4' _\ The Microsoft Research - University of Trento

Centre for Computational
t, and Systems Biology Technical Report CoSBi 02/2008

On the Computational Power of BlenX

Alessandro Romanel
CoSBi and Universita di Trento

romanel@cosbi.eu

Corrado Priami
CoSBi and Universitd di Trento

priami@cosbi.eu

Abstract

We present some decidability and undecidability results for subsets
of the BlenX Language, a process-calculi-based programming language
developed for modelling biological processes. We show that for a core
subset of the language (which considers only communication primi-
tives) termination is decidable. Moreover, we prove that by adding
either global priorities or events to this core language, we obtain Tur-
ing equivalent languages. The proof is through encodings of Random
Access Machines (RAMs), a well known Turing equivalent formalism,
into our subsets of BlenX. All the encodings are shown to be correct.

1 Introduction

Systems Biology [21] aims at investigating the interactions and relationships
among the components of biological systems in order to understand how they
work globally. Several approaches based on computational models have been
used to model and analyze complex behaviours and interaction mechanisms
of biological systems (e.g. boolean networks [20], Petri nets [27], statecharts
[17] and membrane systems [26]).

After the work of Regev et al. [35], an emergent and promising trend
is to use concurrency theory and process calculi to specify and simulate the
behaviour of living matter. As a consequence, a number of process calculi
have been adapted or newly developed for applications in systems biology
(33, 34, 7, 31, 11, 19].

On top of these process calculi several programming languages have been
defined and frameworks for analysis and stochastic simulation have been
implemented [33, 28, 16, 13].

Some of these new languages [34, 7, 31, 11] differ from classical process
calculi because they are devised from the beginning for biology and aim to
overcome some limitations by adding or deleting primitives and operators,
and by developing new conceptual tools. An interesting question is whether
and how those modifications affect the ability of these languages to act as
computational devices. Some examples of these investigations can be found
in [4, 10, 8].

In this paper we consider the Beta Workbench, a framework for mod-
elling and simulating biological processes [13, 14]. It incorporates a lan-
guage, a compiler to a stochastic abstract machine, an execution environ-
ment and some graphical interface components. The BlenX Language is a
stochastic language (i.e. quantitative information about speed and prob-
ability of actions is provided with systems specifications) based on Beta-

binders [31, 32, 12], a process calculus developed to represent the interac-
tions between biological entities. In BlenX biological entities are interpreted
as the components that interact in a model to accomplish some biological
function: for example, proteins, enzymes, organic or inorganic compounds
as well as cells or tissues; biological entities are represented through bozxes.
Boxes have interaction sites, called binders, and an internal structure as it is
for biological entities. The binders represent, for example, protein domains
or cell receptors and the internal program codifies the response to an external
stimulus.

The main goal of this paper is to investigate the computational power
of the nondeterministic version of BlenX, i.e., we do not consider here the
stochastic aspect. Turing equivalence results for well-known process calculi
like m-calculus [24, 38] and Mobile Ambients [5, 22] rely on encodings of Tur-
ing equivalent formalisms using some high-powered features like restriction
operator and name passing in combination with operators like replication,
recursion or recursive definitions. In BlenX the restriction operator is not
present and the replication is guarded by an action; hence none of the classic
results can be directly applied. For these reason, we decided to start by first
developing on a core subset denoted by BL, which considers only primitives
for communications. By using the theory of well-structured transition sys-
tems [15], we show that for BL the termination is decidable. Because of the
nature of BL we think a relation with the CCS [23] exists and we plan to
investigate this line in future work.

Then we add specific features of BlenX and show that the resulting lan-
guages are Turing equivalent. In particular, we prove that by adding either
immediate actions to BL (we denote this subset with BL%) or join and split
events (we denote this subset with BL¢) we obtain Turing equivalence. We
show this by providing encodings of Random Access Machines (RAMs), a
well known Turing equivalent formalism, into BL9% and BL¢. All the encod-
ings are shown to be correct.

Notice that there is a conceptual similarity between the notion of global
priorities in a non deterministic semantics and the notion of infinite reaction
rates in a stochastic semantics. For this reason we think that the results here
provided will help us in our future studies on the expressive power of the full
BlenX with stochastic semantics.

The paper is organized as follows. In Sec. 2 a brief introduction describ-
ing the syntax and the main features of BlenX is presented. In Sec. 3 the
syntax and semantics of BL is presented. In Sec. 4 termination of the BL
subset is proved to be decidable. In Sec. 5 encodings of RAMs into the B L9
and BL° subsets are given, along with their proofs of correctness and in Sec.6

xa:AaxB: AB rAa:Aq 2 AB xc:Ac Tp:Ap xzc:Acxp:Ap
| | | | | | | |

[A]l B || Al =] CID =] ¢ || b]
(Ba) (Bg) (Bag) (Bep) (Be) (Bp)

Figure 1: BlenX model for a simple biochemical reaction

some conclusions are reported.

2 The BlenX language

In this section we briefly survey the BlenX language. For a more exhaustive
description of the conceptual framework and the main concepts we refer the
reader to [31, 32, 12, 36]. A biological entity M is represented as a box By,
depicted below:

1 A1 T A,

| M

The pairs x; : A; represent the sites through which B); may interact with
other boxes, i.e. the motifs of the molecule M. Types A; express the inter-
action capabilities at x;. The dynamic behaviour of B, is specified through
the internal process M. A process is a CCS-like process for representing
biomolecular interactions, extended for manipulating the interaction sites of a
box. The parallel composition of different boxes, called bio-process, abstracts
a biological system composed by parallel interacting biological entities. For
instance, consider the following biochemical reaction:

A+B—kAB =k CD =k C+D

Two molecules A and B bind to form the complex AB with a stochastic rate
k1. A biochemical interaction within AB leads to complex CD (with rate k)
and finally C and D are released at a rate k3. With BlenX such a reaction can
be modeled in different ways, one of which is sketched in Fig. 1. Boxes B4
and Bpg for molecules A and B complex into box B g, if the types A4 and Apg
are compatible up to a certain user-defined algorithm (see [12]). Then, the
internal process A | B evolves into C' | D, and types A4 and Apg are modified
into A¢ and Ap, respectively. Finally the complex unbinds releasing Be and
Bp.

A BlenX program, called also system, is a tuple Z=(B, E, {) made up of a
bio-process B, alist of events F and ambient &. The bio-process B intuitively
represents the structure of the system, that is a set of entities (i.e. boxes)
interacting in the same environment, E represents the list of possible events
enabled in the system and the ambient £ contains information about the envi-
ronment. A notion of structural congruence is introduced to equate different
implementations of the same biological systems [13, Def. 7]. Intuitively, two
systems Z=(B, E, &) and Z'=(B', E',{') are structurally congruent, denoted
with Z = Z’, if their bio-processes B and B’ and their list of events £ and
E' are identical up to structure and their ambients are equal.

The dynamics of a system is formally specified through the operational
semantics [30]. Given a system, its dynamic is described by three types of
actions: (monomolecular) describe the evolution of single boxes. More pre-
cisely, an intra-box communication allows components to interact within the
same box, the expose action adds a new site of interaction to the interface of
the box containing the expose, the change action modifies the type of an in-
teraction site, hide and unhide actions make respectively invisible and visible
an interaction site. Finally, the die action eliminates the box that performs
the action and, recursively, all the boxes directly or indirectly complexed with
them; (bimolecular) describe interactions that involves two boxes. More
precisely, inter-communication enables interaction between boxes, complex
and decompler creates and destroys dedicated communication binding be-
tween boxes; (events) are the composition of a condition and an action and
are triggered only when the condition associated with the event is satisfied.
Events can be considered as global rules of the system which can substitute,
create and delete boxes from the system. In particular, the list E can contain
five types of events: join, which substitutes two boxes with single ones; split,
which substitutes a box with two boxes; new, which introduces a specified
number of instances of a box; delete, which eliminates boxes.

3 The BL subset

Let NV be a countably infinite set of names (ranged over by lower-case letters)
and let T be a countably infinite set of types (ranged over by A, I';) A’ Ay,
...) such that TN N = (). The syntax of BL is defined in the following way:

B == Nil|I[P]]| B||B

I u= Bz, A) | Bz, A)I
P = PP|'nP|M

M = nil|7n.P|M+M
mou= x(y) | T(y)

4

Bio-processes generated by the non-terminal symbol B can be either a
boz (the first two productions) or a parallel composition of boxes, i.e. boxes
running concurrently. The special process Nil does nothing; i.e. it is the
deadlocked box. The box I[P] is a process (see below) prefixed by a spe-
cialized interface I that represents the interaction capabilities of the box. A
program written in BL, called also system, is a bio-process B. We denote
with boxy(B) the function returning the number of boxes composing the
bio-process B.

An interface I is made up of a non-empty string of binders of the form
B(x,A), where the name x is the subject of the binder and A represents the
type of x. The subject x of a binder is a binding occurrence that binds all
the free occurrences of x in the box to which the binder belongs. We let
interfaces be ranged over by I, 1, I5,--- ,I',---. We write I = I;I, to mean
that I is the interface given by the juxtaposition of I; and I. Also, the
metavariables I*, I7, I, - - stay for either an interface or the empty string.
The above notation for the juxtaposition is extended to these metavariables
in the natural way.

With B and Z we denote the set of all the possible bio-processes and
interfaces, respectively.

Definition 3.1. The functions sub: T — 2V and sub, : B — 2V are defined
as follows

sub(f(z,T)) = {z} suby(I[P]) = sub([I)
sub(B(x,I')I) = {z} U sub(I) suby(B || B") = sub(B) U suby(B’)

Function sub returns the set of subjects present in an interface, while
function sub; returns the total set of subjects present in all the boxes in-
terfaces composing a bio-process. A well-formed interface I is a non-empty
string of binders where subjects and types are all distinct.

Definition 3.2. Let B = L[P] || --- || I.[Py] be a bio-process. We say that
B is well-formed if Vi € {1, ...,n} the interface I; is well-formed.

We denote with Z the set of all well-formed systems. In particular, for
the BL subset we have that Z C B.

Processes generated by the non-terminal symbol P are referred as pro-
cesses and the set of all possible processes is denoted by P. The nil process
does nothing; it is a deadlocked process. The binary operator | composes
two processes that can run concurrently. The bang operator ! is used to
replicate copies of the process passed as argument. Note that we use only
guarded replication, i.e. the process argument of the ! must have a prefix

7 that forbids any other action of the process until it has been consumed.
The last non-terminal symbol M of the productions of P is used to introduce
guarded choices. In fact M generates summations of guarded prefixes of the
form 7. P.

Definition of free names for bio-processes and processes is given in Tab. 1
through the function fn.

Nil) = fn(ml) fn(B(xz, A)) = fn(B(z, A)I) =10
1[P]) = () \ sub(I)
B||B’) = fn(B)U fn(B')
PIP") = fn(P)U fn(P')
In.P) = fn(z.P)
+ M) = fn(M)U fn(M')
x(; g— zp U (fn(P)\{y})

fn(
I
I
fn(
fn(7.
fn(M
In({

fn(z(y).P) = {z,y} U fn(P)

Table 1: Definition of free names for bio-processes and processes.

The dynamics of a system is formally specified through the operational
semantics in Tab. 2 which uses a notion of structural congruence =.

Definition 3.3. Structural congruence over processes, denoted =,, is the
smallest relation which satisfies the laws in Fig. 2 (group a) and structural
congruence over bio-processes, denoted =y, 1s the smallest relation which sat-
isfies the laws in Fig. 2 (group b).

For the BL subset the relation = over systems coincides with the relation
—

The actions that a process can perform are described by the syntactic cat-
egory m. These actions are common to most process calculi. They represent
respectively the input/reception of something that will instantiate the place-
holder y over a channel named z (z(y)) and the output/send of a value y over
a channel named x (Z(y)). The placeholder y in the input is a binding occur-
rence that binds all the free occurrences of y in the scope of the prefix z(y).
Sometimes the channel name z is called subject and the placeholder/value y
is called object of the prefix.

Parallel processes that perform complementary actions on the same chan-
nel inside the same box (a process performs an input z(z) and the other one
an output Z(y)) can synchronize and exchange a message, performing an
intra-communication. The value y flows from the process performing the

6

(intra) I[f(z). P+ M, | x(w) Py + Mo ‘ Pg] —][P1 ‘ PQ{Z/w} | Pg]
Pr=p%(z). Ri+ M |Q1 P2=py(w). Re + M2 | Qo2
(inter) L[P] || I2[Po] = LRy | @] || To[Ro{7w} | Qo]
where I} = (z, A)I{ and Ir = ((y, T') I3
and provided that (', A) > 0 and z & sub(I;) U sub(I2)

Bl =p Bi Bi —>Bé Bé =p B2

(struct)
Bl — BQ

B—DB

rede
(redex) 3 | B— B || B

Table 2: Reduction semantics of BL.

output to the one performing the input. The flow of information affects the
future behavior of the system because all the free occurrences of z bound
by the input placeholder are replaced in the receiving process by the actual
value sent y.

Processes in different boxes can perform an inter-communication if one
sends out of the box a value y over a link z that is bound to a binder
B(z, A) of the box and a process in another box is willing to receive a value
from a compatible binder B(y,I") through the action y(z). The two corre-
sponding binders are compatible if a compatibility function o applied to the
types returns a value greater than zero. Note that intra-communications oc-
cur on perfectly symmetric input/output pairs that share the same subject,
while inter-communications can occur between primitives that have differ-
ent subjects, provided that their types are compatible. In other words, we
relax the perfect key-lock mechanism of classical process calculi on inter-
communications.

In [37] we showed that the structural congruence relation over systems is
decidable.

Definition 3.4. The BL Transition System (TS) is referred as (Z,—),
where Z is the set of well-formed systems and —C Z X Z is the transition
relation.

Throughout the paper, for simplicity, we denote with [[}_, B; a parallel
composition of bio-processes By || --- || By, with [[;_, P; a parallel compo-
sition of processes P; || --- || P, and with > | m;.P; a choice process of the

7

Group a

a.l) Py =, P if P; and P, a-equivalent
a.2) Py | (P | P3)=p (P | P2) | Ps
)Pl\PQ_pPQ\Pl

a.4) P |nil=, P

a.5) My + (M + M3) =p (M1 + Ma) + M3
)M1+M2—pM2+M1
a.7) M + nil =

)'WP—pW(P\'WP)

Group b

b.1) I[P] = I[Po] if Py =, P

b.2) By || (B2 || Bs) =p (B1 || B2) || Bs

)B H BQIng H Bl

b.4) B || Nil=, B

) IlIQ[Pl] =p IQIl [PQ] pI‘OVlded P1 =p P2

b.6) B —b B’ if
— 1B,)[P] and B = I*A(y, 1) [Py/x}] or
— IB(z,1)[P) and B = I B(y, T)[P{y/x)]

w1th y & fn(P)U sub(I*)

Figure 2: Structural laws for BL.

form m.P, + -+ m,.P,.

4 A decidability result for the BL subset

In this section we show that termination is decidable for the BL subset.
With respect to the methods used in this section, we take inspiration from
[3, 4, 5] in which decidability results for m-calculus, Pure Mobile Ambients
and Brane Calculi have been presented and we rely on the theory of well-
structured transition systems [15]. In particular, the existence of an infinite
computation starting from a given state is decidable for finitely branching
transition systems, provided that the set of states can be equipped with a
well-quasi-ordering. The main differences with the results contained in [4, 5]
are that in our language we have no static hierarchies of ambients and nested
restrictions, but we have a two level hierarchy of boxes and processes and a
form of name-passing over finite sets of names.

The decidability of termination for BL is proved by first providing an
alternative labelled transition semantics for a subset Z; of BL bio-processes
we call safe and then by showing that there is a correspondence of this
semantics with the reduction semantics presented in Sec. 2. In particular, we
show that we have always possible and easy to transform a generic BL bio-
process into an equivalent safe one and that a bio-process admits an infinite
computation according to the reduction semantics if and only if one of its
corresponding safe bio-processes admits an infinite sequence of 7 transitions
according to the new labelled transition semantics.

Then, we define a quasi-ordering <, on bio-processes which is strongly
compatible with —, we show that the relation =<; is a well-quasi-ordering
and finally we prove that the termination of bio-processes in Z; is decidable.

4.1 Well-Structured Transition Systems

In this section we recall some basic definitions and results from [15, 18]. A
quasi-ordering (qo) is a reflexive and transitive relation.

Definition 4.1. A well-quasi-ordering (wqo) on a set X is a go < such that
any infinite sequence of elements xg, x1, X2, ... from X contains an increasing
pair v; < x; with i < j. The set X is said to be well-quasi-ordered, or wqo
for short.

Note that if < is a wqo then any infinite sequence xg, x1, T2, ... contains
an infinite increasing subsequence x;,, ;,, Ti,, ... (with ip < iy <ip < ...).
Thus well-quasi-orders exclude the possibility of having infinite strictly de-
creasing sequences.

Definition 4.2. A transition system is a tuple T'S = (S, —) where S is a set
of states and —C S x S is a set of transitions. If p,q € S, then (p,q) €— 1is
usually written as p — q.

The set {s' € S | s — §'} of immediate successors of a state s € S is
denoted with Succ(s). TS is finite branching if Succ(s) is finite for all s € S.

Definition 4.3. A well-structured transition system with strong compatibil-
ity, denoted with TS = (S,—,<) is a transition system equipped with a qo
< on S such that the following conditions hold:

o < is a well-quasi-ordering

o < is (upward) compatible with —, i.e., for all s; < t; and all transitions
S1 — Sg, there ezists a state ty such that t; — to and sy < ty (strong
compatibility).

Our decidability result is based on the following theorem [15]:

Theorem 4.4. Let T'S = (S, —, <) be a finitely branching, well-structured
transition system with decidable < and computable Succ. The existence of
an infinite computation starting from a state s € S is decidable.

In order to prove that the qo we will define on bio-processes is a wqo, we
need to introduce some important results proved by Higman in [18]. First of
all we recall that given a set S, the set S* denotes the set of finite sequences
of elements in S.

Definition 4.5. Let S be a set and < a wqgo over S. The relation <, over
S* is defined as follows. Let t,u € S*, witht = ty...t,, and u = uy...u,,. We
have that t <, wu iff there exists an injection f from {1,....m} to {1,...,n}
such that t; < upgy and i < f(i) fori=1,...,m.

Theorem 4.6. [Higman] Let S be a set and < be a wqo over S. Then, the
relation <, is a wqo over S*.

Lemma 4.7. Let S be a finite set. Then equality is a wqo over S.

4.2 A labelled transition semantics for BL

In this section we define a labelled transition semantics for BL (Tab. 4) to
get rid of structural congruence. Axioms and rules for processes are in the
style of the transition semantics reported in [38] (page 38) for the m-calculus,
and hence some results there reported can be reused.

We use the meta-variable 6 to range over zy, Ty, Azry, Ary, and 7. The
set of names, n(#), of 0 is fn(#) Ubn(#). In Table 3 terminology and notation
for labels are reported.

0 kind fn(d) bn(#) n(0)
Ty process input {z,y} 0 {z,y}
Ty process output {z,y} 0 {z,y}
Azy box input over A {x,y} 0 {z,y}
ATy box output over A {z,y} 0 {z,y}
T internal 0 0 0

Table 3: Terminology and notation for action labels.
Notice that the semantics we define is not equivalent to the one presented

in Section 2, because of the absence of rules for managing a-conversion. We
do not explicitly consider a-convertible bio-processes to get rid of the infinite

10

names over intra-communication that a-conversion introduces. This fact will
be used to obtain the wqo over bio-processes.

However, we will show that there is a correspondence between the la-
belled transition semantics over the safe subset of BL bio-processes and the
reduction semantics over B L bio-processes. Moreover, although the labelled
transition semantics is not finite branching, we will show that the transition
systems constructed over safe bio-processes by only considering — transitions
are finite branching. This fact is essential to use the theory of well-structured
transition systems.

Safe bio-processes are introduced to guarantee that no behaviors are lost
when we get rid of structural congruence. Suppose a(A, A) > 0 and consider
the following bio-process:

B = B(a, A)[@(y)nill | B, A) By, T)la(=).2k)-nil | y(z).nil

To avoid captures in inter-communications, rule (inter) in Tab. 2 requires
y & sub(B(z, A)) U sub(B(x, A)B(y, I')), which in this case does not hold.
Hence, in order to consume the inter-communication we have to consider
(one among infinitely many others) the bio-process:

B' = f(z, A)[@(y).nil] || B(z, A) B(n, T')[x(2).Z(k).nil | n(z).nil]

and derive the transition through the rule struct, i.e., structural law (b.6) im-
plies B =, B’. Safe bio-processes guarantee that we never need to apply the
structural law (b.6) in order to derive an inter-communication, simplifying
the definition of our labelled transition semantics.

Definition 4.8. The bio-process B is safe iff fn(B) N sub(B) = 0.
We denote with Z; C Z the set of safe well-formed bio-processes.
Lemma 4.9. Let B € Z. There exists B’ € Z, such that B =, B’.

Proof. Immediate from the structural congruence rules reported in Fig. 2
(Group b). O

We denote with safe(B) C Z, the set of safe bio-processes structurally
congruent to a generic bio-process B € Z. Given a bio-process B € Z, it is
easy to see that the problem of finding an equivalent safe bio-process B’ is
decidable an efficiently solvable. Indeed, considering the finite set fn(B) of
free names in B and the number m of binders of B (both the set and the value
can be computed linearly in the size of B), a safe bio-process B’ structurally
congruent to B can be obtained simply by substituting all the binder subjects

11

(pi-in) z(w).P 2 P{y/w}

(pi-out) z(y).P W, p
(rep_in) lz(w).P 25 P{y/w} | lz(w).P

(repout) 1Z(y).P 2% P | Z(y).P
Mo % My
(Lpisum) Mo+ M; % M}

p P
(Lpipar) Py | P 5P| Py

PP Q¢
(I.intra) PIQLP|Q

P, p

(bioout) Bz, AVI*[P] 2% B(a, AVI*[P]

with y & sub(I*) U {x}

P p
(bio_in) Bz, A)I*[P] 22 B(z, A)T*[P]
with y & sub(I*) U {z}
pPL P
(pibio) I[P] T I[P]
Bo % B

(Ibio_par) By || B1 % By || By

AT Tyz
By =% B, B -4 B,

(l_inter) By || B1 = B} || B
with a(A,T) >0

Table 4: Labelled transition semantics of BL (we omit the symmetric rules
r_pi_sum, r_pi_par, r_intra, r_bio_par and r_inter).

12

of B with names contained in a set M C N such that M N fn(B) = 0 and
|M| = m. The problem of finding this set M is effectively computable.

Now, we show that the transition system (Z,, —) is finite branching. In
order to do this we first have to show that the safe property of bio-processes is
preserved over 7 transitions. However, some preliminary results are needed.
The first result describes how, given a transition P 2, P’ over processes or
a transition B % B’ over bio-processes, the free names of P’ and B’ are the
finite set made up of the free names of P and B and the names in 6.

Lemma 4.10. Let P, P’ € P. Suppose P 25 P', then
(a) if 0 =Ty then x,y € fn(P) and fn(P') C fn(P)
(b) if 0 = zy then x € fn(P) and fn(P") C fn(P)U {y}
(c) if 6 =1 then fn(P') C fn(P)
Proof. See [38], page 44. 0

Lemma 4.11. Let B, B € Z,. Suppose B %> B'. Then
(a) if 0 = ATy then y € fn(B) and fn(B') C fn(B)
(b) if 0 = Axy then fn(B') C fn(B) U {y}

(c) if 0 =T then fn(B') C fn(B)

Proof. By induction on the inference of B % B We present only the most
relevant cases. The other cases can be proved similarly.

(a)

(Case bio_out) We have B = (z, A)I*[P] and B’ = (z, A)I*[P']. By definition
we have fn(B) = fn(P)\ (sub(I*)U{z}) and fn(B') = fn(P’)\ (sub(I*)U
{z}). By hypothesis we have P =% P’ and hence, by Lemma 4.10, 2,y €
fn(P) and fn(P’) C fn(P). Therefore fn(P’)\ (sub(I*)U{z}) C fn(P)\
(sub(I*) U {x}), which means fn(B’) C fn(B). Moreover, since y € fn(P)
and y & (sub(I*) U {x}) we have y € fn(B).

(Case |_bio_par) By definition fn(By||B1) = fn(By) U fn(B;). By inductive
hypothesis we have y € fn(By) and fn(Bj) C fn(By). Therefore fn(Bj) U
fn(B1) € fn(By) U fn(By) which means fn(B’) C fn(B). Moreover, since
y € fn(By), we have y € fn(B).

(b)

(Case bio_in) We have B = (z, A)I*[P] and B’ = (z, A)I*[P’]. By definition
we have fn(B) = fn(P)\ (sub(I*)U{z}) and fn(B') = fn(P’)\ (sub(I*)U

13

{z}). By hypothesis we have P % P’ and hence, by Lemma 4.10, = € fn(P)
and fn(P’) € (fn(P)U{y}). Therefore (fn(P’)\ (sub(I*) U{x})) U{y} C
Ef)n(P) \ (sub(I*)U{z})) U{y}, which means fn(B’') C fn(B)U {y}.

c

(Case liter) By definition fn(By||B1) = fn(Bo) U fn(By). By inductive
hypothesis we have z € fn(By), fn(B}) C fn(By), and fn(B]) C fn(B;)U
{z}. Since z € fn(By) we have fn(By) U fn(By)U{z} = fn(By) U fn(By)
and therefore fn(Bj) U fn(B]) C fn(By) U fn(B;), which means fn(B’) C
fn(B). O

Lemma 4.12. Let B € Z,. Then B = B’ implies B' € Z,.
Proof. By hypothesis we have fn(B) N sub/(B) = (). By the semantics def-

inition it is sub;(B) = sub,(B’), because no rule can change the subjects
of binders. Moreover, by Lemma 4.11, we have fn(B’) C fn(B). As a
consequence fn(B')N subt(') = 0 and hence the Lemma holds. O

Now, we recall some results on image-finiteness of 7-calculus processes,
reported in [38] (page 45) that are still valid for our processes.

Lemma 4.13. Let P € P. Then
(1) There are only finitely many x such that P = P’ for some z and P’

(2) There are only finitely many triples x,y, P’ such that P =% P',

These results can be used to show that for any process P there are only
finitely many processes () such that P — @ and that for any safe bio-process
B there are only finitely many safe bio-processes B’ such that B - B'.

Lemma 4.14. Let P € P. Then the set Succ(P) = {P' € P | P = P'} is
finate.

Proof. By induction on the structure P.

(Induction base) If P has the form nil, x(y).P’, Z(y).P’, lz(y).P" or 1Z(y).P’
it is simple to see that no 7 actions can be derived using the semantics rules.
Hence, in this cases the set is {P' € P | P - P'} = 0.

(Case P = My+M,) By inductive hypothesis the sets Succ(My) and Succ(My)
are finite. Since no intra-communications between processes My and M; can
be performed, then the set {P' € P | P - P'} = Succ(M,) U Succ(M,) is
finite.

(Case P = P, | P;) By inductive hypothesis the sets Succ(Fy) and Succ(P;)
are finite. However, Py and P, are parallel processes and hence they can syn-
chronize on inputs and outputs actions and perform intra-communications,
generating 7 transitions. By Lemma 4.13, we obtain that the number of pos-
sible input and output in Py and P, is finite and hence only a finite number

14

of 7 actions (using l.intra and r_intra rules) can be derived. Therefore, by
inductive hypothesis and Lemma 4.13 the set Succ(P) is finite. O

We extend results of Lemma 4.13 and Lemma 4.14 to bio-processes.

Lemma 4.15. Let B € B. Then

(1) There are only finitely many pairs x, A such that B A, gy for some z
and B'. B

(2) There are only finitely many tuples A, x,y, B" such that B AW g

Proof. By induction on the structure of B.

(1)

(Case Nil) No couple z, A such that B 2%, B’ for some z and B’ exists.
(Case I[P]) For each subject € sub(l), we have (by Lemma 4.13) that there
are only finitely many x such that P =5 P’ for some z and P’ and hence
only finitely many z such that P = P’ for some z ¢ sub(I) and P’. Since
by definition I is well-formed and the set of binders subjects sub([l) is finite,

we obtain (by the application of rule bio_in) that there are only finitely many

pairs A, z such that I[P] A, I[P'] for some z and I[P].

(Case B || B') By inductive hypothesis on B and B’ the Lemma follows
immediately.

) N

(Case Nil) No tuple A, z,y, B’ such that B =% B’ exists.

(Case I[P]) For each subject x € sub(I), we have (by Lemma 4.13) that there
are only finitely many tuples x,y, P’ such that P 2, P’ and hence there are
only finitely many tuples z,y, P’ such that P =% P’ and y & sub(I). Since by
definition I is well-formed and the set of binder subjects sub(I) is finite, we
obtain (by the application of rule bio_out) that there are only finitely many
tuples A, z,y, I[P'] such that I[P] 2, I[P'].

(Case B || B') By inductive hypothesis on B and B’ the Lemma follows
immediately. [l

Lemma 4.16. Let B € Z,. Then the set Succ(B) = {B' € Z, | B> B'} is
finite.

Proof. By induction on the structure of B.

(Case Nil) In this case Succ(B) is obviously ().

(Case B[P]) By Lemma 4.14 the set Succ(P) is finite. It immediately follows
(by application of rule pi_bio) that the set Succ(B[P)]) is finite.

(Case By || By1) By inductive hypothesis the sets Suce(By) and Suce(By)
are finite. However, By and B; are parallel bio-processes and hence they

15

can synchronize on inputs and outputs actions over compatible binders and
perform inter-communications, generating 7 transitions. By Lemma 4.15,
the number of possible input and output over compatible binders between
By and B is finite and hence only a finite number of 7 actions (using l_inter
and r_inter rules) can be derived. Therefore, by inductive hypothesis and
Lemma 4.13, the set Succ(B) is finite. O

Corollary 4.17. The transition system (2,) is finite branching.
Proof. Immediate by Lemma 4.16. O]

To reason on the new labelled semantics we need to show its correspon-
dence with the reduction semantics. In particular, we show that the 7 tran-
sition relation over safe bio-processes and the reduction relation over bio-
processes agree.

Lemma 4.18. Let B,B' € Z,. If B =, B’ and B = B", then for some
B" € Z, we have that B> B" and B" =, B".

Proof. By induction on the number of structural congruence rules applied to
B for obtaining B’.]

Theorem 4.19. Let B € Z and B" € safe(B). Then B — B’ iff B" - B"
and B" € safe(B’).

Proof. (=)
If B — B’ then there exist bio-processes By =, B and B; =, B’ such that

By = 1[z(z). Py + My | z(w). Py + My | P3] || By
and By = I[Py | Py{#w} | P3] || B

or

By = B(z, A) I}[@(2). By + My | Q1] || B(y,) Ly(w). Re + Ma [Qo] || B2
and By = L1[Ry | Q1] || L[Re{?w} | Q2] || B2

with a(I'; A) > 0 and z ¢ sub(I7) U {z}. By Lemma 4.9, in both cases there
exist safe bio-processes Bj =, By and B] =, B;. In particular, in the second
case we have that Bf is such that z & sub(I}) U sub(l3) U sub,(Bs) U {x, y}.
It is easy to see that in both cases we can derive B — Bj. Moreover, B =
By =, B means that Bj € safe(B) and hence B” =, Bj. By Lemma 4.18,
there exists B” € Z; such that B” =, B} and from B"” =, B} =, B; =, B’
we obtain B” € safe(B’).

(<)

It is enough to show that B — B’ implies B — B’. The proof is by induction
on the inference of B 5 B’

16

(Case linter) By hypothesis we know that By AT, Bj, By Loz, Bj. Notice

that :
1) if By 2% B/ then By =, Bz, A) [7(2).Q + M | R] || By, B =,
Bla, A) [Q| R || By and 2 & sub(Iy) U {z}.
2) if By ~% B! then By =, By, T) I} y(w).S+ N | T'] || By, B, =
By, T) Iy[S{z/w} | T'] || Bs and = ¢ sub(I}) U {y}.

Hence, the bio-process By || Bj is structurally congruent (=) to
Bla, M) L[7(2).Q + M | R] || By, T) i y(w).S+ N | T] || By || B

and by applying inter and redex rules of the reduction semantics we can derive
the transition

Bo || By — Bz, A) [Q| R By, T) 7] S{z/w} | T'] || Bz || Bs,

where the resulting bio-process is structurally congruent to Bj || Bj. By
applying the rule struct of the reduction semantics we are done.

(Case pi_bio) By hypothesis we have P P’. Notice that if P = P’ than
P=,72).Q+N | zw).S+M|Rand P\ =, Q| S{z/w} | R. By
applying the intra rule of the reduction semantics we can derive the transition
I[P] — I[Q | S{z/w} | R |, where the resulting bio-process is structurally
congruent to I[P’]. By applying the rule struct of the reduction semantics
we end the proof.

(Case |_bio_par) By inductive hypothesis we have By — B}, implies By — B}
and hence, by applying the rule redex of the reduction semantics we derive
By || By — B} || Bi. [

As consequence of Theorem 4.19, a bio-process B € Z admits an infinite
computation according to the reduction semantics if and only if a correspond-
ing bio-process B’ € safe(B) admits an infinite sequence of 7 transitions
according to the labelled transition semantics. In particular, B’ is terminat-
ing according to the labelled transition semantics if an infinite sequence of 7
transitions starting from B’ does not exists.

Corollary 4.20. Let B € Z and B’ € safe(B). The bio-process B termi-
nates according to the reduction semantics iff B terminates according to the
labelled transition semantics.

In the reminder of the paper we consider only safe bio-processes in Z;.

17

4.3 Decidability of termination for (Z,, =)

Here we show that the existence of an infinite computation over safe bio-
processes is computable in BL. We equip the labelled transition system
(BL, l>) with a qo <, on bio-processes which turns out to be wqo compatible
with —. Then we show that termination is decidable.

Definition 4.21. Let B € Z,. The set of bio-processes reachable from B
with a sequence of T transitions is:

Deriv(B)={B' | BL" B}

In order to define the qo =<, we first introduce a simplified structural

congruence relation which is compatible with Y, This relation captures
only reordering of sums, the monoidal laws for the parallel composition of
processes and bio-processes and reordering of binders.

Definition 4.22. The Egec congruence relation over processes, s the small-
est relation which satisfies the laws a.2, a.3, a.4, a.5, a.6, a.7 in Fig. 2 and
the =g congruence relation over bio-processes, is the smallest relation which
satisfies the laws b.1, b.2, .3, b.4, b.5 in Fig. 2, where in b.1 and b.5 the

entries P, =, Py are substituted with P Egec P,.
Since EgecCEp and ={*°C=, all the previous results on safe bio-processes
hold also for the simplified structural congruence.

Lemma 4.23. Let By, By € Z,. If By =%¢ B, and By - B, then there
exists B)) such that By - Bl and B}, =i B].

Proof. By induction on the number of structural congruence rules applied to
B for obtaining B’. O

We can now introduce a quasi-order =<, which will be proven to be a
well-quasi-order.

Definition 4.24. Let B, B’ € Z,. We define B <, B’ if and only if there ex-
iSt[1,...,]n,P1,...,Pn,Ql,...7Qn,P1/,...,Pr/L such thatBEgec H:LZIIZ[PZ],
B = T, LIQi) and Q; = P, | P} fori=1,...,n.

The =< relation is reflexive, transitive and strongly compatible with N

Theorem 4.25. Let By, B, B, € Z,. If By - Bl and By =, By then there
exists B such that By LN Bi and B} = By.

18

Proof. By cases on the inference of 2 We present only one case because all
the others are similar. .~
(Case bio_out) We have that By = B(z, A)I*[P] =2 B(z, A)I*[P'] = Bj.

—dec

By definition of <, we have that there exists a process () such that By =
B(z, A)I*[P|Q]. By hypothesis we know that P =% P’ and hence, by ap-
plying the rules in Tab. 4, we can derive the transition P|Q =% P'|Q from

which we have B; =% B(x, A)I*[P'|Q] = B}. By =, definition it results
B} =, B;. O

Corollary 4.26. =, is strongly compatible with —.

We now introduce some auxiliary functions that will be used to prove that
=<p is a wqo. The Sub function generates the set of all possible sequential
and replicated subprocesses of a given process.

Definition 4.27. Let P € P and S C 2V be a finite set of names. The set
of possible sequential and replicated subprocesses of P over the set of names

S is defined as:
Sub(nil, S) — 0
Sub(F(m).P,S) = {z(m).P}U Sub(P,5)
Sub(z(m).P,S) = {x(m).P}U (U,cs Sub(P{n/m},S))
Sub(M + N,S) = {M+ N}USub(M,S)U Sub(N,S)
Sub(P | Q,S) = Sub(P,S)U Sub(Q,S)
Sub(1Z(m).P,S) = {1Z(m).P} U Sub(P,S)
Sub(lz(m).P,S) = {lz(m).P} U (U,.q Sub(P{n/m},S))

The set of processes generated by the application of the function Sub on
a process P and a finite set of names S is finite.

Lemma 4.28. Let P € P and S C 2V be a finite set of names. Then
Sub(P, S) is finite.

Proof. By induction on the structure of P.
(case nil) The empty set is finite.
(case T(m).P) By inductive hypothesis Sub(P, S) is finite and hence by only

19

adding the element T(m).P the set is finite.
(case x(m).P) By inductive hypothesis for all n € S the set Sub(P{n/m},S)
is finite. Since S' is finite, then the union of a finite number of finite sets is
a finite set. Moreover, by adding the process x(m).P this set remains finite.
(case M + N) By inductive hypothesis Sub(M,S) and Sub(N,S) are finite
set and hence their union with the set {M + N} results in a finite set.

The other cases are similar. O]

Corollary 4.29. Let P € P. Then Sub(P, fn(P)) is finite.

Proof. Immediate from the fact that fn(P) is a finite set of names and by
Lemma 4.28. O

We now prove some useful properties of the function Sub.

Lemma 4.30. Let P € P and S, 8" C 2V. If ' C S then Sub(P,S") C
Sub(P, S).

Proof. By induction on the structure of P.
(Case x(m).P) By inductive hypothesis for all names n € S’ we have that
Sub(P{n/m},S") C Sub(P{n/m},S). As a consequence, we obtain the
condition |J,cq Sub(P{n/m},S") C U,cq Sub(P{n/m},S) and hence the
Lemma holds.
The other cases are trivial.]
C

nes

Lemma 4.31. Let P,Q € P and S,S’,S" C 2V. IfS" C S” and Sub(P, S")
Sub(Q, S”) then Sub(P,S"US) C Sub(Q,S" US).

Proof. By induction on the structure of P.

(Case T(m).P) By definition Sub(Z(m).P’,S") = {Z(m).P'} U Sub(P',S").
By hypothesis and Lemma 4.30 we have Sub(Z(m).P’,S") C Sub(Q,S") C
Sub(Q,S"” U S) and therefore T(m).P' € Sub(Q,S” U S). By definition of
Sub function and by inductive hypothesis, this means that Sub(P’, S”US) C
Sub(Q, S” U S) and hence the Lemma holds.

(Case z(m).P) By definition we have that Sub(x(m).P’,S") = {x(m).P'} U
(Uneg Sub(P'{n/m},S")). By hypothesis and Lemma 4.30 Sub(z{m).FP’,S") C
Sub(Q,S") C Sub(Q,S” U S) and therefore T(m).P" € Sub(Q,S” U S). By
definition of Sub function and by inductive hypothesis, this means that for
all n € S” U S we have Sub(P'{n/m},S" US) C Sub(Q,S" U S) and hence
the Lemma follows.

(Case By| P1) By hypothesis and Sub function definition we have Sub(F, S’) C
Sub(Q, S”) and Sub(Py,S") C Sub(Q,S”). By inductive hypothesis we have
Sub(Py, S"US) C Sub(Q,S"US) and Sub(Py, S’ US) C Sub(Q,S"US) and

20

therefore Sub(Fy, 5" U S) U Sub(Py,S"US) C Sub(@,S” U S). The Lemma
follows.
The other cases are similar. O

The Sub function definition and its properties can be extended to safe
bio-processes.

Definition 4.32. Let B € Z, and S C 2V be a finite set of names. The set
of possible subprocesses of B over the set of names S is defined as:

Sub(Nil, S) -0
Sub(I[P],S) = {I[P']| P' € Sub(P,S U sub(I))}
Sub(B || B',S) = Sub(B,S)U Sub(B',S)

Lemma 4.33. Let B € Z, and S C 2V be a finite set of names. Then
Sub(B, S) is finite.

Proof. By induction on the structure of B.

(case Nil) The empty set is finite.

(case I[P]) From the fact that sub(I) is finite and by Lemma 4.28, we have
that Sub(P, S U sub(I)) is finite and hence the set {I[P'] | P' € Sub(P,S U
sub(l))} is finite.

(case B || B') By inductive hypothesis Sub(B,S) and Sub(B’,S) are finite
sets and therefore their union is finite.]

Corollary 4.34. Let B € Z,. Then Sub(B, fn(B)) is finite.

Proof. Immediate from the fact that fn(B) is a finite set of names and by
Lemma 4.33. O

Lemma 4.35. Let B € Z, and S,S' C 2V. If 8" C S then Sub(B,S') C
Sub(B, S).

Proof. By induction on the structure of B.
(Case I[P]) By Lemma 4.30 we have Sub(P, S'"Usub(I)) C Sub(P, SUsub(I)).
This means {I[P']|P" € Sub(P,S" U sub(l))} C {I[P']|P" € Sub(P,S U
sub(I))} and the Lemma follows.

The other cases are trivial. O]

Lemma 4.36. Let B, B' € Z, and S, 5", 8" C 2V, IfS' C S” and Sub(B, S") C
Sub(B',S") then Sub(B,S"US) C Sub(B',S" U YS).

21

Proof. By induction on the structure of B.
(Case I[P]) By hypothesis and Sub function definition we have Sub(P, S’ U
sub(l)) C Sub(P,S" Usub(l)). By Lemma 4.30 we have Sub(P, S"U sub(l)U
S) C Sub(P,S" U sub(l)US). This means {I[P']|P" € Sub(P,S" U sub(l)U
S)} CHI[P]|P" € Sub(P,S" Usub(I)US)} and the Lemma follows.

The other cases are trivial.]

To prove that <, is a wqo we need some preliminary results. The first
result states that, given a transition P 4, P’ over processes and a transition
B % B over bio-processes, the set of possible sequential and replicated
processes of P’ over fn(P’) and of B" over fn(B') are delimited by the set of
possible sequential and replicated processes of P over fn(P) and of B over
fn(B) and the names in 6.

Lemma 4.37. Let P,P' € P and S € 2V. Suppose P % P', then
(a) if =Ty then Sub(P', fn(P')) C Sub(P, fn(P))
(b) if 0 = zy then Sub(P’, fn(P')) C Sub(P, fn(P)U{y})
(c) if 0 = 1 then Sub(P', fn(P')) C Sub(P, fn(P))

Proof. For all the three statements the proof is by induction on the inference

of P L P'. Cases rep_in and rep_out are similar to pi_in and pi_out. The
pi_par cases are similar for all the three statements and hence we provide the
proof only for (a). The pi_sum cases are similar to the pi_par ones.

(@)]

(Case piout) We have P = Z(y).P’ =% P'. By definition we have that
Sub(P, fn(P)) = {Z(y).P'} USub(P’, fn(P)). By Lemma 4.10 we know that
fn(P") C fn(P) and hence (by Lemma 4.30) Sub(P’, fn(P’)) C Sub(P’, fn(P)).
As a consequence Sub(P’, fn(P’)) C Sub(P, fn(P)).

(Case pi_par) By hypothesis we have Py =% P} and hence, by inductive hy-
pothesis, we obtain Sub(Ff, fn(F})) C Sub(Py, fn(F)). By Lemma 4.10
we know fn(P;) C fn(P,) and hence by Lemma 4.31 Sub(P;, fn(P)) U
fn(Pr)) € Sub(FPo, fn(FPy) U fn(P1)). Moreover, by Lemma 4.30 we ob-
tain Sub(Py, fn(FP)) U fn(Py)) C Sub(Py, fn(Fy) U fn(Py)). By definition of
the Sub function the Lemma follows.

(b)

(Case pi_in) We have P = z(w).P" 25 P'{y/w}. By definition we have that
Sub(P. fn(P)U{y}) = {7(0)- PO WUy oty Sub(P o}, fn(P)Uy))
and therefore contains the subset Sub(P'{y/w}, fn(P)U{y}). By Lemma
4.10 we know that fn(P'{y/w}) C fn(P)U{y} and hence (by Lemma 4.30)

22

Sub(P{y/w}, fn(P'{y/w})) S Sub(P'{y/w}, fn(P) U{y}). The Lemma
follows.

(©)

(Case |_intra) By hypothesis we have Py =% P} and P, =% P|. By (a) and
(b) we have that Sub(Pj, fn(FP})) C Sub(Py, fn(Fy)) and Sub(P], fn(P])) C
Sub(Py, fn(P1) U{z}). By applying Lemma 4.10, Lemma 4.30 and Lemma
4.31 we obtain Sub(P}, fn(F}) U fn(P])) C Sub(FPo, fn(Fy) U fn(Pr)) and
Sub(P}, fn(Py) U fn(P)) C Sub(Py, fn(Py) U fn(P;)) and, by Sub function
definition, the Lemma follows. m

Lemma 4.38. Let B, B € Z,. Suppose B2 B'. Then
(a) if 0 = ATy then Sub(B’, fn(B')) C Sub(B, fn(B))
(b) if 0 = Azy then Sub(B', fn(B')) C Sub(B, fn(B) U {y})
(¢) if @ =T then Sub(B', fn(B')) C Sub(B, fn(B))

Proof. For all the three statements the proof is by induction on the inference

of BL B'. We present only the most important cases. The other cases can
be proved using the results and the ideas of Lemma 4.37.

(a))

(Case bio_out) By hypothesis we know that P =% P’ and therefore by Lemma
4.37 we have Sub(P’, fn(P'")) C Sub(P, fn(P)). By applying Lemma 4.31
we obtain Sub(P’, fn(P')Usub(I*)U{z}) C Sub(P, fn(P)Usub(I*)U{zx}).
But this means that {(x, A)I*[P"]|P" € Sub(P’, fn(P’") U sub(I*)U{z})} C
{(z, A)I*[P"]|P" € Sub(P, fn(P)Usub(I*)U{z})} and the Lemma follows.
(b)

(Case bio_in) By hypothesis we know that P =% P’ and therefore by Lemma
4.37 we have Sub(P’, fn(P’)) C Sub(P, fn(P)U {y}). By applying Lemma
4.31 we obtain Sub(P’, fn(P’") U sub(I*) U {z}) C Sub(P, fn(P) U sub(I*) U
{z,y}). But this means that {(x, A)I*[P"||P" € Sub(P’, fn(P") U sub(I*)U
{z})} C {(x,A)I*[P"]|P" € Sub(P, fn(P) U sub(I*) U {z,y})} and the
Lemma follows. L

Now, we define a superset of the set of derivatives of a bio-process B,
denoted with Pg. This set includes all the bio-processes whose possible
sequential and replicated subprocesses are contained in the corresponding
elements of B.

Definition 4.39. Let B € Z,. Then
Pp={B € Z, | Sub(B, fn(B')) C Sub(B, fn(B)) A boxy(B') = boxy(B)}

23

The following result describes how given a bio-process B and a bio-process
B’ € Pg, all the derivatives of B’ are contained in Pg.

T

Lemma 4.40. Let B € Z, and B’ € Pg. If B' — B" then B" € Pg.

Proof. B’ € Pg implies Sub(B’, fn(B')) C Sub(B, fn(B)). Since by hypoth-
esis B' = B", by Lemma 4.38 we have Sub(B", fn(B")) C Sub(B', fn(B')).
Transitivity of C proves Sub(B”, fn(B")) C Sub(B, fn(B)), which means
B" € Pg. [l

A consequence of this Lemma is that all the derivatives of a bio-process
B are contained in Ppg.

Corollary 4.41. Let B € Z,. Then Deriv(B) C Pg.
Proof. Immediate from Lemma 4.40. O]

The following Lemma shows how a bio-process in Pg can be rewritten
(up to ={¢¢) as a parallel composition of boxes that are in relation with boxes
in Sub(B, fn(B)).

Lemma 4.42. Let B € Z, and B’ € Pg. Then we have that
B = I u]] @il
=1 j=1

with 1;[Q; ;] € Sub(B, fn(B)) fori=1,...,n and j=1,...,m.

Proof. Immediate from the bio-processes syntax and from the definition of
Sub function. O

In the following Lemma we define the relation =, over bio-processes ac-
cording to Def. 4.5.

Lemma 4.43. Let B € Z; and I[Py],....,I[P,],I'|Q1],...,I'|Qm] belonging
to Sub(B, fn(B)). If I[P],.... I[P,] = I'|Q1], ..., I'[Q] then I[[T—, Pi] <o
I'[[12, Qi

Proof. 1t I[Py],...,I[P,] =. I'|Q1],...,I'[@Q.] then there exists an injection
f AL ...n} — {1,...,m} such that I[P = I'|Q4] and i = f(i), with
1 = 1,...,n. The injection f corresponds to the identity function of the set
{1,...,n} and hence for each i in {1,...,n} we have I[P,] = I'[Q;]. By =g
definition we can write I'[[T"; Q] = I'[[T:_, Q: | [I\%,.; Q:] and by the
equality result we have I'[[T", Q] = I'[[T;_, P | T]\",.1 Qi] (notice that
I =1T'), which means I[[[_, P| <, I'[[1~, Qi]- O

24

The following theorem shows that the qo =<, is a wqo.
Theorem 4.44. Let B € Z,. The relation <, is a wqo over Pg.

Proof. We take an infinite sequence By, ..., B, ... such that B; € Ppg for i > 0.
By Lemma 4.42, for any ¢ we have that:
n myg 4
__dec
By =[]] | Prisl
j=1 k=1
Hence, each B; can be seen as composed of n finite sequences:

Lii[Pinals - Lin[Pim,
[i,Q[Pi,Q,l]v ceey [i72[P7l727mi,2]

Ii,n[Pi,n,1]7 s 7Ii,n[Pi,n,mi7n]
Note that all the sequences are composed of elements from the finite set
Sub(B, fn(B)). Each sequence is hence an element of Sub(B, fn(B))* and
hence we have n infinite sequences of elements in Sub(B, fn(B))*. By Corol-
lary 4.34 Sub(B, fn(B)) is finite, and by applying Lemma 4.7 and Higman’s
Theorem 4.6 we have that =, is a wqo over Sub(B, fn(B))*.

Now, we can extract an infinite subsequence from By, ..., B;, ... making
the finite sequences I 1[P;1.1], ..., L;1[Pi1m,,]| increasing w.r.t. =,; then, we
continue by extracting an infinite subsequence from the subsequence obtained
previously, making the finite sequences I; 2[P;21], ..., I;2[P;2m,] increasing
also in this case w.r.t. =,. We continue for all the n subsequences.

We end up with an infinite subsequence B,,, ..., By, ... (with ng < -+ <
n; < ...) of By,...,B;,... such that all the n finite sequences are ordered
w.r.t. =,. By Lemma 4.43 we obtain:

Mng,j Mn,,j

Ing 1 H Prg il = =o Iny 4l H Pojil 2o+ forj=1,...,n
=1 1=1

from which we finally obtain B,, =<y -+ < By, =p - []

The hypothesis of Theorem 4.4 are satisfied by the following theorem.

Theorem 4.45. Let B € Z,. The transition system (Deriv(B), =, =) is a
well-structured transition system with decidable <, and computable Succ.
Proof. The relation <, has been proved strong compatible in Theorem 4.25.
Moreover, the fact that <, is a wqo on Deriv(B) is a consequence of Corollary
4.41 and Theorem 4.44.

Given B, B’ € Deriv(B), deciding whether B <, B’ means to find a
subterm B” of B’ such that B’ ={°¢ B || B”, which is a decidable problem. []

Corollary 4.46. Let B € Z,. The termination of B is decidable.

25

5 Undecidability results

In this Section we prove that termination is undecidable for BL% and BL°.

We show this by providing encodings of Random Access Machines (RAMs)[39],
a well known Turing-complete formalism, into BL% and BL¢. First of all we

recall the definition of RAMs.

5.1 Random Access Machine

A Random Access Machine (RAM) is an abstract machine in the general
class of register machines. RAMs are a computational model based on finite
programs acting on a finite set of registers.

A RAM R is composed of a finite set of registers ry, - - -, r, and a sequence
of indexed instructions (1, I1), - - -, (m, I,,,). Registers store natural numbers,
one for each register, and can be updated (incremented or decremented) and
tested for zero. In [25] it is shown that the following two instructions are
sufficient to model every recursive function:

e (i:Incr(rj)): adds 1 to the contents of register r; and goes to the next
instruction;

o (i: DecJump(r;,s)): if the contents of the register r; is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to
the instruction s.

The computation starts from the instruction indexed with the number 1 and
it continues by executing the other instructions in sequence, unless a jump
instruction is encountered. The execution stops when an instruction number
higher than the length of the program is reached.

The state of a RAM R is a tuple (j, k1, ..., k,) where j is the index of
next instruction to be executed and ki, ..., k, are the current contents of the
registers. The execution is defined by a transition relation among states

(Jy k1, s kn) —r (5 K, kL)

meaning that the state of the RAM changes from (j, k1, ..., k) to (5, k1, ..., k2,),
as a consequence of the execution of the j-th instruction.

A state (7, ki, ..., k,) is terminated if the program counter j is greater
than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state.

26

5.2 Encoding with BL%

BlenX is a stochastic language, i.e. quantitative information about speed
and probability of actions (in the form of reaction rates) is provided with
systems specifications. In particular, by using infinite reaction rates we can
define immediate actions, i.e. actions that have precedence over the actions
with a reaction rate in R. In other words, immediate actions allow us to
create a two level priority between actions. Here we do not want to consider
the stochastic domain, but we want to show that immediate actions can
increase the expressive power of a language. In order to do this, we enrich
the BL language by introducing a priority mechanism and we show that
this extension turns out to be Turing equivalent by providing an encoding of
RAMs. Priority is a frequently used feature of many computational systems
and many process algebras have been enriched with some priority mechanisms
[6, 9, 29]. How priorities affect the expressive power of a language has been
previously studied in [29, 40]. In this work we use a mechanism based on
global priorities [2, 9], where high-priority actions are able to preempt any
other low-priority action in the system. In BL we handle priorities with an
approach similar to the one proposed by Cleaveland and Hennessy [9], where
prioritized actions are represented with underlined names.

The key ingredient in this encoding is the combined use of choice and pri-
orities; boxes and types are used only to maintain a certain homogeneity and
uniformity w.r.t. this encoding and the one presented in the next section.
Very recently, in [1] the authors show an encoding of RAMs into a subset
of CCS with replication and enriched with priorities which is similar in the
spirit to the one here presented.

The BL language is enriched with global priorities by adding a new im-
mediate output action:

o= e |zl

which has precedence over the usual Z(y). In particular, we call immediate
communications those that involve an immediate output. Well-formedness
conditions and structural congruence relations =, and =, remain unchanged
w.r.t. Sec. 3 and the new reduction semantics is reported in Tab. 5. More-
over, we denote with BL9 this extension and with Z9% the set of well-
formed systems of BLY. Tab. 5 shows that intra-communications and inter-
communications with outputs Z(y) can be derived only if, respectively, no
intra-communications and inter-communications through immediate outputs
Z(y) are enabled. Notice that in Tab. 5 with B - we mean that no bio-
process B’ such that B — B’ exists.

It is important to note that the introduction of priorities causes the gen-

27

eration of transition systems which are not well-structured. Indeed, since
priorities remove certain possibilities that would have existed without prior-
ities, we are no longer able to define a quasi-ordering over bio-processes (of
the kind presented in Sec.4) that satisfies the strong compatibility property.

(intra;) I[Z(z). P + M; | z(w). Po+ My | P3] || B — I[Py | Po{#w} | Ps] || B
(intra) Iz (z). Py + My |x(w). Po + My | P3] | B I[P | P2{#w} | Ps] || B

P =,Z(z). Ry + M1 | Q1 Py =, y(w). Ry + M2 | Q2
(inter;) LIP] || R[Pe] || B — LRy | Q] || T2[Ro{7w} [Qo] || B

provided a(I', A) > 0 and z ¢ sub(I;)

and where I1 = B(x, A) I} and I, = B(y, I') I3

Pr=,7(2). Ri+ M| Q1 Pa=py(w). Ry + Ma| Q2
(inter) L[] || LP] || B LRy [@u] || Io[Ro{#w} Q2] | B

provided a(I', A) > 0 and z ¢ sub(11)

and where I1 = (z, A) I} and Iy = B(y, ') I3

Bl =p Bi Bi —» Bé Bé =p BQ
Bl —)BQ

(struct;)

Bl =p Bi Bi — Bé Bé =p B2 Bi 74->

(struct)
By — By

Table 5: Reduction semantics of BL.

Definition 5.1. The BL% Transition System (T'S9) is referred as (2%, —

), where Z9 is the set of well-formed systems and —C Z9 x Z9% is the
transition relation.

As usual, —T indicates the transitive closure and —* the reflexive and
transitive closure of —. Moreover, Z —k 7" with k > 1 indicates that Z' can
be reached from Z with k transitions Z —' Z; —2% ... =k Z, =k 77,

Consider a RAM R with program (1, I1), ..., (m, Is) and state (7, k1, ..., k).
The encoding of the RAM is:

1, k1, ... k)] = B

28

where,
B 25 Switch; || [(L,IIF [-+ || [(m, L)]F ||
[ro=H]E Il - 1] [rn = k] %

The Switch; bio-process is defined in the following way
Switch; 2p B(ins: Ins)B(iy : Ins;)B(ia : Insy) -+ Bliy, : Ins,,)
[1z(e).Switch | Switch | i;{e).nil |
Switch =p ins(type).(type(e).nil | (3, insi(e).T{e).ij{e).nil))

and its graphical representation is

(ins: Ins) (i1 :1Insy) (ig:Insy) -+ (im:Insy)

lz(e).Switch | Switch | i;{e).nil

The encoding of the instruction (i, Incr(r;)) is

[, Incr(r)) = Blact : Ins;)B(next : Ins)B(inc : IReg;)
[lz(e).Inc; | Inc;]
Inc; £p act(e).inc(e).T{e).next(ins; 1) .nil

and its graphical representation is

(act : Ins;) (next:Ins) (inc:IReg;)
1

lz(e).Inc; | Ing

The encoding of the instruction (i, DecJump(r;, s)) is

[(i, DecJump(r;, s))]F = Blact : Ins;)B(next : Ins)B(t, : Test]™)
Bty : Test}?)
[lz(e).DecJump; | DecJump; |
DecJump; =p act(e). (y(e).Dec; + t,(e). Jump;)
Dec; =p Z(e).next(ins;,1).nil
Jump; =p T{e).next(ins,).nil

Cb

and its graphical representation is

(act : Ins;) (next:Ins) (t,:Test]”) (t,:Test}?)

lz(e).DecJump; | DecJump;

29

The encoding of a register ; with content [/ is defined as follows

[r; =1% £5 B(t,: Test!™)B(t, : Test*)B(inc : 1 Reg;)
[linc(e).Decrement | ¢, {(e).nil | Val; |

where,
A
Val, =p Decrement | --- | Decrement

-~

l

Decrement =p t,(e).nil

The graphical representation of [r; =]9 is

(ty : Test¥®®) (t, : Test™) (inc:IReg;)
|

linc(e).Decrement | ¢, {(e).nil | Val,

Finally, the function « is defined in the following way

1 if T'ype; = Typesy

a(Typer, Typez) = { 0 otherwise

The encoding produces a system in Z9 due to the unique immediate out-
put in the definition of the process Decrement. This encoding is a parallel
composition of a switching box, which controls the activation of the instruc-
tions sequence, m boxes encoding instructions and n boxes encoding registers.
The two types of instructions are encoded in different ways, but in both cases
the encoding box is activated by performing an inter-communication on the
channel act with the switching box Switch;.

Each register r; is modeled with a box whose internal process structure
depends on the content of the register. A register can be incremented and
tested for not zero value. The number of parallel unguarded Decrement
processes present in the internal structure of the box represents the content
of the register.

The box encoding the instruction (i, Incr(r;)), after its activation, consumes
an inter-communication with the box encoding the register r; (through the
interfaces of type IReg;), representing a request for its increment. In the
register box, the inter-communications produces the replication of the pro-
cess Decrement, representing the increment of one, while in the instruction
box, the inter-communication produces the replication of the internal ma-
chinery and the consumption of an inter-communication with the switching
box (through the interfaces of type Ins) for the activation of instruction i+ 1.

30

The box encoding the instruction (i, DecJump(r;,s)), after its activation,
presents an alternative behavior (encoded with the choice operator), which
implements the mechanism used for testing the content of the register r;.
In particular, the content of the register is tested with two alternative inter-
communications on channels ¢, and ¢,, through interfaces of types T'est?** and
Test™, respectively. In the register box, outputs on channel ¢,, if present,
are of the form ¢,(e) and hence generate immediate inter-communications.
If the encoded register contains a value n > 0, then n parallel com-
positions of process Decrement =p t,(e).nil are present and hence inter-

communications on output ¢,(e) have always precedence w.r.t. the inter-

communications that the process !¢, (e).nil offers. In the register box, the
consumption of an immediate inter-communication deletes an instance of
Decrement process in its internal structure, representing the decrement of
one, while in the instruction box, the consumption of an immediate inter-
communication enables the process Dec;, which replicates its internal box
machinery and performs an inter-communication with the switching box
(through the interfaces of type Ins) for the activation of instruction ¢ + 1.

If the encoded register contains the value 0, then no unguarded Decrement
processes are present in the internal structure of the register box and hence
the inter-communications that the process !¢, (¢).nil offers can be consumed.
This causes, in the instruction box, the activation of the process Jump;,
which replicates its internal box machinery and performs an inter-communication
with the switching box for the activation of instruction s.

A formal proof of the encoding correctness follows.

Lemma 5.2. Let R be a RAM with program (1,1,),...,(m, I,,) and state
(J, k1, ey o).

If (j,k1yooos kn) —r (5, K, ..., kL), then there exists a well-formed system
Z € Z9% such that [(j, k1, ..., k)5 —F Z and Z =, [(§', k), ... k)R .

Proof. The proof is by case analysis. There are three cases: (i) Instruc-
tion I; = DecJump(r;,s) with r; content greater than zero; (ii) Instruc-
tion I; = DecJump(r;,s) with r; content equal to zero; (iii) Instruction
I; = Incr(r;). We only prove case (i), because the other cases can be proved
similarly.

(i) We consider the computation of the bio-process [(J, k1, ..., k.)]% . An
inter-communication between the component Switch; and the component
[(4, DecJump(r;, s))]% is consumed. In particular, the two boxes synchro-
nize on output 7;{e) and input act(e) through their binders of type Ins;.

31

This cause the activation of the [(j, DecJump(r;, s))]% component. Notice
that, after the inter-communication, the components codifying for the other
instructions, the registers and the switching box are blocked.

The activation of the [(j, DecJump(r;, s))]% box causes the enabling of
a choice process. This process is used for testing the content of the regis-
ter r; that is a choice composition of two processes blocked on inputs ¢,(e)
and t,(e), bound to the interfaces TestV*® and Test™, respectively. By hy-
pothesis the content of the register r; is greater than 0 and hence the internal
structure of the box [r; = k;]% is a parallel composition of processes that con-
tains at least one Decrement processes. Two types of inter-communications
between the boxes encoding the instructions and the registers are enabled.
One inter-communication through interfaces with type T'est™” and k; inter-
communications through interfaces with type Test?**. However, since the
inter-communications through interfaces with type TestV®® are immediate,
they have precedence w.r.t. the one through interfaces with type Test™.
The consumption of one of the immediate inter-communications deletes one
of the k; Decrement processes in [r; = k%, resulting (for all the possible
inter-communications of this type) in a bio-process structurally congruent to
[ri = ki — 1]%, and activates process Dec; in the instruction box.

At this point, an intra-communication in the instruction box on chan-
nel x replicates the internal machinery of the box and enables the process
next(ins;1).nil. This produces a synchronization between the instruction
box and the switching box, which generates an inter-communication on out-
put next(ins;1) and input ins(type) through interfaces of type Ins.

The instruction box is now returned in its form [(j, DecJump(ry, s))]% ,
while in the switching box the process

(insjii(e).nil | (D20, ins,(e).Z(e).i,(e).nil))
is enabled. An intra-communication on channel ins;;; is consumed, the
internal machinery is replicated with an intra-communication on channel z

and the switching box is now structurally congruent to the box Switch;.
O

Lemma 5.3. Let R be a RAM with program (1,1),...,(m, I,,) and state
(4, k1, -oos k). If the system Z = [(J, k1, k)% can produce a transition
Z — Zy, then there exists a computation 2 — Zy — Zy — -+ — Z; such
that Z, = [(j', k1, ... kL)1 and (3, kv, .. kn) —r (5, K4, . kL)

Proof. Consider the structure of the bio-process Z = [(j, ki, ko) 5. If
the bio-process Z can perform a first step Z — Z;, this corresponds to an
inter-communication between the box Switch; and the box encoding for the
instruction (7, I;), representing the activation of the instruction box. The

32

encoding definition ensures that the instruction (7, [;) exists; hence the in-
struction can be executed in the state (j, k1, ..., k,) of the RAM R, generating
a new state (j', k1, ..., k).

There are three cases: (i) Instruction I; = DecJump(r, s) with r; content
greater than zero; (ii) Instruction I; = DecJump(r;, s) with r; content equal
to zero; (iii) Instruction I; = Incr(r;). In all the cases, it is possible to show
that from the moment in which the switch activates an instruction till the
moment in which the switch is able to activate a new instruction, the com-
putation proceeds deterministically (up to structural congruence =;). The
encoding is hence deterministic up to structural congruence. We prove only
case (iii), because all the other cases can be proved similarly.

(iii) By encoding definition we have that the structure of the instruction
box is

[, Incr(m)]% = ﬁ(act:]nsj)ﬁ(next;fns)ﬁ(mc:_]}%egl)
[lz(e).Inc; | act(e).incle).T(e).next(ins;1).nil]

This box is the only one able to synchronize with the box Switch; for
an inter-communication through interfaces of type Ins;. After the inter-
communication we have that in Z; the box encoding the instruction j be-
comes structurally congruent to

B = plact: Ins;)B(next : Ins)B(inc: I Reg,)
lz(e).Inc; | incle).T{e).next(ins;i1).nil]

At this point, the only possible action Z; — Z5 is the inter-communication
between the box B’ and the box [r; = k% through their interfaces of type
IReg; on output inc{e) and input inc(e), respectively. After the inter-
communication the box encoding for the register r; becomes structurally
congruent to

B(t, : Test!™)B(t, : Test}?)B(inc : I Reg;)
[linc(e).Decrement | 1t,{(e).nil | Valy | Decrement |
which corresponds to the box [r; = k4 1]%. Instead the box encoding the

instruction j becomes structurally congruent to

B" = f(act: Ins;)B(next : Ins)B(inc: I Reg;)
lz(e).Inc; | T(e).next(ins;1).nil

Now, the action Z, — Z3 is the intra-communication of B” on channel z
which becomes a box B"” with internal structure !z(e).Inc; | next(ins;i1).nil,
and the action Z3 — Z, is the inter-communication between the box B"’

33

and the switching box. After the inter-communication, the instruction box
returns in its initial form [(j, Incr(r;))]% and the switching box starts a se-
quence of intra-communcations which produces a box structurally congruent
to Switchj;; and representing the sequence of actions Z, — Z5 — Zg. It is
easy to see that Zg is congruent to [(j+1, k1, ..., ki—1, k+1, ki1, . ko). O

Lemma 5.2 and Lemma 5.3 give us the instruments for proving the un-
decidability of termination for BL9 bio-processes.

Theorem 5.4. Let R be a RAM with program (1, 1), ..., (m, I,) and initial
state (j, ki, ..., k). Then the computation of the RAM R terminates if and
only if the computation of the system Z = [(J, k1, ..., kn)]|% terminates.

Proof. (=) By hypothesis we have that the RAM R terminates. This means
that the computation of R reaches, in a number [of steps, a terminated state
(7', K}, ..., kL), i.e. a state with a program counter greater than the number
of instructions. The proof is by contradiction assuming that the system
Z does not terminate, which means we have an infinite computation Z —
Zy — -+ — Z; — ---. By Lemma 5.2 we have that there exists a well-formed
system Z' € Z9% such that Z —* Z' and Z' =, [(§', k1, ..., k)% - By assump-
tion, Z does not terminate and hence there exists Z” such that Z’ — Z”. By
Lemma 5.3 we have that there exists a computation 2’ — 7" — Zy — -+ —
Z, such that Z; = [(5", kY, ... k)% and (§',k}, ... k,) —r (5" K{,.... k).
But this contradicts our hypothesis, which states that (5, k1, ..., k.,) is a ter-
minated state and therefore the implication holds.

(<) By hypothesis we have that the system Z terminates. This means that
there exists a computation Z —! Z’ such that Z’ /. The proof is by contra-
diction assuming that the RAM R does not terminate. By applying Lemma
5.3 we have that Z" =, [(j', K, ..., k,)]% and that (j,k1,....,k,) —Rr -+ —r
(7', K}, ..., k). By assumption we have that (5, k},.... k) —r (7, K/, ..., k)
and hence by Lemma 5.2 we have that there exists a well-formed system
Z" € Z9% such that Z/ —* Z" and 2" =, [(j", K, ..., k)] . But this con-
tradicts our hypothesis, which states that Z’ -4 and therefore the implication
holds. O

5.3 Encoding with BL°

In BlenX we introduced a new concept of event [13]. Events can be consid-
ered as a reformulation of the f,y;: and fjq, axioms present of the original
version of Beta-binders [31]. Events are global rules of the system which can
substitute single boxes or pairs of boxes.

34

We extend the BL language by introducing events; the syntax of BL is
enriched in the following way:

cond = I[P]|I[P],I[P]

verb = split(I[P], I[P]) | join(I[P])
event = e | (cond) verb

E = event ‘ E:FE

The non terminal symbol E generates a list of events (for more details
see [36]). A list of events is always related to a bio-process B and each single
event occurs only if its condition is satisfied on a set of one or more boxes
composing B. A single event is the composition of a condition cond and an
action verb. A system becomes a pair Z=(B, F), where B is a bio-process
and FE is the list of possible events enabled on the system.

Well-formedness conditions remain the same as the ones presented in
Sec. 3, while a new definition of structural congruence over systems (Def. 5.5)
and a new reduction semantics (Tab. 6) are introduced. In Tab. 6, a join
event substitutes two boxes with a single one, while a split event substitutes
a box with two boxes.

We denote with BL® this extension and with Z¢ the set of well-formed
systems of BL°.

Definition 5.5. Structural congruence over processes, denoted =,, is the
smallest relation which satisfies the laws in Fig. 2 (group a), structural con-
gruence over beta-processes, denoted =y, 15 the smallest relation which sat-
isfies the laws in Fig. 2 (group b) and structural congruence over events,
denoted =., is the smallest relation which satisfies the laws in Fig. 3.
Hence, two systems Z=(B,FE) and Z'=(B', E') are structurally congruent,
indicated with Z = Z', only if B=y B’ and E =, E'.

- (By) split(B1, Ba) = (BY) split(B}, Bb)
if B() =p B(,), Bl =p Bi and BQ =p Bé

- (Bo, B1) join(Bs) =, (By, B}) join(Bb)
if BO =p Bé, B1 =p Bi and BQ =p Bé

-F.e=_F

- E()ilEl e EltlEO

- Ep::(E1::Ey) =, (Ep::Eq)::Ey

Figure 3: Structural laws for events.

35

(intra) (Ilz(z). PL + My |z(w). Py + My | P3|, E) — (I[P | Pa{?kw} | P3], E)
Py =, %(z). Ry + M | Qs Py =, y(w). Ry + Ms | Q2
(inter) (L[A] || I2[Po], B) = (L [Ry [Q1] || I2[Re{3/w} | @2, E)
provided a(I',A) > 0 and z & sub(1;)
and where I} = B(z, A) I} and Iy = B(y, ') I3
(split) (I[P], E) = (Io[Po] || [P, E)
where E = (I[P]) split(Ily[Po],[1[P1]) :: '

(join) (Io[Po] || hi[A], E) — (I[P], E)
where E = (Iy[Py], I1[P1]) join(I[P]) :: E'

=7 AR AV
Zl—>Zg

(struct)

<B,E>—><B,,E>
(B || By, E)— (B || By, E)

(redex)

Table 6: Operational semantics of BL°.

Definition 5.6. The BL® Transition System (1'S€) is referred as (2¢,—),
where Z°€ is the set of well-formed systems and —C Z¢ x Z¢ is the transition
relation.

As usual, —7 indicates the transitive closure and —* the reflexive and
transitive closure of —. Moreover, Z —* Z' with k > 1 indicates that Z' can
be reached from Z with k transitions Z —' Z; —2% ... =k Z, =k 77,

Consider a RAM R with program (1, I1), ..., (m, I,,,) and state (j, k1, ..., k).
The encoding of the RAM is:

[[(jv klv 7kn)]]§% = <B7E>

where,

B £ Switch; || [(1L,)G | -+ || [0m, L)% N [= kg 1] -]
[rn = knl

E 25 ZeroToOney :: OneToZeroy :: -« ZeroToOne, :: OneToZero,

The differences w.r.t. the encoding presented in Subsec. 5.2 concern
the encoding of instructions and registers. The encoding of the instruction

36

(i, Incr(rj)) is

[(i, Incr(ry))] = PBlact: Ins;)B(next : Ins)B(inc : I Reg;)
Black : TAck;)['z(e).Inc; | Inc; |
Inc; 2p act(e).inc(e).ack(e).@{e).next{ins; 1).nil

and its graphical representation is

(act : Ins;) (next: Ins) (inc: IReg;) (ack : I Ack;)
| |

lz(e).Inc; | Inc

The encoding of the instruction (i, DecJump(r;,s)) is

(¢, DecJump(r;,s))] = (act : Ins;)B(next : Ins)B(dec : DReg;)
(ack : DAck;)B(test : Test;)
lx(e)DecJumpZ | DecJump; |
25 act(e).test(t).(t{e).nil | (yes(e).Dec;+
no(e).Jump;))
Dec; =p decle).ack(e).T{e). next(ins;,1).nil
Jump; =p T{e).next(ins,).nil

g
B
[

DecJump;

and its graphical representation is

(act : Ins;) (next : Ins) (dec : DReg;) (ack : DAck;) (test : Test;)
| | | |

lz(e). DecJump; | DecJump;

The encoding of a register ; with content [is defined as follows

[r; = 1] = B0 itl=0
S Bt“t | B otherwise

where the boxes BY, B***, Bl are defined as follows

BY £p P(test: Test;)B(inc : 1Reg;)B(ack; : 1Ack;)
B(acky : DAck;)] inc(e).nil | ltest{no).nil |
Biest L5 B(test : Test;)| test(yes).nil |
B! £p PBlinc: IReg;)B(dec : DReg;)B(ack; : I Ack;)
B(ackq : DAck;)[linc(e).Increment | AckL; | DecL; |

37

where,
A
DecL; =p Decrement | --- | Decrement
N~ o

g

— l —
AckL; £p ackqle).nil | --- | acky{e).nil
-1
Increment =p ackg{e).nil | ack;(e).Decrement
Decrement =p dec(e).nil

If I =1 the process AckList; =, nil. Moreover, the processes Increment
and Decrement are equal for the encoding of all the registers. The graphical
representation of the bio-process B? is

(inc: Test;) (test:IReg;) (ack : [Ack;) (ackq: DAck;)
| | |

inc(e).nil | ltest(no).nil

and the graphical representation of the bio-process B{*s* || Byelue is

(telst : Test;) (ZTLC : IReg;) (dlec : DReg;) (a|0ki : TAcky) (alckd : DAck;)

ltest(yes).nil linc(e).Increment | DecLy | AckL,

The events ZeroT'oOne; and OneToZero;j, which encode the ability to
change the state of a register | from the representation of 0 and the repre-
sentation of 1 and vice versa, are defined as follows

ZGTOToOnej éE’ (B;plitO) Sp“t(B;eSt,B;plitl)
A

OneToZero; =g (By™, B§Oi”1) join(BjomO)
where,
B;pmo 25 PBltest : Test;)B(inc : IReg;)B(ack; : 1Ack;)B(acky : DAck;)
B [ltest(no).nil |
Bjomo 25 PBtest : Test;)B(inc : [Reg;)B(ack; : 1Ack;)B(acky : DAck;)
A [acky(e).inc(e).nil | ltest{no).nil |
ij“ﬂ £ Blinc: IReg;)B(dec : DReg;)B3(ack; : IAck;)B(acky : DAck;)

B [linc(e).Increment | ack;(e). Decrement |
Bjoml =p f(inc: IReg;)B(dec : DReg;)B(ack; : 1 Ack;)B(acky : DAck;)

[linc(e).Increment |

>

38

The function « is defined in the following way

1 if Type; = Types

o(Typer, Types) = { 0 otherwise

The encoding produces a system Z = (B, E) in Z¢. The bio-process B
is a parallel composition of a switching box, which controls the activation
of the instructions sequence, m boxes encoding instructions and n boxes
encoding registers; the two types of instructions are encoded in different
ways, but in both cases the encoding box is activated by performing an
inter-communication with the box Switch;. The list of events E contains
a couple of events for each register which controls the transformation of a
register with content 0 to a register with content 1, and vice versa.

The modeling of the register r; depends on its content. If the content
of the register is 0, then the box B? is used; if the content of the register is
greater than zero, then bio-process Bi**" || BY is used.

The box encoding the instruction (¢, Incr(r;)), after its activation, consumes
an inter-communication with the box encoding the register r; (through the
interfaces of type I Reg;), representing a request for its increment; then the in-
struction box waits for another inter-communication (through the interfaces
of type I Ack;) with the register box; a kind of acknowledgment indicating
that the increment has been executed. Finally, after the acknowledgment, the
box replicates its internal machinery and performs an inter-communication
with the switching box (through the interfaces of type Ins) for the activation
of instruction 7+ 1. The behaviour of the register box depends on its content.

If the content is 0, after consuming the increment inter-communication,
the box becomes structurally congruent to the box ij mo’ causing the activa-

tion of event ZeroT'oOne;. This event substitutes ij B0 with the bio-process

Bt B Hitl " After consuming the acknowledgment inter-communication on
the channel ack;, the box becomes structurally congruent to the box B}, in-
dicating that the register has been correctly incremented. Notice that when
the event ZeroT'oOne; is enabled no other actions in the system are en-
abled. This guarantees that the register transformation is achieved between
the request of the instruction and the acknowledgment of the register.

If the content is greater than zero, the increment inter-communication
enables the internal replication of the process Increment, representing the
addition of 1 on the content of the register. The corresponding acknowl-
edgment is performed after the replication, consuming the acknowledgment
inter-communication on the channel ack;.

39

The box encoding the instruction (i, DecJump(r;,s)), after its activation,
consumes first an inter-communication with the box encoding for the regis-
ter r;, in order to test its content (through the interfaces of type Test;). In
particular, the instruction box receives a name yes if the content of the reg-
ister r; is greater than zero, receives the name no otherwise. With the choice
operator two alternative behaviors are encoded, depending on the result of
the testing communication. In case of yes name reception, the instruction
box consumes an inter-communication with the r; register box, represent-
ing a request for its decrement (through the interface of type DReg;), then
waits for an acknowledgment indicating that the decrement has been exe-
cuted (through the interfaces of types DAck;) and finally replicates its inter-
nal machinery and performs an inter-communication with the switching box
(through the interfaces of type Ins) for the activation of instruction i + 1.
Instead, in case of no name reception, the box simply replicates its inter-
nal machinery and performs an inter-communication with the switching box
(through the interfaces of type Ins) for the activation of instruction s. The
behaviour of the register box in the case of decrement depends on its content.

If a decrement inter-communication is consumed by a box representing a
register with content 1, then the box becomes structurally congruent to the
box Bjoml. This box activates the event OneT'oZero;, which substitutes the

bio-process B || B;Oinl with the box BjOi"O. After consuming the decre-
ment inter-communication on the channel acky, the box becomes structurally
congruent to the box B?, indicating that the register has been correctly decre-
mented. Notice that, also in this case, when the event OneT'oZero; is enabled
no other actions in the system are enabled.

If a decrement inter-communication is consumed by a box representing
a register with content greater than zero, then the acknowledgment inter-
communication is then consumed, deleting an instance of the parallel pro-
cesses composing the Ack List; process and hence representing the decrement
of 1.

A formal proof of the encoding correctness follows.

Lemma 5.7. Let R be a RAM with program (1,1),...,(m, I,,) and state
(J b1y ooy kn). If (G kay oo kn) —r (5, KL, o KL), then there exists a system Z
such that [(j, k1, k)% =1 Z and Z = [(7, kY, .., kL)]%-

Proof. The proof is by case analysis. There are five cases: (i) Instruction
I; = DecJump(r;,s) and r; value greater than one; (i) Instruction [; =
DecJump(ry, s) and r; value equal to one; (iii) Instruction I; = DecJump(ry, s)
and r; value equal to zero; (iv) Instruction I; = Incr(r;) and 7, value greater

40

than zero; (v) Instruction I; = Incr(r;) and r; value equal to zero. We prove
only case (ii), because the other cases are similar.

(i) We consider the computation of the bio-process [(j, k1, ..., kn)]%. As
in Lemma 5.2 an inter-communication between the component Switch; and
the component [(j, DecJump(ry, s))]% is the first consumed action. The two
boxes synchronize on output i;{e) and input act(e) through their binders
of type Ins;. This cause the activation of the [(j, DecJump(r, s))]% com-
ponent. Also in this case, after the inter-communication the components
codifying for the other instructions, the registers and the switching box are
blocked.

We have that the content of the register is 1 and hence it is encoded by
the bio-process B/*! || Bj. The activation of the [(j, DecJump(ry, s))]% box
causes the consumption of an inter-communication between the box Bje
and the instruction box; since the content of the register is 1, then the
instruction box receives the name yes, indicating that the content of the
register is greater than zero. After the inter-communication the instruc-
tion box performs another intra-communication with the register box, which
causes the activation of the process Dec;. This process synchronizes with
the box B}, consumes an inter-communication on output dec(e) through
interface of type DReg; and remains blocked on input ack(e); after that
inter-communication, the box B} becomes structurally congruent to the box
Bljm'"1 and the event OneToZero;, becomes active. The execution of the
event substitutes the bio-process B || B/*™" with the box B/*™, which
consumes an intra-communication with the instruction box (on interfaces of
type DAck;) and becomes structurally congruent to [r; = 0]%. Moreover,
the last inter-communication unblocks the instruction box, which consumes
an intra-communication on channel x, replicating its internal machinery, and
enables the process next(ins;1).nil. This produces a synchronization be-
tween the instruction box and the switching box. Indeed, the boxes consume
an inter-communication on output next(ins;1) and input ins(type) through
interfaces of type Ins.

The instruction box is now returned in its form [(j, DecJump(ry, s))]%,
while in the switching box the process

(insjii(e).nil | (D01, insy(e).T(e).1o(€).nil))
is enabled. An intra-communication on channel ins;;; is consumed, the
internal machinery is replicated with an intra-communication on channel x

and the switching box is now structurally congruent to the box Switch;,.
O

41

Lemma 5.8. Let R be a RAM with program (1,1),...,(m, I,,) and state
(4, k1, ..oy kn). If the system Z = [(j, k1, ..., kn)]% can produce a transition
Z — Zy, then there exists a computation 2 — Zy — Zy — -+ — Z; such

that Z, = [(5', Ky, .. kL)% and (4, k1, .. kn) —r (' KL, o KL).

Proof. Consider the structure of the bio-process Z = [(J, k1, ..., kn)]% . As
in Lemma 5.3, if the bio-process Z can perform a first step Z — Zj, this
corresponds to an inter-communication between the box Switch; and the
box encoding for the instruction (j,1;), representing the activation of the
instruction box. By encoding definition this means that the instruction (j, Z;)
exists; hence the instruction can be executed in the state (7, k1, ..., ky,) of the
RAM R, generating a new state (j', k1, ..., k).

The proof is by case analysis. There are five cases: (i) Instruction
I; = DecJump(r;,s) and r; value greater than one; (i) Instruction [; =
DecJump(r;, s) and r; value equal to one; (iii) Instruction I; = DecJump(ry, s)
and 7 value equal to zero; (iv) Instruction I; = Incr(r;) and r; value greater
than zero; (v) Instruction I; = Incr(r;) and r; value equal to zero. In all the
cases, it is possible to show that from the moment in which the switch acti-
vates an instruction till the moment in which the switch is able to activate
a new instruction, the computation proceeds deterministically (up to struc-
tural congruence =). The encoding is hence deterministic up to structural
congruence. We prove only case (v), because the other cases can be proved
similarly.

(v) By encoding definition we have that the structure of the instruction box

is
[(G: Iner(n)ls = Blact : Ins;)B(next : Ins)B(inc : IReg)B(ack : I Ack;)
lz(e).Inc; | act(e).inc(e).ack(e).@(e).next(ins; 1).nil|

This box is the only one able to synchronize with the box Switch; for an inter-
communication through interfaces of type Ins;. After the communication
we have that in Z; the box encoding the instruction j becomes structurally
congruent to

B = plact: Ins;)B(next : Ins)B(inc : 1 Reg;)B(ack : 1 Ack;)
lz(e).Inc; | incle).ack(e).Z(e).next{ins; 1).nil|

Now, the only possible action Z; — Z5 is the inter-communication between
the box B’ and the box [r; = 0]% through their interfaces of type IReg, on
output inc(e) and input inc(e), respectively. After the inter-communication
the instruction box remains blocked on input ack(e) over interface of type
I Ack; and the box encoding for the register r; becomes structurally congruent

42

to the box B*P0: the event Z eroT'oOne; is now active. The execution of the
event, which correspond to the action Zy — Z3, substitutes in Z; the box
prlito with the bio-process Bj¢* || Bl‘splm. At this point, the action Z3 —
Z, is an inter-communication between the box B;” il and the instruction
box; the register box becomes structurally congruent to [r; = 1]%, while the
instruction box is unblocked and structurally congruent to

B" = plact: Ins;)B(next : Ins)B(inc : 1 Reg;)B(ack : I Ack;)

[lz(e).Inc; | T(e).next(ins;i1).nil]

Now, the action Z; — Zs is the intra-communication of B” on channel z
which becomes a box B” with internal structure !z (e).Inc; | next(ins;1).nil,
and the action Zs — Zg is the inter-communication between the box B"
and the switching box. After the inter-communication, the instruction box
returns in its initial form [(j, Incr(r))]% and the switching box starts a se-
quence of intra-communications which produces a box structurally congruent
to Switch;;; and representing the sequence of actions Zg — Z7; — Zg. It is
easy to see that Zg is congruent to [(j + 1, k1, ..., ki1, L, ki1, oo k)% O

Lemma 5.7 and Lemma 5.8 can now be used for proving the undecidability
of termination for BL¢ bio-processes.

Theorem 5.9. Let R be a RAM with program (1, 1), ..., (m, I,) and initial
state (j,k1,...,kn). The the computation of the RAM R terminates if and
only if the computation of the system Z = [(j, ki, ..., kn)]% terminates.

Proof. The Theorem can be proved similarly to Theorem 5.4 and by using
Lemma 5.7 and Lemma 5.8. [

6 Conclusion

In this paper we investigated the computational power of the nondetermin-
istic version of BlenX, a language based on Beta-binders.

We first considered a core subset of BlenX denoted with BL, showing that
termination for BL is decidable. The BL subset is constructed using only
primitives for communication. The BL subset is then enriched with immedi-
ate action (i.e. global priorities are added) and the obtained subset, denoted
with BL9. is shown to be Turing equivalent by providing an encoding of
Random Access Machines into BL%. Another undecidability result is then
given; the BL subset is enriched with events (i.e. join and split events are
added) and the obtained subset, denoted with BL¢, is shown to be Turing
equivalent by providing an encoding of Random Access Machines into BL°.

43

The recent paper by Cardelli and Zavattaro [8] suggests us that we can
obtain Turing equivalence also by enriching the BL subset with the BlenX
primitives for complexes management and the split event; we plan to inves-
tigate this aspect in the near future.

Although this work allows us to conclude that BlenX is a Turing equiva-
lent language, we think that the obtained results represent also an interesting
investigation into how the addition of global priorities affects the expressive
power of a language and on the role that some high-powered features like re-
striction operator play in Turing equivalence encodings. Moreover, we think
these results are a basis for further investigations and for a better under-
standing of how different primitives and operators can be added, deleted or
combined to obtain classes of languages with different computational power.

Finally, future work on the expressivity of the fully stochastic version of
BlenX is also planned.

7 Acknowledgments

We would like to thank Gianluigi Zavattaro for the precious comments and
for pointing out an error in a preliminary version of the paper. Moreover, we
would like to thank Matteo Cavaliere and Paola Quaglia for fruitful discus-
sions about the topic and Alida Palmisano for reviewing preliminary versions
of the document. Finally, we thank the anonymous referees for useful com-
ments and suggestions.

References

[1] J. Aranda, F.D. Valencia, and C. Versari. On the expressive power of
restriction and priorities in ccs with replication. In FOSSACS, volume
5504 of Lecture Notes in Computer Science, pages 242-256. Springer,
20009.

[2] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining
equations for an interruptmechanism in process algebra. FUNINF,
IX(2):127-168, 1986.

[3] N. Busi, M. Gabbrielli, and G. Zavattaro. On the expressive power of
recursion, replication, and iteration in process calculi. To appear in
Mathematical Structures in Computer Science.

[4] N. Busi and R. Gorrieri. On the computational power of Brane Calculi.
T. Comp. Sys. Biology, pages 16-43, 2006.

44

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

N. Busi and G. Zavattaro. On the expressive power of movement and
restriction in pure mobile ambients. Theor. Comput. Sci., 322(3):477—
515, 2004.

J. Camilleri and G. Winskel. CCS with priority choice. Inf. Comput.,
116(1):26-37, 1995.

L. Cardelli. Brane calculi. In CMSB, pages 257-278, 2004.

L. Cardelli and G. Zavattaro. On the computational power of biochem-
istry. In AB "08: Proceedings of the 3rd international conference on Al-
gebraic Biology, pages 65-80, Berlin, Heidelberg, 2008. Springer-Verlag.

R. Cleaveland and M. Hennessy. Priorities in process algebras. Inf.
Comput., 87(1-2):58-77, 1990.

P.I. Curien, V. Danos, J. Krivine, and M. Zhang. Computational self-
assembly. Theor. Comput. Sci., 404(1-2):61-75, 2008.

V. Danos and C. Laneve. Formal molecular biology. Theor. Comput.
Sci., 325(1):69-110, 2004.

P. Degano, D. Prandi, C. Priami, and P. Quaglia. Beta-binders for
biological quantitative experiments. ENT'CS, 164(3):101-117, 2006.

L. Dematté, C. Priami, and A. Romanel. BetaWB: modelling and sim-
ulating biological processes. In SCSC: Proceedings of the 2007 summer
computer simulation conference, pages 7T77-784, San Diego, CA, USA,
2007. Society for Computer Simulation International.

L. Dematté, C. Priami, and A. Romanel. The Beta Workbench: a
computational tool to study the dynamics of biological systems. Brief.
Bioinform., 9(5):437-449, 2008.

A. Finkel and P. Schnoebelen. Well-structured transition systems ev-
erywhere! Theor. Comput. Sci., 256(1-2):63-92, 2001.

S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling, pages 353
368. Number 794 in LNCS. Springer-Verlag, 1994.

D. Harel. A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 2002.

45

[18]

[19]

[20]

[21]

22]

23]
[24]
[25]

[26]

[27]

28]

[29]
[30]

[31]

32]

[33]

G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2:326-336, 1952.

Jane Hillston. A compositional approach to performance modelling.
Cambridge University Press, New York, NY, USA, 1996.

S.A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22:437-467, 1969.

H. Kitano, editor. Foundations of Systems Biology. MIT Press, Cam-
bridge, MA, USA, November 2001.

S. Maffeis and I. Phillips. On the computational strength of pure ambient
calculi. Theor. Comput. Sci., 330(3):501-551, 2005.

R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.
R. Milner. Function as processes. MSCS, 2:119-141, 1992.

M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1967.

G. Paun. Membrane Computing: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

C.A. Petri. Kommunikation mit Automaten. PhD thesis, University of
Bonn, 1962.

A. Phillips and L. Cardelli. A correct abstract machine for the stochastic
pi-calculus. In Bioconcur’04, August 2004.

I. Phillips. CCS with priority guards. LNCS, 2154, 2001.

G.D. Plotkin. A structural approach to operational semantics. The
Journal of Logic and Algebraic Programming, pages 17-139, 2004.

C. Priami and P. Quaglia. Beta binders for biological interactions. In
V. Danos and V. Schachter, editors, CMSB, volume 3082 of LNCS.
Springer, 2005.

C. Priami and P. Quaglia. Operational patterns in beta-binders. T.
Comp. Sys. Biology, 1:50-65, 2005.

C. Priami, A. Regev, E. Shapiro, and W. Silvermann. Application of
a stochastic name-passing calculus to representation and simulation of
molecular processes. Inf. Process. Lett., 80(1):25-31, 2001.

46

[34]

[35]

[36]

[37]

[38]

[39]

[40]

A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E. Shapiro.
Bioambients: an abstraction for biological compartments. Theor. com-
put. Sci., 325(1):141-167, 2004.

A. Regev and E. Shapiro. Cells as computation. Nature, 419(6905),
September 2002.

A. Romanel, L. Dematté, and C. Priami. The Beta Workbench. Tech-
nical Report TR-03-2007, CoSBi, 2007.

A. Romanel and C. Priami. On the decidability and complexity of the
structural congruence for beta-binders. Theor. Comput. Sci., 404(1-
2):156-169, 2008.

D. Sangiorgi and D. Walker. The m-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

J. C. Shepherdson and H. E. Sturgis. Computability of recursive func-
tions. J. ACM, 10(2):217-255, 1963.

C. Versari, N. Busi, and R. Gorrieri. On the expressive power of global
and local priority in process calculi. In CONCUR, volume 4703 of Lecture
Notes in Computer Science, pages 241-255. Springer, 2007.

47

