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ABSTRACT 

A new approach for the synthesis of both sum and difference antenna pattern is proposed. The approach allows to 
obtain an optimal sum pattern and a sub-optimal difference pattern through the search of a minimal cost path inside an 
incomplete binary tree. 
 
1. INTRODUCTION 

A monopulse radar tracker is a device in which the angular position of a target is obtained through the use of two beams 
antenna [1]. These beams are the sum and the difference pattern and they can be generated by an antenna array. These 
patterns have to satisfy some constrains as narrow beam-width, low side lobe level (SLL), high directivity, etc… . By a 
proper choice of the excitation coefficients, computed using analytical methods as described in [2] for the sum mode 
and in [3] for the difference mode, the optimal sum and difference patterns can be generated. Unfortunately this solution 
leads to two independent feed networks with generally unacceptable costs, circuit complexity, and interference 
phenomena. Therefore, it is necessary to find a compromise solution with a simpler feed network but leading to sub-
optimal sum and difference patterns. The most common way to solve such a problem [4] consists in generating an 
optimal sum pattern and a sub-optimal difference pattern by means of sub-arraying. Consequently, the unknowns of the 
problem are the element grouping (sub-array configuration) and values of the weights to be associated at each sub-array 
such that the sub-optimal pattern is as close as possible to the optimal one.  
Several approaches for defining the sub-array configuration and the weights have been proposed. In particular, the 
strategy proposed by McNamara [4] finds the solution considering a particular sub-array configuration and obtains the 
weights solving an over-determined system of linear equations. The approach presented by Ares in [5] allows to find the 
weights for a given sub-array configuration by minimizing a cost function through the simulated annealing. These two 
approaches present the inconvenient that it is impossible to know “a priori” which is the sub-array configuration that 
will bring to the best solution.  
Such drawback has been solved by Lopez [6]. A simultaneous optimization of the sub-array configurations and the 
weights is performed through the minimization by a GA of a cost function related with the SLL of the generated beam. 
A similar solution has been proposed by Caorsi [7]. Also in this case, a joint optimization of both the sub-array 
configurations and weights is performed by using a Differential Evolution (DE). Although these approaches overcome 
the problem of the choice of the sub-array configuration, they usually require large computational resources because of 
the wide solution space. 
In order to overcome such a problem, the present work is aimed at introducing a new technique able to efficiently deal 
with large arrays. The approach is based on the key-observation that an optimal array grouping can be obtained 
considering elements with similar properties. Moreover, neglecting a set of non allowed or equivalent sub-array 
configurations, the solution space can be reduced without any loss of information and the candidate configurations can 
be generated by means of a non-complete binary tree. The solution of the problem is successively found associating a 
cost to each complete path inside the tree and choosing the configuration with minimal cost. 
Toward this aim, an algorithm for a fast search of the solution is also presented. It optimizes only the positions of 
special elements, called border elements, inside the sub-array configurations which are suitable candidates to change 
sub-array of membership. 
This work is organized as follows. In Sect. 2 the problem is mathematically formulated and then in Sect. 3 some 
numerical example are presented and discussed. Finally, in Sect. 4 some conclusions will be drawn. 
 
2. MATHEMATICAL FORMULATION 

Let us consider a linear uniform array of N=2M elements and assume that the sum pattern is generated by a symmetric 
real excitations set { M,...,maaA mm 1=== − } [8] and the difference pattern is obtained by using an anti-symmetric real 



 

excitations set { MmbbB mm ,...,1=−== − } [9]. Thanks to such symmetry properties only half of the array can be taken 
in account.  
In order to obtain the best performances, the optimal sum excitations coefficients { }MmA m

opt ,...,1; == α  and the 

optimal difference excitations ones { MmB m
opt ,...,1; == β } can be computed according to the procedure described in 

[2] and in [3], respectively. Unfortunately this approach needs the implementation of two independent feed networks. 
 

 
Figure 1. Sketch of the feed networks 

 
To overcome such a drawback, the sub-array technique is widely adopted to obtain simpler feed networks able to 
generate the optimal sum pattern, but only a sub-optimal difference pattern. Accordingly, the array elements are suitable 
grouped in Q sub-arrays (Fig. 1) and each sub-array configuration can be mathematically described [7] by the vector: 
 

{ },,...,1; MmmcC ==               (1) 

 
where   is the sub-array index of the mth element. Moreover, a weight is associated for each sub-array so 
that the difference pattern is generated by the following excitations 

[ Qcm ,1∈ ] qw

{ },,...,1,...,1; QqMmmmqwmbB ==== α        (2) 
 

 
where  is the weight associated to the mth array element belonging to the qth sub-array. Thus, the goal of the 
problem is to determine a sub-array configuration 

qmq ww =
C and a set of Q weights such that the difference pattern generated by 

B is as close as possible to the optimal one. 
 
2.1. Construction of the Solution Tree 

The space of the sub-array configurations can be reduced without any lost of information through some observations. 
First, only the configurations in which there is at least one element in each sub-array are considered (allowed 
configurations). Moreover, it can be observed that some configurations are equivalent since it is possible to obtain one 
from the others just using a different numbering for the same . Clearly, it is possible to consider just one 
configuration for each set of equivalent ones. 

mc

After reducing the solution space and before representing it by means of a binary tree, a sorting operation of the array 
elements is performed. Toward this end, let us introduce a set V of known real parameters , each one associated to an 
element of the array. The parameters are sorted to obtain a list of real elements  where 

. Such a choice allows us to obtain a solution closer the optimal one. 

mv
{ },,...,1; MmlL m ==

Mill ii ,...,0,1 =≤+

Then, all the possible solutions are represented through a non-complete binary tree of depth M, called solution tree. 
Referring to Fig. 2, each complete path of the tree represents a possible sub-array configuration C and the positive 
integer q inside the nodes at the mth level indicates that lm  is a member of the qth array.  
 
 



 

 
 

Figure 2. Solution tree 
 
2.2. Definition of the Metric 

In order to find the best configuration, it is necessary to quantify the closeness of a trial solution to the optimal one. 
Toward this end, a cost is associated to each path of the tree: 
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where  are the known parameters and the  are the elements of the trial solution. Two different definitions of the 
optimal parameters  have been used in the Gain Sorting algorithm (GS) and in the Residual Error 

algorithm (RES), respectively. 
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In the GS algorithm the parameters are called optimal gains and are defined as: mv
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being mα  and  mβ  the optimal excitation coefficients. The parameters  are called computed gains and can be 
computed directly as: 
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being qcm

δ  the Kronecker delta ( 1=qcm
δ  if  qcm = , 0=qcm

δ  otherwise). The weights are then computed as: 
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As far as the RES algorithm is concerned, the parameters are called optimal residuals and are evaluated as: mv
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Substituting (7) and (2) in (3) the cost function can be rewritten as: 
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Eq. 8 represents the normalized difference between the optimal difference excitations Bopt and the effective excitations 
set B. The value of the weights wq are  in this case computed using the equivalence between (3) and (8) and according 
to the following expression: 
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2.3. Fast Search of the Solution 

Notwithstanding the reduction of the solution space, an exhaustive search is prohibitive, in terms of computational time, 
for large arrays (M>>Q). In order to overcome such drawback, it can be observed that only some elements  are 
candidate to change sub-array of membership without violating the condition of a sub-array configuration with sorted 

. These elements are called border elements. In particular  is a border element if  and/or   are members of 
different sub-arrays.  

ml

ml ml 1−ml 1+ml

Starting from these considerations, the algorithm summarized in the flow chart of Fig. 3 has been developed. Firstly, a 
random trial solution is generated, and its cost is computed. Then, the solution is searched for scanning all the elements 
of the list. If is a border element, then its possible membership to the closest sub-array is checked by considering a 
new solution with aggregates to it. 
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Figure 3. Flow chart of the algorithm for the fast research of the solution. 
 
The cost function of the new solution is computed and if it is lower than that of the previous solution, the sub-array 
configuration is updated. According to this strategy, the whole vector C can be scanned iteratively until the cost 
function is higher than a given threshold or k=K. 



 

As far as the computational costs are concerned, the number of operations needed for sorting the elements is 
O(M*log(M)) and the evaluations of the cost function  used to find the solution follow the law O(M2).    
 
3. NUMERICAL SIMULATIONS  

The proposed approach has been validated through a set of representative numerical simulations. The first test case 
concerns with an array of N=2M=20 elements spaced by λ/2 with the optimal sum pattern corresponding to a Villenueve 
pattern [8] with n=4 (for which SLL=-25[dB]) and the optimal difference pattern corresponding to a Zolotarev pattern 
[3] with n=4 and ε=3 (for which SLL=-25[dB]). The excitation coefficients and the parameters involved in the 
simulation are indicated in Tab. 1.   
 

m αm βm vm - RES vm – GS 
1 1.0000 0.1739 4.7521 0.1739 
2 0.9760 0.4961 0.9671 0.5083 
3 0.9271 0.7550 0.2279 0.8144 
4 0.8542 0.9272 -0.0788 1.0855 
5 0.7616 1.0000 -0.2384 1.3130 
6 0.6583 0.9659 -0.3184 1.4672  
7 0.5567 0.8401 -0.3373 1.5091 
8 0.4692 0.6833 -0.3134 1.4563 
9 0.4057 0.5464 -0.2575 1.3468 

10 0.3726 0.3610 0.0323 0.9688 
 

Table 1. Excitation coefficients and optimal parameters for a linear array of N=20 elements. 
 
The sub-optimal pattern obtained for Q=3 is compared with the patterns generated by McNamara [4] (analytical 
approach) and by Lopez [6] . The results are shown in Fig. 4. 
 

 
 

Figure 4. Comparison between GS – [4] – [6] and the optimal one [3] for Q=3. 
 
The pattern generated by the GS in a computational time of 0.0347[sec] shows a good approximation of the optimal 
pattern till |θ|<600. Moreover, for values of |θ| exceeding this range the SLL is always lower than -20[dB]. The pattern 
obtained with the GS algorithm is comparable with that obtained in [4] and with narrower beam-width with respect to 
[6]. 
Using the same excitation coefficients for the sum and the difference mode, the pattern generated using the RES 
algorithm with Q=6 is compared with the pattern generated  in [7] and with the optimal one. The results are shown in 
Fig. 5. The pattern generated by the RES shows a very good approximation of the optimal pattern. In particular, the 
SLL doesn’t exceed -27[dB] and the envelope is similar to the optimal one. The RES pattern presents better 
performances in comparison to [7]’s approach in term of SLL. Moreover, the result has been calculated in 0.05841[sec]. 
The last test case concerns with a linear array of N=2M=100 elements spaced by λ/2. The optimal sum pattern 
excitations corresponds to a Taylor pattern [9] with n=12 (SLL=-35[dB]) and the optimal difference pattern has been 
chosen as that generated by the Lopez approach [6] for Q=4. The result is shown in Fig. 6. 
 



 

 

 
 

Figure 5. Comparison between RES - [7] and the optimal one [3] for Q=6. 
 
The RES algorithm approximates very well a generic reference pattern and the SLL doesn’t exceed -30[dB]. The 
computation time is still very reasonable ( 0.1164[sec] for the RES algorithm and 0.1827[sec] for the GS algorithm). 
These results allow us to extend the field of application of the approach in all the synthesis problems where the 
generation of two different patterns is needed and the excitation coefficients are known.   
 

 
 

Figure 6. RES and GS pattern for N=100 and Q=4 - Optimal difference pattern [6]. 
 
4. CONCLUSIONS 

A new approach to optimize the compromise between the circuit complexity and the sub-optimal difference pattern has 
been described. The strategy allows the reduction of the configurations space and  the generation of all the possible 
solutions by means of a non-complete binary tree. Each complete path is characterized by a cost and the best solution 
can be selected considering the minimal cost  path. The exhaustive search of the best solution has been avoided 
observing that just some elements inside a sub-array configuration are candidate to change sub-array of membership. 
The proposed strategy has shown similar performances in comparison to the analytical approach presented in [4] and 
the GA optimization presented in [7] for small sub-array. Moreover, since the solution is obtained by means of a fast 
algorithm, the approach seems to be potentially a good strategy for dealing with large arrays. 
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