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Nowadays, manufacturing systems are increasingly embracing the Industry 4.0 paradigm. Therefore, manual
and low-standardized manufacturing environments are often digitized through Industrial Internet of Things
technologies to quantitatively assess and investigate the role of the human factor from multiple points of view.
This approach is commonly known as Operator 4.0. In such a scenario, this manuscript proposes an original
digital architecture to monitor the efficiency and the social sustainability of labor-intensive manufacturing job
shops. While the anonymous spatio-temporal trajectories of tagged workers are acquired through an ultrawide
band radio network, machine learning algorithms autonomously detect the human-process interactions with
strategic industrial entities upon developing industrial key performing indicators. The proposed architecture is
tested and validated in a real manual manufacturing system. In detail, the performing accuracies of the machine
learning-based software provide industrial plant supervisors with several production metrics to identify the
hidden weaknesses and bottlenecks of the monitored manufacturing system. Such digital assessment may
trigger a re-organization of the considered process to, for instance, enhance the allocation of the material
in storage areas while fairly re-balancing the distances traveled by workers for picking activities.

1. Introduction role while performing extremely value-added activities in production
cycles (Pilati et al., 2020). Different approaches have been proposed

The Industry 4.0 paradigm is progressively powering different tech-
nological advances in manufacturing systems to increase in-plant pro-
ductivity by merging together digital and physical worlds. In such
a widespread integration, any industrial entity is connected to the
Internet enabling data gathering and if necessary triggering automatic
process modification (Pereira and Romero, 2017). This approach is
leading to smart and decentralized production environments. However,
the full automation of processes is not always feasible or economically
viable, especially for small and medium enterprises (SMEs) (Bor-
tolini et al., 2021). Therefore, Industrial Internet of Things (IIoT)

to smooth the mutual collaboration between industrial entities and
workers (Romero et al., 2016). For instance, markerless motion capture
(MOCAP) cameras and smart Radio Frequency Identification (RFID)
glovers are leveraged to evaluate the postures of workers during assem-
bly activities and perform an activity segmentation of task executions,
respectively (Pilati et al.,, 2020; Singh et al., 2019). The relevance
of such human-centered digital solutions is additionally remarked by
the Industry 5.0 paradigm. Based on this, digital IIoT technologies
are empowered by ML methods to mitigate different sets of chal-

technologies enrich industrial digitization by acquiring large volumes
of data from heterogeneous physical entities (Boston-Consulting-Group,
2022). These reliable datasets digitally back up an even more per-
forming decision-making process by constantly updating manufacturing
information systems (e.g., MES, ERP, etc.) (Yao et al., 2019). Con-
sidering low-standardized and variable environments, human workers
are privacy-compliant digitized through different sets of IloT wear-
ables and sensors. This approach, known as Operator 4.0, mitigates
processes’ uncertainties and complements the workforce their pivotal

lenges from supply chain disruptions to the aging of the European
population (Directorate-General for Research and Innovation, 2021).
In such a digital scenario, indoor positioning systems (IPS) repre-
sent an active research field from health care to retail (Shum et al.,
2022). Among the several communication protocols proposed so far,
the ultrawide band (UWB) emerges as the best candidate in indoor
and non-line-of-sights environments where different types of noise
(e.g., jamming, scattering, etc.) and obstructions between receivers and
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transmitters may occur (Santoro et al., 2022). The positioning capabil-
ities of this technology are increasingly exploited in manual and low-
standardized manufacturing systems to monitor the dynamic locations
assumed by moving industrial entities during working shifts (Pilati
et al., 2022). The areas of application range from process monitor-
ing to safety management both for in-plant logistics and production.
Therefore, industrial plant supervisors may enhance the visibility of
labor-intensive processes by targeting different viewpoints from fork-
lift overall equipment effectiveness and product throughput times to
collision avoidance between automated guided vehicles (AGVs) and
workers (Racz-Szabé et al., 2020).

The digitization and thus the acquisition of vast datasets of produc-
tion plants is contributing to achieving an increasingly performing data
analytics process even for manufacturing systems. In detail, machine
learning (ML) techniques represent an enabling factor to gain a compet-
itive edge in modern and volatile industrial contexts. According to the
Mckinsey Global Institute (Mckinsey&Company, 2022), in 2021 private
companies invested 93.5 billion in such field doubling the 2020 level.
While training processes of ML algorithms are constantly shortened,
the 51% of European companies are involved in this rapid expansion
and adoption. Benefitting from these advanced mathematical methods,
surveyed adopters were able to save up to 90% of their operating
cost whilst increasing up to 75% of their revenues. In modern and
digitized manufacturing systems, supervised learning approaches may
be leveraged to reduce inefficiencies and identify the best selection
of manufacturing parameters to reduce process’ wastes (Gonnheimer
et al., 2022; Rajpathak et al., 2020). Similarly, unsupervised learning
methods cluster spatio-temporal trajectories. Indeed, human activities
are detected and thus assigned to known points of interest (Xiang et al.,
2016).

Considering the analyzed scenario, this manuscript proposes an
integrated hardware (HW) and software (SW) architecture to detect
human-process interactions (HPIs) in manual and low-standardized job
shops. From a manufacturing point of view, an HPI occurs whenever
workers perform manual activities in machines or workbenches and
pick or deposit materials in stock-keeping units (SKUs) of storage areas.
While the HW part consists of an UWB-based IPS network where
human workers are equipped with anonymous wearables tags, the ML-
based SW exploits both supervised and unsupervised ML algorithms to
achieve strategic key performing indicators (KPIs) of the manufacturing
process (e.g. resource utilization ratio). These KPIs, displayed in an
industrial dashboard, evaluate the efficiency and the social sustain-
ability at the job shop, resource, and operator levels. Such IIoT and
ML-based information enhance the industrial decision-making process
by identifying hidden weaknesses and bottlenecks. In addition, the
proposed digital architecture is very practical instead of tagging process
entities with RFID technology. Based on this aim, the manuscript
is organized as follows. Section 2 describes the adoption of UWB-
based IPS networks along with supervised and unsupervised learning
applications to detect HPIs with industrial entities and increase the
consistency of the decision-making process for manual manufacturing
systems, respectively. The novelty of this work is the digital architec-
ture (Section 3). In this regard, data collected by an UWB-based IPS
are leveraged by ML methods to detect HPIs over shifts. The proposed
digital architecture is validated in an operating manufacturing job shop
(Section 4). Section 5 presents the developed KPIs to monitor the
manufacturing systems from different viewpoints and levels of detail.
Finally, Section 6 ends this manuscript by outlining the conclusions and
further research opportunities.

2. Literature review

Regardless of the adopted manufacturing system configuration such
as cellular or reconfigurable, the human factor still delivers strategic
added values to the productive cycle (Wan and Leirmo, 2023). In
such modern environments, the workforce represents the most flexible
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resource due to its ability in performing heterogeneous manufacturing
tasks. Indeed, while a specific machine configuration processes lim-
ited families of products, workers have intra-cell assignments which
increase manufacturing interdependencies and variability (Albini et al.,
2023; Bortolini et al., 2020). Based on this, different applications
aimed at digitizing the human factor with IIoT technologies in modern
manufacturing systems gained consistent interest (Zamora-Hernandez
et al., 2021). This trend, defined as Operator 4.0, may bring competitive
advantages to modern manufacturing systems. First, industrial plant
supervisors perform a quantitative decision-making process based on
digital data to enhance the as-is scenario under different viewpoints.
For instance, the physical workload of human workers may be lowered
or fairly rebalanced while increasing production efficiencies Second,
gamification approaches may be implemented to promote and support
human commitment and exchange of concerns and knowledge. Third,
augmented reality applications might shorten workforce training pe-
riods and improve workstations’ design and layout to achieve socially
sustainable industrial environments (Romero et al., 2018, 2017; Marino
et al., 2021). A further emphasis on social sustainability in human-
centered manufacturing environments is brought by Industry 5.0. This
primary concern on human factors increases the long-term well-being
of workers by reducing internal turnover. Consequently, labor-intensive
manufacturing settings benefit from increased in-plant productivity as
a primary positive externality (Directorate-General for Research and
Innovation, 2021; European Commission and Directorate-General for
Research and Innovation and Miiller, 2020).

Among the key enabling technologies to achieve the Operator 4.0
concept, IPSs are increasingly adopted in modern manufacturing sys-
tems to monitor the dynamic indoor positions of moving physical
entities (Ruppert et al., 2018). Over the past decades, different com-
munication protocols have been proposed and validated to achieve
this challenging aim. Radio-frequency (RF) based protocols are less
prone to interference than ultrasonic, optical and infrared devices.
Considering the RF applications, both narrowband and wideband are
adopted to indoor locate manufacturing entities. In such a vast area,
the UWB radio emerges as the most accurate candidate due to its
technical characteristics. In detail, the multipath resolution and band-
width prevent signals from overlapping jamming, respectively (Mazhar
et al., 2017; Santoro et al., 2021). Despite the communication protocol
selection, IPSs” HW is distinguished by two main physical entities. The
tags send positioning information with a given frequency rate to a
network of reference points, the anchors (ANs). The ANs, in addition
to defining the coverage area to be monitored, calculate the time-
dependent positions assumed by moving entities equipped with tags.
The Time Difference of Arrival (TDoA) geometrical methods is the most
adopted to achieve this purpose (Santoro et al., 2022).

In such a digital scenario, there are different contributions aimed
at leveraging positioning data to enrich manufacturing systems func-
tioning from different viewpoints. Potential applications are to indoor
position industrial entities. For instance, tagging products represent a
privileged opportunity to reveal weak spots in production by comparing
the expected throughput times with the real ones. Indeed, industrial
plant supervisors may trigger production system modifications such
as line rebalancing to increase the performance of assembly opera-
tions (Slovak et al., 2019). Automated forklifts and AGVs are tagged
as well to evaluate the efficiency in picking and depositing routes and
prevent potential collision sources (Lee et al., 2017; Sun et al., 2019).
Despite the tangible benefits of such approaches, their strong limitation
is not achieving the Operator 4.0 concept. To target this purpose,
privacy and labor union concerns have to be properly considered and
addressed (Acquisti et al., 2015). Based on this, the vast majority of
contributions that leverage indoor positions of the workforce is focused
on the safety management research area. Representative applications
are the collision avoidance between operators and AGVs, and COVID-
19 transmission prevention (Locklin et al., 2022; Pilati et al., 2022). To
avoid these concerns and monitor low standardized process efficiency,
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Fig. 1. Overview of the proposed digital architecture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

several applications tag industrial entities utilized by workers during
task executions. For instance, exploiting the indoor position of man-
ufacturing shared tools enables to reduce searching times and assess
their utilization ratio (Kelepouris and McFarlane, 2010). Similarly,
manual forklifts’ picking and depositing performances are evaluated as
well Gladysz et al. (2017). However, the analyzed IPS-based contribu-
tions do not exploit clustering algorithms to mine value in acquired
spatio-temporal data. In manufacturing environments, Dardnyi et al.
(2022) adopt a fuzzy logic approach to improve tools management.
Though, the presented approach does not outline the obtained accu-
racies to cluster tools’ job shop positions in the spatial and temporal
dimensions, potentially leading to not representative industrial KPIs
such as utilization ratios. Therefore, to enhance data analytics pro-
cesses, machine-learning methods are increasingly adopted to mine
value in data acquired by IIoT technologies (Albanese et al., 2022).
In this regard, several unsupervised spatial clustering techniques have
been proposed. For instance, from data acquired by the Global Position-
ing System, spatial patterns in human trajectories are exploited to gain
strategic insights about the performed activities in given time windows.
Hence, times spent in a given geographical location of interest are au-
tomatically evaluated (e.g. supermarket, restaurant, etc.) (Xiang et al.,
2016; Kanagala and Krishnaiah, 2016). However, these approaches are
insensitive to the temporal dimension and thus utterly inadequate in
industrial environments. Indeed, manufacturing interactions occurring
in the same geometric regions but in different time windows may be
merged together leading to skewed KPIs.

To overcome the mentioned limitations, this manuscript proposes a
novel digital architecture to achieve an UWB-based Operator 4.0 con-
cept in low-standardized and labor-intensive manufacturing systems.
In addition, the data analytics process is enriched by the Industrial
DB scan, an original unsupervised learning spatial clustering technique
to detect HPIs with relevant industrial entities. Finally, the proposed
approach automatically assesses multi-dimensional KPIs upon indus-
trial plant supervisors can detect weaknesses and bottlenecks of the
considered manufacturing job shop. In addition, the social sustainabil-
ity of workers is analyzed by evaluating the distances traveled during
picking/deposit activities.

3. Digital architecture

This section represents the original proposal of the manuscript. First,
the General Data Privacy Regulation (GDPR)-compliant HW part of the
developed architecture tags industrial workers through an UWB-based
IPS to anonymously acquire workers’ trajectories during the working
shift. Second, its ML-based SW counterpart leverages spatio-temporal

and manufacturing systems data to detect HPIs with strategic indus-
trial entities in manual and low-standardized productive processes.
The proposed SW adopts both supervised and unsupervised methods
to achieve a performing data analytics process. Finally, an industrial
dashboard is developed to analyze through strategic KPIs the efficiency
and social sustainability of manual manufacturing systems on three
different levels of detail. Fig. 1 presents the overview of the briefly
outlined digital architecture. In detail, while the green-colored cloud
lists the core devices of the IPS-based HW, the spatio-temporal and
manufacturing data to be fed into the ML-based software (e.g., pink
box) are presented in blue. The grey box describes the industrial dash-
board by listing the three different levels of detail, namely job-shop,
operators and resources. Finally, Appendix section sums up the indices
and parameters to ease the reading process of this quantitative Section.

3.1. Hardware

The developed HW is an UWB-based IPS that acquires the dynamic
indoor spatio-temporal positions of tagged entities with a given aver-
age sampling frequency. The IIoT architecture is based on Decawave
commercial modules and is composed of two main systems (Qorvo,
2022a,b). First, a set of ANs define the reference region in which are
monitored the dynamic positions assumed by wearable and anonymous
tags over working shifts. In detail, the UWB-based network of ANs
estimates the dynamic positions assumed by tagged human operators
over the shift through the TDoA ranging technique. This geometric
method calculates the indoor spatio-temporal position of tags by the
intersection of two hyperbolas from at least three active ANs (Santoro
et al.,, 2022). Any AN is based on Raspberry PI 3 connected to a
DWM1001 UWB-based radio module. These reference points have to
be displaced on the ceiling of the manufacturing environment to be
monitored with a distance between each other at greatest equal to
20 m (Fig. 2). This network is connected and hence synchronized
through a common Wi-Fi access point. The compact wearables are
based on Decawave DWM1001 SoM which is configured to use UWB
Channel 5 with bandwidth and frequency of 499.2 MHz and 6489.6
MHz, respectively. In addition, the DWM1001 SoM integrates, among
the others, a low-power Nordic Semiconductors nRF52 microcontroller.
Data sharing and acquisition are achieved by exploiting the MQTT
protocol to enable data transfer to the remote server.

3.2. Machine learning-based software for data analytics

Based on the features of the adopted UWB-based IPS network, this
Section extensively describes the steps to leverage the acquired spatio-
temporal positioning data in manual and low-standardized manufac-
turing systems distinguished by value-added areas in which workers
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(a) Anchor mounted
on the ceiling of an
industrial building

(b) Board of the tag worn by workers

Fig. 2. Adopted UWB-based IPS hardware.
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perform manual operations and SKUs storage areas (Fig. 3). The goal of
such analysis is to detect through the original Industrial DB scan man-
ufacturing HPIs with industrial entities such as machines and SKUs to
gain unprecedented visibility of manufacturing job shops. For instance,
evaluating the utilization ratio of industrial entities and the distances
traveled by workers during material replenishment. To ease the reading
process, five sub-subsection outlines the key steps to be performed in
order to meet such ambitious aims. In addition, Appendix lists the
indices and parameters that will be introduced in the following lines.

3.2.1. Four step positioning estimation

Before starting the detection of HPIs, a pre-processing step has to
be implemented to mitigate the intrinsic interference of manufacturing
settings in the anonymous positioning data (Fig. 3). First, acquired

data are processed by the Savitzky-Golay filter. This data smoothing
method fits a discrete set of points into a polynomial curve of a chosen
degree using an odd time window (Schafer, 2011). Second, the Cheng
Filter (Cheng et al., 2020) detects and thus eliminates outliers whether
the following condition is met (Eq. (1)).

|v;’ — MADY| > "™ 1

Where v% represents the velocity of the wth worker over the fth
timeframe and M ADY" is the median absolute deviation with respect
to velocities of the wth worker. Of course, v™%* is a constant and has to
be set appropriately based on the motion patterns of the monitored case
study. This data removal is particularly relevant since the following
unicycle Extended Kalman Filter is insensitive to outliers in human
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trajectories (Antonucci et al., 2019). In particular, the forward predic-
tion of the state during the fth timeframe given the previous one is
computed as it follows(Eq. (2)).

+ 510’” | cos (9;’_1>

f 1 0
. y w
w  _| pyY +610Y  sin (0’”7 ) 0 0 noy,
-1 T - gwl T s o n'_, &
I f-
o 0 ot
S
Where 9;9'_1 and v;'_l represent the worker’s trajectory angle and veloc-

ity during the time frame f — 1. In addition, 5 represents the Gaussian
distributed noise and 67 describes the delta time between consecutive
indoor positions. The last method of the pre-processing step is to
perform a backward estimation of the state at the f-1 given the fth
time frame through the Rauch-Tung-Striebel smoother (Miller, 2016).

3.2.2. Trajectory detection for each sub-area

After having performed the noise mitigation, the proposed original
SW performs a trajectory detection for each operator and sub-area as
depicted in Fig. 3. Over a defined monitoring period, the set T =
(rw, 7%+, ..., TV} groups sets of trajectories made by the W ac-
tive workers. Considering whichever industrial job shop, its monitored
area can be conceptually divided into A sub-areas based on their
functional role in the manufacturing cycle. Where A represents the
possible number of sub-areas that should be decided in agreement with
industrial plant supervisors. Therefore, T% = {t;"’”, tl'.‘jr'?/, ,tlw“’ }, where
1" represents the ith sub-trajectory of the wth worker occurred in
the ath area of the job shop. Based on this, t'l”’” and 1,"" are two
consecutive sub-trajectories occurred in different sub-areas (e g.a#d).
In addition, any ¢, = { p:"f‘f pZ"f‘fH, s pf}i} is a structure where pfj’f’ =
(px:}“,pyf}“,ts:"}“) is a spatio-temporal point. In detail, any fth point
belonging to a given 7" must meet the following condition (Eq. (3)).

M/a

Vo< f<f <F=>tsf, ts'.”f“ 3)

Based on the computed 7", the algorithm checks whether sub-
trajectories belong to any storage area of the considered manual job
shop. As outlined in Fig. 3, whenever this check is false, the SW
automatically recognizes that the considered trajectory occurs in value-
added areas and triggers two data mining steps, Industrial DB scan
based, to detect HPIs with strategic industrial entities such as ma-
chinery and workbench (Section 3.2.3). Contrarily, supposing the sub-
trajectory check is met, specific data mining steps are performed to
detect HPIs in storage areas, namely picking/deposit activities in SKUs
(Section 3.2.4).

3.2.3. Value-added areas data mining

Whenever human workers interact with the surrounding manu-
facturing resources, they perform strategic activities in front of it.
Therefore, any HPI has the following characteristics: (1) its consecutive
points have a high-spatial density and (2) the related duration is
strictly greater than zero seconds. Based on these considerations, the
following paragraph quantitatively describes the original Industrial DB
scan developed to overcome the limitations outlined in Section 2. Let
consider an arbitrary ;" composed by a variable number of p:‘f“ The
€ temporal sequence of a given p “ is the maximum number of points
in t “ that meet the following cond1t10n (Eq. (4)).

pff}a e e(p;f}a,d*) o EuclideanDistance(pZ}a,pffj’,‘i) < d*,foj’," e t:.‘”a (@)

where d* describes the maximum radius to be considered. Supposing
that in the ith sub-trajectory the former condition is verified for a
variable number of points, let define the gth ¢ temporal sequence as
S'” = {p; f“,q,pl R N ¥ q} However, the e temporal sequence
has to be consistent with the temporal dimension. The following Eq. (5)
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avoids considering two separate HPIs that occurred in the same region
as one.

w,a w,a

pi,f”‘l _pi,f’+l q 61 Vp

w,a
!f/q’plf’+lq € Sig )

where 6t represents the sampling time of the adopted HW. Finally, S,.'j’q"'
is a relevant HPI whether groups at least a total number of points equal
to or greater than a threshold (NPts). This latter parameter is set based
on human motion and may vary from sub-area to sub-area to increase
the performance of the developed algorithm. However, the processed
plwl‘; may be affected by the intrinsic uncertainty of human motion and
other types of noise not properly mitigated during the pre-processing
stage. Based on this, let consider two consecutive HPIs C.* and CZ‘:‘:I
for the first operator in the ath sub -area durmg the ith sub -trajectory.
In detail, any C.7* = { p“’ff‘, P, f’+lz oy f; }. In addition, HPIs are
also dlstmgulshed by a geometric center O“ 1 =1{0x7; ,Oy'” “} that can
be calculated as the weighted average between the current acquired

position (px ) and the delta time between consecutive timestamps

(tsff’;fﬂl and ts ) (Eq. (6)).
f*= g
Z ,px / (ts ’ i fr )
f=f !f i,f'+1,z l,f .z
Ox"% = 6
zi E/ *—1 ( w,a —ts w,a ) ( )
r=r 1f’+l,z lf’

The same approach is adopted to calculate the y dirnension of the
center. In addition, from a temporal viewpoint C.* and C:Jr‘f are
spaced by a fixed duration in the preferred time umt Therefore, two
consecutive HPIs can be merged into a single one whether the Eq. (7)
is met and at least one between Eq. (8) and (9) is true (Xiang et al.,

2016).

SWa w,a

ip12 "5 jr g SO @
EuclideanDistance(p?}‘f ,OZ:; PR (8)
EuclideanDistance(p", iz ,p” f SO )]

where « depends on the average time spent to travel from a pro-
cess interaction to the following one and g and ¢ on the expected
distance from consecutive stops. However, the detected HPIs provide
no information on the manufacturing system because they are not
related to any industrial entity and thus fail to develop industrial
KPIs. In manufacturing environments, human operators perform certain
activities of productive processes in known regions of job shops. These
areas may be within the boundaries of machines, workbenches, etc. To
this extent, let index as k these relevant industrial entities. Indeed, as
depicted in Fig. 3, any detected CZ’;“ can be assigned to one of them.
To do so, a geometric entity representing any kth industrial resource
and an objective function to be minimized have to be properly defined.
Starting with the first, given the specific geometrical shape of the kth
industrial entity, B, represents its centroid. Then, the formulation of
the objective function to assign any C.}* to a unique k follows. This
assignment is based on distances and orientations. On one hand, the
distance of the zth HPI from an arbitrary kth industrial resource is
outlined in the Eq. (10).
s )

¥ dist B (15, -

E (i)

where dlsl(p . .- By) represents the Euclidean distance between the
spatio- temporal pomt f' of the ith sub-trajectory of the zth HPI for the
wth operator in the ath sub-area, and the centroid of the kth industrial
resource. On the other hand, the orientation of each process interaction
with respect to the kth industrial resource requires more computational
steps. First, it is calculated wa[f Fralz the angle assumed by the wth
worker from the spatio-temporal point f/ and f’ + 1. Second, 9 " k .
represents the angle assumed by the same worker and the centroid of

Dist™* =

z,k (10)
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the kth industrial entity. Therefore, Eq. (11) calculates the resulting
orientation from the spatio-temporal point f’ to the kth industrial
entity.
M.7 a w.,a
Ing’kz 91f’f’+lz| an
Flnally, since HPIs group a variable number of spatio-temporal
points, Eq. (12) evaluates the orientation of process interactions with
respect to the kth industrial entity.

/‘—1 _owa
Z:J f! lf/ (tslf/+lz tsi,fﬂz)

j*—1 w,a
Zj f’( If’+lz t!f’ )
After having presented all the relevant parameters to perform the

assignment of HPIs, the objective function to be minimized is outlined
below (Eq. (13)).

(12)

w,a _
Lz,k

FOZ””: minK<mDD1st +m9L ) 13)

Vk=1
where m;, and m, represent the weights connected to the distances
and the orientations, respectively. Consequently, the remaining spatio-
temporal points of a given sub-trajectory in value-added areas represent
a walking activity for the considered human worker.

3.2.4. Storage areas data mining

Whether the detected sub-trajectory (see Section 3.2.2) occurs in
storage areas, the original ML-based SW aims at detecting picking/
deposit activities with SKUs (Fig. 3). Therefore, industrial plant super-
visors can analyze in which SKUs anonymously tagged workers perform
picking/deposit activities and thus evaluate the material allocation
efficiency. To achieve this purpose, the first step to be performed is
the Industrial DB scan. Despite the algorithm operatively works as
outlined before, the hyper-parameters (e.g., ¢ NPts, a, f and ¢) due to
potentially different motion patterns may be indexed to a. Contrary to
value-added areas, storage areas are generally wider in terms of square
meters. Indeed, some HPIs detected by the developed Industrial DB scan
may be false positives due to, among the others, the intrinsic uncer-
tainty of human motion and noise of the signal acquired by the HW of
the proposed digital architecture. For instance, the Industrial DB scan
may label as process interactions trajectories instances in which the
speed of worker motion decreased to overcome unexpected obstacles or
aisles congestion. Based on this, a further processing step, supervised
learning-based, is leveraged to avoid overestimations of HPIs leading to
unrepresentative KPIs (Fig. 3). In detail, any C.’“ is also distinguished
by a mean velocity, acceleration, and duratlon (e.g., v“ s E?,” and

;”“) In addition, HPIs are manually assigned to class 1 whether,
according to the collected ground truth, they cluster picking/deposit
activities, 0 otherwise. Considering real manufacturing environments,
collecting large video-based ground truth datasets may raise privacy
and industrial secrets concerns of operators and companies, respec-
tively. Another potential limitation is represented by the installation
of cameras that may obstacle manual production routines. Therefore,
a potential issue is represented by the limited dimension of ground
truth datasets upon which training supervised ML models. In such a
scenario, to maximize KPIs accuracies while limiting the intrusiveness
of ground truth’s video acquisitions, supervised-based ML algorithms
can be easily trained with limited datasets compared to artificial neural
networks (Albanese et al., 2021). Based on this, as depicted in Fig. 3,
a Gaussian and Sigmoid Kernel, and a Random Forest are adequately
trained using a shared approach. The 80% of the dataset represents
the training set. In this heterogeneous set, a K-fold cross-validation
and a grid-search approach are implemented. As a result, the proposed
models are less biased and the hyperparameters optimized. While for
the two kernels the hyperparameters to be optimized are y and C, the
Random Forest classifier has to optimize the number of estimators, the
minimum sample splits and the number of features allowed. Then, the
accuracies of the hyperparameters optimized classifiers are validated in
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the test set. After having learned the features connected to classes, the
prediction stage can be triggered for whichever HPI returned by the In-
dustrial DB scan in sub-trajectories of storage areas over working shifts.
In detail, a Sigmoid function computes the posterior class probability
for each classifier (Lin et al., 2007). Subsequently, these predictions
are ensembled through a weighted average using classifiers accuracies
as weights. Finally, the returned HPI is assigned to the class that has
the highest probability. Whether the class is equal to 1, this picking
or deposit activity has to be assigned to one of the SKUs belonging
to the involved storage areas. According to Fig. 3, the assignment
function follows the same approach outlined in Eq. (13). Otherwise,
the HPI is considered a walking activity as the other instances of the
sub-trajectories not previously labeled as HPIs by the Industrial DB
scan.

3.3. Industrial dashboard

Benefitting from the aforepresented SW steps to mine value within
UWB-based spatio-temporal trajectories, Table 1 summarizes how the
time-dependent operations of monitored workers are classified during
a standard working time window.

In detail, the SKU column has values greater than zero only if the
related operation is a picking/deposit activity. Similarly, solely walking
activities have distances traveled greater than zero meters. It is worth
noting that this IloT-based data may enrich the visibility of any manual
and low-standardized job shop. Indeed, it is extremely useful to develop
industrial KPIs upon with monitor the interdependencies, efficiency,
and social sustainability of manufacturing job shops. The following
bullet point list the strategic industrial metrics on three different levels
of detail:

+ Job shop: Operator activities timeline and segmentation; dura-
tion and number of picking/deposit activities in storage areas

» Operators: Distances traveled in picking/deposit activities; num-
ber of interaction with SKUs; from-to charts of traveling activities

» Resources: utilization ratio; usages overlapping

Based on the definition of these KPIs and levels of analysis, Fig. 4
outlines the developed industrial dashboard to achieve a user-friendly
decision-making process. Plant supervisors have a unique opportunity
to analyze processes’ underperformance under different levels of detail.
For instance, the job shop level of analysis may suggest that pick-
ing/deposit activities are not optimized due to poor material allocation.
Despite this information being strategic to trigger a re-layout process,
it fails to analyze an important negative externality. In this regard, the
operators’ level of detail evaluates the distances traveled by workers
during picking/deposit activities to provide mainly two insights. First,
a set of workers may be socially disadvantaged due to longer distances
covered within the same shift. Second, these inconsistencies may be
detected also comparing historical data of several different shifts.

To conclude this high-detailed and quantitative Section, the follow-
ing lines combined with the nomenclature in Appendix highlight the
key steps of the ML-based software for data analytics (Section 3.2).
After the data acquisition of IPS-based historical data for a given
working shift, the consistency of positioning data is improved with
a four-step positioning estimation approach (Section 3.2.1). In this
regard, the Savitzky-Golay and Cheng filters (Eq. (1)) perform data
smoothing and outliers removal in operators’ trajectories respectively.
Then, the unicycle Extended Kalman filter (Eq. (2)) and Rauch-Tung-
Striebel smoother further improve the acquired motion patterns. The
resulting operators’ trajectories are time-dependently indexed to a, the
respective sub-areas of occurrence (Section 3.2.2). Based on a, each
trajectory follows specific data mining steps as depicted in Fig. 3.
On the one hand, whether the check on storage areas is not verified,
two data mining steps are triggered to automatically detect HPIs with
industrial resources (Section 3.2.3):
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Table 1

Example of time-dependent working operation of a UWB tagged worker.
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Start End Duration [sec] Operation SKU Distance [m]
10:06:26.47 10:06:46.09 19.62 Workbench 1 0 0
10:06:46.76 10:06:51.36 4.60 Walking 0 3.4
10:06:51.59 10:06:53.83 2.15 Picking/Deposit 2 0
11:31:03.58 11:31:11.41 47.83 Machine 1 0 0
M+~ require to evaluate the material allocation in storage areas at the detail
i ; level of each SKU and monitor the utilization ratio of industrial entities
Working Day Industrial KPIs .
(e.g., workbenches and machines).
| mm/dd/yyyy|-
: Job Sho . . . . L.
Shift P 4.1. Architecture installation and job shop description
Shift1 v HeatmapP/D V¥
Before starting the experimental campaign, an extensive demonstra-
Run

Operators
URun completed

=ram

— Utilization ratio v

Distances traveled during P/D ¥

Resources

Fig. 4. Industrial dashboard.

Industrial DB scan: based on the detailed formulation from
Eq. (4) to Eq. (9), it triggers the detection of HPIs. However,
such clustered positions provide little information on the system
functioning since are not related to any industrial entity.
Assignment to industrial entities: it defines an objective func-
tion to be minimized in order to assign HPIs to industrial entities
based on distances and angles. From a geometric viewpoint, in-
dustrial entities are represented by a centroid.(e.g., from Eq. (10)
to Eq. (13))

On the other hand, three data mining steps detect HPIs with storage
areas’ stock keeping units (Section 3.2.4):

+ Industrial DB scan: this step follows the same mathematical
formulation, exploiting identical input data. However, hyperpa-
rameters (e.g., ¢ NPts, a, f and ¢) may be different due to
potentially different operators’ motion patterns in storage areas.
Binary Cluster posterior prediction: benefitting from 3 trained
ML-based classifiers (e.g., random forest, gaussian and sigmoid
kernel), the detected HPIs are distinguished into walking or pick-
ing/deposit activities. To do so, the classifiers perform the poste-
rior binary prediction through Sigmoid functions and ensembled
using the weighted average (e.g., weights are the training accu-
racies). Finally, the HPIs are assigned to the activity that has the
highest probability.

Picking/Deposit assignment to a stock keeping unit: during
this last step the P/D operations are assigned to SKUs following
the same reasoning of before with industrial entities.

4. Case study & validation

The previously described digital architecture is tested and validated
in a south-European manufacturing company that performs precision
machining operations of components for the automotive industry. Fig. 5
depicts the layout of the monitored job shop in which two workers
perform the manufacturing process. In such an environment, an agree-
ment with industrial supervisors, the dedicated workforce, and the
labor union is reached to achieve the Operator 4.0 concept. Indeed,
workers wear on the preferred upper arm an anonymous UWB-based
tag. Leveraging the developed digital architecture, plant supervisors

tory period is focused on establishing trust among all shareholders.
Based on this, laboratory tests are shown to workers to quantitatively
back up the clear purpose of the analysis. Moreover, workers are fully
compliant to sign the GDPR. In this non-binding agreement, they can re-
voke their consensus. Particular attention is focused on data storing and
adequately blurring video-based ground truth. Finally, during the latest
meetings, it is decided to leave six anonymous tags in the company’s
locker room to be autonomously equipped on the operators’ preferred
upper arm. Benefitting from this transparent process, all workers are
fully compliant to be involved in the analysis. In addition, Fig. 5 shows
the 2D geometrical positions of six ANs of the developed architecture
having z-axis equal to 7.00 m. However, indoor positioning raw data
with an average sampling rate equal to 20 Hz are highly affected by
noise. In detail, the mean speed profile of workers is equal to 9.6 m/s.
To increase the consistency of human motion patterns, the previously
described four step positioning estimation methods (Section 3.2.1) are
adopted resulting in a sampling rate and mean speed profile equal to
6.6 Hz and 1.3 m/s. Subsequently, based on the algorithm requirements,
industrial supervisors decide to divide the monitored job shop into
five sub-areas depending on their functional role in the manufacturing
process (e.g., A = 5). The value-added area, namely the sub-area 1,
hosts four different industrial entities and represents the most visited
one by workers. In detail, workers load and unload into dedicated
stand-alone machines (e.g., M1 and M2) different batches of materials
and then perform manual manufacturing operations in the deburring
and rectification workbenches (Fig. 6(b)). As depicted by Fig. 6(b),
it is worth noting that the distances between the industrial entities
combined with the high degree of freedom of human movements may
considerably challenge the accuracy and reliability of the Industrial DB
scan and the assignment of HPIs. In this area, industrial plant supervi-
sors require to calculate the utilization ratio per worker of such entities
and detect potential simultaneous usages of workbenches. Apart from
the sub-area 5 which hosts two automatic lathes (AL) and the SKU ID 20
for scraps, the other three sub-areas stock different batches of materials.
In particular, the fourth one groups SKUs of finished materials to be
moved into other in-plant job shops by manual forklifts. The sub-area
2, partially depicted in Fig. 6(a) from a static viewpoint, stocks both
finished and raw materials while the third one raw materials. Centroids
of the SKUs are depicted through green dots in Fig. 5. Based on the
production schedule at the beginning of each working shift, workers are
required to move as close as possible to sub-area 2 all SKUs containing
the batch to be manufactured and empty SKUs in which store pro-
cessed materials. Therefore, according to the outlined SW architecture,
plant supervisors can digitally analyze the efficiency of such material
allocation by monitoring picking/deposit activities in SKUs along with
distances traveled in such routes. However, before starting to discuss
the industrial KPIs in Section 5, two intermediate considerations are
addressed. First, for the sake of clarity, Section 4.2 describes the ML-
based SW for data analytics functioning on sub-trajectories. Second,
Section 4.3 validates the performances of the ML-based SW based on
the collected ground truth. This investigation plays a pivotal role in
order to avoid unrepresentative and misleading industrial KPIs.
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Fig. 6. Manual industrial job shop.

4.2. Evaluation on sub-trajectories of ML-based software for data analytics

Benefitting from the algorithm functioning, Fig. 5 represents an
example of HPIs detection in the manual and low-standardized job
shop. The considered human movement occurred from 11:45:47 to
11:47:00 on the 15th of February 2021. According to the collected
video-based ground truth, the operator 1 works in M2 for 38.71 s and
then transiting through the sub-area 2 picks two raw materials from
the SKU ID 15 and then goes back to M2 to load them in 15.74 s.
As depicted in Fig. 5, the developed architecture detects three differ-
ent process interactions. In the proposed example of five trajectories,
the true positives and negatives are equal to 3 and 4, respectively.
These instances represent a match between the actual scenario and the
one determined by the developed algorithm. In this case of perfect
detection, both false positives and negatives are equal to zero. For
the sake of completeness, a false positive takes place whenever the
Industrial DB scan clusters noise points into a not expected HPI. The
false negatives represent the opposite condition. For simplicity, it is
assumed that the three returned stops are the first three detected in
the monitoring period. Indeed, Clll1 and C;SI last 36.95 and 14.59 s,
respectively. Therefore, the relative deviations of process interactions’
duration are below 10%. In sub-area 3, a process interaction is detected,
namely Czli’ . In particular, its input features (e.g., E;; and E;é and
durézg) are fed into the ensembled supervised learning classifiers to
compute the posterior class probability. Since the resulting probability
of class 1 is equal to the 80%, C2133 is classified as a picking/deposit
activity. Despite no basis to better identify these two activities due to

the intrinsic HW characteristics, the proposed digital architecture is
much more practical and way less costly than tagging, using the RFID
technology, products or industrial entities in modern manufacturing job
shops. Finally, this process-driven activity is correctly assigned to the
SKU ID 15. Despite the promising accuracies obtained by the ML-based
SW in this set of spatio-temporal trajectories, the following subsection
validates its performances with larger and representative ground truth
datasets.

4.3. Performances of the ML-based software for data analytics

To adequately validate the performances of the ML-based SW,
video-based ground truth is collected in 4 working shifts involving
different workers. Considering the value-added area (e.g.,sub-area 1),
68 relevant stops occur with an aggregate length equal to 48.11 min.
In addition, the data set is fairly balanced. While the percentages of
HPIs that occurred in M1, M2, and deburring range from 25% to
30%, the rectification workbench hosts 20% of them. Based on the
left part of Fig. 3, after the detection of T% and the related sub-
trajectories in sub-areas, the developed Industrial DB scan is adopted
to detect relevant HPIs using NPts and ¢ equal to 15 and 0.17 m,
respectively. In addition, « is equal to 1 s and # and ¢ to 0.5 m.
These latter parameters are responsible for merging consecutive process
interactions. The Industrial DB scan accuracies are evaluated through
two metrics. First, a confusion matrix is developed to evaluate detection
performances. The resulting accuracy over the 68 HPIs is equal to
82%. Second, the comparison between expected and returned process
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interactions’ duration is evaluated. Fig. 7 depicts this temporal analysis
through the absolute and relative deviation of process interactions’
duration. The data set considers solely the true positives that are equal
to 51 relevant process interactions. In detail, the mean absolute and
relative deviations are equal to 2.69 s and 14.14%, respectively.

After having assessed the promising accuracies of the proposed
Industrial DB scan in such a small area, HPIs have to be assigned to one
of the four industrial entities shown in Fig. 6. Weights of the objective
function in Eq. (13) are arrays of 11 rows with element values that
range from 0 to 100. Of course, the element-wise summation has to be
equal to 100. Fig. 8 shows the accuracies of the 11 objective functions
to assign HPIs to industrial entities. In detail, the first and last objective
functions give no relevance to the angle and distance, respectively. The
highest accuracy equal to 88.1% is achieved by the second one with m,
and my equal to 90 and 10, respectively.

The same approach is adopted for the four storage areas to test and
validated the right part of the SW in Fig. 3 aimed at detecting pick-
ing/deposit. In contrast to sub-area 1, it is reasonable to expect much
shorter HPIs in stocking areas. Indeed, the Industrial DB scan is adopted
using the same hyper-parameters apart from NPts which is equal to 5.
Based on the collected video-based ground truth in the same 4 working
shifts as before, 44 different trajectories of picking/deposit activities
for a total duration of 8.35 min are analyzed to validate the algorithm
under different human motion patterns. The proposed Industrial DB
scan returned 100 different HPIs in which all the expected relevant
activities were detected. However, a problem of over-estimation occurs.
In detail, 35% of returned interactions are not related to the monitored
manufacturing cycle. Among them, there are unexpected process inter-
actions of human operators driven by different causes (e.g., unexpected

obstacles). For this purpose, supervised-learning techniques are lever-
aged to learn the movement patterns of this scenario using as input
features v} and a; and dur?". During the training stage, the most
performing hyper-parameters combinations are evaluated for all classi-
fiers. In detail, the two kernels share the same optimal y value equal
to 0.01 but they have different C values. The Gaussian and Sigmoid
values of C are equal to 10 and 1, respectively. On the other hand,
the Random Forest is optimized under other sets of hyperparameters.
The best configuration has 50 estimators, a minimum sample split of
0.6 and the features allowed are equal to the square root of the total
number of features in the training data set. Then, the performances
of the hyperparameters optimized classifiers are validated in the test
set. While the Random forest has an accuracy of 71.4%, the accuracies
of the Gaussian and Sigmoid Kernel are equal to 61.9% and 42.9%,
respectively. The resulting accuracy of the weighted and Sigmoid-based
ensembled classifier is equal to 76.4%. Finally, the objective function
to be minimized performs the assignment of the detected HPIs to one
of the SKU plotted in Fig. 6. Based on the available ground truth, this
assignment solely depends on the distances with an accuracy of 100%.

5. Results & discussion

Based on the successful validation of the digital architecture (Sec-
tion 4.3) in the mentioned manual and labor-intensive manufacturing
job shop, this section presents the industrial KPIs to monitor the ef-
ficiency and the social sustainability with three levels of detail, as
depicted by the industrial dashboard in Fig. 4.

5.1. Job shop level

The job shop dimension monitors from an aggregate viewpoint the
functioning of the manual and UWB-referenced job shop. In particular,
Fig. 9(a), depicts the monitored time window in which two anonymous
operators equipped with their respective TagID are working within the
coverage area defined by the displacement of ANs (Fig. 5), during the
3rd of March 2022.

In addition, Fig. 9(b) shows the time-dependent activities performed
by workers from 11:03:00 to 11:09:00 on the monitored shift. While
operator 2 mostly performs value-added operations in the deburring
workbench, the other colleague performs several process-driven tasks.
In particular, one picking/deposit activity and eight HPIs are auto-
matically detected, where the vast majority of them occurs in M1.
However, these first two KPIs fail to provide privileged insights for
industrial supervisors’ needs. Indeed, no evaluations regarding material
allocations and resource utilization can be performed. Starting with
the first aim, Fig. 10 shows through a dedicated color bar from white
to red the aggregated picking/deposit interactions over the monitored
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Fig. 10. Number of HPIs in storage areas during the monitored time window of
anonymous workers on the 3rd March 2022. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

time window in SKUs. Benefitting from this, industrial plant supervi-
sors can analyze the efficiency of the manufacturing systems during
picking/deposit traveling activities. Fig. 10 suggests that the monitored
manufacturing system is not optimized. Based on this, it is useful to
consider the SKUs in the sub-area 2. The nearest SKUs to sub-area 1
host the highest picking/deposit activities. In detail, SKUs ID 1 and 3
have 56 and 15 visits over the monitored period, respectively. However,
the farthest SKUs ID namely 5, 6, 7, 11, 12, and 18 register com-
bined together 24 picking/deposit activities. This accounts for 18.6%
of the total picking/deposit activities over the considered time period.
Adopting the same approach with SKUs of other sub-areas, this metric
increases to 26%. Therefore, almost a third of picking/deposit activities
are inefficient.

In addition to this, Fig. 11 completes the analysis depicting the
duration of HPIs activities in storage areas for both workers. During the
monitored time period, the two anonymous workers spend roughly 25
minutes performing picking/deposit activities in storage areas. Based
on the proposed heatmaps (Figs. 10 and 11), there is a clear direct
correlation between the number of interactions with SKUs and the time
spent performing picking/deposit activities. Indeed, as expected, SKU
ID 1 shows the highest duration, accounting for 633.69 s. However,
the underperforming material allocation in storage areas’ SKUs can
be analyzed on the temporal dimension as well. Considering the most
inefficient SKUs of sub-area 2 (e.g., ID from 4 to 7, 11, 12 and 18), the
total duration to perform/picking and deposit activities is equal to 250
seconds which accounts for the 16% of the total time to perform such
process-driven activities. This statistic increases to the 30% by taking
into account all SKUs belonging to other sub-areas.

This underperforming material allocation in storage areas triggers a
consistent negative externality on meters traveled by workers. Indeed,
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Fig. 11. Duration of HPIs in storage areas during the monitored time window of
anonymous workers on the 3rd March 2022.

to properly assess the impact on their manufacturing routines, the
following subsection narrows the analysis to the Operators’ level of
detail.

5.2. Operators level

The picking/deposit activities of workers in defined SKUs show
fairly similar percentages. While worker 1 visits 84 times the SKUs
accounting for the 11% of his working routine, operator 2 performs 66
picking/deposit activities during the 7% of the monitored period. For
both workers, several picking/deposit activities start and return in sub-
area 1. Based on this, Fig. 12 outlines the meters traveled by workers to
perform different activities in the manufacturing system (the acronyms
Al and P/D refer to the sub-area 1 and picking/deposit, respectively).
While the total distances traveled over the monitored period by the
two workers differ from 150 m, the comparison of travelings involving
picking/deposit activities needs to be properly analyzed. Considering
the traveling activities from sub-area 1 to a picking/deposit activity,
operator 1, and operator 2 walk 207.47 and 193.28 m, respectively.
Despite these metrics having similar values, the two workers perform
highly different in-plant flows. Worker 1 and worker 2 travel from sub-
area 1 to a given SKU 60 and 25 times, respectively. Indeed, worker 2
travels 2.24 times the meters of the other colleague, considering mean
values.

Despite most of the time the two workers start the considered
traveling route either from the rectification workbench or the deburring
one, they show markedly different picking/deposit activities within
the defined SKUs. To properly analyze and discuss this scenario, the
24 SKUs are divided into five classes. The “prime” class includes the
SKUs 1,2,8. While the SKUs ID 3,4,9,10, and 19 belong to the “sub-
optimal” class, the remaining SKUs of the sub-area 2 are grouped into
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Fig. 13. Percentages for operators of picking/deposit activities from sub-area 1 divided by class of SKUs.

the “underperforming” one. Finally, all the other SKUs, apart from
the 20 that belongs to the “scrap” class due to the intrinsic nature of
material stored in it, are grouped in the class named “long”. On one
hand, worker 1 performs 43 picking/deposit activities in the “prime”
class accounting for 72% of HPI in storage areas. In addition, 18% of
flows happen in the “sub-optimal” SKUs. Among the other flows from
the sub-area 1, solely 6 picking/deposit visits are towards the “long”
class, accounting for 8% of the total activities in storage areas. The
longest distance traveled is equal to 11.54 m and involves a flow from
the rectification workbench to the SKU ID 20, most likely to deposit
a manufacturing scrap. No flows from the sub-area 1 go to the “long”
class. On the other hand, the picking/deposit activities of operator 2
from the sub-area 1 are completely different. Based on this, only 8% of
flows are towards to SKU ID 1. In addition, while 14 flows go to the
“sub-optimal” SKUs, 24% of total flows involve the “underperforming”
class. The “long” class hosts 3 flows in the sub-area 5 to interact with
the SKUs ID 22 and 23 (see Fig. 13).

According to these KPIs, worker 2 due to poor materials and thus
SKUs allocation is socially disadvantaged. This scenario is completely
similar when analyzing the number of flows with the distances traveled
from picking/deposit activities to sub-area 1 and among consecutive
picking/deposit activities. Regarding these latter flows, the evaluated
KPIs suggest that operator 2 is also responsible for moving SKUs around
the manufacturing job shop. While worker 1 performs the 80% of
consecutive picking/deposit activities either in the “prime” class or
with the “sub-optimal” one (e.g., from SKU ID1 to SKU ID 8, from
SKU ID 1 to SKU ID 2, from SKU ID 3 to SKU ID 8, etc.), operator 2
travels between SKUs belonging to different sub-areas. Stark examples
are represented by flows from SKU ID 7 to SKU ID 17 and to SKU ID
23. By comparing these sets of flows with the ones within the sub-
area 1, it is clear how manual manufacturing systems rely on human

11

commitment. Compared to SKUs that are dynamic entities, the four
industrial entities have fixed locations defined by the aforementioned
centroids (Fig. 6). Indeed, at mean values, worker 1 and worker 2 travel
within the sub-area 1 1.57 and 1.64 m, respectively.

The acknowledgment of these inconsistencies in the monitored man-
ual manufacturing system provides strategic insights to enhance the
decision-making process. In particular, plant supervisors can re-balance
the distances traveled by workers during picking/deposit activities. To
achieve this aim, internal meetings may be organized to raise awareness
among the workforce of efficient material allocation in storage areas.
Focusing on the positive externality in reducing distances traveled,
industrial plant supervisors may define specific guidelines to properly
move as nearest as possible to the sub-area 2 the material batches
to be manufactured during the shifts. According to the Operator 4.0
concept, a further incentive to meet this target is to design gamification
approaches (Romero et al., 2016). For instance, workers that travel the
shortest distances during picking/deposit activities may be awarded on
a monthly basis. Therefore, the social sustainability of the considered
low-standardized job shop is constantly reinforced at desired values
while spreading the best practices among operators. Finally, based on
supervisors’ requests, the following subsection analyzes the resources’
level of detail to point out their utilization ratio during the monitored
time window.

5.3. Resources level

To properly assess the utilization ratio of resources, the focus is en-
sured on the workers’ activities segmentation (Fig. 14). As depicted by
the pie charts, operators 1 and 2 perform value-added activities for 56%
and 62% of the entire time window interacting with the four industrial
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Fig. 14. Activities segmentation of the anonymous operator over the monitored time window.

entities (e.g., M1, M2, rectification, and deburring workbenches) in the
sub-area 1, respectively. However, these two workers have different
patterns of interaction with the entities. While the working percentages
of worker 1 are fairly balanced among the four resources, the working
times of operator 2 are distinguished by a markedly different pattern.
Indeed, operator 2 for 74.8 min, that account for 44% of the entire
working routine, performs materials deburring. These four resources
are distinguished by a low utilization ratio. The deburring workbench
registers the highest ratio equal to 55.9%. In addition, the monitored
operators correctly parallelize their working routine by avoiding to
occupy simultaneously the same resource. In this regard, a more per-
forming material allocation may bring a further positive externality,
namely a likely increase in the share of these value-added operations
in the considered manufacturing process. Simultaneously, plant su-
pervisors can combine the utilization ratio of industrial entities with
manufactured goods to evaluate and compare the working efficiency
of multiple working shifts.

For instance, a decrease in finished products can be analyzed
through the different patterns of interactions with industrial entities.
In such a scenario, it is reasonable to expect low utilization ratios of
M1 and M2. At the same time, the deburring and the rectification
workbenches may register high shares. Therefore, a likely root cause
may be driven by poor automatic lathes’ working quality potentially
due to a worn tool.

To conclude, the proposed digital architecture can effectively sup-
port the labor-intensive and low-standardized job shops by creating
value for its operational business. In particular, the adopted HW ar-
chitecture combined with the ML-based SW enables a performing data
analytics to enhance the visibility of the process functioning by min-
imizing installation costs compared to the RFID technology. There-
fore, benefitting from the discussed multidimensional KPIs, industrial
plant supervisors constantly analyze the in-plant operation and trigger
target-oriented evaluations on processes’ inefficiencies.

6. Conclusions & further research

Based on the Industry 4.0 paradigm, modern manufacturing systems
are often addressing a digital decision-making process. In particular,
labor-intensive environments digitize the human factor to achieve un-
precedented insights into low-standardized production processes. In
such a scenario, this manuscript proposes a digital architecture to assess
the efficiency and the social sustainability of manual manufacturing
job shops. In detail, an HW is developed as an UWB-based IPS in
which a network of ANs defines the coverage area to be monitored
over the working shift. The monitored operator wear on the preferred
upper arm an anonymous TagID to acquire their spatio-temporal po-
sitioning during the production cycle execution. These geometric and
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privacy-compliant datasets are mined by an ML-based SW designed
to monitor strategic KPIs of manual manufacturing job shops. For
example, utilization ratios of industrial entities and distances traveled
by workers during picking activities at the detail level of each SKU.
The adopted ML algorithms are developed leveraging both supervised
and unsupervised methods. On the one hand, an Industrial DB scan
automatically detects HPIs to be assigned to the surrounding industrial
entities (e.g., SKUs, stand-alone machines, etc.) through a tailored
objective function to be minimized. On the other hand, three ensembled
supervised classifiers remove the over-estimated picking/deposit activ-
ities driven by the intrinsic uncertainty of human motion in storage
areas. This digital approach is tested and validated in a real and low-
standardized manufacturing job shop that performs manual machining
activities for the automotive industry in Southern Europe. During the
labor-intensive productive cycle, the anonymous operators load and
unload different batches of materials in stand-alone machines, and
after automatic lathing operations perform manual deburring and rec-
tifications. The experimental campaign shows promising accuracies of
the proposed algorithms. In detail, considering sub-area 1, the Indus-
trial DB scan correctly detects and assigns 82.0% and 88.1% of the
expected HPIs to industrial entities considering the available ground
truth, respectively. Regarding the interactions in storage areas, while
the weighted ensembled classifier properly identifies 76.4% of the
expected picking/deposit activities, the assignment to SKUs accuracy
is equal to 100%. Benefiting from such promising accuracies, the de-
veloped digital dashboard shows strategic KPIs to assess the efficiency
and the social sustainability of the considered manufacturing system.
For instance, due to a weak material allocation in storage areas, worker
2 travels from sub-area 1 to the defined SKUs 2.2 times the meters of
worker 1, resulting in a source of inefficiency and unfairness.

Further research opportunities should focus on different viewpoints.
First, additional onboard sensors on the UWB tag such as IMUs may
provide parameters to better classify the HPIs’ motion patterns in stor-
age areas. In this regard, reference systems (e.g. marked-based motion
capture technologies) may be adopted to further evaluate the accuracy
of the detected HPIs and related KPIs. Second, deep-learning networks
may be leveraged to enhance the accuracy in classifying HPIs. In this
regard, instead of representing interactions at aggregate levels, the
classification is performed every time frame. Third, a decision support
system may be developed to optimize humans’ trajectory and thus
embrace the cognitive feature of the Operator 4.0 concept. By doing
so, targeted feedback would enhance the self-resilience of workers, an
enabling characteristic of the Operator 5.0.
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Appendix

This appendix provides the nomenclature, divided into indices and
parameters, to ease the reading process.

Indices

a,d’ =1, ..., A: sub-area of the monitored job-shop

f.f. f*=1,..., F: time frame

i=1,...,I: sub-trajectory

k=1,...,K: industrial entity

w=1,...,W: tagged workers

z=1,...,Z: stop

Parameters

a: greatest duration to merge consecutive stops

p: greatest distance between stops’ centers to be merged

0": angle assumed by the wth worker during the fth time frame
:"f‘f Frn the angle assumed by the wth worker from the point f’ and

f"+1 in the ath sub-area

0;";} :represents the angle assumed by the same worker and the

centroid of the kth industrial entity

n: Gaussian distributed acceleration noise

6t: sampling time of the adopted HW architecture

¢: greatest distance between the first and last point of stops to be

merged

Eﬁ;a: : mean acceleration of the zth stop occurred in the ith sub-

trajectory for the wth worker in the ath sub-area

B,: geometric centroid of the kth industrial entity

Cw *: zth stop occurred in the ith sub-trajectory of the wth operator in

the ath sub-areas

d*: greatest radius to create e temporal sequences
Ow“ objective function to assign the zth stop occurred in the ith sub-

tra]ectory for the wth worker in the ath sub-area to the kth industrial

entity

Dzst'” **: Euclidean distance from the zth stop to the kth industrial entity

for the wth worker in the ath sub-area

dur':®: duration of the zth stop occurred during the ith sub-trajectory

for the wth worker in the ath sub-area

LY k : orientation during the fth time frame to the kth industrial entity

for the wth operator in the ath sub-area

L:’;, final orientation during the zth stop to the kth industrial entity

for the wth operator in the ath sub-area

mp: distance weight of the objective function

my: orientation weight of the objective function

M AD": median absolute deviation of velocities of the wth worker

N Pts: required number of points to create a stop

O”“‘ = {Ox“ ,wa"} 2D center of the zth stop occurred in the ith

sub trajectory for the wth worker in the ath sub-area

pl”f’f” = {px} ;’, pwa” **}: fth time frame of a spatio-temporal point

belonging to the ith sub -trajectory of the wth worker in the ath area
:”"q fth time frame of a spatio-temporal point belonging to the ith sub-

trajectory and qth ¢ temporal sequence of the wth worker in the ath

area

wf“ :fth time frame of a spatio-temporal point belonging to the ith

1
sub-trajectory and zth stop of the wth worker in the ath area
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Si’f’q‘“: qth e temporal sequence occurred in the ith sub-trajectory for the
wth worker in the ath sub-area

T: set of trajectories recorded

T™: set of trajectories recorded for the wth worker

s“jf’: timestamp of the ith trajectory during the fth time frame for the
wth worker in the ath sub-area

#*“: ith sub-trajectory of the wth worker in the ath sub-area

v™ax: greatest expected velocity of human walking

v velocity of the wth worker during the fth time frame

w,a

v, ;' : mean velocity of the zth stop occurred in the ith sub-trajectory

for the wth worker in the ath sub-area

x% ;. state of the model during the fth time frame given the f-1 for

the wth worker
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