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Abstract 

 

Recent studies have revealed a variety of left–right asymmetries among 

vertebrates and invertebrates. In many species, left- and right-lateralized individuals 

coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued 

that brain lateralization increases individual efficiency (e.g. avoiding unnecessary 

duplication of neural circuitry and reducing interference between functions), thus 

counteracting the ecological disadvantages of lateral biases in behaviour (making 

individual behaviour more predictable to other organisms). However, individual 

efficiency does not require a definite proportion of left- and right-lateralized 

individuals. Thus, such arguments do not explain population-level lateralization. It 

has been shown that, in the context of prey–predator interactions, population-level 

lateralization can arise as an evolutionarily stable strategy when individually 

asymmetrical organisms must coordinate their behaviour with that of other 

asymmetrical organisms. I extended the mathematical model showing that 

populations consisting of left- and right-lateralized individuals in unequal numbers 

can be evolutionarily stable, based solely on strategic factors arising from the 

balance between antagonistic (competitive) and synergistic (cooperative) 

interactions. 

I also provided empirical evidence to support the prediction from theoretical 

models suggesting that population-level lateralization is more likely to have evolved 

in social than in non-social species. I compared olfactory lateralization in two species 

of Hymenoptera Apoidea, the honeybee (Apis mellifera), a social species, and the 

mason bee (Osmia cornuta), a solitary species. Recall of the olfactory memory 1 h 

after training to associate an odour with a sugar reward, as revealed by the bee 



 

extending its proboscis when presented with the trained odour (Proboscis Extension 

Reflex – PER), was better in honeybees trained with their right than with their left 

antenna. No such asymmetry was observed in mason bees. Similarly, 

electroantennographic (EAG) responses to a floral volatile compound and to an 

alarm pheromone component were higher in the right than in the left antenna in 

honeybees but not in mason bees. 

Further experiments were conducted to test the lateralized recall of olfactory 

memory in honeybees, following conditioning of the PER, at 1 or 6 h after training, 

using a range of different odours. Results confirmed previous evidence that bees 

learn to associate a new odour of a positive stimulus mainly in neural circuits 

accessed via their right antenna, and that, after a period of a few hours, memory 

consolidation occurred accompanied by antennal asymmetry, with bees now being 

able to recall the odour mainly when using their left antenna. I showed that this 

peculiar dynamic of memory traces has severe consequences when odours are 

already known to the bees (either for a biological reason or as a result of previous 

experience) and are thus already present in the long-term memory store. Response 

competition arising from multiple memory traces could be observed, with bees 

showing unexpected lack of specificity in their longer-term olfactory memories. 

The behavioural finding that honeybees are better in learning to associate 

odours with a sugar reward when they are trained through their right antenna can 

been partially explained by the stronger responsiveness of the olfactory receptor 

neurons inside the right antenna, as shown in my experiments by EAG recordings. I 

checked whether this in turn might be associated due to a difference in the number 

of the olfactory sensilla present on the right and on the left antennae. I found that the 

number of olfactory sensilla is higher on the right antenna with respect to the left 



 

antenna. Surprisingly, I also observed for the first time that the number of non-

olfactory sensilla was significantly higher on the left antenna than on the right 

antenna in all segments except the apex. 

I investigated the generality and phylogenetic origins of the antennal 

asymmetry found in the honeybee Apis mellifera by examining three species of 

Australian stingless social bees (Trigona carbonaria, Trigona hockingsi and 

Austroplebia australis). Meliponinae (stingless bees) are much older compared to 

Apidae, Bombinae and Euglossinae; thus, it is maintained that the honeybees did 

not evolve from the stingless bees but rather independently from some other 

(asocial) bee type and that any social features the two lines of evolution now share 

are the result of convergent rather than divergent evolution. I found that stingless 

bees (Meliponinae) have the same laterality as honeybees (Apinae). This evidence 

suggests that lateralization evolved prior to the evolutionary divergence of these 

groups or that it evolved separately in each line. Furthermore, since honeybees and 

stingless bees are the only highly social bees, it seems that lateralization at the 

population level was convergent and evolved in association with social behaviour, 

supporting the hypotheses of the theoretical models that population level 

lateralization is more likely to evolve in social rather than in non-social species. 



 

Chapter 1 – Introduction 

 

Brain lateralization (i.e. the different functional specializations of the left and 

right sides of the brain), once considered to be unique to humans (Corballis, 1989), 

is now well known to be present in all vertebrate classes (reviewed by Rogers and 

Andrew, 2002; Vallortigara and Rogers, 2005; MacNeilage et al., 2009). Recently, 

evidence of lateralization in invertebrates has begun to emerge; suggesting that 

lateralization of the nervous system may be a feature of simpler brains as well as 

more complex ones (reviewed by Frasnelli et al., submitted). 

Why do humans and many others animal species have asymmetrical brains 

and show left-right asymmetries in behaviour? There is a consensus that a 

lateralized brain may confer several advantages at the individual level: for instance, 

sparing neural tissue by avoiding duplication of functions in the two hemispheres  

(Levy, 1977); processing information in parallel, reducing interference between 

functions (Vallortigara et al., 1999; Rogers, 2002; Rogers et al., 2004); avoiding 

competition in the control of responses, making one hemisphere in charge of control 

of behaviour (which is particularly important in animals with laterally placed eyes; 

Andrew, 1991; Vallortigara, 2000; Vallortigara and Rogers, 2005). However 

behavioural (and brain) left-right asymmetries usually occur at the population level, 

with most individuals showing similar direction of bias. Individual brain efficiency 

does not require the alignment of lateralization in the population. Moreover, 

behavioural lateralization at the population level can also present disadvantages, 

because it makes individual behaviour more predictable to other organisms. Thus, 

population-level asymmetries are likely to be due to a selection pressures for a 



 

particular side to become specialized in the same direction in more than half of the 

individuals. 

From a biological point of view asymmetries can be ‘fluctuating asymmetries’ or 

‘adaptive asymmetries’ (Palmer, 1996) The first are random variations in the 

development of otherwise symmetrical traits as result of disturbances in ontogeny 

(accidents that could occur during the development such as wounds, illnesses) and 

the output is a majority of the individuals that are symmetrical with few either left- or 

right-biased individuals. More interesting are the ‘adaptive asymmetries’ that are 

genetically or epigenetically influenced; namely that have been selected for a 

specific function. This type of asymmetries can have two distributions: ‘antisymmetry’ 

(half left- and half right-biased individuals, i.e. individual-level asymmetry) and 

‘directional asymmetry’ (tendency towards one side, i.e. population-level 

asymmetry). 

There could be several advantages of having a lateralized brain at the 

individual as mentioned above; but what is the reason for the population-level 

lateralization? Using concepts from mathematical theory of games, it has recently 

been argued that the alignment of lateralization at the population level may arise as 

an ‘‘evolutionarily stable strategy’’ when individually asymmetrical organisms must 

coordinate their behaviour with that of other asymmetrical organisms (Ghirlanda and 

Vallortigara, 2004). This hypothesis requires that brain asymmetries manifest 

themselves in behaviour, and thus may have fitness consequences, costs and 

benefits, in interactions with other organisms. For instance, vigilance behaviour and 

escape responses to predators often show lateral biases. This idea has been 

developed in a game-theoretical model considering interspecific interactions 

between group-living prey subject to predation (Ghirlanda and Vallortigara, 2004). As 



 

described in details in the next chapter, I have put this analysis a step further by 

considering whether a similar scenario also hold when selection pressures on 

lateralization arise from purely intraspecific interactions of competition and 

cooperation. 

Mathematical models of the evolution of lateralization (Ghirlanda and 

Vallortigara, 2004; Ghirlanda et al., 2009; Vallortigara, 2006) suggest that stable 

polymorphism with an uneven distribution of left- and right-forms can be expected to 

emerge spontaneously in species in which left-right biases have behavioural 

consequences during everyday interactions between individuals. Thus, population 

level asymmetries would be more likely to be observed in social rather than solitary 

species. Some evidence for this will be presented on Chapter 3. 

A variety of left-right asymmetries in general morphology has been observed 

among invertebrates (reviewed by Palmer, 2009) but in this introduction I will focus 

on asymmetries in the nervous system and behaviour. Invertebrate asymmetries 

may be crucial to fully understand the evolution of brain asymmetry and, besides, 

given the relative simplicity of some of their brains, they could provide excellent 

model systems to investigate the molecular, genetic and developmental aspects of 

lateralization. 

 

 

1.1. Sensory asymmetries 

 

Honeybees (Hymenoptera, Apidae, Apinae, Apini) have provided evidence for 

lateralization in sensory systems, particularly olfaction. Letzkus et al. (2006) showed 

that honeybees (Apis mellifera) display a clear laterality in learning to associate an 



 

odour with a sugar reward. The researchers used the proboscis extension reflex 

(PER) paradigm (Bitterman et al., 1983), in which honeybees are conditioned to 

extend their proboscis in anticipation of a food reward when they perceive a 

particular odour. Letzkus et al. (2006) tested bees in two versions of the PER 

paradigm. In one version, bees were conditioned to extend their proboscis to a 

scented drop of sugar water but not to an unscented drop of salt water; in the other 

version, bees were conditioned to extend their proboscis to one odour (dissolved in a 

sugar solution - reward) but not to another odour (dissolved in a salt solution - 

punishment). Each version of the learning task was carried out on three groups of 

bees. The bees in one group had their left antenna covered with a silicone 

compound, which prevents detection of odour, those in the second group had their 

right antenna covered, and those in the third group constituted a control in which 

both antennae were uncovered. Results revealed that the bees with the right 

antenna covered learnt less well than the bees with their left antenna covered and 

bees with both antenna uncovered. In fact, the bees trained with only the right 

antenna in use performed just as well as the untreated controls. The question that 

arises is whether the difference between bees with the right antenna in use and bees 

with the left antenna in use is a sensory difference or a memory recall difference. 

Considering that honeybees were trained through one antenna and the test recall 

was carried out with the same trained antenna in use the day after, it is difficult to 

argue that the asymmetry found is due only to a sensory asymmetry. 

Letzkus et al. (2006) tried to answer this question hypothesizing that 

honeybees perform better when trained with the right antenna because of sensory 

differences between the right and the left antenna. To test the first hypothesis, they 

compared the number of the olfactory receptor cells, sensilla placodea, in the two 



 

antennae. Images of ten right antennae and ten left antennae (seven of these left-

right pairs originated from the same individuals) were obtained using scanning 

electron microscopy and the mean numbers of sensilla placodea per flagellum on 

the two antennae were compared. The number was significantly higher on the right 

than on the left antenna (mean difference of 10%). This finding should been 

interpreted with caution, however, since only one type of sensilla was considered, 

and there are other sensilla, such as sensilla trichodea (Dietz and Humphreys, 

1971), which play an olfactory role in honeybees. Moreover, in the paper of Letzkus 

et al. (2006), SEM images did not cover the whole antennal segment surface leaving 

a hidden, non-characterized area. Finally, only 7 out of 10 left-right pairs of antenna 

were from the same individuals. 

Rogers and Vallortigara (2008) extended the work of Letzkus et al. (2006) by 

investigating whether lateralization could be found in recall of olfactory memory at 

various times after the bees had been trained using both antennae (i.e. without 

forcing them to learn with one or the other antenna) and, moreover, whether such 

lateralities are manifested as side biases in responsiveness to odours in bees with 

both antennae in use. After PER training with both antennae in use, using lemon 

plus sucrose solution as the positive stimulus and vanilla plus saturated saline as the 

negative stimulus, bees were tested for recall 1-2 and 23-24 hours later and with the 

left or right antenna coated with the silicone compound. At 1-2 hours after training, 

bees showed excellent recall when tested using their right antenna, but poor or no 

recall when tested using their left antenna. By contrast, 23-24 hours after training 

recall was good when the left antenna was in use but not when the right antenna 

was in use, demonstrating that long-term memory is accessed mainly via the left 



 

antenna. Thus, retrieval of olfactory learning is a time-dependent process and 

involves lateralized neural circuits. 

Rogers and Vallortigara (2008) also checked whether the laterality observed in 

bees was manifested as side biases to odours presented to the left or right side of 

the bee without any covering of the antennae, and so in a more natural condition 

than in the paradigm requiring one antenna to be coated with latex. Bees were 

trained using both antennae and the recall at several intervals (1, 3, 6 or 23 hours) 

after training was tested using lateral presentation of the two stimuli and no coating 

of the antennae. The odour was presented to the left or right side of the bee. Use of 

an exhaust fan apparently meant that the antenna closer to the droplet received a 

higher concentration of odour reaching the antenna further from it. There were 

significantly more correct PER responses to odours presented on the right than on 

the left side at 1 hour after training. No significant left/right difference occurred at 3 

hours after training. At both 6 and 23 hours after training the correct responses were 

higher on the left side than on the right side. The study by Rogers and Vallortigara 

(2008) clearly demonstrates that the asymmetry is more complex than a difference in 

learning ability of the right and left antennae and that the difference in number of 

olfactory sensilla is unlikely to explain entirely the behavioural laterality. 

A shift of recall access from one to the other side of the brain has been noted 

previously in birds (Cipolla-Neto et al., 1982; Clayton, 1993; Andrew, 1999). This is 

interesting because it suggests that lateralized events in memory formation may be 

similar in bees and vertebrate species. 

It has been shown (Sandoz and Menzel, 2001) that, after a period of 3 hours 

delay, bees can respond to a conditioning stimulus on the contralateral side, 

suggesting that both sides of the brain share information about the learned odour. 



 

Thus, a transfer of the learned information between sides of the brain in honeybees 

or a generalization between odorants on each side has been hypothesized (Sandoz 

and Menzel, 2001). Moreover, interestingly, in a bilateral differential conditioning 

procedure, conditioning performances have been shown to be significantly higher on 

the left than on the right side. Three hours after retention, as in the other 

experiments, honeybee transfer information about the odour they had been trained 

on to the opposite side. It is important to note that this finding is in contrast with the 

findings of Letzkus et al. (2006) that show that honeybees perform better at 

responding to odours, and at odour discrimination, when they are trained through the 

right antenna. 

A shift of memory access from the right to the left side of the brain would allow 

the right antenna to learn about new odours without interference from odour 

memories in long-term stores. In fact, since bees visit different flowers at different 

times of the day, as nectar becomes available, the formation of different odour 

associations during the course of the day would be required, and this is a process 

that might be aided if recall of earlier odour memories is avoided on the side of the 

brain undergoing new learning. Kells and Goulson (2001) reported that bumblebees 

Bombus spp (Hymenoptera, Apidae, Apinae, Bombini) show preferred directions of 

circling as they visit florets arranged in circles around a vertical inflorescence. In 

three out of four species examined the majority of bumble bees circled in the same 

direction. Since two species circled anticlockwise and one clockwise, it is unlikely 

that the asymmetry is a function of the structure of the florets. The biased circling 

might well have something to do with lateralization of antennal responsiveness to 

odours or lateralized leaning and memory recall. 



 

Further evidence of sensory lateralization in invertebrates has been obtained 

recently in fruit flies Drosophila (Duistermars et al., 2009). The use of bilateral 

olfactory cues to track odours in flight has been investigated using a modified flight 

simulator that enables maneuvers in the yaw axis. Results showed that flies readily 

steer directly toward a laterally positioned odour plume and do so by orienting 

saccades directly up an odour gradient. This ability is eliminated when the sensory 

input to one antenna is occluded, precluding odour detection and thus eliminating 

bilateral spatial comparison. Flies with a single intact antenna performed frequent 

yaw deviations but these paired saccades frequently occurred outside of the plume. 

Moreover, odour presentation resulted in a significant bias in flight heading toward 

the intact antenna and occluding the left antenna had a stronger effect than 

occluding the right antenna, revealing that sensory signals from the left antenna 

contribute disproportionately more to odour tracking than signals from the right 

antenna. Input to the left antenna has been shown to be sufficient to elicit a 

significant odour-mediated decrease in saccade frequency and to be able to 

generate a higher proportion of left turns than the right antenna in response to odour. 

These results reveal a consistent asymmetry in antenna-mediated flight control, 

suggesting that asymmetrical cross-modal olfactory and mechanosensory signals 

facilitate stable odour tracking in complex multisensory environments and likely also 

increase the efficiency of search behaviour. 

Letzkus et al. (2007) used a PER paradigm to investigate visual learning of 

bees using their left or right eye. Bees were tested with their antennae removed, 

because there is evidence that conditioning to visual stimuli is easier to obtain in 

bees without antennae (Hori et al., 2006). Bees were tested with both eyes covered 

(BEC), both eyes exposed (BEE), their right eye exposed (REE) or their left eye 



 

exposed (LEE). The conditioned stimulus (CS) was a large yellow rectangle 

presented on a computer-controlled display. The bees were conditioned to extend 

their proboscis in anticipation of a food reward (unconditioned stimulus, US) 

according to the colour of the stimulus CS. Each experiment consisted of two 10-

training sessions; the first one was conducted the morning after the eyes were 

covered and the second one was conducted the morning after the first 10-training 

session. The two 10-training sessions were subdivided in four five-trial blocks, during 

which the CS (yellow rectangle on monitor) was presented for 15 s. BEC bees 

showed 0% learning performance throughout the entire training. The BEE bees’ 

performance rose steadily, with a mean response rate of 39% in the last five trials. 

REE bees also showed an increase in learning performance, but the response rate 

was slightly (but not significantly) lower than that of BEE bees throughout the 

training. Only, in the last five trials REE bees showed a performance level of 33%. 

LEE bees reached a mean learning performance of only 13%, which was 

significantly lower than that of BEE and REE groups. LEE bees were statistically 

different from BEE and REE bees in trials 6–10 and from BEE bees in trials 11–15. 

Thus, at least in the last part of the test, bees seem to primarily use the right eye for 

learning and/or detecting objects (for associating a visual stimulus with a food 

reward, in this case). Since the second 10-training session was performed the day 

after the first 10-training session, it is questionable whether the results found are 

dealing with learning or with memory and, if memory, whether is long- or short-term 

memory. Comparing these findings with the lateralization found in olfaction, Letzkus 

et al. (2007) argued that sensory inputs from the right side are used preferentially 

while foraging or feeding. However, this result cannot be compared directly with the 

asymmetry found in the olfactory response because of several reasons. First, the 



 

right antenna has been shown to be involved in short-term memory for odours, i.e. in 

the learning process of new odours, while the long-term memory is recalled via the 

left antenna. Thus, as concerns olfaction, it is not possible to generalize saying that 

sensory inputs from the right side are used preferentially while foraging. Moreover, 

not all the odours, even if most of them, are connected with the feeding process: 

they can have a different biological meaning as, for instance, alarm pheromones. For 

the eye asymmetry, it could be possible that the right eye is involved in feeding while 

the left eye is involved in predators detection, as found in some vertebrates 

(Vallortigara and Rogers, 2005), but further studies are required to test this 

hypothesis. Furthermore it seems important to test antennal and eye preferences for 

different odours and visual stimuli in naïve honeybees, i.e. without any training. 

Asymmetries in eye use have been studied also in cephalopods. Byrne et al. 

(2002; 2004) measured preferential eye use in octopus (Octopus vulgaris) by 

recording the time animals spent watching a stimulus presented to them outside their 

tanks while holding on to the front glass of the tank. The stimulus used was a life-

sized plastic crab model (resembling the prey crabs fed to the octopuses) mounted 

on a transparent Plexiglas stick, which was presented at five equidistant positions 

along the length of the tank and was held at each position for 3 min according to a 

random sequence, so that the time at each of the five positions was the same to 

avoid directional bias. Individuals displayed lateral preferences for either the left or 

right eye (Byrne et al., 2002) but the asymmetry in octopuses followed an anti-

symmetrical distribution, with no systematic bias towards left or right at the 

population level. It is interesting to note that Octopus vulgaris is a solitary species 

(Hanlon and Messenger, 1998) and therefore an antisymmetrical distribution of 



 

preferential eye use would be not unexpected according to the theoretical reasoning 

outlined above. 

 

 

1.2. Motor asymmetries 

 

Ants (Formicidae) and spiders (Araneae) have been shown to possess 

behavioral left-right asymmetries (Heuts et al., 2003). A significant majority of 

spiders in the field with mainly left-leg lesions was observed and also their weak leg 

lesions caused by catching them were significantly biased to the left. In ants, 

appendage severance was significantly more frequent on the left than right side. 

The greater vulnerability of left legs compared to right legs in spiders in general 

is indicated by the evidences of 305 left-leg versus 254 right-leg lesions (obtained 

from 18 spider families - Heuts and Lambrechts, 1999). It has been shown that 

separate spider families and species are also significantly left-biased and never 

significantly right-biased (Heuts and Lambrechts, 1999). The left-side vulnerability 

may be due to anatomical factors (joint strength and leg length) and/or a complex of 

various behavioural factors such as a propensity to move the legs of one side when 

alarmed, or left/right attack biases in spider predators as documented in some 

vertebrates species (Vallortigara and Rogers, 2005). There are a few direct 

observations of spider leg use when interacting with spider prey. Ades and Ramires 

(2002) demonstrated that the spitting spider Scytodes globula (Scytodidae) uses its 

legs in an asymmetric way during prey handling. This species catches its prey by 

rapidly ejecting a mixture of glue and venom from the chelicerae and, on the direct 

contact during the handling of the prey, it uses legs I and/or II for longer than the 



 

other legs. Looking at the missing legs in spiders collected in the field it was found 

that in 162 field-collected spiders, 36 had one leg missing; among these 36 the 

frequency of spiders with a leg I or II missing was significantly higher than that of 

spiders with a leg III or IV missing. There was a significant difference between those 

missing the left I leg and those missing the right I (15 missing the left I leg and 4 

missing the right I leg) but, even through more spiders lacked left leg II than right leg 

II, there was no significant bias. Ades and Ramires (2002) also looked at touches 

during predatory encounters of individual S. globula with prey individuals from 3 

species of spiders, Loxosceles intermedia, L. gaucho, and L. laeta and they 

observed that touching movements with the left anterior legs were significantly more 

frequent than with the right anterior legs. Spiders, however, were tested only once, 

and thus repeated testing of the same individuals is required to confirm the 

constancy of use of the preferred leg. Additionally, it would be interesting to 

investigate the use of the legs in handling non-spider prey and in other behavioural 

contexts in order to assess the generality of leg preference. The reason and possible 

adaptive benefits of a preferential use of both left leg I and II could be explained 

checking whether both left legs I and II explore by touching after shorter latency than 

both the right legs or whether there is a higher density of tactile (chemo) receptors in 

them. In other words, this side bias might reflect a sensory lateralization. 

Evidence of lateral biases in ants has been reported too (Heuts et al., 2003). 

Twelve ant species Lasius niger kept mainly to the right on their foraging “streets”, 

whereas there was only one species which kept to the left. On streets in trees, 49 

Lasius niger colonies kept to the right versus 26 to the left. In this ant species a 

significant majority of couples in the laboratory had the left side of their bodies 

exposed to their partners when resting. This identical left body side exposure when 



 

resting and foraging in streets also correctly predicted that lone foraging L. niger 

would significantly more often turn to the right than to the left (the ratio was 14 to 2). 

The existence of a specific behavioural lateralization (sharp left turns) in L. niger and 

four other ant species when running on unknown ground in an “alarm” situation (24 

left vs. 4 right turns) makes sense because these sharp left turns increase the 

chance of remaining on the spot when a potential danger must be countered, 

whereas the blunt turns to the right during foraging are beneficial to a fast and 

efficient transport of food, especially so in dense “traffic”. 

Bradshaw and Rogers (1993) noted right-claw anatomical and behavioural 

dominance in a crab species, suggesting stronger right than left appendage muscles 

like that in ants (an assumption based on their sharp and fast left turns). A more 

recent study (Backwell et al., 2007) conducted on male fiddler crab (Uca vocans 

vomeris) investigated the consequences of being left-clawed in this species 

composed of predominantly right-clawed individuals (less than 1.4% of males are 

left-clawed). Left-clawed males usually fight opposite-clawed opponents. Thus, the 

prediction, in line with the theoretical models on the evolution of population-level 

asymmetries (Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009) and with the 

evidence in humans of the advantage conferred by being left-handed in interactive 

sports like tennis or boxing (Raymond et al., 1996; Brooks et al., 2004) is that left-

clawed males would be better fighters due to their relatively greater experience in 

fighting opposite-clawed opponents. However the expectation did not match with the 

results that showed that a left-clawed male retains a burrow for a period that is 

significantly shorter than a size-matched right-clawed male. Moreover, when 

experimentally displaced from their burrow, even if no difference was found in the 

tactics used by left- and right-clawed individuals to obtain a new burrow, right-clawed 



 

males were significantly more likely than left-clawed males to initiate fights with 

resident males. In the same way, right-clawed residents engaged in significantly 

more fights than left-clawed residents. This occurred as a consequence of the 

previous observation, indeed that a significantly greater proportion of left-clawed 

males retreat into their burrow observing and avoiding fights. However, when a fight 

occurs, no significant difference in the proportion won by left- and right-clawed 

residents has been observed. Eventually left-clawed males appear to be less likely 

to fight and when they fight they are less likely to win than right-clawed males. An 

explanation for that may be that that the left-clawedness is causally related to their 

reduced ability in fights, i.e. it is associated with developmental pathway that affects 

general performance. Lastly, left-clawed males might be generally inclined to avoid 

fights, as they are more likely to escalate an encounter with a larger opponent, which 

they are unlikely to defeat. The underlined strategy will be that it might be easier to 

assess an opponent’s strength when it is of the same clawedness (Hyatt and 

Salmon, 1978). 

With regard to vertebrates, Bradshaw and Rogers (1993) mention a significant 

bias to left-side lesions in whitefish attacked by lampreys, as in spiders and ants. A 

possible explanation could be that right-side muscles are stronger than left-side 

muscles in animals. It is interesting to point to similarities between general trends in 

vertebrates and the lateralization in spiders and ants. It could be argued that this 

could be simply chance, but in the case we would expect a Gaussian distribution of 

side use preference with half population showing a right-side use preference and 

half population showing a left-side use preference and not an alignment of the 

direction at the population level. Fish approach a predator more closely for 

inspection if it is on their left side (Bisazza et al., 1999); the spiders studied by Ades 



 

and Ramires (2002) and one of spider species studied by Heuts et al. (2003) 

similarly inspected a spider opponent by touching it with a left leg. Several fish 

species and toads tend to expose their left side to conspecifics because they inspect 

conspecifics with their left eye (Vallortigara et al., 1998; Bisazza et al., 1999); ants 

exposed their left side to nest-mates when resting and when keeping to the right on 

their foraging trails. Like various birds and fish that forage for food, the lone foraging 

Lasius niger ants also showed a significant right-turning bias (that might facilitate 

their keeping to the right when not alone on foraging trails). 

Behavioural asymmetries (left-right, anterior-posterior) in arm use have been 

observed in octopuses, Octopus vulgaris (Byrne et al., 2006a). A preferential use of 

posterior arms for walking has been reported for this species (Mather, 1998) and, in 

their study, Byrne et al. (2006a) tested the limbs use of 8 animals, 7 of these had 

been involved in the eye preference study described above (see Byrne et al., 2004). 

A T-maze containing a food reward was placed in the tank so that the octopus could 

explore and retrieve the food from the T-maze by inserting only one arm at a time. 

Within each trial, the researchers scored (1) the contact arm used to first touch the 

T-maze, (2) the arm used in the first choice (i.e. that used to make a choice into the 

left or the right) and, the arm used in the second choice (used to search for 

additional food). The results showed a contact arm preference for frontal arms, while 

for the first and second choice arm 5 octopuses used frontal arms and 3 used first 

the frontal arms to touch and, then, the posterior ones to reach into the T-maze. Only 

4 octopuses showed a significant preference at the first contact (2 left and 2 right); 2 

right-eyed animals preferred the anterior right arm most (conventionally indicated as 

R1); 2 left-eyed preferred L2 arm. Thus, arm preference in octopuses is present at 

the individual level. However, in comparison with lateral bias in eye use (Byrne et al., 



 

2004), in which 92% of the population showed a preference for a specific eye, lateral 

bias in arm use was not as strong (all seven octopuses used their favoured arm in 

38.3 ± 5.7% of all cases). Five subjects were tested for both lateral eye and arm use 

preferences: four of them exhibited a preference for the arms on the same side of 

the body as the preferred eye. Byrne et al. (2004) argued that lateralized eye use 

might be based on a task division between the two hemispheres of the octopus brain 

for different behaviour. The experimental setup in the former study triggered a 

behavioural exploratory response to a prey-like object. In the latter study, the food 

item was visible to the octopuses through a transparent T-maze; thus the arm choice 

could have been influenced by the eye preference. This gives rise to the question of 

how strongly eye and arm choice influence each other. Byrne et al. (2006b) 

considered the visual-motor connections between eye and arm. They hypothesized 

that motor asymmetry may influence the choice of eye use or that lateralized eye 

use may influence arm preference. To investigate this plastic objects were 

positioned on three different levels in a water column and the octopuses were 

observed during approach, contact initiation and exploration of objects. None of the 

seven subjects showed a left/right bias for approaching the objects, independently of 

the position of the objects in the water column. A strong association was found 

between the direction of approach and the first arm used to touch the objects. The 

most commonly used arm was the one in a direct line between the eye used in 

looking at the object, and the object. In 99% of all cases, if the object was to the 

anterior of or above the octopus, the octopus used an anterior arm, if the object was 

to the posterior of or below the octopus, a posterior arm was used and, if the object 

was to the right (or left) of the octopus, a right (or left) arm was used. The results of 

this study indicate that octopuses most commonly use an arm to initiate contact with 



 

an object that is in a direct line between the eye used to look at the object and the 

object. Anatomically this is a logical solution, because it would be more complicated 

for an octopus to use an arm that is on the other side of its body to grab an object 

during monocular visual exploration. However, the researchers did not investigate 

whether the same eye and arm coordination occured in a more demanding task. 

Behavioural asymmetries in mating behaviour have been reported in some 

invertebrate species. In a study conducted on the earwig Labidura riparia (Insecta: 

Dermaptera) by Kamimura (2006) and, in particular, on the males of this earwig 

species with two penises, nearly 90% of field-collected and laboratory-reared males 

hold their intromittent organs in the ‘right-ready’ state when not mating as well as 

when mating. However, not all earwig taxa have two penises, warranting more study 

of the earwig species. Looking at the phylogenetic relations in this species, 

Kamimura (2006) suggested an intriguing evolutionary scenario. Male earwigs 

evolved from a primitive state with both penises held in the ‘not-ready’ orientation 

when not mating, first through a stage where they always held one penis (either the 

right or left at random) in the ‘ready’ orientation. Males that still possessed two 

morphologically indistinguishable penises, but which preferentially held the right in 

the ‘ready’ orientation represented the next evolutionary step. Finally, the less-

preferred (left) penis disappeared altogether, leaving only traces of a closed, non-

functional ejaculatory duct. Thus, a purely behavioural asymmetry might have 

facilitated the evolution of a fully-blown morphological asymmetry. 

This is a fine example of a phenotype-precedes-genotype mode of evolution 

because the right-ready and left-ready penis variants, which are equally common in 

evolutionary intermediates, and therefore probably not heritable (Palmer, 2004), 



 

clearly existed before the genetically captured right-ready phenotype seen in L. 

riparia. 

A similar behavioural asymmetry in mating behaviour, due to an anatomical 

asymmetry dependent by a maternal effect gene, has been observed in the pond 

snails Lymnaea stagnalis (Asami et al., 2008; Davison et al., 2009). The pond snail 

Lymnaea stagnalis is a self-fertile hermaphrodite; in any single mating an individual 

takes the male role or the female role. Chirality in snails is determined by the single 

locus of maternal effect (Boycott and Diver, 1923; Sturtevant, 1923). This means that 

the phenotype of an individual is dependent upon the genotype of their mother. 

Asami et al. (2008) used crossing experiments to demonstrate that the primary 

asymmetry of L. stagnalis is determined by the maternal genotype at a single 

nuclear locus where the dextral allele is dominant to the sinistral allele. Dextral is 

dominant in Lymnaea (by convention, D = dextral allele; S = sinistral allele). The 

dextral and sinistral stocks are genetically DD or SS, respectively. Mating virgin 

sinistral and dextral, offspring that are either genetically dextral (genotype = DS) but 

with a shell coil that is either sinistral (sinistral mother) or dextral (dextral mother) can 

be produced (F1 generation). By allowing the sinistral F1 mother to self-fertilise, 

offspring were produced with a dextral coil, but which are genetically DD, DS or SS 

(F2 generation). Dextral SS individuals were identified by virtue of them producing 

sinistral young. Davison et al. (2009) investigated the occurrence and the inheritance 

of a potential laterality trait in the pond snail and tried to understand if it is associated 

with both body chirality and nervous system asymmetry. They found that all dextral 

“male” snails circled in a counter-clockwise manner, no matter if they were paired 

with another dextral or a sinistral snail. Similarly, all the sinistral snails, both those 

paired with dextral and those paired with sinistral, circled in a clockwise manner. 



 

Chirality in mating behaviour is matched by an asymmetry in the brain. L. stagnalis 

has a ring of nine ganglia that form a Central Nervous System (CNS) around the 

oesophagus, with two more distant buccal ganglia on the buccal mass. In all dextral 

individuals, the right parietal ganglion was fused with the visceral ganglion, so that 

the left visceral ganglion was unpaired. By contrast, in all sinistral individuals, the 

reverse was observed; the left parietal ganglion was formed by fusion with a visceral 

ganglion. The central nervous system in sinistral pond snails, therefore, has an 

asymmetry that is reversed compared to that of dextral snails. As the coil of the shell 

is determined by the maternal chirality genotype and the asymmetry of the behaviour 

is in accordance with this, it is likely that the same genetic locus or, a closely linked 

gene determines the behaviour. These findings suggest that the lateralized 

behaviour of the snails is established early in development and is a direct 

consequence of the asymmetry of the body. Interestingly enough, in their study 

Davison et al. (2009) discovered a dextral individual with a typical “sinistral” brain. 

Although they were, unfortunately, not able to determine the asymmetry in the 

mating behaviour of this individual, the result is in line with studies in other animals, 

including humans, where it has been found that a variable proportion of individuals 

have a brain asymmetry that is not in the direction that might be expected based on 

their behaviour (McManus, 2002). 

Evidence of a population level lateralized behaviour has been found in the giant 

water bugs, Belostoma flumineum Say (Heteroptera: Belostomatidae; Kight et al., 

2008). The giant water bugs are large aquatic insects, predators of other aquatic 

invertebrates and small fishes. Bugs were trained to swim left or right in a T-maze 

and a significant preference to turn left, even when not reinforced, was observed. To 

control for environmental cues that might bias the turning direction of water bugs in 



 

the maze, the authors ran two separate experiments on independent groups of 20 

water bugs. Both experiments were identical with the exception that, after the first 

group of 20 water bugs was tested, the maze apparatus was rotated 180° in the 

laboratory room, thus reversing the polarity of all directional environmental cues 

such as lighting or electromagnetic fields. Again the same left turn tendency was 

observed. Hence, the explanation of the presence of this bias could be the existence 

of asymmetries in the nervous system or asymmetric exoskeletal morphology (i.e. 

leg length) that could cause biased swimming behaviour. 

An asymmetry in T-maze behaviour has been reported also in the cuttlefish 

(Sepia officinalis) trained to learn how to enter a dark and sandy compartment at the 

end of one arm of the maze (Alves et al., 2007). The study revealed that 11 out of 

the 15 cuttlefish displayed a pervasive side-turning preference. Interestingly, the side 

bias could be reliably detected in a single probe trial. It is unclear at present whether 

the asymmetry is motor or sensorial (preferential eye use) in origin. This study, and 

previous ones (Karson, 2003; Karson et al., 2003), used a sample size too small to 

establish whether lateralization was at the individual or population level. More recent 

work by Alves et al. (2009) in a large sample (N=107) has, however, confirmed the 

existence of a population-level bias; moreover, to find out whether or not visual 

perception plays a role in determining the direction of turning, cuttlefish were either 

tested inside the empty apparatus or with attractive visual stimuli (sand and shadow) 

on both sides of the T-maze apparatus. Alves et al. (2009) found a progressive 

postembryonic development of a bias to escape leftwards from three to 45 post-

hatching days using either an empty apparatus or one in which sand and shadow 

were provided. In vertebrates, age-dependent biases depend on functional, 

neurochemical or morphological asymmetries between the left and right sides of the 



 

brain (Regolin and Vallortigara, 1996). In cuttlefish, changes in side-turning 

preference along development could be linked to an asymmetrical postembryonic 

maturation of the brain. The optic lobes are paired structures of the central nervous 

system in cuttlefish (Nixon and Young, 2003). It is within the outer cortex of these 

optic lobes that the major processing of visual information is believed to occur 

(Williamson and Chrachri, 2004). Axons run from the outer cortex towards a central 

medulla (Young, 1974) considered to be a visual-motor region. Electrical stimulation 

of the medulla evokes responses from many effectors of the body (Boycott, 1961; 

Sanders and Young, 1940), and induces ipsilateral rotation (Chichery and Chanelet, 

1976). Alves et al. (2009) recently reported a correlation between side-turning bias 

and the size of the left and right optic lobes (OL) of cuttlefish. Authors reported a 

strong correlation at 30 post-hatching days between the laterality index (LI) and the 

ratio (volume of the Right Optic Lobe) / (volume of the Left Optic Lobe), with the ratio 

decreasing when the LI is increasing (Alves et al., 2009). Cuttlefish with a right 

turning preference possess a bigger left OL, and cuttlefish with a left turning 

preference possess a bigger right OL. 

 

 

1.3. Asymmetries in the nervous system 

 

In the fruitflies Drosophila melanogaster a previously unknown structure has 

been described, near the fan-shaped body, which connects the right and the left 

hemisphere (Heisenberg, 1994), i.e., an asymmetrical round body (AB) with a 

diameter of about 10 µm. In a sample of 2,550 wild-type flies, 92.4% of individuals 

were found to show the AB in the right hemisphere and the natural exceptions to this 



 

asymmetry constituted only 7.6% in the population (Pascual et al., 2004). Wild-type 

flies presenting symmetric structures were trained to associate an odour with an 

electric shock: a single training cycle for short term memory testing and five 

individual training sessions (15-min rest intervals) for long term memory testing. 

Pascual et al. (2004) observed no evidence of four-day long-term memory in wild-

type flies with a symmetrical structure, although their short-term memory was intact. 

Thus, brain asymmetry is not required to establish short-term memory but it is 

important in the formation or retrieval of long-term memory in Drosophila. It is 

interesting to compare this finding with the evidence of lateralized memory recall in 

honeybees (Letzkus et al., 2006; Rogers and Vallortigara, 2008). The right antenna 

has been shown to be important in the learning of new odours (Letzkus et al., 2006; 

Rogers and Vallortigara, 2008) and in the recall of the short-term memory for such 

odours (Rogers and Vallortigara, 2008). On the other hand, the left antenna is 

important in the recall of long-term memory for odours (Rogers and Vallortigara, 

2008). It has not been checked yet whether honeybee’s brain has an asymmetrical 

structure located in one side of the brain as fruitfly does. However, studies 

comparing the possible difference in volume between the glomeruli in the right and 

left antennal lobes are carried out (Haase et al., 2010) to investigate the possible 

asymmetry from an anatomical point of view. Thus, it is difficult to generalize these 

findings saying that lateralization is important for memory formation in both insect 

species. In the fruitfly brain, an asymmetrical neural structure is coincident with the 

ability to form long-term memories (Pascual et al., 2004). The study in fruitflies 

documented the existence of a single, asymmetrically positioned brain structure that 

appears to be important in the formation of long-term memory and that enhances 

long-term memory recall. Anyway, that study does not demonstrate any functional 



 

asymmetry in behaviour. For honeybees, it appears that the time-dependent recall of 

odour memories is lateralized with the transition from shorter-term recall via the right 

antenna to long-term memory recall via the left antenna taking place at about 3 

hours after training (Rogers and Vallortigara, 2008). Although similar neural 

structures might be involved in memory formation on the left and right sides, it 

seems that antennal inputs may access different neural circuits on the left and right 

sides. 

Further studies on memory storage for odours have been recently conducted 

on the terrestrial slug Limax (Matsuo et al., 2010). For this species olfaction is the 

most important sensory modality and this slug is capable of acquiring odour-aversion 

memories, i.e. when presented with the odour of food in combination with an 

aversive odour, it avoids that food. It has been demonstrated in bilateral PC ablation 

experiments that the procerebrum (PC), a secondary olfactory centre of terrestrial 

molluscs, is necessary for this type of learning (Kasai et al., 2006), and that the PC 

is the memory storage site. On the other hand, it has been hypothesized that only 

the unilateral PC is used for odour-aversion learning. It has been shown (Matsuo et 

al., 2010) that, when the PC is surgically ablated only unilaterally before or after 

conditioning, approximately half of the slugs are unable to for an odour-aversion 

association, while the other half keep an intact memory performance. Furthermore, 

no difference in the memory performance between the right and the left PC-ablated 

slugs has been found. These findings support the hypothesis that only the PC on 

one side, randomly determined, is used for the storage of odour-aversion memory in 

Limax. Thus, the terrestrial slug does not show a lateralization at the population level 

for the storage memory side as both fruitflies (Pascual et al., 2004) and honeybees 

do (Rogers and Vallortigara, 2008). 



 

Interestingly, no transfer of the unilaterally stored memory from one PC to the 

other, after up to 7 days post-conditioning, has been observed. The study by Matsuo 

et al. (2010) shows clearly that either the left or right PC is randomly used for 

olfactory learning, and that the side of use is determined at the level of the olfactory 

ascending pathway to the PC. Evidence is different than that found in honeybees 

(Sandoz and Menzel, 2001; Rogers and Vallortigara, 2008) showing that unilaterally 

acquired memory for odours is transferred to the other side of the brain, specifically 

from the right to the left side (Rogers and Vallortigara, 2008) with a time scale of 5-6 

hours. Even if no transfer has been observed in the terrestrial slugs, it may be that 

odour-aversion memory in this species is gradually transferred on a longer time 

scale. 

Another case of asymmetry in the nervous system is that of the snail Helix 

aspersa (Chase, 1986). In this species, morphological and physiological data 

revealed a right-sided bias in the mesocerebrum, which has a major role in the 

control of sexual behaviour. Thus, the right lobe has 23% more neurons than the left 

lobe, and the neurons are 24% larger. It has been observed that excitatory synaptic 

inputs derive predominately from neurons on the right side (Chase, 1986). 

Furthermore, the axons of right-side mesocerebral neurons and even those of left-

side neurons travel mostly in right-side connective nerves. In the study (Chase, 

1986) direct evidence for a role of the mesocerebrum in controlling sexual behaviour 

was provided through experiments with electrical stimulation. Thus, the asymmetry 

in the mesocerebrum seems consistent with the asymmetry observed in the sexual 

behaviour, which is executed almost entirely on the animal's right side. 

The nematode Caenorhabditis elegans offers a unique opportunity to address 

how symmetrical neuronal assemblies deviate to create functional lateralization. 



 

Hobert et al. (2002) provided a detailed cellular and molecular perspective on left-

right (L–R) asymmetry in the nervous system of C. elegans. In this species, 2/3 of 

the neurons (198 out of a total of 302) are present as bilaterally symmetrical pairs of 

neurons. These neuron pairs (or neuroblasts) that are initially bilaterally symmetrical 

- by postmorphogenetic position, morphology and lineage - choose at some stage to 

execute a L–R asymmetrical programme of further differentiation, in terms of 

migratory pattern, axonal paths or gene expression patterns. 

A case of L-R asymmetry deriving from previously symmetrical cells is the 

antisymmetry in odoursensory neurons. The AWC neuron class consists of two 

neurons, AWCL and AWCR, which are bilaterally symmetrical according to several 

distinct criteria (cell position, axon morphology, outgrowth and placement, dendritic 

morphology and pattern of synaptic connectivity) and are functionally symmetrical in 

that they express similar sets of genes and are both required for chemotaxis to 

specific odorants. Surprisingly, Hobert et al. (2002) found out that these two neurons 

show an asymmetrical pattern of expression of a putative G-proteincoupled olfactory 

receptor, encoded by the str-2 gene. The expression of str-2 is turned on in one of 

the two bilateral homologues during late embryogenesis and the induction of this 

gene occurs stochastically in either the left or the right cell. This is a case of 

individual asymmetry in which the sidedness is random in a population and, thus, is 

classified as ‘antisymmetry’. The antisymmetry of calcium-dependent odorant 

receptor expression in a bilaterally symmetrical C. elegans odour sensory neuron 

class is the best understood case of antisymmetry in the nervous system, in terms of 

functional relevance and genetic mechanisms. 

In contrast, the taste receptor neurons in C. elegans are an example of 

‘directional asymmetry’, i.e. biased forms of asymmetry. The ASEL/ASER neurons 



 

are the main taste receptors of C. elegans. ASEL and ASER are bilaterally 

symmetrical with regard to cell position, axon morphology, outgrowth and placement, 

dendritic morphology and qualitative aspects of synaptic connectivity patterns. 

However, three putative sensory receptors of the guanylyl cyclase class, gcy-5, gcy-

6 and gcy-7, are asymmetrically expressed in ASEL (gcy-6, gcy-7) and ASER (gcy-

5), two to left and one to the right. This asymmetry of gene expression correlates 

with a significant functional asymmetry of the two neurons - laser-ablation studies 

revealed that each of the individual neurons is responsible for sensing a distinct 

class of water-soluble chemicals. 

 A genome wide analysis of all gcy genes has been undertaken (Ortiz et al., 

2006) to examine the extent of lateralization of gcy gene expression patterns in the 

ASE neurons. The existence of a total of 27 gcy genes encoding receptor-type 

guanylyl cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the 

complete genome sequence of C. elegans has been reported. The receptor-type 

guanylyl cyclases has been found to be highly biased but not exclusively restricted to 

the nervous system: 41% (11/27) of all receptor-type guanylyl cyclases are 

expressed in the ASE gustatory neurons and one-third of all gcy genes (9/27) are 

expressed in a lateral, left/right asymmetric manner in the ASE neurons. A 

comparative study in the related nematode C. briggsae has been conducted (Ortiz et 

al., 2006) showing that the complement of gcy genes in C. briggsae differs from C. 

elegans in chromosomal localization, number of gcy genes, and expression patterns. 

Specifically, differences in gcy expression patterns in the ASE neurons of C. 

briggsae arise from a difference in cis-regulatory elements and trans-acting factors 

that control ASE laterality. Results (Ortiz et al., 2006) indicate the existence of a 

surprising multitude of putative chemoreceptors in the gustatory ASE neurons and 



 

suggest the existence of a substantial degree of laterality in gustatory signaling 

mechanisms in nematodes. 

An additional asymmetry has been demonstrated in ASE chemosensory 

neurons (ASEL and ASER) of C. elegans (Suzuki et al., 2008). Optical recordings of 

calcium concentration in ASE neurons in intact animals showed that ASEL is a ON-

cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, 

stimulated by decreases in NaCl concentration, with both ASE neurons reporting 

changes n concentration rather than absolute levels. Moreover, the ON-OFF 

asymmetry is the result of intrinsic differences between ASE neurons and it extends 

to the level of behavioural output. Specifically, ASEL lengthens bouts of forward 

locomotion (runs) whereas ASER promotes direction changes (turns). The 

asymmetry of ASE neurons at the sensory level (ON-cell versus OFF-cell) and the 

behavioural level (runs versus turns) are precisely those of a simple yet novel 

neuronal motif for computing the time derivate of chemosensory information. This 

means that the net effect of ASE activation is a behavioural signal that approximates 

the time derivate of salt concentration. It is likely to think that the functional 

asymmetries of ASE neurons have emerged as a means of computing a quantity 

that is essential to chemotaxis in this organism. ASE asymmetry is established and 

maintained by a gene regulator network, whose complexity could be justified by the 

critical role of chemotaxis in the search of food and habitat.  

Very recently, Ortiz et al. (2009) investigated the extent of functional 

lateralization of the ASE neurons and genes responsible for the left/right asymmetric 

activity of ASEL and ASER. They showed that a substantial number of salt ions are 

sensed in a left/right asymmetric manner and that lateralized responses to salt allow 

the worm to discriminate between distinct salt ions. Examining the chemotaxis 



 

behaviour of animals harbouring mutations in eight different receptor-type, 

transmembrane guanylyl cyclases (encoded by gcy genes), which are expressed in 

either ASEL (gcy-6, gcy-7, gcy-14), ASER (gcy-1, gcy-4, gcy-5, gcy-22), or ASEL 

and ASER (gcy-19), the authors identified the molecules involved in sensing salt 

ions and/or transmitting such sensory information. Disruption of a particular ASER-

expressed gcy gene, gcy-22, results in a broad chemotaxis defect to nearly all salts 

sensed by ASER, as well as to a left/right asymmetrically sensed amino acid. In 

contrast, disruption of other gcy genes resulted in highly salt ion-specific 

chemosensory defects. 

New insights into the evolution of body plans and left-right specification in 

Bilateria have been recently provided (Grande and Patel, 2009). The signalling 

molecule Nodal, a member of the transforming growth factor-β superfamily is used 

by the molecular pathway that leads to left-right asymmetry in vertebrates and in 

other dueterotomes, but no nodal orthologue has been reported in the two main 

clades of Bilateria: Ecdysozoa (including flies and nematodes) and Lophotrochozoa 

(including snails and annelids) before. Grande and Patel (2009) reported the first 

evidence for a nodal orthologue in a non-dueterostome group, indicating that the 

involvement of the Nodal pathway in left-right asymmetry might have been an 

ancestral feature of the Bilateria. Furthermore, this study suggests that nodal was 

present in the common ancestor of bilaterians and it too may have been expressed 

asymmetrically. 

Very recently the cellular and molecular mechanisms that lead to neuronal 

asymmetries in the nematode C. elegans has been investigated and compared to 

the mechanisms involved in asymmetrical neural development in zebrafish D. rerio 

(Taylor et al., 2010). The specification of the left and right AWC neurons of the worm 



 

olfactory system and the asymmetry in the fish epithalamus has been analyzed. It 

has been shown that both these species use iterative cell-cell communication, i.e. 

reciprocal interactions rather than a simple linear pathway, to establish left-right 

neuronal identity and reinforce this left-right asymmetry but with different outcomes 

and molecular details. The functional differences in morphologically identical 

neurons in the olfactory system of C. elegans are the result of gap-junctional 

communication and calcium influxes; whereas the neuroanatomical left-right 

differences in the epithalamus of D. rerio are the result of morphogenic changes 

regulated by secreted signalling molecules. Although it is remarkable that the two 

species considered share some common arguments - the interaction of neurons 

across the midline during formation of the asymmetrical nervous system and the 

inherently stochastic nature of some developmental pathway - results need to be 

interpreted with caution since the evolutionary gap between the 302 neurons of the 

worm and the estimated 78,000 neurons of the larval fish (Hill et al., 2003) is 

considerable. However, even if the striking differences in the genetic and cellular 

pathways underline the improbability that nematode and zebrafish lateralization 

arose from the same ancestral event, because of the advantages conferred by 

asymmetrical neural systems it is likely to assume that the left-right differences in the 

two species have evolved convergently. 

Very recently Kharchenko et al. (2010) show that learning involves 

synchronous and asymmetric serotonin-dependent mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) activation in identified 

neurons of the food-aversion network in the mollusc Helix lucorum. The signal 

transduction pathway MAPK/ERK plays an important role in the regulation of gene 

expression during memory formation both in vertebrates and invertebrates. In the 



 

mollusc Helix lucorum, serotonin induces activation of MAPK/ERK in the central 

nervous system (CNS) upon food aversion learning. Such learning depends on a 

neuronal network in which specialized neurons play distinct roles. Kharchenko et al. 

(2010) used serotonin application to the CNS in order to mimic learning and 

analysed the MAPK/ERK activation in single neurons of the food-aversion network, 

focusing both on command neurons, which mediate withdrawal behaviour and 

process information pertaining to the unconditioned stimulus, and on neurons of the 

procerebrum, the mollusc’s olfactory centre, which process information from the 

conditioned stimulus. Results showed that after food aversion learning phos-pho-

ERK levels increased significantly in RPa(2/3) command neurons of the right parietal 

ganglia and in the procerebrum. In contrast, no activation of MAPK/ERK was 

detected in similar conditions in the corresponding neurons of the left parietal ganglia 

LPa(2/3). This finding that learning involves synchronous and asymmetric serotonin-

dependent MAPK/ERK activation may correspond to a lateralization of memory 

processes in the mollusc brain. It may be argued that as in nematodes (Hobert et al., 

2002) in Helix the left and right neurons of avoidance behaviour can be asymmetric 

in the expression of some receptors connected to intracellular MAPK/ERK cascade 

and thus the asymmetry is associated with the ability of molluscs to discriminate in a 

tiny way odour or taste information. One more possible explanation of why should 

the memory trace be asymmetrical in these animals might be related to the 

developmental processes that build up gastropods, specifically gastropods are 

characterized by a visceral mass that has undergone a 180 rotation during 

development. A result of such torsion is the fact that snails develop an asymmetrical 

nature with the majority of growth occurring on the left or right side. 

 



 

Chapter 2 – Theoretical approach 

 

2.1. Introduction 

 

In the previous chapter it has been shown how lateralization may confer 

several advantages at the individual level. One intriguing aspect of lateralization, 

however, cannot be explained by arguing that lateralized brains are more efficient. 

The direction of lateralization, in fact, is usually aligned at the population level, with 

60–90% of individuals showing the same direction of bias (depending on species 

and behaviour considered, see Previc, 1991 and Vallortigara and Rogers, 2005). 

Individual efficiency does not require an alignment of lateralization at the population 

level, and does not explain why a minority of individuals lateralized in the other 

direction almost always exists (e.g. left-handedness in humans). One could argue 

that population-level lateralization is a mere by-product of genetic expression, but it 

has been proved that selection for the strength of lateralization does not necessarily 

favour one direction of lateralization over the other (e.g. Collins, 1985). 

Two explanations (not mutually exclusive) have been proposed for the 

evolution of population-level asymmetries. Some genetic models of human 

handedness (McManus, 1999; Annett, 2002) posit one or more ‘directional’ (D) 

alleles that cause right-handedness, and one or more ‘chance’ (C) alleles that cause 

left- or right-handedness at random. A population with a majority of right-handers 

and a minority of left-handers can be maintained, in these models, if DC genotypes 

have higher fitness than CC and DD genotypes (heterozygotic advantage), for 

instance, if intermediate levels of brain asymmetry are superior to both extreme 

asymmetry and symmetry (Corballis, 2006). Suggested disadvantages of CC and 



 

DD homozygotes include impairments in spatial, verbal and other cognitive abilities 

(Annett, 2002; Barnett and Corballis, 2002; McManus, 2002). 

The second suggested explanation is that the population structure of 

lateralization may reflect, not a balance between symmetry and asymmetry, but an 

evolutionarily stable strategy that can arise when individually asymmetrical 

organisms must coordinate their behaviour with that of other asymmetrical 

organisms (Vallortigara and Rogers, 2005). This hypothesis recognizes that brain 

asymmetries manifest themselves in behaviour, and thus may have fitness 

consequences in interactions with other organisms. For instance, vigilance 

behaviour and escape responses elicited by predators often show lateral biases 

(Lippolis et al., 2002, 2005; Vallortigara and Rogers, 2005). This idea has been 

studied in a game-theoretical model considering group-living prey subjected to 

predation (Ghirlanda and Vallortigara, 2004; Vallortigara, 2006). Assuming first that 

lateralization influences the direction of escape from predators, two contrasting 

selection pressures on lateralization have been considered. On one hand, 

individuals in large groups have a lesser risk of being targeted by predators (the so-

called ‘dilution’ of predation risk, Foster and Treherne, 1981). This favours 

individuals who tend to escape in the same direction as the majority, thus promoting 

the same direction of lateralization across the whole population. On the other hand, 

given that predators may learn to anticipate prey escape strategies, individuals who 

escape in a different direction from the majority may surprise predators and survive 

predation attempts more often. This tends to favour populations in which left- and 

right-lateralized individuals are equally common. 

This model shows that population-level lateralization can emerge provided that 

none of the two selection pressures is much stronger than the other. According to 



 

this view, the evolution of brain lateralization would have occurred in two steps: first, 

individuals became lateralized because of advantages from increased brain 

efficiency (e.g. Rogers et al., 2004); and second, individually lateralized organisms 

aligned the direction of their asymmetries when they started to interact to each other 

in ways that made their asymmetry relevant to each other’s behaviour (e.g. in fishes 

shoaling, Vallortigara and Bisazza, 2002). Here, I investigate whether a similar 

scenario could hold when selection pressures on lateralization arise purely from 

intraspecific interactions of competition and cooperation, rather than interspecific 

prey-predator interactions. 

 

 

2.2. Model 

 

I study the influence on lateralization of purely intraspecific interactions using a 

similar modelling strategy as that of Ghirlanda and Vallortigara (2004). I assume that 

individuals engage in both antagonistic (competitive) and synergistic (cooperative) 

interactions. An individual’s pay-off depends on its success in interactions, which is a 

function of how common its lateralization is in the population. Synergistic activities 

tend to favour individuals with the same lateralization (they can, for instance, have 

an easier time coordinating physical activities, use efficiently the same tools, etc.). 

Antagonistic activities, on the other hand, tend to favour individuals different from the 

majority. The reason is similar to the one mentioned above for predation: minority-

type individuals will be able to surprise opponents, adopting behaviours to which 

opponents are less accustomed. For example, it has been argued that human left-

handers may hold an advantage in fighting, or in more recent times in certain 



 

sporting activities, but only so long as they remain in the minority (Raymond et al., 

1996). Thus, if only synergistic interactions were present, the population would be 

composed entirely of individuals with the same lateralization. If only antagonistic 

interactions were present, the population would be composed of left- and right-

lateralized individuals in proportion of one-half. I study whether, when both kinds of 

interactions exist, it is possible to maintain a population in which left- and right-

lateralized individuals coexist in a proportion different from one-half, and how such a 

situation is influenced by model parameters. 

Let x be the proportion of left-lateralized individuals in the population. The 

fitness f(x) of such an individual may be written as the sum of a term accounting for 

antagonistic interactions (a) and one-term accounting for synergistic interactions (s): 

 

f(x) = a(x) + cs(x)         (1) 

 

where the parameter c weights the relative importance of the two kinds of 

interactions. I use the following forms for a(x) and s(x)  

 

a(x) = exp(-kax)           (2) 

s(x) = 1 – exp(-ksx)          (3) 

 

where ka and ks are positive parameters. In keeping with the assumptions done, a(x) 

decreases with the proportion of individuals with the same lateralization, while s(x) 

increases (Figure 1). 

 



 

 

 

Figure 1. Graph of the functions a(x) and s(x) (equations (2) and (3)), which enter fitness (equation 

(1)). Parameter values: ka=5, ks=1. Since ka>ks=1, the fitness contribution of antagonistic interactions 

a(x) decays more quickly than the fitness contribution of synergistic interactions s(x) increases. Solid 

curve, antagonistic interactions, a(x); dotted curve, synergistic interactions, s(x). 

 

I have chosen an exponential shape because it is often a good approximation 

to actual learning curves, that is, how performance on a given task increases as a 

function of increasing experience with that task (Mackintosh, 1974; Pearce, 1997). In 

Figure 1, parameter values are chosen so that ka>ks (in particular ka=5, ks=1). This 

means that a(x) decreases more rapidly than s(x) increases; i.e. the fitness 

contribution of antagonistic interactions varies more quickly with strategy frequency 

than the fitness contribution of synergistic interactions. 

The fraction of right-lateralized individuals in the population is 1-x. Since any 

intrinsic advantage of being left- or right- lateralized is assumed, the fitness of these 

individuals is  

 

f(1-x) = a(1-x) + cs(1-x)        (4) 



 

 

Evolutionary equilibria, x*, are derived by equating the fitness of left- and right-

lateralized individuals: 

 

f(x*) = f(1-x*)          (5) 

 

The evolutionary stability of an equilibrium x* is assessed by asking what happens if 

the proportion of left-handers deviates slightly from x*. If the equilibrium is stable, 

natural selection tends to restore the equilibrium proportion x*. Thus, an increase in 

the proportion of left-lateralized individuals from x* to x*+E should result in a situation 

in which their fitness falls below that of right-lateralized individuals. Formally: 

 

f(x*+E) < f(1-x*-E)         (6) 

 

Likewise, a decrease in left-lateralized individuals should result in these individuals 

having a higher fitness: 

 

f(x*-E) > f(1-x*+E)         (7) 

 

In the appendix it is shown that these conditions are equivalent to the following 

condition on the derivative f’(x) of f(x): 

 

f'(x*) + f'(1-x*) < 0         (8) 

 



 

Combining this condition with the equilibrium condition (6) it is possible to look for 

evolutionary equilibria and assess their stability. It is also needed to check whether 

populations composed entirely of left- or right-lateralized individuals are stable, 

corresponding to the conditions, respectively: 

 

f(0) > f(1)          (9) 

f(1) > f(0)          (10) 

 

I have performed this analysis by a mixture of analytical and numerical methods, as 

detailed in appendix A.  

 

 

2.3. Results 

 

 

 



 

Figure 2. Equilibrium frequency of left-lateralized individuals x as a function of the relative importance 

of antagonistic and synergist interactions (parameter c in equation (1)). Solid lines represent stable 

equilibria; dotted lines unstable equilibria.  

(a) The case in which frequency dependence is stronger for antagonistic than synergistic interactions 

(ka>ks in equations (3) and (4)). For c< , x*=½ is the only stable solution; for c>  

! 

c , x*=½ is 

unstable while x*=0 and x*=1 (populations with only right- or left-lateralized individuals) are both 

stable. Between  and   

! 

c , two values of x different from one-half are stable equilibria, corresponding 

to populations in which left- and right-lateralized individuals coexist but are not equally common.  

(b) The converse case (ks>ka). For c< , x*=½ is stable, for c>  

! 

c , x*=0 and x*=1 are stable, for 

intermediate c values x*=½, x*=0 and x*=1 are all stable, meaning that coexistence between left- and 

right-handers is not possible. 

 

I investigated the model varying the relative importance, c, of synergistic and 

antagonistic interactions. The nature of the equilibria depends on the relationship 

between the parameters ka and ks. If ka>ks the situation is similar to that found by 

Ghirlanda and Vallortigara (2004) in interspecific prey-predator interactions (Figure 

2). There exists a value of c, , below which x*=½ is the only stable solution. In such 

a situation, synergistic interactions are too weak to cause a departure from the 

strategic equilibrium favoured by antagonistic interactions. Similarly, there exists a 

value of c,   

! 

c , above which x*=½ is unstable while x*=0 and x*=1 are both stable, 

corresponding to populations with only left- or right-lateralized individuals. Here 

synergistic interactions dominate, determining completely the population structure of 

lateralization. 

Finally, there is a range of c-values in between  and   

! 

c  where two values of x 

different from one-half are stable equilibria, corresponding to populations in which 

left- and right-lateralized individuals coexist but are not equally common. This is the 



 

situation we observe in humans and many other vertebrates. The range of c-values 

in which this situation occurs expands as ka increases with respect to ks. 

If ka<ks, for small c, x*=½ is stable and that for large c, x*=0 and x*=1 are 

stable, but the situation for intermediate c-values is different. Coexistence between 

left- and right-handers is not possible; rather x*=½, x*=0 and x*=1 are all stable. In 

this case, synergistic interactions are strong enough to stabilize a monomorphic 

population, but not strong enough to destabilize a population with 50 per cent right- 

and left-handers. In summary, existence of lateralized populations requires in our 

model that ka>ks, meaning that the graph of a(x) must be steeper than the graph of 

s(x) (figure 1; see below for interpretations). 

 

 

2.4. Discussion 

 

The model demonstrates that populations consisting of left- and right-type 

individuals in unequal numbers can be evolutionary stable based solely on strategic 

factors arising from intraspecific interactions. The model makes several testable 

predictions. An important prediction is that the frequency of the minority type 

depends on the balance between the fitness contributions of antagonistic versus 

synergistic interactions. When antagonistic interactions are more important for 

individuals’ fitness, the minority type is expected to be more common. Likewise, 

when synergistic interactions are more important, the minority type is expected to be 

less common. To evaluate this prediction, it is necessary to obtain data from 

populations that differ in the balance between antagonistic and synergistic 

interactions but are otherwise as similar as possible. One possibility is to compare 



 

different human groups. Faurie and Raymond (2005) provide data in agreement with 

the model, showing that the frequency of left-handers in eight traditional societies is 

strongly correlated with the rate of homicides, ranging approximately between 5 and 

25 per cent as the adult homicide rate ranges between 0.01 to more than 1 per 1000 

individuals per year. Another source of evidence may be comparative studies of 

related species. For instance, it is currently debated whether lateralization is more 

pronounced in humans than in non-human primates. This seems unlikely for cerebral 

lateralization in general (Vallortigara et al., 1999), but it could hold for certain forms 

of behavioural lateralization, such as handedness (Rogers, 2007; and see Andrew et 

al., 2000 for the general issue of lateralization of non-bilateral effectors). Wild 

chimpanzees show population-level handedness for tool use (Lonsdorf and Hopkins, 

2005), but apparently not so strongly as humans do (Annett, 2006). The fact that 

synergistic interactions are more important in humans (e.g. Jensen et al., 2007) may 

explain why we are more strongly lateralized at the population level. 

Another prediction concerns the fact that the model allows for population-level 

lateralization only when the condition ka>ks is met (see §3 and appendix A). That is, 

when the frequency of majority- and minority-type individuals varies, the fitness 

contribution of antagonistic interactions should vary more quickly than the fitness 

contribution of synergistic interactions. From the point of view of selective pressures, 

this prediction means that minority-type individuals should lose their advantage in 

antagonistic interactions very quickly as they become more common, more quickly 

than they gain an advantage in synergistic interactions. From a behavioural point of 

view, this corresponds to the fact that individuals should learn quickly how to 

contrast minority-type individuals in antagonistic interactions, while they should learn 

more slowly how to cooperate with them in synergistic interactions. This prediction 



 

can be put to empirical test (perhaps in experimental populations in the laboratory), 

but presently, there is not any direct evidence in favour or against it. 

In conclusion, I have extended previous results on interspecific interactions to 

intraspecific interactions, reinforcing the view that strategic factors may have been a 

powerful force in the evolution of lateralization. A purely strategic model has been 

considered for simplicity, but future research should also consider how strategic 

factors interact with other potential determinants of lateralization, such as 

neurophysiological constraints, the genetic mechanisms of lateralization and, 

especially in humans, traditions and culture (Laland et al. 1995). 

 

 

APPENDIX A  

 

A.1 Stability condition (equation (8))  

A first order Taylor expansion of equation (6) yields: 

 

f(x*) + f'(x*)E + O(E^2) < f(1-x*) - f'(1-x*)E + O(E^2)   (A 1) 

 

Dropping terms of higher order in E and using the equilibrium condition f(x*)=f(1-x*) 

(equation (5)), equation (8) is obtained. A similar argument shows that equation (7) 

is also equivalent to equation (8). Given that f(x)=a(x)+cs(x), equation (8) can be 

written as 

 

a'(x*) +cs’(x*) + a'(1-x*) +cs’(1-x*) < 0      (A 2) 

 



 

A.2 Stability of the equilibrium x*=½; (non-lateralized population) 

The value x*=½ is always a solution of equation (5), hence it is always an 

equilibrium. Equation (A2), evaluated for x*=½, implies that this equilibrium is stable 

if c is smaller than  
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A.3 Stability of x*=0 and x*=1 (completely lateralized populations)  

Considering the situation where the population is composed entirely of left- or 

right-lateralized individuals, these situations are stable if equations (9) and (10) hold, 

respectively. Using expressions (1) and (2) both expressions hold if c is larger than 
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A.4 Existence of partially lateralized populations 

It has been shown that a non-lateralized population (x*=½) is stable if c<  and 

fully lateralized populations are stable only if c>  

! 

c . Thus, a lateralized population with 

0<x*<½ or ½<x*<1 can be stable only if   

! 

c > . Using expressions (A 3) and (A 4), the 

latter is equivalent to  
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which in turn is equivalent to 

 

ka > ks          (A 7) 

 

because sinh(k)/k is monotonically increasing for k>0. When condition (A 7) holds, 

the interval of values between  and   

! 

c  can be explored numerically to calculate the 

equilibrium value x*. This calculation was performed, for instance, to build Figure 2a. 

Two methods were used to guard against numerical instability. The first method 

used the fsolve function of the OCTAVE software (v. 2. 9. 9), designed to solve 

nonlinear equations. The second method looks for a solution by iterating the map 
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obtained from equation (A 2) using equations (1) and (2). The fixed point theorem 

(Granas and Dugundji, 2003) guarantees that a solution for this recursion exists. The 

two methods typically produced the same answer, but for some parameter values 

one or the other method would not converge to a solution. I then used the value 

obtained by the other method. 



 

Chapter 3 – Experimental approach 

 

3.1. Introduction  

 

Evidence of functional lateralization in invertebrates has begun to appear 

recently (see Chapter 1), suggesting that lateralization of the nervous system may 

be a common feature of brains with completely different organizing principles and 

evolutionary histories. As described in details in Chapter 1, honeybees readily learn 

to associate odours with reward (Proboscis Extension Reflex, PER; Bitterman et al., 

1983) and they learn well when they use the right antenna but poorly when they use 

the left antenna (Letzkus et al., 2006). Moreover, at 1h after training, using both 

antennae, recall (of short-term memory) is possible only when the bee uses its right 

antenna but at 6 and 24h after training the (long-term) memory can be recalled only 

when the left antenna is in use (Rogers and Vallortigara, 2008). 

The current knowledge of the genetics and evolution of brain asymmetry is 

imperfect (Corballis, 2009; McManus, 2002). However, as described in the previous 

chapter, a prominent hypothesis has been put forward, based on mathematical 

games theory modelling (Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009), 

that selective pressures associated with social life might have been crucial in the 

evolution of lateralization (Vallortigara and Rogers, 2005). The crucial problem 

addressed by the hypothesis is the fact that, within a species, left- and right-type 

individuals are often in a proportion different from 50:50 (e.g., hand use in humans), 

i.e. population-level lateralization. The basic idea can be conveyed straightforwardly: 

behavioural lateralization as we know it in humans and other animals may have 

evolved under basically “social” selection pressures, i.e. when individually 



 

asymmetrical organisms must coordinate their behaviour with that of other 

asymmetrical organisms. 

Thus, models based on Evolutionary Stable Strategy (ESS) predict that non-

social species would be more likely to be lateralized at the individual rather than 

population level. However, this is difficult to prove empirically because vertebrates 

are usually quite social species and even current living solitary species certainly had 

social progenitors (e.g., Orangutans). On the other hand, invertebrates may provide 

a simple way of testing this hypothesis, because among Hymenoptera strictly related 

species have developed either into forms of sophisticated eusociality or maintained 

solitary behaviour. Thus, the first part of the experimental work described in this 

thesis will focus on the comparison of the lateralization through behavioural and 

electrophysiological studies in a social (Apis mellifera) and a non-social (Osmia 

cornuta) species of bee (Section 3.3; Anfora et al., 2010). 

Rogers and Vallortigara (2008) speculated that a shift of memory access from 

the right to the left side of the brain might allow the right antenna to learn about new 

odours without interference from odour memories in long-term stores. Since bees 

visit different flowers at different times of the day, as nectar becomes available, the 

formation of different odour associations during the course of the day would be 

required, and this is a process that might be aided if recall of earlier odour memories 

is avoided on the side of the brain undergoing new learning. 

Note, however, that the evidence of a lateral shift in the olfactory memory in 

honeybees was obtained using two unfamiliar odours (lemon and vanilla). I was 

interested in checking the generality of this finding using a variety of familiar and 

unfamiliar odours (Section 3.4, Frasnelli et al., 2010a). 



 

The different sensitivity between the right and the left antenna has been 

justified by observing that the mean number of Sensilla placodea, which are the 

main type of olfactory receptor structures in honeybee (McIndoo, 1914; von Frisch, 

1921; Lacher and Schneider; 1963; Kaissling and Renner; 1968), is significantly 

higher on the right than on the left antenna (Letzkus et al., 2006). However, this 

finding should be interpreted with caution since only one type of olfactory sensillum 

was considered, and other types of sensilla, such as Sensilla trichodea and Sensilla 

basiconica, may play an additional olfactory role, together with gustatory and 

mechanoreceptive functions, in bees (Snodgrass, 1935; Slifer and Sekhon, 1961; 

von Frisch, 1967; Dietz and Humphreys, 1971; Whitehead and Larser, 1976; Gupta, 

1986; Ågren and Hallberg, 1996). Moreover, in the paper of Letzkus et al. (2006), 

SEM images did not cover the whole antennal segment surface leaving a hidden, 

non-characterized area. Finally, only 7 out of 10 left-right pairs of antenna were from 

the same individuals. 

In the study described in details in Section 3.5. (Frasnelli et al., 2010b), I first 

duplicated the behavioural result using forager Italian honeybees (A. mellifera 

ligustica Spin.) and then I checked for anatomical differences in the number of 

sensilla between the right and the left antenna by using a larger sample of 

honeybees compared to the number of bees used by Letzkus et al. (2006). 

Morphological data were collected from bees harvested in 2 different hives (one in 

North Italy and another one in South Italy). Both antennae of each bee were imaged 

from four different views and all different types of sensilla were considered. 

As last step I investigated the generality and possible phylogenetic origins of 

the antennal asymmetry in Apidae by testing primitive (stingless) social bees 

(Meliponinae), as described in details in Section 3.6. (Frasnelli et al., submitted). The 



 

study was performed in the field in Valla beach (NSW, Australia) on three species of 

Australian native, stingless bees (Trigona carbonaria, Trigona hockingsi and 

Austroplebeia australis). The bees were conditioned to associate an odour with a 

sugar reward, using the PER paradigm and the lateralization in the recall at 1 and 5 

hours was investigated. Stingless bees are believed to be phylogenetically older 

than honeybees and thus they can provide important information on the evolution of 

lateralization in Apidae. 

 

 

3.2. Materials and methods 

 

In the studies presented in this thesis I investigated antennal asymmetries in 

honeybees and other related insect species. To do this I performed behavioural 

experiments using the Proboscis Extension Reflex (PER) paradigm (explained in 

details in the Section 3.2.1.), electrophysiological measurements with the 

Electroantennography (EAG) technique (explained in details in the Section 3.2.2.) 

and morphological investigations using the Scanning Electron Microscopy (SEM) 

instrumentation (explained in details in the Section 3.2.3.) 

 

3.2.1. Proboscis Extension Reflex (PER) paradigm 

Associative learning is a fundamental property of nervous systems governed by 

rules applicable both across species and across modalities. In classical conditioning 

(Pavlov, 1927), animals learn that an originally neutral stimulus (conditioned 

stimulus, CS) can act as a predictor for a biologically significant stimulus 

(unconditioned stimulus, US). In operant conditioning (Skinner, 1938), animals learn 



 

that a given response (operant action) is followed by the occurrence or suppression 

of a given reinforcement. 

The honeybee, Apis mellifera, constitutes a traditional model for the study of 

learning and memory at the behavioural, cellular, and molecular level (Hammer and 

Menzel, 1995; Menzel and Giurfa, 2001). In a natural context, honeybees learn and 

memorize the local cues that characterize places of interest such as the hive and 

flowers in the surroundings. In the laboratory, the bees’ learning abilities are mainly 

studied using a well-established paradigm: the olfactory conditioning of the proboscis 

extension reflex (PER; Bitterman et al., 1983). When the main chemosensory organs 

of a hungry bee, the antennae, are touched with sucrose solution, the insect 

reflexively extends its proboscis (PER) to reach out toward the sucrose and lick it. 

 

 

a) b) 

Figure 3. Conditioning of Proboscis Extension Reflex (PER) paradigm in an immobilized and 

harnessed honeybee. 

a) Training phase: the presentation of the odour (CS) and the sugar reward (US) elicits the extension 

of the proboscis (UR) and the bee learns the association between the CS and the US; 

b) Testing phase: after few trails in the training phase the bee extends its proboscis when presented 

with the trained odour. 

 



 

Bees immobilized in individual harnesses learn to associate an odour 

(conditioned stimulus or CS) with a reward of sucrose solution (unconditioned 

stimulus or US) delivered to their antennae and to the proboscis. Thus, they learn to 

extend their proboscis to the mere presentation of the odor (as shown in Figure 3). 

This effect is clearly associative and involves classical and not operant conditioning 

(Bitterman et al., 1983) as shown by the omission procedure, in which the 

occurrence of the conditioned response (the extension of the proboscis) prevents 

occurrence of the US (Bitterman et al., 1983). Bees trained in this way learn to 

respond to the odour despite the omission training, thus showing that the association 

learned is classical and not operant. 

 

3.2.2. Electroantennography (EAG) 

The electroantennography (EAG) is a technique that I used to investigate the 

olfactory response of insects species to odorants. Before explaining how this system 

operates, I would like to first describe, briefly, how the system of odour perception in 

insects works. 

Olfactory perception starts at the level of the antennae where olfactory receptor 

neurons are located within specialized hairs called sensilla (Figure 4). 

 



 

 

Figure 4. Image acquired with the Scanning Electron Microscope (SEM) of the apex of a honeybee 

forager’s antenna. Note the sensilla covering the whole surface of the antenna. 

 

Sensory neurons endowed with molecular olfactory receptors convey 

information on odorants to the antennal lobe. The antennal lobe of insects is the 

functional analogue of the olfactory bulb in mammals, and the first centre where 

information from the olfactory receptor neurons is processed. This paired structure is 

a good example of ‘dedicated neuropile’, i.e. brain regions devoted to the processing 

of specific sensory information (vision, olfaction, etc.), as it is the primary olfactory 

centre of the bee brain. Antennal lobes are constituted by globular structures called 

glomeruli (Figure 5). Glomeruli are synaptic interaction sites between olfactory 

receptors, local inhibitory interneurons connecting glomeruli laterally and projection 

neurons conveying processed olfactory information to higher order centers such as 

the lateral horn or the mushroom bodies. The latter are ‘higher-order integration 

centers’ as they receive input from visual and mechanosensory pathways apart from 

the olfactory pathway (Figure 6). 

 



 

 

a)  b) 

Figure 5. The antennal lobe (AL) of a honeybee is composed by 160 glomeruli. 

a) Image of the right antennal lobe of a honeybee acquired with a 2-photon microscope. The 

glomeruli are colored with different colours and enumerated;  

b) 3D reconstruction of the antennal lobe starting from a series of images acquired with a 2-photon 

microscope. 

 

 

 

a)  b) 

Figure 6. Olfactory system in honeybees. 

a) The odour stimuli are captured by the olfactory receptor neurons through the pores on the antennal 

surface; 

 

 



 

b) The olfactory receptor neurons (ORNs) on the antennae detect the odours and project to the 

glomeruli of the antennal lobes, where the incoming information is processed by local interneurons 

(INT) and then relayed by projection neurons (PN) to the mushroom bodies. 

 

In particular, in the honeybee, on each antenna there are 60,000 ORNs (Esslen 

and Kaissling, 1976), which project to 160 glomeruli of the antennal lobe (Galizia et 

al., 1999). Here, the incoming information is processed by about 4000 local 

interneurons (Witthöft, 1967), and then relayed to higher order brain centres, the 

mushroom bodies, by 800 projection neurons (Hammer, 1997). 

The EAG (Schneider, 1957) is a technique to study the olfactory response of 

insects to odorants and shows the sensitivity of the insect olfactory system to a 

specific substance. It measures electrical signals over a section of the antenna, so it 

cannot tell us which receptors are binding. The antenna is mounted on two glass 

capillary electrodes filled up with electrophysiological solution and then is stimulated 

with puffing different odours (Figure 7). The electric response measured is the sum 

of the depolarization potentials (mV) of the antennal olfactory receptor neurons. 

 

 

Figure 7. Electroantennography (EAG). 

 



 

3.2.3. Scanning Electron Microscopy (SEM) 

 

 

Figure 8. Scanning Electron Microscope (SEM) FEI XL 30 ESEM FEG in the Department of Medicine 

Laboratory, APSS, Trento. 

 

The scanning electron microscope (SEM) is a type of electron microscope that 

images the sample surface by scanning it with a high-energy beam of electrons in a 

raster scan pattern. The electrons interact with the atoms that make up the sample 

producing signals that contain information about the sample's surface topography, 

composition and other properties such as electrical conductivity. The signals result 

from interactions of the electron beam with atoms at or near the surface of the 

sample. The SEM can produce very high-resolution images of a sample surface, 

revealing details about less than 1 to 5 nm in size. Due to the very narrow electron 



 

beam, SEM micrographs have a large depth of field yielding a characteristic three-

dimensional appearance useful for understanding the surface structure of a sample. 

In a typical SEM, an electron beam is thermionically emitted from an electron 

gun fitted with a tungsten filament cathode. Tungsten is normally used in thermionic 

electron guns because it has the highest melting point and lowest vapor pressure of 

all metals, thereby allowing it to be heated for electron emission, and because of its 

low cost. In the SEM FEI XL 30 ESEM FEG I used for this study (Figure 8), the 

source is a field emission gun (FEG) of the cold-cathode type using tungsten single 

crystal emitters. 

The electron beam, with an energy ranging from 0.5 keV to 40 keV, is focused 

by one or two condenser lenses to a spot about 0.4 nm to 5 nm in diameter. The 

beam passes through pairs of scanning coils or pairs of deflector plates in the 

electron column, typically in the final lens, which deflect the beam in the x and y axes 

so that it scans in a raster fashion over a rectangular area of the sample surface. In 

the sample chamber of the SEM there is a stage, where the samples are positioned, 

that can be tilted in the case of the instrument used in this study until 75 degrees, 

allowing the sample observation from different view avoiding the chamber access 

(Figure 9). 

 



 

 

Figure 9. Opened sample chamber of the SEM in the Department of Medicine Laboratory, APSS, 

Trento. 

 

For SEM, a specimen is normally required to be completely dry, since the 

specimen chamber is at high vacuum. The effect of the high vacuum on a biological 

sample not properly prepared corresponds in a loss of the fine structures of cells and 

tissues, determined by a mechanical damage caused by the violent evaporation of 

the water contained in the tissues. 

In this study the samples are the antennae of honeybees and other insect 

species that are already quite dried. Thus, the samples were mounted on a 

specimen stub using an electrically conductive double-sided adhesive tape, and 

sputter coated with gold before examination in the microscope. Gold has a high 

atomic number and sputter coating with gold produces high topographic contrast and 

resolution. However, the coating has a thickness of a few nanometers, and can 

obscure the underlying fine detail of the specimen at very high magnification. Thus, 

we used a proper thickness of gold coating (see Section 3.5.1. for further details). 

 



 

3.3. Experiment 1: Behavioural and electrophysiological lateralization in a 

social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. 

 

I tested behavioural and electrophysiological lateralization of olfactory 

responses in two species of the superfamily Apoidea, the social honeybee, Apis 

mellifera L. (Fam. Apidae), and the solitary mason bee, Osmia cornuta (Latreille) 

(Fam. Megachilidae). The common name mason bees derives from their habit of 

making compartments of thick mud walls in their nests, made in hollow reeds or 

holes in wood built by wood boring insects. Unlike honeybees, mason bees are 

solitary: every female is fertile and makes its own separate nest; they do not produce 

honey or wax and there are no worker bees in these species. Males leave their 

maternal nest before the females, and compete for mating waiting for the females at 

the nest entrance. Mating occurs immediately after females leave the original nest, 

then the females spend two-three days in feeding on flowers before starting the 

nesting activity (Nepi et al., 2005). Females visit flowers to gather pollen and nectar, 

and it takes many trips to complete a pollen/nectar provision mass. Once a provision 

mass is complete, the bee backs into the hole and lays an egg on top of the mass. 

 

 

3.3.1. Materials and methods 

 

3.3.1.1. Subjects 

Forager Italian honeybees, A. mellifera ligustica Spin., were collected next to 

three different outdoor hives during summer 2008 at San Michele all’Adige (Trento, 



 

Italy). Female adult mason bees were obtained from over-wintering cocoons 

collected at Crevalcore (Bologna, Italy) during spring 2009. 

 

3.3.1.2. Behaviour 

Bees (A. mellifera and O. cornuta) were cooled in 750ml containers until 

immobilised and then secured in holders (Bitterman et al., 1983). They were 

assigned randomly to groups for the occlusion of one antenna and, 1 hour later, all 

bees were trained in the same way. For both species, the experiment was carried 

out on three groups. The bees in one group (N=6 honeybees; N=6 mason bees) had 

their left antenna coated with a silicone compound (Silagum-Mono, DMG, Germany); 

those in the second group ((N=6 honeybees; N=6 mason bees) had their right 

antenna coated, while both the antennae of the bees belonging to the third group 

were left uncoated (N=6 honeybees; N=5 mason bees). 

One hour after the antennae had been coated, each bee in its holder was 

placed in front of an exhaust fan and trained using β-citronellol (Fluka, Buchs, 

Switzerland; purity>95%) plus 1M sucrose solution as the positive stimulus (10ul of 

β-citronellol dissolved in 3 ml of the sucrose solution). The negative stimulus was a 

saturated salt (NaCl) solution. Three trials spaced 6 min apart were given. On the 

first trial a droplet of the β-citronellol sugar solution at the end of a 23 gauge needle 

was held over the bee’s antennae at 1 cm from the antennae and after 5 s the 

antennae were touched, which led to PER. The bee was then allowed to ingest the 

drop of β-citronellol sugar solution. The procedure was repeated with the saline 

solution (trial 2), which did not trigger PER but avoidance by moving the antennae 

away from the droplet. On trial 3 the procedure of trial 1 was repeated and usually 

PER occurred without the need to touch the antennae. 



 

Retention was tested 1 hour later by presenting β-citronellol or saturated salt 

solution in distilled water and holding the droplet 1 cm from the antennae while 

moving it slightly but being sure not to touch the antennae. The solutions were 

presented for 5 s alternatively. Each bee was tested in a total of 10 such paired 

trials, presented in random order and separated by an interval of approximately 60 s. 

We recorded every time the bee extended the proboscis. The percentages of the 

correct response (number of proboscis extensions to the β-citronellol over the 

number of total extensions to both β-citronellol and salt solution) were calculated. 

Before analysis, the percentage values were arcsin transformed (see Sokal and 

Rohlf, 1995), and after checking for normality and homogeneity of variances, data 

were analyzed by analysis of variance with antenna in use and species as between-

subject factors.  

 

3.3.1.3. Electroantennography (EAG) 

An EAG technique (see Schmidt et al., 2007) involving a standard EAG 

apparatus (Syntech, Hilversum, The Nederlands) was used. EAG absolute 

responses (mV) were recorded from honeybee foragers (N=16) and from mason bee 

females (N=21). The antenna was cut at the level of the scape, which was then 

inserted into the glass reference electrode filled with Kaissling saline solution. The 

recording electrode was brought into contact with the last segment of the flagellum 

from which the distal tip had been cut. For each individual, responses from both the 

right and the left antenna were obtained and the antenna tested first was chosen at 

random. The bees were maintained alive between the two recordings. 

Five hexane solutions of either isoamyl acetate (Sigma Aldrich, Milano, Italy; 

>99.7% purity), component of the honeybee alarm pheromone (Boch et al., 1962), or 



 

(-)-linalool (Sigma Aldrich, >98.5% purity), a common floral odour, were prepared, at 

concentrations ranging from 10-2 to 102 µg/µl. Aliquots of the test solutions (25 µl 

each) were adsorbed on pieces of filter paper (1 cm2), which were inserted into 

individual Pasteur pipettes and applied in ascending order at 60 s intervals, after 

allowing the solvent to evaporate. Stimuli were added to the airstream by injecting 

vapour from an odour pipette. The dorsal region of the antenna, which has the 

highest number of placodea olfactory sensilla, was exposed perpendicularly to the 

airflow direction. A stimulus controller (CS-55, Syntech) was used to steer the 

procedure. Before and after presenting each series of stimuli, antennae were 

stimulated with a pipette loaded with 25 µl of hexane and with an empty pipette as 

controls. Fresh cartridges were prepared before each bee was tested. Data were 

analyzed by analysis of variance with antenna, scent and dose as within-subject 

factors. 

 

 

3.3.2. Results 

The results of the behavioural tests are shown in Figure 10. The analysis of 

variance revealed a significant main effect of the antenna in use (F2,29=8.69, 

p<0.001) and a significant antenna x species interaction (F2,29=11.94, p<0.001). 

There was a significant asymmetry in honeybees (F2,15=68.26, p<0.001), with very 

poor recall in bees with only their left antenna in use, whereas no asymmetry was 

apparent in the mason bees (F2,14=0.15, p=0.86). 

 



 

 

Figure 10. Mean percent ± SEM correct responses in recall of olfactory memory 1 hour after training 

to associate odours with sugar rewards in honeybees and mason bees tested with both antennae or 

with only one antenna in use. 

 

The results for electroantennography revealed a similar pattern (Figure 11). In 

honeybees, the EAG responses elicited by both tested compounds on the right 

antenna were significantly higher than those on the left one (F1,15=5.12, p<0.050), 

whereas there were no significant differences in mason bees. (F1,19=0.64, p=0.80). 

Interestingly, though not lateralized at the population level, 15 out of 21 (χ2=3.05, 

p<0.05) individual mason bees showed significantly stronger responses (estimated 

by one tailed binomial test, p<0.05) either with the right (7 individuals) or the left (8 

individuals) antenna. 



 

 

Figure 11. Mean EAG ± SEM responses (mV) of right and left antenna of Apis mellifera foragers 

(upper graphs) and Osmia cornuta females (lower graphs) to isoamyl acetate and (-)-linalool at 5 

different doses. The dotted lines with empty squares show responses of the left antenna, whereas 

unbroken lines with black squares of the right antenna. X-axes indicate dose (Log10 µg/µl), y-axes 

indicate EAG response (mV). 

 

As expected, both species showed a significant increase in their EAG 

responses with increasing doses of isoamyl acetate and (-)-linalool (A. mellifera: 

F4,60=43.48, p<0.001) (O. cornuta: F4,76=407.11, p<0.001). 

The analysis also revealed significant main effects of the type of odour for O. 

cornuta (F1,19=49.94, p<0.001) but not for A. mellifera (F1,15=3.10,  p=0.10). 

Significant interactions emerged only between type of odour and dose (A. mellifera: 



 

F4,60=5.86, p<0.001) (O. cornuta: F4,76=77.41, p<0.001). No responses were 

obtained in the control tests. 

Results thus showed stronger PER recall and EAG responsiveness in the right 

than in the left antenna in the honeybees but not in the mason bees. 

 

 

3.3.3. Discussion 

Results duplicate and extend the findings of Letzkus et al. (2006) and Rogers 

and Vallortigara (2008) showing a striking right antenna advantage in recall of 

olfactory memory using PER in honeybees. EAG results suggest that the asymmetry 

may arise, in part, from different responsiveness of olfactory receptor neurons (see 

also Letzkus, 2007). 

In contrast, mason bees, which are related phylogenetically to honeybees, 

showed no evidence of being asymmetric at the population level, either in behaviour 

or in EAG responsiveness. Of course, differences between just two species should 

be interpreted with caution. Nonetheless the present results confirm that left-right 

asymmetries at the population level are apparent in some but not all invertebrate 

species, and not even in species that are strictly related phylogenetically. (Note also 

that the neuroanatomical characteristics of the mushroom bodies associated with 

learning during foraging seem to be present in both honeybees and solitary bee 

species, though with different development paths – Withers et al., 2007). 

Mathematical models of the evolution of lateralization suggest that stable 

polymorphism with an uneven distribution of left- and right- forms can be expected to 

emerge spontaneously in species in which left-right biases have behavioural 

consequences during everyday interactions between individuals (Vallortigara, 2006). 



 

The fact that mason bees show evidence of individual-level lateralization in EAG 

responses (the between-subject design used in the PER study prevented such an 

analysis for behavioural data) but not population-level (directional) lateralization fits 

nicely with mathematical modelling (see Ghirlanda and Vallortigara, 2004). 

The behavioural traits studied here (olfactory learning and 

electroantennographic responsivity) are not obviously social in nature (although it is 

not possible to exclude that the original drive for antennal asymmetries could be 

related to social interaction during e.g. trophallaxis). It is conceivable, however, that 

some forms of asymmetries that are unlikely to have been directly selected as 

evolutionarily stable strategies (ESSs, see Chapter 1 and 2) in social contexts could 

have evolved as population-level biases as by-product of other biases that in fact 

evolved as ESSs. It is likely that when an individual-level asymmetry is stabilized as 

a directional (population-level) asymmetry, other asymmetries that in principle would 

not require any alignment at the population level because irrelevant to any social 

interaction would organize themselves as directional as well simply because a 

directional organization in the two sides of the brain already exists. 

Little is known about side biases in invertebrates observed in their natural 

behaviour in the wild. Interestingly, however, Kells and Goulson (2001) have 

reported that primitively eusocial bumble bees, Bombus spp., show preferred 

directions of circling as they visit florets arranged in circles around a vertical 

inflorescence. Since two species circled anticlockwise and one clockwise, it is 

unlikely that the asymmetry is a function of the structure of the florets. Comparative 

research with several species of Hymenoptera both in the field and in the laboratory 

may thus provide important insights on the evolution of left-right asymmetries in 

behaviour and in the nervous system. 



 

3.4. Experiment 2: Response competition associated with right–left antennal 

asymmetries of new and old olfactory memory traces in honeybees. 

 

This part of the research has been performed at the Centre for Neuroscience 

and Animal Behaviour at the University of New England (Armidale, NSW, Australia). 

The study is divided into three experiments that I will enumerate as A, B and C. In 

Experiment A, I investigated whether the right to left antenna shift occurs for recall of 

memories of a range of odours, using both simple (cineol and eugenol) and 

compound (lemon, rose and vanilla) odours. I found an unexpected loss of memory 

specificity in recall of long-term memory by bees trained with lemon (+) and rose (-). I 

hypothesized that the phenomenon could be due to the familiarity of rose odour, 

assuming that the bees tested had visited roses before capture or that they had 

been exposed to this odour in the hive. Hence, the training with rose as the negative 

stimulus might have involved reversal learning of an odour previously established in 

memory as a positive stimulus. 

In Experiment B I used the major component of the alarm pheromone, isoamyl 

acetate (IAA), to check whether familiarity (as established biologically rather than by 

learning during the course of ontogenesis) might affect lateralized memory 

consolidation. Since IAA stimulates alarm and attack I considered it to be a negative 

stimulus. I observed a suppression of the response from both the right and the left 

side of the stimuli presentation at 1 hour after training, while at 6 hours bees 

responded to both odours from both sides. 

In Experiment B I tried a direct test of the effects of reversal learning and 

familiarity. I trained a group of honeybees with lemon(+)/vanilla (-). After 16 hours 



 

bees were re-trained under reverse contingencies, lemon(-)/vanilla(+), and tested at 

either 1 hour or 6 hours after the reverse training session. 

 

 

3.4.1. Materials and methods 

 

3.4.1.1. Subjects 

Experiments were performed in Armidale (NSW; Australia). Feral honeybees, 

which in Australia are a mix of European subspecies, were captured when they were 

foraging on banksia (Banksia marginata) or Hakea (Hakea decurrens) flowers at 

about 0.900h and cooled in 700ml containers in the refrigerator (50C) until 

immobilised. Then they were harnessed in metal holders, using the method of 

Bitterman et al. (1983), as modified by Rogers and Vallortigara (2008), by adding a 

piece of paper to cover the thorax of the bee so that the bee was not damaged by 

the adhesive tape and could be released after the test. 

Three experiments on seven groups of 20 bees each (total of 140 bees) were 

performed. Each group was trained using different odour pairs (Table 1). The 

concentrations of lemon and rose were 10µl of the scent essence (Queen Fine Food 

Pty Ltd) dissolved in 3ml of 1M sucrose solution or saturated saline solution. Two 

concentrations of isoamyl acetate (IAA) were used: (1) high concentration 

(concentrated), 10µl of 98% IAA, Aldrich Chemical Company, in 3ml of 1M sucrose 

and (2) low concentration (dilute), dilution of the high concentration 1:150 (IAA odour 

still easily detected by humans). The pure odours used were cineol (99% Alrich 

Chemical Company) 1µl in 5ml 1M sucrose and eugenol (99% Alrich Chemical 

Company) 1µl in saturated saline. 



 

EXPERIMENT 
NUMBER 

GROUP 
NUMBER 

POSITIVE STIMULUS (+) 
FOR THE RECALL TEST 

NEGATIVE STIMULUS (-) 
FOR THE RECALL TEST 

1 LEMON VANILLA 

2 CINEOL EUGENOL A 

3 LEMON ROSE 

4 CONCENTRATED IAA ROSE 

5 DILUTE IAA ROSE B 

6 DILUTE IAA VANILLA 

C 7 VANILLA LEMON 

 

Table 1. – A schematic summary of the experiments. Three experiments were performed on a total of 

seven groups of 20 bees each (total of 140 bees). Each group was trained using different odour pairs 

as positive (+) and negative (-) stimuli. Bees in group 7 were trained twice (the second time in a 

reverse way). The positive (+) and negative (-) stimuli in the table refer to positive (+) and negative (-) 

stimuli used in the recall test. IAA = isoamyl acetate. 

 

3.4.1.2. Experimental procedures 

One hour after the bees were placed in the holders training commenced. The 

harnessed bee was placed in front of an exhaust fan and then trained using different 

odours as positive and negative stimuli (Table 1). The positive stimulus was the 

odour plus 1M sucrose solution, the negative stimulus was the other odour plus 

saturated saline. The bee was trained with both antennae in use. Positive and 

negative stimuli were presented as a drop of the solution at the end of a 23-gauge 

needle held over both of the bee’s antennae at 1 cm from the antennae. Three trials 



 

were given at 6-min. intervals. In the first trial, after holding the droplet of odour in 

sucrose solution over the antennae for 5 seconds the antennae were touched with 

the droplet to trigger the proboscis extension response (PER). The bee ingested the 

drop and immediately after was presented with the negative stimulus. Once again 

the droplet was held over the antennae for 5 sec. and then both antennae were 

touched with the solution. After 6 min, a second trial was performed and the bee 

usually responded to the positive stimulus with a PER without the need to touch the 

antennae with the droplet. After another 6 minutes bees were given the third and last 

trial and then placed in a forced-draught incubator at 250C. 

Bees trained with each odour pair were tested either at 1 hour or at 6 hours 

after the completion of training; i.e. 10 bees tested per group at each time after 

training. During the interval between training and testing, the bees were kept in an 

incubator at 26° C and 60% humidity. We used the method of Rogers and 

Vallortigara (2008) to test for laterality of responding. It involved presenting both 

odours dissolved in distilled water at the same concentrations as used in training. 

Droplets of these solutions were held on the left or right side of the bee, out of reach 

of the antennae or proboscis at approximately 1 cm from the bee. Each odour was 

followed immediately by the other odour and 10 presentations of each pair of odours 

were made on each side of the bee. Side of presentation was random. The odours 

were presented for 5 sec. and whether or not PER occurred was noted. Referring to 

group 1 in Table 1 (lemon as positive stimulus and vanilla as the negative stimulus), 

the responses were scored as follows: A, extension of the proboscis to lemon and no 

extension to vanilla; B, extension of the proboscis to both lemon and vanilla; C, 

extension of the proboscis to vanilla but not lemon; D, no extension of the proboscis 

to lemon or to vanilla. 



 

A seventh group of 20 bees was captured, harnessed and trained with lemon in 

sucrose and vanilla in saline at approximately 15.00h. Following training these bees 

were placed in the incubator overnight to allow time for memory consolidation 

(Menzel, 1999; Gerber and Menzel, 2000). After 16 hours they were trained again 

with the reverse condition, lemon in saline and vanilla in sucrose. They were then 

returned to the incubator until testing at either 1 hour or 6 hours after the reverse 

training session.  

 

3.4.1.3. Statistical analyses 

For each group of bees and for each side (right and left) the mean number of A 

responses and the mean number of B responses with the respective standard errors 

(SE) were calculated. Results are shown in Figure 12. C and D responses were too 

rare to warrant inclusion in the analysis. 

Data were analysed by repeated-measurement analysis of variance (Anova) for 

each group of bees with ‘antenna’ as the within-subjects factor. Comparison 

between the different groups was performed with ‘odour’ as between-subjects factor. 

 

 

3.4.2. Results 

 

3.4.2.1. Experiment A: Does the right to left antenna shift occur for recall of 

memories of a range of odours? 

Results of recall of lemon (+) and vanilla (-) replicated those found by Rogers 

and Vallortigara (2008), showing a significant difference in A responses between the 

right and the left antenna at both 1 hour and 6 hours after training (Figure 12a). On 



 

recall at 1 hour the bees responded significantly better when tested on the right side 

than when tested on the left side (F(1,9)=103.500; p=0.0001); whereas,  on recall at 

6 hours, bees performed significantly better when tested on the left side than when 

they were tested on the right one (F(1,9)=342.250; p=0.0001). The same pattern 

was found using cineol and eugenol (see Figure 12b): there was a significant 

difference in the number of A responses when the bees were tested on the right side 

versus the left side at 1 hour (F(1,9)=51.136; p=0.0001) and 6 hours (F(1,9)=27.689; 

p=0.001). At 1 hour recall was possible testing the bees on the right side, whereas at 

6 hours it was possible testing them on the left side. B responses were low in 

number in all of the cases. 

Bees trained with lemon as the positive stimulus and rose as the negative 

stimulus (Figure 12c) showed a similar pattern of responses when they were tested 

for recall: at 1 hour the number of A responses was significantly higher when they 

were tested using the right antenna than when using the left antenna (F(1,9)=48.913; 

p=0.0001). At 6 hours this difference was reversed: bees responded more when 

tested on the left side than when tested on the right side (F(1,9)=6.429; p=0.032), 

but there were a high number of B responses on both sides (F(1,9)=0.419; p=0.534). 

This loss of memory specificity in recall of long-term memory by bees trained 

with lemon (+) and rose (-) was unexpected. I thought that it could be due to the fact 

that the experiments were conducted in Armidale, NSW, Australia, at an altitude of 

almost 1000 meters, where no vanilla or lemon plants grow and nor do any plants 

related to these, whereas as roses are quite common and were in bloom at the time 

of conducting the experiments. Thus, the different result found for the bees trained 

with lemon and rose could be related to the familiarity of rose odour, assuming that 

the bees tested had visited roses before capture or that they had been exposed to 



 

this odour in the hive. Hence, the training with rose as the negative stimulus might 

have involved reversal learning of an odour previously established in memory as a 

positive stimulus. 

 

 
a)   b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
 
Figure 12. Experiment A. Recall of memory at 1 and 6 hours after training with a) lemon (+)/vanilla (-); 

b) cineol (+)/eugenol (-); c) lemon (+)/rose (-). All bees were trained using both antennae and tested 

for recall by presenting the odours on the bee’s left side (left) or right side (right). The mean numbers 

(standard errors) of type A responses (proboscis extension response, PER, to S+ and not S-) are 

plotted as dark grey bars, the mean numbers (standard errors) of type B responses (PER to both 

odours) are plotted as light grey bars. 
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3.4.2.2. Experiment B: Does the familiarity of odours affect memory formation? 

To investigate whether reversal learning leads to non-specific long-term 

memory I chose a biological odour which elicits alarm responses and may be an 

established negative stimulus. Isoamyl acetate (IAA) is an organic compound that is 

released by a honeybee's stinging apparatus, where it serves as a pheromone 

beacon to attract other bees and provoke them to sting (Boch et al., 1962). The idea 

was to train bees using IAA as a positive stimulus and probably, therefore, in a 

reversal learning paradigm. 

The IAA was used at two different concentrations: concentrated IAA and dilute 

IAA (see Materials and Methods). Honeybees trained with IAA as positive odour and 

rose as negative odour gave few responses of any kind when tested for recall at 1 

hour and this was the case for both concentrations of IAA used and irrespective of 

the antenna in use. No significant difference was found between the right and left 

antenna at one hour in the bees trained with concentrated IAA (Figure 13a) (F 

(1,9)=1.946; p=0.196) or in the bees trained with dilute IAA (Figure 13b) (F 

(1,9)=3.819; p=0.082) although the latter showed a trend in the expected direction of 

higher responsiveness on the right side. At 6 hours after training all of the bees 

trained with IAA and rose were more responsive than at 1 hour, but they responded 

to both odours (responses type B). Bees trained with concentrated IAA as the 

positive stimulus and rose as the negative stimulus (Figure 13a) and tested 6 hours 

later showed a slight but significant difference in the A responses between 

presentation on the right and on the left sides (F(1,9)=5.488; p=0.044), the right 

antenna responding more than the left. The number of B responses was also 

significantly higher for the right antenna than for the left antenna (F(1,9)=8.191; 

p=0.019). Bees trained with dilute IAA and rose (Figure 13b) did not show any 



 

difference in A responses between the right and the left antenna at 6 hours 

(F(1,9)=0.0001) but a significant difference in B responses (F(1,9)=12.356; p=0.007); 

they were higher on the right than the left. Additional statistical analysis (t-tests, two-

tailed) revealed no significant differences between the performance of bees trained 

with concentrated IAA and rose (Figure 13a) and bees trained with dilute IAA and 

rose (Figure 13b) (left side at 1 hour: F(1,18)=0.431; left side at 6 hours: 

F(1,18)=0.052; right side at 1 hour: F(1,18)=3.466; right side at 6 hours: 

F(1,18)=3.550). Thus, the concentration of IAA does not affect the result. 

I checked whether this pattern might be obtained only when IAA is used as a 

positive stimulus in combination with rose as a negative stimulus. Thus, I replicated 

the experiment by training bees with the dilute IAA as positive odour and vanilla as 

the negative odour (Figure 13c). Bees trained with diluted IAA as the positive 

stimulus and vanilla as the negative stimulus (Figure 13c) performed similarly to 

those trained with diluted IAA as the positive stimulus and rose as the negative 

stimulus (Figure 13b). One hour after training, there was a slight but significant 

difference in the number of A responses between the right and the left side - the 

bees responded better when tested on the right side than on the left side 

(F(1,9)=5.260; p=0.048) - but no significant difference in the number of B responses. 

On recall at 6 hours, there was no significant difference between the right and the 

left antenna either in A responses (F(1,9)=0.018; p=0.897) or in B responses 

(F(1,9)=0.247; p=0.631). There was only a slightly significant difference between 

bees in Figure 13b and bees in Figure 13c in the number of B responses for the left 

antenna at 1 hour (F(1,18)=4.893; p=0.040). 

 



 

 

a)  b) 
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Figure 13. Experiment B. Recall of memory at 1 and 6 hours after training with a) concentrated IAA 

(+)/vanilla (-); b) cineol (+)/eugenol (-); c) lemon (+)/rose (-). All bees were trained using both 

antennae and tested for recall by presenting the odours on the bee’s left side (left) or right side (right). 

The mean numbers (standard errors) of type A responses (proboscis extension response, PER, to S+ 

and not S-) are plotted as dark grey bars, the mean numbers (standard errors) of type B responses 

(PER to both odours) are plotted as light grey bars. 
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3.4.2.3. Experiment C: Direct test of the effects of reversal learning 

In Experiment C I tried a direct test of the effects of reversal learning and 

familiarity by training bees twice, the second time in a reverse way. Bees were first 

trained with lemon as the positive stimulus and vanilla as the negative stimulus, so 

that in the left side of the bee’s brain a long-term memory for these odours would be 

formed. Sixteen hours later, bees were trained with reversed contingencies 

(vanilla+/lemon-) and the recall 1 hour and 6 hours after re-training was tested. Bees 

showed a pattern of results similar to that of the bees trained with dilute IAA and 

vanilla (Figure 14). On recall at 1 hour, the responsiveness was very low and there 

was no evidence of a significant difference between the right and the left sides either 

in A responses (F(1,9)=1.976; p=0.193) or in B responses (F(1,9)=1.000; p=0.343). 

At 6 hours responding was high but there was no significant difference between the 

sides for A responses (F(1,9)=0.474; p=0.509) or B responses (F(1,9)=2.139; 

p=0.178). 
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Figure 14. Experiment C. Recall of memory at 1 and 6 hours after training. All bees were trained 

using both antennae and tested for recall by presenting the odours on the bee’s left side (left) or right 

side (right). The mean numbers (standard errors) of type A responses (proboscis extension response, 

PER, to S+ and not S-) are plotted as dark grey bars, the mean numbers (standard errors) of B 

responses (PER to both odours) are plotted as light grey bars. 

 

 

3.4.3. Discussion 

The findings of Experiment A replicate those of Rogers and Vallortigara (2008). 

Recall of memory of the single odours (cineol and eugenol) showed the same 

pattern of lateral shift of olfactory memory recall as they had found for lemon (+) and 

vanilla (-). At 1 hour after training the bees responded to the positive stimulus 

(cineol) mainly when it was presented on their right side (i.e. using their right 

antenna), whereas at 6 hours after training they did so when it was on presented on 

their left side (i.e. using their left antenna). At both times of recall they discriminated 

this from the negative stimulus (eugenol), to which they did not respond with a PER. 

Lemon (+)/rose (-) gave the same responses at 1 hour as did lemon (+)/vanilla 

(-) and cineol (+)/eugenol (-) but, in contrast, the memory was unspecific at 6 hours, 

even though A responses were still biased to the left side. I argued that this pattern 

of results could be due to familiarity with the rose odour, implying that reversal 

learning (negative stimulus) of an already established positive stimulus (rose) had 

occurred during training. If the bees had already formed a memory of rose as a 

positive stimulus, they may have failed to establish a long-term memory of rose as a 

negative stimulus. 

In Experiment B, IAA was used because we reasoned that it is probably a 

biologically established negative stimulus. Therefore, to investigate whether reversal 



 

learning leads to non-specific long-term memory recall we used IAA as the positive 

stimulus during training. For both concentrations of IAA used, at 1 hour after training 

on rose (+)/IAA (-) a suppression of the response was observed with no significant 

difference between the right and left antenna. At 6 hours after training the bees 

responded to both odours (type B responses), slightly more when the stimuli were 

presented to the right side than to the left side. I also used vanilla as the negative 

stimulus in combination with diluted IAA as the positive stimulus to check whether 

the pattern obtained was unique to IAA (+)/rose (-). A similar result was obtained. 

There was only a slightly significant difference between the two groups and that was 

in the number of B responses for the left antenna at 1 hour, which was higher for the 

bees trained with dilute IAA (+) and vanilla (-) than it was for the same concentration 

of IAA (+) and rose (-). 

A simple model could account for these results. Research on retroactive 

interference suggests that honeybees seem to hold on to memories, i.e. new 

memories do not wipe out old ones (Cheng and Wignall, 2006). Three broad, but not 

mutually exclusive, retroactive interference effects have been put forward: 1) 

memory loss, where a second training causes the memory for the first task to be 

irretrievably eliminated; 2) retroactive inhibition, where the second task causes 

inhibition that actively suppresses the memory formed in the first task; 3) response 

competition, where multiple memories are intact, but the animal is uncertain as to 

which memory to exhibit in performance (see Cheng and Wignall, 2006). Let us 

consider the olfactory pathway and the brain of the bees as divided in two equal 

parts (right and left sides), with the right side mainly associated with short term 

memory and the left side with long-term memory (this is likely to be an 

oversimplification but here  - see Figure 15 - simply serves the purpose of taking into 



 

account time-dependent shift of memory recall; see Rogers and Vallortigara, 2008). 

Familiar odours would be already present in the left side of the bee’s brain (in the 

long-term memory store) and, in particular, memory of IAA would be encoded for 

biological reasons as a negative stimulus, whereas memory of rose may be already 

present as a positive stimulus because of previous learning. 
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Figure 15. A schematic representation of the model. a) represents what happens in the brain of bees 

trained with IAA(+)/rose(-). Before training, both IAA and rose were already present in the long-term 

memory (left side of the brain) as respectively negative (-) and positive (+) stimuli. After training with 

IAA(+)/rose(-), on recall at 1 hour, a short-term memory was available from stores \ in the right side of 

the brain with IAA(+)/rose(-) and bees showed reduced responsiveness, as a result of retroactive 

inhibition. On recall at 6 hours (after the memory shift from the right to the left side of the brain) IAA 

and rose would be present in the long-term memory as both negative (-) and positive (+), producing 

response competition due to multiple memories and making the bees respond to both odours. b) the 

same for bees in Exp. 3, trained twice, once in a reverse way. After the first training (lemon+/vanilla-) a 

long-term memory was allowed to form in the left side of the bee’s brain, with lemon as positive and 

vanilla as negative (both these odours were unfamiliar to bees before training). The day after, bees 

were trained a second time with reversed contingencies (vanilla+/lemon-). On recall at 1 hour a short-

term memory with vanilla(+) and lemon(-) was available on the right side. Six hours after reversal 

training, after the shift from right to left had taken place, in the left side memories of both odours would 

be present as both positive and negative stimuli, making bees respond to both odours. 

 

When lemon and rose are used during training as, respectively, positive and 

negative stimuli, a short-term memory would be formed on the right side of the brain. 

One hour after training, recall would be possible from the right side (right antenna) 

and the bee would be able to discriminate between the two odours and respond only 

to the positive one (lemon). At 6 hours, when the shift from the right to the left side 

would be completed, in the left side of the bee’s brain the rose odour will be present 

as both positive (as a result of long-term memory acquired before) and negative (as 

a result of the new long-term memory acquired after the training) thus producing 

response competition due to multiple memories (Cheng and Wignall, 2006) and, 

since the bee can no longer recognize whether rose is a positive or a negative 

odour, it responds to both the odours. 



 

A similar explanation would work for Experiment B: the IAA would be already 

present in the long-term memory (left side of the brain) as a negative stimulus (see 

Figure 15a). Thus, at 6 hours (after the memory shift) IAA would be present in long-

term memory as both negative and positive, producing response competition due to 

multiple memories and making the bee respond to both odours. Bees trained with 

IAA also showed low responsiveness after 1 hour, however. The suppression of 

responding at 1 hour could be interpreted as an example of retroactive inhibition 

(Cheng and Wignall, 2006), likely caused by the difficulty of associating a biologically 

known negative odour with a reward. 

In order to check this hypothesis, in Experiment C I tried to simulate 

experimentally a retroactive interference effect, by training bees twice and, on the 

second occasion, in a reverse way. Three or more hours after the first training 

(lemon+/vanilla-) a long-term memory would form in the left side of the bee’s brain 

(see Figure 15b), with lemon as positive and vanilla as negative (both these odours 

were unfamiliar to bees before training). On the following day, these bees were 

trained with reversed contingencies (vanilla+/lemon-) and recall 1 hour and 6 hours 

after reversal training was tested. As expected (see above), 1 hour after the reversal 

training the bees showed reduced responsiveness, as a result of retroactive 

inhibition. At 6 hours, after the shift from right to left had taken place, bees 

responded to both odours, replicating the situation of response competition between 

the two memories (due to the fact that in the left side both odours would be present 

as memories of both positive and negative stimuli). 

The model is based on the idea that memory shifts from the right to left side of 

the brain. Another possible explanation for these results could be that the 

information is encoded over different time frames in each side of the brain, rather 



 

than being transferred from one side to the other, and hence there would be 

asymmetry in the effectiveness of recall. As far as I can see, the result would be the 

same as predicted by our model. 

Overall, the results of this series of experiments confirm the surprising finding 

(see Rogers and Vallortigara, 2008) that bees learn to associate a new odour of a 

positive stimulus mainly in neural circuits accessed via their right antenna, and that, 

after a period of a few hours, memory consolidation occurs accompanied by 

antennal asymmetry, with bees now being able to recall the odour mainly when 

using their left antenna. Moreover, this particular dynamic of memory traces has 

severe consequences when odours are already known to the bees (either for a 

biological reason or as a result of previous experience) and are thus already present 

in the long-term memory store. As a result, response competition arising from 

multiple memory traces can be observed, with bees showing unexpected lack of 

specificity in their longer-term olfactory memories. 



 

3.5. Experiment 3: Morpho-functional asymmetry of the olfactory receptors of 

the honeybee (Apis mellifera). 

 

In this study I first duplicated the PER behavioural result using forager Italian 

honeybees (Apis mellifera ligustica Spin.) and than I checked for anatomical 

differences in the number of sensilla between the right and the left antenna by using 

a larger sample of honeybees compared to the number of bees used by Letzkus et 

al. (2006). Morphological data were collected from bees harvested in 2 different 

hives (one in North Italy and another one in South Italy). Both antennae of each bee 

were imaged from four different views and all different types of sensilla were 

considered. 

 

 

3.5.1. Materials and methods 

 

3.5.1.1. Subjects 

For the behavioural experiments, forager Italian honeybees were collected next 

to three different outdoor hives during summer 2009 at San Michele all’Adige 

(Trento, Italy). For the scanning electron microscopy, honeybees were collected 

during summer 2008 from two different outdoor hives: 1) the hive in San Michele 

all’Adige (Trento, Italy) and 2) a hive in Reggio Calabria (South of Italy). They were 

preserved in a freezer at -20°C and used as specimen for the scanning electron 

microscopy in autumn 2008. 

 

 



 

3.5.1.2. Types of sensilla 

On the basis of the literature and according to my own preliminary 

observations, I distinguished the following sensillum types (Figures 16 and 17). 

Sensilla placodea or oval pore plate organs (McIndoo, 1914; von Frisch, 1921; 

Lacher and Schneider, 1963; Kaissling and Renner, 1968) (Figures 16a and 17a). 

Sensilla trichodea, inserted into a surface depression, can be divided into thick 

trichodea (type a) (Figures 16a-16c and 17a), straight, shorter and larger, and thin 

trichodea (type b) (Figures 16a and 17a), longer and slender, tapering to the tip 

(Dietz and Humphreys, 1971; Al Ghamdi, 2006; Zakaria and Allam, 2007). The entire 

wall of the sensilla trichodea (type a) possesses pores. 

Sensilla basiconica, inserted into a slightly depressed round socket, are 

distinguished into thick basiconica (Figures 16a-16b and 17a), and tapered 

basiconica (Figures 17a-17c) (Yokohari et al., 1982). The tip surface of the former 

shows porous structures. 

Sensilla coeloconica, referred also to as ampullacea, which are involved in 

perception of temperature, carbon dioxide and humidity (Figure 16a and 17a) (Dietz 

and Humphreys, 1971; Yokohari et al., 1982; Al Ghamdi, 2006; Zakaria and Allam, 

2007). 

Sensilla campaniformia or coelocapitular, considered as hygro- and 

thermoreceptors and/or mechanoreceptors (Figure 16a) (Kuwabara and Takeda, 

1956; Dietz and Humphreys, 1971; Yokohari et al., 1982; Al Ghamdi, 2006; Zakaria 

and Allam, 2007). 

Sensilla chaetica, are stout bristles with their base inserted into a socket and 

are sensitive to mechanical or gustative stimuli (Figure 17a-17b) (Whitehead and 

Larsen, 1976; Amornsak et al., 2000). They house an apical pore. 



 

 

 

Figure 16. Scanning electron micrographs of the antenna of Apis mellifera forager: (a) dorsal view of 

a medial segment of the flagellum; (b) detail of a sensillum basiconicum thick; (c) detail of a sensillum 

trichodeum type a. Pl, sensillum placodeum; Ta, sensillum trichodeum type a; Tb, sensillum 

trichodeum type b; Bth, sensillum basiconicum thick; Co, sensillum coeloconicum; Ca, sensillum 

campaniformium. 



 

 

 

Figure 17. Scanning electron micrographs of the antenna of Apis mellifera forager: (a) dorsal view of 

a medial segment of the flagellum; (b) detail of a sensillum chaeticum; (c) detail of a sensillum 

basiconicum tapered. Pl, sensillum placodeum; Ta, sensillum trichodeum type a; Tb, sensillum 

trichodeum type b; Bth, sensillum basiconicum thick; Bta, sensillum basiconicum tapered; Ch, 

sensillum chaeticum; Co, sensillum coeloconicum. 

 

 



 

3.5.1.3. Behaviour 

Honeybees were cooled in 750ml containers until immobilised and then 

harnessed in metal holders using the method of Bitterman et al. (1983), as modified 

by Rogers and Vallortigara (2008), by adding a piece of paper to cover the thorax of 

the bee so that the bee was not damaged by the adhesive tape and could be 

released after the test. They were assigned randomly to groups for the occlusion of 

one antenna and, 1 hour later, all bees were trained in the same way. The 

experiment was carried out on three groups. The bees in one group (N=9) had their 

left antenna coated with a silicone compound (Silagum-Mono, DMG, Germany); 

those in the second group (N=9) had their right antenna coated, while both the 

antennae of the bees belonging to the third group were left uncoated (N=9). 

One hour after the antennae had been coated, training commenced. Each bee 

in its holder was placed in front of an exhaust fan and trained using (-)-linalool 

(Sigma Aldrich, >98.5% purity), a common floral odour, plus 1M sucrose solution as 

the positive stimulus (10ul of (-)-linalool dissolved in 3 ml of the sucrose solution). 

The negative stimulus was a saturated salt (NaCl) solution. Three trials spaced 6 

min apart were given. On the first trial a droplet of the (-)-linalool solution at the end 

of a 23 gauge needle was held over the bee’s antennae at 1 cm from the antennae 

and after 5 s the antennae were touched, which led to PER. The bee was then 

allowed to ingest the drop of (-)-linalool sugar solution. The procedure was repeated 

with the saline solution (trial 2), which did not trigger PER but avoidance by moving 

the antennae away from the droplet. On trial 3 the procedure of trial 1 was repeated 

and usually PER occurred without the need to touch the antennae. 

Recall was tested in three groups of bees one hour after the training ended. 

Both (-)-linalool and saturated salt solutions were presented as dissolved in distilled 



 

water at the same concentration as used in training. Droplets of these solutions were 

held over the bee, out of reach of the antennae or proboscis at approximately 1 cm 

from the bee. The odour presentation was followed immediately by the saline 

solution and 10 presentations of each pair of solutions were made separated by an 

interval of approximately 60 s. The solutions were presented for 5 sec. and whether 

or not PER occurred was noted. The responses were scored as follows: A, extension 

of the proboscis to (-)-linalool and no extension to saturated salt solution; B, 

extension of the proboscis to both (-)-linalool and saturated salt solution; C, 

extension of the proboscis to saturated salt solution but not (-)-linalool; D, no 

extension of the proboscis to (-)-linalool or to saturated salt solution. 

 

3.5.1.4. Scanning Electron Microscopy (SEM) 

The bees (N=18) collected during summer 2008 were preserved in a freezer for 

about 2 months. After defrosting at room temperature for 4 hr, left and right antennae 

were cut at the base of the pedicel with a razor blade. The basal segments of each 

antennae pair were attached to a circular stub by double-sided conductive tape 

(TAAB Laboratories Equipment Ltd. Aldermaston, UK). All samples were gold-

coated for guaranteeing electrical conductivity during imaging with a XL 30, Field 

Emission Environmental Scanning Electron Microscope. (FEI-Philips, Eindhoven, 

Netherlands). Each antenna was imaged from four different viewpoints (Figure 18a): 

ventral view (holder at 0°), right view (sample tilted at -75°, imaging of the right 

antenna side), left view (sample tilted at +75°, imaging of the left antenna side), and 

dorsal view (after removing antenna from stub and replacing upside). The four views 

allowed imaging almost completely the antenna surface as sketched in Figure 18b. 

Because there are no olfactory receptors on the first two segments of the honeybee 



 

flagellum, only segments 3rd to 10th were scanned. Each segment from 3rd to 9th 

was scanned longitudinally at a magnification of 600 times. A magnification of 800 

times was used for the 10th smaller segment (apex). Four images per segment were 

collected according to the four different viewpoints: ventral, right, left, and dorsal. 

 

 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

Figure 18. Morphological characterization of Apis mellifera antenna. 
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a) Low-magnification SEM image of the ventral view of Apis mellifera left antenna. Segments from 3rd 

to 10th were imaged for subsequent count of sensilla. 

b) Schematic representation of the four views used for imaging each segment (antenna diameter is 

about 200 µm); the SEM field of view at a magnification of 600 times is 205 µm in width and 154 µm 

in height. 

 

Fourteen out of 18 subjects were selected for SEM imaging, excluding 

damaged antennae during sample preparation or rotation. 

Sensilla placodea, sensilla trichodea type a and b, sensilla basiconica thick and 

tapered, sensilla coeloconica, sensilla campaniformia and sensilla chaetica were 

identified according to their specific morphological characteristics as previously 

described (Figures 16 and 17). Each type of sensillum was then tagged and counted 

on all acquired images by using image analysis software (UTHSCSA ImageTool 

Version 3.0). Data were clustered according to the four viewpoints, eight antennal 

segments, two antennae, and eight sensilla types. 

 

3.5.1.5. Statistical analyses 

For the behavioural data, the mean number of A responses with the respective 

standard error of the mean (SE) were calculated for each bee of each group (right 

antenna, left antenna, both antennae in use). B, C and D responses were too rare to 

warrant inclusion in the analysis. Data were analysed by analysis of variance 

(Anova) with antenna in use as between-subjects factor. 

For the images acquired by SEM, we counted all the sensilla on all the images. 

The mean number of olfactory sensilla (sensilla placodea, sensilla trichodea a and b, 

sensilla basiconica thick and tapered) with the respective standard error (SE) were 

calculated and plotted for each segment number. Data were analysed by analysis of 



 

variance (Anova) with antenna, segment, type of sensilla as within-subjects factors. 

Further analyses were done considering the putative olfactory sensilla and the 

sensilla involved in other functions (sensilla coeloconica, sensilla campaniformia and 

sensilla chaetica). 

 

 

3.5.2. Results 

Results of behavioural tests are shown in Figure 19. The analysis of variance 

revealed a significant main effect of the antenna in use (F2,24=5.31, p<0.05). Post 

hoc comparison using the Tukey HSD test revealed a significant difference between 

bees using the right antenna and bees using the left antenna (p<0.05) and between 

bees using the left antenna and bees using both antennae (p<0.001), whereas there 

were no significant differences between bees using the right antenna and bees using 

both antennae (p=0.55). 

 

0

1

2

3

4

5

6

7

8

9

10

antenna in use

m
e

a
n

 n
u

m
b

e
r 

o
f 

A
 r

e
s

p
o

n
s

e
s

right antenna left antenna both antennae

 

 



 

Figure 19. Behavioural asymmetry during recall in honeybees Apis mellifera, after trained on the 

proboscis extension reflex (PER). The mean number of A responses (extension of the proboscis to (-

)-linalool and no extension to saturated salt solution), plotted with standard error bars, in recall tested 

at 1 hour after training in honeybees tested with both antennae or with only one antenna in use: white 

bars for honeybees tested with the left antenna coated and the right antenna in use (right antenna); 

light grey for honeybees tested with the right antenna coated and the left antenna in use (left 

antenna); dark grey for honeybee tested with both antennae in use (both antennae). 

 

Results from SEM are summarized in Figure 20. The Anova with antenna, 

segment and type of sensilla as within-subjects factors revealed significant main 

effects of segment (F7,91=837.21, p<0.0001) and sensilla type (F7,91=1623.47, 

p<0.0001), and significant antenna x sensilla type (F7,91=3.07, p<0.01) and segment 

x sensilla type (F49,637=180.45, p<0.0001) interactions. Sensilla that are likely to be 

involved in olfaction (sensilla placodea, sensilla trichodea a and b, sensilla 

basiconica thick and tapered) showed to be higher in number on the right than on 

the left antenna for all segments (F1,13=5.56, p<0.05, Figure 20a). For sensilla 

involved in non-olfactory functions (sensilla coeloconica, sensilla campaniformia and 

sensilla chaetica) there was evidence of asymmetry in only the segments 3-9 but in 

the opposite direction: there were in fact more non-olfactory sensilla on the left than 

on the right antenna (excluding the 10th segment, F1,13=6.07, p<0.05, see Figure 

20b). 



 

 

 

a) 

 

b) 

 

Figure 20. The mean number of a) olfactory sensilla and b) non-olfactory sensilla for the right antenna 

(white bars) and for the left antenna (dark grey bars) of Apis mellifera with the respective standard 

error (SE) in function of the segment number. 
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3.5.3. Discussion 

Results of the behavioural test confirm the finding of Letzkus et al. (2006) that 

the honeybees are lateralized in responding to learned odours and in particular that 

after training on the proboscis extension reflex (PER) paradigm, bees respond to 

odours better when they are trained through their right antenna. Bees trained with 

the left antenna coated performed similarly to the control group (bees with both 

antennae left uncoated) while those trained with the right antenna coated performed 

worse. I checked whether this difference is due to a difference in the number of 

sensilla which house the receptor cells involved in the olfactory responses. I 

extended the work done by Letzkus et al. (2006) by considering a larger sample and 

both antennae of each bee. Moreover I imaged the whole antenna surface from 4 

different views. All the sensilla present on each image were counted distinctly for a 

total of eight sensilla types: five of which with possible olfactory function (sensilla 

placodea, sensilla trichodea type a and b, sensilla basiconica thick and tapered) and 

the other three sensilla types involved in others, not olfactory, functions (sensilla 

coeloconica, sensilla campaniformia and sensilla chaetica). I found that the number 

of olfactory sensilla was significantly higher on the right antenna than on the left 

antenna. Surprisingly, I observed for the first time that the number of non-olfactory 

sensilla was significantly higher on the left antenna than on the right antenna in all 

segments except the apex. The functional significance of this opposing 

morphological asymmetry is at present unclear but behavioural asymmetries in other 

sensory domains appear to be worth testing. 

It is worth of noting that in a previous study on an another eusocial Apidae 

species, Apis florae Fabr., the olfactory sensilla were shown to be slightly more 

abundant on the left antenna (Gupta, 1986). Thus, comparative work on different 



 

species is needed in order to understand the generality and the significance of 

antennal morphological asymmetries in Apidae. 

It should also be stressed that morphological differences between the 

honeybee’s antennae in the number of olfactory sensilla could not account entirely 

for the asymmetries observed in behaviour. Firstly, because both anatomical and 

EAG asymmetries (Anfora et al., 2010) seem to be quite modest in magnitude to 

account for the behavioural bias, and secondly, and most important, because 

asymmetries in recall seem to change in direction with memory consolidation. 

Rogers and Vallortigara (2008; see also Frasnelli et al., 2010a) investigated whether 

lateralization could be found in recall of olfactory memory at various times (1, 6 and 

24 hours) after the bees had been trained using both antennae and they showed that 

the left-right asymmetry in olfactory memory depends on time. At 1 hour after 

training, bees showed excellent recall when tested using their right antenna, but poor 

or no recall when tested using their left antenna. By contrast, 6 and 24 hours after 

training recall was good when the left antenna was in use but not when the right 

antenna was in use, demonstrating that long-term memory is accessed mainly via 

the left antenna. Thus, a lateral shift had occurred from the right to the left antenna, 

showing that the consolidation or retrieval of olfactory learning is a time-dependent 

process and involves lateralized neural circuits. It seems likely that the asymmetry in 

peripheral receptors is part of a cascade of asymmetrical mechanisms associated 

with detection, storage and retrieval of olfactory events (see for similar mechanisms 

in vertebrates Rogers and Andrew, 2002). It will be therefore important to look at the 

morphological and physiological processes going on in the honeybee left and right 

olfactory brain centers (i.e. antennal lobes and mushroom bodies) following olfactory 

learning at different times during memory consolidation. 



 

3.6. Experiment 4: Right-left antennal asymmetry of odour memory recall in 

three species of Australian stingless bees 

 

In this research I was interested in investigating the generality and phylogenetic 

origins of the antennal asymmetry found in the honeybee Apis mellifera (Letzkus et 

al., 2006; Rogers and Vallortigara, 2008; Anfora et al., 2010; Frasnelli et al., 2010a) 

and therefore studied whether it could be observed in stingless, social bees. 

Australian stingless bees (Hymenoptera, Apidae, Meliponinae, Genera Trigona and 

Austroplebeia) are among the most primitive social bees (Dollin, 1996) and stingless 

bees are more primitive than honeybees (the oldest known bee fossil, a Trigona 

prisca worker from late Cretaceous, preserved in amber in New Jersey, USA, is 74-

94 million years old, and is very similar to the extant species of Trigona spp. from the 

neotropics; Michener and Grimaldi, 1988), suggesting that Meliponinae (stingless 

bees) is an ancient group. The other taxa (Apinae, Bombinae and Euglossinae) 

seem to be more recent: the oldest known fossil of a honeybee (Apis) is 22-25 

million years old (Michener, 1990). 

 

 
a) 



 

 

b) 

c)     d) 

Figure 21. – Australian native stingless bees: a) Trigona carbonaria, b) Trigona 
hockingsi, c) Austroplebia australis and d) the barrier made by A. australis over the 
entrance to the hive. 

 

Studies carried out on Brazilian stingless bees (Mc Cabe et al., 2007; Mc Cabe 

and Farina, 2009; Mc Cabe and Farina, 2010) showed possible differences in odour-

learning abilities compared to honeybees, Apis mellifera (Mc Cabe et al., 2007). 

Gustatory responsiveness was found to be similar in the three species studied but 

honeybees showed the best ability to discriminate, M. quadrifasciata an 

intermediate, and S. aff. depilis bees showed no discrimination. The presence of 

long-term memory has been documented in M. quadrifasciata bees (Mc Cabe and 

Farina, 2009).  



 

In this study Trigona carbonaria, Trigona hockingsi and Austroplebia australis 

stingless bees were tested. Trigona carbonaria (4 mm; Figure 21a) is found on the 

east coast of Australia from North Queensland to southern NSW (Dollin, 1996). 

Trigona hockingsi (4.5 mm; Figure 21b) is found in the northern and eastern parts of 

Queensland and in the Northern Territory. Austroplebia australis (4 mm; Figure 21c) 

is distributed throughout northern NSW and in Queensland. 

Stingless bees were trained using lemon and vanilla as odours and tested their 

recall by presenting the stimuli on the right or left side of the bee at 1 hour and at 5 

hours after training (see Rogers and Vallortigara, 2008). As in previous studies, the 

proboscis extension reflex (PER) paradigm was used (Bitterman et al., 1983, and 

Letzkus et al., 2006), in which bees are conditioned to extend their proboscis in 

anticipation of a food reward (unconditioned stimulus) when they perceive a 

particular odour (conditioned stimulus). The procedure of testing and the set up 

were, however, modified to accommodate testing of the very small stingless bees. 

 

 

3.6.1. Materials and methods 

 

3.6.1.1. Subjects 

The bees used were all from established hives in boxes. Worker bees were 

captured in tubes (length 100 mm x diameter 20 mm) as they exited their hive and 

transported to the laboratory nearby. Experiments were conducted during summer 

(February and early March, 2010) in Valla, northern NSW, Australia, which is within 

the natural range of T. carbonaria and just outside of the range of A. australis. 



 

Due to their small size (4.0 to 4.5 mm) these bees could not be handled in the 

same way as honeybees. Also, due to their susceptibility to low temperatures, they 

were not subjected to cooling before being placed in the training holders for testing. 

Instead, I was able to take advantage of their consistent and obvious negative 

geotaxis, which meant that they would climb upward into a tube for testing. The tube 

was made by cutting off the end of a pipette cap of 10 µl to make a hole of diameter 

at the tip so small that the bee could protrude only its head and not escape. The size 

of the hole had to be adjusted to each species to prevent the bee escaping. Once 

the bee had adopted this position in the tube it would remain there provided that the 

tube remained upright, as shown in Figure 22, and could be trained by presenting 

odours and reward (sugar) or punishment (saline). 

 

 

 

 

 

 

 

 

 

Figure 22. A bee positioned in the tube for training and testing. 

 

Six groups of bees (total of 67 bees) were tested. Three groups (one of each 

species) were tested for short-term memory (N=12 T. carbonaria, N=13 T. hockingsi 



 

and N=10 A. australis) and another three groups (one of each species) were tested 

for long-term memory (N=8 T. carbonaria, N=11 T. hockingsi and N=13 A. australis). 

Each group was trained using lemon odour as the positive stimulus and vanilla 

odour as the negative stimulus. The concentrations of lemon and vanilla were 10 µl 

of the scent essence (Queen Fine Food Pty Ltd) dissolved in 3 ml of 1M sucrose 

solution or saturated saline solution. In order to check whether the shift in lateralized 

recall was due to the elapse of time per se or to changes in motivation associated 

with increasing hunger, I performed a control experiment in which I fed the bees with 

sugar 1 hour before the recall test at 5 hours using a group (N=7) of T. hockingsi 

bees. 

 

3.6.1.2. Experimental procedures 

One hour after the bees had been restrained in the testing tubes training 

commenced. The bees were trained with both antennae in use using lemon plus 1M 

sucrose solution as the positive stimulus and vanilla plus saturated saline as the 

negative stimulus. Positive and negative stimuli were presented (one after the other 

one) using cotton buds soaked in one or the other solution and holding the bud over 

both of the bee’s antennae at 1 cm from the antennae. Three trials were given at 6-

min intervals. In the first trial, after holding the bud with the odour in sucrose solution 

over the antennae for 5 sec, the antennae were touched with the bud to trigger the 

proboscis extension response (PER). The bee was allowed to ingest the sugar 

solution from the bud for 5 sec. Then the negative stimulus was presented, again 

with touching of the antennae, which led to withdrawal. After 6 minutes, a second 

trial was performed and the bee usually responded to the positive stimulus with a 

PER without the need to touch the antennae with the bud. After another 6 minutes 



 

bees were given the third and last trial and then held for either 1 hour (in the holder) 

or 5 hours (released into a 125 ml tube until 1 hour before testing) at room 

temperature (varying from 28° C to 32° C). 

Bees trained were tested either at 1 hour or at 5 hours after the completion of 

training. I used the method of Rogers and Vallortigara (2008) to test for laterality of 

responding. It involved presenting the odours dissolved in distilled water at the same 

concentrations as used during training. A cotton buds with either of these solutions 

was held on the left or right side of the bee, out of reach of the antennae or 

proboscis at approximately 1 cm from the bee. Each odour was presented 10 times 

on each side of the bee in completely random order for a total of 40 randomized 

presentations (10 lemon on the right side, 10 lemon on the left side, 10 vanilla on the 

right side and 10 vanilla on the left side). The odours were presented for 5 sec and 

whether or not PER occurred was recorded. A full PER involved complete extension 

of the proboscis, which included extension of the two outer sheaths of the proboscis 

and the tongue. Partial extension of the proboscis, which involved extension of the 

sheaths but not full extension of the tongue, was also recorded. I refer to the latter as 

½ PER. 

In the experiment controlling for motivation to feed (above), bees were trained 

in the same way but they were fed with 1M sucrose solution without any odour 

presented on a cotton bud at 1 hour before testing recall at 5 hours after training. 

 

3.6.1.3. Statistical analyses 

Before analysis data were log-transformed to account for heterogeneity of 

variances. For each group of bees and for each side (right and left) the mean 

number of responses to lemon and the mean number of responses to vanilla with the 



 

respective standard errors (SEM) were calculated. Both the full proboscis extensions 

(full PER) and extension of only part of the proboscis (half PER, ½ PER) were 

considered. Because of the differences in the numbers of full PER recorded between 

the three species, data are plotted considering both full PER and ½ PER (Figure 23) 

and considering full PER only (Figure 24). 

Data were analysed by analysis of variance (Anova) with ‘antenna’ and ‘odour’ 

as within-subjects factors, and ‘species’ as between-subjects factor. Data from the 

control experiment conducted on the T. hockingsi bees fed with sugar one hour 

before the recall test at 5 hours were compared with those of the T. hockingsi bees 

tested for recall at 5 hours in the main experiment using ‘experiment’ as between-

subjects factor. 

 

 

3.6.2. Results 

Considering both full PER and ½ PER responses, the bees responded 

differently to lemon (+) and vanilla (-) when using the right and the left antenna at 

both 1 hour and 5 hours after training in all the three species tested (Figure 23). 

 



 

 
a) 

 



 

 

b) 

Figure 23. Recall of memory of the three Australian native stingless bees (Trigona carbonaria, 

Trigona hockingsi and Austroplebia australis) at a) 1 hour and b) 5 hours after training with lemon 

(+)/vanilla (-). All bees were trained using both antennae and tested for recall by presenting the 

odours on the bee’s left side (left) or right side (right). The mean number (with standard error) of full 



 

Proboscis Extension Reflex (PER) and half PERs responses (see text) to both odours (yellow for 

lemon and orange for vanilla) are plotted for the right and the left side of presentation. 

 

The analysis of variance showed that on recall at 1 hour stingless bees 

responded significantly better when the lemon odour was presented on their right 

side than they did when the same odour was presented on their left side 

(F(1,32)=69.375; p<0.0001; Figure 23a). There was a significant main effect of odour 

(F(1,32)=57.074; p<0.0001), due to lack of response to the vanilla odour, and a 

significant odour x antenna interaction (F(1,32)=27.657; p<0.0001), whereas no 

inter-species significant differences were apparent (F(2,32)=2.237; p=0.123). The 

Anova did not reveal any other significant effects (odour x species (F(2,32)=2.559; 

p=0.093), antenna x species (F(2,32)=0.051; p=0.950), odour x antenna x species 

(F(2,32)=0.444; p=0.645)). The percentage discrimination on the right side was 

similar in the three species (F(2,32)=0.882; p=0.424). 

On recall at 5 hours, on the other hand, the three species of Australian 

stingless bees performed significantly better when the lemon odour was presented 

on their left side than when it was presented on their right side (F(1,29)=51.349; 

p<0.0001; Figure 23b). There was a significant main effect of odour (F(2,29)=79.785; 

p<0.0001), due to non-response to the vanilla odour, and a significant main effect of 

species (F(2,29)=10.254; p<0.0001), due to lower responsiveness in A. australis 

compared to the other two species. Significant interactions were found between 

odour x antenna (F(1,29)=35.200; p<0.0001) and odour x antenna x species 

interaction (F(2,29)=8.653; p=0.001). The latter was due to the percentage 

discrimination on the left side differing between the three species (F(2,29)=10.056; 

p<0.0001): T. carbonaria and A. australis discriminated between lemon and vanilla 

(80% and 100% respectively) but T. hockingsi discriminated less well between the 



 

two odours (65%). No odour x species (F(2,29)=4.001; p=0.029) nor antenna x 

species (F(2,29)=0.022; p=0.979) interactions were observed. 

Considering only the number of full PER, a significant difference in the number 

of responses to lemon between the right and the left antenna at both 1 hour and 5 

hours after training was observed. The same results were found as above for PER 

and ½ PER, although slightly less strongly (Figure 24). 



 

 
a) 

 



 

 

b) 

Figure 24. Recall of memory of the three Australian native stingless bees (Trigona carbonaria, 

Trigona hockingsi and Austroplebia australis) at a) 1 hour and b) 5 hours after training with lemon 

(+)/vanilla (-). All bees were trained using both antennae and tested for recall by presenting the 

odours on the bee’s left side (left) or right side (right). The mean number (with standard error) of full 



 

Proboscis Extension Reflex (PER) responses to both odours (yellow for lemon and orange for vanilla) 

are plotted for the right and the left side of presentation. 

 

The analysis of variance revealed that on recall at 1 hour the stingless bees 

responded significantly better when tested on their right than on their left side 

(F(1,32)=32.114; p<0.0001; Figure 24a). There was a significant main effect of odour 

(F(1,32)=42.924; p<0.0001), and significant odour x antenna interaction 

(F(1,32)=39.634; p<0.0001). No main effect of species was observed 

(F(2,32)=1.410; p=0.259) but there was a significant odour x species interaction 

(F(2,32)=4.057; p=0.027) due to A. australis giving more full PER responses to 

lemon than did the other two species. In fact, T. hockingsi gave very few full PER 

responses to lemon. The Anova did not reveal any other significant interactions 

(antenna x species: F(2,32)=3.127; p=0.057; odour x antenna x species: 

F(2,32)=2.563; p=0.093). The percentage discrimination on the right side did not 

differ significantly between the three species (F(2,32)=2.505; p=0.098). 

On recall at 5 hours the three stingless species of bees performed significantly 

better when tested on the left than on the right side (F(1,29)=21.343; p<0.0001); 

Figure 24b). There was a significant main effect of odour (F(1,29)=46.860; 

p<0.0001), a significant odour x antenna interaction (F(1,29)=35.047; p<0.0001), a 

significant odour x species interaction (F(2,29)=4.637; p=0.018) and a significant 

odour x antenna x species (F(2,29)=3.876; p=0.032) interaction; no significant main 

effect of species (F(2,29)=1.740; p=0.193) or antenna x species interactions 

(F(2,29)=1.862; p=0.173) were observed. The three-way interaction was caused by 

greater responsiveness by T. carbonaria to lemon odour presented on the left than 

was the case for the other two species. The percentage discrimination on the left 

side differed slightly significantly among the three Australian stingless species of 



 

bees (F(2,29)=3.582; p=0.041): T. hockingsi was less able to discriminate lemon 

from vanilla than were the other two species. 

The results of the control experiment conducted on T. hockingsi bees fed with 

sugar 1 hour before the recall test at 5 hours after training are shown in Figure 25. 

 

 
a) 

 

b)  

Figure 25. Recall of memory at 5 hours after training with lemon (+)/vanilla (-) of Trigona hockingsi bees 

fed with sugar one hour before the recall test. All bees were trained using both antennae and tested for 

recall by presenting the odours on the bee’s left side (left) or right side (right). The mean number (with 

standard error) of a) full Proboscis Extension Reflex (PER) and half PERs responses; b) full Proboscis 

Extension Reflex (PER) only are plotted for the right and the left side of presentation. 



 

Considering both full PER and ½ PER responses (Figure 25a), there was a 

significant main effect of odour (F(1,6)=49.892; p<0.0001), but not of antenna 

(F(1,6)=4.679; p=0.074 n.s.), and a significant odour x antenna interaction 

(F(1,6)=23.543; p=0.003). There was a significant main effect of the antenna 

(F(1,6)=10.419; p=0.018) on presentations of lemon odour but not vanilla odour 

(F(1,6)=2.323; p=0.178). The bees responded to lemon, but not vanilla, on their left 

side but not on their right side. 

Comparing the performance at the recall at 5 hours of the T. hockingsi bees of 

the main experiment with that of the T. hockingsi bees of the control experiment, the 

Anova with ‘experiment’ as a between-subjects factor revealed no significant main 

effect of the experiment (F(1,16)=0.257; p=0.619), a significant main effect of odour 

(F(1,16)=28.549; p<0.0001) and antenna (F(1,16)=10.208; p=0.006), a significant 

odour x antenna interaction (F(1,16)=12.335; p=0.003) and odour x antenna x 

experiment (F(1,16)=8.006; p=0.012) interaction. The percentage discrimination on 

the left side differed significantly between the two groups of T. hockingsi bees 

(F(1,16)=8.624; p=0.010): the bees fed with sugar (without lemon or vanilla odour) 1 

hour before the recall test discriminated better than the T. hockingsi bees not fed 

with sugar. No significant odour x experiment (F(1,16)=0.637; p=0.437) or antenna x 

experiment interactions (F(1,16)=0.637; p=0.437) were apparent. 

When only full PER were considered (Figure 25b), the Anova revealed a 

significant main effect of odour (F(1,6)=21.779; p=0.003), but not of antenna 

(F(1,6)=2.252; p=0.184 n.s.). There was a significant odour x antenna interaction 

(F(1,6)=11.696; p=0.014) and a trend for a significant antennal effect was observed 

for lemon (F(1,6)=5.497; p=0.057) but not for vanilla (F(1,6)=2.400; p=0.172). 

Considering only the full PER responses, we compared the performance on recall at 



 

5 hours of the T. hockingsi bees of the main experiment with that of the T. hockingsi 

bees of this control experiment. The Anova with ‘experiment’ as between-subjects 

factor revealed no significant main effect of the experiment (F(1,16)=0.824; 

p=0.377), a significant odour (F(1,16)=22.733; p<0.0001) and a significant odour x 

antenna interaction (F(1,16)=12.772; p=0.003). This was due more full PER to the 

lemon odour on the left following feeding with sugar 1 hour prior to testing than in the 

bees not fed during the interval between training and testing. In fact, comparison of 

Figures 24b and 25b shows that, following feeding with sugar, the performance of T. 

hockingsi is similar to that of T. carbonaria not fed sugar. No significant main effect 

of antenna (F(1,16)=2.871; p=0.110), odour x experiment interaction (F(1,16)= 

3.441; p=0.082), antenna x experiment interaction (F(1,16)=0.109; p=0.745) or odour 

x antenna x experiment interaction (F(1,16)=4.410; p=0.052) was revealed. 

As for the PER and ½ PER responses the performance at the recall at 5 hours 

of the two groups of T. hockingsi bees was compared. In this case the percentage 

discrimination on the left side was similar between the two groups of T. hockingsi 

bees (F(1,16)=2.650; p=0.123). 

 

 

3.6.3. Discussion 

Australian stingless bees showed lateralized behaviour in recall of olfactory 

memory. At 1 hour after training the bees demonstrated that they had learned the 

association of lemon with the sugar reward and responded to lemon mainly when 

using their right antenna. In contrast, recall at 5 hours after training was better when 

the odour was presented to the left than to the right side of the bees. This result is 

the same as that reported previously for honeybees, Apis mellifera (Rogers and 



 

Vallortigara, 2008; Frasnelli et al., 2010a). Hence, these findings add to the growing 

number of invertebrate species showing population-level lateralization and confirm 

that neural circuits accessed by the right antenna are able to recall short-term 

memory of odours, whereas circuits accessed by the left antenna recall long-term 

memories of odours. 

During recall at 1 hour, all the three species respond mainly with PER to lemon 

on the right. If PER plus ½ PER are compared to PER only responses, species 

differences are apparent. T. hockingsi bees performed as many ½ PER responses 

as the other species, showing that they remembered the odour, but they performed 

fewer full PER responses compared to the other two species. It seems that, despite 

their ability to recall the learnt memory, they were less motivated to feed. In fact, A. 

australis was the species most likely to give full PER to lemon odour at 1 hour after 

training. Note that T. hockingsi has the most tropical distribution and suggest that it 

might more responsive to higher concentrations of odour since odours are usually 

more pungent in tropical regions. T. hockingsi bees also discriminated between the 

lemon and vanilla odours somewhat less well than the other two species, which 

could indicated that they required more training to learn the discrimination than did 

the other two species. This can now be tested. In fact, differences in learning ability 

have been observed in some species of Brazilian stingless bees (Mc Cabe et al., 

2007) and may be due to differences in foraging and recruiting strategies. 

At 5 hours after training the data for all the three species responded to lemon 

only on the left side, showing that the recall of long-term olfactory memory takes 

place via neural pathways connected to the left antenna. Also, on recall at 5 hours T. 

hockingsi bees were less responsive than T. carbonaria bees and so were A. 

australis bees. As in recall at 1 hour, at 5 hours T. hockingsi bees discriminated 



 

lemon form vanilla less well than did T. carbonaria and A. australis bees: the 

percentage discrimination between the odours on the left side at 5 hours for T. 

hockingsi was significantly less than that of the other two species. Interestingly, this 

lower responsiveness and reduced ability to discriminate between the odours in T. 

hockingsi disappeared if the bees were fed odourless sugar 1 hour prior to testing 

recall at 5 hours after training. It seems, therefore, that the performance of T. 

hockingsi deteriorates due to lack of sugar. Since it is a tropical species, it may 

depend on more frequent intact of sugar. 

T. hockingsi bees fed with sugar 1 hour before recall at 5 hours performed PER 

only to presentations of lemon odour on the left side. Hence, the shift from right 

antennal recall and 1 hour to left antennal recall at 5 hours is not due the difference 

in the duration of food deprivation but, instead, it is a difference resulting from short- 

versus long-term memory. 

As stated at the beginning of this Section 3.6., the geographic distribution and 

fossil record support the hypothesis of greater antiquity for Meliponinae (stingless 

bees) compared to Apidae, Bombinae and Euglossinae, and that Meliponinae 

presents a considerably remote relationship or possibly no direct relationship to the 

other Apidae (Camargo and Pedro, 1992). Thus, it is generally believed that the 

honeybees did not evolve from the stingless bees but rather independently from 

some other (asocial) bee type and that any social features the two lines of evolution 

now share are the result of convergent rather than divergent evolution. Thus, the 

findings that stingless bees (Meliponinae) have the same laterality as honeybees 

(Apinae), suggest that lateralization evolved prior to the evolutionary divergence of 

these groups or that it evolved separately in each line (i.e. was convergent and 

evolved in association with social behaviour). Honeybees and stingless bees are the 



 

only highly social bees, with large perennial colonies, morphologically distinct worker 

and queen castes, and an intricate division of labour and recruitment to food sources 

(Roubik, 1989). Some recent theoretical models (Vallortigara and Rogers, 2005; 

Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009) have argued that social 

behaviour may have been instrumental in forcing the evolution of individual-level 

asymmetries towards their alignment at the population-level. Empirical data in 

vertebrates (Bisazza et al., 2000) and invertebrates (Anfora et al., 2010) seem to 

support this hypothesis. Thus, it is not unlikely that the basic similarity found here 

between honeybees and the three Australian stingless bees species in terms of 

population-level lateralization is linked with the social features shared by the two 

taxa. 



 

Chapter 4 -  Discussion 

 

In Chapter 2 (Ghirlanda et al., 2009), the evolution of lateralization has been 

investigated from a theoretical point of view, extending the previous results on 

interspecific interactions (Ghirlanda and Vallortigara, 2004). Considering purely 

strategic factors arising from intraspecific interactions of cooperation and 

competition, the model demonstrates that populations consisting of left- and right-

type individuals in unequal numbers can be evolutionary stable. 

To verify the hypothesis predicted by models based on evolutionary stable 

strategy (Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009) that population 

level lateralization is more likely to evolve in social species rather than in solitary 

species, I approach the issue of the evolution of (population level) lateralization from 

an experimental point of view. In Experiment 1 (Section 3.3. – Anfora et al., 2010) 

the lateralization in two species of Hymenoptera, the honeybees, which are a social 

species and the mason bees, which are a solitary species was investigated through 

behavioural studies (PER) and electrophysiological measurements (EAG) and 

compared. Results showed a striking right antenna advantage in recall of olfactory 

memory using PER in honeybees, confirming and extending the findings of Letzkus 

et al. (2006) and Rogers and Vallortigara (2008). EAG results demonstrated different 

responsiveness of olfactory receptor neurons on the right antenna compared to 

those on the left antenna, suggesting that the asymmetry found in the behavioural 

tests may arise, in part, from an electrophysiological difference. In contrast, mason 

bees, a solitary species related phylogenetically to honeybees, showed no evidence 

of being asymmetric at the population level, either in behaviour or in EAG 

responsiveness, but interestingly they were found to be lateralized at the individual 



 

level in the responsiveness of the olfactory receptors neurons either on the right 

antenna or on the left antenna. These results confirm that left-right asymmetries at 

the population level are apparent in some but not all invertebrate species, and not 

even in species that are strictly related phylogenetically. Moreover these differences 

between the two species, even if should be interpreted with caution, fit in well with 

mathematical models of the evolution of lateralization. The fact that mason bees 

(solitary species) show evidence of individual-level lateralization in EAG responses 

but not population-level (directional) lateralization as honeybees (social species) do 

fits nicely with mathematical modelling (Ghirlanda and Vallortigara, 2004; Ghirlanda 

et al., 2009). As already discussed (Section 3.3.3.) note that olfactory learning and 

electroantennographic responsivity are not obviously social in nature although we 

cannot exclude that the original drive for antennal asymmetries could be related to 

social interaction during for example trophallaxis, that is the transfer of food or other 

fluids among members of a community. On the other hand, it is likely that when an 

individual-level asymmetry is stabilized as a directional population-level asymmetry, 

other asymmetries that in principle would not require any alignment at the population 

level because irrelevant to any social interaction would organize themselves as 

directional as well simply because a directional organization in the two sides of the 

brain already exists. 

In Experiment 2 (Section 3.4. – Frasnelli et al., 2010a) the generality of the 

findings of Rogers and Vallortigara (2008) was tested. Recall of memory of the 

single odours (cineol and eugenol) showed the same pattern of lateral shift of 

olfactory memory recall as they had found for lemon (+) and vanilla (-). At 1 hour 

after training the bees discriminated the positive stimulus (cineol) from the negative 

stimulus (eugenol) and responded to the first one mainly when it was presented on 



 

their right side (i.e. using their right antenna), whereas at 6 hours after training they 

did so when it was on presented on their left side (i.e. using their left antenna). 

However, when trained with either a familiar appetitive odour (rose) as a negative 

stimulus, or with a naturally aversive odour (isoamyl acetate, IAA) as a positive 

stimulus, bees showed suppression of the response from both the right and the left 

side at 1 hour after training (likely due to retroactive inhibition) and at 6 hours 

responded to both odours on both sides. I argued that at 6 hours, when access to 

memory has completed the shift from the right to the left side, memory of these 

familiar odours in the left side of the brain would be present as both positive 

(rose)/negative (IAA) (as a result of long-term memory either biologically encoded or 

acquired well before testing) and negative (rose)/positive (IAA) (as a result of the 

long-term memory of training) stimuli, thus producing response competition. As a 

direct test of this hypothesis, bees were first trained with unfamiliar lemon(+)/vanilla(-

) and then (16 hr later) re-trained with vanilla(+)/lemon(-); as predicted, 6 hours after 

re-training bees responded to both odours on both the left and right side. 

In Experiment 3 (Section 3.5. – Frasnelli et al., 2010b) I verify once more that 

honeybees are better in responding to learned odours when trained through their 

right antenna rather than through their left antenna and the possible morphological 

difference in the number of sensilla between the right and the left antenna has been 

investigated extended the study of Letzkus et al. (2006). Results of the behavioural 

test confirm again the previous finding (Letzkus et al., 2006) that after training on the 

proboscis extension reflex (PER) paradigm, honeybees respond to odours better 

when they are trained through their right antenna. To check whether this difference 

is due to a difference in the number of sensilla which house the receptor cells 

involved in the olfactory responses, I considered a larger sample of bees compared 



 

to that used by Letzkus et al. (2006) and both antennae of each bee were surfaced 

from 4 different views. Furthermore, all the sensilla present on each image were 

counted distinctly for a total of eight sensilla types: five of which with possible 

olfactory function (sensilla placodea, sensilla trichodea type a and b, sensilla 

basiconica thick and tapered) and the other three sensilla types involved in others, 

not olfactory, functions (sensilla coeloconica, sensilla campaniformia and sensilla 

chaetica). Results showed that the number of olfactory sensilla was significantly 

higher on the right antenna than on the left antenna. Surprisingly, I observed for the 

first time that the number of non-olfactory sensilla was significantly higher on the left 

antenna than on the right antenna in all segments except the apex. It should also be 

stressed that the morphological differences between the honeybee’s antennae in the 

number of olfactory sensilla found (Frasnelli et al., 2010b) and the EAG asymmetries 

(Anfora et al., 2010) seem to be quite modest in magnitude and thus cannot account 

entirely for the asymmetries observed in behaviour. Moreover, note that 

asymmetries in recall have been found to change in direction with memory 

consolidation (Rogers and Vallortigara, 2008; Frasnelli et al., 2010a), i.e. the left-

right asymmetry in olfactory memory depends on time. Thus, probably the 

asymmetry in peripheral receptors observed in honeybees is part of other 

asymmetrical mechanisms of the olfactory pathway. 

Experiment 4 (Section 3.6. – Frasnelli et al., submitted) focused on the 

generality and the evolutionary origins of the asymmetry in the olfactory responses 

found in honeybees by looking at primitive social bees, in particular at 3 species of 

Australian stingless bees: Trigona carbonaria, Trigona hockingsi and Austroplebeia 

australis. All the three Australian stingless bees species were able to associate 

lemon with a sugar reward and, more interesting, they showed lateralized behaviour 



 

in recall of olfactory memory as honeybees Apis mellifera (Rogers and Vallortigara, 

2008; Frasnelli et al., 2010a). At 1 hour after training they responded to lemon 

mainly when using their right antenna; at 5 hours after training they responded to 

lemon mainly when the odour was presented to their left than to their right side. 

Results showed some interspecific differences. Both in recall at 1 hour and at 5 

hours T. hockingsi bees discriminated lemon form vanilla less well than did T. 

carbonaria and A. australis bees. Note that interestingly, this lower responsiveness 

and reduced ability to discriminate between the odours in T. hockingsi disappeared if 

the bees were fed odourless sugar 1 hour prior to testing recall at 5 hours after 

training. It seems, therefore, that the performance of T. hockingsi deteriorates due to 

lack of sugar. Since it is a tropical species, it may depend on more frequent intact of 

sugar. In fact, the group of control of T. hockingsi bees fed with sugar 1 hour before 

recall at 5 hours responded only to lemon odour when presented on the left side. 

Thus, this demonstrates not only that the reduced ability to discriminate between the 

odours in T. hockingsi disappeared if the bees were fed with sugar, but that the shift 

from right antennal recall and 1 hour to left antennal recall at 5 hours is not due the 

difference in the duration of food deprivation but, instead, it is a difference resulting 

from short- versus long-term memory. 



 

Chapter 5 - Conclusions 

 

Summing up, it seems that invertebrates not only share the attribute of 

lateralization with many vertebrates, but may also show some similarities in its 

appearance. This raises the question of whether lateralization is determined by 

homologous genes in insects and vertebrates (Vallortigara and Rogers, 2005) or 

whether there has been an analogous evolutionary development of lateralized 

function in the two taxa. I think it is most likely that an analogous evolutionary 

development happened, but presently I am not aware of evidence in favour or 

against this hypothesis. 

In this thesis the generality and phylogenetic origins of the antennal asymmetry 

found in the honeybee Apis mellifera (Letzkus et al., 2006; Rogers and Vallortigara, 

2008; Anfora et al., 2010; Frasnelli et al., 2010a) was investigated and observed in 

three species of Australian stingless social bees (Trigona carbonaria, Trigona 

hockingsi and Austroplebia australis). The hypothesis of greater antiquity for 

Meliponinae (stingless bees) compared to Apidae, Bombinae and Euglossinae, and 

of the considerably remote (or possibly no direct) relationship of Meliponinae to the 

other Apidae is strongly supported by the geographic distribution and fossil record 

(Camargo and Pedro, 1992). Thus, it is likely to suppose that the honeybees did not 

evolve from the stingless bees but rather independently from some other (asocial) 

bee type and that any social features the two lines of evolution now share are the 

result of convergent rather than divergent evolution. Therefore, the findings of this 

thesis that stingless bees (Meliponinae) have the same laterality as honeybees 

(Apinae), suggest that lateralization evolved prior to the evolutionary divergence of 

these groups or that it evolved separately in each line. In other words, it seems that 



 

lateralization at the population level was convergent and evolved in association with 

social behaviour. It is important to stress that honeybees and stingless bees are the 

only highly social bees, with large perennial colonies, morphologically distinct worker 

and queen castes, and an intricate division of labour and recruitment to food sources 

(Roubik, 1989). Interestingly, the compared study conducted on mason bees, a 

solitary species belonging to the same superfamily (i.e. Apoidea) of the honeybees 

showed that mason bees are not lateralized at the population level neither in the 

behavioural test nor in the electroantennography measurements (Anfora et al., 

2010). 

The results of these studies (Anfora et al., 2010; Frasnelli et al., submitted) 

point out the connection between the sociality and the population level asymmetries. 

Indeed the empirical data fit in well with some recent theoretical models (Vallortigara 

and Rogers, 2005; Ghirlanda and Vallortigara, 2004; Ghirlanda et al., 2009) 

supporting the hypothesis that social behaviour may have been instrumental in 

forcing the evolution of individual-level asymmetries towards their alignment at the 

population-level. Thus, it is not unlikely that the basic similarity found here between 

honeybees and the three Australian stingless bees species in terms of population-

level lateralization is linked with the social features shared by the two taxa. 

As concerns the theoretical approach I have extended previous results on 

interspecific interactions (Ghirlanda and Vallortigara, 2004) to intraspecific 

interactions (Ghirlanda et al., 2009), reinforcing the view that strategic factors may 

have been a powerful force in the evolution of lateralization. Since a purely strategic 

model has been considered for simplicity, the major aim of my future research will be 

to consider how strategic factors interact with other potential determinants of 

lateralization, in particular genetic mechanisms of lateralization. Specifically, I plan to 



 

integrate our game-theoretical approach with more traditional genetic models based 

on research on human handedness. Theories of handedness based on the 

presumed existence of a single gene locus, assume that one allele predisposes to 

right-handedness and the other does not. The two alleles are assumed to be held in 

balance by heterozygotic advantage in fitness, ensuring that the proportion of left-

handers cannot exceed 50%. Variation is possible governed by the relative fitness of 

the two homozygotic genotypes. Following McManus, there are two alleles: D 

specifying dextrality and C specifying change direction of handedness at the 

individual level. Thus there are three phenotypes: the homozygote DD, that 

produces right-handedness in all offspring; the homozygote CC that results in 

fluctuating asymmetry 50% of offspring being right handed and 50% left handed and 

the heterozygote CD, for which the effect of the alleles is additive producing 25% 

left-handers. 

I plan to look in the future at the influence of synergistic and antagonistic 

interaction in populations composed by individuals of these three different 

genotypes: CC, CD and DD. The frequency of the alleles would influence the fitness 

of the right-type and left-type individuals and I want to investigate mathematically the 

sort of scenario that will arise. Sex differences in the ratio between left-handers and 

right-handers in humans have been documented in 63 studies founding a 27.4% 

higher incidence of left-handers in males than females. In 18 studies the parental 

and offspring handedness in relation to the sex of parents and offspring had been 

investigated and the so-called ‘maternal effect’ had been reported: left-handed 

mothers have more left-handed offspring than do left-handed fathers. Thus, I plan to 

include sex as a variable in my model. The idea would be to investigate the effects of 

competitive and cooperative interactions on lateralization in a population composed 



 

by females and males, assuming that competitive and cooperative behaviour may 

occur with different probabilities in the two sexes. 

As for the empirical part, the results of this series of experiments conducted on 

honeybees confirm the surprising finding (see Rogers and Vallortigara, 2008) that 

bees learn to associate a new odour of a positive stimulus mainly in neural circuits 

accessed via their right antenna, and that, after a period of a few hours, memory 

consolidation occurs accompanied by antennal asymmetry, with bees now being 

able to recall the odour mainly when using their left antenna. Moreover, I showed 

here (Frasnelli et al., 2010a) that this particular dynamic of memory traces has 

severe consequences when odours are already known to the bees (either for a 

biological reason or as a result of previous experience) and are thus already present 

in the long-term memory store. As a result, response competition arising from 

multiple memory traces can be observed, with bees showing unexpected lack of 

specificity in their longer-term olfactory memories. 

The behavioural finding that honeybees are better in learning to associate 

odours with a sugar reward when they are trained through their right antenna may be 

partially explained by the stronger responsiveness of the olfactory receptor neurons 

inside the right antenna as revealed by the electroantennography measurements 

(Anfora et al., 2010). This in turn may be somewhat due to the higher number of the 

olfactory sensilla present on the right antenna compared to the left one (Frasnelli et 

al., 2010b). Surprisingly, I observed for the first time that the number of non-olfactory 

sensilla was significantly higher on the left antenna than on the right antenna in all 

segments except the apex. The functional significance of this opposing 

morphological asymmetry is at present unclear but behavioural asymmetries in other 

sensory domains appear to be worth testing. It is worth of noting that in a previous 



 

study on an another eusocial Apidae species, Apis florae Fabr., the olfactory sensilla 

were shown to be slightly more abundant on the left antenna (Gupta, 1986). Thus, 

comparative works on different species are needed in order to understand the 

generality and the significance of antennal morphological asymmetries in Apidae. 

The fact that the right antenna has more olfactory sensilla and a stronger 

electroantennographic signal may explain the reason because it is involved in odour 

learning. Since the behavioral asymmetry in the recall of olfactory memory shift from 

the right to the left olfactory pathway, it is likely to suppose that probably the 

asymmetry in peripheral receptors observed is part of other asymmetrical 

mechanisms associated with detection, storage and retrieval of olfactory events. It 

will be therefore important to look at the morphological and physiological processes 

going on in the honeybee left and right olfactory brain centers (i.e. antennal lobes 

and mushroom bodies) following olfactory learning at different times during memory 

consolidation. 

Moreover, it will be very remarkable to perform comparative research with other 

species of Hymenoptera showing different degrees of sociality, both in the field and 

in the laboratory that may provide important insights on the evolution of left-right 

asymmetries in behaviour and in the nervous system. For example, behavioural 

studies, electroantennographic measurements and scanning electron microscopy in 

a primitively eusocial bumble bees, Bombus spp. could provide more information on 

the link between the evolution of population level asymmetries and the degree of 

sociality. Furthermore, it will be very interesting to study species of insects that could 

change their degree of sociality on the basis of ecological factors, like for example 

the locust Schistocerca gregaria. 
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