks like normal
tissue: grade 1 carcinomas look more like normal tissue, whereas grade 3
carcinomas look less like normal tissue and usually have a worse prognosis.
Grade 2 tumours look and act in between.

The tumour stage describes how far the tumour has spread from where
it started in the ovary. Epithelial ovarian cancers tend to spread to the lining
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and organs of the pelvis and abdomen first. As it becomes more advanced,
it may spread to the lung and liver, but even to the brain, bones, or skin.

There currently are different treatment options for such cancers, includ-
ing surgery, chemotherapy, hormone therapy and radiation therapy [26, 27].
Outcomes are largely dependent on the subtype of the cancer present. For
example, the overall five-year survival rate in the United States is 45 %, but
his figure dramatically drops in developing countries.

3.2 Materials and Methods

Sample Collection and Treatment

In this study four different human ovarian adenocarcinoma cell lines were
used: they are listed in Table 3.1. Basically, they differ in their glycolytic
phenotype (IGROV-1 and SKOV-3 are poorly glycolytic, whereas OC-316
and OVCAR-3 are highly glycolytic cell lines).

CELL LINE DISEASE

IGROV-1 Ovarian endometrioid adenocarcinoma
OC-316 Ovarian serous adenocarcinoma

OVCAR-3 High grade ovarian serous adenocarcinoma
SKOV-3 Ovarian serous cystadenocarcinoma

TABLE 3.1: Description of the cell lines used in the experiment.
Source: ExPASy – Bioinformatics Resource Portal (www.expasy.org).

The cells were grown in RPMI1640 (Euroclone, Pero, Italy) supplemented
with 10 % fetal calf serum (FCS; Life Technologies, Gaithersburg, MD), 1 %
HEPES (10 mM, Cambrex Bioscience, Verviers, Belgium), 1 % L-Glutamine
(2 mM), 1 % sodium pyruvate (1 mM) and 1 % antibiotic-antimycotic mix
(Gibco-BRL, Grand Island, NY). Cultures were maintained at 37 ◦C in a
humidified 5 % CO2 / 95 % air atmosphere.

All procedures involving animal care conformed institutional guide-
lines that comply national and international policies (EEC Council Directive
86/609, OJ L 358, 12 December, 1987). For tumour establishment, 8-week-old
severe combined immunodeficiency (SCID) mice (Charles River, Wilmington,
MA) were subcutaneously injected with 0.3–0.5× 106 tumour cells mixed
at 4 ◦C with liquid Matrigel (Becton-Dickinson; Franklin Lakes, NY). About
2 months later, animals developed tumours, and anti-human VEGF mAb
(bevacizumab) was administered intraperitoneally at 100 µg/dose twice per
week. Control mice received intraperitoneal injections of PBS (Figure 3.1).
The treatment lasted 4 weeks, and 48 hours after the last dose the mice were
sacrificed, the tumours taken and stored at –80 ◦C until the analysis. The
total number of samples varied depending on the experiment:

1. IGROV-1, 16 mice (11 CTRL and 5 TRTD);

2. OC-316, 15 mice (8 CTRL and 7 TRTD);

3. OVCAR-3, 11 mice (5 CTRL and 6 TRTD);

4. SKOV-3, 11 mice (6 CTRL and 5 TRTD).

www.expasy.org
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FIGURE 3.1: Scheme of the sample preparation. TRTD mice were given the anti-VEGF
drug bevacizumab, whereas CTRL mice were not treated.

Lipid Extraction

Lipids were extracted using a slight modification of the Bligh & Dyer pro-
tocol [28]. Briefly, the tumours were placed in a glass centrifuge tube, to
which 3.75 mL of MeOH:CHCl3 2:1 mixture was added. The samples were
thoroughly mixed and mechanically disrupted by means of a homogeniser,
while keeping the centrifuge tubes in a bath of water and ice. 20 µL of
1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) 0.159 mg/mL standard
solution was added to assess possible fluctuations in extraction yield.

The samples were sonicated and vortexed for 15 min, then 1.25 mL
CHCl3 was added, and the samples were sonicated and mixed again for
another 15 min. 1.25 mL H2O was added, and there followed a further soni-
cation/mixing step. Finally, they were centrifuged for 15 min at 2000 rpm to
induce phase separation. The organic (bottom) phase was recovered using
a Pasteur pipette in a 10 mL round-bottom flask, and the extraction proce-
dure was repeated: 1.88 mL CHCl3 was added to the tubes, the samples
were sonicated, mixed and then centrifuged. The bottom organic phase was
recovered again and added to the previously extracted one.

The flasks were dried using a rotary evaporator and the lipids were
dissolved in 1 mL MeOH:CHCl3 8:2 solution. For the LC-MS analysis, the
samples were diluted 1:10 with MeOH.

LC-MS Measurements

The LC-MS measurements were performed in both positive and negative
ionisation modes using a Waters Xevo G2 quadrupole time-of-flight (Q-ToF)
combined with an Acquity UPLC system (Waters Corporation, Manchester,
UK). 10 µL of each sample was injected onto an Acquity UPLC Charged
Surface Hybrid (CSH) C18 column (1.7 µm x 2.1 mm x 100 mm, Waters
Corporation) held at 55 ◦C. The flow rate was 0.4 mL/min, and the bi-
nary solvent system consisted of solvent A, HPLC-grade acetonitrile:water
(60:40) with 10 mM ammonium formate, and solvent B, HPLC-grade ace-
tonitrile:isopropanol (10:90) with 10 mM ammonium formate. The gradient
elution program started from 40 % B, reached 99 % B in 18 min, then returned
back to the starting condition, remaining there for 2 min. The MS data was
collected over the m/z range 100–1800 with a scan duration of 0.2 s. The
source temperature was set at 120 ◦C and nitrogen (900 L/h) was used as
the desolvation gas. The voltages of the sampling cone, extraction cone and
capillary were 30 kV, 3.5 kV and 2 kV respectively, with a collision energy of
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6 V for each full scan, and a collision ramp from 20 to 40 V for the fragmenta-
tion function. As lock mass, a solution of 2 ng/µL acetonitrile:water (50:50)
leucine enkephalin (m/z 556.2771) with 0.1 % formic acid was infused into
the instrument every 30 s.

Data Analysis

The raw data files were converted to the *.NetCDF format with the software
“Databridge” (Waters Corporation) and then handled with the R package
xcms [29]; the processing procedures included feature detection, peak iden-
tification, peak matching, peak grouping across samples, retention time
correction and filling in of missing data. The detected peaks were assigned
based on their m/z and retention time (RT). The final table containing peak
areas was used for data analysis, performed with the R environment for
statistical computing [30].

Overall, 10 lipid classes were identified from the positive ion mode
scans: ceramides (Cer), diacylglycerols (DAG), glycosyl-ceramides (Gly-Cer),
phosphatidylcholines (PC), LysoPC, pPC (i.e., plasmanyl- and plasmenyl-
PC), phosphatidylethanolamines (PE), pPE (i.e., plasmanyl- and plasmenyl-
PE), sphingomyelins (SM) and TAG. The most common adducts were [M +
H]+, [M + Na]+ and [M + NH4]+, depending on the lipid class.

The signal of the DLPC standard was used to account for extraction yield
fluctuations, based on the assumption that different yields across samples
will result in different DLPC signal intensities. Accordingly, for each sample
the analyte signal areas were scaled to the DLPC signal. In addition, in order
to study relative differences across samples, for each sample a normalisation
to the total signal area, set to 100, was carried out.

As explained in Chapter 1, the most appropriate and meticulous ap-
proach would be to employ internal standards in such a way as to relate
signal areas to absolute lipid amounts. This approach is however impractical,
as well as overly expensive, and we therefore chose to undertake a less am-
bitious route, whereby we limited ourselves to compare signal areas. After
all, or aim is to look for differences of MS features across sample groups, for
which no absolute molar amounts are actually required.

3.3 Results and Discussion

3.3.1 IGROV-1 Cell Line

Tumour Dimension and Total Signal

The tumour dimensions are shown in Figure 3.2; within each sample group
(CTRL or TRTD), a high biological variability can be noticed. Despite that,
the difference in terms of average dimensions is statistically significant, with
TRTD tumours being smaller than controls.

In Figure 3.3 is the comparison of the total MS signal across samples. This
quantity was obtained by adding, within each sample, the signal areas of
the identified lipid species through our MS-based approach. In other words,
from the chromatograms we have integrated all the relevant peaks, and
added their areas together. The rationale is that the higher the concentration
of lipids in the considered sample, the higher this quantity is.
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FIGURE 3.2: IGROV-1 – Bar-plot (A) and box-plot (B) of the tumour dimensions. Despite
the high biological variability, there is a significant difference (at the 5 %
level) in terms of tumour dimension, with treated tumours being the
smallest.

Surprisingly, no significant group difference can be observed, which
therefore suggests the lack of any linear relationship between tumour dimen-
sion and overall amount of lipids. This was also confirmed by an analysis of
the sample correlation coefficients (r = 0.30 for CTRL and r = 0.82 for TRTD).
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FIGURE 3.3: IGROV-1 – Bar-plot (A) and box-plot (B) of the total signal area. The
difference between CTRL and TRTD is not statistically significant (at the
5 % level).

Relative Distribution Among Lipid Classes

In Figure 3.4 is a series of box-plots where each identified lipid class is
compared between CTRL and TRTD groups. In most cases, the difference
is statistically significant (p ≤ 0.05) and two clear trends can be observed:
whereas TAGs are more abundant in TRTD samples, the opposite holds true
for almost all the other lipid classes. It is worth stressing that the amounts
being compared here are signal areas, and therefore the percentages reported
in Figure 3.4 are not to be interpreted as molar abundances.
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FIGURE 3.4: IGROV-1 – Sample group comparisons in terms of relative amounts of
lipid classes. Most of the results are statistically significant (*: p ≤ 0.05; **:
p ≤ 0.01; ***: p ≤ 0.001).



Chapter 3. Anti-VEGF Treatments 49

For a correct understanding of these results, it should be kept in mind
that we are comparing relative amounts, implying that the overall sum of
lipids in each sample is bound to be constant. As a consequence, if one or
more classes increase, the others necessarily have to decrease. In our case,
TAGs make up most of the overall signal (roughly 70–90 %)1, and therefore
if this class were the only one to truly increase, an apparent decrease would
be observed in all the others.

We also performed a principal component analysis (PCA) using such
data (269 original variables), and the resulting scores plot is in Figure 3.5.
Here, PC1 alone turned out to explain 67 % of the total variance. A fair group
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FIGURE 3.5: IGROV-1 – Scores plot from the PCA. The group separation is not clear-cut,
although TRTD samples are on the left-hand side along PC1.

separation along PC1 is achieved, where TRTD samples are displaced to the
left, while CTRL samples to the right. Not surprisingly, by looking at the
loadings (not reported here) it turns out that most of TAG and DAG species
have negative values along PC1, whereas the opposite holds for all the other
lipid species. This confirms that it is the different relative amount of the lipid
classes that contributes the most to the sample group separation; to further
verify this, we performed a “restricted” PCA where we used the grouped
data (10 original variables, representing the relative amounts of each lipid
class), and this is shown in Figure 3.6. Yet again, the sample groups are
fairly resolved along PC1; in addition, TAGs and DAGs point in the opposite
direction as compared to all the other lipid classes in the loadings plot.

Intra-class Distribution

We then moved on to investigate the intra-class profiles, in order to look
for possible intra-class differences caused by the treatment. The molecular
distributions are in Appendix C.1, which we obtained by normalising the
analyte signals within each lipid class to the overall sum of 100. Table 3.2
summarises the percentage of species for each class where the difference
between CTRL and TRTD was statistically significant.

The significance level was set to 5 %, meaning that it is expected to find,
on average, 5 % significant cases just by chance. However, since all the values

1Of course, we are always referring to relative signal areas and not molar lipid amounts.
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FIGURE 3.6: IGROV-1 – Scores (left) and loadings (right) plots from the PCA on the
grouped data (10 original variables representing the relative amount of
each lipid class). The sample groups are partially resolved along PC1,
where TAG and DAG have negative loadings, in contrast to the positive
loadings of all the other lipid classes.

Cer DAG Gly-Cer LysoPC PC PE pPC pPE SM TAG

↑ 0 % 45.0 % 11.1 % 16.7 % 4.2 % 13.3 % 9.1 % 11.1 % 7.1 % 19.4 %
↓ 5.9 % 35.0 % 11.1 % 16.7 % 12.5 % 6.7 % 9.1 % 22.2 % 14.3 % 56.2 %

TABLE 3.2: IGROV-1 – Percentage of species in each class for which the difference
between CTRL and TRTD was statistically significant (5 % level). The dis-
tinction is made between increase (↑) or decrease (↓) from CTRL to TRTD
samples.
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in the table are higher than such threshold, we can safely state that for each
lipid class a true difference between sample groups exists. This is important
because it implies that the treatment, in addition to affecting the relative
amounts across lipid classes, also changes their intra-class distributions. In
order to better characterise the specific effects, we calculated and compared
the three different parameters (i) average chain length, (ii) average number
of unsaturations, and (iii) unsaturation index. A compact summary of the
results is in Table 3.3, where starred arrows indicate significant changes,
whereas the obtained box-plots can be found in Appendix C.1.

Chain length Unsaturations Unsaturation index

Cer – – ↑ ↑
DAG ↑ ↑ ↑ *

Gly-Cer – – ↑ ↑
LysoPC ↓ ** ↑ ↑

PC – – – – – –
PE – – – – – –

pPC ↓ * ↓ ↓
pPE ↓ – – – –
SM ↑ ↑ * ↑ *

TAG ↓ ** – – ↑ *

TABLE 3.3: IGROV-1 – Summary of the intra-class comparisons. Upward and down-
ward arrows denote higher and lower values, respectively, in TRTD samples.
Stars represent the level of significance (∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01), whereas
missing stars denote non-significant p-values, but still lower than 0.2.

The table provides a picture that is not easily interpreted, although the
general trend is for the average chain length to decrease and for the unsat-
uration degree to increase following the treatment. This picture therefore
suggests that lipids in anti-VEGF treated tumours are shorter and more un-
saturated than lipids in CTRL tumours, even though the results also depend
on the lipid class.

3.3.2 OC-316 Cell Line

Tumour Dimension and Total Signal

In Figure 3.7 are the tumour dimensions, and a significant difference can
be seen between sample groups, with treated tumours being the smallest
ones. On the other hand, the difference was no more significant when
comparing the total MS signal (Figure 3.8), just like for IGROV-1. Again, the
lack of a linear relationship between these two quantities was confirmed by
an analysis of the sample correlation coefficients (r = 0.71 for CTRL, and
r = 0.021 for TRTD samples).

Relative Distribution Among Lipid Classes

In Figure 3.9 are the inter-class comparisons between sample groups. In
contrast to what observed for IGROV-1 cell line, here most of the relative
amounts are unaffected by the treatment, and the significant differences only
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FIGURE 3.7: OC-316 – Bar-plot (A) and box-plot (B) of the tumour dimensions. On
average, TRTD tumours are significantly smaller than CTRL tumours.

To
ta

l s
ig

na
l [

a.
u.

]

0

100

200

300

400

500

CTRL TRTD

(A)

●

●

15
0

25
0

35
0

45
0

p−value:  0.109 

(B)

FIGURE 3.8: OC-316 – Bar-plot (A) and box-plot (B) of the total signal areas. The
difference between the two groups is not significant at the 5 % level.

occur for Gly-Cer and LysoPC, both decreasing in TRTD samples. Also the
PCA on the normalised data (335 original variables) failed to separate the
two groups, anti-VEGF treated and CTRL tumours, in the scores plot (data
not shown).

Intra-class Distribution

The intra-class profiles can be found in Appendix C.2, whereas in Table 3.4
is just a summary of the percentage of significant cases (where the difference
between CTRL and TRTD was statistically significant). Interestingly, for all
the lipid classes but in TAGs the percentage is well higher than 5 %, implying
that the treatment deeply affects the intra-class distribution of most classes.

To understand what kind of effects the treatment triggers, we computed
and compared average chain length, average number of unsaturations and
unsaturation index: Table 3.5 is a compact summary of the results, whereas
the details are in Appendix C.2. As for the chain length, in all significant
cases (Cer, Gly-Cer, PC, pPC, pPE) lipids are shorter in TRTD samples. The



Chapter 3. Anti-VEGF Treatments 53

CTRL TRTD

0.
4

0.
6

0.
8

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.693 
Cer

CTRL TRTD

0.
4

0.
8

1.
2

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.513 
DAG

CTRL TRTD

0.
1

0.
3

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.029 *
Gly−Cer

CTRL TRTD

0.
2

0.
6

1.
0

1.
4

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.014 *
LysoPC

●

CTRL TRTD

20
30

40
50

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.057 
PC

●

●

●

CTRL TRTD

0.
5

1.
5

2.
5

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.16 
PE

●

CTRL TRTD

4
6

8
10

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.846 
pPC

●

CTRL TRTD

2
3

4
5

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.116 
pPE

●

CTRL TRTD

8
10

14
R

el
at

iv
e 

am
ou

nt
  [

%
] p−value:  0.903 

SM

●

CTRL TRTD

10
30

50
70

R
el

at
iv

e 
am

ou
nt

  [
%

] p−value:  0.182 
TAG

Legend

CTRL
TRTD

FIGURE 3.9: OC-316 – Inter-class comparisons between sample groups (CTRL VS
TRTD).

Cer DAG Gly-Cer LysoPC PC PE pPC pPE SM TAG

↑ 25.0 % 5.0 % 14.3 % 7.1 % 7.3 % 4.8 % 20.6 % 28.0 % 24.0 % 0.0 %
↓ 25.0 % 10.0 % 42.9 % 14.3 % 65.5 % 23.8 % 44.1 % 20.0 % 44.0 % 2.6 %

TABLE 3.4: OC-316 – Percentage of chemical species with a statistically significant intra-
class difference. The distinction is made between increase (↑) or decrease (↓)
from CTRL to TRTD samples.
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Chain length Unsaturations Unsaturation index

Cer ↓ * ↓ * ↓
DAG – – ↑ ↑ *

Gly-Cer ↓ *** ↑ ** ↑ ***
LysoPC – – – – – –

PC ↓ *** ↓ **** ↓ ****
PE – – – – – –

pPC ↓ *** ↓ ** ↓ **
pPE ↓ * – – – –
SM ↓ ↓ – –

TAG – – – – – –

TABLE 3.5: OC-316 – Summary of the intra-class comparison between CTRL and TRTD
groups.

situation is more complex as regarding unsaturations and the unsaturation
index, since the results vary depending on the lipid class.

3.3.3 OVCAR-3 Cell Line

Tumour Dimension and Total Signal

The comparison of the tumour dimensions is in Figure 3.10, which confirms
that the anti-VEGF treatment shrinks the tumours. As previously observed,
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FIGURE 3.10: OVCAR-3 – Bar-plot (A) and box-plot (B) of the tumour dimensions. On
average, TRTD tumours are significantly smaller than CTRL tumours.

however, there is no significant group difference in the total MS signal
(Figure 3.11); yet again, there is no linear relationship between tumour size
and total MS signal (r = 0.44 for CTRL, and r = 0.56 for TRTD samples).

Relative Distribution Among Lipid Classes

Figure 3.12 shows the inter-class comparisons between sample groups; inter-
estingly, there is a highly significant decrease in Gly-Cer levels, as well as a
significant increase in the relative amount of DAG. Worth of note, also in the
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FIGURE 3.11: OVCAR-3 – Bar-plot (A) and box-plot (B) of the total signal areas (after
correcting for the DLPC signal). The difference between the two groups
is not significant (at the 5 % level).

previous cases the overall Gly-Cer relative amount was significantly lower
in TRTD samples. However, a clear and common behaviour for the three
cell lines investigated so far cannot be identified.

Intra-class Distribution

The intra-class profiles are detailed in Appendix C.3, whereas here (see Ta-
ble 3.6) is a compact summary of the percentage of species for which the
group difference is statistically significant. Apart from SM and TAG species,
our analysis shows that the treatment significantly affects the molecular
profiles. The comparison of the parameters average chain length, average

Cer DAG Gly-Cer LysoPC PC PE pPC pPE SM TAG

↑ 4.5 % 0.0 % 30.0 % 28.6 % 4.2 % 7.7 % 7.7 % 25.0 % 0.0 % 1.6 %
↓ 4.5 % 11.1 % 10.0 % 14.3 % 10.4 % 15.4 % 7.7 % 16.7 % 0.0 % 3.2 %

TABLE 3.6: OVCAR-3 – Percentage of chemical species with a statistically significant
intra-class difference. The distinction is made between increase (↑) or de-
crease (↓) from CTRL to TRTD samples.

number of unsaturations and unsaturation index is in Table 3.7 and the
related box-plots in Appendix C.3. Just like in the previous cases, TRTD sam-
ples have lipids which are, on average, shorter than those in CTRL samples.
As for the unsaturations, the trend is not clear, although the unsaturation
index decreases in most of the species with the notable exception of Gly-Cer,
for which it significantly increases (interestingly, a similar behaviour was
observed in the previous cases).

3.3.4 SKOV-3 Cell Line

Tumour Dimension and Total Signal

Also in this last case, we show the comparison of both tumour dimensions
(Figure 3.13) and total MS signal (Figure 3.14), drawing the same conclusions
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FIGURE 3.12: OVCAR-3 – Inter-class comparisons between sample groups (CTRL VS
TRTD).

Chain length Unsaturations Unsaturation index

Cer – – ↑ ↑
DAG – – ↓ ↓

Gly-Cer – – ↑ * ↑ *
LysoPC ↓ ** – – – –

PC – – ↓ ↓
PE – – – – – –

pPC ↓ ↓ * ↓ *
pPE ↓ *** ↓ ** ↓ **
SM ↓ * ↓ – –

TAG – – ↓ ↓

TABLE 3.7: OVCAR-3 – Summary of the intra-class comparison between CTRL and
TRTD groups.
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as above: whereas the treatment reduces the tumour size, this is not the case
for the total MS signal, related to the total lipid amount. As a consequence,
there is no correlation between the two variables (r = 0.31 for CTRL, and
r = 0.57 for TRTD samples).
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FIGURE 3.13: SKOV-3 – Bar-plot (A) and box-plot (B) of the tumour dimensions. On
average, TRTD tumours are significantly smaller than CTRL tumours.
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FIGURE 3.14: SKOV-3 – Bar-plot (A) and box-plot (B) of the total signal areas (after
correcting for the DLPC signal). The difference between the two groups
is not significant (at the 5 % level).

Relative Distribution Among Lipid Classes

As Figure 3.15 shows, the treatment in this case did not have any significant
effect on the relative amounts of the investigated lipid classes, as there is not
a single significant difference. Therefore, such results represent yet another
response to the anti-angiogenic treatment as compared to the previous cell
lines.
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FIGURE 3.15: SKOV-3 – Inter-class comparisons between sample groups (CTRL VS
TRTD).
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Intra-class Distribution

The intra-class profiles, reported in Appendix C.4, highlight that the treat-
ment does indeed affect the molecular distribution within each class; Ta-
ble 3.8 displays for how many molecular species were the group differences
statistically significant. Interestingly, a feature that seems to be common
across the cell lines used is that the intra-class profile of TAG species is not
affected by the treatment. On the other hand, we tried to characterise the

Cer DAG Gly-Cer LysoPC PC PE pPC pPE SM TAG

↑ 4.0 % 7.1 % 27.3 % 33.3 % 1.8 % 13.3 % 3.1 % 8.3 % 4.0 % 0.0 %
↓ 12.0 % 0.0 % 9.1 % 11.1 % 22.8 % 26.7 % 6.3 % 16.7 % 32.0 % 0.8 %

TABLE 3.8: SKOV-3 – Percentage of chemical species with a statistically significant intra-
class difference. The distinction is made between increase (↑) or decrease (↓)
from CTRL to TRTD samples.

changes in terms of average chain length, average number of unsaturations
and unsaturation index (Appendix C.4 and Table 3.9): once more, TRTD

Chain length Unsaturations Unsaturation index

Cer ↑ * ↑ ↑
DAG – – – – – –

Gly-Cer – – ↑ ** ↑ ***
LysoPC ↓ * – – – –

PC ↓ ** ↓ ** ↓ **
PE – – – – – –

pPC – – ↑ * ↑ *
pPE ↓ ** – – – –
SM ↓ – – – –

TAG – – – – – –

TABLE 3.9: SKOV-3 – Summary of the intra-class comparison between CTRL and TRTD
groups.

samples are associated with shorter lipids as compared to CTRL tumours.
As for the unsaturations, the general trend is for TRTD lipids to be more
unsaturated, although for PCs the opposite holds true, whereas for some
other classes the results are not significant.

3.4 Conclusions

The main purpose of the present investigation was to explore the effects of
anti-VEGF treatments on the lipidome of cancer cells, and to understand
whether such outcomes also depend on the tumour. We were motivated by
the fact that (i) lipids are known to play important roles in disease develop-
ment and progression, and (ii) cancer cells are characterised by abnormalities
involving lipids, such as the Warburg effect and a high rate of DNL.

To pursue our aim, we selected four different human ovarian adenocar-
cinoma cell lines (Table 3.1), and we compared the lipidome of anti-VEGF
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treated and untreated tumours in female mice. Quite surprisingly, in all four
cases we found significant differences between sample groups, although the
effects of the treatment turned out to depend on the cell line itself.

1. IGROV-1. In terms of tumour dimensions, we found a significant
reduction upon treatment (Figure 3.2). However, the total LC-MS
signal did not follow this trend, since the difference was actually not
significant (Figure 3.3). This seems to suggest that the overall lipid
amount does not increase linearly with the tumour dimension, which
was also confirmed by a regression analysis.

When examining the inter-class distributions (Figure 3.4), we observed
significant group differences characterised by (i) a higher relative
amount of TAGs and DAGs in TRTD tumours as compared to controls,
and (ii) the opposite trend for all the other lipid classes. However,
it should be considered that we looked at relative amounts, which
implies that if some species increase, the others are bound to decrease
to keep the overall amount constant. The PCA performed using the
relative amounts as original variables (scores plots of Figure 3.5 and
Figure 3.6) confirmed the significant difference in terms of lipid class
composition.

As for TAGs, they make up most of the total MS signal (70–90 %), and
their increase upon treatment is worthy of attention. However, we
can give only putative biological explanations to this finding: our
hypothesis is that such results are indicative of an accumulation of
lipid droplets within the tumours. This is interesting because lipid
droplets are known to play important roles in cancer progression, and
they are usually abundant in diseased states [18, 31–33]. However, it
is not clear to us the reason why anti-VEGF treatments would trigger
their further accumulation in cells; we speculate that this may be the
result of a phenotypic shift of the tumour cells into a more aggressive
tumour form, as previously reported [23].

In addition to quantitative variations among lipid classes, we also
observed significant differences in their intra-class compositions (Ap-
pendix C.1 and Table 3.3): the general trend is for anti-VEGF treated
samples to be made of shorter and more unsaturated lipids as com-
pared to CTRL tumours, even though the results are class dependent.

2. OC-316. Also here, treated tumours were significantly smaller than
controls (Figure 3.7), but the dimension did not correlate well with the
total signal intensity (Figure 3.8). Unexpectedly, here we did not find
the marked inter-class perturbation observed for IGROV-1. Rather, in
this case there only was a significant reduction in Gly-Cer and LysoPC
levels (Figure 3.9).

As for the intra-class compositions, we noticed dramatic effects trig-
gered by the treatment (Appendix C.2 and Table 3.5), in that treated
lipids turned out to be, on average, significantly shorter than those
in CTRL tumours. On the other hand, the trend in the degree of un-
saturation turned out not to be the same for all lipid classes: in some
cases (DAG, Gly-Cer) it increased whereas in others (Cer, PC, pPC) it
decreased as a result of the treatment.
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3. OVCAR-3. Just like in the previous cases, the anti-VEGF treatment
significantly reduced the tumour size (Figure 3.10), although the di-
mension did not correlate well with the total MS signal (Figure 3.11).
In terms of class composition, there was a dramatic drop of Gly-Cer
levels, accompanied by an increase in DAG species (Figure 3.12).

As for the intra-class compositions, significant results were observed
(Appendix C.3 and Table 3.7), including a pronounced reduction in
chain length of many lipid classes. On the other hand, the effects on
the unsaturation index were contrasting, since for some classes (DAG,
PC, pPC, pPE and TAG) there was a decrease, whereas for some others
(Cer and Gly-Cer) an increase.

4. SKOV-3. Also with this cell line the treatment induced a significant
reduction in tumour dimensions (Figure 3.13), not well related with
the total MS signal (Figure 3.14). Unlike for the other cell lines, here
the inter-class profiles of CTRL and TRTD samples were quite similar,
with no significant differences (Figure 3.15). On the other hand, what
did significantly change were the molecular compositions within each
class: for many of them, the lipids were shorter in anti-VEGF treated
samples. As for the unsaturations, the effects were contrasting, de-
pending on the lipid class being investigated: (i) no effects for DAG,
LysoPC, PE, pPE, SM and TAG, (ii) increase in unsaturation index for
Cer, Gly-Cer, pPC, and (iii) decrease in unsaturation index for PC.

The results just described above, although interesting, are quite difficult
to properly interpret on a biological basis. Astonishingly, the effects caused
by the treatments seem to strongly depend on the cell line under investi-
gation. This is the case, for example, of the different inter-class responses:
whereas for IGROV-1 there was a clear increase in the relative amounts of
TAGs and DAGs, which we speculated coming from an accumulation of
lipid droplets, such behaviour did not repeat itself for the other cell lines.
In particular, for OC-316 there only was a decrease in Gly-Cer and LysoPC,
for OVCAR-3 there was an increase for DAGs and a decrease in Gly-Cer,
whereas for SKOV-3 there was no significant change at all.

In view of such disparate results, it is also worth outlining a lack of any
simple correlation between glycolytic phenotype and lipidomics effects of
the treatment. If it were so, we would have observed common and pairwise
changes, since OC-316 and OVCAR-3 are both highly glycolytic, whereas
IGROV-1 and SKOV-3 poorly glycolytic tumours.

Interestingly though, there also are some common effects among the four
investigated cell lines. The first one is the tumour size reduction caused
by the treatment which, in all cases, did not correlate with the the total MS
signal (it did not drop significantly upon treatment). Since such quantity
is closely connected with the total lipid amount, these results suggest that
tumours are not homogeneous inside in terms of lipid composition. As a
matter of fact, intra-tumour heterogeneities have been described and are
known to be related to different local microenvironments [34].

A second common feature that can be observed is the general reduction
in average chain length of many lipid classes in TRTD samples. Since lipids
can be either taken up from the diet or synthesised de novo, the observed
effect may be due to an altered relative contribution of these two FA sources.
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Finally, the third common feature involves Gly-Cer: in all cases, the
treatment induces a shift towards more unsaturated species. Considering
the pivotal role played by sphingolipids in health and disease, we believe
that such perturbation is not to be underestimated, even though we do not
know how to biologically explain our findings.

In summary, the picture emerging from our analysis is complex and
difficult to properly interpret, not only because there are marked differences
among cell lines in terms of the response to the anti-VEGF treatment, but also
because a straight cause-effect connection cannot be easily drawn. Taken
together our results show that, no matter of the tumour cell line of origin,
the treatment does cause significant perturbations in terms of lipidomic
profiles, although such effects are tumour-dependent. In a sense, this is not
surprising if we consider that anti-angiogenic treatments do not give uni-
versal results when used; our results may therefore merely reflect different
biological responses to such treatments: here we started with four different
sets of samples that, because of the different origin of the tumours, were
characterised by significantly different lipidomic profiles. And the results
were quite different, as already discussed. It is also worth remembering that
the effectiveness of anti-VEGF drugs has been suggested to be curbed by
the intrinsic heterogeneity of tumour angiogenesis, and several animal trials
have shown that different tumours respond very differently to anti-VEGF
therapy [35].

A possible hypothesis that may explain our results is the following: the
changes in lipid composition that we see are the consequence of a selection
of tumour cells following the use of bevacizumab. Indeed, the initial idea
for anti-VEGF therapy was that, in principle, such drugs are less vulnerable
to drug resistance, in that their target is not the highly genetically mutable
cancer cell population (which can rapidly acquire resistance to any drug
treatment), but rather the vascular endothelial cells, which are a genetically
stable host cell population. Unfortunately, this is not the case, since anti-
VEGF treated tumour often show acquired resistance, which is thought to
involve a selection of tumour cell subpopulations capable of surviving in the
highly hypoxic tumour environments created by the anti-VEGF therapy [36,
37]. As a consequence, since different tumour cells will have different
metabolisms, we speculate that the differences observed in terms of lipid
composition between CTRL and TRTD tumours are related to such selection.

Of course, we do recognise that further research is still needed to properly
understand and interpret these phenomena, and we believe that lipidomics
may be one of the tools needed to help elucidate the mechanisms behind
anti-angiogenic treatments. At the same time, we are also well aware that
lipidomics alone is unlikely to solve these complex issues, and therefore
our investigations will have to be properly integrated with other available
methodologies to shed some light into the matter. For example, it may be
useful to look for altered expression of some key enzymes involved in the
biosynthesis of lipids more strongly affected by the treatments. Another
possible approach may be to use electron microscopy to validate our hypoth-
esis that lipid droplets play a role here, too. In summary, we acknowledge
that the results discussed here are just preliminary, and further work has
to be done if we really want to understand the effects that anti-angiogenic
treatments have on cancers.
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Chapter 4

IsotopicLabelling: an R Package
for the Analysis of Enriched
MS Isotopic Patterns

4.1 Introduction

Biological Labelling Experiments

Metabolomics and lipidomics have been witnessing an increasing interest
from biological and biomedical research scientists, especially when it comes
to their applications to medical diagnostics. However, because of the com-
plexity of the metabolome/lipidome of cells and tissues, these sciences have
to face many issues; among them is the elucidation of metabolic pathways,
not readily achievable on account of challenges associated to directly mea-
suring metabolic fluxes. Some limitations can be overcome with the aid of
stable isotopes, used to label metabolites in living cells.

In the past, labelling experiments used to employ radioactive tracers,
which were detected by highly sensitive scintillation counters. More recently,
stable isotopes have replaced radioactive tracers due to improved sensitivi-
ties of NMR and MS analytical techniques. Accordingly, isotopic labelling
approaches have been developed for a variety of applications including
metabolite identification, quantification, and pathway analysis [1–4].

When isotopic labelling is used to study conversion and transport rates
of metabolites in cells, it is referred to as fluxomics [5]. Here, the by far
most popular label is 13C, given that (i) every bioorganic molecule contains
carbon, and (ii) carbon transfer in biochemical reactions follows defined
rules. Another common stable isotope is 2H [6–8], even though caution must
be paid with it since 2H is interchangeable with hydrogen from water.

A typical labelling experiment starts by feeding cell cultures or animals
with substrates enriched in the label used. After the growth period, the
metabolites are extracted and the samples are analysed. The detection of the
label (2H, 13C, . . . ) by MS is based on the fact that its mass is different from
the one of the isotope most common in nature (1H, 12C, . . . ), whereas NMR
can directly detect it.

Although MS-based labelling experiments are more common than NMR-
based experiments, the potential advantages of this technique over MS
should not be underestimated. In particular, (i) it can provide information
on specific positions of the label within analytes and (ii) it is not invasive
and therefore enables in vivo studies [9]. However, in my project I only dealt
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with MS-based labelling experiments, and so I will focus on this technique
alone in the following.

Isotopes and Mass Spectrometry

Isotopes and MS are historically connected, both starting at the end of
the 19th century with the publications by J. J. Thomson, who reported his
results on cathode rays [10]. In 1907, he also described a parabola mass
spectrograph that he used to measure the m/z of ions coming from different
gases; interestingly, while using neon he observed that the main signal, at
m/z 20, was always accompanied by a weaker one at m/z 22 [11]. In the
following years his assistant, F. W. Aston, was able to describe the isotopic
compositions of several elements including Ar, Kr, Hg and Cl [12], and this
represented the beginning of the research on isotopes.

Nowadays we know that an isotope is a form of an element whose atomic
nucleus contains a specific number of neutrons, in addition to the protons
that define the element. Isotopes differ in their nucleon number, the sum of
protons and neutrons, which is usually written as a superscript preceding
the symbol of the element, as in 1H for defining the isotope of H having
just one nucleon. Elements can be monoisotopic or poly-isotopic depending
on whether they exist as one or more naturally occurring stable isotopes,
respectively. As a consequence, molecules are mixtures of isotopes, which is
the reason why in chemistry atomic and molecular weights are used.

MS identifies ions by their m/z, and therefore it can easily distinguish
and quantify the different isotopic variants of a species; to avoid ambiguities,
a specific MS terminology has been devised [13, 14]:

Isotopic mass: it is the mass of an isotope, measured in unified atomic mass
units (u). 1 u corresponds to 1/12 of the mass of one 12C atom at rest
and in its ground state;

Mass defect: it is the difference between the isotopic mass and the sum
of the individual masses of the protons and neutrons making up an
isotope. Consequently, the exact mass of a molecule depends on its
specific isotopic composition [15];

Atomic weight: it is the weighted average obtained by taking into account
all naturally occurring isotopes of an element. A similar definition
applies to molecular weight;

Monoisotopic mass: it is the exact mass of a molecular species obtained
using the mass of the most abundant isotope of each element. For
common organic compounds, the most abundant isotopes are also the
lightest ones (1H, 12C, 16O, 14N, . . . );

Isotopologues: they are species with the same elemental composition but
different isotopic composition, such as 12CH4 and 13CH4;

Isotopomers: they are species of identical isotopic composition, differing
only in the position of the isotopes. They cannot be distinguished by
MS, no matter of the resolving power of the instrument;
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Isotopic molecular ion (M+1, M+2, . . . ): it is an ion containing one (M+1)
or more (M+2, . . . ) of the less abundant isotopes of the atoms making
up the species.

Prediction of MS Isotopic Patterns

Isotopes cause molecules to be present in nature as mixtures of isotopo-
logues, and therefore any analyte observed by MS will display a specific
isotopic pattern where each MS peak represents a certain isotopologue. As a
consequence, MS isotopic patterns are a sort of elemental fingerprint of the
analytes themselves.

The natural isotopic distributions of the elements are well known, and
several algorithms have been devised for predicting MS isotopic patterns:
the oldest approaches are based on probability theory, whereas the newest
ones rely on the Fourier Transform (FT). Here I will just give a quick overview
of some of them, including the one that I exploited during my PhD.

The Multinomial Expansion. The most classical and intuitive approach
makes use of the multinomial expansion [14]: here, for the generic molecule
AmBnCo, the first step is to separately consider each of its elements (A, B, C),
and to find out its relative isotopic distribution through the expansion of the
multinomial [16, 17],

(a1 + a2 + . . . + ak)N =
∑ N!

n1!n2! . . .nk!
an1

1 an2
2 . . . ank

k (4.1)

where ni is the number of atoms of isotope “i” of the considered element. The
sum is taken over all combinations of n1, n2, . . . , nk for which the overall sum
is N, the total number of atoms of the considered element in the molecule.
Those on the right-hand side are probability-like terms; basically, each of
them represents the probability of occurrence of a certain isotopologue.

Just to give a practical example, for C in C42H82NO8P the above expres-
sion would simplify to

(
a12C + a13C

)42 =
42∑
i=0

42!
i! (42 – i)!

(
a12C

)i (a13C
)42–i (4.2)

where a12C and a13C are the 12C and 13C natural abundances, respectively.
The resulting isotopic distribution is in Figure 4.1, where along the horizontal
axis is the number of 13C atoms in the species C42.

After having repeated this procedure for all the elements in the target
analyte, the probability of occurrence of a particular variant of the molecule
is obtained by multiplying the probabilities for the corresponding element-
specific variants [17]. This step can become computationally demanding,
especially for big molecules; this is the reason why in the past it was usual
to employ the “pruning” technique, whereby variants with an occurrence
falling below a specified threshold were not taken into consideration.

Fourier Transform and the Convolution Method. Owing to the mass
defect, isobaric isotopologues have slightly different masses, but they can
be resolved from one another by MS only if the instrumental resolution is
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FIGURE 4.1: Expected isotopic distribution for C42 as obtained from a multinomial
expansion. Along the x axis is the number of 13C atoms in C42, whereas on
the y axis is the probability of occurrence. Only the lightest isotopologues
are shown, since the occurrence of heavier species is negligible.

high enough. This is not the case for routine mass measurements, implying
that such isotopologues are usually grouped together into aggregates with
a centre of mass given by a probability-weighted sum of the exact masses
of the individual components. The resulting aggregates are separated from
each other by about 1 u and so, instead of using their masses, they can be
named after the additional neutron content with respect to the monoisotopic
variant. For example, the multinomial expansion for the molecule AmBnCo
would assume the simple form

(
a1I0 + a2I1 + . . .

)m (
b1I0 + b2I1 + . . .

)n (
c1I0 + c2I1 + . . .

)o
(4.3)

where the superscripts 0, 1, . . . specify the additional neutron content. With
this approach it is easier to expand and multiply the polynomials, but its very
advantage has to do with the FT and the convolution theorem, as pointed
out by Alan Rockwood between 1995 and 1996 [18–20]: in summary, he
replaced the indicators I0, I1, . . . by the Fourier terms ei2πmµ, where i is the
imaginary number, m is the nominal mass, and µ is a real number between 0
and 1 defining a grid over which the Fourier term is sampled. Equation (4.3)
now becomes

(
a1ei2πma1µ + a2ei2πma2µ + . . .

)m (
b1ei2πmb1

µ + b2ei2πmb2
µ + . . .

)n
·

·
(

c1ei2πmc1µ + c2ei2πmc2µ + . . .
)o

(4.4)

If it were expanded, each term would represent peak intensity multiplied
by a complex exponential containing information on the related nominal
mass. However, the above expression can be seen as f(µ), a function of the
parameter µ, and therefore it can be Fourier-transformed into F(m), a func-
tion representing a discretely sampled version of the isotopic distribution
in the mass domain [19]. To sum up, Rockwood’s approach is based on the
following steps:

1. Choose a peak shape function, S(m), and inverse-transform it: s(µ) =
IFT[S(m)];
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2. Multiply s(µ) with f(µ);

3. Fourier-transform s(µ) f(µ) with respect to µ to get to the mass domain:
F(m) = FT[s(µ) f(µ)].

Importantly, this method is characterised by a reduced computational de-
mand, and therefore no pruning technique is needed. The algorithm could
even be used to resolve the isotopic fine structure, in this case exact masses
have to be used instead of nominal masses, and the width of the peak shape
has to be carefully adjusted, as well as the sampling grid represented by µ.

New Approaches. Since Rockwood, many other algorithms have been
devised and fine-tuned to compute the isotopic distributions with ever-
increasing efficiencies. In particular, considering that the resolution of mod-
ern mass spectrometers is getting higher and higher, the focus has been
shifting toward methods able to efficiently resolve the isotopic fine struc-
ture. Among these are two-dimensional based FFT methods, that split the
calculation into two separate dimensions: a first one is used for getting a
low resolution picture, whereas a second FT focuses in the surroundings of
the isotopic variants to obtain the details about the fine structure [21, 22].

A very efficient method has been described not long ago, whereby the
geometric structure called k-simplex is exploited to describe the distribution
of neutrons among the isotopologues of groups of distinct elements [23].
As discussed in the original paper, during a first step each group of ele-
ments is considered, and the isotopic patterns are individually computed
through an FT applied on the simplex geometric structure. The isotopic
pattern of the whole molecule is then obtained as the outer product of all
the separate isotopic patterns. The exact masses of each species are similarly
obtained, but the products are replaced by sums, and the probabilities by
exact isotopic masses. I mentioned this algorithm here because the authors
have implemented it in the R package ecipex, which I have used during the
development of my own R package, IsotopicLabelling.

De Novo Lipogenesis (DNL)

One of the biological applications of IsotopicLabelling was to investigate the
de novo lipogenesis (DNL) process, and therefore I would also like to briefly
introduce it here before starting with the technical description of the package
itself.

DNL is a metabolic pathway whereby fatty acids (FAs) and lipids are
synthesised starting from carbohydrates; this process mainly takes place in
the liver and in the adipose tissue. In DNL, citrate from the tricarboxylic
acid (TCA) cycle is converted to acetyl-CoA, which is polymerised to form
FAs: the main DNL product is palmitic acid (16:0), which can be desaturated
(SCD enzyme) and/or elongated to palmitoleic acid (16:1), stearic acid (18:0),
oleic acid (18:1) and other minor FAs (Figure 4.2).

DNL is known to play important roles in health and disease, and some of
its deregulations have been associated with several pathological conditions,
including insulin resistance, non-alcoholic fatty liver disease (NAFLD), obe-
sity, viral infections and malignant transformation of normal cells [24–30].
Also diet plays a role, as DNL links carbohydrates and fats, the two pivotal
forms of chemical energy for our organism [31]; in healthy humans, DNL is
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FIGURE 4.2: Exemplified scheme of the DNL metabolic pathway.

a minor source of triacylglycerols (TAGs) as compared to dietary sources.
However, some studies suggest that the contribution of DNL becomes sig-
nificant in individuals on very high carbohydrate diets, which saturate the
glycogen reserves and activate lipogenesis [24, 32]. During this process, very
low-density lipoproteins (VLDL) are secreted. It was also shown that simple
sugars are more effective than complex carbohydrates in stimulating DNL,
whereas polyunsaturated fatty acids (PUFAs) can decrease the DNL rate by
suppressing gene expression of FASN and SCD enzymes (see Figure 4.2) [33,
34].

Considering the importance of DNL for health, many techniques have
been developed to assess its rate, including indirect calorimetry and tracer
studies using either 13C or 2H. In the early 1990s, the method called “mass
isotopomer distribution analysis” was developed, based on monitoring the
incorporation rate of 13C-labelled acetate into VLDL-palmitate synthesis [35,
36]. Alternatively, the biosynthetic rate can be estimated from the incor-
poration of deuterated water derived from total plasma water pool into
triglycerides [37], although this is technically challenging in that the huge
adipose TAG pool size dilutes the newly synthesised TAGs, worsening the
sensitivity of the technique.

4.2 Development of the IsotopicLabelling R Package

4.2.1 Motivation

When stable isotopes are used to label metabolites, it is important to be
able to assess their amount of incorporation within target analytes. Our
idea is that such information can be retrieved by proper inspection of MS
isotopic patterns, since they strongly depend on the isotopic abundances of
the elements. Figure 4.3 is just a simulated example (phosphatidylcholine
adduct [PC 32:1 + H]+, 13C labelling) to show how the patterns are affected
when such distribution is changed: as the 13C abundance increases, there
takes place a progressive m/z shift of the most intense signal towards higher
m/z values.

The example clearly shows that isotopic patterns convey labelling in-
formation; some software packages are already available for dealing with
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FIGURE 4.3: Simulated MS isotopic patterns for [PC 32:1+H]+, assuming different 13C
abundances. The underlying assumption here is that the label is uniformly
distributed over the C sites of the considered molecule, with the specified
average abundance.

labelling-related MS experiments [38–41], but a solution to directly get an
estimate of the label abundance is still lacking. This is why we tried to fill
this gap by developing IsotopicLabelling, an informatics tool that can be used
to assess the isotopic abundance of the label in specified metabolites, directly
from the results of MS-based experiments. As for the informatics language,
we chose the R environment for statistical computing [42], considering that
it is widely used by the scientific community. In addition, any R package
is freely available and it can be coupled with others, therefore allowing the
implementation of more and more complex pipelines.

4.2.2 Working Principles

The MS isotopic pattern of any compound is completely defined once the
isotopic distribution of all of its elements is known. In a 2H- or 13C-based
labelling experiment, the only variable is the relative abundance of the label,
that we call “X” for convenience; therefore, an isotopic pattern can be seen
as a function of X (see Figure 4.4, arrow “a”), since different X values give
rise to different patterns.

This line of reasoning can be turned around: since to any relative abun-
dance of the label there corresponds a specific isotopic pattern (for any
fixed molecular formula), from an experimental pattern measured by MS it
should therefore be possible to estimate the relative isotopic abundance of
the labelling element that gives rise to the observed pattern. To put it briefly,
this is what the IsotopicLabelling R package aims to do, and this is achieved
through a fitting procedure whereby X is iteratively changed (Figure 4.4,
arrow “c”) and the corresponding patterns are compared to the experimental
one (Figure 4.4, arrow “b”), until the “best match” is found.

Uniform Labelling

The package works under the assumption that the target analyte is present
in the sample as a homogeneous pool, characterised by a single (unknown)
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FIGURE 4.4: Exemplified scheme showing how IsotopicLabelling works. In this example,
a 13C-based experiment is considered.

abundance of the label. This is not the case when, for example, labelled
analytes are spiked in the biological sample, or when different biological
samples are pooled together, which is a rather common quality-control
practice. Therefore, IsotopicLabelling cannot handle such cases, since it fits a
single parameter.

4.2.3 The Processing Steps

A compact block scheme of the IsotopicLabelling processing steps is reported
in Figure 4.5, whereas a practical script on how to use it can be found in
Appendix D.1.

Input Information 
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FIGURE 4.5: Block scheme of the main processing steps. See the text for a more extensive
explanation.

Input Information

In order to get answers from IsotopicLabelling, it is first required to input
some important information:

1. The MS data. The user should provide an LC-MS or a GC-MS data
set relative to labelling experiments. The data should have been al-
ready pre-processed, and inputted as an R data frame with its first
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two columns representing m/z and retention time (RT) of the identified
peaks, and the other columns (one for each sample) containing peak
intensities or areas. Considering that a popular R package for process-
ing MS data is xcms [43], IsotopicLabelling can also accept and handle
xcmsSet objects;

2. The analyte of interest. The package needs to know the chemical for-
mula of the target analyte, as observed by MS (that is, an ion adduct);
this should be specified as a character vector, and a “special” notation
is required whereby the atoms with unknown isotopic abundance are
denoted by “X”. For example, the PC 32:2 proton adduct, [PC 32:2+H]+

with chemical formula C40H77NO8P, is denoted by X40H77NO8P
in 13C labelling experiments (since the C relative distribution is un-
known), whereas the formula becomes C40X76HNO8P when the label
is 2H: here, not all of the 77 hydrogen atoms were replaced by “X”,
but only 76 of them, to take into consideration that one H comes from
the ESI ionisation process, and it therefore has the natural isotopic
distribution;

3. The labelling isotope. The user should specify which kind of labelling
experiment was performed; the current implementation of the package
only supports 2H and 13C labels;

4. Chromatographic and MS parameters. The user should also indicate
analyte-dependent experimental parameters, required to identify and
extract the isotopic patterns. They include mass accuracy, expected
RT range and chromatographic width of the peaks. If known, also an
estimate of the label abundance can be specified;

5. Charge of the adduct. Finally, also the charge state of the target
adducts has to be provided, and it is needed by the package to calcu-
late the expected m/z values of the isotopologue peaks, as well as their
separation among each other. By default, the charge is assumed to be
+1.

It is important to point out here that a reliable estimate of the incorpora-
tion can be obtained only if the formula of the target metabolite is known in
advance, which is the reason why among the required input is the chemical
formula of the target, as well as chromatographic information. Indeed, in
a completely untargeted scenario the labelling makes the isotopic patterns
useless for annotation, and mass accuracy alone cannot be used to infer a
reliable elemental composition [44].

Isotopes and Isotopologues

At the beginning, IsotopicLabelling takes the user’s input and computes some
important parameters, required for the processing. To start with, the package
lists all the possible isotopologues generated by the incorporation of the
label in the target analyte, determining their m/z: the lightest one is the
monoisotopic species (no label incorporation), while the heaviest is the
species where all the X atoms have been replaced by the label (2H or 13C).
At the same time, IsotopicLabelling also makes a table containing the natural
isotopic abundances of the elements in the target analyte.
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To sum up, in this first step an R list is created, containing the following
objects:

1. compound: the character vector given as input, specifying the target
analyte;

2. isotopes: a table containing the natural isotopic abundances of the
elements in “compound”, as well as the two isotopes of the label X,
which are assigned NA (not available) values;

3. target: named vector with the exact m/z values of all the possible
isotopologues; “M+0” is the monoisotopic mass, whereas in “M+1”
there has been a replacement, and so forth. Here the underlying
assumption is that the MS resolution is not high enough to resolve the
isotopic fine structure, and therefore the replacement of, say, 1H with
2H is indistinguishable from 12C with 13C. This is true for most of the
instruments currently used in LC-MS measurements;

4. nX: the number of X atoms present;

5. nTOT: the total number of atoms of the labelling element (either H+X
or C+X, depending on the experiment).

Extraction of the Experimental Patterns

The second task of IsotopicLabelling is to extract the experimental isotopic
patterns of the target analyte from the MS data. The output is a matrix where
the first two columns represent exact m/z and RT of each peak, whereas in
the others are signal intensities or areas (one column for each sample). Note
that each row represents one of the possible isotopologues previously listed.

The extraction of the signals to this matrix is achieved through the fol-
lowing matching procedure:

1. Each possible isotopologue is considered, and all the MS peaks that
are within the specified m/z and RT ranges are listed;

2. The RT of the identified peaks are compared across isotopologues, to
find groups of peaks (the assumption is that isotopologues of the same
analyte have the same RT). Here, the specified chromatographic width
is used as a basis for comparison to establish the groupings;

3. If more than one group has been identified, there follows a “selection”
procedure: first of all, the groups containing fewer than two isotopo-
logues are discarded, since they are assumed not to represent true
isotopic patterns. If more groups are still left, the one with the closest
average RT to the expected RT is chosen. At the end, therefore, at most
one single pattern is selected for each sample.

Isotopic Pattern Analysis

Once extracted, the patterns are analysed by means of a fitting procedure,
where the only parameter to estimate is the abundance of the label. The basic
point is that different label abundances will give rise to different patterns,
and therefore such fitting aims at estimating the label abundance by choosing
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the value originating the theoretical pattern most similar to the experimental
one.

The whole process is carried out by a non-linear least squares fitting,
and the patterns are computed with the ecipex R package [23]. For the
comparison, theoretical and experimental patterns are normalised to the
most intense signal, which is set to 100; to account for noise and to correct for
heteroskedasticity, the signals are given weights proportional to the square
root of their intensities.

For the fitting to converge, a good initial guess of the label abundance
is required, which IsotopicLabelling obtains this way: if the user provides it,
such value is directly used to start the regression, otherwise it is computed
by looking at the position of the most intense signal in the experimental
pattern relative to the monoisotopic peak:

Initial estimate =
m/z(max) – m/z(monoisot)

nX
(4.5)

The principle here is that the higher the label abundance, the more the signals
are shifted towards higher masses.

The overall output is an R list containing the following objects:

1. compound: the same as input;

2. best_estimate: a numeric vector of estimated percentage abundances
of the label (one value for each sample analysed);

3. std_error: standard errors of regression (one value for each sample);

4. dev_percent: percentage deviations between each experimental and
related best-fitted isotopic pattern;

5. x_scale: the m/z of all possible isotopologues;

6. y_exp: a matrix of normalised experimental patters (one column for
each sample);

7. y_theor: a matrix of best-fitted patterns (one column for each sample);

8. residuals: a matrix of residuals (differences between experimental and
fitted patterns);

9. warnings: a character vector containing possible warnings from the
fitting procedure.

How to Survey the Results

There are a number of ways to look at the results of the processing. If the
user is only interested in getting the estimated values, a dedicated function
(“summary”) can print a table of percentage estimates with related standard
error of regression (SER). At the same time, also different graphical outputs
can be produced with the function “plot”:

1. patterns: for each sample, the normalised experimental pattern is
plotted superimposed to its best-fitted pattern. The estimated label
abundance is also given;
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2. residuals: here, for each sample the residuals are plotted, and this
is useful if the aim is to assess whether or not they are randomly
distributed;

3. summary: a single plot can be produced as well, which summarises
the estimated values and related errors: in the x-axis are the different
samples, whereas the y-axis represents isotopic abundances.

Additionally, the user can choose whether to only display the plots to the
screen, or to export them in a single *.pdf file for later assessment.

IsotopicLabelling also allows to store the results: a detailed table can be
saved as a *.csv file containing, for each sample: (i) the estimated label
percentage abundance, (ii) the related SER, (iii) the percentage deviation
between best-fitted and experimental patterns, and (iv) the outcome message
from the fitting.

Dealing with Biological Replicates

The isotopic pattern analysis ends up in as many estimates as the number
of samples, each with its own SER. In biological experiments, however, it
is common practice to work with replicates and to have samples arranged
in different groups. Therefore, it would be convenient to get a single esti-
mate for each group, and to this goal IsotopicLabelling provides a dedicated
function, “group_labelling”.

The group averages are simply obtained by considering the individual
estimates within each group, under the assumption that the samples are
representative of the group population. On the other hand, the group stan-
dard deviations should take into consideration both the individual SERs
associated with each estimate, and the distribution of the estimates within
each group (biological variability). As a consequence, the group variances
are computed by way of the law of total variance:

1
m

m∑
i=1

SER2
i +

1
m – 1

m∑
i=1

(ai – â)2 (4.6)

where m is the number of samples in the considered group, ai is the estimate
of sample i, and â is the group average. Equation (4.6) states that the overall
variance has two contributions: the “within-sample” variance (first term)
which is the sum of the variances associated to each estimate, and the
“between-sample” variance (second term), that takes into consideration the
distribution of the estimates in the sample group. Finally, the group standard
deviations are computed as the square root of such variances.

Batch Processing

From what described so far, IsotopicLabelling can deal with two different
scenarios:

A. Targeted pre-processing, target analyte: the users are interested in
one particular analyte, and provide just the experimental isotopic
pattern of such species. Here, IsotopicLabelling does not have to extract
any experimental pattern out of LC-MS data, but it directly fits the best
pattern in order to get an estimate of the relative abundance of the label.
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In this case, the provided experimental pattern could be obtained in
a number of independent ways, including the use of proprietary MS
software;

B. Untargeted pre-processing, target analyte: the users are interested in
one particular analyte, but provide a pre-processed “untargeted” data
matrix, containing detected LC-MS features. Here, IsotopicLabelling
takes care of first extracting and subsequently fitting the patterns. In
particular, xcmsSet objects (the results of pre-processing with xcms) can
be used as input, however the data matrix may once again be obtained
independently. In this scenario, the chromatographic information is
required to match the target analyte with the untargeted list of features.

A further working mode is available, and it regards the processing of a
list of target analytes: here, the users provide untargeted pre-processed data
and a list of targets, and IsotopicLabelling returns the estimated abundances of
the label in the several analytes, through the function “batch_labelling”.
Worthy of note, also in this case the user is required to input chromatographic
information, otherwise the patterns extraction would not be feasible.

4.2.4 The Example Data Set

IsotopicLabelling is freely available, and included in it is an example data
set that was kindly provided by Dr. Nyasha Munjoma (Julian L. Griffin
Group and Nianshu Zhang Group, Department of Biochemistry, Univer-
sity of Cambridge – UK). This contains 8 LC-MS measurements relative to
13C labelling experiments where the first 4 samples are lipid extracts from
unlabelled YSBN1 yeast strain cultures (natural 13C abundance), whereas
in the last 4 samples the cells were grown in a media supplemented with
uniformly-labelled 13C glucose (99 % 13C labelling). Our idea was to use
this data set to help the users better understand how to use the package;
indeed, also included in the package is a vignette that serves as practical
guide, where the example data set is used.

For the sake of completeness, below are further experimental details.

Cell Cultures

For the YSBN1 yeast strain cultures, 13.2 g of yeast nitrogen base (Sigma) and
40 g of Ammonium Sulphate (Sigma) was dissolved in 400 mL of autoclaved
distilled water, which was then filter-sterilised, protected from light with
aluminium foil and stored at 5 ◦C prior to use. The yeast nitrogen base was
used to make Synthetic Minimum Media (SMM) containing 0.5 % glucose:
for isotope labelling experiments, uniformly-labelled 13C (U-13C) glucose
(Cambridge Isotope Laboratories Inc., MA, USA) was employed, whereas
for control experiments natural abundance D-(+) glucose (Sigma) was used.
The yeast cultures were grown in the described media for 24 h, and the
lipids were extracted using a slight modification of the Folch method. Briefly,
about 50 mg of cell material was placed in a 2 mL screw top tube, together
with about 200 mg of glass beads. 1 mL of chloroform:methanol (2:1) was
added, and the yeast cell wall was broken using a TissueLyser (Time: 8 min,
Frequency: 240 Hz). The samples were sonicated for 5 min, followed by
addition of 400 µL water and vortexing for 60 s. The mixture was centrifuged
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for 10 min at 13 200 rpm, and the organic phase was withdrawn and dried
overnight in a fume hood. For the mass spectrometric analysis, 500 µL of
chloroform:methanol (1:1) was added to the dried lipid extract, and the
obtained solution was diluted 20 times using isopropanol:methanol:water
(2:1:1).

LC-MS Measurements

The samples were analysed in positive ionisation mode using a Waters
Xevo G2 quadrupole time of flight (Q-ToF) combined with an Acquity Ultra
Performance Liquid Chromatogram (UPLC) (Waters Corporation, Manch-
ester, UK). 10 µL of the sample was injected onto an Acquity UPLC Charged
Surface Hybrid (CSH) C18 column (1.7 µm x 2.1 mm x 100 mm) (Waters Cor-
poration) held at 55 ◦C. The binary solvent system (flow rate 0.4 mL/min)
consisted of solvent A containing HPLC grade acetonitrile:water (60:40) with
10 mM ammonium formate and solvent B consisting of LC-MS grade ace-
tonitrile:isopropanol (10:90) and 10 mM ammonium formate. The gradient
started from 40 % B, reached 99 % B in 18 min, then returned back to the
starting condition, and remained there for the next 2 min. The data was
collected over the m/z range 105–1800 with a scan duration of 0.2 s. The
source temperature was set at 120 ◦C and nitrogen was used as the desolva-
tion gas (900 L/h). The voltages of the sampling cone, extraction cone and
capillary were 30 kV, 3.5 kV and 2 kV respectively, with a collision energy
of 6 V for each single scan. As lock mass, a solution of 2 ng/µL acetoni-
trile:water (50:50) leucine enkephaline (m/z 556.2771) with 0.1 % formic acid
was infused into the instrument every 30 s.

4.3 Testing the Package

4.3.1 LC-MS, Complete 13C Labelling

After the development of IsotopicLabelling, we first tested it on the LC-MS
data of the example data set described above: we converted the *.raw files to
the *.mzML format using “MSConvert” (from ProteoWizard), and then pre-
processed them (peak identification and filtering, peak matching, retention
time correction, filling in of missing data, . . . ) with xcms, to get an xcmsSet
object (which we have included in the package). At this point, we used
IsotopicLabelling for the pattern analysis, that we performed on the most
abundant PC and TAG species.

Table 4.1 shows the estimated 13C abundances with related SEM (stan-
dard error of the mean) for some of the species, where we grouped the
samples in either controls or labelled species. In all instances, the 13C esti-
mates in control samples are in agreement with the natural 13C occurrence,
whose best representative value is 1.07 %, but it can range from 0.99 % to
1.15 % [45]; on the other hand, the estimates for labelled samples are close to
the 13C occurrence in the used labelled glucose.

In Figure 4.6 is just a graphical example of two of the extracted patterns
(control VS labelled) relative to the analyte [PC 32:2+H]+, to show how the
patterns change upon labelling: whereas in the control sample the most
intense signal corresponds to the monoisotopic species (blue-filled triangle),
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CONTROL LABELLED

Mean SEM Mean SEM

[PC 32:1+H]+ 1.069 % 0.006 % 98.963 % 0.005 %
[PC 32:2+H]+ 1.079 % 0.004 % 98.943 % 0.005 %
[PC 34:1+H]+ 1.075 % 0.008 % 98.982 % 0.007 %
[PC 34:2+H]+ 1.080 % 0.003 % 98.940 % 0.004 %
[PC 36:1+H]+ 1.04 % 0.02 % 99.05 % 0.01 %
[PC 36:2+H]+ 0.99 % 0.02 % 99.02 % 0.02 %

[TAG 48:2+NH4]+ 1.091 % 0.003 % 98.967 % 0.006 %
[TAG 48:3+NH4]+ 1.090 % 0.003 % 98.964 % 0.005 %
[TAG 50:2+NH4]+ 1.09 % 0.02 % 98.970 % 0.006 %
[TAG 50:3+NH4]+ 1.092 % 0.001 % 98.967 % 0.006 %
[TAG 52:1+NH4]+ 1.094 % 0.004 % 98.993 % 0.003 %
[TAG 52:2+NH4]+ 1.100 % 0.004 % 98.970 % 0.008 %
[TAG 52:3+NH4]+ 1.092 % 0.005 % 98.99 % 0.03 %

TABLE 4.1: Estimated 13C abundances on the test data set. For control samples (natu-
rally occurring glucose), the estimated 13C abundance is very close to the
natural value (1.070 %), whereas for labelled samples it is close to 99.0 %,
the nominal 13C occurrence in the employed labelled glucose.

in the labelled sample the main signal is shifted upwards by 40 m/z units,
corresponding to a species made up of just 13C, and no 12C atoms.
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FIGURE 4.6: Two of the extracted patterns for [PC 32:2+H]+, with their best-fitted pat-
terns (red dots). The estimated 13C abundances are given with the SER.

4.3.2 LC-MS, Intermediate 13C Labelling

The complete labelling is a simple case, in that it causes a huge shift in the
patterns. To further test IsotopicLabelling, we therefore moved on by consid-
ering a case of intermediate 13C labelling: with the help of Dr. N. Zhang, we
prepared another set of 8 samples in a similar way as described above, the
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only difference being that in the labelled samples we mixed up 60 % natural
glucose and 40 % uniformly-labelled 13C glucose.

The average 13C abundance in the feeding glucose for labelled samples
can be easily computed by considering the average molecular weights of
glucose,

MW(natural Glc) = 180.156
g

mol

MW(labelled Glc) =
[(

0.99× 13.003355 + 0.01× 12
)
× 6 +

+ 12× 1.007941 + 6× 15.99941
] g

mol
= (4.7)

= 186.0517
g

mol

Therefore:

• 60 g natural Glc equals 0.333 mol, corresponding to 0.021 mol 13C and
1.977 mol 12C;

• 40 g labelled Glc equals 0.215 mol, corresponding to 1.277 mol 13C and
0.013 mol 12C.

Putting all together, the expected molar 13C abundance is 39.5 %.
We performed the isotopic pattern analysis as previously done, and the

results are in Table 4.2 (to compare with Table 4.1). Whereas control samples
gave no unexpected results, for labelled samples the obtained values deserve
a closer inspection: first and foremost, the estimates have a higher SEM as
compared to unlabelled samples, and secondly they seem to be dependent
on the lipid class. In particular, whereas their average is (36.6± 0.3) % for
PCs, for TAGs it is (41.9± 0.3) %; the difference is statistically significant
(p-value: 2× 10–8), and this finds no easy explanation.

One possible hypothesis comes from looking at the PC and TAG struc-
tures, reported in Figure 4.7: it should be considered that both PCs and TAGs
have two kinds of carbon atoms, those in the FA chains (R1, R2 and R3 in
the figure) and those making up the polar heads (the numbered atoms in
the figure, which for PCs and TAGs are 8 and 3, respectively). The different
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FIGURE 4.7: The structures of (a) a PC, and (b) a TAG. Despite the labelling, we speculate
that the numbered C atoms have fixed natural abundance, since they do
not come from the glucose metabolism; the labelled carbons only are in the
FA chains (R1, R2 and R3).
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CONTROL LABELLED

Mean SEM Mean SEM

[PC 32:1+H]+ 1.03 % 0.07 % 35.9 % 0.4 %
[PC 32:2+H]+ 1.08 % 0.01 % 35.9 % 0.3 %
[PC 34:1+H]+ 0.96 % 0.06 % 37.4 % 0.5 %
[PC 34:2+H]+ 1.07 % 0.01 % 36.7 % 0.3 %
[PC 36:1+H]+ 1.2 % 0.1 % 37.1 % 0.6 %
[PC 36:2+H]+ 1.20 % 0.08 % 36.7 % 0.4 %

[TAG 48:2+NH4]+ NA NA NA NA
[TAG 48:3+NH4]+ 1.10 % 0.03 % 41.7 % 0.6 %
[TAG 50:2+NH4]+ 1.09 % 0.04 % 41.4 % 0.5 %
[TAG 50:3+NH4]+ 1.09 % 0.09 % 41.5 % 0.3 %
[TAG 52:1+NH4]+ 1.04 % 0.02 % 42.5 % 0.6 %
[TAG 52:2+NH4]+ 1.11 % 0.05 % 42.6 % 0.4 %
[TAG 52:3+NH4]+ 1.08 % 0.06 % 41.7 % 0.3 %

TABLE 4.2: Estimated 13C abundances for the intermediate 13C-labelling study.

building blocks are synthesized in different and complex pathways (as ex-
emplified in Figure 4.8), and this may account for the difference observed in
13C abundance between PC and TAG lipids. In particular, the lower values
in PCs seem to suggest that some of the polar head carbon atoms are taken
up not from the feeding glucose, but from other sources.

To understand whether our hypothesis is correct, we tried to repeat the
analysis, but this time we assumed the 5 C atoms of the phosphocholine
group to have natural 13C abundance, and so we fitted the patterns by
changing the average 13C occurrence in the remaining C atoms (FA chains
plus the glycerol moiety); the new results are in Table 4.3. This time there

LABELLED

Mean SEM

[PC 32:1+H]+ 41.1 % 0.5 %
[PC 32:2+H]+ 41.0 % 0.4 %
[PC 34:1+H]+ 42.4 % 0.6 %
[PC 34:2+H]+ 41.7 % 0.4 %
[PC 36:1+H]+ 42.1 % 0.7 %
[PC 36:2+H]+ 41.6 % 0.6 %

[TAG 48:2+NH4]+ NA NA
[TAG 48:3+NH4]+ 41.7 % 0.6 %
[TAG 50:2+NH4]+ 41.4 % 0.5 %
[TAG 50:3+NH4]+ 41.5 % 0.3 %
[TAG 52:1+NH4]+ 42.5 % 0.6 %
[TAG 52:2+NH4]+ 42.6 % 0.4 %
[TAG 52:3+NH4]+ 41.7 % 0.3 %

TABLE 4.3: Estimated 13C abundances for the intermediate 13C-labelling study, assum-
ing some of the C atoms (PC headgroup) to have fixed natural abundance.

is no significant difference between PCs and TAGs (p-value: 0.46), which
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FIGURE 4.8: Scheme of the lipid biosynthesis. As shown here, the C atoms in the FA
chains and in the lipids’ polar heads are created by two related but distinct
mechanisms. Source: [46].

may confirm our hypothesis: in these samples, only the C atoms of the FA
chains and of the glycerol moiety are constructed by building blocks coming
from the catabolism of glucose, whereas the PC headgroups come from other
(unlabelled) sources.

However, it should be noticed that these results are seemingly in contrast
to those in Section 4.3.1, where complete labelling was observed also for
the C atoms of the PC headgroups. To reconcile these figures, we suggest
that what happens is the following: whereas the synthesis of the FA chains
immediately starts from the catabolism of glucose, the synthesis of the PC
headgroup preferably starts from other available sources, and only when
these sources have been completely depleted does the choline synthesis use
the glycerol-3-phosphate that comes from the process of glycolysis. If this
hypothesis is right, longer experiments should show a gradual increase of
labelling and decrease the differences between PCs and TAGs; unfortunately,
we have not had the opportunity to test this, but it is an important point that
should be considered for future experiments.

Another important issue to consider comes when looking at the patterns
themselves, which show peculiar features, and an example for [PC 32:2+H]+

is reported in Figure 4.9: whereas our analysis is able to nicely fit the overall
shape of the pattern, it cannot account for some details, which are therefore
completely missed. Indeed, all of the predicted patterns have a “regular”
shape where the isotopologue peaks keep increasing in intensity up to a
certain m/z, beyond which value they steadily decrease. This is not the case
for our extracted patterns, which have a saw-tooth shape where signals at
“even” masses (M+6, M+8, . . . ) are most intense than those at “odd” masses
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(M+5, M+7, . . . ).
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FIGURE 4.9: Example of extracted pattern for [PC 32:2+H]+, intermediate labelling. The
pattern shows a peculiar saw-tooth shape that is not accounted for by our
isotopic pattern analysis.

The discrepancy between fitted and extracted patterns also partly ex-
plains why we got higher standard deviations in the estimates (compare
Tables 4.1 and 4.3). Another possible reason is related to a loss of sensitivity:
whereas in both unlabelled and completely labelled analytes the isotopo-
logue signals are distributed over just a few m/z values (up to 4 signals), here
the possible isotopologues span a much broader range, consisting of up to
20 signals (see Figure 4.9). As a consequence, there is a kind of “dilution”
where each signal has a lower intensity.

As for the shape of the patterns, the problem with the previous analysis
is that it assumes the target analytes to be synthesised from a homogeneous
pool of the label. This would hold true only if the glucose molecules were
completely broken down before being used to synthesise lipids, which is not
the case here. As a matter of fact, the involved pathways are quite complex,
as Figure 4.8 points out. In particular, the FA chains are assembled from
building blocks of 2 carbon atoms each, since they come from the citrate
exiting the TCA cycle following the degradation of glucose to pyruvate. As
for the lipids’ polar heads, here things are more complex since each lipid
class has its own pathway. In any case, each glyceryl moiety comes from the
same glucose molecule which is split to glyceraldehyde-3-phosphate, in its
turn converted to glycerol-3-phosphate.

To tackle this specific issue and to understand whether the peculiar
shapes can be explained by the incomplete degradation of glucose, we
changed our model, assuming the carbon sources to be made up of building
blocks of 2 carbon atoms each. As a consequence, there will possibly be three
types of blocks:

1. 12C–12C, that we call “24X” in our model;

2. 12C–13C, or “25X”;

3. 13C–13C, or “26X”.

Of course, this is an oversimplification of the true problem, considering
what said above. However, it should also be considered that the C atoms in
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the FA chains are much higher in number as compared to the polar heads’
carbons, and therefore we expect to be able to reproduce the particular
features of the patterns by considering just these 2-C building blocks.

Under our new model, for each target analyte instead of having a number
of X atoms with unknown distribution between 12X and 13X isotopes, there
will now be half that many, with unknown distribution between the three
“isotopes” 24X, 25X and 26X. The new problem is therefore to find the relative
abundance of these three blocks, which implies that the fitting procedure
will now have 2 unknown parameters instead of just one.

As for the polar heads’ carbons, during analysis we kept their abundance
fixed: we assumed the 5 C atoms of the polar PC head to have natural 13C
abundance, whereas we considered the 3 C atoms of the glyceryl moiety
to directly come from the glucose metabolism. Therefore, similarly to the
2-C building blocks, we considered them to be 3-C building blocks (that we
call “A” for simplicity), but with a fixed distribution between its “isotopes”:
36A (58.96 %), 37A (1.84 %), 38A (1.19 %), 39A (38.01 %). These figures can be
easily obtained by considering how the feeding glucose was experimentally
prepared.

As always with fitting procedures, good initial guesses are essential. In
our case, we know that we have mixed about 60 % natural glucose with 40 %
labelled glucose, and we therefore expect to roughly have 59 % of 24X, 2 % of
25X and 39 % of 26X. If we consider [PC 32:2+H]+ (C40H77NO8P), upon our
model its formula becomes AC5X16H77NO8P, where C are the atoms with
fixed natural abundance, A is the 3-C building block of the glyceryl moiety,
whereas X plays the role of an element with the 3 stable isotopes 24X, 25X
and 26X. It is the X distribution that is being estimated by our analysis.

In Figure 4.10 is the isotopic pattern that would result under these as-
sumptions: interestingly, the saw-tooth shape turns up.
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FIGURE 4.10: Simulated isotopic pattern for [PC 32:2+H]+ under the assumption that
the FA chains are generated from building blocks of 2 carbon units each
(relative isotopic distribution: 59 % 24X, 2 % 25X, 39 % 26X), and the glyc-
eryl moiety from a 3-C building block (relative isotopic distribution:
58.96 % 36A, 1.84 % 37A, 1.19 % 38A and 38.01 % 39A). Note the saw-tooth
shape.

We therefore repeated our analysis, and this time the patterns were
strikingly reproduced, as shown in Figure 4.11 (example for [PC 32:2+H]+).
The obtained estimates are in Table 4.4; interestingly, here no significant
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ABUNDANCE 24X ABUNDANCE 25X ABUNDANCE 26X
Mean SEM Mean SEM Mean SEM

[PC 32:1+H]+ 56.4 % 0.5 % 2.6 % 0.5 % 41.0 % 0.4 %
[PC 32:2+H]+ 57.3 % 0.2 % 2.6 % 0.2 % 40.1 % 0.2 %
[PC 34:1+H]+ 55.3 % 0.9 % 3.6 % 0.9 % 41.1 % 0.6 %
[PC 34:2+H]+ 56.8 % 0.2 % 2.7 % 0.2 % 40.5 % 0.3 %
[PC 36:1+H]+ NA NA NA NA NA NA
[PC 36:2+H]+ 56.9 % 0.5 % 3.0 % 0.6 % 40.1 % 0.5 %

[TAG 48:2+NH4]+ 56.5 % 0.3 % 2.1 % 0.4 % 41.5 % 0.4 %
[TAG 48:3+NH4]+ 55.9 % 0.7 % 2.8 % 0.7 % 41.3 % 0.5 %
[TAG 50:2+NH4]+ 56.1 % 0.2 % 2.4 % 0.3 % 41.5 % 0.3 %
[TAG 50:3+NH4]+ 56.7 % 0.2 % 2.7 % 0.3 % 40.6 % 0.2 %
[TAG 52:1+NH4]+ 55.6 % 0.3 % 2.7 % 0.3 % 41.7 % 0.2 %
[TAG 52:2+NH4]+ 55.6 % 0.3 % 2.8 % 0.4 % 41.6 % 0.2 %
[TAG 52:3+NH4]+ 56.3 % 0.2 % 3.0 % 0.4 % 40.7 % 0.3 %

TABLE 4.4: Estimated abundances of the “isotopes” 24X, 25X and 26X in the target ana-
lytes listed.

difference between PCs and TAGs can be observed. In addition, the estimates
are quite in agreement with the expected values, therefore confirming the
soundness of our approach.
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FIGURE 4.11: Experimental (black vertical lines) and fitted (red dots) patterns for [PC
32:2+H]+ in one of the labelled samples; the fitting was performed using
the 2-C building blocks model.

Although our initial aim was only to test IsotopicLabelling, we believe
that the case just discussed here is interesting in that it provides an experi-
mental evidence of how lipids are synthesised. In particular, glucose is not
completely broken down during glycolysis; instead, it generates 2-C and
3-C building blocks, which are then used during anabolism.

4.3.3 Simulations: Minimum Enrichment Detectable

The developed IsotopicLabelling package estimates the 13C or 2H abundance
in target analytes, which is related to the degree of label incorporation.
Therefore, it is important to get at least a rough idea as to which is the
minimum amount of label incorporation that can be detected. In other
words, the problem now is to estimate the minimum label abundances
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that labelled analytes should have in order for their patterns to be clearly
discernible from those of the related control analytes (no labelling).

In order to achieve this goal, we have to keep into consideration that
some parameters may influence the sensitivity of the approach. First of
all, the size of the analytes can play an important role, since the relative
distribution among isotopologues strongly depends on m/z: the heavier the
analyte, the “broader” its isotopic pattern. Another important parameter
is expected to be the signal-to-noise ratio (SNR), since the higher it is, the
easier it will be to pinpoint minor alterations in the patterns.

To tackle this issue, we tested IsotopicLabelling over a set of simulated
patterns: as for the analytes, we considered saturated carboxylic acids with
acyl chains ranging from C2 to C26 (m/z from 61.02 to 397.40); as for SNR, we
took into account 11 values in the range 10 to 104 1. For each condition, we
gradually increased either the 13C or the 2H abundance, starting from their
natural occurrence; for each value, we simulated 50 noisy isotopic patterns
and analysed them by means of IsotopicLabelling, in order to find an averaged
estimated label occurrence with related standard deviation. We repeated
the procedure of increasing the label abundance until we found a value for
which the 95 % confidence interval did not include the natural 13C or 2H
occurrence.

The overall results are summarised in Figure 4.12 for 13C, and in Fig-
ure 4.13 for 2H labelling experiments. In both, to the left is the minimum
label abundance as a function of the (m/z, SNR) pair, whereas to the right
are the related standard deviations. What can easily be observed is that the
values are strongly dependent on both m/z and SNR: as the SNR increases,
so does the sensitivity of the approach, since the noise level decreases and
the patterns become less and less noisy. At the same time, the sensitivity
also increases as the analyte size increases, a direct consequence of large
analytes having “broader” isotopic profiles, for which slight alterations of
the patterns are easier to discern.

Taken together, these estimates point out that the sensitivity of the ap-
proach depends on the experimental conditions, with the lowest enrichments
being detectable when looking at big and abundant metabolites. Worthy of
note, the results also depend on the label (13C or 2H), since (i) the natural
occurrences are different, and (ii) the number of sites amenable to labelling
differs (usually there are more H than C atoms).

1We define here SNR as the ratio between the intensity of the monoisotopic peak (the
most intense one for poor labelling and small analytes as those considered in this simulation)
to the standard deviation of the noise.
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FIGURE 4.12: Left: minimum 13C percentage abundance (black level curves) for which
the difference between labelled and control patterns is significant. Right:
related standard deviation. The sensitivity strongly depends on the
analyte size and on the SNR.
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FIGURE 4.13: Left: minimum 2H percentage abundance (black level curves) for which
the difference between labelled and control patterns is significant. Right:
related standard deviation. The sensitivity strongly depends on the
analyte size and on the SNR.
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4.4 Biochemical Application

4.4.1 2H-labelling

After it was tested, IsotopicLabelling was applied to biochemical LC-MS and
GC-MS data provided by Francis Sanders (Dr. Julian L. Griffin’s Lipid Pro-
filing and Signalling Group, MRC Human Nutrition Research, Cambridge,
UK), whose scientific interest is related to the DNL process in health and
disease. Briefly, he fed different groups of mice with 2H-enriched water
(D2O) in order to study its uptake in lipids. The rationale is that lipids
synthesised by way of DNL will partly incorporate the label, whereas those
coming from the diet will not. As a consequence, the higher the observed
2H abundance, the higher the DNL rate.

2H-enriched water has been used in many investigations so far, basically
with a focus on metabolism and metabolic disorders [8, 35, 47–51]. All
such experiments rely on the fact that 2H from the labelled water can be
incorporated during the DNL process; for example, hepatic acetyl-CoA is
the product of the TCA cycle, and the precursor for FA synthesis. In the
presence of D2O, the methyl hydrogens of acetyl-CoA become enriched
with 2H thanks to exchange mechanisms taking place during its formation
via glycolysis and other metabolic pathways [52, 53]. In addition, 2H can
be incorporated from D2O into C – H bonds of the glycerol moiety of acyl-
glycerides [54]. Worthy of note, once in this configuration, 2H atoms are no
more exchangeable with hydrogen atoms from the water pool.

4.4.2 Materials and Methods

Animal Care

All procedures involving the mice were performed in accordance with the
UK Home Office Animals (Scientific Procedures) Act 1986, under a project
licence held by Dr. Andrew Murray. Five-week-old female ob/ob and wild
type (WT) mice were purchased from Harlan Laboratory Inc. (UK). Seven
animals were housed per cage and were allowed to acclimatise for 7 days.
The temperature was maintained at (20± 4) ◦C with a 12 h light/dark cycle.

In ob/ob mice, the gene responsible for the production of the hormone
leptin is mutated. As a consequence, since such hormone is important in the
control of appetite, ob/ob mice eat excessively and become obese; they are
often used as models for type II diabetes.

Animal Diet and Water

The sample groups are shown in Figure 4.14. Seven ob/ob and seven WT
mice were fed on regular chow diet (RCD, energy composition: 11.5 % fat,
26.9 % protein, 61.6 % carbohydrate); seven ob/ob and seven WT mice were
fed on a high fat diet (HFD, energy composition: 55 % fat, 29 % protein,
and 16 % carbohydrate). The FA composition of the high fat diet was 25 %
polyunsaturated FAs, 48 % monounsaturated FAs, and 27 % saturated FAs.
Diets were supplied by Teklad Custom Research Diets (Envigo, Huntingdon,
UK).
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FIGURE 4.14: Grouping of the animals used in the experiment: the 4 groups differ in
diet (RCD or HFD) and mouse type (WT or ob/ob).

All mice drank water enriched with deuterium adjusted for each group
depending on diet and average mouse weight to gain roughly 1 % enrich-
ment in the mice’s body water. This was maintained for 14 days to allow
sufficient enrichment of the body water.

Sample Collection

Animals were killed by CO2 asphyxiation. The animals were then exsan-
guinated and dissected to collect hepatic tissue, which was flash frozen in
liquid nitrogen; blood was stored at –80 ◦C until extraction.

Sample Extraction and Analysis

The lipids were extracted from both blood and hepatic tissues using a modi-
fied version of the Folch method [55], and the LC-MS measurements were
taken using a Thermo Exactive Orbitrap mass spectrometer.

The lipid samples were also chromatographically resolved by solid-
phase extraction (SPE), and trans-esterified to study the composition of the
fatty acid methyl esters (FAMEs) by GC-MS. The derivatisation to FAMEs
was performed only for liver samples. In order to improve the detection
sensitivity, the mass scans were performed in selected-ion monitoring (SIM)
mode, focusing on the FA chains 14:0, 16:0, 16:1, 18:0, 18:1 and 18:2.

Data Analysis

The LC-MS and GC-MS raw data files were converted into the *.mzML
format by means of MsConvert (from ProteoWizard), and then analysed with
IsotopicLabelling; as for LC-MS, we focused our attention on the abundant
PC and TAG species, for which the sensitivity of the approach is higher (see
discussion in Section 4.3.3).

4.4.3 LC-MS Data

Considering the way the experiment was planned and carried out, there is
low 2H abundance in the feeding water, and therefore we expect the label
enrichments to be quite low; Figure 4.15 shows an example of the patterns
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FIGURE 4.15: Comparison between the isotopic patterns of [PC 36:1+H]+: (A) natural
pattern, (B) experimental pattern of one of the least enriched samples,
and (C) experimental pattern of one of the most enriched samples. The
red dots are the best-fitted patterns.

we observed for [PC 36:1+H]+, whereas Figure 4.16 shows the extracted
mass spectra of [PC 36:1+H]+ and [TAG 54:3+NH4]+ in one of the samples.

Unlike the previous experimental cases (Section 4.3), here the patterns
are only slightly modified following the label incorporation. In spite of
this, the analysis by means of IsotopicLabelling allowed us to find significant
differences across groups: the details can be found in Appendix D.2, whereas
in Figure 4.17 are just two representative examples (PC 36:1 and TAG 54:3,
liver samples).

What can be seen from our analysis is that the 2H incorporation depends
on both diet and mouse type:

1. Effect of diet. RCD is associated with higher 2H abundances with
respect to HFD (for both WT and ob/ob mice), therefore suggesting a
higher DNL rate in RCD-fed mice;

2. Effect of mouse type. The 2H enrichments are lower in WT mice as
compared to ob/ob mice, implying that the DNL rate is higher in obese
mice.

The p-values from the two-sample t-tests are reported in Appendix D.2.
Worthy of note, the above considerations hold true for both liver and blood
samples.

We also performed a principal component analysis (PCA) on the data,
using the 2H estimates as original variables (scores plot in Figure 4.18); we
obtained a nice separation among sample groups, especially along PC1.
Interestingly, the loadings plots (Figure 4.19) point out that all the original
variables have negative loadings along PC1, and this is consistent with the
fact that HFD-WT, the least enriched samples, are to the left of the scores



Chapter 4. IsotopicLabelling R Package 92

200 400 600 800 1000
0e

+
00

8e
+

05

m/z

In
te

ns
ity PC 36:1

788 789 790 791 792 793 794

0e
+

00
6e

+
05

m/z

In
te

ns
ity

(A) Full mass spectrum (top) and isotopic pattern (bottom) of PC 36:1
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FIGURE 4.16: Extracted mass spectra for (A) [PC 36:1+H]+ (RT: 4.90 min), and (B) [TAG
54:3+NH4]+ (RT: 6.86 min), in the m/z range 200–1000. For each of them,
the highlighted area has been enlarged to show the isotopic patterns of
the considered lipid species.
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FIGURE 4.17: Comparison between sample groups for PC 36:1 and TAG 54:3, in terms
of 2H abundance in the target analytes. We observed this same trend also
for the other target analytes (see Appendix D.2).
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plots. Therefore, the separation occurs mainly because of the different 2H
abundances across sample groups.
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FIGURE 4.18: Scores plot for liver (left) and blood (right) samples. The original variables
for the PCA were the estimated 2H abundances.
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FIGURE 4.19: Loadings plot for liver (left) and blood (right) samples, related to the
scores plot of Figure 4.18.

4.4.4 GC-MS Data

We then moved on by analysing the GC-MS data, keeping into consideration
the following issues:

1. The samples were derivatised (methyl esterification) prior to analysis,
and therefore it is the FAMEs that get into the detector;

2. The methyl group which is added through esterification is not labelled,
and therefore the elements it contains have fixed natural abundance;

3. The analytes are ionised through electron ionisation (EI), and therefore
they are subject to fragmentation. The signal of the molecular ion will
have reduced intensity.

In Figure 4.20 are just two of the extracted patterns for FAME C18:0,
together with its natural pattern for comparison.

As described above (Section 4.4.2), with GC-MS each sample was split
in two: one aliquot was directly derivatised to FAMEs, whereas the lipids
in the other one were first fractionated into classes (CE, FA, PC, TAG) via
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FIGURE 4.20: Isotopic patterns relative to FAME C18:0: (A) natural pattern, (B) experi-
mental pattern of one of the least enriched samples (HFD-WT), and (C)
experimental pattern of one of the most enriched samples (RCD-OB). The
red dots are the best-fitted patterns.

SPE, and then individually esterified. In Figure 4.21 are the results relative
to the total lipid pool, whereas the details of all the other estimates are in
Appendix D.3, where also a table detailing the p-values from the two-sample
t-tests is reported.
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FIGURE 4.21: Estimated 2H abundances in the FAs of the total lipid pool. The samples
are divided into groups, and the horizontal dashed grey line denotes the
2H natural occurrence (0.0115 %).

Similarly to LC-MS, also here we observed a significant difference be-
tween sample groups: both mouse type and diet seem to affect the 2H
occurrence (and therefore the DNL rate), with the lowest 2H abundances in
HFD-WT samples, whereas the highest ones in RCD-OB mice.

It is interesting to note the following: we observed significant differences
for all FA species, except FAME C18:2, with an estimated 2H abundance
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very low and close to the natural 2H occurrence (see both Figure 4.21 and
Appendix D.3).This is because C18:2 is an essential FA for mammals, and
cannot be synthesised de novo: all of it comes only through the diet [56, 57].

To summarise what presented so far, our isotopic pattern analysis al-
lowed us to investigate the DNL process, which turned out to depend on
both mouse type (WT, ob/ob) and diet (RCD, HFD). Based on the 2H estimates,
we speculate that:

1. The DNL rate is higher for RCD as compared to HFD. This is prob-
ably because HFD provides plenty of FAs, which RCD does not; as
a consequence, under RCD, DNL is needed to convert some of the
carbohydrate fuel into FAs;

2. The DNL rate is higher for ob/ob as compared to WT mice. Indeed,
in the profoundly obese ob/ob mice DNL is probably upregulated,
therefore contributing significantly to the building up of the lipid
supplies.

4.4.5 Follow-up Experiment

Following the results discussed above, further biological experiments were
carried out with slightly different conditions: three diets were here com-
pared, high-sucrose diet (HSD; TD150066), low-fat control diet (LFD; TD08485)
and Western Style diet (WD; TD88137). Again, both WT and ob/ob mice were
used, giving rise to 6 distinct sample groups.

Apart from this modification, all the other experimental conditions were
kept the same as those previously described (Section 4.4.2). The aim here was
to confirm what observed above, mainly that (i) when considering mouse
type, ob/ob mice are associated with higher DNL rates than WT mice, and (ii)
when considering diet, fat-rich ones are associated with lower DNL rates.

In this case, we only dealt with liver samples and LC-MS data. For
the sake of completeness, the new results are reported in Appendix D.4
(plots detailing the estimates for each target analyte, as well as a table of
p-values following the two-sample t-tests), whereas in Figure 4.22 is just a
representative example (PC 36:1 and TAG 54:3).
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FIGURE 4.22: Representative example with the group comparisons for PC 36:1 and TAG
54:3.

The results shown here can be extended to all the other investigated
lipid species. Different shades of the same colour relate are used for the
comparison between mouse type (OB: ob/ob mice, WT: wild-type mice) with
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the same, fixed diet. On the other hand, different colors are used across diets,
and the lighter shade is employed for OB mice, whereas the darker one for
WT mice. At a glance, it can be immediately noticed how, yet again, obese
mice are associated with higher 2H abundances (and hence higher DNL
rates) as compared to wild-type mice. However, the dependence on diet is
not so clear as before: as a matter of fact, whereas a clear reduction in 2H
abundance can be observed for Western Style diet (WD) as compared to the
other two investigated, no clear difference between high-sucrose and low-fat
diets can be seen, which is also confirmed by the t-test analysis shown in
Table 4.5. Considering that the low-fat diet serves as “control”, our results
imply that a diet characterised by high-sucrose levels do not influence the
DNL rate significantly. On the contrary, this rate can be affected by diets rich
in fats, such as the Western Style diet.

EFFECT OF DIET EFFECT OF MOUSE TYPE

HSD VS LFD HSD VS WD LFD VS WD
OB/OB WT OB/OB WT OB/OB WT HSD LFD WD

PC 36:1 3.5× 10–1 1.9× 10–1 1.6× 10–2 2.1× 10–4 1.1× 10–4 5.7× 10–5 5.4× 10–3 8.6× 10–5 2.0× 10–5

TAG 54:3 4.6× 10–1 6.4× 10–1 1.3× 10–3 9.3× 10–7 2.0× 10–5 9.5× 10–7 1.9× 10–2 8.1× 10–3 4.4× 10–3

TABLE 4.5: p-values from the comparison between sample groups; the grey values
represent p-values higher than 5 %. A table containing information on all
the investigated lipid species can be found in Appendix D.4. Notice that
the comparison between HSD and LFD results in not significant differences,
whereas in the other cases such difference is indeed statistically significant.

To wrap up our most relevant findings, also in this study we found a
dependence on both mouse type and diet:

1. Effect of mouse type. For each diet, we observed a lower 2H enrich-
ment in WT mice as compared to ob/ob mice, indicative of a higher
DNL rate in obese mice;

2. Effect of diet. We compared the three different diets pair-wise; whereas
the difference between HSD and LFD was not significant, we observed
lower 2H enrichments in WD as compared to both HSD and LFD,
suggesting a lower rate of DNL in WD.

4.4.6 Final Considerations

After having successfully tested IsotopicLabelling, we exploited it in this
biochemical application, where it proved to be reliable. Most importantly,
the sensitivity of our approach was high enough to let us tell apart different
sample groups, notwithstanding their low 2H enrichments. This is important
because it should always be kept into consideration that heavy water is
toxic, and therefore its concentration has to be kept low throughout in vivo
experiments.

The results obtained here suggest that the DNL rate can be affected by
diet, in particular the higher the amount of fats in the dietary regime, the
lower the DNL rate. Also, we observed a difference between lean and obese
mice, these latter having a higher DNL rate.

A potential complication worth taking into consideration is the toxicity
of D2O itself: in principle, we should not rule out that some metabolic
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effects may arise as a consequence of such toxicity, including variations of
the DNL rate. On the other hand, even assuming that D2O does indeed
modify the DNL rate, such effect would not overturn our main conclusions,
considering that we have treated different groups homogeneously in terms
of D2O administration. As a consequence, the resulting effect would be the
same across groups, and therefore different diet and mouse type would still
account for the observed group differences.

Of course, we do recognise that it would be helpful to further strengthen
our findings with a parallel investigation; a possible solution may be to
assess the expression level of key enzymes involved in the DNL process,
including FASN and SCD (see Figure 4.2). This is a point that should be
taken into consideration for future studies.
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Appendix A

Automatic Interpretation of
NMR Spectra of Lipids

A.1 The Main Challenges

Considering that the manual interpretation of NMR spectra of lipid mixtures
is not straightforward, our idea was to understand whether it was possible
to devise an informatics tool able to ease this task. Ideally, such a device
should automatically interpret NMR spectra, providing the user with an
output table detailing the quantitative composition of the lipid mixture.
However, soon after we set out developing it, we found ourselves facing a
series of issues (critically described below) that made us realise that such
ideal software could not actually be developed. What we did instead was to
implement a tool that may at least help in the interpretation.

The first critical point to take into account is that lipids, from an NMR
point of view, are complex molecules: interpretation of NMR spectra of
lipids is therefore a complex issue, especially when lipid mixtures are con-
sidered, which may display signal overlaps. This is the case, for example,
for the shared structural features of different lipids, such as the FA tails.
On the other hand, lipids also possess class-specific domains, which are
basically related to their polar heads. As a matter of fact, the approach of
exploiting characteristic lipid resonances in order to analyse mixtures by
NMR is not new, and a successful 1H NMR-based method has been recently
described for microalgal lipid extracts (Nuzzo, N. et al. Composition and
Quantitation of Microalgal Lipids by ERETIC 1H NMR Method. Marine
drugs 11,3742–3753 (2013)). We therefore tried to focus on these characteristic
resonances, and we first tried to understand whether their signals fall in
overlap-free regions: only in this case can such signals be exploited to get
qualitative and quantitative information about the lipid composition of the
investigated samples. To pursue this aim, we just considered the most com-
mon lipid classes occurring in cell cultures and biological tissues, and we
tried to superimpose in a synthetic NMR spectrum only their characteristic
resonances: the outcome is in Figure A.1, where for each resonance the fine
structure is shown. Also highlighted in the figure are three regions common
to all lipid classes, arising from the FA chains. Additional details can be
found in Table A.1.

What can be immediately noticed from Figure A.1 is that, despite our
focused interest on a limited number of species and on their characteristic
resonances, the crowding is nonetheless evident: there are just very few
analytes whose resonances fall in free regions, such as plasmenyl and sterol
species.
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FIGURE A.1: Synthetic NMR spectrum showing characteristic resonances of the most
common lipid classes, with a zoom in of the crowded 2–3 ppm chemical
shift region. Many are the signal overlaps, making it difficult to unequivo-
cally assign the resonances.

To the issues mentioned so far, there should be added a further com-
plication: we have only shown specific resonances, leaving behind all the
others. Real NMR spectra are much more complex, as shown in Figure A.2,
where we have reported experimental spectra of some lipid classes; for each
of them, the characteristic resonances are highlighted in yellow. The figure
clearly reveals that diagnostic signals make up just a small fraction of each
spectrum; in addition, in most cases the projection of the yellow regions
into the other spectra will fall on other resonances, therefore confirming that
a lipid mixture will give rise to a spectrum characterised by many signal
overlaps.

Another relevant problem to be mentioned is that each lipid class can
occur in a variety of structures depending on the FA chains, and this is better
shown in Figure A.3. Importantly, even though it is possible to detect, say,
plasmenyl species based on their characteristic resonances, it is impossible
to tell which lipid class has those signals (PC, PE, . . . ).

Finally, an added issue to be always aware of is that proton resonances
are not fixed, but their exact chemical shift also depends on parameters such
as analyte concentration and ionic strength of the solution. Unfortunately,
such dependence is not linear and close resonances may even exchange
relative positions.
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SPECIES SHIFT MULTIPLET PROTONS

Plasmenyl 5.973 d (6.2 Hz) 1
Sphingolipids 5.71 dt (15, 7 Hz) 1

Plasmenyl 4.345 q (6.2 Hz) 1
TAG 4.18 dd (7, 12 Hz) 2

PS 3.83 dd (7.3, 7.6 Hz) 1
PG 3.77 quin (5 Hz) 1

PC + SM 3.637 t (4.5 Hz) 2
PC 3.22 s 9
SM 3.21 s 9

PI 3.203 t (9.2 Hz) 1
PE 3.17 t (5 Hz) 2

Sterols 0.72 s 3

Poly_FA 2.74–2.83 m 2
Tot_FA 2.28–2.40 m 2

Unsat_FA 1.98–2.15 m 4

TABLE A.1: Details of the main lipid resonances.
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A.2 Block Diagram of the Processing Steps

Bearing in mind the issues described above, we had to scale back our initial
aims, and we tried to devise a tool that may assist the researcher when it
comes to inspecting NMR spectra. The basic idea is quite simple, and briefly
summarised in Figure A.4.

Table of 
Theoretical Signals

Experimental NMR 
Spectrum

Peak Picking

Peak Matching

Qualitative and Quantitative
Information

FIGURE A.4: Block diagram of the informatics tool aimed at helping in the interpretation
of NMR spectra of lipid mixtures.

• The starting point is to provide a table of theoretical NMR resonances,
similar to the one shown in Table A.1: for each lipid class, the user
specifies the chemical shift of the diagnostic resonance(s), as well as
the details of the fine structure (multiplicity and coupling constants);

• Next, the user inputs the experimental NMR spectrum (already Fourier-
transformed, phase- and baseline-corrected, and referenced along the
chemical shift scale). A peak-picking procedure ensues, resulting in a
list of peaks with related intensities;

• The peak matching process takes place: for each theoretical resonance,
the tool detects whether or not it is present in the experimental spec-
trum, based on both chemical shift (with an accuracy that can be set by
the user) and on the fine structure (both coupling constant and relative
intensity among the signals are considered);

• After the peak matching, each analyte of the theoretical table is listed,
together with the signal intensities found (if any). In order to provide
quantitative information, the signals are normalised based on the
number of protons giving rise to them;

• Also a set of plots is produced, one for each theoretical signal, where
the experimental spectrum in the considered region is shown together
with the theoretical resonances and possible matched peaks.

As for the obtained relative intensities, it is important to point out that
NMR is intrinsically quantitative, and therefore these quantities directly
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reflect the relative molar abundance of the lipid classes, without the need to
use any quantitative standard.

A.3 An Example of the Results

We tried to run our tool over some experimental NMR spectra of lipid mix-
tures, and in Figure A.5 are just a few examples of the graphical output: by
comparing the experimental patterns (black noisy lines) with the theoretical
expected resonances (red vertical lines), one can immediately understand
whether or not the considered class is present, as well as if any overlap with
other resonances occurs. For example, what can be said from the results in
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FIGURE A.5: Examples of the graphical outputs produced. The experimental spectrum
is dissected and the characteristic regions are plotted together with the
theoretical resonances (red vertical lines); it is up to the researcher to
understand whether or not the considered class is present.

Figure A.5 is the following:

(A) Plasmenyl species are present in the sample;

(B) Also PC+SM are present, although the theoretical and experimental
shifts are slightly different;

(C) The same as above. However, it should be noticed that the pattern is
more complex than the expected simple triplet, probably because PC
and SM resonances do not perfectly overlap;
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(D) Sterols are clearly present. This is a lucky region, since usually no other
lipids have so shielded resonances;

(E) PI are not present, since the expected triplet cannot be observed;

(F) Also TAG are present, although there is a slight mismatch between
expected and experimental shifts.

A.4 Acyl Chain Composition

Interestingly, in addition to class-specific information, also insights into the
FA composition can be obtained, especially by looking at the 2–3 ppm region
of the NMR spectrum: the degree of FA unsaturation can be easily obtained,
as well as knowledge about the presence of poly-unsaturations. Of course,
this will just give an average figure, considering that all acyl chains are taken
into account, no matter of the lipid class they belong to.

Unlike the specific resonances, here the signals are very broad and their
fine structure is lost, since they are the result of the overlap of many different
chains. As a consequence, instead of considering the intensity of the detected
peaks, the tool integrates the signals over the specified region (in the input
table it is just necessary to provide a chemical shift range, see the last rows
of Table A.1).
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Appendix of Chapter 2

B.1 Primary Cortical Neurons: Intra-class Profiles

The following box-plots represent the comparison between sample groups
(CTRL versus CBE-TRTD) in terms of the parameters average chain length
(Figure B.1), average number of unsaturations (Figure B.2) and unsaturation
index (Figure B.3). There are no significant differences, implying that the
treatment is not acyl-chain specific.
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FIGURE B.1: Comparison of the average chain length for each sphingolipid class. There
are no significant differences between CTRL and CBE-TRTD samples.
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FIGURE B.3: Comparison of the unsaturation index for each sphingolipid class. There
are no significant differences between CTRL and CBE-TRTD samples.

B.2 Lrrk2+/+ and Lrrk2–/– Mice: Intra-class Profiles

Below are three series of box-plots where the comparison is made between
sample groups (Lrrk2+/+ versus Lrrk2–/– mice) in terms of the parameters av-
erage chain length (Figure B.4), average number of unsaturations (Figure B.5)
and unsaturation index (Figure B.6). The lack of any significant difference
implies that the observed sphingolipid perturbations are not acyl-chain
specific.

WT KO

37
.8

38
.0

38
.2

38
.4

p−value:  0.784 
Cer 18:1

A
ve

ra
ge

 le
ng

th

WT KO

38
.1

5
38

.2
5

p−value:  0.14 
Gly−Cer 18:0

A
ve

ra
ge

 le
ng

th

WT KO

41
.0

5
41

.1
5

p−value:  0.128 
Gly−Cer 18:1

A
ve

ra
ge

 le
ng

th

WT KO41
.1

0
41

.2
5

41
.4

0

p−value:  0.564 
Gly−Cer 18:1(2−OH)

A
ve

ra
ge

 le
ng

th

WT KO

37
.7

37
.9

p−value:  0.626 
SM

A
ve

ra
ge

 le
ng

th

WT KO

40
.7

0
40

.8
0

40
.9

0

p−value:  0.765 
Sulfatide

A
ve

ra
ge

 le
ng

th

FIGURE B.4: Comparison of the average chain length between sample groups; there are
no significant differences.



Appendix B. Appendix of Chapter 2 111

WT KO

1.
30

1.
34

1.
38

p−value:  0.732 
Cer 18:1

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

WT KO

2.
1

2.
3

2.
5

p−value:  0.342 
Gly−Cer 18:0

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

WT KO

1.
60

1.
64

p−value:  0.325 
Gly−Cer 18:1

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

WT KO

1.
22

1.
24

1.
26

p−value:  0.09 
Gly−Cer 18:1(2−OH)

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

WT KO

1.
36

1.
40

1.
44

p−value:  0.604 
SM

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

WT KO

1.
40

1.
50

p−value:  0.499 
Sulfatide

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

FIGURE B.5: Comparison of the average number of unsaturations between sample
groups; there are no significant differences.
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C.1 Intra-class Distribution for IGROV-1

The following barplots (Figure C.1 to Figure C.5) represent the intra-class
profiles obtained for each lipid class and sample group. In order to ease
the visualisation, only relative amounts higher than 2 % are shown. The
statistically significant differences are properly pointed out (*: p ≤ 0.05; **:
p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).
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FIGURE C.1: IGROV-1 – Relative distribution of Cer and DAG (threshold: 2 %).
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FIGURE C.2: IGROV-1 – Relative distribution of Gly-Cer and LysoPC (threshold: 2 %).

Figure C.6 shows the group comparison of the average FA chain length
for each of the investigated lipid classes, whereas in Figure C.7 is the average
number of unsaturations and in Figure C.8 is the unsaturation index.
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FIGURE C.7: IGROV-1 – Comparison of the average number of unsaturations.
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FIGURE C.8: IGROV-1 – Comparison of the unsaturation index.
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C.2 Intra-class Distribution for OC-316

In the following bar-plots (Figure C.9 to Figure C.13) are the intra-class
profiles for OC-316 cell line, with the comparison between CTRL (light gray)
and TRTD (dark gray) samples. Only relative amounts higher than 2 % are
shown; the stars refer to the level of significance (*: p ≤ 0.05; **: p ≤ 0.01;
***: p ≤ 0.001; ****: p ≤ 0.0001).
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FIGURE C.9: OC-316 – Relative distribution of Cer and DAG (threshold: 2 %).
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FIGURE C.10: OC-316 – Relative distribution of Gly-Cer and LysoPC (threshold: 2 %).
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FIGURE C.11: OC-316 – Relative distribution of PC and PE (threshold: 2 %).

Figure C.14 shows the group comparison of the average FA chain length
for each of the investigated lipid classes, whereas in Figure C.15 is the
average number of unsaturations and in Figure C.16 is the unsaturation
index.
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FIGURE C.12: OC-316 – Relative distribution of pPC and pPE (threshold: 2 %).
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FIGURE C.13: OC-316 – Relative distribution of SM and TAG (threshold: 2 %).
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FIGURE C.14: OC-316 – Comparison of the average chain length within each lipid class.
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FIGURE C.15: OC-316 – Comparison of the average number of unsaturations within
each lipid class.
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FIGURE C.16: OC-316 – Comparison of the unsaturation index within each lipid class.
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C.3 Intra-class Distribution for OVCAR-3

The bar-plots of Figure C.17 to Figure C.21 summarise the intra-class profiles
obtained when working with OVCAR-3 cell line. Only relative amounts
higher than 2 % are shown, and the stars refer to the level of significance (*:
p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).
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FIGURE C.17: OVCAR-3 – Relative distribution of Cer and DAG (threshold: 2 %).
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FIGURE C.18: OVCAR-3 – Relative distribution of Gly-Cer and LysoPC (threshold:
2 %).
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FIGURE C.19: OVCAR-3 – Relative distribution of PC and PE (threshold: 2 %).

The comparisons of the parameters average FA chain length, average
number of unsaturations and unsaturation index are detailed in Figures C.22,
C.23 and C.24, respectively.
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FIGURE C.20: OVCAR-3 – Relative distribution of pPC and pPE (threshold: 2 %).
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FIGURE C.21: OVCAR-3 – Relative distribution of SM and TAG (threshold: 2 %).
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FIGURE C.22: OVCAR-3 – Comparison of the average chain length within each lipid
class.
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FIGURE C.23: OVCAR-3 – Comparison of the average number of unsaturations within
each lipid class.
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FIGURE C.24: OVCAR-3 – Comparison of the unsaturation index within each lipid
class.
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C.4 Intra-class Distribution for SKOV-3

The results obtained from SKOV-3 in terms of intra-class profiles are shown
in Figure C.25 to Figure C.29.
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FIGURE C.25: SKOV-3 – Relative distribution of Cer and DAG (threshold: 2 %).
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FIGURE C.26: SKOV-3 – Relative distribution of Gly-Cer and LysoPC (threshold: 2 %).
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FIGURE C.27: SKOV-3 – Relative distribution of PC and PE (threshold: 2 %).

Figures C.30, C.31 and C.32 contain, respectively, the group comparisons
of the parameters average FA chain length, average number of unsaturations
and unsaturation index.
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FIGURE C.28: SKOV-3 – Relative distribution of pPC and pPE (threshold: 2 %).
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FIGURE C.29: SKOV-3 – Relative distribution of SM and TAG (threshold: 2 %).
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FIGURE C.30: SKOV-3 – Comparison of the average chain length within each lipid class.



Appendix C. Appendix of Chapter 3 130

CTRL TRTD

1.
4

1.
6

1.
8

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.163 
Cer

CTRL TRTD

2.
4

2.
6

2.
8

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.649 
DAG

CTRL TRTD

1.
14

1.
20

1.
26

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.008 **
Gly−Cer

CTRL TRTD

0.
13

0.
15

0.
17

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.388 
LysoPC

●

CTRL TRTD

1.
9

2.
0

2.
1

2.
2

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.002 **
PC

●

CTRL TRTD

3.
3

3.
5

3.
7

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.657 
PE

●

CTRL TRTD

2.
05

2.
20

2.
35

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.019 *
pPC

●

●

CTRL TRTD

4.
7

4.
9

5.
1

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.903 
pPE

●

CTRL TRTD

1.
20

1.
30

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.65 
SM

CTRL TRTD

3.
5

4.
0

4.
5

5.
0

A
ve

ra
ge

 u
ns

at
ur

at
io

ns

p−value:  0.246 
TAG

Legend

CTRL
TRTD

FIGURE C.31: SKOV-3 – Comparison of the average number of unsaturations within
each lipid class.
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FIGURE C.32: SKOV-3 – Comparison of the unsaturation index within each lipid class.
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Appendix D

Appendix of Chapter 4

D.1 A Practical Script

IsotopicLabelling is freely available from the web, where we also included the
package reference manual, as well as a vignette explaining how to practically
make use of this tool. Below is a concise R script that illustrates the main
steps to perform when using IsotopicLabelling; here, we load the example
data set and look for the patterns of13C-labelled [PC 32:2+H]+ (chemical
notation to use: “X40H77NO8P”).
# Load the package
l i b r a r y ( " I s o t o p i c L a b e l l i n g " )

# Load the xcmsSet o b j e c t
data ( xcms_obj )

# Convert the o b j e c t i n t o the required data frame
peak_table <– table_xcms ( xcms_obj )

# Process the data
f i t ted_abundances <– main_ labe l l ing ( peak_table , compound="X40H77NO8P" ,

charge =1 , l a b e l l i n g ="C" , mass_shi f t =0 .05 , RT=285 ,
RT_shi f t =20 , chrom_width =7 , i n i t i a l _ a b u n d a n c e=NA)

# Quickly look at the r e s u l t s
summary ( f i t ted_abundances )

# P l o t the p a t t e r n s
p l o t ( f i t ted_abundances , type =" p a t t e r n s " , saveplo t s=T )

# P l o t the r e s i d u a l s
p l o t ( f i t ted_abundances , type =" r e s i d u a l s " , saveplo t s=T )

# P l o t the o v e r a l l r e s u l t s
p l o t ( f i t ted_abundances , type ="summary " , saveplo t s=T )

# Save the r e s u l t s to a ∗ . csv f i l e
s a v e _ l a b e l l i n g ( f i t ted_abundances )

# Group the samples and obta in grouped e s t i m a t e s
grouped_estimates <– group_labe l l ing ( f i t ted_abundances ,

groups= f a c t o r ( c ( rep ( " C12 " , 4 ) , rep ( " C13 " , 4 ) ) ) )
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In this practical example, we exploited the function main_labelling,
which performs all the processing steps compactly; an alternative would be
to use the individual functions it is made of:

# From the input , get some use fu l information
i n f o <– i s o t o p i c _ i n f o r m a t i o n ( compound="X40H77NO8P" ,

charge =1 , l a b e l l i n g ="C" )

# E x t r a c t the experimental p a t t e r n s from the data
exper imenta l_pat terns <– i s o t o p i c _ p a t t e r n ( peak_table , info ,

mass_shi f t =0 .05 , RT=285 , RT_shi f t =20 , chrom_width =7)

# Analyse the p a t t e r n s
f i t ted_abundances <– find_abundance ( p a t t e r n s =exper imenta l_pat terns ,

i n f o =info , i n i t i a l _ a b u n d a n c e=NA, charge =1)

Further information can be found at
https://github.com/RuggeroFerrazza/IsotopicLabelling.

D.2 Biochemical Application: LC-MS Results

The following plots show the estimated 2H abundances in the target PC
and TAG analytes. The samples have been properly grouped (HFD-OB,
HFD-WT, RCD-OB and RCD-WT), and therefore each point represents the
group average, whereas the error-bars denote the 95 % confidence intervals.
Both blood and liver samples are reported.

Table D.1 details the p-values from the two-sample t-tests; most of them
are lower than the 5 % threshold, meaning that the group differences are
significant.
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FIGURE D.3: Blood samples, PC species. The horizontal grey line represents the natural
2H occurrence.
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LIVER SAMPLES BLOOD SAMPLES
EFFECT OF DIET EFFECT OF MOUSE TYPE EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD OB/OB WT HFD RCD

PC 32:0 1.2× 10–6 1.4× 10–7 2.1× 10–4 1.8× 10–3 5.4× 10–6 4.6× 10–6 2.2× 10–4 4.7× 10–3

PC 32:1 7.1× 10–6 2.2× 10–8 1.7× 10–4 3.1× 10–2 7.3× 10–9 1.9× 10–6 1.4× 10–4 3.9× 10–5

PC 32:2 2.3× 10–5 1.7× 10–4 8.0× 10–1 6.2× 10–1 1.2× 10–4 9.2× 10–3 8.7× 10–1 5.1× 10–1

PC 34:0 2.2× 10–7 1.3× 10–7 1.3× 10–3 5.2× 10–4 1.0× 10–4 6.0× 10–6 3.2× 10–5 1.2× 10–2

PC 34:1 1.6× 10–6 7.6× 10–8 5.3× 10–4 2.9× 10–4 2.8× 10–10 8× 10–5 1.3× 10–3 4.4× 10–6

PC 34:2 1.2× 10–5 2.2× 10–5 6.2× 10–3 2.5× 10–5 1.4× 10–6 4.2× 10–6 1.5× 10–4 1.4× 10–4

PC 34:3 3.8× 10–5 4.1× 10–4 4.5× 10–4 8.2× 10–3 2.1× 10–6 7.9× 10–5 3.7× 10–5 7.4× 10–3

PC 36:1 2.7× 10–9 4.4× 10–9 1.4× 10–5 6.2× 10–7 2.0× 10–11 1.5× 10–4 2.3× 10–4 1.9× 10–6

PC 36:2 2.6× 10–6 9.9× 10–6 2.5× 10–3 3.2× 10–4 2.9× 10–6 1.3× 10–4 2.7× 10–5 2.1× 10–5

PC 36:3 2.4× 10–8 1.1× 10–5 1.0× 10–3 5.8× 10–6 2.4× 10–5 5.7× 10–4 1.3× 10–1 4.6× 10–4

PC 36:4 3.2× 10–4 3.3× 10–5 4.9× 10–3 1.1× 10–3 4.9× 10–7 5.5× 10–8 1.2× 10–5 2.6× 10–5

PC 38:2 3.0× 10–7 2.6× 10–5 1.3× 10–3 3.5× 10–5 1.2× 10–3 9.9× 10–4 2.1× 10–1 3.1× 10–3

PC 38:3 1.6× 10–8 1.5× 10–7 1.6× 10–5 3.6× 10–6 4.7× 10–9 3.4× 10–4 1.4× 10–5 2.6× 10–4

PC 38:4 1.4× 10–8 1.5× 10–10 4.0× 10–5 1.0× 10–5 7.7× 10–8 9.9× 10–5 2.5× 10–5 8.9× 10–5

PC 38:5 1.6× 10–6 2.4× 10–5 7.9× 10–2 2.3× 10–4 1.6× 10–5 4.1× 10–5 3.6× 10–1 6.4× 10–4

PC 38:6 2.5× 10–5 8.3× 10–7 4.4× 10–5 4.5× 10–5 1.1× 10–5 8.7× 10–7 3.5× 10–4 3.9× 10–5

PC 40:4 3.7× 10–6 1.1× 10–4 9.6× 10–3 1.9× 10–3 4.3× 10–8 2.3× 10–2 3.1× 10–1 4.9× 10–6

PC 40:6 4.0× 10–8 3.6× 10–8 5.1× 10–4 2.9× 10–6 4.4× 10–8 7.2× 10–5 4.2× 10–4 6.2× 10–6

TAG 46:0 4.8× 10–5 4.1× 10–4 3.3× 10–2 2.8× 10–2 3.6× 10–2 8.3× 10–1 7.5× 10–3 2.0× 10–1

TAG 46:1 1.9× 10–3 1.9× 10–1 5.7× 10–4 5.3× 10–5 2.4× 10–4 3.2× 10–2 2.0× 10–1 3.8× 10–1

TAG 48:0 6.3× 10–4 5.9× 10–4 1.7× 10–6 2.0× 10–5 8.5× 10–2 1.5× 10–2 1.1× 10–3 5.1× 10–2

TAG 50:0 6.6× 10–4 4.6× 10–4 1.1× 10–6 1.7× 10–5 4.4× 10–2 3.1× 10–2 2.9× 10–2 2.2× 10–1

TAG 50:2 2.0× 10–8 3.2× 10–6 3.0× 10–6 2.4× 10–7 1.1× 10–3 1.5× 10–8 3.9× 10–9 9.3× 10–2

TAG 50:3 3.9× 10–7 2.1× 10–6 9.7× 10–7 1.2× 10–6 7.2× 10–5 2.9× 10–7 1.3× 10–4 9.2× 10–2

TAG 52:2 1.3× 10–9 4.6× 10–4 2.8× 10–3 3.0× 10–8 6.8× 10–8 3.5× 10–5 6.7× 10–5 1.6× 10–6

TAG 52:3 7.0× 10–9 4.4× 10–7 5.9× 10–7 3.2× 10–8 1.5× 10–6 1.0× 10–7 1.7× 10–4 9.8× 10–5

TAG 52:4 5.1× 10–6 1.7× 10–7 3.8× 10–7 6.9× 10–6 2.1× 10–2 8.7× 10–6 1.2× 10–5 1.2× 10–1

TAG 52:5 7.5× 10–11 1.4× 10–4 1.1× 10–3 1.0× 10–9 8.6× 10–3 2.2× 10–2 2.1× 10–2 1.1× 10–2

TAG 54:1 3.9× 10–7 2.3× 10–3 3.9× 10–6 6.2× 10–7 2.3× 10–2 1.3× 10–2 3.4× 10–1 2.1× 10–1

TAG 54:2 2.6× 10–6 3.4× 10–6 1.7× 10–7 7.8× 10–6 1.2× 10–5 5.7× 10–3 2.9× 10–4 4.3× 10–5

TAG 54:3 6.5× 10–7 1.2× 10–4 3.3× 10–3 3.8× 10–6 2.8× 10–8 1.8× 10–3 1.5× 10–4 2.0× 10–7

TAG 54:4 2.8× 10–7 8.7× 10–6 1.1× 10–1 2.2× 10–5 6.7× 10–4 1.0× 10–4 2.6× 10–5 4.9× 10–3

TAG 54:5 7.6× 10–7 2.5× 10–2 4.5× 10–1 2.7× 10–3 6.7× 10–2 1.1× 10–3 2.7× 10–2 3.8× 10–1

TAG 54:6 1.8× 10–4 5.4× 10–2 4.6× 10–2 2.6× 10–4 2.3× 10–5 3.2× 10–3 8.2× 10–2 1.2× 10–4

TAG 56:2 1.1× 10–6 3.3× 10–3 6.3× 10–2 6.3× 10–5 1.0× 10–3 1.8× 10–3 1.6× 10–3 4.9× 10–3

TAG 56:3 3.1× 10–4 1.1× 10–2 8.8× 10–4 1.7× 10–2 2.0× 10–7 1.2× 10–2 4.1× 10–2 5.3× 10–7

TABLE D.1: p-values from the two-sample t-tests; the grey values are not significant
(higher than 0.05).
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D.3 Biochemical Application: GC-MS Results

The following plots summarise the estimated 2H abundances for each sam-
ple group (HFD-OB, HFD-WT, RCD-OB and RCD-WT), with the distinction
of FAMEs based on the lipid class (CE, FA, PC, TAG). The points are group
averages, whereas the error-bars denote the 95 % confidence intervals.

Table D.2 contains the p-values from the two-sample t-tests; it can be
clearly seen that both mouse type and diet affect the 2H abundances in the
FAs, considering the high number of significant cases. Also worth noting is
the lack of any significant difference for FA C18:2, which is the consequence
of it being an essential fatty acid, not synthesised through DNL.
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FIGURE D.5: 2H abundances relative to the FAs of SPE-isolated CEs. Horizontal grey
line: natural 2H occurrence.
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FIGURE D.6: 2H abundances relative to the FAs of SPE-isolated FAs. Horizontal grey
line: natural 2H occurrence.
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TOTAL FA
EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD

C14:0 3.6× 10–6 3.4× 10–11 6.3× 10–8 4.4× 10–4

C16:0 1.6× 10–6 3.3× 10–7 3.6× 10–6 1.4× 10–5

C16:1(a) 3.7× 10–7 2.2× 10–1 3.6× 10–1 2.2× 10–3

C16:1(b) 1.3× 10–6 8.9× 10–5 1.1× 10–2 1.2× 10–4

C18:0 3.6× 10–7 1.9× 10–5 3.6× 10–5 1.4× 10–4

C18:1 1.4× 10–6 1.8× 10–8 3.5× 10–7 6.7× 10–6

C18:2 8.6× 10–2 7.1× 10–2 1.2× 10–1 3.8× 10–2

(A)

SPE – CE
EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD

C14:0 3.3× 10–3 1.6× 10–3 1.5× 10–2 8.9× 10–1

C16:0 1.9× 10–2 2.2× 10–4 1.9× 10–2 3.0× 10–3

C16:1(a) NA NA NA NA
C16:1(b) 6.4× 10–4 NA NA NA

C18:0 7.2× 10–2 1.9× 10–4 2.8× 10–2 3.5× 10–2

C18:1 2.6× 10–8 4.5× 10–4 2.0× 10–2 2.8× 10–5

C18:2 6.1× 10–1 NA NA NA

(B)

SPE – FA
EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD

C14:0 9.2× 10–7 4.0× 10–1 1.0× 10–1 4.3× 10–2

C16:0 6.7× 10–5 6.5× 10–4 1.9× 10–4 6.7× 10–6

C16:1(a) NA NA NA NA
C16:1(b) 1.2× 10–2 NA NA NA

C18:0 2.9× 10–4 1.1× 10–2 2.2× 10–2 2.5× 10–1

C18:1 5.7× 10–8 7.9× 10–4 6.3× 10–3 2.3× 10–6

C18:2 1.5× 10–1 2.6× 10–1 3.0× 10–1 1.2× 10–1

(C)

SPE – PC
EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD

C14:0 2.7× 10–3 6.6× 10–3 1.6× 10–2 4.9× 10–1

C16:0 4.6× 10–5 5.9× 10–5 6.2× 10–4 9.0× 10–4

C16:1(a) NA NA NA NA
C16:1(b) 2.7× 10–2 NA NA NA

C18:0 8.9× 10–5 9.5× 10–4 1.5× 10–5 6.8× 10–4

C18:1 2.7× 10–7 1.6× 10–6 9.8× 10–4 1.1× 10–5

C18:2 3.8× 10–1 NA NA 8.8e-1

(D)

SPE – TAG
EFFECT OF DIET EFFECT OF MOUSE TYPE

OB/OB WT HFD RCD

C14:0 7.4× 10–5 7.5× 10–5 1.7× 10–2 2.5× 10–3

C16:0 1.1× 10–7 7.1× 10–5 7.7× 10–9 6.3× 10–5

C16:1(a) 2.9× 10–6 NA NA 6.5× 10–2

C16:1(b) 1.0× 10–6 NA NA 4.9× 10–4

C18:0 2.5× 10–4 4.7× 10–4 3.2× 10–7 5.8× 10–4

C18:1 8.1× 10–5 1.4× 10–4 5.9× 10–3 1.1× 10–4

C18:2 5.7× 10–2 2.8× 10–1 7.9× 10–2 8.4× 10–1

(E)

TABLE D.2: p-values from the t-tests on the GC-MS data, to study possible effects of
diet and mouse type on the isotopic enrichment. The grey values are not
significant (p > 0.05).
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D.4 Follow-up Experiment

The two plots below contain the estimated 2H abundances for each analyte
and sample group (HSD-OB, HSD-WT, LFD-OB, LFD-WT, WD-OB, WD-
WT), where the error-bars represent the 95 % confidence intervals.

Table D.3 lists the p-values from the two-sample t-tests; not significant
cases are highlighted in grey. It is interesting to observe that no significant
difference was found when comparing HSD with LFD, for all experimental
settings. This implies that the two dietary regimes result in similar DNL
rates.
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EFFECT OF DIET EFFECT OF MOUSE TYPE

HSD VS LFD HSD VS WD LFD VS WD
OB/OB WT OB/OB WT OB/OB WT HSD LFD WD

PC 32:0 8.5× 10–1 9.7× 10–1 1.2× 10–2 6.5× 10–3 1.8× 10–2 1.7× 10–3 6.7× 10–3 6.9× 10–3 4.3× 10–3

PC 32:1 7.5× 10–1 8.4× 10–1 3.0× 10–1 3.0× 10–2 1.3× 10–1 2.7× 10–2 1.0× 10–1 5.0× 10–2 2.1× 10–3

PC 34:1 7.8× 10–1 4.6× 10–1 5.9× 10–3 1.3× 10–4 2.2× 10–4 6.2× 10–3 3.4× 10–2 1.6× 10–3 8.1× 10–3

PC 34:2 8.1× 10–1 6.7× 10–1 8.9× 10–2 1.2× 10–1 1.1× 10–2 2.5× 10–2 3.5× 10–2 3.6× 10–3 1.3× 10–2

PC 36:1 3.5× 10–1 1.9× 10–1 1.6× 10–2 2.1× 10–4 1.1× 10–4 5.7× 10–5 5.4× 10–3 8.6× 10–5 2.0× 10–5

PC 36:2 5.1× 10–1 9.6× 10–1 6.6× 10–4 1.6× 10–2 5.4× 10–3 3.9× 10–4 1.9× 10–3 4.0× 10–3 4.4× 10–3

PC 36:3 6.4× 10–1 2.9× 10–1 1.0× 10–1 7.2× 10–2 3.3× 10–2 5.3× 10–1 2.2× 10–2 4.8× 10–4 2.6× 10–2

PC 36:4 4.8× 10–1 7.2× 10–1 4.9× 10–2 2.5× 10–2 3.7× 10–2 8.4× 10–4 3.4× 10–2 1.6× 10–2 4.8× 10–3

PC 38:3 5.1× 10–1 9.6× 10–1 6.6× 10–4 1.6× 10–2 5.4× 10–3 3.9× 10–4 1.9× 10–3 4.0× 10–3 4.4× 10–3

PC 38:4 7.6× 10–1 5.6× 10–1 7.7× 10–2 1.5× 10–2 7.2× 10–3 3.2× 10–5 2.6× 10–2 2.1× 10–3 1.7× 10–5

PC 38:5 3.2× 10–1 8.8× 10–1 5.2× 10–2 6.5× 10–3 7.3× 10–3 6.9× 10–3 2.2× 10–2 3.9× 10–3 1.0× 10–2

PC 38:6 9.6× 10–1 5.7× 10–1 9.3× 10–2 1.4× 10–2 1.1× 10–1 1.1× 10–2 2.3× 10–2 1.0× 10–1 2.6× 10–2

PC 40:5 7.1× 10–1 1.6× 10–1 2.2× 10–1 5.5× 10–1 6.9× 10–2 6.6× 10–3 9.7× 10–2 2.9× 10–1 3.1× 10–3

PC 40:6 3.1× 10–1 5.7× 10–1 5.9× 10–1 1.8× 10–2 3.0× 10–2 2.3× 10–3 4.7× 10–2 1.1× 10–4 1.6× 10–4

PC 40:7 6.0× 10–1 3.7× 10–1 2.5× 10–1 7.5× 10–3 4.0× 10–2 2.8× 10–3 7.6× 10–2 1.9× 10–2 1.9× 10–3

PC 40:8 6.1× 10–1 6.3× 10–2 3.6× 10–1 5.7× 10–2 7.5× 10–1 5.0× 10–1 2.8× 10–2 1.7× 10–1 2.0× 10–1

TAG 48:0 5.8× 10–1 9.1× 10–1 4.0× 10–3 3.3× 10–1 2.5× 10–3 5.0× 10–1 7.0× 10–4 1.6× 10–3 6.4× 10–2

TAG 48:1 8.1× 10–1 9.9× 10–1 1.3× 10–2 9.7× 10–3 1.3× 10–3 3.8× 10–2 7.7× 10–3 8.9× 10–4 1.1× 10–3

TAG 48:2 8.6× 10–1 7.4× 10–1 1.6× 10–2 9.0× 10–3 6.7× 10–4 2.2× 10–2 7.2× 10–3 2.4× 10–4 2.3× 10–4

TAG 48:3 6.1× 10–1 2.9× 10–1 2.3× 10–3 5.0× 10–2 8.0× 10–3 7.2× 10–1 1.3× 10–3 1.3× 10–3 3.3× 10–2

TAG 50:1 8.1× 10–1 4.1× 10–1 9.2× 10–3 8.8× 10–3 1.3× 10–3 4.8× 10–3 3.6× 10–3 7.8× 10–4 1.2× 10–4

TAG 50:2 7.6× 10–1 9.6× 10–1 5.6× 10–3 9.9× 10–5 5.6× 10–4 1.2× 10–4 1.6× 10–2 3.3× 10–3 6.7× 10–4

TAG 50:3 6.3× 10–1 3.8× 10–1 1.8× 10–2 5.5× 10–3 2.2× 10–3 2.7× 10–2 1.5× 10–2 5.3× 10–4 1.0× 10–3

TAG 50:4 7.8× 10–1 9.4× 10–1 1.2× 10–2 2.5× 10–1 1.3× 10–3 3.5× 10–1 9.5× 10–3 8.1× 10–4 9.8× 10–2

TAG 52:1 8.6× 10–1 8.6× 10–1 3.9× 10–2 7.8× 10–3 2.3× 10–3 5.1× 10–2 1.4× 10–2 6.5× 10–4 3.4× 10–5

TAG 52:2 7.5× 10–1 9.1× 10–1 2.1× 10–3 2.3× 10–5 1.7× 10–4 4.6× 10–6 1.2× 10–2 2.8× 10–3 1.3× 10–3

TAG 52:3 8.6× 10–1 9.8× 10–1 1.7× 10–3 4.2× 10–5 1.3× 10–4 2.6× 10–4 5.9× 10–3 8.4× 10–4 5.1× 10–3

TAG 52:4 4.4× 10–1 8.0× 10–1 2.3× 10–2 3.1× 10–1 4.8× 10–5 2.6× 10–1 5.6× 10–3 8.1× 10–5 2.1× 10–2

TAG 52:5 7.3× 10–2 6.7× 10–1 1.9× 10–2 3.4× 10–1 5.3× 10–4 2.4× 10–1 8.4× 10–4 3.7× 10–4 1.4× 10–2

TAG 54:2 3.5× 10–1 5.3× 10–1 1.1× 10–3 1.9× 10–6 1.1× 10–4 1.1× 10–3 1.2× 10–2 6.2× 10–3 6.4× 10–3

TAG 54:3 4.6× 10–1 6.4× 10–1 1.3× 10–3 9.3× 10–7 2.0× 10–5 9.5× 10–7 1.9× 10–2 8.1× 10–3 4.4× 10–3

TAG 54:4 7.3× 10–1 6.0× 10–1 1.6× 10–2 5.1× 10–4 1.9× 10–3 9.3× 10–4 4.0× 10–1 8.5× 10–2 1.8× 10–1

TAG 54:5 4.1× 10–1 7.4× 10–1 7.4× 10–3 1.6× 10–1 2.4× 10–3 9.7× 10–2 1.4× 10–2 1.5× 10–2 3.3× 10–1

TAG 56:2 5.9× 10–1 4.1× 10–1 2.9× 10–3 2.8× 10–3 2.7× 10–4 6.9× 10–4 3.9× 10–3 2.2× 10–4 8.4× 10–4

TAG 56:3 9.0× 10–1 8.0× 10–1 1.7× 10–3 2.0× 10–5 7.8× 10–6 1.7× 10–4 3.0× 10–2 1.9× 10–3 1.3× 10–1

TAG 56:4 9.7× 10–1 7.5× 10–1 4.1× 10–4 6.6× 10–4 2.7× 10–5 2.5× 10–4 5.4× 10–3 4.6× 10–4 6.8× 10–2

TAG 56:5 3.5× 10–1 5.5× 10–1 5.9× 10–4 9.0× 10–3 7.8× 10–6 1.6× 10–2 2.5× 10–4 6.1× 10–6 1.2× 10–3

TAG 56:6 7.2× 10–1 5.7× 10–1 3.9× 10–1 2.2× 10–1 6.3× 10–1 4.3× 10–1 4.1× 10–2 2.6× 10–3 7.9× 10–4

TAG 56:8 3.7× 10–1 2.4× 10–1 2.5× 10–3 2.7× 10–1 1.8× 10–4 3.6× 10–2 5.9× 10–4 1.7× 10–3 1.0× 10–2

TABLE D.3: p-values from the comparison between sample group couples; the grey
values represent p-values higher than 5 %.
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