
Vol.:(0123456789)

Environmental Fluid Mechanics (2022) 22:535–557
https://doi.org/10.1007/s10652-022-09857-2

1 3

ORIGINAL ARTICLE

Competing feedback in an idealized tide‑influenced delta 
network

Niccolò Ragno1   · Nicoletta Tambroni1 · Michele Bolla Pittaluga1

Received: 1 December 2021 / Accepted: 24 March 2022 / Published online: 7 April 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
The morphodynamic evolution of river deltas is intimately tied to flow and sediment par-
titioning at bifurcations. In this work, the long-term equilibrium configuration of a sim-
ple delta network is investigated by means of an analytical model, which accounts for the 
effect of small tidal oscillations. Differently from individual bifurcations where tidal action 
is always a stabilizing factor, in the case of a tree-like delta with multiple bifurcations a 
dual response emerges. Specifically, depending on the values of four reference parameters 
functions of tidal amplitude, upstream flow conditions, and channels geometry, tides can 
either promote or discourage an unbalanced discharge distribution. This behavior primar-
ily concerns the apex bifurcation, which is affected by the variations of the relative tidal 
amplitude at the internal nodes. In turn these variations depend on how flow and sediment 
are diverted upstream. The stability of steady-state solutions is found to be governed by the 
sign and magnitude of the slope asymmetry between channels. This work provides a basic 
modeling framework for the interpretation of the autogenic response of multiple coupled 
micro-tidal bifurcations, which can potentially be extended to include in a unified scheme 
erosional and depositional processes typical of fluvio-deltaic systems.

Keywords  Bifurcations · Tide-influenced deltas · Equilibrium states · Feedback 
mechanisms

1  Introduction

We are concerned with the morphodynamics of channel bifurcations, a representative geo-
morphological feature controlling the downstream flow routing in a variety of environmen-
tal settings such as coastal plains, mountain valleys, coastal wetlands, submarine fans, and 
lava flows [1, 3, 19, 38, 43, 74]. Over the last three decades, river bifurcations in fluvial 
environments have been investigated through a breadth of different approaches, including 
theoretical [8, 59, 73, 83], experimental [6, 7, 79], numerical [24, 41, 72], and field investi-
gations [5, 12, 44]. These studies showed the natural tendency of bifurcations to present an 
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unbalanced flow distribution, which is reflected by a marked asymmetry of channel widths 
and bed elevations in the downstream anabranches [84].

In general, such asymmetric behavior can be driven by different processes. “Allogenic” 
factors, as in presence of an upstream evolving meander bend or migrating bars, may force 
the bifurcation towards an unbalanced state [60]. However, the unbalanced distribution 
may also arise as a consequence of an “autogenic" instability mechanism [59], whereby for 
particularly wide and shallow channels, the bifurcation triggers the upstream formation of 
damped bed oscillations taking the form of alternate bars, which steer water and sediment 
fluxes towards the most-carrying branch.

In order to reproduce in a simplified way the complex flow-routing processes that char-
acterize real world bifurcations, morphodynamic modeling involved mainly one-dimen-
sional schemes with a main channel dividing into two smaller downstream branches. In 
these models, the adoption of a suitable law for the partition of water and sediment fluxes 
is required. The two-cell model proposed by Bolla Pittaluga et  al. [9] (hereafter, BRT) 
showed to successfully reproduce the basic elements acting in bifurcation dynamics, as 
demonstrated by numerical and laboratory experiments [6, 24, 72]. In particular, the BRT 
model showed that in the absence of (external) allogenic factors, the morphodynamic evo-
lution of a geometrically symmetric (“free”, sensu [59]) bifurcation is governed by a single 
parameter, R [8]:

where �∗0 and �0 are the Shields number and half width-to-depth ratio of the main feeder 
channel. The parameter � is an order-one parameter physically representing the extension 
of a transverse bed elevation gradient induced in the feeder channel by the bifurcation [59]. 
The sediment flux is deflected with respect to the water flow direction due to a gravitational 
effect, whose magnitude is controlled by the so-called Ikeda parameter r [34, 52].

However, in multi-thread environments like deltas and braided rivers bifurcations are 
not isolated elements but rather part of an interactive system [53, 70, 78]. Taking the 
viewpoint of complex networks [45, 75], competing interactions break-up the possibility 
of understanding the whole behavior of the system just by a superimposition of the sin-
gle bifurcations responses. The question then arises of what kind of physical processes are 
responsible for such interactions. Clearly, the flux partitioning in the upstream bifurcations 
affects each subsequent downstream bifurcation by changing flow and sediment transport 
conditions in the connecting channels. Nonetheless, this upstream-to-downstream effect is 
not sufficient to generate a coupling if a downstream-to-upstream response is absent. In 
such conditions, where the downstream branches are passively subjected to the incoming 
fluxes, the bifurcation is said to be “upstream controlled" [56]. Differently, if the response 
of the downstream reaches depends on the evolution of the bifurcation, which in turn is 
affected by variations of downstream conditions, a two-way coupling is established. For 
example, in low relief systems such as deltas, depositional landforms arising from riv-
ers that end at the shoreline often originating a network of channels (Fig. 1), downstream 
effects like a nonuniform sedimentation [63, 64] or marine processes like tides [13, 31, 35, 
57, 66] influence the response of bifurcations through variations of the channels slope.

In a series of recent works, Salter et al. [63–65] showed that a net-depositional system 
is able to generate a switching in the discharge partitioning over time. The observed oscil-
lations are purely autogenic, inasmuch they derive from an internal feedback mechanism: 
if the fluxes are distributed unevenly by a bifurcation, the slope of the channel receiving 

(1)R =
r�

�0
√
�∗0

,
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more sediment is found to drop through time with respect to the other channel till eventu-
ally causing the switching [21]. Interestingly, a (deterministic) chaotic dynamics is shown 
when multiple bifurcations are coupled in a simple delta network [65]. A similar behavior, 
in which feedback mechanisms are internally generated has been observed in a bifurcation-
confluence system (i.e. a loop), where a river splits into two anabranches rejoining down-
stream [56]. In this case, the feedback is generated by a differential water surface eleva-
tion in the downstream branches, which is a function of the amount of water and sediment 
delivered at the bifurcation, resulting in an asymmetric energy slope affecting discharge 
partition upstream.

In this paper, we aim at understanding how tides potentially affect the long-term equilib-
rium state of river deltas. To achieve this goal, we pursue the one-dimensional modeling of 
an idealized delta network made up of multiple bifurcations with branching channels flow-
ing into a tidal sea. Tidal influence is considered small enough so that the morphodynamics 
of the delta is primarily controlled by fluvial processes. We explicitly exclude wave activ-
ity that, basically through an alongshore sediment transport [47], is responsible for several 
morphological implications including the suppression of bifurcations near the coastline 
[36, 49]. The analysis is motivated by recent theoretical advances on individual tide-influ-
enced bifurcations [57] showing that tidal action causes a morphodynamic response akin 
to the one observed by Salter et al. [63] in a net-depositional system: tide deepens down-
stream channels through erosion, leading the branch carrying the smaller amount of water 
and sediment to increase its slope over time with respect to the other branch. However, 
this behavior might not be univocal when bifurcations are combined in series in a tree-like 
structure inasmuch the response of upstream bifurcations is dependent from water surface 
variations at the internal nodes of the network that, in turn, are affected by flow and sedi-
ment partitioning upstream.

2 � Stability of individual bifurcations in micro‑tidal environments

In a recent paper, Ragno et al. [57] (hereafter, RTB) included in the BRT model the effect 
of (monochromatic) tidal oscillations. Under the assumption of tidal amplitudes a∗ (from 
hereinafter the superscript  denotes a dimensional quantity) much smaller than the mean 
flow depth in the upstream channel D∗

0
 , RTB investigated the (tidally-averaged) equilibrium 

Fig. 1   Example: the Northern 
Dvina Delta, near the city of 
Arkhangelsk (Russia), 64◦ 32′ N 
40◦ 32′ E. Image credit: Google 
Earth Pro (2021)
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configurations and stability conditions of an idealized bifurcation building on the previous 
work of Seminara et al. [69] for single river-dominated estuaries.

In Fig. 2a, an example of equilibrium diagram is shown in terms of the discharge asym-
metry index �Q [7]:

where the suffixes 1,2 and 0 denote the two downstream bifurcates and the upstream channel, 
respectively. In the absence of tides (black lines in Fig. 2), the model outcome is essentially 
the same obtained by BRT. The bifurcation parameter R is found to control the number 
of equilibrium solutions and the stability of those equilibria: if R is higher than a critical 
threshold RC , which depends on the friction and the transport formula adopted [60], flow 
and sediment fluxes are equally distributed at the bifurcation; on the contrary, when R is 
lower than the critical threshold the balanced solution becomes unstable and the system 
attains a stable state where one of the two branches captures most of discharge where, at 
the same time, the gravitational pull deviates the sediment flux to prevent the closure of the 
penalized branch (i.e. carrying the lowest discharge).

(2)�Q =
Q∗

1
− Q∗

2

Q∗
0

,

Fig. 2   a Equilibrium diagram of micro-tidal bifurcation according to the RTB model. The discharge asym-
metry index �Q (Eq. 2) is plotted against the bifurcation parameter R (Eq. 1), for different values of the 
scaled tidal amplitude � . With R∞

C
 it is denoted the threshold value as obtained by [8] in the purely riverine 

context. Lower panels show results from the linear stability analysis, where critical threshold RC is shown 
for increasing values of the scaled tidal amplitude � , which spans from � = 0 (i.e. absence of tide, black 
dashed line) to � = 0.8 , as a function of b �0 ( L = 1 ) and c L ( �0 = 10 ). The value of R separating the 
stable/unstable solution decreases as long as the tides is increased for sufficiently high/low values of �0/L 
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When tides are taken into account, the critical value RC at which the balanced solu-
tion becomes unstable gets smaller (Fig.  2a), thus indicating the stabilizing role con-
ducted by tidal action. When R exceeds the threshold RC (i.e. the main channel is par-
ticularly wide and shallow), a greater fraction of water and sediment fluxes is steered 
towards one of the two branches. In this case the tidal action tends to re-equilibrate the 
bifurcation by increasing the slope of the penalized branch, therefore reducing discharge 
inequalities.

Through a linear stability analysis, RTB have shown that in addition to the bifur-
cation parameter R (Eq. 1) three other parameters turn out to play a role, namely the 
scaled tidal amplitude � , a parameter measuring the relative importance of flow inertia 
�0 , and the (dimensionless) length of the downstream branches L:

where �∗ is the frequency of the tidal wave, L∗ the (dimensional) length of the branches, 
L∗
B0

= D∗
0
∕S0 is the so-called backwater length [50], U∗

0
 , D∗

0
 and S0 are reference values for 

velocity, depth and slope corresponding to normal flow conditions, which are assumed to 
be met in the upstream channel.

For a given value of � , the magnitude of the stabilizing effect increases as the 
branches are shortened and/or �0 is amplified (Fig. 2b–c). Interestingly, if the tidal influ-
ence is sufficiently strong there is the possibility for a configuration in which discharge 
is equally divided even in the limiting case R → 0 . Such conditions are expected to be 
met in fine-grained sand-bed rivers, which are typically characterized by high values 
of the Shields number. In these systems, most of sediment is carried in suspension and 
therefore is weakly deflected by the gravitational pull at the bifurcation [37, 60]. Thus, 
according to Eq. (7) the sediment flux divides proportionally to the water discharge and, 
in the case of a purely fluvial (i.e. absence of tides) bifurcation, this partitioning would 
necessarily lead to an unbalanced configuration. However, for micro-tidal bifurcation 
the theoretical model suggests that for a given value of the parameters �0 and L there 
exists a “tidal threshold" that allows for a stable balanced bifurcation. In this case, the 
stability of the system is purely “downstream-controlled" by tidal action.

3 � A simple model for the equilibrium of tide‑influenced delta 
networks

In Sect. 2 we have seen that in the case of a single bifurcation tides exert a stabilizing 
effect that acts to prevent the closure of one of the two branches in the long-term. How-
ever, deltaic networks are formed by several interconnected bifurcations that can inter-
act with each other [20, 25, 29, 65, 77].

Let us consider an ideal delta network, which is assumed to be composed by k orders 
of bifurcations (sensu [23]). As a consequence, the number of nodes (N) of the system 
is equal to:

(3)� =
a∗

D∗
0

, �0 =
�∗L∗

B0

U∗
0

, L =
L∗

L∗
B0

,

(4)N =

k∑

j=1

2j−1 .
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Following RTB, each branch of the network is assumed to be a straight estuary, where the 
banks are fixed (i.e. the planform geometry does not change in time) and the bottom is 
composed by a uniform sand with a reference grain size d∗ . Seaward, debouching channels 
are subject to monochromatic tidal oscillations with a constant amplitude in the assump-
tion 𝜖 ≪ 1 . Landward, the main upstream channel is fed by a constant discharge Q∗

0
 , with 

the flow carrying a constant sediment flux Qs∗
0
 in equilibrium with fluid flux. The geom-

etry of the network (i.e. lengths �∗ and widths W∗ ) is assumed to be symmetric about each 
node. Notice that in the present problem there are no forcing effects potentially leading to 
a break-out of the symmetry. In other words, any externally-imposed slope advantage that 
may alter downstream rating curves is not considered.

Channel widths are assigned following an hydraulic geometry law empirically derived 
from delta networks. Specifically, we rely on the relationship derived by Andrén [2], which 
has been employed and tested against field and modeling studies [22, 23]:

where W∗
0
 is the width of the upstream feeder channel. Analogously, each subsequent bifur-

cation is placed at a distance that follows a power-law distribution [22, 23, 71]:

where L∗ is the length of the first-order branches (i.e. k = 1 ). We note that the choice of 
different geometric laws for widths and lengths does not change the qualitative behavior of 
the model.

For modeling the response of the bifurcation we employ the previously introduced two-cell 
BRT model. The nodal relationship proposed by BRT for the transversal exchange of water 
( Q∗

y
 ) and sediment ( Qs∗

y
 ) for a generic node of order k, taking into account (5), reads as follows:

with �∗ the bed elevations of the two cells, �W∗
0
 long, which are able to exchange water 

and sediment upstream the bifurcation (for a detail of the two cells, see Fig. 3). Following 
RTB the bed elevations in the two bifurcates are affected by tidal motion, which induces a 
correction with respect to the normal flow of O(�2) . This correction turns out to be a func-
tion of the relative tidal amplitude at the downstream nodes (or the sea mouth in the case 
of the terminal branches), channels length, channels slope, and on the flow depth values 
in normal flow conditions. Taking advantage of the fact that � is a small parameter, it can 
be shown that the water surface elevation and flow depth at each node have the following 
expressions [69] (see for details of the derivation [10, 57]): 

(5)W∗ ∝ Q∗0.39
→ W∗ ≃

(
3

4

)k

W∗
0
,

(6)�
∗ ∝ Q∗1.3

→ �
∗ ≃

(
2

5

)k−1

L∗,

(7)
Qs∗

yz−1

Qs∗
z−1

=
Q∗

yz−1

Q∗
z−1

−R

(
4

3

)k �∗
2z−1

− �∗
2z

2D∗
0

, z = 2k−1,… , 2k − 1 ,

(8a)H∗ = �

S

S0
D∗

0
+ �2D−1

u
Θ(�)

{
exp

[
−2ℜ(�)�

S

S0
D−1

u

]
− 1

}
D∗

0
,

(8b)D∗ = DuD
∗
0
+ �2D−1

u
Ψ(�) exp

[
−2ℜ(�)�

S

S0
D−1

u

]
D∗

0
,
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 with � = �0D
1∕3
u (S∕S0)

−3∕2 , Du is the dimensionless uniform flow depth, and the expres-
sion for the coefficients Ψ , Θ , and � are given in the Appendix 1.

In order to determine flow and bed topography in each channels, five internal (i.e. match-
ing) conditions at the bifurcations node are required: the conservation of water and sediment 
mass, the equality of the water surface elevation for each cell, and the BRT relationship (7). At 
the end, for each node the following algebraic nonlinear system of equations is obtained: 

 where the variables are made non-dimensional in the form:

(9a)Qz−1 = Q2z−1 + Q2z,

(9b)Qsz−1 = Qs2z−1 + Qs2z,

(9c)Hz−1|Nz−1
= H2z−1|Nz−1

,

(9d)Hz−1|Nz−1
= H2z|Nz−1

,

(9e)
Qsyz−1

Qsz−1
=

Qyz−1

Qz−1

−R

�
4

3

�k 1√
4 Sz−1∕S0 Duz−1

(D2z − D2z−1) ,

(10)D = D∗∕D∗
0
, Q = Q∗∕Q∗

0
, Qs = Qs∗∕Qs∗

0
.

Fig. 3   Plan view of the idealized micro-tidal network composed by k = 2 orders of bifurcations (sensu 
[23]) hence consisting of a total of seven branches coupled through three bifurcations. The geometry of the 
network is symmetric at each node, with channel lengths and widths assigned following the empirically-
derived relations (5) and (6)
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It is worth noting that tidal amplitude in the internal nodes (see Eqs. 8a-b) is not assigned 
a priori, but depends on the amount of water and sediment delivered by the channels, and 
it can be computed through the following expression (see Appendix 1 for the details about 
the derivation):

The inequality in (11) is a direct consequence of the problem structure: if k = 1 , the single 
bifurcation case analyzed by RTB is obtained. Moreover, for the terminal branches of the 
network the scaled tidal amplitude coincides with the one assigned at the seaward bound-
ary ( � ). As expected, �|Nz−1

 tends to vanish over distances that are longer compared to the 
backwater length of the single branches.

Finally, it is important to underline the steady character of the present analysis. This 
means that if each branch of the network is supposed to be in equilibrium (sensu [69]), 
this is equivalent to assume a much slower timescale for the evolution of the channels with 
respect to the timescale of the bifurcation evolution, which in turn is slower than the typi-
cal tidal period. This hierarchy of timescales allows for studying the response of the net-
work as a sequence of quasi-equilibrium states, where tidal fluctuations are accounted for 
just by changing the amplitude �.

4 � Contrasting response of a delta network to tidal action

In analogy with the work of [65] and from observations showing that tide-influenced deltas 
are often composed of a limited number of distributaries [49, 76], we consider a simple 
network made up of two orders of bifurcations (i.e. k = 2 → N = 3 , see Eq. (4)). We have 
noted that an additional order of bifurcations does not change the qualitative response of 
the system and the key drivers governing its stability. Thus, at the end the problem requires 
the solution of a nonlinear system of twelve algebraic equations, which can be cast in terms 
of the channel slopes and (dimensionless) normal flow depths of each channel, once suit-
able closure formulas for the sediment transport and friction are employed.

Sediment fluxes are computed by means of the Engelund & Hansen [26] formula:

where � is the relative submerged sediment density and Cf  is the friction coefficient, here 
expressed through the Manning-Strickler formula under the hypothesis of infinitely wide 
channels:

with n∗ the Manning coefficient. Consequently, the dimensionless water discharge is found 
to be proportional to Q ∝ D

5∕3
u

√
S∕S0 . The model requires as input just few parameters, 

namely �0 and R for the reference flow in the upstream channel, the scaled tidal amplitude 
at seaward boundary � , and the dimensionless length L of the first-order branches.

(11)�|Nz−1
= �|N2z−1

exp

[
−�2z−1

(
2

5

)k−1

LD−1
u 2z−1

S2z−1

S0

]
. k ≥ 2,

(12)Qs = 0.05C−1
f
�5∕2
∗

= Qs0 D
17∕6
u

(
S

S0

)5∕2

, �∗ =
U∗2Cf

�g∗d∗
= �∗0DuS∕S0,

(13)Cf =

�
D

∗1∕6
u

n∗
√
g∗

�−2

,
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Firstly, the attention is devoted to the behavior of the apex node N0 . The equilibrium 
diagram (Fig. 4a) shows a striking novel feature with respect to the single bifurcation case: 
the response of the system to tidal action is not univocal. Indeed, the critical threshold at 
which the unbalanced solutions appear can either increase or decrease for different values 
of the tidal amplitude depending on the relative length of the channels L. This twofold 
behavior can be explained if results are analyzed in terms of the slope asymmetry index �S 
(Fig. 4b), defined as [60]:

For sufficiently long channels, the branch carrying most of discharge (say channel 2, 
continuous lines in Fig.  4) is subject to a gradient advantage with respect to the penal-
ized branch ( S2 > S1 ); thus, discharge and slope asymmetry are concordant in sign. The 
model suggests that when the bifurcation parameter R is lower than the critical value RC a 
greater fraction of water and sediment fluxes is steered towards one of the two downstream 
branches as tidal amplitude increases (top half of Fig. 4a and b). In other words, tides act as 
a positive feedback sustaining the development of an unbalanced configuration. However, 
the scenario radically changes when the channels are shorter than a threshold length, LT . 
When L < LT , the signs of �S12 and �Q12 are discordant. In these conditions, tides exert a 
negative feedback by increasing the stability of the system, or rather, the possibility for the 

(14)�S =
S2z−1 − S2z

S0
, z = 1, 2, 3 .

0.2 0.4 0.8 1
-1

0

1

0.2 0.4 0.6 0.8 1
-1

0

1

-0.2 -0.1 0 0.1 0.2
10-2

10-1

100(a) (b)

Fig. 4   a Equilibrium diagram relative to the apex node ( N0 , see Fig. 3), reported in terms of the discharge 
asymmetry index �Q12 and bifurcation parameter R , for increasing values of the tidal amplitude � . Values 
of L = 0.3 and L = 0.05 are employed for the top half and lower half of the plot, respectively. Continu-
ous and shaded lines denote the case of dominant channel 2 ( 𝛥Q12 < 0 ) and channel 1 ( 𝛥Q12 > 0 ), respec-
tively. The parameter R∞

C
 denotes the critical threshold in the absence of tide. In panel b, the slope asym-

metry index �S12 is plotted against the scaled channel length for a given value of the bifurcation parameter 
( R = 0.2 ). The stabilizing/destabilizing effect of the tidal action for lengths shorter/longer than the thresh-
old LT is highlighted for the case 𝛥Q12 < 0 . Yellow stars indicate threshold RC . A value of �0 = 20 is 
employed
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system to partition fluxes evenly for lower values of R due to a steepening of the penalized 
branch (lower half of Figs. 4a and b).

It is worth observing that model results are similar if parameter �0 (see 3) instead of 
L is employed to analyze the response of the system. In general, for a given tidal ampli-
tude 𝜖 > 0 , parameters �0 and L control how tidal action affects flow and sediment dis-
tribution through variations of the channel slopes, which are tracked by the asymmetry 
index �S12 . Such slope asymmetry is generated by the different values of the relative tidal 
amplitudes �1,2 at the internal nodes N1,2 (see Eq.  11) that depend from how the fluxes 
are diverted upstream, in turn affecting the response of the bifurcation from downstream. 
In Fig. 5, the degree of asymmetry between the values of tidal amplitudes at the internal 
nodes ��12 = (�1 − �2)∕� with respect to the configuration 𝛥Q12 < 0 (i.e. dominant chan-
nel 2) is shown. Interestingly, the most carrying branch is subject to a higher relative tidal 
amplitude (i.e. 𝜖2 > 𝜖1 ), regardless of the channels length being longer or shorter than the 
threshold length LT . Tidal asymmetry displays a minimum for a value of length L > LT , 
which roughly corresponds to the peak of the slope asymmetry index showed in Fig. 5. It 
follows that the tidal effect on the stability of the steady-state solutions is governed by the 
sign and magnitude of the slope asymmetry index �S12.

Figure 6 shows bed and water surface elevation profiles for channels 1 and 2 com-
puted by means of Eqs. (8a-b), again for 𝛥Q12 < 0 . In the absence of tides (dashed 
lines), both channels have the same slope and water level but show a clear bed differen-
tial, with the dominating branch characterized by the larger depth. As expected, model 
outcomes coincide with the sole bifurcation problem as obtained by BRT [9]. Differ-
ently, bed and water surface elevations are a function of the position along the channels 
when 𝜖 > 0 , with results showing a substantial dependence on the scaled length being 
longer (top half of Fig. 6) or shorter (lower half of Fig. 6) than the threshold length LT . 
In the latter case, the penalized branch (i.e. channel 1) undergoes a progressive steepen-
ing moving downwards, which is induced by a higher tide-induced scour, till eventu-
ally becoming deeper than the most-carrying branch at the node (i.e. 𝜂1|N1

> 𝜂2|N2
 ). On 

10-2 10-1 100
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Fig. 5   Plot of the internal tidal asymmetry ��12 against the channel length L, in the case 𝛥Q12 < 0 . When 
the channels are sufficiently long, the behavior of the apex node is not affected by tidal fluctuations seaward. 
On the contrary, when the channels are sufficiently short �1 → �2 ; as a consequence, the internal tidal asym-
metry tends to zero. Parameters: R = 0.2 , �0 = 20
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the contrary, when L > LT channel 1 is practically unaffected by tides as shown by the 
nearly flat profiles, while in channel 2 a convex bed profile is developed characterized 
by a steeper region at the mouth approaching node N2.

Let us now analyze what happens in the terminal branches (i.e. 3 to 6). In this case, 
the channels are constrained by the same value of the tidal amplitude at the mouths. As 
such, the effect of tide is always stabilizing as found in the single bifurcation case by 
RTB (Fig. 7) [57]. The value of the threshold at which the bifurcation evolves toward an 
unbalanced equilibrium state increases (Fig. 7a), suggesting the tendency of the system 
to attain stable balanced configurations for lower values of R and higher tidal ampli-
tudes. Differently from the apex node, the channel slope is found to be always higher in 
the penalized branch (Fig. 7b). In accordance with previous studies [33, 35, 57, 66], an 
increasing tidal influence results in a more even discharge partitioning in the terminal 
branches (i.e. reduced values of the discharge asymmetry �Q).

A note of caution should be cast in the interpretation of model results presented in 
Fig. 7. Indeed, flux distribution at the apex node highly affects flow conditions of sea-
ward channels. Specifically, as shown in Fig.  8a when the flux distribution is highly 
unbalanced the sediment transport capacity in the lowest carrying branches decreases 
till eventually vanishing (e.g., channel 4). As also suggested by BRT, under these condi-
tions a progressive infilling with a channel abandonment is highly expectable. Moreo-
ver, low values of the conveyed water and sediment fluxes make channels more sen-
sitive to tidal influence. From the definition as given in (3), we can define a “local" 
tidal amplitude 𝜖 = 𝜖∕Du quantifying the tidal magnitude in the seaward channels that is 
effectively felt. Figure 8b shows that despite � = 0.1 , the shallowest and lowest carrying 
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Fig. 6   a, c Bed and b, d water levels profiles for an unbalanced configuration with �Q12 . The variable 
x = x∗∕L∗

B0
 is the longitudinal coordinate, with zero at the apex node N0 and coinciding with L at the inter-

nal nodes N1,2 . Note the development of a convex equilibrium profile, as expected by the solution of Semi-
nara et al. [69]. Top half and down half plots separate the solutions in the case L > LT and L < LT , respec-
tively. Continuous and dashed lines correspond to � = 0.1 and absence of tide, respectively. Parameters: 
R = 0.2 , �0 = 20
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Fig. 7   a Equilibrium diagram relative to node N2 , reported in terms of the discharge asymmetry index �Q56 
and bifurcation parameter R , for increasing values of the tidal amplitude � and a given length L = 0.3 . 
Despite according to Fig. 5 this configuration corresponds to L > LT , tidal action exerts a stabilizing effect 
for the whole range of R . Continuous and shaded lines denote the case of dominant channel 2 ( 𝛥Q56 < 0 ) 
and channel 1 ( 𝛥Q56 > 0 ), respectively. In panel b, the slope asymmetry index �S56 is plotted against 
the scaled channel length for a given value of the bifurcation parameter ( R = 0.2 ). A value of �0 = 10 is 
employed
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Fig. 8   a Shields number �∗ and b effective tidal amplitude 𝜖 in the seaward channels plotted against the 
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indicate a the reference Shields number ( r� = 2 , �0 = 10 ) and b the prescribed tidal amplitude � = 0.1 . 
Parameters: R = 0.2 , and �0 = 20
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branch is characterized by a value 𝜖4 ≃ 1 suggesting that in such conditions it might be 
substantially controlled by tidal motion.

5 � Discussion

The present analysis shows that a contrasting response of channel bifurcations to tidal 
action arises even in an idealized steady model of a delta network. Specifically, results 
presented in Sect.  4 suggest that there is a threshold of the reference parameters (i.e. 
R,�0, �, L ) that separates two drastically different responses when multiple coupled bifur-
cations are affected by tidal motion. For a given value of parameters �0 and R requiring 
that 𝜖 > 0 , if L is longer than a threshold LT tide promotes the allocation of a larger frac-
tion of the incoming discharge towards the most-carrying channel. The development of 
an unbalanced flow distribution is physically sustained through variations of the channel 
slopes, which in turn modify flow rating curves and sediment transport capacity of the two 
bifurcates. On the other hand, a stabilizing effect is found for L < LT . In this case, the 
lowest-carrying branch is steeper than the dominant channel due to a negative feedback 
exerted by tides that tends to re-establish a balanced flow and sediment distribution.

A spontaneous question is what values do the relevant dimensionless parameters con-
trolling the stability of tide-influenced bifurcations typically attain in real deltas. Estimated 
values of ( R,�0, L ) for several natural and experimental deltas are reported in Fig. 9 as a 
function of the scaled tidal amplitude � . Specifically, the analysis is based on two sets of 
laboratory experiments, performed by Lentsch et al. [42], and sixteen natural rivers form-
ing deltaic distributary networks, which are characterized by different climatic settings 
(e.g., the Arctic Yukon, the Mediterranean Nile), morphology (e.g., lobe size and shape, 
number of distributary channels), and marine processes (i.e. waves and tides). We note that 
deltas are selected with the only purpose of understanding the typical range of magnitude 
of the different parameters. In this respect, we do not rely on the classic triad of river-, 
wave-, or tide-dominance [27, 36, 46]. Nevertheless, we avoid to consider deltas where 
the value of the scaled tidal amplitude � is of O(1) or higher, as they exceed the limit of 
validity of the RTB model. Values of the parameter �0 spans within the range 100 − 102 
(Fig. 9a), whereas R ranges between 10−1 and 10−3 (Fig. 9b). Finally, as a reference length 
scale of the maximum distance where the apex node is placed, we investigate the order of 
magnitude of the so-called “avulsion length” ( LA ∶= L∗

A
∕L∗

B0
 ). The avulsion length, defined 

as the distance from the coastline of the apex node [16, 36], varies between 10−1 and 100 
(Fig. 9c). In the light of the present analysis, the range of values attained by the reference 
parameters would suggest that even micro-tidal conditions are sufficient to substantially 
affect the overall delta dynamics in the long-term.

It is worth noting that as the majority of deltas analyzed in Fig. 9 are constituted by 
gentle-slope fine-grained rivers characterized by high-mobility conditions (i.e. high val-
ues of the Shields number), the low values of R are not surprising (see Eq. 1). Accord-
ing to the sole bifurcation BRT model, we should expect that almost all the bifurcations 
in the analyzed deltas are strongly unbalanced. Consequently, the uneven distribution of 
flow and sediment transport should reflect in a substantial asymmetry of the channel width 
in the distributaries of the networks. Nonetheless, this is not the case when tidal forcing 
is accounted for. Considering for example the case of the Mahakam Delta, a number of 
field and numerical studies have shown how bifurcations in the network are characterized 
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by a more uniform discharge distribution than the one that would occur in a purely river-
ine environment [33, 68]. Tide distinctly shows its fingerprint on the delta morphology 
with funnel-shaped estuarine channels in the seaward reaches often disconnected from the 
main distributaries [68]. Despite the strongly idealized character of the present theoretical 
framework prevents a direct comparison with real-world systems, model predictions repro-
duce, at least qualitatively, some of the observed features. Some instructive indications can 
be gathered by analyzing the values of the reference parameters. Specifically, despite an 
extremely small value of the bifurcation parameter R (i.e. R ≃ 0.03 ), the magnitude of 
the parameters tied to tidal action, namely � ≃ 0.2 , �0 ≃ 85 , and LA ≃ 0.1 , would suggest 
that tide is sufficiently strong to actively affect the upstream node. Computed values of the 
critical parameters from the RTB model give an avulsion length LA that is shorter than the 
threshold length LT . Physically, the model indicates that the observed small inequalities in 
discharge partitioning are downstream controlled by the tidal influence, where the stabiliz-
ing effect of the bedload steering at the bifurcation has a negligible importance.

Furthermore, in a series of recent laboratory experiments Lentsch et al. [42] analyzed 
the effects of tides and sea-level rise on deltaic morphology. In pure riverine conditions 
(i.e. � = 0 ), a widespread number of channels are observed to dissect the subaerial surface 
of the delta where frequent avulsion events are triggered by channels aggradation; the shift-
ing of the maximum sediment flux among branches leads over time to a nearly symmet-
ric planform shape of the delta. Differently, as tide is progressively increased the number 
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Fig. 9   Relevant dimensionless parameters controlling the stability of tide-influenced bifurcations for a 
series of natural and experimental deltas. Panel a �0 , b R , and c LA are shown as a function of the scaled 
tidal amplitude � . The whiskers in panel b represent the value of R for r� = 0.5 and r� = 5 . Sources [11, 
42, 48, 55, 66, 76, 81]
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and lateral mobility of channels drop and a main thread is observed to distribute flow and 
sediment among few smaller branches originating towards the coastline. In this case, from 
the model analysis we obtain a value of the bifurcation parameter R below the critical 
threshold RC ; this suggests that in the absence of tides any bifurcation should evolve asym-
metrically. Moreover, in spite of the moderate tidal amplitudes employed in the laboratory 
series ( 0.4 < 𝜖 < 1 ) the computed values of �0 ≃ 2 and LA ≃ 1 indicate that tidal influence 
on bifurcation dynamics is rather modest; in these conditions L > LT and the development 
of an unbalanced configuration at the apex node is potentially sustained by tidal action. 
Several field [33, 49, 76], experimental [42] and numerical [28, 62] studies showed that 
tide-influenced deltas are often characterized by an initially-formed main (or few) active 
stem from which smaller distributary channels branch out, where tide acts to distribute 
uniformly flow and sediment across the network. The scouring action performed by tidal 
currents prevents bed aggradation, the main responsible for the formation/reoccupation of 
new/old channels through avulsion events in river-dominated deltas with a negligible tidal 
influence, which are often dissected by a widespread number of branches radiating from 
the apex bifurcation [61] and just few channels transport the largest amount of water and 
sediment [22].

While a systematic analysis is beyond the feasibility of the present work, the relative 
simplicity of the proposed theoretical model lends itself to be tested and validated through 
appropriate experimental and numerical analysis. In particular, those analysis would allow 
to obtain evidence of the two-way coupling between bifurcations in a deltaic network dis-
entangling the role of allogenic mechanisms in the discharge-partitioning dynamics. As 
suggested by [65], an interaction between bifurcations could be also expected if the chan-
nels are allowed to establish their width freely or the delta geometry is allowed to change 
through time.

Let us discuss the main limitations of the present analysis. First, the potential effect of 
short-term temporal changes as daily fluctuations in the water levels, different tidal propaga-
tion in the branches [30, 80, 82], or due to wind-driven currents [70], are not accounted for 
by the model, which focuses on the long-term morphodynamic equilibrium state towards the 
system would tend. From a modeling perspective, relaxing the steady assumption would lead 
to some interesting developments, which are inspired from field and numerical evidences of 
the deltas discussed above. For example, during a sequence of spring-neap cycles in a couple 
of bifurcations in the Mahakam Delta the discharge division was observed to oscillate around 
an asymmetric state [66, 67]. Differently, in the case of Wax Lake Delta, which represents a 
benchmark for the study of human-based solutions aimed at counteracting the sinking of many 
deltaic coastlines due to climate change, subsidence, and sediment starvation [14, 15, 32, 51], 
during spring-neap cycles the discharge partitioning over two branches was observed to oscil-
late around a nearly symmetric state (see Fig. 4 of [80]). An unsteady analysis would allow to 
analyze the response of the system to time-varying forcing in a similar fashion to the work of 
Bertoldi et al. [7]. Bertoldi and co-workers studied experimentally and theoretically the effect 
of periodic downstream-migrating alternate bars interacting with a single fluvial bifurcation, 
which are shown to enrich and complicate the flux-partitioning dynamics. In a complementary 
way, throughout the paper we have recalled how flow oscillations can be generated even with-
out time-dependent external forcing, but rather due to differential deposition in the branches 
[21, 63]. A natural extension of the present model should include sediment deposition, incor-
porating into the single bifurcation model of Salter et al. [63] the tide-averaged effect follow-
ing the framework of RTB.
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Second, we have employed a total load predictor for sediment transport. A natural exten-
sion would require to divide the material load into a bedload and suspended load component 
and then account for the gravitational effect on the lateral transport just on the former fraction.

Third, often tide-influenced rivers present a funnel-shaped morphology characterized by 
a gradual width expansion moving seaward [17, 18, 40]. Therefore, the present model may 
underestimate the potential destabilizing role of channel widening, which leads to increasing 
values of the width-to-depth ratio (i.e. lower values of R ) associated to channel shallowing. 
In a recent study, the drop of depth induced by the flow expansion has been observed to typi-
cally overwhelm the tide-induced scour [58]. Furthermore, we limited our analysis to the free 
response of the system, thus considering a symmetrical configuration where the connecting 
channels have the same width and length. However, in nature the geometry of the branches 
in a network is seldom the same. Different lengths affect the slope asymmetry and, as a con-
sequence, the flow rating curves and sediment transport in the channels. Differently, in the 
present work variations of the channels slope arises internally in a purely symmetric configu-
ration due to a mutual response in the form of a downstream-upstream feedback between the 
bifurcation and the confluence.

Fourth, the present formulation based on the two-cell model of BRT does not take into 
account the possible role of bifurcation angle. However, as shown by the two-dimensional lin-
ear analysis performed by [59], flow partitioning upstream the bifurcation seems to be poorly 
affected by an angle-induced effect. Indeed, the main physical mechanism generated by the 
angle is the formation of a separation zone induced by the sharp deviation of the flow at the 
node. However, it could be expected that this effect would be important for the local morphol-
ogy in the downstream channels.

Finally, along the paper we have avoided to discuss what happens in tide-dominated condi-
tions (i.e. 𝜖 ≫ O(1) ), representative of deltas like the Ganges-Brahmaputra-Meghna Delta, the 
Indus Delta, the Niger Delta [4, 17, 54], or in the coastal fringe of the Mahakam Delta [33]. 
Such networks diverge from the tree-like structure sketched in Fig. 3. The tidal plain is often 
characterized by tidal channels growing landward from the shoreline that frequently merge 
into secondary distributaries carrying freshwater and sediment, in turn generating looping pat-
terns [39]. In these cases, the framework discussed herein must be abandoned in favor of a 
scheme explicitly including the interplay between riverine and bi-directional tidal flow. We 
note that a bifurcation model in purely tide-dominated conditions (i.e. in the absence of a flu-
vial supply of freshwater and sediment) is still lacking.

6 � Conclusions

In this work, we have explored the long-term equilibrium configuration of a tide-influenced 
delta through a one-dimensional theoretical modeling. Though the theoretical model has 
been formulated for a tidal network characterized by an arbitrary bifurcation order k, in 
order to understand the basic mechanisms underlying the response of the system we have 
limited our analysis to a simple network composed by two orders of bifurcations. On the 
basis of model results, the following key outcomes are drawn:

–	 Differently from the single bifurcation case, tides can be either a stabilizing or a desta-
bilizing factor for the asymptotic equilibrium state reached by the system. The model 
indicates that this contrasting response crucially depends on slope variations in the 
channels induced by the different relative tidal amplitude in the internal nodes, which 
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is a function of the flow and sediment delivered by the apex bifurcation and the ratio 
between the length of the channels and the backwater length;

–	 The pluralistic behavior showed by the upstream node is driven by the sign of the slope 
asymmetry �S with respect to the discharge asymmetry �Q . In particular, if the scaled 
length of the channels is longer than a threshold length LT , �S and �Q are concordant in 
sign, and an initially stable symmetric bifurcation tends to become increasingly biased 
towards an unbalanced configuration as the amplitude of tidal oscillations is increased. 
This behavior is associated to an increased tidal strength in the branch receiving more 
discharge, which tends to steepen with respect to the other branch. Nonetheless, if the 
tidal influence is sufficiently strong and L < LT , �S changes in sign. Consequently, the 
response of the system reverses, with tide hindering the abandonment of one of the two 
anabranches by increasing the slope of the lowest-carrying branch, i.e. providing a sta-
bilizing effect;

–	 Tides always exert a negative feedback in the terminal branches, reducing the inequali-
ties in discharge partitioning that would occur in a pure riverine case;

–	 In accordance with previous works [53, 65], the model shows that tide-influenced 
delta networks behave as complex systems [45], where the overall response cannot be 
inferred without taking into account the coupling between upstream and downstream 
bifurcations.

Appendix A: Analytical expression of the coefficients � , Ψ , and 2

In this section we provide the complete expressions for the coefficients appearing in Eqs. 
(8a-b). These coefficients are a function of the basic flow through the parameter �0 , and of 
the specific channel characteristics through the dependence on Du and S: 

 where i is the imaginary unit, and the functional dependence of � = f (�0,Du, S∕S0) is 
given in the main text. We note that (15a–c) contribute to the magnitude of the tidal sec-
ond-order correction (i.e. ∝ �2 ) that deviate flow variables (i.e. D, �,U ) from the uniform 
conditions.
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Appendix B: Tidal amplitude in the internal nodes

The starting point for the derivation of Eq. (11) is the one-dimensional differential problem for 
the evolution of a single river-dominated estuary. Namely, the governing equations for each 
branch of the network are the continuity and momentum conservation for the fluid phase, cou-
pled with the sediment mass balance: 

 where q and qs are the flow and sediment fluxes per unit width, p is the sediment poros-
ity, x̃ = xD−1

u
S∕S0 is a longitudinal coordinate with the origin at the sea (or at an internal 

node) and pointing landward, and T = q∗
0
∕
√
�g∗d∗3 is the ratio between the hydrodynamic 

timescale and “morphodynamic” timescale.
In the assumptions of micro-tidal conditions (i.e. 𝜖 ≪ 1 ) and F2

0
∼ F� , with F an order O(1) 

quantity, Seminara et al. [69] tackled system (16a–c) to find an analytical solution for the tid-
ally-averaged morphodynamic equilibrium by means of a perturbation approach. We recall 
that the equilibrium is achieved if:

with the brackets denoting a tidal averaging. Essentially, Eq. (17) states that the net sedi-
ment flux in a tidal cycle is constant and coinciding with the sediment flux delivered by the 
channel.

Following the work of [69], each variable of the problem can be expanded in powers of � 
as follows:

where we note that now the suffixes denote the subsequent perturbation orders. Substitut-
ing from (18) into the governing system (16a-c), equating likewise powers of � , a cascade 
of differential problems is then found. Here, with the aim of finding the superelevation 
of the free surface with respect to the reference level (i.e. H0 ∝ L S∕S0 ) moving landward 
along a channel from the shoreline, we are just interested in the order O(�) part of the solu-
tion, which describes the propagation of a small amplitude wave. For the interested readers, 
we refer to [69] for the details of the analysis. The solution is expressed as:

where t = t∗�∗ , and c.c. stands for the complex conjugate of a complex number. Note that 
the tidally-averaged discharge per unit width q does not differ from the leading-order value 
q0 , thus q10 (i.e. the steady component) is zero.
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Solving for the time-dependent part of the solution leads to the following differential 
problem in q11 : 

 where the multiplicative factor 1/2 in the second boundary condition derives from the 
assumption of monochromatic tidal wave (i.e. ∝ sin(t) ). The solution of (20a-c) gives the 
following expression for q11:

In the assumption H11 = D11 (during a single tidal cycle bed variations are negligible), 
from the sediment mass conservation (Eq. 17), and substituting (21), one finds:

and Eq. (11) is readily found.
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