

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

DESIGN ENVIRONMENTS FOR COMPLEX SYSTEMS

Corrado Priami

August 2003

Technical Report # DIT-03-048

Also: in proceedings of WSC 2003

.

Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

DESIGN ENVIRONMENTS FOR COMPLEX SYSTEMS

Corrado Priami

Dipartimento di Informatica e Telecomunicazioni
University of Trento

Via Sommarive, 14 - 38050 Povo (TN) - Italy

ABSTRACT

The paper describes an approach for modeling complex
systems by hiding as much formal details as possible
from the user, still allowing verification and simulation
of the model. The interface is based on UML to make
the environment available to the largest audience. To
carry out analysis, verification and simulation we au-
tomatically extract process algebras specifications from
UML models. The results of the analysis is then re-
flected back in the UML model by annotating diagrams.
The formal model includes stochastic information to
handle quantitative parameters. We present here the
stochastic π-calculus and we discuss the implementa-
tion of its probabilistic support that allows simulation
of processes. We exploit the benefits of our approach in
two applicative domains: global computing and systems
biology.

1 INTRODUCTION

Complex systems are more and more pervasive of
our current research. They arise directly from com-
puter science development (e.g., the Internet and its
potential usage as a big resource to be allocated
on demand to computing tasks - global comput-
ing, http://www.cordis.lu/ist/fetgc.htm) and also
from other disciplines that needs computer help (e.g.,
the emerging attitude of life scientists to look at the
dynamic evolution of biological systems rather than at
their structure only - systems biology [sb-science2002]).

Many different skills and disciplines have taken a sys-
tem approach to model the objects of their research
and all of them need computer aid to handle the huge
amount of data and relations that describe temporal
evolution of systems. Although different applicative do-
mains introduce peculiar features in the modeling, ver-
ification and simulation phases of the design process,
many principles can be shared altogether. Further-
more, most of the designers coming from applicative
domains different from computer science do not have

deep knowledge of the mathematics upon which verifi-
cation and simulation is built. According to the above,
we claim that effective sharing of principles and tools
can be achieved in design environments only if most of
the technical details on the verification and simulation
side are hidden from the user.

We implement hiding of details from the user by
splitting the architecture of our environment into two
parts: an interface environment and a kernel environ-
ment. The interface allows the user to specify the model
and to select the kind of verification or simulation s/he
wants to carry out. The kernel contains the machinery
to perform formal analysis and simulation.

Since one of the goal of the approach is to make
the environment usable by the largest audience, we
choose a standard as the modeling formalism: UML
[Booch et al.1997]. Most of the IT companies al-
ready use UML to model their software products and
hence dissemination of the approach should be eas-
ier. Furthermore, the very same formalism is pro-
posed as a modeling standard in systems biology
[Roux-Rouquie and Le Moigne2002]. This opens an-
other huge applicative domain to our environment.

The kernel environment is concerned with the for-
malization of critical aspects of the application in hand
for verification or simulation purposes. We rely here on
process algebras for mobile systems [Milner et al.1992,
Degano and Priami2001]. They are simple calculi made
up of very few operators (sequentialization, parallel
composition, scope delimiters, alternatives) that mainly
describe the interaction between processes and their
interconnection topology during dynamic execution.
These calculi are equipped with many tools for static
as well as dynamic analysis of behavioral properties
that can be reused in our setting. Furthermore, re-
cently stochastic extesions of these calculi have been
proposed thus allowing the management of quantitative
information. Notably, a probabilistic run-time support
implemented for a version of the stochastic π-calculus
[Priami et al.2001] allows simulation of peculiar behav-

Priami

ior.
An issue of the overall approach is the connection

between the two environments. This is in fact the
step needed to hide formal details from the user. The
simplest way we devised to implement the interaction
is through manipulation of the XML Metadata Inter-
change format (XMI) [OMG2000] that provides a stan-
dard textual format in which UML models can be ex-
changed between tools. XML is the Extensible Markup
Language [W3C2000], which, along with its many sup-
porting technologies, provides a high-level infrastruc-
ture to allow all kinds of structured information to be
exchanged and manipulated by a common set of tools
and languages.

The information flow between the two environments
is implemented through an extractor and a reflector.
The extractor is a software module that takes the XMI
representation of the UML specification, possibly en-
riched with tagged values provided by the user, and
produces a program written in a process calculus that
contains the relevant information for analysis and sim-
ulation. The reflector takes the output of the analyzer
or simulator, together with the original XMI file, and
alters the XMI file accordingly with tagged values or
constraints. We also need the UML tool to be able
to display such information. To automate the process,
providing an ”Apply property check” or ”Run simula-
tion” menu option, for example, we need some way of
adding scripts to tools.

The approach described above has been intro-
duced and developed by the EU project DEGAS
in the FET global computing proactive initiative
(http://www.omnys.it/degas).

We will mainly concentrate here on the kernel envi-
ronment by introducing the stochastic π-calculus and
showing how it can be used to model, analyze and sim-
ulate complex systems in the field of global computing
and systems biology.

2 THE STOCHASTIC π-CALCULUS

We review the π-calculus [Milner et al.1992], a model
of concurrent communicating processes based on the
notion of naming, and we introduce its stochastic se-
mantics.

Definition 2.1 N is a countable infinite set of names
ranged over by a, b, . . . , x, y, . . . and S = {τ0, τ1, τ2, . . .}
is a countable infinite set of invisible actions ranged
over by τi, with N ∩ S = ∅. We also assume a set
of agent identifiers, each with an arity, ranged over by
A,A1, Processes in P, ranged over by P,Q,R, . . .

are defined as

P ::= 0 | X | π.P | (νx)P | [x = y]P | P |P | P + P |
A(y1, . . . , yn)

where π may be either x(y) for input, or xy for out-
put (where x is the subject and y is the object) or τi

for silent moves. The order of precedence among the
operators is the order (from left to right) listed above.
Hereafter, the trailing 0 will be omitted.

In the above definition we used a set of silent moves to
distinguish their different durations.

We use µ as a metavariable for transition labels. We
introduce set A of visible actions ranged over by α
(i.e., x(y) for input, xy for free output, and x(y) for
bound output. The effect of a bound output is vanish-
ing a ν operator. Consider for instance the transition

Q = (νx)yx.P
y(x)−−−→ P . The intuition behind this oper-

ation is to make the private name x of Q available to
the external environment. In fact, operator ν can be
interpreted as a delimiter of an environment, while the
bound output is an open of that environment). Note
that the transition labels differ from prefixes π because
of the presence of bound outputs.

We recall the notion of free names fn(µ), bound
names bn(µ), and names n(µ) = fn(µ) ∪ bn(µ) of a
label µ; only the bound names are the objects of input
and of the bound output. Functions fn, bn and n are
extended to processes by inducing on their syntax and
considering input prefixes and ν operators as binders.
We define the structural congruence ≡ on processes as
the least congruence that satisfies the following clauses:

• P ≡ Q if P and Q differ only in the choice of bound
names (α-equivalent),

• (νx)(νy)P ≡ (νy)(νx)P .

We sometimes write (νx, y)P for (νx)(νy)P . Each
agent identifier A has a unique defining equation in the
form A(ỹ) = P (hereafter, ỹ denotes y1, . . . , yn), where
the yi are all distinct and are the only free names in P .

We define our enhanced labels in the style of
[Degano and Priami1999, Degano and Priami2001]. A
transition label records the inference rules used during
its deduction, besides the action itself. We call proof
term the encoding of the proof in an enhanced label.
Finally, we use an ` function that takes an enhanced
label to the corresponding standard action label.

Definition 2.2 If L = {‖0, ‖1} with χ ∈ L∗, O =
{+0,+1,=m, (νx), (ỹ)} with o ∈ O ∪ L, and if ϑ ∈
(L ∪ O)∗, then the set Θ of enhanced labels (with
metavariable θ) is defined by the following syntax:

θ ::= ϑα | ϑτi | ϑ〈‖0ϑ0α0, ‖1ϑ1α1〉

Priami

where α0 = x(y) iff α1 is either xy or x(y), and vice
versa.
Function ` is defined as `(ϑα) = α, `(ϑτi) =
`(ϑ〈‖0ϑ0α0, ‖1ϑ1α1〉) = τ .

A +0 (+1) tag means that a nondeterministic choice
has been made in favour of the left (right) component.
Similarly, a ‖0 (‖1) tag records that the left (right) com-
ponent of a parallel composition is moving. Restriction
is reported on the labels to record that a filter has been
passed. We record the resolution of a matching through
=m tag, where m is the size of the data to be compared.
Communications are labelled by a pair instead of a τ
to show the components which interacted (and proof of
the relevant transitions). We also record in the labels
the actual parameters ỹ of a definition.

Our transition system for the π-calculus is shown in
Tab. 1. A variant of P

µ−→ Q is a transition which
only differs in that P and Q have been replaced by
structurally congruent processes, and µ has been α-
converted, where a name bound in µ includes Q in its
scope [Milner et al.1993]. The transitions in the con-
clusion of each rule stand for all their variants. The
Com1 and Close1 rules are obvious and are therefore
omitted.

Hereafter, we write a transition as P
θ−→ Q only if it

is deductible according to the inference rules in Tab. 1;
we simply write it as θ, when it is unambiguous.

Definition 2.3 A proved transition system is a
quadruple 〈P,Θ,−→, P0〉, where P is the set of states
(processes), Θ is the labelling alphabet, −→ is the transi-
tion relation defined in Tab. 1, and P0 ∈ P is the initial
state.

We now define proved computations.

Definition 2.4 If P0
θ−→ P1 is a transition, then P0

is the source of the transition and P1 is its target. A
proved computation of P0 is a sequence of transitions
P0

θ0−→ P1
θ1−→ . . . such that the target of any transition

is the source of the next one. We let ξ, ξ′ range over
proved computations. The notions of source and target
are extended to computations.

2.1 Stochastic semantics

We now show how to derive a probabilistic distribution
F from a θ label. The intended meaning of F is the cost
of execution (duration) of the action µ = `(θ). The ac-
tual cost of µ depends on the basic operations that the
run-time support of the target architecture performs
for firing µ. For example, the resolution of a choice
imposes various operations on the target architecture

such as checking the ready list or implementing fair-
ness policies. An action fired after a choice costs more
than the same action occurring deterministically. The
other operations of our calculus reflect analogous rou-
tines of the run-time support and delay the execution
of an action as well. Therefore, we first assign a cost to
the transition corresponding to µ on a dedicated archi-
tecture that only has to perform µ. We then model the
performance degradation due to the run-time support
by introducing a scaling factor for any routine imple-
menting the transition. The new semantics tconsiders
the target architecture on which a system is run.

We derive the distributions of transitions by inspect-
ing the syntactical contexts into which the actions
which originate them are plugged. In fact, the con-
text in which a µ action occurs represents the opera-
tions that the target machine performs for firing µ just
because the structural operational semantics of a lan-
guage specifies its abstract machine in a syntax-driven
logical style. Accordingly, a linearization of a transition
deduction (a proof term θ) represents the execution of
the corresponding run-time support routines on the tar-
get machine.

For instance, look again at the sample deduction
θ = +0||0 +0 a(x) reported at the end of the previ-
ous section. The enhanced label expresses that the ab-
stract machine resolves two choices in favour of the left
alternatives, thus adding extra costs to the output op-
eration. Similarly, the selection of the left component
of the parallel composition will have a cost depending
on the allocation of processes and scheduling policies.
The bound output means that the abstract machine
has to handle the data structure representing the pro-
cess environment in order to export the name x which
is required to be fresh.

Following what is discussed above, we assign a cost
to each inference rule of the operational semantics via a
$ function. In other words, the occurrence of a transi-
tion receives a duration time computed according to
its deduction. There is no need to fix a $ function
here, and we let it be a parameter of the definition of
our model. For the sake of simplicity, we assume that
$a(µ) = Fµ ∈ F (hereafter, we use F to denote a set
of continuous probabilistic distribution functions) and
that the slow-down factor is $o(ϑ) = r ∈ [1,+∞). $o

can be defined by inducing on the structure of ϑ. Even-
tually, we define $ by composing $a(µ) and $o(ϑ), and
by taking synchronization pairs into account.

Note that determining the distribution of synchro-
nizations is a key point in distinguishing different pro-
posals of stochastic process algebras. Here we demand
its computation to function $. This means that the
distributions of synchronization vary according to the
context into which they are plugged and to the archi-

Priami

Act : π.P
π−→ P Ide :

P{ỹ/x̃} θ−→ P ′

Q(ỹ)
(ỹ)θ−−−→ P ′

, Q(x̃) = P Res :
P

θ−→ P ′

(νx)P
(νx)θ−−−−→ (νx)P ′

, x 6∈ n(`(θ))

Par0 :
P

θ−→ P ′

P |Q ||0θ−−−→ P ′|Q
, bn(`(θ)) ∩ fn(Q) = ∅ Par1 :

P
θ−→ P ′

Q|P ||1θ−−−→ Q|P ′
, bn(`(θ)) ∩ fn(Q) = ∅ Open :

P
ϑxy−−−→ P ′

(νy)P
ϑx(y)−−−−→ P ′

, x 6= y

Sum0 :
P

θ−→ P ′

P + Q
+0θ−−−→ P ′

Sum1 :
P

θ−→ P ′

Q + P
+1θ−−−→ P ′

Com0 :
P

ϑxy−−−→ P ′, Q
ϑ′x(w)−−−−−→ Q′

P |Q 〈||0ϑxy,||1ϑ′x(w)〉−−−−−−−−−−−−−→ P ′|Q′{y/w}
Close0 :

P
ϑx(y)−−−−→ P ′, Q

ϑ′x(w)−−−−−→ Q′

P |Q 〈||0ϑx(y),||1ϑ′x(w)〉−−−−−−−−−−−−−−→ (νy)(P ′|Q′{y/w})
, y 6∈fn(Q)

Table 1: Proved transition system for the π-calculus.

tectures on which the partners run. We thus reduce
the selection of distributions to the selection of suitable
architectures and placement of processes. This way the
designer may abstract from stochastic details and con-
centrate on the characteristics of the hardware. Exam-
ples of application of this mechanism can be found in
[Nottegar et al.2001].

We now need to eliminate the nondeterminism intro-
duced by the choice operator from stochastic transition
systems. Hence, we introduce a race condition that se-
lects the transition to be fired among the ones enabled
in a state. All the enabled transitions attempt to pro-
ceed, but only the fastest one succeeds. This mechanism
makes the nondeterministic choice a probabilistic one.
Note that the continuous nature of probabilistic distri-
butions ensures that the probability of two transitions
ending simultaneously is 0. Moreover, as the duration
of transitions is expressed by random variables, differ-
ent transitions are selected on different attempts.

To get stochastic behavior from our transition sys-
tems, we must update the distributions of the random
variables that express the time interval associated with
transitions in correspondence with branching points.
The new transition system is called stochastic.

Definition 2.5 The quadruple 〈P,Θ × F × [0..1],−→
, P0〉 is the stochastic transition system associated with
process P0, where the real in [0..1] denotes transition
occurrence probability. The relation −→ is defined as

P
θi−→ Pi

P
θi,F̃i,pi−−−−−→ Pi

where

F̃i =

∫ t

0
fi(x) ·

∏
P

θj−→Pj

i 6=j

(1− $(θj)(x))dx

∫∞
0

fi(x) ·
∏

P
θj−→Pj

i 6=j

(1− $(θj)(x))dx
, and

pi =
∫ ∞

0

fi(t) ·
∏

P
θj−→Pj

i 6=j

(1− $(θj)(t))dt.

The labels distinguish stochastic and proved transitions.

3 GLOBAL COMPUTING

In this section we mainly concentrate on verification,
while the next section will introduce simulation. Of
course both approaches can be used in any applicative
domain. We start introducing an enabling relation be-
tween transitions that will be used to obtain a perfor-
mance congruence [Degano and Priami1999]. This re-
lation between transitions will be used in the next sec-
tion to deal with general distributions when the random
variables associated with the transitions of a computa-
tion are not independent. Hereafter we write for the
sake of readability ϑ meaning the string obtained from
ϑ by deleting all the proved tags except for ||i.

We first define structural dependencies. A transition
labelled ϑµ depends on a previous transition labelled
ϑ′µ′ if ϑ′ is a prefix of ϑ (the tuning needed to cover
communications is explained below). The underlying
idea is that the two transitions have been derived using
the same initial set of rules and are thus nested in a
prefix chain (or they are connected by communications
in a similar way).

Priami

Definition 3.1 If P0
θ0−→ P1

θ1−→ . . .
θn−→ Pn+1 is a

proved computation, and hereafter i, j ∈ {0, 1}, then
θn has a direct structural dependency on θh, h < n,
(θh �1

str θn) iff

• θn = ϑµ, θh = ϑ′µ′ and ϑ′ is a prefix of ϑ; or

• θn = ϑµ, θh = ϑ′〈ϑ′0µ′0, ϑ′1µ′1〉 and ∃i . ϑ′ϑ′i is a
prefix of ϑ; or

• θn = ϑ〈ϑ0µ0, ϑ1µ1〉, θh = ϑ′µ′, ∃i . ϑ′ is a prefix of
ϑϑi; or

• θn = ϑ〈ϑ0µ0, ϑ1µ1〉, θh = ϑ′〈ϑ′0µ′0, ϑ′1µ′1〉,
∃i, j . ϑ′ϑ′j is a prefix of ϑϑi.

The structural dependencies of θn are obtained by re-
flexive and transitive closures of �1

str, i.e., �str = (�1
str

)∗.

The last two items in Def. 3.1 say that a θ transition
enables a communication if it enables one of its com-
ponents. Also, we need the transitive closure of �1

str

to implement the cross inheritance of the causes of the
communication partners for the residual processes.

Finally, we show how proved computations can be
relabeled to take enabling relation into account.

Definition 3.2 Given a proved computation ξ =
P0

θ0−→ P1
θ1−→ . . .

θn−→ Pn, its associated enabling com-
putation Et(ξ) is derived by relabelling any transition
θk as etk, where

etk =
{

τ `(θk) = τ
〈`(θk), {h 6= k|θh �str θk, `(θh) 6= τ}〉 ow

By abuse of notation we will sometimes write Et(θk) in
place of etk.

4 Exponential distributions

For the sake of presentation, we limit ourselves to ex-
ponential distributions (for general distributions see
[Priami2002]).

An exponential distribution with rate r is a function
F (t) = 1 − e−rt, where t is the time parameter. The
parameter r determines the shape of the curve. The
greater the r parameter, the faster F (t) approaches its
asymptotic value. The probability of performing an ac-
tion with parameter r within time t is F (t) = 1− e−rt,
so r determines the time ∆t needed to obtain a prob-
ability near to 1. The exponential density function is
f(t) = re−rt.

Exponential distributions have the memoryless prop-
erty. Roughly speaking, transitions occur indepen-
dently of when the last transition occurred. In other

words, how long the transition waits before completion
does not depend on how long it has already waited.
Thus, the time elapsed by an activity in a state where
another one is the fastest is useless. This means that
any time a transition becomes enabled, it restarts its
elapsing time just as it would the first time it is en-
abled. Consequently, the treatment of enabling mem-
ory discipline has no counterpart in a pure exponential
setting.

Let us discuss how the definition of the cost function
$ changes. First, we say $a(µ) = λ ∈ IR+, where λ is
the single parameter uniquely describing an exponen-
tial distribution. Then, $o(ϑ) = r ∈ (0..1]. We can
define $o as in Sect. 2.1 by simply exchanging

∑
o∈ϑ

with
∏

o∈ϑ to ensure that $o(ϑ) ≤ 1. Since we will use
r as a multiplicative factor for λ in the definition of $,
the interval (0..1] is the domain of a slowing-down pa-
rameter. Similarly to $o, we have f〈〉 : L∗×L∗ → (0..1].

Definition 4.1 The function $: Θ → IR+ is defined
as

$(ϑµ) = $o(ϑ)× $a(µ)
$(ϑ〈ϑ0α0, ϑ1α1〉) = f〈〉(ϑ0, ϑ1)

×min{$(ϑϑ0α0), $(ϑϑ1α1)}

Our knowledge on the kind of distributions we are
dealing with enables us to state the following Theorem.

Theorem 4.2 Given a process P ,

RP =
∑

P
θi,λi−−−→Pi

λi

is the exit rate of P . Then, the probability of P
θi,λi−−−→ Pi

is
λi

RP
;

the distribution of the random variable Ti which de-
scribes the time interval associated with P

θi,λi−−−→ Pi is

F̃i(t) = 1− e−RP t;

the apparent rate of an action a in P is

ra(P) =
1

RP

∑
P

θj,λj−−−→Pj

`(θj)=a

λj ;

the probability of P
θi,λi−−−→ Pi, `(θi) = a, given that an

action a occurred is

λi∑
P

θj,λj−−−→Pj

`(θj)=a

λj
.

Priami

In spite of the interleaving nature of exponential dis-
tributions, we still use the structural enabling relation
to yield the congruence result of our equivalence.

Definition 4.3 A binary relation S on pairs 〈P, ξ〉 of
processes and computations is an exponential perfor-
mance bisimulation if 〈P, ξ〉 S 〈Q, ξ′〉 implies that for
any equivalence class C originating from S

∀θ . `(θ) ∈ {xy, x(y), τ, x(y)} .

γ(〈P, ξ〉, θ, C) = γ(〈Q, ξ′〉, θ′, C),
Et(θ) = Et(θ′) and bn(`(θ)) 6∈ fn(P,Q)

where

γ(〈P, ξ〉, θ, C) =∑
〈Pi,ξi〉∈C,`(θi)=`(θ) γ(〈P, ξ〉, θ, 〈Pi, ξi〉) =∑

〈Pi,ξi〉∈C,`(θi)=`(θ) ri

where ri is the exponential distribution associated with
a P

θi,ri−−−→ Pi transition where `(θi) = `(θ). P is expo-
nentially performance bisimilar to Q (written P ≈e

P Q)
if there is an exponential performance bisimulation S
such that 〈P, ε〉 S 〈Q, ε〉.

Remember that the condition Et(θ) = Et(θ′) in the
above definition ensures that γ defines the total con-
ditional transition rate as defined in [Hillston1996] for
PEPA.

We refer any reader interested in exponential distri-
butions to [Nottegar et al.2001] for case studies based
on our framework.

As an example we consider a multi-server multi-
queue system (MSMQ, for short) which is an ex-
tension of a classical polling system to include more
than one server. This system has already been
studied in the settings of stochastic process al-
gebras [Hillston1996] and of stochastic Petri nets
[Marsan et al.1991, Ibe and Trivedi1990]. We consider
here a little variant of [Hillston1996], which stresses
mobility issues. In our version the routing of servers
is state-dependent instead of state-independent as in
the original presentation. In particular, servers do not
move randomly between nodes, but consider whether
a node already has a server and whether it has some-
thing to perform. In this respect, our specification is
not a proper MSMQ system, but it enables us to cope
with the general problem of remote servers dispatching
agents to clients.

We consider a system made up of two independent
servers that are routed between two nodes, each with
a single place buffer. Two nodes suffice for generating
the smallest configuration on which we can comfortably
illustrate the features of our model; having more nodes

would only make the example longer. We assume that
a customer occupies a place in the node until service is
completed. We rely on HOπ to model the routing of
servers to nodes via process migration. The specifica-
tion of the polling system follows (assume i = 1, 2).

P = (ν xi, ri, si, pi)((N1 |N2)|(S |S))
Ni = xi(U).U |Nodei

Nodei = ini.si.Nodei + pi.Nodei

S = x1〈S1
1〉.r1.S + x2〈S1

2〉.r2.S

S1
i = si.ri.xi(U).U + pi.ri.xi(U).U.

Servers migrate to the nodes along the links xi. Once
a server has sent its agent S1

i onto a node Ni, it waits
for a signal ri from S1

i to begin again. The agent of
the server queries the node for customers waiting for
service. If there is one waiting, the agent serves the
customer, performing action si in interaction with the
node Ni. Otherwise, via a pass action pi, S1

i restores
the initial state of Ni. In both cases, S1

i eventually
resumes the server S, via an action ri. The arrival of
a customer on node Ni is modelled by firing the action
ini, a synchronization with the operating environment.
The one place buffer of Ni is implemented by blocking
any other ini action until the service of the current
customer has ended.

Hillston [Hillston1996] models the polling system
with a first order calculus and associates stochastic in-
formation with prefixes in the syntax. An implicit as-
sumption is that the routing of servers takes the same
time for any node in the system. We could easily relax
this assumption to distinguish the time spent for mov-
ing to one node or to another, by assigning different
weights to the relative distances.

The transitions of the process P are in the Appendix;
there are 210 of them and they form more than 45 dis-
tinct loops. The higher-order feature of our specifica-
tion reduces the number of states to 68 from 210 of the
specification in [Hillston1996].

As an example of analysis we computed the usage of
the link s1 (which gives the throughput of the services
on the node N1) and we considered different perfor-
mance characteristics of N1. To model this aspect, we
stipulate that all the local channels of N1 (x1, s1, . . . and
x2, s2, . . .) have the same throughput. In particular we
considered three cases for the throughput of the chan-
nels: 352.98, 7.74 and 6.66 Mbps. We got these values
by profiling three different machines at the Department
of Computer Science of the University of Pisa by using
Netperf [net1996]. The corresponding usage of link s1 is
300.089, 9.88717 and 9.64 communications/sec which
turns out to fit with our experimental data.

The transition system for the polling system and the
throughputs above have been computed by using a pro-

Priami

totypal tool described in [Brodo et al.2000].

5 SYSTEMS BIOLOGY

We first recall the modeling principles underlying the
specification of molecular processes into stochastic π-
calculus and then we introduce the way in which rates
of transitions are computed. Eventually we discuss the
implementation of the probabilistic run-time support of
the calculus.

Biomolecular processes are carried out by networks of
interacting protein molecules, each composed of several
distinct independent structural parts, called domains.
The interaction between proteins causes biochemical
modification of domains (e.g. covalent changes). These
modifications affect the potential of the modified pro-
tein to interact with other proteins. Since protein in-
teractions directly affect cell function, these modifica-
tions are the main mechanism underlying many cellular
functions, making the stochastic π-calculus particularly
suited for their modeling as mobile communicating sys-
tems.

Processes model molecules and domains. Global
channel names and co-names represent complementary
domains and newly declared private channels define
complexes and cellular compartments. Communication
and channel transmission model chemical interaction
and subsequent modifications. The actual rate of a re-
action between two proteins is determined according to
a constant basal rate empirically-determined and the
concentrations or quantities of the reactants . Two dif-
ferent reactant molecules, P and Q, are involved, and
the reaction rate is given by Brate × |P | × |Q|, where
Brate is the reaction’s basal rate, and |P | and |Q| are
the concentrations of P and Q in the chemical solution.
However, in a chemical reaction both reactants share a
single basal rate. This is resolved by letting our $ func-
tion of the previous sections associate the basal rate
with channel names.

Since reaction rates depend on the number of in-
teracting processes, we define two auxiliary functions,
Inx, Outx : 2P × N → IN that inductively count the
number of receive and send operations on a channel x
enabled in a process. The rate of a usual reaction is im-
plemented by the three parameters rb, r0 and r1, where
rb represents the basal rate, and r0 and r1 denote the
quantities of interacting molecules, and are computed
compositionally via Inx and Outx while deducing tran-
sitions.

As an example of specification we consider the cell cy-
cle control model (see Tab. 2) [Lecca and Priami2003].
The system is composed by six concurrent processes,
corresponding to the main five species of proteins,
which regulate the cell cycle: CYCLIN, CDK, CDH1,

CKI, CDC14 plus the auxiliary process CLOCK whose
meaning is explained below. First cyclin sub-units
bind to CDK monomers (CYCLIN process) and make
them active; then the dimers cyclin/CDK, the activa-
tor CDC14 and the CDH1 are involved in a negative
feedback loop: cyclin/CDK turns on CDC14, which ac-
tivates CDH1, which inhibits the cyclin/CDK activity,
destroying the cyclin sub-units. The model includes
also another possibility of inhibition of cyclin/CDK:
the stoichiometric binding with CKI. Instead, we have
neglected the inhibition of cyclin/CDK by phosphori-
lation of CDK sub-units (to keep the model as simple
as possible). The events that our code simulates are
the dimers cyclin/CDK formation, phosphorilation (de-
phosphorilation) of CDH1 by CDC14 and the protein
degradation. The binding of cyclin with CDK occurs
through the binding site offered by cyclin on the pri-
vate backbone channel bb. All other events occur on
global channels each at different suitable rates. Phos-
phorilation (de-phosphorilation) of CDH1 by the cat-
alytic unit of CDK (CDK CATALYTIC) is mediated
by pchd1r and removep global channels. The stoichio-
metric binding of cyclin/CDK with CKI is implemented
as a local sub-process of CYCLIN process occurring on
the channel bind.

The different reactions in which the components of
the system are involved are implemented as a multi-
ple non-deterministic choice, that is then turned into
a probabilistic one by the BioSpi tool (see next sec-
tion). For instance, the bound state of CYCLIN
process (CYCLIN BOUND), that identifies the cy-
clin/CDK dimer can undergo three reactions: cy-
clin sub-unit degradation (DEGCYC), binding with
a CKI (CYC CDK CKI), to form the trimer cy-
clin/CDK/CKI (TRIM), or the degradation of CKI
sub-unit (DEGCKI). The active form of Cdh1 protein
(CDH1) can degradate the cyclin (DEGRCYC), can
be inactivated (INACT) by the join with a phosphate
group or can be activated by CDC14 (ACTCDC14)
that removes from it the phosphor. The trimer
CYC CDK CKI can be resolved in the dimer cy-
clin/CDK (DIM) or it can remain itself (NOTHING).

Finally, note that we introduce in the specification
the process CLOCK for technical reasons. It drives
the mechanism of sending - receiving on the channels
removecki and donothing in the decomposition of the
trimer cyclin/CDK/CDK.

5.1 Implementation

We implemented the biochemical stochastic π-calculus
as part of the BioPSI application, based on the FCP
platform Logix [Silverman et al.1987, Shapiro1987].
We devised an appropriate insulated surface syntax,

Priami

SY STEM ::= CY CLIN |CDK|CDH1|CDC14|CKI|CLOCK
CY CLIN ::= (ν bb)BINDING SITE
BINDING SITE ::= (lb〈bb〉, R4).CY CLIN BOUND
CY CLIN BOUND ::= DEGCY C + DEGCKI +

CY C CDK CKI
DEGCY C ::= (degp, R1).degc.0
DEGCKI ::= (degd, R3).CY CLIN BOUND
CY C CDK CKI ::= (bind〈bb〉, R11).bb.TRIM
TRIM ::= DIM + NOTHING
DIM ::= (removecki, R9).(CDK|CY CLIN BOUND)
NOTHING ::= (donothing, R10).TRIM
CDK ::= (lb(cbb), R4).CDK CATALY TIC
CDK CATALY TIC ::= INACTCDH1 +

NEWCDK + INACTCAT
INACTCDH1 ::= (cdh1r, R6).CDK CATALY TIC
NEWCDK ::= (degc, R2).CDK
INACTCAT ::= (cbb, R5).0

CDH1 ::= DEGRCY C + INACT + ACTCDC14
DEGRCY C ::= (degp, R1).CDH1
INACT ::= (cdh1r, R 6).(pcdh1r, R7).CDH1
ACTCDC14 ::= (removep, R8).CDH1

CDC14 ::= (pcdh1r, R7).CDC14P
CDC14P ::= (removep, R8).CDC14

CKI ::= DEGRCKI + BINDCY C
DEGRCKI ::= (degd, R3).0
BINDCY C ::= (bind(x), R11).0

CLOCK ::= CLOCK1 + CLOCK2
CLOCK1 ::= (removecki, R9).CLOCK
CLOCK2 ::= (donothing, R10).CLOCK

R1 = 0.005 R2 = 0.001 R3 = 0.003
R4 = 0.500 R5 = 0.300 R6 = 0.005
R7 = 0.009 R8 = 0.009 R9 = 0.010
R10 = 0.017 R11 = 0.020

Table 2: Stochastic π-calculus specification of the cell
cycle control model.

and built a compiler to FCP. Two unique features of
FCP made it suitable for our purposes. First, the abil-
ity to pass logical variables in messages is used to imple-
ment name passing. Second, FCP’s support of guarded
atomic unification allows synchronized interaction be-
tween input and output guards.

In BioPSI, each channel is an object (a persistent
procedure) and is associated with a basal rate. BioPSI
processes send requests to the channel, via an FCP vec-
tor. There are four kinds of requests: send, receive,
send & receive (for homodimerization), and withdraw.
Requests to a channel which has an infinite rate are sat-
isfied as soon as possible. Requests to a channel which
has a finite rate (> 0) are queued.

Each time that a new event is required the cen-
tral BioPSI monitor and all channel objects with a fi-
nite, non-zero rate, jointly determine a communication
event. Each channel object determines a weighted rate,
according to its basal rate and the numbers of send and
receive offers. Based on an existing algorithm (detailed

Figure 1: BioSpi simulation output for the two state Nasmyth
model of cell cycle control. TIme evolution of absolute number of
proteins involved in the process: Cdh1, Cdc14 and cyclin/CDK.

in [Gillespie1977]), the monitor selects randomly among
the weighted rates, and stochastically selects according
to the sum of weighted rates an appropriate reaction
time interval to advance a “clock” counter. The cho-
sen channel completes one transmission (send/receive
pair), relaying the sent message to the receiver.

The completion of the send and receive requests is
synchronized by the channel. In addition, other mes-
sages offered on this and other channels by the same
two processes whose requests were completed, are with-
drawn (mutually exclusive choice). The withdrawals
are not synchronized, but they do precede continuation
of their respective processes.

Each BioPSI process is transformed to an FCP proce-
dure, and its channel set (global channels, arguments,
newly declared channels and channels, bound by in-
put, to be instantiated only following communication)
is identified, thus allowing full use of channels as in the
original calculus. Note, that the BioPSI process retains
a segment of a short circuit, which is extended when the
channel is passed to more than one process (including
itself, recursively) and closed when the channel refer-
ence is no longer required. When all segments of the
short circuit have been closed, the channel object ter-
minates.

Several tracing and debugging tools are available for
following a simulation. These include a full ordered
and timed trace of all events, which is post-processed
to produce a quantitative time-evolution for each kind
of process. For example, the simulation outputs of the
cell cycle model shown in Fig. 1 are in agreement both
with published simulation and analysis data and with
experimental observations for the Nasmyth two states
model.

Priami

The use of Gillespie’s algorithm [Gillespie1977] for
the implementation of the race condition ensures the
biochemical faithfullness of BioPSI stochastic simula-
tions.

Acknowledgment. I would like to thank all the peo-
ple involved in the DEGAS project and Paola Lecca,
Aviv Regev and Ehud Shapiro for the cooperation that
contributed to the results described in this paper. The
author has been partially supported by the EU project
IST-2001-32072 DEGAS founded under the FET proac-
tive initiative on global computing.

REFERENCES

[net1996] 1996. Netperf: A network performance bench-
mark, revision 2.1. Information Networks Division,
Hewlett-Packard.

[sb-science2002] 2002. Systems biology. Science, 295.

[Booch et al.1997] Booch, G., J. Rumbaugh, and I. Ja-
cobson. 1997. UML notation guide, version 1.1.

[Brodo et al.2000] Brodo, L., P. Degano, and C. Pri-
ami. 2000. A tool for quantitative analysis of pi-
calculus processes. In Proceedings of PAPM’00, ed.
R. Gorrieri. Geneva: Carleton Scientific.

[Degano and Priami1999] Degano, P., and C. Priami.
1999. “Non Interleaving Semantics for Mobile Pro-
cesses”. Theoretical Computer Science 216:237–270.

[Degano and Priami2001] Degano, P., and C. Priami.
2001. Enhanced operational semantics: A tool for
describing and analysing concurrent systems. ACM
Computing Surveys 33,2:135–176.

[Gillespie1977] Gillespie, D. 1977. Exact stochastic
simulation of coupled chemical reactions. Journal of
Physical Chemistry 81 (25): 2340–2361.

[Hillston1996] Hillston, J. 1996. A compositional ap-
proach to performance modelling. Cambridge Uni-
versity Press.

[Ibe and Trivedi1990] Ibe, O., and K. Trivedi. 1990.
Stochastic petri net models of polling systems. IEEE
Journal on Selected Areas of Communication 8 (9).

[Lecca and Priami2003] Lecca, P., and C. Priami. 2003.
Cell cycle control in eukaryotes: a BioSpi model. In
Proceedings of BioConcur 2003, ENTCS. To appear.

[Marsan et al.1991] Marsan, M. A., S. Donatelli,
F. Neri, and U. Rubino. 1991. On the construction
of abstract GSPNs:an exercise in modelling. In Pro-
ceedings of 4th PNPM.

[Milner et al.1992] Milner, R., J. Parrow, and
D. Walker. 1992. A calculus of mobile pro-
cesses (I and II). Information and Computation 100
(1): 1–77.

[Milner et al.1993] Milner, R., J. Parrow, and
D. Walker. 1993. Modal logics for mobile pro-
cesses. Theoretical Computer Science 114:149–171.

[Nottegar et al.2001] Nottegar, C., C. Priami, and
P. Degano. 2001. Performance evaluation of mobile
processes via abstract machines. IEEE Transactions
on Software Engineering 27 (10).

[OMG2000] OMG 2000, November. Xml metadata in-
terchange (xmi) version 1.1. OMG document 00-11-
02 available from www.omg.org.

[Priami2002] Priami, C. 2002. Language-based perfor-
mance prediction for distributed and mobile systems.
Information and Computation 175.

[Priami et al.2001] Priami, C., A. Regev, W. Silver-
man, and E. Shapiro. 2001. Application of a stochas-
tic passing-name calculus to representation and simu-
lation of molecular processes. Information Processing
Letters 80:25–31.

[Roux-Rouquie and Le Moigne2002] Roux-Rouquie,
M., and J. Le Moigne. 2002. The systemic paradigm
and its relevance to modeling biological functions.
C.R. Biologies 325:419–430.

[Shapiro1987] Shapiro, E. 1987. Concurrent prolog:
a progress report. In Concurrent Prolog (vol. I),
ed. E. Shapiro, 157–187. Cambridge, Massachusetts:
MIT Press.

[Silverman et al.1987] Silverman, W., M. Hirsch,
A. Houri, and E. Shapiro. 1987. The Logix system
user manual, version 1.21. - concurrent prolog (vol.
ii). MIT Press.

[W3C2000] W3C 2000, October. Extensible markup
language (xml) 1.0 (second edition). available from
http://www.w3c.org.

AUTHOR BIOGRAPHY

CORRADO PRIAMI is Professor of Computer Sci-
ence in the University of Trento. His e-mail ad-
dress is <priami@dit.unitn,it>, and his web page is
<www.science.unitn.it/priami>.

