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Abstract

It is well-known that the existence of non–algebraic Z/2–homology classes
of a real algebraic manifold Y is equivalent to the existence of non–algebraic
elements of the unoriented bordism group of Y and generates (first order)
obstructions which prevent the possibility of realizing algebraic properties of
smooth objects defined on Y . The main aim of this paper is to investigate the
existence of smooth maps f : X −→ Y between a real algebraic manifold and
Y not homotopic to any regular map when Y has totally algebraic homology,
i.e, when the first order obstructions on Y do not occur. In this situation, we
also discover that the homology of Y generates obstructions: the second order
obstructions on Y . In particular, our results establish a clear distinction be-
tween the property of a smooth map f to be bordant to a regular map and the
property of f to be homotopic to a regular map. As a byproduct, we obtain
two global versions of Sullivan’s condition on the local Euler characteristic of
a real algebraic set and give obstructions to the existence of algebraic tubular
neighborhoods of algebraic submanifolds of Rn.

Key words: Real algebraic homotopy classes, Second order obstructions,
Sullivan-type conditions, Real algebraic manifolds, Real algebraic sets.

Introduction

A Z/2–homology class of an affine real algebraic manifold Y is called algebraic
if it is represented by a Zariski closed subset of Y . The algebraic homology group
Halg
∗ (Y,Z/2) of Y is the subgroup of H∗(Y,Z/2) generated by all algebraic homology

classes of Y . This concept plays a crucial role in the study of the classical problem
of making smooth objects algebraic (see chapters 11–14 of [11]). Let us recall two
of the main aspects of this fact. Let M be a compact smooth submanifold of Y and
let [M ] be the Z/2–homology class of Y represented by M . In order to approximate
M in Y by algebraic submanifolds, the condition [M ] ∈ Halg

∗ (Y,Z/2) is necessary.
There are cases in which this condition is also sufficient: for example, when Y is
compact and M has codimension one or when Y is a compact 3–fold and M is a
curve (see [5], [12] and section 12.4 of [11])). Examples of submanifolds M which
do not verify the previous necessary condition can be obtained as follows. By a
famous result of Thom [24], we know that, if m ≤ 1

2
dim(Y ) or m = dim(Y ) − 1,
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each homology class in Hm(Y,Z/2) is realizable by smooth submanifolds of Y . In
this way, for each non–algebraic element of Hm(Y,Z/2), there is a m–dimensional
compact smooth submanifold M of Y which is not approximable in Y by algebraic
submanifolds. Consider now a compact affine real algebraic manifold X and a
smooth map f : X −→ Y (recall that X and Y have natural structures of smooth
manifolds). In the real algebraic setting, it is natural to wonder whether f has at
least one of the following algebraic properties:

1. the unoriented bordism class of f is algebraic, i.e., there exist a compact
smooth manifold W with boundary and a smooth map F : W −→ Y such
that ∂W = X tX ′ where X ′ is an affine real algebraic manifold, F |X = f and
F |X′ is a regular map,

2. f is homotopic to a regular map

where, evidently, (2) =⇒ (1). Property (1) is closely related to the algebraic prop-
erties of the homology of Y . Evidently, the truthfulness of each of the previous
properties is subordinated to the fact that f sends the fundamental Z/2–homology
class of X into Halg

∗ (Y,Z/2). From the Steenrod Representability Theorem [24], it
follows that, for each Z/2–homology class α of Y , there is a smooth map f : X −→ Y
such that f∗([X]) = α. If α is not algebraic, then f cannot satisfy property (1).
In particular, if the unoriented bordism class of each smooth map from a compact
affine real algebraic manifold to Y is algebraic, then the homology of Y is totally
algebraic, i.e., Halg

∗ (Y,Z/2) = H∗(Y,Z/2). The converse of the latter fact is also
true. It follows from deep results of Differential Topology.

Theorem (Thom [24], Milnor [21], Conner–Floyd [13]). Let Y be an affine
real algebraic manifold with totally algebraic homology. Then, the unoriented bor-
dism class of each smooth map from a compact affine real algebraic manifold to Y
is algebraic.

The previous arguments show how the existence of non–algebraic homology
classes of Y generates obstructions to the possibility of realizing algebraic prop-
erties of smooth objects defined on Y . Because of their importance and their
relationships with property (1), we call the obstructions induced by the inequal-
ity Halg

∗ (Y,Z/2) 6= H∗(Y,Z/2) first order obstructions on Y . In literature, there
are many examples of algebraic manifolds without totally algebraic homology (see
section 3, chapter 11 of [11] and the references at the end of that chapter).

The main purpose of this paper is to investigate the existence of smooth maps
f : X −→ Y between affine algebraic manifolds not homotopic to any regular map
when Y has totally algebraic homology, i.e, when the first order obstructions on Y
do not occur. In this situation, we also discover that the homology of Y generates
obstructions which we call second order obstructions on Y . In particular, our results
establish a clear distinction between the property of a smooth map f to be bordant
to a regular map and the property of f to be homotopic to a regular map. As a
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byproduct, we obtain two global versions of Sullivan’s condition on the local Euler
characteristic of real algebraic sets and give obstructions to the existence of semi–
local and global algebraic tubular neighborhoods of algebraic submanifolds of Rn.

The remainder of the paper is subdivided into three sections. In section 1, we
present the main theorems. Section 2 is devoted to the introduction and the study
of the crucial notion of obstructive system of an algebraic manifold. In section 3,
we prove the main theorems making use of the results of section 2.

1 The main theorems

Let us start recalling some classical notions and fixing some notations. Let V be a
real algebraic set equipped with the Zariski topology. A point p of V is nonsingular
of dimension r is the ring of germs of regular functions on V at p is a regular local ring
of dimension r. The dimension dim(V ) of V is the largest dimension of nonsingular
points of V and Nonsing(V ) indicates the set of all nonsingular points of V of
dimension dim(V ). If V = Nonsing(V ), then V is called nonsingular. By algebraic
manifold, we mean a nonsingular real algebraic set. Unless otherwise indicated,
all algebraic manifolds are considered equipped with the euclidean topology. As
is usual, the notion of irreducibility of an algebraic manifold refers to the Zariski
topology. Let Y be an algebraic manifold. By algebraic submanifold of Y , we
mean a nonsingular Zariski closed subset of Y . Let us specify the meaning of
algebraic homology of an algebraic manifold. Since we consider only homology
with coefficients in Z/2, we use the symbol Hm(·) in place of Hm(·,Z/2). Let
Y be a r–dimensional algebraic manifold and let m ∈ {0, 1, . . . , r}. Let K be
a m–dimensional finite subpolyhedron of Y , i.e., the topological subspace of Y
associated with a m–dimensional finite subcomplex of a certain triangulation of
Y . K determinates uniquely a m–cycle of Y and hence an unique element [K]
of Hm(Y ) called homology class of Y represented by K. If K = Y , then [K]
is called fundamental class of Y . The latter notion extends to all compact smooth
manifolds. Recall that every compact semi–algebraic subset of Y is a semi–algebraic
subpolyhedron of Y . A mth–homology class α of Y is said to be algebraic if there
is a m–dimensional Zariski closed subset Z of Y such that the euclidean closure Z∗

of Nonsing(Z) in Y is compact and [Z∗] = α (remark that, when Z is compact,
[Z∗] = [Z]). The null element of Hm(Y ) is considered algebraic. If each element of
Hm(Y ) is algebraic, Hm(Y ) is said to be algebraic. When Hm(Y ) is algebraic for
each integer m, the homology of Y is said to be totally algebraic. Let g : X −→ Y
be a continuous map from an algebraic manifold to Y and let m be an integer.
We indicate by Hm(g) : Hm(X) −→ Hm(Y ) the homomorphism induced by g and,
when no confusion is possible concerning the index m, we use g∗ instead of Hm(g).
We denote by N the set of all nonnegative integers and define N∗ := N \ {0}.

Let us present the main theorems of this paper.
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Second order homological obstructions. We have the following results.

Theorem 1.1 Let Y be a smooth manifold, let m ∈ N∗ and let α be a nonzero
mth–homology class of Y . Then, for each d ∈ N∗, there exist a (m+d)–dimensional
compact irreducible algebraic manifold Xα,d (which can be choosen connected if d ≥
2 ) and a smooth map fα,d : Xα,d −→ Y such that, for every homotopy equivalence
h : Y −→ Y ′ between Y and a compact algebraic manifold Y ′ with totally algebraic
homology, the composition map h ◦ fα,d is not homotopic to any regular map.

Theorem 1.1′ Let Y , m and α be as above. Then, for each d ∈ N∗, there exist
a (m + d)–dimensional compact irreducible algebraic manifold Xα,d (which can be
choosen connected if d ≥ 2 ) and a smooth map fα,d : Xα,d −→ Y with the fol-
lowing property: given any s–dimensional compact algebraic manifold Y ′ and any
continuous map h : Y −→ Y ′ such that Hs−m(Y ′) is algebraic and the homomor-
phism Hm(h) : Hm(Y ) −→ Hm(Y ′) is injective, the composition map h ◦ fα,d is not
homotopic to any regular map.

Theorem 1.2 Let Y be a smooth manifold and let M be a positive dimensional
compact connected smooth submanifold of Y such that the cobordism class of M
is null and M represents a nonzero homology class of Y . Then, for each positive
dimensional compact smooth manifold D, there exist an algebraic manifold XM,D

diffeomorphic to D×M and a smooth map fM,D : XM,D −→ Y such that, for every
homotopy equivalence h : Y −→ Y ′ between Y and a compact algebraic manifold Y ′

with totally algebraic homology, the composition map h ◦ fM,D is not homotopic to
any regular map.

Theorem 1.2′ Let Y and M be as in the statement of Theorem 1.2. Let m be the di-
mension of dim(M). Then, for each positive dimensional compact smooth manifold
D, there exist an algebraic manifold XM,D diffeomorphic to D ×M and a smooth
map fM,D : XM,D −→ Y with the following property: given any s–dimensional
compact algebraic manifold Y ′ and any continuous map h : Y −→ Y ′ such that
Hs−m(Y ′) is algebraic and the homomorphism Hm(h) sends the homology class of Y
represented by M into a nonzero homology class of Y ′, the composition map h◦fM,D

is not homotopic to any regular map.

Let Y be a noncompact algebraic manifold. Let us define the notion of link of
infinity in Y by an explicit construction. Suppose that Y is a noncompact algebraic
submanifold of Rk. For each λ ∈ R+ := {x ∈ R |x > 0}, we denote by Bk(λ)
the closed ball of Rk centered in the origin 0 with radious λ and by Sk−1(λ) the
sphere ∂Bk(λ). Increasing k and using a translation if needed, we may suppose
that 0 does not belong to Y . Let ξ : Rk \ {0} −→ Rk \ {0} be the inversion
defined by ξ(x) := x/‖x‖2. The algebraic subset Ẏ := {0} t ξ(Y ) of Rk is the
algebraic one point compactification of Y . By Sards’s theorem and the Local Conic
Structure Theorem for semi–algebraic sets (see Theorem 9.3.6 of [11]), there is
µ ∈ R+ (arbitrarily large) such that, for each λ ≥ µ, Sk−1(λ) intersects transversally
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Y in Rk, Sk−1(λ) ∩ Y is diffeomorphic to Sk−1(µ) ∩ Y and Ẏ ∩ Bk(
1
λ
) is semi–

algebraically homeomorphic to the cone with basis Sk−1(λ) ∩ Y . Fixed λ ≥ µ, we
define the link lk∞(Y ) of infinity in Y by lk∞(Y ) := Sk−1(λ) ∩ Y . This definition
is consistent up to diffeomorphism.

Theorem 1.3 Let Y be a r–dimensional noncompact algebraic manifold and let i :
lk∞(Y ) ↪→ Y be the inclusion map. Suppose that there is m ∈ N∗ such that Hm(i) :
Hm(lk∞(Y )) −→ Hm(Y ) is not surjective and Hr−m−1(i) : Hr−m−1(lk∞(Y )) −→
Hr−m−1(Y ) is injective. Then, for each d ∈ N∗, there exist a (m + d)–dimensional
compact irreducible algebraic manifold Xd (which can be choosen connected if d ≥ 2 )
and a smooth map fd : Xd −→ Y such that, for every diffeomorphism h : Y −→
Y ′ between Y and an algebraic manifold Y ′ with totally algebraic homology, the
composition map h ◦ fd is not homotopic to any regular map.

Remark 1.4 Without a doubt, among the first order obstructions on compact alge-
braic manifold, the one revealed by the Benedetti–Dedò–Teichner theorem [9], [23]
is the deepest. This result asserts the following: “For each r ≥ 6, there are a
r–dimensional compact connected smooth manifold Y and a homology class α in
Hd−2(Y ) such that, for every homeomorphism h : Y −→ Y ′ between Y and an
algebraic manifold Y ′, the class h∗(α) is not algebraic. In particular, there are a
(r − 2)–dimensional compact connected algebraic manifold X and a smooth map
f : X −→ Y such that, for each diffeomorphism h : Y −→ Y ′ with Y ′ as above,
the unoriented bordism class of h ◦ f is not algebraic”. The five results presented
above extend the Benedetti–Dedò–Teichner theorem to the setting of second order
obstructions and generalize Theorem 1 of [16]. In particular, when Y is an al-
gebraic manifold with totally algebraic homology, Theorem 1.1, Theorem 1.2 and
Theorem 1.3 fully describe the notion of second order obstruction on Y .

Let X and Y be algebraic manifolds and let f : X −→ Y be a smooth map.
As we have seen, the previous theorems establish a clear distinction between the
property of f to represent an algebraic unoriented bordism class and the property
of f to be homotopic to a regular map. In the following result, we make progress
in this direction by showing how the condition “f is homotopic to a regular map”
is strong when compared with other remarkable algebro–analytic properties of f .

Theorem 1.5 Let Y be a r–dimensional compact algebraic manifold with totally
algebraic homology and r ≥ 1, let Z be a s–dimensional algebraic manifold with
totally algebraic homology and let d ∈ N∗ such that s ≥ r + 2d + 1. Indicate by W
the product variety Y × Z × R2. Then, there exist a (r + d)–dimensional compact
irreducible algebraic manifold Xd (which can be choosen connected if Y is connected
and d ≥ 2 ) and a map ψd : Xd −→ W such that:

1. ψd is a Nash embedding, i.e., it is a real analytic embedding and is a semi–
algebraic map,

2. the unoriented bordism class of ψd is algebraic,
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3. ψd(Xd) is an algebraic submanifold of W ,

but ψd is not homotopic to any regular map.

One might think that the previous result depends on some pathological algebraic
property of the algebraic manifold Xd. This is not true in the sense specified by the
following result: Let d, q1, . . . , qh ∈ N∗ such that k :=

∑h
i=1 qi is even, qi is odd for

some i and d ≥ k+1. Indicate by Sn the standard n–sphere. Then, there is a map ψd

from the product variety Xd :=
∏h

i=1 S
qi to the product variety W := Sk × Sd × R2

which satisfies properties (1), (2) and (3) of the previous theorem, but it is not
homotopic to any regular map. Such result follows easily from Theorem 13.5.1 of
[11] and the proof of Theorem 1.5 given in section 3.

For a study of the homotopy classes of maps into standard spheres represented
by regular maps, we refer the reader to sections 13.4 and 13.5 of [11].

Global Sullivan–type conditions. Let Y be an algebraic manifold, let Z be a
Zariski closed subset of Y and let ϕ : M −→ Y be a smooth map between a smooth
manifold and Y . The map ϕ is transverse to Z in Y if ϕ(M) ∩ Z ⊂ Nonsing(Z)
and ϕ is transverse to Nonsing(Z) in Y in the usual way. Let V be a smooth
submanifold of Y . If the inclusion V ↪→ Y is transverse to Z in Y , then V is said to
be transverse to Z in Y also. Let N be a smooth manifold and let W be a subset of
N . A stratification of W is a locally finite partition W of W into smooth submani-
folds of N called strata of W . Such a stratification is a Whitney stratification of
W if any stratum of W is Whitney regular over any other stratum of W (see pages
10–11 of [18]). A Whitney stratified set is a pair (W,W) formed by a subset W
of a smooth manifold and a Whitney stratification W of W . We emphasize that
every semi–algebraic subset of an algebraic manifold has a Whitney stratification
(see page 20 of [18]). Let f : N −→ N ′ be a smooth map between N and a smooth
manifold, let W ′ be a subset of N ′ and let W ′ be a stratification of W ′. If f is
transverse to all strata of W ′ in N ′, we say that f is transverse to W ′ in N ′. Let
P ′ be a smooth submanifold of N ′. If the inclusion P ′ ↪→ N ′ is transverse to W ′ in
N ′, then P ′ is said to be transverse to W ′ in N ′ also.

The following theorem describes two general features of real algebraic sets.

Theorem 1.6 Let Z be an algebraic subset of Rn with dim(Z) < n and let M be a
compact smooth submanifold of Rn. The following assertions are true.

a) If M is transverse to Z in Rn, then the compact smooth manifold M ∩Z is a
boundary, i.e., its cobordism class is null.

b) If M is transverse to some Whitney stratification of Z in Rn, then the Euler
characteristic of the compact polyhedron M ∩ Z is even.

As an immediate consequence, we rediscover well-known Sullivan’s condition on
the local Euler characteristic of a real algebraic set.
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Corollary 1.7 (Sullivan [22]) Let Z be a real algebraic set and let z ∈ Z. The
Euler characteristic of the link of z in Z is even.

We remind the reader of the key role played by Sullivan’s condition and its
generalizations [7], [15], [19] in the study of the topology of real algebraic sets (see
[2], [8] and the excellent survey articles [14] and [20]). At the moment, it is not
known whether any obstructions of global nature on the topology of real algebraic
sets exist (see Question 2 in section 5 of [20]).

Question Is it possible to obtain these kinds of obstructions by means of results in
the line of Theorem 1.6?

As a first step in the direction of the previous question, one can ask whether
there exist a compact subpolyhedron P of Rn, a Whitney stratification P of P and
a compact smooth submanifold M of Rn such that M is transverse to P in Rn,
χ(M ∩ P ) is odd and, for each p ∈ P , the link of p in P is homeomorphic to an
algebraic set.

Algebraic tubular neighborhoods. Let Y be a subset of Rn and let S be a
subset of Y . We say that Y has an algebraic tubular neighborhood locally at S in
Rn if there are a neighborhood U of S in Rn and a regular retraction of U on Y ,
i.e., a regular map ρ : U −→ Y such that ρ(y) = y for each y ∈ U ∩ Y . If there is
a regular retraction from a neighborhood of Y in Rn on Y , then we say that Y has
an algebraic tubular neighborhood in Rn.

Theorem 1.8 Let Y be a compact algebraic submanifold of Rn with totally alge-
braic homology and let K be a positive dimensional subpolyhedron of Y representing
a nonzero homology class of Y . Then, Y does not have any algebraic tubular neigh-
borhood locally at K in Rn.

The next corollary is a particular case of Theorem 2 of [16].

Corollary 1.9 For each n ∈ N, the unique compact algebraic submanifold of Rn

which has an algebraic tubular neighborhood in Rn is the single point.

2 Obstructive systems and their algebro–topological

nature

In this section, we introduce and study the notion of obstructive system of an
algebraic manifold. Thanks to this notion, we are able to generate second order
obstructions on algebraic manifolds.

Definition 2.1 Let Y be an algebraic manifold, let M be a compact smooth mani-
fold and let ϕ : M −→ Y be a smooth map. Consider the following two conditions
on ϕ:

7



(∂) there exists a Zariski closed subset Z of Y such that ϕ(M) 6⊂ Z, ϕ is transverse
to Z in Y and the compact smooth manifold ϕ−1(Z) is not a boundary, i.e.,
its cobordism class is not null,

(χ) there are a Zariski closed subset Z of Y and a Whitney stratification Z of Z
such that ϕ(M) 6⊂ Z, ϕ is transverse to Z in Y and the Euler characteristic
χ(ϕ−1(Z)) of ϕ−1(Z) is odd.

We say that: ϕ is a regular obstructive system of Y if it satisfies condition (∂),
ϕ is a singular obstructive system of Y if it satisfies condition (χ) and ϕ is an
obstructive system of Y if it satisfies at least one of these two conditions. Suppose
that ϕ : M −→ Y is an obstructive system of Y . If ϕ verifies (∂) or (χ) with a
set Z having dimension equal to dim(Y ), then we say that the obstructive system
ϕ is trivial. Otherwise, ϕ is said to be non–trivial. We define the dimension of
ϕ as the dimension of M . Let m ∈ N. We indicate by Obstrreg

m (Y ) the family
of all m–dimensional regular obstructive systems of Y , by Obstrsing

m (Y ) the family
of all m–dimensional singular obstructive systems of Y and define Obstrm(Y ) :=
Obstrreg

m (Y ) ∪ Obstrsing

m (Y ). A subset S of Y is called m–obstructive if there is
ϕ ∈ Obstrm(Y ) whose image is S and is called obstructive if it is m–obstructive for
some m ∈ N.

Remark 2.2 The void smooth manifold has null cobordism class and null Euler
characteristic.

Remark 2.3 Let Y be an algebraic manifold. If Y is compact and contains at least
two points, then Y is an obstructive subset of itself. This is false if Y consists
of a single point. Let S be a compact smooth submanifold of Y which intersects
transversally a Zariski closed subset Z of Y in such a way that S ∩ Z is a proper
smooth submanifold of S and its cobordism class is not null (for example, when the
Euler characteristic of S ∩ Z is odd). Since the inclusion map S ↪→ Y is a regular
obstructive system of Y , it follows that S is an obstructive subset of Y .

Remark 2.4 (trivial obstructive systems) The trivial obstructive systems of
an algebraic manifold can be easily described as follows. Let Y be an algebraic
manifold. A smooth map ϕ between a compact smooth manifold M and Y is a triv-
ial obstructive system of Y if and only if the following is true: there are a union N
of connected components of M and a union Z of irreducible components of Y such
that N is not a boundary, N 6= M , ϕ(N) ⊂ Z and ϕ(M \N) ⊂ Y \ Z. Finally, let
us remark that every 0–dimensional obstructive system of Y is trivial and, if Y is
irreducible, every obstructive system of Y is non–trivial.

The importance of the notion of obstructive system is described by the following
two crucial lemmas which will be proved in the next section.

Lemma 2.5 Let Y be an algebraic manifold, let m ∈ N and let ϕ : M −→ Y be an
element of Obstrm(Y ). Then, for each d ∈ N∗, there exist a (m + d)–dimensional
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compact irreducible algebraic manifold Xϕ,d (which can be choosen connected if M
is connected and d ≥ 2 ) and a smooth map fϕ,d : Xϕ,d −→ Y such that fϕ,d(Xϕ,d) =
ϕ(M) and fϕ,d is not homotopic to any regular map.

Lemma 2.5′. Let Y be an algebraic manifold, let M be a compact smooth manifold
with null cobordism class and let ϕ : M −→ Y be an obstructive system of Y . Then,
for each positive dimensional compact smooth manifold D, there exist an algebraic
manifold Xϕ,D diffeomorphic to D ×M and a smooth map fϕ,D : Xϕ,D −→ Y such
that fϕ,D(Xϕ,D) = ϕ(M) and fϕ,D is not homotopic to any regular map.

The remainder of this section is devoted to the study of the connection between
the existence of obstructive systems of an algebraic manifold Y and the algebro-
topological properties of Y itself. In particular, we will see that the nature of the
regular obstructive systems is homological.

Proposition 2.6 Let Y be an algebraic manifold and let m ∈ N∗. If ϕ is a m–
dimensional non–trivial regular obstructive system of Y , then ϕ is not unoriented
bordant to any locally constant map. In particular, if Hk(Y ) = {0} for each k ∈
{1, . . . ,m}, then every element of Obstrreg

m (Y ) is trivial.

Proof. Let ϕ : M −→ Y be a m–dimensional non–trivial regular obstructive sys-
tem of Y . By definition, there are a Zariski closed subset Z of Y such that ϕ(M) 6⊂
Z, ϕ is transverse to Z in Y , ϕ−1(Z) is a not boundary and dim(Z) < dim(Y ). By

the Hironaka Resolution Theorem, there is an algebraic multiblowup π : Z̃ −→ Z
with centers over Sing(Z) := Z \ Nonsing(Z) such that Z̃ is a compact algebraic
manifold. Since π restricts to a biregular isomorphism from π−1(Nonsing(Z)) to
Nonsing(Z), the maps ϕ and π are transverse. Let P be the fibered product of ϕ
and π and let % : P −→M be the natural projection. Since ϕ(M)∩Z ⊂ Nonsing(Z),
% induces a diffeomorphism from P to ϕ−1(Z). In particular, P is not a boundary.

Let ∆ be the diagonal of Y ×Y , let j : Z ↪→ Y be the inclusion map, let π′ : Z̃ −→ Y
be the composition j ◦ π and let ϕ × π′ : M × Z̃ −→ Y × Y be the product map
of ϕ and π′. Remark that (ϕ × π′)(M × Z̃) 6⊂ ∆, ϕ × π′ is transverse to ∆ in
Y × Y and (ϕ × π′)−1(∆) = P . Suppose that ϕ is unoriented bordant to a locally
constant map. Then, there is a compact smooth manifold W with boundary and a
smooth map Φ : W −→ Y such that ∂W is the disjoint union of M and a compact
smooth manifold M ′, Φ|M = ϕ and ϕ′ := Φ|M ′ is locally constant. Let M ′

1, . . . ,M
′
e

be the connected components of M ′ and, for each i ∈ {1, . . . , e}, let qi be the point
of Y such that ϕ′(M ′

i) = {qi}. Since dim(Z) < dim(Y ), we may suppose that
{q1, . . . , qe} ∩ Z = ∅. Consider a copy Φ′ : W ′ −→ Y of Φ : W −→ Y and identify
∂W with ∂W ′ in the natural way obtaining a compact smooth manifold W ∗ and a
smooth map Φ∗ : W ∗ −→ Y which doubles the bordism Φ. W is now a subset of
W ∗. Remark that the product map Φ∗×π′ : W ∗× Z̃ −→ Y ×Y restricted to M× Z̃
coincides with ϕ× π′ and, for each i ∈ {1, . . . , e}, (Φ∗ × π′)(M ′

i × Z̃) ⊂ {qi} ×Z so

(Φ∗×π′)(M ′
i×Z̃) is a compact subset of Y ×Y disjoint from ∆. Applying the Thom

Transversality Theorem to Φ∗×π′, we obtain a smooth map Ψ : W ∗× Z̃ −→ Y ×Y
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arbitrarily close to Φ∗ × π′ in C∞(W ∗ × Z̃, Y × Y ) such that Ψ|M×Z̃ = ϕ× π′, Ψ is

transverse to ∆ in Y ×Y and Ψ(M ′× Z̃)∩∆ = ∅. Since there is a neighborhood of

M × Z̃ in W ∗× Z̃ diffeomorphic to M × Z̃× (−1, 1), making use of Theorem 14.1.1

of [11], we obtain that N := (W × Z̃) ∩ Ψ−1(∆) is a compact smooth submanifold

of W ∗× Z̃ with boundary such that ∂N = (M × Z̃)∩Ψ−1(∆) = (ϕ×π′)−1(∆) = P .
This is impossible because P is not a boundary. In this way, we have proved that
ϕ cannot be unoriented bordant to any locally constant map. Let us conclude the
proof. Let N∗(Y ) be the unoriented bordism group of Y . By [24] and [13], we know
that N∗(Y ) is generated by maps ρijk : Vi ×Wjk −→ Y obtained by composition as

follows: ρijk : Vi ×Wjk

πijk−→ Wjk

ϕjk−→ Y where {Vi}i is a family of compact smooth
manifolds which generates N∗(point), {πijk}i,j,k are the natural projections and, for
each k ∈ N, {ϕjk : Wjk −→ Y }j is a family of smooth maps from k–dimensional com-
pact smooth manifolds to Y such that {(ϕjk)∗([Wjk])}j generatesHk(Y ) (see Lemma
2.7.1 of [7]). Let m ∈ N∗ and let ϕ ∈ Obstrreg

m (Y ). Bearing in mind the definition
of the previous generators ρijk of N∗(Y ), if Hk(Y ) = {0} for each k ∈ {1, . . . ,m},
it follows that Nm(Y ) is generated by the family {ρij0 = ϕj0 ◦ πij0 | dim(Vi) = m}
where each ϕj0 (and hence each ρij0) is constant. In this way, ϕ is unoriented bor-
dant to a locally constant map. By the previous part of this proof, we know that ϕ
must be trivial. The proof is complete. 2

Corollary 2.7 Let Y be an irreducible algebraic manifold. If there is m ∈ N∗ such
that Hk(Y ) = {0} for each k ∈ {1, . . . ,m}, then Obstrreg

m (Y ) = ∅. In particular, if
Hk(Y ) = {0} for each k ∈ N∗, then Y does not have any regular obstructive system.

Proposition 2.8 Let Y be a r–dimensional compact algebraic manifold with r ≥ 1,
let m ∈ {1, . . . , r}, let K be a m–dimensional subpolyhedron of Y with [K] 6= 0 and
let U be a neighborhood of K in Y . Suppose Hr−m(Y ) algebraic. Then, there exists
ϕ ∈ Obstrreg

m (Y ) ∩ Obstrsing

m (Y ) such that the image of ϕ is contained in U . In
particular, every neighborhood of K in Y contains an obstructive subset of Y .

Proof. By [24], [K] has a Steenrod representation in Y , i.e., there are a compact
smooth manifold N and a smooth map ξ : N −→ Y such that ξ(N) ⊂ U and
ξ∗([N ]) = [K]. Since [K] 6= 0, there exists a connected component M of N such that
ξ∗([M ]) is not null in Hm(Y ). Define the map ϕ : M −→ Y as the restriction of ξ to
M . LetD : H∗(Y ) −→ H∗(Y ) be the Poincaré duality isomorphism. SinceHr−m(Y )
is algebraic, there is a (r −m)–dimensional Zariski closed subset Z of Y such that
D(ϕ∗([M ])) ∪ D([Z]) 6= 0. Using the Thom Transversality Theorem, we may also
suppose that ϕ is transverse to Z in Y so it holds: 0 6= D−1(D(ϕ∗([M ]))∪D([Z])) =
ϕ∗([ϕ

−1(Z)]). It follows that ϕ−1(Z) is a finite set formed by an odd number of
points. In particular, ϕ−1(Z) has odd Euler characteristic. 2

The previous proof ensures that, under the hypothesis of Proposition 2.8, if [K] has
a Steenrod representation ξ : N −→ Y in Y with N connected (for example, when
K is a m–dimensional connected smooth submanifold of Y ), then there exists a
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smooth map ϕ : N −→ Y arbitrarily close to ξ in C∞(N, Y ) which is an obstructive
system of Y . In particular, ϕ can be choosen in such a way that ϕ(N) ⊂ U and
ϕ∗([N ]) = [K].
Let f : N −→ N ′ be a smooth map between smooth manifolds and let Z ′ be a
subset of N ′ equipped with a Whitney stratification Z ′. Suppose f transverse to
Z ′ in N ′ and define the partition f−1(Z ′) of f−1(Z ′) by f−1(Z ′) := {f−1(V )}V ∈Z′ .
It is easy to see that f−1(Z ′) is a Whitney stratification of f−1(Z ′) (see (1.4), page
14 of [18]). Let P ′ be a smooth submanifold of N ′ transverse to Z ′ in N ′ and let
j : P ′ ↪→ N ′ be the inclusion map. We indicate by P ′∩Z ′ the Whitney stratification
j−1(Z ′) of P ′.

Proposition 2.9 Let Y be an algebraic manifold with totally algebraic homology
and let m ∈ N∗. If ϕ is a m-dimensional non-trivial singular obstructive system of
Y , then ϕ is not homotopic to any locally constant map.

Proof. Let ϕ : M −→ Y be a m-dimensional non-trivial singular algebraic
system of Y . By definition, there are a Zariski closed subset Z of Y and a Whitney
stratification Z of Z such that ϕ(M) 6⊂ Z, ϕ is transverse to Z in Y , χ(ϕ−1(Z)) is
odd and dim(Z) < dim(Y ). Applying Proposition 2.8 of [1] (or Theorem 2.8.4 of
[7]) to ϕ and using Théorème 2.D.2 of [25], we may suppose that M is a compact
algebraic manifold and ϕ is a regular map. Let us show that ϕ is not homotopic to
any locally constant map. Suppose on the contrary that there is a homotopy H from
ϕ to a locally constant map. Let S1 be the standard 1-sphere. Making H smooth
and doubling H, we find a smooth map G : M × S1 −→ Y and two distinct points
a and b of S1 such that, identifying M with M × {a} in M × S1, G|M×{a} = ϕ
and G|M×{b} is locally constant. Since dim(Z) < dim(Y ), we may suppose that
G(M × {b}) ∩ Z = ∅. Let π2 : M × S1 −→ S1 be the natural projection and let
G× π2 : M × S1 −→ Y × S1 be the product map of G and π2. Remark that S1 has
totally algebraic homology so, by Kunneth formula, Y × S1 has totally algebraic
homology also. Embed M × S1 into some Rn with n ≥ 2(m + 1) + 1. Applying
Proposition 2.8 of [1] to G × π2, we obtain an algebraic submanifold T of Rn, a
diffeomorphism π from T to M × S1 and two regular maps P : T −→ Y and
ξ : T −→ S1 such that M × {a} ⊂ T , P is arbitrarily close to G ◦ π in C∞(T, Y ),
P |M×{a} = ϕ, ξ is arbitrarily close to π2◦π in C∞(T, S1) and ξ(M×{a}) = {a}. Let
W := P−1(Z). Since G|M×{a} = ϕ is transverse to Z in Y and G(M ×{b})∩Z = ∅,
choosing P sufficiently close to G ◦ π and ξ sufficiently close to π2 ◦ π, it is easy to
find an open neighborhood U of a in S1 and an open neighborhood V of b in S1

with the following two properties: (1) ξ−1(V ) ∩W = ∅, (2) setting U ′ := ξ−1(U),
U ′ ∩P−1(Z) is a Whitney stratification of U ′ ∩W and ξ restricted to each stratum
of U ′ ∩ P−1(Z) is a submersion (the reader bears in mind section D of chapter II
of [25]). Let ξ′ : W −→ S1 be the restriction of ξ to W . By Thom’s First Isotopy
Lemma (see Theorem (5.2), page 58 of [18]), we have that ξ′ is trivial over U . In
particular, (ξ′)−1(z) is homeomorphic to ϕ−1(Z) (hence χ((ξ′)−1(z)) is odd) for each
z ∈ U and (ξ′)−1(z) = ∅ (hence χ((ξ′)−1(z)) is zero) for each z ∈ V . This contradicts
Lemma 5.2 of [4] (such lemma coincides with Theorem 3.9 of section 3). 2
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Corollary 2.7 and Proposition 2.9 have the following corollary.

Corollary 2.10 Let Y be an irreducible algebraic manifold with totally algebraic
homology. Suppose that each connected component of Y is contractible. Then, Y
does not have any obstructive system. In particular, this is true for each Euclidean
space Rn.

Proposition 2.11 Let Y be a r–dimensional noncompact algebraic manifold with
r ≥ 1, let m ∈ N∗ and let i : lk∞(Y ) ↪→ Y be the inclusion map. Suppose
that Hr−m(Y ) is algebraic, Hm(i) : Hm(lk∞(Y )) −→ Hm(Y ) is not surjective and
Hr−m−1(i) : Hr−m−1(lk∞(Y )) −→ Hr−m−1(Y ) is injective. Then, the intersection
Obstrreg

m (Y ) ∩Obstrsing

m (Y ) is non–void.

Proof. We may suppose that: Y is a nonsingular Zariski closed subset of Rk \{0},
Ẏ := {0} t Y is the algebraic one point compactification of Y and, for some small
ε > 0, Sk−1(ε) ∩ Y is the link of infinity in Y and Bk(3ε) ∩ Ẏ is semi-algebraically
homeomorphic to the cone with vertex 0 and basis Sk−1(3ε) ∩ Y . Applying the

Hironaka Resolution Theorem to Ẏ , we obtain an algebraic multiblowup π : Ỹ −→
Ẏ with center over {0} such that Ỹ is a compact algebraic manifold. Define U :=

Ỹ \ π−1(0), V := π−1(Bk(2ε) ∩ Ẏ ) and A := U ∩ V . Since π induces a biregular
isomorphism from U to Y , we can identify U with Y and π−1(lk∞(Y )) with lk∞(Y ).
Remark that lk∞(Y ) is a deformation retract of A. Let i : lk∞(Y ) ↪→ Y , j :

lk∞(Y ) ↪→ V , a : Y ↪→ Ỹ and b : V ↪→ Ỹ be the inclusion maps. Let s := r −m.
Consider the following two portions of the Mayer–Vietoris sequence associated with
the triad (Ỹ , Y, V ):

Hs(Y )⊕Hs(V )
Φs−→ Hs(Ỹ )

∆s−→ Hs−1(lk∞(Y ))
Ψs−1−→ Hs−1(Y )⊕Hs−1(V ) (1)

and
· · · −→ Hm(lk∞(Y ))

Ψm−→ Hm(Y )⊕Hm(V )
Φm−→ Hm(Ỹ ) −→ · · · . (2)

Let us recall that, for each k ∈ N, Ψk = Hk(i)⊕Hk(j) and Φk(α, β) = Hk(a)(α) +
Hk(b)(β). By hypothesis, Hs−1(i) is injective so Ψs−1 is injective also. From the
exactness of (1), it follows that Φs is surjective. Let us prove that the homomor-
phism Hm(a) is not null. Suppose this is false. From the definition of Φm, we
obtain that ker(Φm) = Hm(Y ) ⊕ ker(Hm(b)). By the exactness of (2), we have
that Image(Ψm) = Hm(Y ) ⊕ ker(Hm(b)). In particular, Hm(i) is surjective. This
contradicts our assumptions, hence Hm(a) is not null. Let V ′ := π−1(Bk(3ε) ∩ Ẏ ).

Since Hm(a) is not null and Ỹ \ V ′ is a deformation retract of Y , there is a m–

dimensional finite subpolyhedron K of Ỹ \ V ′ such that the homology class of Ỹ

represented by K is not null. Let B be a neighborhood of K in Ỹ disjoint from
V . Let us conclude the proof following the second part of the proof of Proposi-
tion 2.8. Using [24], we find a m–dimensional compact smooth manifold N and

a smooth map ξ : N −→ Ỹ such that ξ(N) ⊂ B and ξ∗([N ]) = [K]. Since
[K] 6= 0, there is a connected component M of N such that ξ∗([M ]) 6= 0. Let
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ψ : M −→ Ỹ be the restriction of ξ to M . Let D : H∗(Ỹ ) −→ H∗(Ỹ ) be
the Poincaré duality isomorphism. Since Φs is surjective and Hs(Y ) is algebraic,

there are a s–dimensional Zariski closed subset W of Ỹ and a s–dimensional sub-
polyhedron H of Ỹ contained in V such that D(ψ∗([M ])) ∪ D([W ] + [H]) 6= 0.
Since ψ(M) ⊂ B, H ⊂ V and B ∩ V = ∅, D(ψ∗([M ])) ∪ D([H]) = 0 and hence
D(ψ∗([M ])) ∪D([W ]) 6= 0. Using the Thom Transversality Theorem, we may also
suppose that ψ is transverse to W in Y and ψ(M) ⊂ Y . In particular, we have:
0 6= D−1(D(ψ∗([M ]))∪D([W ])) = ψ∗([ψ

−1(W )]). It follows that ψ−1(W ) is formed
by an odd number of points. Let ϕ : M −→ Y be the composition π ◦ ψ and let
Z := π(W ) \ {0}. Since Z is a Zariski closed subset of Y , ϕ is transverse to Z in Y ,
ϕ(M) 6⊂ Z and ϕ−1(Z) = ψ−1(W ), it follows that ϕ ∈ Obstrreg

m (Y ) ∩Obstrsing

m (Y ).
2

We have two immediate corollaries of the previous results.

Corollary 2.12 Let Y be a r–dimensional compact irreducible algebraic manifold
with totally algebraic homology and r ≥ 1. The following is true.

1. Obstrreg

0 (Y ) = ∅,

2. Obstrreg

m (Y ) 6= ∅ for some m ∈ {1, . . . , r − 1} if and only if Hk(Y ) 6= {0} for
some k ∈ {1, . . . , r − 1},

3. Obstrreg

r (Y ) 6= ∅.

Let Y be a noncompact algebraic manifold and let i : lk∞(Y ) ↪→ Y be the
inclusion map. We say that Y is nonsingular at infinity if Hm(Y ) = {0} for each
m ∈ N∗ or the following is true: Hm(i) is not surjective for each m ∈ {1, . . . , r− 1}
and is injective for each m ∈ {0, 1, . . . , r − 2}.

Corollary 2.13 Let Y be an irreducible algebraic manifold with totally algebraic
homology. Suppose Y noncompact and nonsingular at infinity. The following is
true:

1. Obstrreg

0 (Y ) = ∅,

2. Obstrreg

m (Y ) 6= ∅ for some m ∈ N∗ if and only if Hk(Y ) 6= {0} for some k ∈ N∗.

3 Proofs of the main theorems

We need to recall some well–known theorems concerning the classical problem of
making smooth objects algebraic.

Theorem 3.1 (Tognoli [26]) Every compact smooth manifold is diffeomorphic to
an algebraic manifold.
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Theorem 3.2 (Tognoli [27]) Every compact smooth manifold of positive dimen-
sion is diffeomorphic to an irreducible algebraic manifold.

The following is an immediate consequence of Theorem 3.2 of [10].

Theorem 3.3 (Benedetti–Tognoli [10]) Let V be a r–dimensional compact smooth
submanifold of Rn where n ≥ 2r + 1, let W be an algebraic submanifold of Rn con-
tained in V and let β : W −→ Gn,n−r(R) be the map which sends p ∈ W into the
orthogonal vector space of the tangent space of V at p in Rn. If β is a regular map,
then there is a smooth embedding ψ of V into Rn such that ψ(p) = p for each p ∈ W
and ψ(V ) is an algebraic submanifold of Rn.

The next theorem is a version of Lemma 2.4 of [1] (for a proof adapted to this
version, see Lemma 4 of [16]).

Theorem 3.4 (Akbulut–King [1]) Let V be a compact algebraic manifold, let
W be an algebraic manifold and let f : V −→ W be a smooth map. Then, there
are a compact algebraic manifold X, an open subset X0 of X, a diffeomorphism
π : X0 −→ V and a regular map R : X −→ W such that R|X0 is arbitrarily close to
f ◦ π in C∞(X0,W ).

Theorem 3.5 (Akbulut–King [1]) Let V and W be as above and let f : V −→
W be a smooth map whose unoriented bordism class is algebraic. Then, there are
a compact algebraic manifold X, a diffeomorphism π : X −→ V and a regular map
R : X −→ W such that R is arbitrarily close to f ◦ π in C∞(X,W ).

Theorem 3.6 (Akbulut–King [3]) Let V and W be as above and let f : V −→
W be a smooth map homotopic to a regular map. Then, there exist a compact
algebraic manifold T , a diffeomorphism ξ : T −→ V and a regular map P : T −→ W
such that ξ is a regular map and P is arbitrarily close to f ◦ ξ in C∞(T,W ).

Theorem 3.7 (Akbulut–King [6]) Let V and W be as above and let ψ : V −→
W be a smooth embedding whose unoriented bordism class is algebraic. Identify W
with W × {0} ⊂ W × R2. Then, there exists a smooth embedding ψ′ of V into
W × R2 arbitrarily close to ψ in C∞(V,W × R2) such that ψ′(V ) is an algebraic
submanifold of W × R2.

We shall also need the following two remarkable theorems.

Theorem 3.8 (Bochnak–Kucharz [12]) Let V be a compact algebraic manifold,
let W be an irreducible algebraic manifold, let f : V −→ W be a regular map and
let w1 and w2 be regular values of f . Then, the compact smooth manifolds f−1(w1)
and f−1(w2) are cobordant.

14



Theorem 3.9 (Akbulut-King [4]) Let V and W be real algebraic sets with W
irreducible and let f : V −→ W be a regular map. Then, there is a Zariski closed
subset Z of W with dim(Z) < dim(W ) such that the Euler characteristic χ(f−1(w))
of f−1(w) is constant mod 2 for each w ∈ W \ Z.

Let N be a smooth manifold and let N be a Whitney stratification of N . Let J
be an interval of R containing 0 and let h : N × J −→ N be a continuous map. For
each t ∈ J , define the map ht : N −→ N by ht(x) := h(x, t) and the family ht(N )
of subsets of N by ht(N ) := {ht(V )}V ∈N . We say that h is a stratified isotopy of
(N,N ) if h0 is the identity map onN and, for each t ∈ J , the following is true: ht is a
homeomorphism of N into itself, ht(N ) is a Whitney stratification of N and ht sends
diffeomorphically each stratum V ofN into the stratum ht(V ) of ht(N ). We indicate
this isotopy by {ht}t∈J . Suppose that N is a compact smooth submanifold of Rn and
indicate by ‖v‖ the usual norm of a vector v of Rn. Remark that, by compactness, N
contains only finitely many strata. In this situation, by the expression “the isotopy
{ht}t∈J of (N,N ) is arbitrarily small”, we mean the following: for each k ∈ N and
for each ε > 0, {ht}t∈J can be choosen in such a way that, for each t ∈ J and for
each stratum V ∈ N , there are an open neighborhood UV of V in Rn and a smooth
extension ht : UV −→ Rn of ht|V such that sup|α|≤k, x∈UV

‖Dαht(x)−DαiUV
(x)‖ < ε

where α = (α1, . . . , αn) ∈ Nn, |α| :=
∑n

i=1 αi, Dα indicates the partial derivative
∂|α|/∂xα1 · · · ∂xαn and iUV

is the inclusion map UV ↪→ Rn. Let Z be a subset of
N , let Z be a Whitney stratification of Z and let M be a smooth manifold. We
indicate by Z×M the Whitney stratification of the subset Z×M of N×M defined
by Z ×M := {V ×M}V ∈Z .

We are now in position to prove Lemma 2.5. The proof will be constructive.
The idea of the proof was originally contained in our preprint [17] (see [16] also).
A similar idea has been used independently by Bochnak and Kucharz to prove an
interesting obstructive result (see Proposition 1.2 of [12]).

Proof of Lemma 2.5. We subdivide the proof into three steps.
Step I (preliminary construction). Let W be an irreducible algebraic manifold

having two connected components W1 and W2 both diffeomorphic to the standard
d–sphere Sd, let ψ be a diffeomorphism between Sd and W1 and let j : W1 ↪→ W be
the inclusion map. Let M be a compact algebraic manifold, let ϕ : M −→ Y be a
smooth map and let Z be a subset of Y such that ϕ(M) 6⊂ Z. Let π1 : Sd×M −→ Sd

and π2 : Sd × M −→ M be the natural projections. Applying Theorem 3.4 to
j ◦ ψ ◦ π1, we obtain a compact algebraic manifold X, an open subset X0 of X, a
diffeomorphism π : X0 −→ Sd ×M and a regular map R : X −→ W such that
R|X0 is arbitrarily close to j ◦ ψ ◦ π1 ◦ π in C∞(X0,W ). Remark that X0 is the
union of certain connected components of X. Fix a point y ∈ ϕ(M) \ Z and define
f : X −→ Y as follows: f := ϕ ◦ π2 ◦ π on X0 and f(x) := y for each x ∈ X \X0.

Step II (regular case). Let ϕ : M −→ Y be an element of Obstrreg

m (Y ). By defi-
nition, there is a Zariski closed subset Z of Y such that ϕ(M) 6⊂ Z, ϕ is transverse
to Z in Y and ϕ−1(Z) is not a boundary. By Theorem 3.1, we may suppose that

15



M is a compact algebraic manifold. Repeat word for word Step I with such ϕ and
Z. Let us prove that f is not homotopic to any regular map. Suppose this is false.
Applying Theorem 3.6 to f , we obtain a compact algebraic manifold T , a diffeomor-
phism ξ : T −→ X which is also a regular map and a regular map P : T −→ Y such
that P is arbitrarily close to f ◦ ξ in C∞(T, Y ). Define Z ′ := ξ−1π−1(Sd × ϕ−1(Z))
and Z ′′ := P−1(Z). From the definition of f and the transversality between ϕ and
Z, it follows that Z ′ = (f ◦ ξ)−1(Z) and f ◦ ξ is transverse to Z. Choosing P
sufficiently close to f ◦ ξ, by transversality (see Theorem 14.1.1 of [11]), we have
that Z ′′ is a compact algebraic submanifold of T and there is a smooth embed-
ding η of Z ′′ in T arbitrarily close to the inclusion map Z ′′ ↪→ T in C∞(Z ′′, T )
such that η(Z ′′) = Z ′. Let α : Z ′′ −→ W be the smooth submersion defined by
α := j◦ψ◦π1◦π◦ξ◦η. Remark that α(Z ′′) = W1. Fix w1 ∈ W1 and w2 ∈ W2. Since
α−1(w1) = η−1ξ−1π−1(ψ−1(w1)×ϕ−1(Z)), we have that α−1(w1) is diffeomorphic to
ϕ−1(Z), hence it is not a boundary. Bearing in mind that R|X0 is arbitrarily close
to j ◦ ψ ◦ π1 ◦ π and η is arbitrarily close to the inclusion map Z ′′ ↪→ T , we have
that the regular map R′′ : Z ′′ −→ W defined by R′′ := R ◦ ξ|Z′′ is arbitrarily close
to α in C∞(Z ′′,W ) also. It follows that: R′′ is a submersion, R′′(Z ′′) = W1 and the
fiber (R′′)−1(w1) is diffeomorphic to α−1(w1) (and hence to ϕ−1(Z)). In particular,
it holds: w1 and w2 are regular values of R′′, the cobordism class of (R′′)−1(w1) is
not null, while the cobordism class of (R′′)−1(w2) is null because (R′′)−1(w2) = ∅.
This contradicts Theorem 3.8. We have just proved that f is not homotopic to any
regular map. Remark that there exists at least one irreducible component X ′ of X
such that f |X′ is not homotopic to any regular map also. Otherwise, whole f would
be homotopic to some regular map which is impossible. Setting Xϕ,d := X ′ and
fϕ,d := f |X′ , we obtain the desired map.

Step II (singular case). Let ϕ : M −→ Y be an element of Obstrsing

m (Y ). By
definition, there are a Zariski closed subset Z of Y and a Whitney stratification Z
of Z such that ϕ(M) 6⊂ Z, ϕ is transverse to Z in Y and χ(ϕ−1(Z)) is odd. Let us
proceed as above. By Theorem 3.1, we may suppose that M is a compact algebraic
manifold. Repeat word for word Step I with such ϕ and Z. We must prove that f
is not homotopic to any regular map. Suppose this is not true. We apply Theorem
3.6 to f as in Step II (regular case) defining ξ : T −→ X and P : T −→ Y in
such a way that P is arbitrarily close to f ◦ ξ in C∞(T, Y ). Choosing P sufficiently
close to f ◦ ξ, it is easy to find a smooth map H : T ×R −→ Y such that, defining
Ht : T −→ Y by Ht(x) := H(x, t) for each t ∈ R, Ht = f ◦ ξ for each t ≤ 0, Ht = P
for each t ≥ 1 and, for each t ∈ R, Ht is arbitrarily close to f ◦ξ in C∞(T, Y ) (hence
Ht is transverse to Z in Y ). Let Y be the Whitney stratification of Y formed by
all strata of Z and the connected components of Y \ Z. Define T := (f ◦ ξ)−1(Y).
Suppose T biregularly embedded into some Rn. By Théorème 2.D.2 of [25], there
is a stratified isotopy {ht}t∈R of (T, T ) arbitrarily small such that ht(T ) = H−1

t (Y).
Define Z ′ := (f ◦ξ)−1(Z) = ξ−1π−1(Sd×ϕ−1(Z)), Z ′ := (f ◦ξ)−1(Z), Z ′′ := P−1(Z)
and Z ′′ := P−1(Z). Remark that ht(Z ′) = Z ′ for each t ≤ 0 and ht(Z ′) = Z ′′ for
each t ≥ 1. Let T0 := ξ−1(X0) and g : T0 −→ W be the composition j◦ψ◦π1◦π◦ξ|T0 .
Since each stratum of Z ′ is of the form ξ−1π−1(Sd×ϕ−1(V )) with V ∈ Z, g(T0) = W1
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and, for each w ∈ W1, g
−1(w) = ξ−1π−1(ψ−1(w) ×M), we have that g restricted

to each stratum of Z ′ is a submersion onto W1. Since R ◦ ξ|T0 can be choosen
arbitrarily close to g in C∞(T0,W ), there is a smooth map G : T0 × R −→ W
such that, defining Gt : T0 −→ W by Gt(x) := G(x, t) for each t ∈ R, Gt = g
for each t ≤ 0, Gt = R ◦ ξ|T0 for each t ≥ 1 and Gt is arbitrarily close to g in

C∞(T0,W ) for each t ∈ R. Let G̃ : T0 × R −→ W × R be the smooth map

defined by G̃(x, t) := (Gt(x), t). Define Z̃ := H−1(Z) and Z̃ := H−1(Z). The

map H is transverse to Z in Y so (Z̃, Z̃) is a Whitney stratified set. Remark that

Z̃ ⊂ T0×R and Z̃ ∩(T0×{t}) = ht(Z ′) for each t ∈ R. Since R◦ξ|T0 can be choosen
arbitrarily close to g and {ht}t∈R can be choosen arbitrarily small, we may suppose

that R ◦ ξ(T0) = W1 and G̃ restricted to each stratum of Z̃ is a submersion onto

W1 × R. Applying Thom’s First Isotopy Lemma to G̃ and (Z̃, Z̃), we obtain that
g−1(w) ∩ Z ′ = ξ−1π−1(ψ−1(w)× ϕ−1(Z)) is homeomorphic to (R ◦ ξ|T0)

−1(w) ∩ Z ′′

for each w ∈ W1. In particular, (R ◦ ξ|T0)
−1(w) ∩ Z ′′ is homeomorphic to ϕ−1(Z)

for each w ∈ W1. Let R′′ : Z ′′ −→ W be the regular map defined by R′′ := R ◦ ξ|Z′′ .
Remark that Z ′′ is a Zariski closed subset of T (and hence a real algebraic set) and
it holds: χ((R′′)−1(w)) = χ(ϕ−1(Z)) is odd for each w ∈ W1 and χ((R′′)−1(w)) = 0
for each w ∈ W2. The latter fact contradicts Theorem 3.9. It follows that f is not
homotopic to any regular map as desired.

Step III (connectedness). Suppose that M is connected and d ≥ 2. We must
prove that Xϕ,d can be choosen connected. For simplicity, we assume that ϕ ∈
Obstrreg

m (Y ). Repeating Step I (preliminary construction) and Step II (regular case)
with (d− 1) instead of d, we obtain a (m+ d− 1)–dimensional compact irreducible
algebraic manifold X, a connected component X0 of X diffeomorphic to Sd−1×M ,
a point y of ϕ(M) and a smooth map f : X −→ Y with the following properties:
f(X0) = ϕ(M), f(X \ X0) = {y} and f is not homotopic to any regular map.
First, suppose that X0 = X. Let Xϕ,d := X × S1, let ρ : Xϕ,d −→ X be the
natural projection and let fϕ,d : Xϕ,d −→ Y be the composition map f ◦ ρ. Fix
a ∈ S1 and identify X with X × {a} ⊂ Xϕ,d. Since f is not homotopic to any
regular map from X to Y and X ⊂ Xϕ,d, we have that fϕ,d is not homotopic to any
regular map from Xϕ,d to Y . Suppose now that X0 6= X. Indicate by X1, . . . , Xe the
connected components of X \X0. Define A := X×S1 and, for each i ∈ {0, 1, . . . , e},
Ai := Xi×S1. Embed biregularly A into some RN with N ≥ 2(m+d)+1. Fix again
a point a of S1 and identify X with X × {a} ⊂ A. Let ρ : A −→ X be the natural
projection and let g : A −→ Y be the composition map f ◦ ρ. Fix b0 ∈ A0, ce ∈ Ae

and, for each i ∈ {1, . . . , e−1}, two distinct points bi and ci of Ai in such a way that
g(b0) = y and X ∩ {b0, b1, c1, . . . , be−1, ce−1, ce} = ∅. For each i ∈ {0, 1, . . . , e − 1},
choose a small ball Bi of Ai centered at bi and, for each i ∈ {1, . . . , e}, choose a
small ball Ci of Ai centered at ci in such a way that g|∂B0 is homotopic to the
constant map which sends ∂B0 into y and both the distance between

⊔e−1
i=0Bi and⊔e

i=1Ci in A and the distance between D :=
⊔e−1

i=0Bi ∪
⊔e

i=1Ci and X in A are
positive. Let A′ := A \ D. For each i ∈ {0, 1, . . . , e − 1}, we attack a handle
Hi = [0, 1] × Sm+d−1 to A′ identifying {0} × Sm+d−1 with ∂Bi and {1} × Sm+d−1
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with ∂Ci+1. We obtain a compact connected smooth submanifold Xϕ,d of RN and
a smooth map fϕ,d : Xϕ,d −→ Y such that Xϕ,d contains X and fϕ,d is an extension
of g|A′ . In particular, fϕ,d|X = f . Applying Theorem 3.3 to Xϕ,d, we may suppose
that Xϕ,d is an algebraic submanifold of RN also. Since f is not homotopic to any
regular map from X to Y and fϕ,d extends f , we have that fϕ,d is not homotopic to
any regular map from Xϕ,d to Y . 2

Proof of Lemma 2.5′. Let us modify Step I (preliminary construction) of the
previous proof.

Step I ′ (preliminary construction). Let D be a positive dimensional compact
smooth manifold, let M be a compact algebraic manifold which is the boundary
of a compact smooth manifold N with boundary, let ϕ : M −→ Y be a smooth
map and let Z be a subset of Y such that ϕ(M) 6⊂ Z. By Theorem 3.2, there is
an irreducible algebraic manifold W having two connected components W1 and W2

both diffeomorphic to D. Let ψ be a diffeomorphism between D and W1 and let
j : W1 ↪→ W be the inclusion map. Let π1 : D ×M −→ D, %1 : D × N −→ D
and π2 : D ×M −→M be the natural projections. Since ∂(D ×N) = D ×M and
j ◦ ψ ◦ %1|D×M = j ◦ ψ ◦ π1, we have that the unoriented bordism class of j ◦ ψ ◦ π1

is null (and hence algebraic). Applying Theorem 3.5 to j ◦ ψ ◦ π1, we obtain a
compact algebraic manifold X, a diffeomorphism π : X −→ D ×M and a regular
map R : X −→ W such that R is arbitrarily close to j ◦ ψ ◦ π1 ◦ π in C∞(X,W ).
Define the smooth map f : X −→ Y by the composition ϕ ◦ π2 ◦ π.

In order to complete the proof, it suffices to repeat Step II (regular case), Step II
(singular case) and Step III (connectedness) of the previous proof. 2

Second order homological obstructions. Theorem 1.1 and Theorem 1.2
are particular cases of Theorem 1.1′ and Theorem 1.2′ respectively. We must prove
Theorem 1.1′, Theorem 1.2′, Theorem 1.3 and Theorem 1.5.

Proof of Theorem 1.1′. First part) By Steenrod Representability Theorem [24],
there are a m–dimensional compact smooth manifold N and a smooth map η :
N −→ Y such that η∗([N ]) = α. Since α is a nonzero element of Hm(Y ), there
exists a connected component M of N such that η∗([M ]) 6= 0. Let ϕ : M −→ Y
be the restriction of η to M . Let Y ′ be a compact algebraic manifold and let
h : Y −→ Y ′ be a continuous map as in the statement of the theorem. Since each
continuous map between Y and Y ′ is homotopic to a smooth map, we may assume
that h is smooth. By hypothesis, it follows that (h◦ϕ)∗([M ]) is a nonzero element of
Hm(Y ′). Proceeding as in the proof of Proposition 2.8, we find a (s−m)–dimensional
Zariski closed subset Z ′ of Y ′ and a smooth map ϕ′ : M −→ Y ′ arbitrarily close to
h ◦ ϕ in C∞(M,Y ′) such that g is transverse to Z ′ in Y ′ and (ϕ′)−1(Z ′) is a finite
set formed by an odd number of points.

Second part) Let d ∈ N∗. Following Step I (preliminary construction) of the
proof of Lemma 2.5, we repeat the definitions of W , j, π1, π2, X, X0, π and R. Fix
a point y ∈ ϕ(M) and define a smooth map f : X −→ Y as follows: f := ϕ ◦ π2 ◦ π
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on X0 and f(x) := y for each x ∈ X \X0. Choose y′ ∈ Y ′ \ Z ′ arbitrarily close to
h(y) in Y ′. Let g : X −→ Y ′ be the smooth map defines as follows: g := ϕ′ ◦ π2 ◦ π
on X0 and g(x) := y′ for each x ∈ X \ X0. Since g is arbitrarily close to h ◦ f in
C∞(X, Y ′), we have that g is also homotopic to h ◦ f . Repeating Step II (regular
case) and Step III (connectedness) of the just mentioned proof with f replaced
with g and ϕ replaced by ϕ′, it follows that: g is not homotopic to any regular map,
X can be choosen irreducible and X can be choosen connected when d ≥ 2. In
particular, h◦f is not homotopic to any regular map and the proof of Theorem 1.1′

is complete. 2

Proof of Theorem 1.2′. It suffices to repeat the previous proof using Step I ′

(preliminary construction) of the proof of Lemma 2.5′ instead of Step I (preliminary
construction) of the proof of Lemma 2.5. 2

Proof of Theorem 1.3. We may assume that Y has totally algebraic homology.
Let h : Y −→ Y ′ be a map as in the statement of the theorem. By the proof
of Proposition 2.11, we know that there are a smooth map ϕ : M −→ Y from a
m-dimensional compact smooth manifold to Y and a (r −m)–dimensional Zariski
closed subset Z of Y such that: ϕ is transverse to Z in Y , ϕ−1(Z) is a finite
set formed by an odd number of points, the euclidean closure Z∗ of Nonsing(Z)
in Y is compact and [Z∗] is a nonzero homology class of Y . By the Hironaka

Resolution Theorem, there is an algebraic multiblowup H : Z̃ −→ Z with centers
over Sing(Z) = Z \ Nonsing(Z) such that Z̃ is an algebraic manifold. Since Z∗

is compact, we have that Z̃ is compact also. The map H restricts to a biregular
isomorphism from H−1(Nonsing(Z)) to Nonsing(Z) so H and ϕ are transverse in Y .

Choose a compact neighborhood U of H−1(Sing(Z)) in Z̃ such that H(U)∩ϕ(M) =
∅ (recall that ϕ(M)∩Z ⊂ Nonsing(Z)). Applying Theorem 3.5 to h ◦H, we obtain

a compact algebraic manifold Z∗, a diffeomorphism % : Z∗ −→ Z̃ and a regular
map h′ : Z∗ −→ Y ′ such that h′ is arbitrarily close to h ◦ H ◦ % in C∞(Z∗, Y ′).
Let U ′ := %−1(U). Choosing h′ sufficiently close to h ◦ H ◦ %, we have that: h′

is transverse to h ◦ ϕ in Y ′, the fibered product of h′ and h ◦ ϕ is diffeomorphic
to ϕ−1(Z), h′(U ′) ∩ h(ϕ(M)) = ∅ and h′|Y ′\U ′ is injective. Let Z ′ be the Zariski
closure of h′(Z∗) in Y ′. Since h′|Y ′\U ′ is injective, the dimension of Z ′ is equal to
dim(Z∗) = r−m so dim(Sing(Z ′)) < r−m. By the Thom Transversality Theorem,
there is a smooth map ϕ′ : M −→ Y ′ arbitrarily close to h ◦ ϕ in C∞(M,Y ′) such
that ϕ′(M) ∩ Sing(Z ′) = ∅ and ϕ′ is transverse to Nonsing(Z ′) in Y ′. Choosing ϕ′

sufficiently close to h ◦ ϕ, it follows that: ϕ′ is homotopic to h ◦ ϕ, h′ is transverse
to ϕ′ in Y ′, the fibered product P ′ of h′ and ϕ′ is diffeomorphic to ϕ−1(Z) and
h′(U ′) ∩ ϕ′(M) = ∅. Using again the injectivity of h′|Y ′\U ′ , we have that (ϕ′)−1(Z ′)
and P ′ have the same cardinality so (ϕ′)−1(Z ′) is a finite set formed by an odd
number of points. Repeating the second part of the proof of Theorem 1.1′, we
complete the proof of the present theorem. 2
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Proof of Theorem 1.5. Fix p ∈ Y and q ∈ Z. Let ϕ : Y −→ Y × Z be the map
which sends y into (y, q). Since ϕ is transverse to {p}×Z and ϕ−1({p}×Z) = {p}, it
follows that ϕ is a r–dimensional obstructive system of Y ×Z. By Lemma 2.5, there
exist a (r+d)–dimensional irreducible compact algebraic manifold Xd (which can be
choosen connected if Y is connected and d ≥ 2) and a smooth map fd : Xd −→ Y ×Z
which is not homotopic to any regular map. Remark that r + s ≥ 2(r + d) + 1.
By the Whitney Embedding Theorem, there is a smooth embedding f ′d from Xd

to Y × Z arbitrarily close to fd in C∞(Xd, Y × Z) (and hence homotopic to fd).
Identify Y × Z with Y × Z × {0} ⊂ W and view f ′d as a map from Xd to W . Let
π : W −→ Y × Z be the natural projection. Since π is a regular map, f ′d is not
homotopic to any regular map from Xd to W . By the Kunneth formula, we know
that W has totally algebraic homology so its unoriented bordism group is algebraic.
Applying Theorem 3.7 to f ′d, we obtain a smooth embedding ψd from Xd to W
arbitrarily close to f ′d in C∞(Xd,W ) such that ψd(Xd) is an algebraic submanifold
of W . Since ψd is homotopic to f ′d, we have that ψd is not homotopic to any regular
map. Making use of the Stone–Weierstrass Approximation Theorem and the Nash
Tubular Neighborhood Theorem, we may suppose that ψd is a Nash embedding also.
2

Global Sullivan–type conditions. Theorem 1.6 follows immediate from Def-
inition 2.1 and Corollary 2.10 or from Lemma 2.5 and the Stone–Weierstrass Ap-
proximation Theorem.

Algebraic tubular neighborhoods. The following result is an easy conse-
quence of Lemma 2.5 and the Stone–Weierstrass Approximation Theorem.

Proposition 3.10 Let Y be an algebraic submanifold of Rn and let S be an obstructi-
ve subset of Y . Then, Y does not have any algebraic tubular neighborhood locally at
S in Rn.

Theorem 1.8 follows immediately from Proposition 3.10 and the last part of
Proposition 2.8. Let us give the proof of Corollary 1.9: Let Y be a compact algebraic
submanifold of Rn. If Y contains at least two points, then Y is an obstructive
subset of itself so Proposition 3.10 prevents the existence of any algebraic tubular
neighborhood of Y in Rn.
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