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Abstract

The scope of this work is to discuss the proper choice of macrodispersion coefficients

in modeling contaminant transport through the advection dispersion equation (ADE).

It is common to model solute concentrations in transport by groundwater with the

aid of the ADE. Spreading is quantified by macrodispersivity coefficients, which

are much larger than the laboratory observed pore-scale dispersivities. In the

frame of stochastic theory, longitudinal macrodispersivity is related to the hydraulic

conductivity spatial variability via its statistical moments (mean, variance, integral

scales), which are generally determined by geostatistical analysis of field measurements.

In many cases, especially for preliminary assessment of contaminant spreading,

these data are not available and ad-hoc values are adopted by practitioners. The

present study aims at recommending dispersivity values based on a thorough analysis

of tens of field experiments. Aquifers are classified as of weak, medium and high

heterogeneity and for each class a range of macrodispersivity values is recommended.

Much less data are available for the transverse macrodispersivities, which are significantly

smaller than the longitudinal one. Nevertheless, a few realistic values based on field

data, are recommended for applications. Transport models using macrodispersivities

can predict mean concentrations, different from the local ones. They can be used

for estimation of robust measures, like plumes spatial moments, longitudinal mass

distribution and breakthrough curves at control planes.

Introduction

Analyzing and predicting the fate of contaminants in the subsurface are key tasks for groundwater

quality management. Therefore, solute transport in groundwater is a subject of paramount

practical interest and its modeling is a topic of active research.

We consider here transport of a conservative solute, which is the starting point for modeling

that of reactive solutes as well. Traditionally, the advection-dispersion equation (ADE) was

adopted to quantify solute spreading in porous media at pore scale, as appropriate to laboratory
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experiments (Bear , 1972):

∂C

∂t
+ U

∂C

∂x1
= DdL

∂2C

∂x2
1

+ DdT
∂2C

∂x2
2

+ DdV
∂2C

∂x2
3

. (1)

Here C(x, t) is the resident solute concentration defined at Darcy scale in space x = (x1, x2, x3)

and time t. Flow is of constant velocity U in the horizontal direction x1 while DdL, DdT and

DdV are the pore-scale dispersion tensor components in the longitudinal, transverse horizontal

and transverse vertical directions, respectively.

Pore-scale dispersion is commonly parameterized following Scheidegger (1961): the dispersion

coefficients are the sum of pore molecular diffusion Dm coefficient and of velocity-proportional

hydrodynamic dispersion terms. For typical values of U , the Peclet numbers Pe = Ud/Dm,

where d is the pore scale, are much larger than unity and transport is advection dominated.

Consequently, hydrodynamic dispersion is the main mechanism and the pertinent pore-scale

dispersivities αdi = Ddi/U with i ∈ {L, T, V } are approximately constant.

Laboratory experiments indicate that αdL is of the order of the pore diameter d for homogeneous

and isotropic media. It was found that in isotropic media transverse dispersivities αdT =

αdV are much smaller than αdL by a factor of 5 − 40 (e.g. Dagan (1989, Figures 2.10.4 &

2.10.5) for early experiments). More recent laboratory experiments (Klenk and Grathwohl,

2002) confirmed that the pore-scale dispersivity values are generally much smaller than those

pertaining to transport in aquifers at field-scale.

It is common in practice to quantify field scale flow and transport in aquifers by the same

ADE (1) with U∂C/∂x1 replaced by U·∇C, where the velocity U(x,t) is the solution of the flow

equations in a homogeneous medium for the given boundary and initial conditions. Similarly,

the pore scale dispersivities are replaced by macrodispersivities αi = Di/U , i ∈ {L, T, V }, which

are by orders of magnitude larger than the values of pore scale dispersivities, particularly the

one characterizing solutes longitudinal spreading αL ≫ αdL (Zech et al. (2015) and Tables B.1

& B.2 herein).

Spreading at the field scale is not the result of pore-scale processes, but it is related to

aquifer heterogeneity. The heterogeneity manifests in spatial variability of the 3D hydraulic

conductivity K field, which is characterized by scales much larger than the pore scale. This

results in a spatially variable velocity field with zones of fast flow on one hand and almost
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stagnant ones on the other hand. Its variations relative to the mean U and the effect upon

spreading is supposedly captured by the enhanced macrodispersivities. Here, the mean flow

is assumed horizontal, which is a good approximation, in most sedimentary unconsolidated

formation under natural gradient conditions. At any rate the paper builds on field data

pertinent to horizontal mean flow (Appendix B). Similarly, transverse horizontal and transverse

vertical macrodispersivities are larger than their pore-scale counterparts (i.e., αT > αdT and

αV > αdV ), though to a lesser extent than in the longitudinal direction (see Zech et al. (2019)

for a recent review). Thus, the process equation (ADE 1) was supposed to be similar for

transport at pore- and field scales, but with dispersion coefficients resulting from inherently

different mechanisms.

A large body of literature of the last four decades was devoted to the modeling of field scale

dispersion, primarily the longitudinal one. The common approach in stochastic subsurface

hydrology is to regard K(x) as a space random function to account for its seemingly erratic

behavior, and similarly for the velocity field, solution of the flow equations. With the local

random concentration C defined at an appropriate field scale (see discussion in Appendix A)

and U the mean velocity, an ADE similar to Eq. (1) is adopted. Relating the macrodispersivities

to the statistical parameters of conductivity K has become a main topic of research (Dagan,

1989; Gelhar , 1993; Rubin, 2003) which is still ongoing. A review of the various models and

approaches is beyond the scope of the present study.

For readers not familiar with the stochastic approach, we provide in Appendix A a succinct

presentation of the macrodispersivity concept, and the developments needed for the present

study. The main results are encapsulated by the ADE satisfied by the mean concentration ⟨C⟩

(Eq. A.1), and the dependence of αL on time and log-conductivity statistical moments (Eq. A.3).

In particular, after a short travel distance, the simple asymptotic result based on first order

approximation αL → σ2
Y Ih is valid where σ2

Y stands for log-conductivity variance and Ih for the

longitudinal correlation scale. The asymptotic αL is typically reached after the plume traveled

a few correlation scales Ih, which is typically around 10 m depending on the particular site

(Table B.1).

It is common to solve the equations of groundwater flow and transport numerically, by using

available codes. As a first step, the aquifer is divided into blocks which are usually of large

size relative to the scales of spatial correlation Ih, Iv. The hydraulic properties of the blocks
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are typically selected based on a few pumping tests and geological profiles, if available. After

solving for the head and the associated velocity field, transport is modeled by an ADE, leading

to the concentration field C(x, t). To account for the spreading associated with heterogeneity

of K which is not captured at the level of resolution of the blocks, longitudinal and transverse

macrodispersivities are incorporated in the ADE.

Many times the values for αL in models are selected arbitrarily by "thumb rules" or based on

the "universal scaling" typically leading to erroneously large values and overestimation of solute

plumes spreading. The use of the scaling law (Neuman, 1990) by which αL grows infinitely

with distance is not supported by reliable field data (Zech et al., 2015). Also fixed ratios

αT,V /αL ≪ 1 are not confirmed by field observations (Zech et al., 2019).

Our aim is to provide practitioners who use macrodispersivity estimates in groundwater transport

models with reasonable values which are based on recent theoretical developments and more

important, on comprehensive field data. Zech et al. (2015, 2019) provided a thorough collection

of reliable macrodispersivities from field studies, but yet a strategy to apply that knowledge in

models for other field sites is missing.

Our specific task here is to present a coherent methodology for the selection of the macrodispersivity,

which in combination with the mean velocity fully characterize the ADE model. To this end,

we included an illustrative example to show how macrodispersivity estimates can be applied in

a realistic scenario.

The plan of the paper is as follows. The second section recapitulates tens of values of longitudinal

macrodispersivities, and fewer ones of transverse horizontal and transverse vertical, originating

from field observations. We further analyse their dependence on the aquifer heterogeneity

level. The third section summarizes the results and suggests recommendations for application

by practitioners. We close with a summary and conclusions. As mentioned above, Appendix A

discusses the foundation of macrodispersivities concept in the stochastic framework. Finally,

Appendix B presents the detailed field data, classified according to their reliability.

6This article is protected by copyright. All rights reserved.
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Analysis of Macrodispersivity Field Data

Longitudinal Macrodispersivities and Comparison with First-Order Theory

We consider values identified from field observations as the preferred source for developing

estimates of macrodispersivities for sites where the underlying information might not be feasible

to achieve. The study of Zech et al. (2015) provided an overview of reliable longitudinal

macrodispersivities, building on the results of Gelhar et al. (1992). Note, that macrodispersivities

obtained from published works are in most cases the result of some kind of fitting of observed

heads and that their accuracy depend on the quality (and amount) of available data and the

quality of the model.

First, we summarize the main findings of Zech et al. (2015) toward their extension herein.

The starting point was the literature compendium of tracer test data by Gelhar et al. (1992),

who plotted longitudinal macrodispersivity αL as a function of plume travel distance L. The

apparent grouping of the data, with αL increasing with L, motivated the concept of "unique

scaling" or "universal" behavior (Neuman, 1990) to estimate an αL for any aquifer. After

thoroughly reviewing the original data, adding field data accumulated between 1992 and 2015

and elimination of low reliability data, Zech et al. (2015) draw the following conclusions:

• There is no justification for the assumed general scaling of αL with L. It rather leads to

inadvertently large predicted values of solute spreading.

• For each aquifer, αL is site specific being a function of the parameters quantifying aquifer

heterogeneity rather then the travel distance (Zech et al., 2015, Fig. 4).

• The local spatial evolution of αL with solute travel distance shows a preasymptotic

increase followed by stabilization at a constant value. The asymptotic αL is typically

reached after the plume travelled a few integral scales Ih (Figure A.1, Appendix A). The

magnitude depends on the aquifer specific level of heterogeneity, as quantified for instance

by log-conductivity variance. This is in line with theoretical predictions (e.g. outlined

in Appendix A), as well as shown for a few field cases where data were available (Zech

et al., 2015, Fig. 5).

However, Zech et al. (2015) did not recommend simple rules for selecting values of αL in

applications, for preliminary prediction when data obtained from the characterization process

7This article is protected by copyright. All rights reserved.
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are limited. Our aim here is to infer a simple rule for selecting values of αL in applications

which may be of use for preliminary prediction of transport. Therefore, we restructured the

data collection of Zech et al. (2015) and added hydraulic and geological characteristics where

available from literature.

The extended data set is listed in Tables B.1 and B.2 of the Appendix B. We added:

1. basic hydrogeological data such as porosity, mean conductivity and flow velocity;

2. hydraulic conductivity statistics (where available) which helps evaluating the level of

heterogeneity and which can be used for estimates of macrodispersivity through first

order theory (αL → σ2
Y I);

3. characterizations of the aquifer material and deposition history reported by the authors,

which served again the evaluation of the level of heterogeneity. This "soft data" can further

be used as reference by similarity when estimating aquifer properties of a particular site.

We grouped sites based on the level of available information: intensively studied sites and those

with a relative moderate level of site information, which is still more than the one available

at typical sites. Intensively studied sites (Tables B.1) provide all relevant hydrogeological

information, including a geostatistical analysis of hydraulic conductivity observations. In many

cases, conductivity estimates from multiple sources has been identified, such as grain size

analysis, permeameter, flowmeter, or hydraulic profiling/injection logging. Note that results

from different methods can lead to significant differences in K-statistics, particularly for highly

heterogeneous sites such as MADE (Zech et al., 2021) due to method specifics such as support

volume, dimensionality, or resolution.

All macrodispersivity data listed in Tables B.1 and B.2 are considered to be highly or moderately

reliable based on the reliability criteria defined in Zech et al. (2015, 2019), extension to those

of Gelhar et al. (1992). Thus, main reliability criteria are the appropriateness of the method of

analysis for the test settings, including flow configuration and boundary conditions, the degree

of knowledge of the tracer history and the availability of observations. Note that not all data

of Zech et al. (2015) were used here since we excluded transient data and attributed an unique

value to macrodispersivity, presumably valid in the asymptotic regime. The preasymptotic

macrodispersivities, typically evaluated for experiments with a travel distance of less than 15 m,

do not provide appropriate values reflecting the level of aquifer heterogeneity, but generally
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underestimate the asymptotic value. The limitation to asymptotic values appears reasonable

as models typically cover scales much larger than a few integral scales of hydraulic conductivity.

For the intensely investigated aquifers (Table B.1) we also compared the measured αL with the

theoretical first-order value σ2
Y Ih (Appendix A) when possible. The ratio αL/(σ2

Y Ih) assumes

the following values: Borden 0.74, Vegen 0.81, Cape Cod 1.5, Chalk River 1.6, Lauwiesen 0.96,

Krauthausen 0.5, Horkheimer Insel 0.51. Hence, for the considered aquifers, the prediction

by the first-order approximation is mostly within a factor of two, thus quite accurate, various

approximations notwithstanding.

We have not included in Table B.1 the highly heterogeneous MADE site, which was analyzed

by different methods in the recent paper by Zech et al. (2021, Fig. 2) as the plume in the field

experiment did not reach the asymptotic stage. Furthermore, the predictive models used in

Zech et al. (2021, Fig. 2), are underlain by a high level of characterization which is not available

for the type of sites addressed by the present study.

Theoretical results (Appendix A) and the analysis of field data suggest that prediction of

longitudinal spreading of solute plumes in applications, by using the macrodispersivity concept,

requires the determination of the aquifer two key parameters: log-conductivity variance σ2
Y and

longitudinal integral scale Ih. While this is highly desirable, in many cases and for preliminary

estimates, these parameters are generally not available. Hence, we proceed with the analysis

of the available field data.

Amalgamation of Longitudinal Macrodispersivity Field Data

We amalgamate the unique collection of available field αL values toward formulation of guidelines

for selecting a value for practical transport prediction. Although approximate, the approach is

preferable to adopting values based on the scaling assumption since they rely on reliable field

data.

Three levels of heterogeneity are selected, as function of the composition of the porous materials:

• weak heterogeneity: appropriate to sandy aquifers with some minor fraction of silt/clay

and/or gravel;

• medium heterogeneity: aquifers material ranging from gravel to sand with some silt/clay;

9This article is protected by copyright. All rights reserved.
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• high heterogeneity: aquifers with a wide variety of materials, from gravel to silt/clay, in

similar proportions.

While the level of heterogeneity could be in principle identified in a more rigorous manner by

employing the triangle sand-gravel-silt/clay (e.g., Folk et al., 1970), this is generally not feasible

in practice as the information provided at most sites is incomplete and in many cases not

representative of the aquifer. A link to the sedimentological perspective is provided in section

Selection of αL (including Figure 2) where we focus on the selection of macrodispersivity for

sites with limited information.

We believe that the research community should aim at providing soft information, like e.g. the

level of heterogeneity employed here, that will allow practitioners to feed groundwater stochastic

models in case there is no sufficient data for a given site. Much research is needed to achieve this

important objective; a collaborative effort to place the available data in a centralized system,

such as wwhypda (Comunian and Renard, 2009), together with a soft classification could be a

good starting point.

Here, the attribution of the level of heterogeneity for each of the sites considered is based on

different sources of information, mostly the log-conductivity variance (when available) and the

description of aquifer material. The inferred value of αL in a few cases helped for a consistency

check. The classification is inevitably prone to uncertainty and some level of arbitrariness.

The level of heterogeneity is attributed to each site according to the division in the Tables B.1

and B.2.

Subsequently, we account for the uncertainty in macrodispersivities obtained from published

works through a weighting factor. We therefore introduce the level of information coefficient

κ reflecting the amount of available data on aquifer heterogeneity: κ = 1 refers to little

information, κ = 2 moderate information and κ = 3 intensively studied sites (see Appendix

B). In combination with the level of reliability R (R = 1 is highly and R = 2 is moderately

reliable), the weighting factor κ/R reflects the level of uncertainty of αL.

The asymptotic αL values are averaged for each class of heterogeneity, weighted by the level

of information κ and degree of reliability R proportional to κ/R. Results are summarized in

Table 1 that displays the average and standard deviation of macrodispersivity values for each

of the three levels of heterogeneity. Although the limited size of each sample does not allow a

10This article is protected by copyright. All rights reserved.
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robust estimate of the first two moments, the behaviour of the mean and standard deviation

of αL, as reproduced in Table 1, is rather meaningful and consistent, as discussed later.

Table 1: Weighted average of longitudinal macrodispersivity αL for each level of heterogeneity
and the standard deviation (SD) based on reported field data (Tables B.1 & B.2).

Level of heterogeneity Number of sites Mean of αL [m] SD of αL [m]
1 – weak 13 1.1 1.1
2 – medium 10 3.2 1.5
3 – high 7 7.5 2.9

We found that the weight does not have a significant impact on the estimates. Also adopting a

different level of heterogeneity for the sites that are more uncertain does not change significantly

the results displayed in Table 1.

The mean αL increases with the level of heterogeneity, as expected. The standard deviation is

relatively large, with the coefficient of variation CV decreasing with the level of heterogeneity,

with CV = SD/E(αL) = 0.93, 0.47, 0.38 for weak, medium and high heterogeneity, respectively.

Later, we further discuss the results of Table 1 in light of their possible use in applications to

groundwater transport.

While Table 1 provides the two statistical moments of αL, in Sect. 3.3 we make use of the

probability density function (PDF) of αL, when regarded as a random variable. Toward

this aim, we have plotted in Fig. 1 the cumulative density (CDF) of the αL field values

of Tables B.1 & B.2, separately for each level of heterogeneity. The small number of data

contributing to the distributions of Fig. 1 makes the fitting by a particular CDF F (αL)

quite uncertain. Nevertheless, we adopted the common log-normal distribution F (αL) =

1 − 0.5erfc
(
(ln αL − µln αL

) /
(√

2σln αL

))
inferred by the method of moments, i.e. with the

parameters µln αL
= ln

(
⟨αL⟩2/

√
⟨αL⟩2 − σ2

αL

)
and σ2

ln αL
=ln

(
1 + σ2

αL
/⟨αL⟩2

)
based on the

values of mean ⟨αL⟩ and standard variation σαL of Table 1. The fit in Fig. 1 is quite satisfactory,

though other distributions might have been fitted as well.

Review of Transverse Macrodispersivity Field Data

There is no theoretical model relating transverse dispersivity αT,V ≪ αL to the heterogeneous

aquifer structure. This makes the collection of field data even more relevant to applications.

Unfortunately, the data are even scarcer than those of αL due to the difficulty of identifying

11This article is protected by copyright. All rights reserved.
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Figure 1: Cumulative distribution of the longitudinal dispersivity αL for the three classes of
heterogeneity (1 – weak, 2 – medium, 3 – high); the solid line is the log-normal
distribution inferred by the method of moments.

the values from solute plume measurements. Additionally, non-stationary velocity fields due

to annual/seasonal water table fluctuations may sometimes impact a reliable estimation of

dispersivity, especially the transverse vertical one. Vertical velocity gradients increase the

plume spreading, implying a high transversal dispersion. However, lumping this effect into αV

is not appropriate, as it is not a consequence of the heterogeneous soil structure.

Zech et al. (2019) continued the work of Zech et al. (2015) for transverse dispersivities αT,V by a

similar procedure: starting from the collection of Gelhar et al. (1992), reducing to reliable data

only and adding observation data from the period 1992-2018. The final result, summarized

in Zech et al. (2019, Tab. 2), contains transverse horizontal values αT from nine sites and

transverse vertical values αV from eight sites. They are related to six intensively studied sites

(Tab. B.1), with five more values from sites of moderate information level (Tab. B.2) and two

additional values based on steady state plume analysis at two sites.

A main conclusions of Zech et al. (2019, Fig. 3) was that the ratio αL/αT varies considerably in

the range of 4 − 1300, rendering the arbitrary choice of the value adopted in many applications

(often 10 : 1) quite doubtful. The ratio αT /αV was found to be in the range of 2 − 44, with

one exception for which it was smaller than unity.

Despite data scarcity, amalgamation of field data still offers a preferable alternative of choosing

a value for a site where no observed data are available. The mean of all values of αT is about

0.05 m while the one based on the three highly reliable value is 0.03 m. Similarly, the mean for

all αV values is 0.011 m while for the two reliable ones it is 0.0018 m. These values apply to

12This article is protected by copyright. All rights reserved.
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aquifers of weak to moderate log-conductivity variance (σ2
Y ⪅ 1.2). This limitation as well as

the small number of sites and the uneven distribution make these values as indicative at best.

Guidelines for Selecting and Employing Macrodispersivities in

Applications

Solving groundwater flow and transport numerically, typically makes use of the groundwater

flow equation and the ADE. Usually, the spatial variability of the hydraulic conductivity K

cannot be resolved over the entire domain at the desired level of discretization (due to data

scarcity). Thus, the effect of heterogeneity on plume spreading is captured by incorporating

macrodispersivities in the ADE whose values are typically guessed. In absence of data, common

practice is to use "thumb rules" or the "universal scaling", which was shown to be erroneous

and to lead to unwarranted large rates of spreading. Furthermore, large values of αL are at

times chosen to ensure stability of simulations. We propose an alternative strategy based on

the theoretical background (see Appendix A) and the field data presented in Appendix B.

Selection of αL

We suggested using the first order relationship αL = σ2
Y Ih as a reasonable approximation of

longitudinal macrodispersivity. However, the field characterization data needed to estimate the

values of σ2
Y and Ih are generally scarce, especially for the preliminary transport prediction

which is often of interest. Sometimes it is possible to estimate σ2
Y from samples extracted

along one or more wells. However, the correlation length Ih is more difficult to estimate as it

requires the availability of a few wells at different distances. Still, the value of σ2
Y is indicative

of the level of aquifer heterogeneity and may help to attribute it to the one of the 3 groups

of Table 1. In a rough division weak, medium and high heterogeneity are characterized by

σ2
Y < 1, 1 < σ2

Y < 2, σ2
Y > 2, respectively.

After selecting a heterogeneity level (as defined previously), further analogy with the geological

makeup of one of the aquifers belonging to the group may help in adopting the corresponding

αL. Thereby, an understanding of the sedimentological formation processes can be helpful.

The heterogeneity structure of an aquifer is determined by the deposition processes prevailing

during its genesis. Most relevant factors are the type of sediments available, the size of the

13This article is protected by copyright. All rights reserved.
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Figure 2: Conceptual sketches of deposition elements for different degrees of heterogeneity
based on sedimentological descriptions (modified after Heinz (2001)).

depositional environment and the frequency and energy of subsequent discharge events (Heinz,

2001). Accordingly, it can be expected that stronger and more frequent events lead to more

heterogeneous aquifer deposits. Figure 2 depicts three conceptual sedimentological sketches

of aquifer deposits from weak to medium to high heterogeneity which may be related to the

geologic setting of the site under investigation.

If the detailed sedimentological situation is unclear, the values of αL of Table 1 may be used

as a first choice. It is emphasized that the collection of the field data covers values of σ2
Y ≲ 3

and for higher values it is only the geological characterization of Table B.2 which may help.

In many common circumstances, neither estimates of σ2
Y nor Ih are available for the specific

aquifer. However, the type of material (sand, gravel, silt/clay) and the proportions could be

assessed. In such a case, we recommend the selection of the group based on the division of

Section Amalgamation of Longitudinal Macrodispersivity Field Data and adopting the appropriate

range of values of Table 1. While this is an approximate procedure, it is surmised that it is

more rational than the other aforementioned ones.

It is worthy to recall the limitations of employing αL in modeling transport by an ADE. First,

it was assumed that the numerical blocks are of such large dimensions relative to Ih and Iv

so that the effect of K-variability within the blocks is captured by αL. When this is not

the case and part of K variability is resolved, i.e. the variability of conductivity K can be

explicitly described in the numerical model, αL has to be diminished by using the concept

of block dispersivity (Rubin et al., 1999, 2003; de Barros and Rubin, 2011; Herrera et al.,

2017, e.g.). This requires knowledge of the magnitude of the correlation scale Ih, which is

difficult to obtain from measurements, being typically scarce in the horizontal direction, but

may be estimated from Table B.1 on the basis of the description of the aquifer material, or

by dividing the asymptotic αL of Table 1 by the estimated value of σ2
Y . Secondly, we recall
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that the predicted concentration is the mean one ⟨C⟩ and not the local C; the latter, and in

particular Cmax, is influenced by pore-scale dispersion, whose impact was not considered here.

Thus, comparing measured and predicted values of C shall be done with this reservation in

mind. Thirdly, additional sources of uncertainty are the imprecise knowledge of the source

concentration distribution, the mean velocity U, derived from the numerical solution of the

flow equations, and the effect of chemical fluid-rock interactions like adsorption, decay etc.

In view of these considerations, it is surmised that selecting an approximate, but field data

based, value of αL is definitely justified. The mean concentration field can be used in order to

predict more robust measures of solute plumes like the spatial moments, the longitudinal mass

distribution and the mass arrival at control planes.

Selection of αT and αV

The values of transverse dispersivity which have to be plugged in the ADE, are much smaller

than αL and are subjected to large uncertainty. The scarce field data recalled earlier may still

be of help. Thus, they indicate that the choice of αT as a prescribed fraction of αL is not

warranted and it is preferable to select an absolute value in the range of 3 to 5 cm, at least for

aquifers of weak to medium heterogeneity. As for αV , it may be assumed to be roughly αT /10.

For sites with significant temporal water level fluctuations, it is not recommended to artificially

increase transverse macrodispersivity values. Instead, the non-stationary flow field should be

included to the numerical model setting.

It is emphasized that the rate of transverse spreading may be augmented or even overtaken by

numerical dispersion. Indeed, though it is customary in numerical solutions to adopt blocks

of smaller vertical size than longitudinal, they still are large compared to the corresponding

heterogeneity scales. These considerations strengthen the conclusion that prediction of transport

measures like averaged vertical concentration or longitudinal mass distribution, which are not

sensitive to αV or αT respectively, are more reliable than that of local concentration.

Illustrative Example

We discuss here a simple example in which we apply the guidelines for the selection of longitudinal

macrodispersivity αL in a groundwater model. It is not meant to assess the accuracy of
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prediction, but rather to illustrate application to a particular case. Furthermore, we demonstrate

how to use the dispersivity standard deviation in order to carry out a simple uncertainty

analysis.

We considered an instantaneous injection of a non-reactive solute within a volume of small size

with respect to the travel distance, in a relatively weakly heterogeneous aquifer. We choose

to derive the longitudinal mass distribution m(x1, t; αL) and the cumulative one M(x1, t; αL)

(Appendix A, Eq. A.6) at a few times since injection (snapshots).

For the sake of illustration we considered an aquifer similar to the Cape Cod experimental site

(Garabedian et al., 1991), i.e. a porous formation characterized by medium to coarse sand, with

some gravel overlying silty sand and till. The reference to Cape Cod, one of the most studied

experimental sites to date, enables us to compare results with the large body of available site

information. In this exercise, we assume that only U is known, and equal to the one observed

during the Cape Cod experiment (U = 0.42 m/d), and our task is to predict the longitudinal

mass distribution m(x1; t) at two time instances, t = 203 d and t = 461 d, respectively. The

two snapshots were selected as representative of transport at the end of the experiment and

at an intermediate time instance. Since we do not deal here with the issues related to the

numerical implementation of the flow model, e.g. block-scale and numerical dispersion, we

adopt a fully analytical approach focused on illustrating the selection of macrodispersivity and

its impact. Although, analytical expressions come with assumptions, such as uniform flow and

homogeneous soil structures, these aspects can be assumed fulfilled for the examples as the use

of macrodispersivity covers the effect of aquifer heterogeneity on transport and experimental

observations showed that the mean flow direction is constant.

The analytical solutions for the longitudinal mass distribution are given by Eq. (A.6), for the

density m and cumulative mass M , respectively. In line with the approximations suggested

above, the asymptotic value of the second spatial moment in longitudinal direction is X11 =

2αLUt. Both, m and M are subjected to uncertainty because of the imprecise knowledge of αL

as reflected by the range of values of Table 1. We proceed with deriving m and M as random

variables by regarding αL as random reflecting parametric uncertainty.

Following the suggested approach, the longitudinal macrodispersivity αL is chosen from Table

(1) in the category "weak", pertaining to the aquifer under consideration; this leads to the

mean and the standard deviation (SD) of the dispersivity, ⟨αL⟩ = σαL = 1.1 m. Subsequently,
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we concentrate on the PDF of m(x1, t; αL) for fixed x1 and t, which can be derived by the

relationship f(m) = f(αL)[dm(x1, t; αL)/dαL]−1 with αL(m) obtained from the inversion of

Eq. (A.6).

Along the lines of Section Amalgamation of Longitudinal Macrodispersivity Field Data, we select

for f(αL) the lognormal distribution, with the parameters µln αL
= ln

(
⟨αL⟩2/

√
⟨αL⟩2 − σ2

αL

)
=

−0.25 and σ2
ln αL

=ln[1 + σ2
αL

/⟨αL⟩2] = 0.69. We now derive f(m) for the selected two values

of time and for varying x1. Rather than inverting Eq. (A.6) numerically for each x1, we

preferred to use a procedure similar to Monte Carlo simulations: 1000 values of αL were

randomly generated from the lognormal distribution and subsequently plugged into m and

M of Eq. (A.6) for a large number of x1 values. Because of the rather large uncertainty

embedded in the αL determination, performing the uncertainty analysis in the results is a

highly recommended procedure, regardless of the particular method employed (Monte Carlo in

this particular example).

In Figure 3, we represent m and M , respectively, as function of distance from the source, for

times t = 203 and 461 days since injection; the median prediction is the thick line, while the

lower and upper lines represent the 10% and 90% quantiles, respectively. We see that the range

of uncertainty (shaded area) is rather broad, which is expected from the value of the coefficient

of variation CV =σαL/⟨αL⟩ = 1 for the values of Table 1. As discussed before, uncertainty

should decrease for the classes of "medium" and "high" heterogeneity, given a decreasing trend in

CV . Figure (3b) also depicts the experimental results for the Cape Cod experiment (Ezzedine

and Rubin, 1997). The good agreement with the median M is expected since the value of

αL = 0.96 m of Table B.1 for Cape Cod is close to the mean ⟨αL⟩ = 1.1 m of the class. The

average predictions, together with the uncertainty bands, permit a more meaningful analysis

and management of the contamination event. Similar analyses can be done with other relevant

quantities, like e.g. the breakthrough curve (BTC) at a given control plane, that can be used

for assessment of risk (early limb of the curve) and remediation (tail). The same approach can

be adopted in case a numerical model is employed for the analysis of the quantities of interest.

While m represents the relative mass in a cross-section of the plume at x1, the distribution of

the mean concentration in space ⟨C(x1, x2, x3, t)⟩ can be obtained in an approximate manner

by assuming that it has a Gaussian distribution in the x2, x3 plane. It is determined by

the rate of spreading governed by the transverse horizontal αT and transverse vertical αV
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Figure 3: Illustration example for an instantaneous injection in a weakly heterogeneous
aquifer: (a) Longitudinal mass distribution m and (b) Cumulative longitudinal mass
distribution M at times 203 d and 461 d from injection. Red lines: median predictions;
blue lines: 10th and 90th percentiles; black dots in (b): observations from the Cape
Cod experiment.

macrodispersivities in the spirit of the previous section.

As previously discussed, the suggested values for the macrodispersivity of Table 1 should be

used with caution, depending on the particular goal at hand. While αL can be effective for

estimating aggregated quantities like the BTC or the longitudinal mass distribution, as shown

in the above example, it may not be a reliable nor cautionary parameter for prediction of

local variables, like the point concentration. The latter is greatly influenced by the complex

intertwining of local scale dispersion/diffusion and large scale advection, beyond the simple

concept of macrodispersivity. Employing the latter in the prediction of the maximum local

concentration in the aquifer Cmax (a quantity of paramount importance for local risk analysis)

may lead to severely underestimated predictions. This important feature was illustrated and

discussed in previous papers, e.g. Fiori (2001); Boso et al. (2013); de Barros and Fiori (2021).

Summary and Conclusions

It is common to model solute transport by groundwater with the aid of an ADE (advection

dispersion equation) for concentration, in which the solute spreading is quantified by macrodispersivity

coefficients αL,T,V (longitudinal, transverse horizontal, transverse vertical, respectively). We

refer here to natural gradient flow and conservative solutes. Macrodispersivity values are much

larger than laboratory observed pore-scale dispersion coefficients; they quantify the impact

on flow and transport of the ubiquitous spatial variability of the hydraulic conductivity K.
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Longitudinal macrodispersivity αL, can be related under a few assumptions to the log-conductivity

statisitics mean, variance and horizontal integral scale. The concentration predicted by the

ADE is the mean one and it differs from the local one, which is influenced by the pore-scale

dispersivities. It leads, however, to prediction of robust global transport attributes like plumes

spatial moments, longitudinal mass distribution or breakthrough curves.

The estimation of the longitudinal macrodispersivity αL, can be based either on a tracer test at

field scale or thorough characterization effort of the log-conductivity statistics; both are time

and cost-intensive. Consequently, macrodispersivity values are selected by practitioners on an

ad-hoc basis. For instance, one such a procedure implies that αL increase with the plume travel

distance following an empirical "universal scaling law". However, analysis of reliable field data

(Zech et al., 2015) has revealed that this leads to overestimation of rate of spreading; in reality

αL stabilizes after a transient stage at a constant value, which is aquifer specific.

This study is the first to provide a strategy for a preliminary determination of macrodispersivity

when, for instance, only soft data are available. We provide a set of longitudinal dispersivities

– mean values and standard deviations, which serve for uncertainty analysis – as function of

the degree of aquifer heterogeneity. The values are based on the most reliable estimates of

macrodispersivity αL from field data. Tens of transport experiments available in the literature

were thoroughly analyzed by Zech et al. (2015) and used here. Based on these data, a division

of aquifers into three classes is proposed: weak, medium and highly heterogeneous. Each class

can be roughly characterized by the relative amounts of gravel, sand and silt/clay present in the

aquifer. For each class, the mean and variance of αL, which fitted lognormal distributions, were

identified from the field data. They can serve as a guide for selecting values of αL in transport

models which use the ADE, especially for preliminary assessments and in the absence of detailed

site information.

Much less data and theoretical developments are available for estimating transverse dispersivities

αT and αV , which are much smaller than αL. Nevertheless, a few indicative values based on

the limited data base are suggested for applications.

Summarizing, the data presented in the manuscript provide practitioners with a guideline to

select preliminary estimates of macrodispersivity for field-scale transport models, even when

only soft data on aquifer structure and the level of heterogeneity is available. These estimates

are based on reliable field data rather than rule of thumb. Consequently, their use may lead to
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an improved overall solute transport prediction at a given site.
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Appendix A - Foundation of the macrodispersion concept.

The topic of transport modeling in general and macrodispersion in particular is covered by a

large body of literature and even a brief review is beyond the scope of the paper. Nevertheless,

we present a few basic tenets for establishing the nomenclature and the common ground for its

practical application. The choice is selective and reflects our views and we rely primarily on

our recent works.

The Heterogeneous Aquifer Conductivity Structure

Field studies indicate (e.g. Freeze (1975); Delhomme (1979); Gelhar (1993)) that for sedimentary

formations the hydraulic conductivity univariate distribution is approximately lognormal i.e.

Y = ln K is normal and characterized by the mean ⟨Y ⟩ = ln KG (the geometric mean) and the

variance σ2
Y . Thus, σ2

Y is the measure of heterogeneity and its value served us as a criterion to

classify aquifers as mildly, moderate or highly heterogeneous. A further standard assumption

is that Y (x) is stationary and of two point axi-symmetric covariance CY = σ2
Y ρ(R, rz) where

R and rz are the horizontal and vertical lag components, respectively. Furthermore, the

auto-correlation ρ is assumed to be of finite horizontal Ih and vertical Iv integral scales, with

the anisotropy ratio f = Iv/Ih < 1. If Y is assumed to be multi-Gaussian, the K structure is

completely characterized by the four parameters KG, σ2
Y , Ih and f , for a given shape of ρ. The

derivation of these parameters from field data is not addressed here. It is worth mentioning

that there are alternative models of heterogeneous structures, like division into facies of a few

discrete K values (Fogg et al., 1998), but we limit the discussion here to sedimentary formations
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with K regarded as continuous and for which the macrodispersion concept is directly applicable.

Derivation of Local Concentration by Monte Carlo Simulations

We consider a generic case of transport of a solute plume of given initial concentration distribution

C0(a, 0) within a volume V0 (x = a ∈V0), of total mass M0. Here and in the sequel the resident

local concentration C is defined as one pertaining to the Darcian scale or somewhat larger, say

of a few decimeters, as measured for instance by multilevel samplers along wells. It satisfies an

equation similar to (1)

∂C

∂t
+ V(x,t) · ∇C = DdL

∂2C

∂x2
1

+ DdT
∂2C

∂x2
2

+ DdV
∂2C

∂x2
3

(A.1)

but with V the random velocity field obtained by solving the flow equations in the heterogeneous

medium.

A complete solution which is derived by flow and transport models consists in predicting the fate

of the plume, i.e. C(x, t) for t > 0. One of the prevailing numerical methodologies in literature

is performing Monte Carlo simulations. It consists in generating multiple realizations of the

conductivity field K(x), solving the flow equations to derive V(x) and subsequently solving

the transport equation (A.1) to arrive at C in each realization. Such solutions as well as

field data revealed indeed that the plume spreads considerably primarily due to the advective

term in Eq. (A.1). The pore-scale dispersive terms in Eq. (A.1) have a negligible effect on

spreading but contribute to mixing and dilution, primarily by DdV . In any case the random

local concentration is highly variable, with large coefficients of variation especially at the fringe

of the modeled plume.

The process described above is conceptually straightforward but it is fraught with difficulties

and question marks: the multiple numerical solutions of the flow and transport equations

requires considerable computational resources with computational schemes having small to

negligible numerical diffusion stemming from the approximation of the advective term; the

solution is still underlain by approximations e.g. the assumed Y multi-Gaussianity, the imprecise

knowledge of the statistical parameters as identified by characterization in the field and the

approximate information on contaminant source. Besides, in many applications the interest is

in upscaled values of C rather than the local ones. For instance, a pumping well averages the
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concentration in a large volume of water in the capture zone.

For these reasons the derivation of the flow and transport solutions by Monte Carlo simulations

is not an attractive option for common applications to polluted sites, which is our main concern;

it may serve for theoretical investigations or analysis of elaborate field tests, which are not in

the scope of this study. Instead, approximate models which lead to solutions relevant to

applications were developed in the large body of literature of the last four decades. A few such

models, which serves for illustration of the concept, are recapitulated briefly in the following.

Approximate First-Order Solution for Mean Uniform Flow

We adopt a few approximations relative to the full numerical solution: (i) unbounded domain;

(ii) flow is driven by a known constant mean head gradient −J = (−J, 0, 0); (iii) the mean

velocity is given by U = ⟨q⟩θ = KeffJ where the constant porosity θ and the effective conductivity

Keff are assumed to be known; Keff is derived either by pumping tests or by models which relate

it to σ2
Y and f (Zarlenga et al., 2018); (iv) the stationary velocity field, the particles trajectories

and the macrodispersivity are derived by a first-order approximation in σ2
Y .

We consider first injection in the resident mode, the simplest case being C0 = M0/(θV0) =

const, and detection by resident concentration C(x, t). The flux averaged concentration mode

is discussed briefly in the sequel.

The solution considered here was obtained in the past by the Lagrangean approach, i.e.

following solute particles along trajectories (Dagan, 1989; Gelhar , 1993; Rubin, 2003). We

present herein only some final results. If the pdf of the solute particles displacements is assumed

to be Gaussian, which is consistent with the first-order approximation, the mean resident local

concentration satisfies the transport equation

∂⟨C⟩
∂t

+ U
∂⟨C⟩
∂x1

= D11
∂2⟨C⟩
∂x2

1
+ D22

∂2⟨C⟩
∂x2

2
+ D33

∂2⟨C⟩
∂z2 (A.2)

where Dii, i = 1, 2, 3 is the diagonal dispersion tensor, whose components are given by:

D11 = αLU + DdL D22 = αT U + DdT D33 = αV U + DdV (A.3)

where αL is the longitudinal macrodispersivity and αT and αV are the transverse horizontal
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and transverse vertical counterparts, while DdL,dT,dV are the pore-scale dispersion terms. The

latter are often neglected in applications due to the small, negligible, impact on the mean

concentration. In addition, U is the mean Eulerian velocity aligned along x1. As mentioned

before, the local C is subjected to large uncertainty and ⟨C⟩ is not representative of C in the

given realization of the aquifer, as encountered in applications. Thus, ⟨C⟩ cannot be compared

directly with measurements or for prediction of the actual local concentration. In principle,

⟨C⟩ can be obtained from the data, for example by using a moving average within a volume

with size of a few integral scales or the definition of a suitable kernel function weighting the

measurements according to their distance from the estimation point, but this requires a very

large number of measurements in space and time, which is rather an exceptional occurrence.

The use of ⟨C⟩ to derive upscaled and robust measures is discussed in the following.

Longitudinal Macrodispersivity

One of the main achievements of the stochastic theory is the derivation of the relationship

between the longitudinal macrodispersivity αL and the permeability statistical parameters for

the formations of 3D structures considered here. It was achieved by the Lagrangean theory,

with αL growing with travel time from zero to the asymptotic value αL = σ2
Y Ih after a travel

distance L = Ut of a few integral scales Ih (Dagan, 1989). The transient pre-asymptotic period

can be described approximately by the formula of Dagan and Cvetkovic (1993):

αL = σ2
Y Ih[1−exp (−t U b(f)/Ih)] b(f) = 1+19f2 − 10f4

16(f2 − 1)2 −f(13 − 4f2) arcsin(
√

1 − f2)
16
√

1 − f2(f2 − 1)2

(A.4)

with b(f) varying between b = 8/15 (for isotropy f = 1) and b = 1 (for stratified formation,

f → 0). The result is based on advection by the Eulerian velocity field, with neglect of the much

smaller contribution of the pore-scale dispersion. Here f stands for the anisotropy coefficient,

the ratio between the vertical and longitudinal integral scales, respectively. The evolution of

the pre-asymptitic αL (Eq. A.4) with distance is displayed in Figure A.1.

The variation of αL with travel time can be divided into three periods: for t ≪ Ih/U , αL grows

linearly with time as appropriate to stratified aquifers; an intermediate period and ultimately,

the asymptotic result αL = σ2
Y Ih is attained for t > Ih/U , which was obtained also by Gelhar

and Axness (1983) by a different approach. Eq. (A.4) implies non-locality as αL depends on
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Figure A.1: Evolution of pre-asymptotic longitudinal macrodispersivity as function of travel
distance L relative to integral scales Ih according to Eq. (A.4) for three values of
anisotropy rate f . The y-axis shows the relative value to the asymptotic αL =
σ2

Y · Ih.

the travel time t from the source. However, at the large time limit it localizes and reaches

Fickianity.

The simple asymptotic first-order result is very robust as it does not depend on the anisotropy

ratio f and the shape of the auto-correlation ρ. Furthermore, it was shown recently by Fiori

et al. (2017) that it is not limited to weakly heterogeneous aquifers and it applies also to

moderate and highly heterogeneous ones, when upscaled measures are used for comparison.

Furthermore, it is compared with values pertinent to a few elaborate field tests in Section

Analysis of Macrodispersivity Field Data, with satisfactory agreement.

Transverse Macrodispersivities

The transverse horizontal and vertical macrodispersivities αT and αV (Eq. A.2) are much

smaller than the longitudinal one, precisely like the case of pore-scale dispersivities. And

experimental values are also scarce (Zech et al., 2019). In fact, the asymptotic first-order

theoretical solution is αT,V → 0, i.e. the prevailing finite values are related to nonlinear effects

in σ2
Y . The dependence of αT,V on the heterogeneous structure and pore-scale dispersion is

still a topic of active research.

Upscaled Transport Measures

Model predictions are to be applied in practice to a given aquifer i.e. to a given single realization

of the conductivity structure. Thus, it is desirable to derive transport measures which are robust

such that ergodicity (exchange of ensemble and one realization values) can be invoked.
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Plume Spatial Moments

These are basic parameters to quantify the position of the plume and its extent. Their

prediction provides the most fundamental information on the solute spatial distribution. For an

initial plume of mass M0 within a volume V0, which is of large size relative to the heterogeneity

scales of Ih and Iv such that ergodicity supposedly applies, we arrive from Eq. (A.2) to the

following classical results: the centroid of the plume X̄1 moves with the mean velocity U while

the central second spatial moments X̄ii (i = 1, 2, 3) satisfy dX̄ii/dt = 2αkU , with k = L, T, V

for i = 1, 2, 3, respectively.

Integration, with Eq. (A.4) taken into account, yields for the longitudinal moment X̄11 =

X̄11(0) + 2σ2
Y IhU [t + (Ih/U b(f))(exp (−tU b(f)/Ih) − 1)]. Thus, the assumed ergodic X̄11

grows nonlinearly from its initial value to the asymptotic Fickian linear dependence X̄11 →

2σ2
Y IhUt. In contrast, due to their low values and lack of an analytical solution, we may assume

X̄22,33 ∼= X̄22,33(0) + 2αT,V Ut.

These relationships were frequently used in the past in order to derive the approximate values

of U and αL from measured concentrations of plumes and many of the values cited in Table B.1

were based on such a procedure. The same is true for the much less available measurements

of αT,V .

Mass Arrival at Control Planes and Longitudinal Mass Distribution

Another robust measure of transport is the mass arrival Mtot as function of time at control

planes normal to the mean flow direction, at distance x1 from the initial plume centroid – the

ratio M(x1, t) = Mtot/M0 is known as the BTC, the breakthrough curve. This is a parameter

of practical use for prediction for instance of the solute discharge into a reservoir or its capture

by wells. An associated measure is m(x1, t) = −∂M/∂x1, the longitudinal distribution of the

relative mass; it is also a measure of interest as it quantifies the plume spread in the mean

flow direction. Again, for an initial plume large at the scales of Ih and Iv, ergodicity can

be invoked and m ∼= ⟨m⟩ = (1/M0)
∫∞

−∞
∫∞

−∞⟨C(x, t)⟩θdx2dx3. Thus, integration of measured

concentration in vertical bands was used in the depiction of m in the MADE experiment (Adams

and Gelhar , 1992).
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By using Eq. (A.2) we arrive at

∂m

∂t
+ U

∂m

∂x1
= DL

∂2m

∂x2
1

DL = αLU (A.5)

and a similar equation can be written for M , as well. Eq. (A.5) implies two major simplifications:

unlike ⟨C(x, t)⟩ (Eq. A.2) M and m depend only on αL and they are robust and can be

applied with confidence to a given aquifer for a sufficiently large initial plume. Thus, for M0

concentrated in a volume V0 of small size with respect to the travel distance L = Ut the simple

solutions of Eq. (A.5) for m and M are the classical Gaussian ones:

M = 1
2erfc

(
x1 − Ut√

2X11

)
m = 1

2
√

πX11
exp

(
−(x1 − Ut)2

2X11

)
(A.6)

The results so far were for resident concentrations. As summarized in the classical paper of

Kreft and Zuber (1978) on the solution of the ADE with constant coefficients, the results may

differ for flux proportional injection and detection. These modes are of interest for transport in

aquifers wth injection by wells, as carried out for instance in controlled field tests like MADE.

Indeed in such a case the solute distribution of the mass discharge along the well is proportional

to the local K. Similarly, detection is flux proportional for pumping wells. It turns out that

in this case the appropriate independent variable is the travel time τ from the source to the

control plane rather than the displacement X1 and a large body of literature was devoted to its

statistical properties, starting from Shapiro and Cvetkovic (1988). An interesting final result is

that the BTC at a well and the solute flux through a control plane are both Inverse Gaussian,

quantified with the aid of the mean travel time τ = x1/U and the variance σ2
τ , see for instance

analysis of numerical simulations by Jankovic et al. (2003) as well as impact on mean plume

velocity by Dagan (2017) and application to MADE by Zech et al. (2021).

Appendix B - Field Data Summary

Tables B.1 and B.2 contain a summary of the field data with estimates of reliable αL from

transport experiments available in the literature. Data is grouped into three classes of aquifer

heterogeneity: weak, medium and highly heterogeneous. Furthermore, we grouped data according

to the levels of available information κ for specifying aquifer heterogeneity, where κ = 3 refers to
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intensively studied sites (Table B.1), κ = 2 to moderate and κ = 1 refers to little information

(both Table B.2). All intensively studied sites (κ = 3) come with a detailed specification

of all relevant hydrogeological parameters, a geostatistical analysis of hydraulic conductivity

observations and typically conductivity estimates from multiple observation methods. Typically,

these are well known research sites. A moderate level of information (κ), refers to sites where

most of the hydrogeological parameters, such as mean conductivity, porosity and flow velocity

are available along with some soft data such as a description of the aquifer material. We

grouped sites as little information (κ = 1) when there was hardly any additional information

on the aquifer structure. Note, that κ is a subjective measure by the authors which depends on

the hydrogeological information available in documentation. Particularly for a low information

level (κ = 1) it can be an artefact, as information might be available, but is not published.

Although reporting the plume travel distance L along each αL (by Gelhar et al. (1992)) has lead

to erroneous conclusions such as "universal scaling", we provide it here as well. It indicates

if the asymptotic regime has been reached since macrodispersivity depends on the scale of

heterogeneity covered by the plume and so only indirectly on the distance L.

Note some differences to values reported by Zech et al. (2015). The values for Grindsted

(Petersen et al., 1998; Bjerg et al., 1992) (Table B.1) are new, being added along the results of

Zech et al. (2019). The value of αL = 11 m for the Horkheimer Insel differs to the one reported

in Zech et al. (2015). Since we focus on asymptotic values, we make use of the maximum values

reported by Ptak and Teutsch (1994) and used in Fig. 5 of Zech et al. (2015). The average

value of αL = 6 m reported in Zech et al. (2015) contains values from shorter travel distances,

which are presumably pre-asymptotic given the strongly heterogeneous aquifer structure. The

value for the Zeitz site (Table B.2) was adapted from αL = 0.6 to αL = 2 as Gödeke et al.

(2006) reports: "The dispersivities calculated using moment analysis ranged between 0.5 and

3.85 m." The value for the Burnham Aquifer (Pang et al., 1998) was adapted to the values

reported for the analysis with an equilibrium model rather than a non-equlibrium model.

Additional information on aquifer statistics for the sites with moderate information level

(Table B.2) are only available for: Zeitz, σ2
Y = 1.84; Testfeld Süd, σ2

Y = 2.1; Grenoble,

σ2
Y = 1.21, Ih = 5 m; and the Lower Glatt Valley where authors consider the aquifer to have

similar geostatistics as the Aeflingen site (Hufschmied, 1986) with σ2
Y = 2.15 and Ih = 15−20 m.

Additional data on transverse dispersivities are available for four sites of moderate information

27This article is protected by copyright. All rights reserved.
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level (Table B.2): Bonnaud, αT = 0.11; Cambridge site, αT = 0.01 and αV = 0.004; Hebei,

αT = 0.0013; and Grenoble αT = 0.2. Zech et al. (2019) further report the values from

Sjoelund, DK (Prommer et al., 2006; Tuxen et al., 2003) of αV = 0.005 m (R2) and Osterhofen

(Maier and Grathwohl, 2006) of αV = 0.032 (R2) which were identified via steady state plume

analysis (without providing estimates of αL).
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Table B.1: Data from intensively studied sites (κ = 3) They are specified by name, country and reference, experimental scale/plume travel distance

L, field scale macrodispersivities αL (longitudinal), αT (transverse horizontal) and αV (transverse vertical) with reliability R (1 – high,

2 – moderate) according to (Zech et al., 2015, 2019), log-conductivity statistics KG (geometric mean), σ2
log K (log-conductivity variance),

Ih (horizontal integral scale), and aquifer specifics θ (porosity), v̄ (mean velocity), as well as reported aquifer material characteristics.
∗ denotes value adaptions compared to Zech et al. (2015).

site/ aquifer/ source L αL (R) αT (R) αV (R) KG σ2
log K Ih θ v̄ aquifer material

[m] [m] [m] [m] [10−3 m
s ] [-] [m] [-] [m/d]

fairly homogeneous/mildly heterogeneous

Grindsted∗, DK (Petersen

et al., 1998; Bjerg et al., 1992)

50 0.29 (2) 0.015 (2) 0.045 (2) 0.46 0.47 0.33 sand, glacial outwash

Borden, US (Rajaram and

Gelhar , 1991; Sudicky, 1986)

90 0.5 (1) 0.05 (1) 0.0022 (1) 0.05 0.24 2.8 0.33 0.091 glaciofluvial/

glaciolacustrine sand

Vejen, DK (Jensen et al.,

1993; Bjerg et al., 1992)

200 0.45 (1) 0.001(2) 0.0005 (2) 0.51 0.37 1.5 0.3 0.8 layers of fine, medium,

and coarse-grained sand;

glacial outwash

Cape Cod, US (Garabedian

et al., 1991; Hess et al., 1992)

212 0.96 (1) 0.018 (1) 0.0015 (1) 1.3 0.24 2.6 0.39 0.43 medium to coarse sand

with some gravel overlying

silty sand and till
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site/ aquifer/ source L αL (R) αT (R) αV (R) KG σ2
log K Ih θ v̄ aquifer material

Chalk River/ Twin Lake, CA

(Moltyaner and Killey, 1988;

Moltyaner et al., 1993; Dagan

and Neuman, 1997)

266 0.55 (1) 0.0014 (2) 0.1 − 0.2 0.23 1.5 0.38 0.74 stratified medium sand,

glaciofluvial

moderately heterogeneous

Lauswiesen, DEU (Händel

and Dietrich, 2012; Müller

et al., 2021)

52 6.25 (2) 3.0 0.5 13 0.1 alluvial sands and gravel

Krauthausen, DEU

(Vereecken et al., 2000;

Vanderborght and Vereecken,

2002)

170 3.64 (1) 0.02 (1) 1.4 1.08 6.7 0.26 1.5 alluvial deposits

highly heterogeneous

Horkheimer Insel∗, DEU

(Ptak and Teutsch, 1994;

Schad, 1997; Müller et al.,

2021)

52.15 11(2) 3.1 1.6 − 3.2 8 − 10 0.1 3 poorly sorted alluvial sand

and gravel, braided riverA
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Table B.2: Sites with moderate (κ = 2) and low (κ = 1) information level. The latter four sites are marked with #. Property specifications

identical to those in Table B.1.

site/ aquifer/ source L αL (R) KG θ v̄ aquifer material

[m] [m] [10−3 m
s ] [-] [m/d]

fairly homogeneous/mildly heterogeneous

Palo Alto, US (Valocchi et al., 1981; Roberts

et al., 1981)

16 1 (1) 0.58 0.25 27 permeable stratum of silty sand and

some gravel

Burdekin Delta, AUS (Wiebenga et al., 1967;

Lenda and Zuber , 1970)

18.3 0.26 (2) 5.6 0.32 29 sand channels with clay lenses,

complex sedimentation

New Mexico State University, US (Kies, 1981) 25 1.6 (2) 0.0955 0.42 layers of clay loam and sands, fluvial

deposits

Bonnaud, FR (Molinari and Peaudecerf , 1977;

Sauty, 1977)

32.5 2.7 (1) 1.9 layers of fine sand and gravels,

alluvial

Mobile, US (Huyakorn et al., 1986; Molz et al.,

1986)

38.3 4 (1) 0.615 0.25-0.35 0.05 medium sand, fluvial deposits

Cambridge site, CA (Robertson et al., 1991) 130 1 (2) 0.3 0.35 0.11 sand with minor silt,

glaciolacustrine and outwash

Gas Plant Facility#, US (Chiang et al., 1989) 350 0.8 (2) 1.1 medium coarse sand with interbeds

of small gravel and cobbles
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site/ aquifer/ source L αL (R) KG θ v̄ aquifer material

Rabis Creek Catchment, DK (Engesgaard et al.,

1996)

1000 1 (2) 0.2-0.5 0.35 medium-grained outwash sand

moderately heterogeneous

Hebei Province Aquifer, CHN (Yang et al., 2001) 15.5 1.72 (2) 0.37 13.2 sand and gravel, laminated or lensed

clay; braided river

UC Berkeley, US (Lau et al., 1957) 19 2.14 (1) 0.9 0.3 7 layered sand and gravel with clay

lenses

Campuget#, FR (Iris, 1980) 40 3 (2) 0.6 0.15 0.05 alluvial pebbles and sand

Zeitz∗, DEU (Gödeke et al., 2006) 55 2 (2) 0.22 0.5 layers of fine to coarse sand and fine

gravel, glaciofluvial

Tucson, US (Wilson, 1971; Welty and Gelhar ,

1989)

79.3 1.2 (2) 0.38 poorly sorted gravel, sand, and silt

Testfeld Süd, DEU (Bösel et al., 2000; Herfort

and Ptak, 2002)

80 5 (2) 1.3 0.13 fluvial heterogeneous gravel and

sand; braided river

Burnham Aquifer∗, NZL (Pang et al., 1998) 85.65 2.7 (2) 111 0.2 60 sandy gravel, fluvioglacial outwash,

braided river

Meredosa#, US (Naymik and Barcelona, 1981) 164 2.8 (2) 0.8-1.6 alluvial sand and gravel with low

clay content

highly heterogeneous
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site/ aquifer/ source L αL (R) KG θ v̄ aquifer material

Stanton (Lubbock), US (Broermann et al., 1997) 15 3.78 (2) 0.2 0.26 pebbly conglomerate, sand

of variable clay content,

non-continuous clay lenses, alluvial

Grenoble Aquifer, FR (Courtois et al., 2000) 45 7 (2) 17 coarse gravel deposits with

inclusions of sand and clay lenses,

alluvial, braided river

Heretaunga aquifer, NZL (Thorpe and Barry,

1977)

57.5 4.7 (2) 3 0.25 145 coarse gravels with lenses of silt and

clay, marine and alluvial; braided

river

Lower Glatt Valley, CH (Hoehn and Santschi,

1987)

110 10 (2) 1 0.25 3 layered gravel and silty sand,

glaciofluvial outwash

Corbas#, FR (Sauty, 1977; Welty and Gelhar ,

1989)

150 10.5 (2) sand and gravel with clay lenses

Hanford (shallow), US (Bierschenk, 1959; Cole,

1974; Gelhar , 1982)

3500 6 (2) 2.7 0.1 26 coarse sands and gravels,

glacio-fluviatile
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Caption Figure 1:

Cumulative distribution of the longitudinal dispersivity αL for the three classes of heterogeneity;

the solid line is the log-normal distribution inferred by the method of moments.

Caption Figure 2:

Conceptual sketches of depositional elements for different degrees of heterogeneity based on

sedimentological descriptions (modified after Heinz (2001)).

Caption Figure 3:

Illustration example for an instantaneous injection in a weakly heterogeneous aquifer: (a)

Longitudinal mass distribution m and (b) Cumulative longitudinal mass distribution M at

times 203 d and 461 d from injection. Red lines: median predictions; blue lines: 10th and 90th

percentiles; black dots in (b): observations from the Cape Cod experiment.

Caption Figure 4:

Evolution of pre-asymptotic longitudinal macrodispersivity as function of travel distance L

relative to integral scales Ih according to Eq. (A.4) for three values of anisotropy rate f . The

y-axis shows the relative value to the asymptotic αL = σ2
Y · Ih.

42This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e




