
Sustainable Energy, Grids and Networks 35 (2023) 101120

e
F
i
2
m
c
(
p
m
e
r
t

V

g
d

h
2
n

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Smart electric vehicles chargingwith centralised vehicle-to-grid
capability for net-load varianceminimisation under increasing EV and
PV penetration levels
M. Secchi a,b,∗, G. Barchi a, D. Macii b, D. Petri b
a Eurac Research, Institute for Renewable Energy, Viale Druso/Drususallee, 1, Bolzano/Bozen, 39100, Italy
b University of Trento, Department of Industrial Engineering, Via Sommarive 9, Trento, 38123, Italy

a r t i c l e i n f o

Article history:
Received 31 December 2022
Received in revised form 28 June 2023
Accepted 23 July 2023
Available online 26 July 2023

Keywords:
Electric vehicles (EV)
Smart EV charging
Photovoltaic Generator
Vehicle-to-grid

a b s t r a c t

Increasing the share of Electric Vehicles (EVs) powered by renewable-based Distributed Energy
Resources (DERs) is a key step towards climate neutrality. However, increasing the penetration of
EVs and Photovoltaic (PV) generators may create large and hardly predictable fluctuations in power
supply and demand, thus destabilising the grid. In this paper, an optimisation algorithm for smart EV
charging is proposed to reduce the overall net-load variance through a more efficient exploitation of
the available PV power, EV charging shifting, or vehicle-to-grid (V2G). Key distinctive features of the
proposed approach are: (i) the formulation as a quadratic programming problem; (ii) the capability
to enable a V2G charging policy, (iii) the inclusion of specific constraints regarding EVs’ availability,
owners’ charging requirements and, partially, voltage stability; (iii) the study of the combined impact
of EV and PV penetration on bus voltages, line currents, district self-sufficiency, and EV battery lifetime.
The proposed approach is tested not only in ideal conditions, but also considering a basic persistence
forecasting model of load and PV generation over subsequent days. The results of grid-level simulations
in a case study show that the proposed approach could decrease the net-load variance by up to
60% if no forecasting errors occur and by about 50% when the persistence forecasting model is used.
Additionally, the V2G policy notably decreases both the range of voltage fluctuations and the risk of
line overloading, although at the expense of EVs’ battery lifetime, whose reduction actually depends
on the battery capacity.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The European Union’s (EU) aims at reducing greenhouse gases
missions by 55% compared to the levels recorded in 1990 [1].
or this purpose, it is essential to reduce the environmental
mpact of the mobility sector, which, per se, accounts for around
0% of the total worldwide carbon dioxide emissions in the at-
osphere [2]. The conversion of a sizeable number of internal
ombustion engine vehicles (ICEVs) into fully electric vehicles
EVs) would definitely contribute to solve this problem [3,4],
rovided the electricity mix used to extract the necessary raw
aterials and charge their batteries is mainly based on renewable
nergy sources. However, the required number of both EVs and
enewable sources, such as the photovoltaic (PV) systems, needs
o grow in the next years. A large-scale deployment of EVs and
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PVs may pose a variety of business and technical challenges [5,6],
especially at the distribution level, where large daily fluctuations
of power demand and supply may jeopardise grid stability, which
has to be constantly monitored, e.g., through fast and accurate
state estimation techniques [7]. From a Distribution System Op-
erator (DSO) perspective, the technical challenges are the most
important ones, but their solution cannot be detrimental to the
quality of service and the profitability expected by EV owners.
Several studies found that the grid components which are likely
to be most affected by the increasing penetration of EVs are the
Medium-Voltage/Low-Voltage (MV/LV) transformers at the sec-
ondary substations (SS) [8,9]. Moreover, it is well-known that the
time-varying charging of a large amount of EVs may cause volt-
age fluctuations [9–11], lines overloading [8,9,11], and/or power
quality problems, such as frequency deviations [8,9,11], voltage
imbalances [9,12,13], harmonics [14,15] and flicker [16,17]. As
a consequence, it is difficult to comply with the requirements
of local, national or international regulations, such as the EN
Standard 50160:2010 [18]. The additional power demand peaks
due to EVs could be mitigated through smart charging. This
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

∆CCAL Capacity decrease due to calendar bat-
tery ageing.

∆CCYC Capacity decrease due to cycling battery
ageing.

δ Range of allowable voltage fluctuation.
η EV Charging/Discharging efficiency.
B′′ Subset of B′ of the non zero-injection

buses where at least one EV charging
station is connected.

B′ Subset of B collecting the non zero-
injection buses only.

B Set of grid buses available on the grid.
T Set of the T time instants in a day.
Ts Subset of T collecting the instants of the

sth charging session.
U Set of the M households connected to

the network.
UEV Subset of U including the N EV owners.
UPV Subset of U including the K PV system

owners.
σP Variance of the active power flow at the

transformer.
τ Index of the charging instants in subset

Ts.
b Index for a non zero-injection bus of the

grid.
B′ Number of available non zero-injection

buses on the grid.
C EV battery capacity size.
EVshare Share of the M households with an EV

charging station.
I Instantaneous battery current.
i Index for the households.
IMIN/IMAX Maximum and minimum allowable

R.M.S. current values injected/absorbed
into/from a nonzero-injection bus.

j Index for the EV owners.
K Number of households/users equipped

with a PV system.
M Number of households/users connected

to the network.
N Number of EV charging stations (and

EVs).
NCEQ Equivalent number of full cycles per-

formed by the EV battery during the
year.

NLVR Net Load Variance Reduction.
PBase Active power mismatch at the sec-

ondary substation transformer.
PBase Baseline power exchange at a nonzero-

injection bus, when no EV charging
stations are connected to the system.

pEV Instantaneous power absorbed by the
EV charging station.

pLIM Maximum power absorbed by a user
and measured by the domestic smart
meter.
2

pLOAD Instantaneous power absorbed by do-
mestic appliances.

PNet Instantaneous net power measured by
the domestic smart meter.

pPV Instantaneous power produced by the
PV system.

PVshare Share of the M households with a PV
system.

S Number of daily sessions available for a
specific EV.

s Index for the EV charging session.
SC Share of the PV production stored into

the battery or directly consumed.
SOC end Minimum EV ‘‘departure’’ state-of-

charge at the end of the charging
session.

SOC init EV ‘‘arrival’’ state-of-charge at the be-
ginning of the charging session.

SOCMAX Maximum attainable state-of-charge of
the EV battery.

SOCMIN Minimum attainable state-of-charge of
the EV battery.

SOH State-of-health of the battery after
8 years of usage.

SP Share of the household load covered by
PV.

T Number of time instants in a day (96).
t Index for the simulation time instant.
TK EV battery pack temperature.
V Base Baseline voltage value at a nonzero-

injection bus, when no EV charging
stations are connected to the system.

V0 Nominal grid voltage (r.m.s. value).
y Year of EV usage, counting from pur-

chase day.

can be achieved by using a variety of scheduling algorithms to
modulate the amount of power drained from the grid, not only
depending on the actual urgency of charging the battery, but
also to support the grid [19–21]. Indeed, modern power elec-
tronics converters allow EVs to either absorb or inject electrical
power in the grid if suitable bidirectional vehicle-to-grid (V2G)
control schemes are implemented. In this regard, the distinction
between a ‘‘centralised’’ V2G algorithm (where the charging is
entirely demanded to a central control unit) and a ‘‘decentralised’’
V2G scheme (where EV owners can decide whether to charge
the battery or not at predefined time slots) is crucial. Usually,
the active power support to shave the power demand peaks at
the transformer is more effective if all the EV charging stations
are able to cooperate. Therefore, in this case, a centralised V2G
scheme (in which EV charging or discharging is entirely managed
by an aggregator) is preferable, especially when a large fleet
of EVs is considered. The problem of centralised V2G control
becomes even more important if not only the EV load profiles,
but also the power generation ones change as a function of time,
e.g., as a result of the increasing PV penetration.

In this paper, an automated strategy for EV charging with V2G
capability is proposed and analysed in-depth, considering the EV-
PV interaction as well. The proposed approach aims at minimising
the overall net-load variance (NLV), and consequently the bus
voltage variability, on an existing distribution grid. The baseline
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oad and PV penetration levels are given as input profiles, and
mart EV charging is leveraged only.
The main elements of novelty presented in this work are

ummarised below:

• Even if initially we assume perfect knowledge of both load
profiles and EV availability for active power support, the
effect of possible deviations between the expected scenario
and the real one in subsequent days is evaluated through a
basic persistence forecasting model of load and PV gener-
ation profiles, showcasing the good robustness of the pro-
posed approach in realistic conditions.

• The interaction between EVs and PV systems is analysed
in a broad set of scenarios, ranging from the present low
penetration levels of PVs and EVs to future scenarios when
PV and EV penetrations are instead supposed to be much
stronger.

• A repeated power flow analysis with a 15-minute time
step is performed to assess to what extent the proposed
centralised V2G-based optimisation strategy is beneficial in
terms of voltage stability.

• Finally, a preliminary study on battery wear (one of the
most debated aspects of V2G-based charging policies) is
presented.

The rest of the paper is structured as follows. In Section 2, the
pecific contribution of this paper in the context of the related
ork is briefly presented. In Section 3, the optimisation prob-

em and the underlying methodology are formalised. Section 4
escribes the key features of a relevant case study along with
he main simulation settings. Section 5 reports a quantitative per-
ormance evaluation of the proposed optimal smart EV charging
pproach. Finally, Section 6 provides an overview of the broader
mpact of the proposed technique on: users’ energy requirements
or self-sufficiency, grid voltage stability and EV battery wear.
inally, Section 7 concludes the paper.

. Related work

Some of the most significant methodologies proposed in the
iterature to perform smart EV battery charging (possibly empow-
red by V2G) are listed in Table 1. Due to the broad variety of
ossible objective functions, we classified the relevant literature
ased on the objective functions: (1) minimising peak load de-
and (peak-shaving/valley-filling); (2) maximising the exploita-

ion of distributed energy resources (DERs); (3) any method-
logies combining different objectives (such solutions are la-
elled as ‘‘hybrid’’ in Table 1); (4) balancing the grid net-load;
5) minimising the grid Net-Load Variance (NLV).

The papers included in the first group present methodologies
imed at peak-shaving and valley-filling the active grid load pro-
iles, at both the substation and the single-building levels. In [22],
or example, a constraint-scheduling programming approach was
sed, whereas in [23] non-linear programming was chosen. Some
ther authors instead preferred a variety of meta-heuristic al-
orithms [24–28] to centrally schedule EV charging. Rule-based
ontrols were also used in [29–35] to solve the EV scheduling
roblem in a centralised and decentralised way, respectively. In
ll these papers, the presence of DERs is not considered, but in
he near future, as the DER penetration increases, this aspect will
ecome fundamental. In this paper, peak-shaving is performed as
he NLV is mitigated.

In the second group of papers, EVs batteries are generally
harged with a surplus of DERs, usually with the aim to reduce
he cost of electricity from wind or PV generators, and/or to min-
mise grid-related emissions. Among those papers, in [36], a deep
3

learning algorithm is used to maximise the usage of the PV pro-
duction, whereas in [19] mixed-quadratic programming is applied
to avoid PV curtailment. In [37], the same approach is chosen and
improved through game theory. A combination of particle swarm
optimisation and a rule-based control is instead used in [38] to
perform decentralised smart EV charging. Maximising the use
of DERs is a fundamental step for the implementation of clean
power systems, but it is just half of the problem. Indeed, extreme
peak consumption levels at the substation should be limited level
as well, in order to avoid grid congestion and undervoltage issues.
This aspect is considered when minimising the NLV, the objective
function we chose for this work.

A variety of tasks can be accomplished by pairing the afore-
mentioned objectives to additional ones, such as performed in
the works from the third group. For example, NLV minimisation
could be paired to system costs minimisation [46,53], wind power
fluctuations reduction [39], or power losses and transformer tap
switching minimisation [47]. In [20,45,54,55] for instance net-
load minimisation is paired to EV charging costs minimisation,
whereas in [43] voltage regulation is performed, and in [44] the
charging session temperature and duration are minimised. Peak
shaving is paired with EV charging costs minimisation in [40–
42], but EV grid services revenue is also targeted in [48,49,51].
Finally, in [42,50] the grid impact is minimised, while the Authors
of [50,52] try to limit the impact of smart charging on the usabil-
ity of the EVs. These algorithms, are capable of simultaneously
minimising/maximising multiple, often contrasting, objectives,
but they cannot fully assess the capability of EV smart charging
to smooth the aggregated active power profile to support PV
generation. More in detail, meta-heuristics are powerful tools
to speed-up the search for the optimal solution, but can get
stuck in local minima and are generally preferred when it is not
possible to represent the optimisation function mathematically,
as it happens in this work for the NLV.

Authors from the last two groups of papers try to minimise the
fluctuations of the grid net-load instead, either by not choosing
or choosing the net-load variance as the objective function. In
group four, linear programming is compared to a rule-based
algorithm for decentralised EV smart charging [56], whereas
mixed integer programming and non-linear programming are
sometimes chosen, as in [57,59], respectively. Rule-based con-
trols were also applied in [61,62] (centralised) and [60] (decen-
tralised), whereas forecasting was added in a model predictive
control algorithm [58]. Authors in group five instead, explic-
itly choose to minimise the NLV through centralised rule-based
controls [68–70]. Model-predictive control is deployed in [63]
instead. Some other Authors use quadratic [10,66,67] or sequen-
tial quadratic [71,72] programming method instead, since NLV is
inherently a quadratic function. Rule-based and model-predictive
controls, although very effective and easy-to-implement in the
real world, can hardly be used to investigate the potential benefits
of centralised V2G-based policies over a time horizon of several
hours or days, since they typically optimise the EV charging
schedule at every time step relying on the present data only. Con-
versely, the smart EV charging solutions leveraging mathematical
‘‘programming’’ techniques over long time intervals are difficult
to apply in practice, because they require a forecasting of the
users’ activities. Indeed, the actual schedule of such activities may
notably differ from the expected one. The methodology presented
in this paper lies in between the two aforementioned extreme
visions, since it does not address a real-time optimal scheduling
problem, but at the same time it provides a solution that, with
a reasonable lag, can be used to define a realistic EV charging
schedule. In fact, the information collected during a full day is
used to find the optimal EV charging schedule minimising the
NLV, while including realistic constraints on EVs usage. Such a
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Table 1
Relevant literature overview on smart EV charging techniques with a focus on active power support.
Objective Methodology Type Examples

(1) Peak-Shaving+Valley-Filling

Constraint Scheduling Programming Centralised [22]

Non-Linear Programming Centralised [23]

Meta-Heuristics Centralised [24–28]

Rule-Based Control Centralised [29–31]

Rule-Based Control Decentralised [32–35]

(2) Maximising DER Utilisation

Deep Reinforcement Learning Centralised [36]

Mixed-Integer Quadratic Programming + Game Theory Decentralised [37]

PSO + Rule-Based Control Decentralised [38]

Mixed-Integer Quadratic Programming Centralised [19]

(3) Hybrid

Alternating Direction Method of Multipliers Decentralised [39,40]

Deep Learning Centralised [41,42]

Edge Computing+Rule-Based Control Centralised [43]

Meta-Heuristics Decentralised [44–48]

Mixed-Integer Linear Programming Centralised [49]

Model Predictive Control Centralised [50]

Quadratic Programming Centralised [20]

Rule-Based Control Centralised [51–53]

Stochastic Dynamic Programming Decentralised [54]

Fuzzy Control Decentralised [55]

(4) Net-Load Balancing

Linear Programming or Rule-Based Control Decentralised [56]

Mixed-Integer Linear Programming Centralised [57]

Model Predictive Control Centralised [58]

Non-Linear Programming Centralised [59]

Rule-Based Control Decentralised [60]

Rule-Based Control Centralised [61,62]

(5) Minimising NLV

Model-Predictive Control Centralised [63]

Meta-Heuristics Centralised [64,65]

Quadratic Programming Both [66]

Quadratic Programming Decentralised [10,67]

Rule-Based Control Centralised [68–70]

Sequential Quadratic Programming Centralised [71,72]
global solution is found by solving a quadratic programming (QP)
problem, and it is eventually used to define the EV charging
schedule of the following day (i.e., assuming a basic persistence
model). Even if the actual NLV reduction is lower than in ideal
conditions, the results are still rather good, as it will be clearly
shown in Section 5.

Moreover, the analysis of the impact of smart EV charging
n a LV distribution grid and the EVs battery degradation are
urther novelties of this paper. In fact, only in [10,19,43,66,72],
he Authors perform a proper power-flow analysis to assess the
ombined impact of PV and EV systems on bus voltage stability
nd line loading, but none of them investigates the effects on
attery degradation, which is only considered in [24,51]. Thus, to
he best of our knowledge, our work is the only one considering
ll these aspects at the same time.

. Problem formulation

Let us consider an LV distribution system consisting of a set B
f B buses and a set U of M users. If UPV and UEV are the subsets
f U including the K ≤ M and the N ≤ M users equipped with a
V system or an EV charging station, respectively, then we can
enote with PVshare =

K
M and EVshare =

N
M the corresponding

hares of users. Assuming, for the sake of simplicity, but without
oss of generality, that

• each user owns at most one EV;
4

• no energy storage systems different from the EV batteries
are deployed in the grid;

• the actual amount of power consumed and generated by
each user is supposed to be monitored by a centralised
aggregator, as customary in centralised smart EV charging
schemes [19,20]. However, only the EV charging stations
are actually controlled to schedule V2G-based battery smart
charging.

• each EV is connected to a single proprietary charging sta-
tion;

the average net power absorbed from or injected into the grid by
the ith user within the tth metering time slot of duration ∆t is

pNeti,t =pLOADi,t +pEVi,t −pPVi,t , i ∈ U t∈T (1)

where T = {1, . . . , T } is set of T time slots in a given time interval
(e.g., one day), pLOADi,t is the user’s average load consumption for
house appliances within the tth time slot, and pEVi,t , p

PV
i,t (which are

different from 0 only if i ∈ UEV and/or i ∈ UPV ) are the additional
average EV power consumption and the generated average PV
power, respectively, in the same time slot t .

Quite importantly, the sequences of pLOADi,t and pPVi,t values (if
user i actually owns a PV system) can be regarded as inputs
to the proposed optimisation problem, as they depend on the
actual solar irradiation as well as on the PV capacity installed
by each user. On the contrary, all terms pEVi,t can be regarded as
the decision variables of the optimisation problem, as they can
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e actually modified by the adopted smart EV charging policy (if
ny). As a consequence, the values of pEVi,t are positive when the

EV is connected to the charging station and the battery is under
charge, while they become negative if a V2G policy is adopted for
reverse power flow mitigation.

In practice, the M users are connected to a subset B′
⊆ B

of the available grid buses. Usually, B′
= |B′

| is strictly lower
than B because of the zero-injection buses commonly present in
distribution systems. If sets Ub, Ub

PV and Ub
EV for b = 1, . . . , B′ are

the sets resulting from the partition of U , UPV and UEV depending
on how the M users are connected to the available buses, then it
follows from (1) that the aggregate net load at bus b ∈ B′ in the
tth metering time slot is

PNet
b,t =

∑
i∈Ub

pNeti,t = PBase
b,t +

∑
i∈Ub

EV

pEVi,t , b∈B′ t∈T (2)

where the sequence of values PBase
b,t =

∑
i∈Ub pLOADi,t −

∑
i∈Ub

PV
pPVi,t

for t∈T is the net load of the bth bus when no EVs are considered.
If the net load values per bus given by (2) are summed up, then
the overall aggregate net load over the grid within the t−th time
slot is

PNet
t =

∑
b∈B

PNet
b,t = PBase

t +

∑
i∈UEV

pEVi,t , t∈T (3)

where the sequence of values PBase
t =

∑
b∈B PBase

b,t for t ∈ T is
the baseline net load profile whose peaks should be smoothed
through smart EV charging.

If we denote with i1, . . . , iN the indexes of the users in the
subset UEV ⊆ U , the vector of decision variables in the rightmost
side of (3) can be rearranged into a single T ·(N+1)−long column
vector regardless of the bus where different users are connected,
i.e.,

P = [PBase
1 , pEVi1,1, . . . , p

EV
iN ,1, . . . ,

PBase
T , pEVi1,T , . . . , p

EV
iN ,T ]

T
. (4)

Thus, through a few basic algebraic steps it can be shown that
the maximum likelihood estimator of the daily aggregated NLV
can be rearranged into a matrix form as follows, i.e.,

σ 2
P (P) =

1
T

·

T∑
t=1

(
PNet
t −

1
T

T∑
t=1

PNet
t

)2

=
1
2
PTHP (5)

where

H=
2
T 2

⎡⎢⎣(T − 1)UN+1 −UN+1 ... −UN+1
...

...
. . .

...

−UN+1 −UN+1 ... (T − 1)UN+1

⎤⎥⎦
⎫⎪⎬⎪⎭

T
bl
oc

ks

is a square matrix composed by T × T blocks including the (N +

) × (N + 1) all-ones matrix UN+1, multiplied by either T − 1 or
1.
Given that (4) is the vector of the decision variables used to

chedule the battery charging of all EVs over the considered time
nterval and (5) is the chosen objective function, the correspond-
ng optimisation problem can be easily formalised as follows,
.e.,

in
P

σ 2
P (P). (6)

Expression (5) confirms that the chosen objective function
an be rearranged into a quadratic form. If such a function is
onvex, a QP solver can converge to the solution of (6) within
polynomial time. To this end, standard QP solving tools can
e used, as explained at the beginning of Section 5. Of course,
n order to find a correct and realistic EV charging schedule, a
umber of further constraints must be included. Such constraints
re explained and formalised below.
5

1. Constraints due to baseline net-load conditions. The el-
ements PBase

t of (4) have to be excluded from the optimisa-
tion process, since, as explained above, the aggregate base
net-load values are in fact just an input to the optimisation
problem. Thus, the following equality constraints must be
applied, i.e.,

PBase
t = P∗

t , t∈T (7)

where P∗
t for t = 1, . . . , T is the overall net power demand

profile (excluding the EVs) measured at the transformer in
each time slot.

2. Constraints on EV battery charging. In every metering
time slot t , each EV can be either connected to or dis-
connected from its own charging station, depending on
actual users’ needs. Assuming that Sj (for j = 1, . . . ,N)
is the number of the daily charging sessions of the EV of
user ij ∈ UEV , and denoting with Ts,j ⊆ T the subset of
time slots of the sth charging session of vehicle of user ij
(i.e., for s = 1, . . . , Sj), the following equality constraints on
EVs’ battery state-of-charge (SOC) must be met to ensure
that each EV battery is charged enough according to users’
expectations, i.e.,∑
t∈Ts,j

ηj

Cj
pEVij,t∆t = (SOC end

s,j −SOC init
s,j )

s = 1, . . . , Sj, j = 1, . . . ,N (8)

In (8) constants ηj and Cj represent the battery charging
efficiency and the battery capacity of the EV of user ij,
while SOC init

s,j and SOC end
s,j are the battery SOC values at

the beginning and at the end of the sth charging session,
respectively. It is important to emphasise that both SOC init

s,j
and SOC end

s,j are just inputs to the optimisation problem, as
they depend on the actual use of the jth EV. The SOC init

s,j
values can be measured as soon as the EV is connected to
the charging station, while the SOC end

s,j values are usually
close to the maximum attainable SOC.
Besides (8), a further set of inequality constraints must
be applied during each EV charging session to prevent
excessive battery charging or discharging (in V2G mode)
i.e.,

SOCMIN ≤ SOC init
s,j +

τ∑
t∈Ts,j

ηj

Cj
pEVij,t∆t≤SOCMAX

∀τ ∈ Ts,j s=1, . . . , Sj, j = 1, . . . ,N. (9)

The sum is verified for each time instant τ ∈ Ts,j, so that
the limit is respected for each charging session instant. This
is needed to prevent faster battery wear, as highlighted
in [73,74]. Note that, even if the lower and upper threshold
values SOCMIN and SOCMAX actually depend on battery type,
size, and manufacturer, these limits will be assumed to be
the same for all vehicles for the sake of simplicity.

3. Constraints due to EVs unavailability. When an EV is not
connected to the charging station, of course its battery
can neither be charged, nor it can be used for V2G-based
active power support. Therefore, the following equality
constraints have to be applied, i.e.,

pEVij,t = 0 t ∈ Td,j, ij ∈ UEV (10)

where Td,j = T \(
⋃

s∈Sj
Ts,j) includes all time slots when the

EV of user ij is not connected to any charging station and
the battery is discharged during a driving session.
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4. Constraints on maximum EV charging and discharging
power. Due to contractual restrictions, technology limita-
tions and/or safety reasons, the EV charging and discharg-
ing power cannot exceed a given limit ±PLIM

j . Therefore, a
further set of inequality constraints to apply when solving
the optimisation problem is given by

|pEVij,t | ≤ PLIM
j t∈T ij ∈ UEV . (11)

In the rest of this paper, for the sake of simplicity but
with no loss of generality, we will assume that the charg-
ing/discharging power limits are the same for all charging
stations, i.e., PLIM

j = PLIM , for j = 1, . . . ,N .
5. Constraints due to grid voltage limits. Even if any smart

EV charging technique is inherently supposed to shave the
baseline net load power peaks (thus mitigating the voltage
fluctuations as well), a final set of constraints should be
included in the optimisation problem to ensure that the
upper and lower voltage limits are not violated at the
buses where the power injections can be partly controlled
through the decision variables of the problem, namely
the EV charging/discharging power values. In particular, if
B′′

⊆ B′
⊆ B is the subset of the non-zero-injection buses

whose power injection depends on at least one EV charg-
ing station, then the following set of further grid-related
constraints can be added to the problem, i.e.,

V0(1 − δ)|IMAX
b,t | ≤

⏐⏐⏐⏐⏐⏐⏐PBase
b,t +

∑
ij∈Ub

EV

pEVij,t

⏐⏐⏐⏐⏐⏐⏐≤V0(1 + δ)|IMIN
b,t |

t∈T , b ∈ B′′ (12)

where V0 is the root mean square (RMS) value of the
nominal grid voltage, ±δ is the maximum relative range
of voltage values compliant with the adopted regulation
(e.g., the EN Standard 50160:2010, as explained more in
detail in Section 4.5 [18]), and |IMIN

b,t |, |IMAX
b,t | are the abso-

lute values of the minimum and maximum possible RMS
current injections at bus b within time slot t . The absolute
value operator is needed in (12) to address the case of
possible reverse power flows whenever the amount of
generated PV power exceeds the local power demand. The

sequence of values IMIN
b,t =

PBaseb,t
VBase
b,t

(where V Base
b,t is the voltage

values at bus b in time slot t) results from the repeated
power flow analysis in the baseline case, i.e., when the
consumption due to EVs is negligible. The dual sequence
IMAX
b,t results instead from the power flow analysis of the
grid when all the charging stations connected to bus b
charge the EVs actually available in a given time slot at
the maximum rate, i.e., PLIM , as it commonly happens when
no smart EV charging strategies are used. Both power flow
analyses for a given EV and PV penetration levels can
be run before running the optimisation algorithm itself,
allowing for the calculation of the parameters from (12).

It can be observed that constraints (7)–(12) are all linear and
an be easily formalised in a matrix form by using sparse ma-
rices. Therefore, they are simple to implement and the memory
equirements are reasonable.

. Case study description

This Section describes the features of the LV distribution grid
sed as a case study, the baseline load profiles, and the way in
hich both the EV usage profiles and the PV generation patterns
re generated. A summary of the general simulation settings
nd scenarios that were considered to evaluate the performance
f the proposed V2G-based EV smart charging strategy is also
resented in the following.
6

Fig. 1. IEEE 906 bus LV map1 . Line thickness is proportional to lines ampacity,
whereas the non zero-injection buses are highlighted with red markers. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.1. Grid model

The distribution system used as a case study is the IEEE 906-
bus LV Test Feeder1, which is an example of a typical 240V
European LV grid, with a 800kVA transformer, lines’ ampacities
ranging between 200 and 500A for the main lines, and between
50 and 80A for the secondary ones [75]. Fig. 1 shows a simplified
map of the distribution system used as a case study.

4.2. Baseline load profiles

The daily power consumption profiles of M = 297 households
ere synthesised through LPG,2 a bottom-up software applica-
ion that mimics the domestic electricity demand of different
inds of users depending on their daily activities. The baseline
ower demand profiles consider the buildings stock composition
nd the dwellers’ age distribution of the city of Bolzano/Bozen,
taly, according to ASTAT3 data. The buildings stock consists of
ingle-family (i.e., detached) houses and buildings with four or
ix flats. The contractual power demand of each household is
ssumed to be 4.5kW (although 3kW is currently the most
ommon scenario in Italy for residential users) in order to safely
ccommodate the additional load due to EV charging (see Sec-
ion 4.4). The median values and the range of variation (between
he 25th and the 75th percentiles) of the weekly baseline load
rofiles per user in summer and winter, respectively, are shown
in blue) in Fig. 2. The corresponding overall monthly energy
onsumption for the summer scenario lies between 93 kW h and
56 kW h, whereas in winter it ranges between 121 kW h and 388
W h. The power factor values were randomly chosen between
.95 and 1.

1 IEEE LV Test Feeder: https://site.ieee.org/pes-testfeeders/
2 LPG: A Bottom-Up Customizable Load Generator, Noah Pflugradt, https:

/www.loadprofilegenerator.de
3 ASTAT: Statistics Institute for the Autonomous Province of South-Tyrol

https://site.ieee.org/pes-testfeeders/
https://www.loadprofilegenerator.de
https://www.loadprofilegenerator.de
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Fig. 2. Median values (thick lines) and range of variation between the 25th and the 75th percentiles (shaded areas) of the weekly baseline load profiles (in blue)
nd the corresponding weekly PV generation profiles (in red) per user in summer and winter, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
.3. PV generation profiles

Due to the limited geographical area of the considered LV
istribution grid and for the sake of simplicity, all users are
ssumed to share the same irradiation and panel temperature
rofiles. In the considered case study, such data are experimental,
s they were collected at the airport of Bolzano/Bozen (Italy)
very 15 min in 2019. The variation in the weekly PV generation
rofiles per user are shown (in red) in Fig. 2. The PV systems were
onnected the same phases as the user appliances loads they
erve, assuming they are used primarily for self-consumption.
f course, the installed PV capacity (if any) differs from user to
ser. In particular, the size of PV systems is computed in such a
ay that the amount of energy typically produced over one year
nd the corresponding yearly energy consumption approximately
oincide [76]. As a consequence, the resulting installed PV capac-
ties per household generally range between 1.5kW and 4kW, in
teps of 250W, in accordance with [76]. The use of PV modules
f greater size (450W) changes the resolution of the PV profiles,
ut do not affect the results of the present study, because the
roposed smart EV charging algorithm depends on aggregated
uantities and not on the size of individual PV modules. The
onthly PV energy ranges between 220 kW h and 586 kW h in
ummer, and between 74 kW h and 198 kW h in winter, with
maximum instantaneous generation of 3.5 kW in summer and
.6 kW in winter.

.4. EV load profiles

The EV consumption and constant-current charging profiles
ased on EVs’ supposed usage were generated with the RAMP-
obility4 software tool [77], by setting the shares of plug-in
ybrid EVs (PHEVs), battery EVs (BEV) and their battery capacity.
he shares of PHEV and BEVs are assumed to be 60% and 40%,
espectively,5 while the battery capacity is around 8–10 kW h
or PHEVs and between 30 and 100 kW h for BEVs.6 Assuming
o deploy LV, single-phase 16-A charging stations compliant with

4 RAMP-mobility: a RAMP application for generating bottom-up stochastic
lectric vehicles load profile https://github.com/RAMP-project/RAMP-mobility
5 Motus-E Market Analysis for Italy, https://www.motus-e.org/analisi-di-
ercato/gennaio-2022-i-primi-segnali-dellassenza-di-incentivi
6 EV Database Org, https://ev-database.org/cheatsheet/useable-battery-

apacity-electric-car
7

the IEC Standard 61851-1:2010 [78], the maximum EV charging
and discharging power PLIM was set to 3.7kW, which is below
the chosen contracted capacity of every single user and it is in
line with the values used in other research works [10,79]. The
EV charging–discharging efficiency η in (8)–(9) is around 0.9, as
in [10,80]. The monthly EV energy consumption per user ranges
between 170 kW h and 239 kW h, totalling 1.6–3.2 MW h/year.
The resulting average yearly EV energy consumption is in good
agreement with the Italian car driving surveys [81], assuming that
each EV travels 31 km per day on average, and its consumption
is around 0.23kWh/km. In the rest of this paper, the baseline
simulations when no smart EV charging is used rely on the
assumption that each EV connected to a charging station can
drain the maximum allowed amount of power until the target
SOC is reached.

4.5. Simulated scenarios

The main simulation settings in different scenarios are briefly
summarised below:

• The adopted IEEE LV grid is described just by a three-phase
model with B′

= 56 non-zero-injection buses, while the
M = 297 load profiles refer to single-phase users. Therefore,
for simulation purposes, the users’ load profiles must be
aggregated and they can be assigned to the different phases
of the non-zero-injection buses of the LV test distribution
system in such a way that the system is reasonably balanced.
Since all profiles change over time, we cannot rule out the
possibility of some imbalance, which is normal in standard
operating conditions. However, since the users’ power pro-
files exhibit a similar shape, if the same number of users
is connected to each phase of a given bus, the risk of se-
vere voltage imbalances is rather low. The total aggregated
power profiles were used to compute the baseline values P∗

t
in (7).

• The simulation time step is set to 15 min, which provides
a good trade-off between computational complexity and
simulation accuracy [82]. This is quite realistic because some
last-generation smart meters (including those recently de-
ployed in Italy) can measure and transmit the power/energy
consumption values every 15 min. As a result, considering a

daily forecasting, we have that T = 96 steps.

https://github.com/RAMP-project/RAMP-mobility
https://www.motus-e.org/analisi-di-mercato/gennaio-2022-i-primi-segnali-dellassenza-di-incentivi
https://www.motus-e.org/analisi-di-mercato/gennaio-2022-i-primi-segnali-dellassenza-di-incentivi
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
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Fig. 3. Active net-load power profiles at the substation transformer without EVs and with 60% of users provided with EVs both without and with adopting the
proposed V2G-based smart charging policy. The plots in (a) and (b) refer to the summer and winter scenarios, respectively, assuming that the shares of users equipped
with PV systems are 0% (left) or 30% (right).
• To explore the joint impact of different levels of EV and PV
penetration, the values of parameters EVshare and PVshare are
increased from 10% to 90% and from 0% to 90%, respectively.
In all cases, the users equipped with a PV system and/or
with an EV charging station are selected randomly, and
assigned to the three-phases of the distribution systems
in such a way that the system is reasonably balanced. Of
course, the number of buses within set B′′, as well as the
number of both decision variables and constraints depend
on the chosen EVshare value.

• The values of the relative voltage limits δ used in con-
straint (12) are set in compliance with the requirements of
the EN Standard 50160:2010 [18], prescribing that the 10-
minute mean r.m.s. values of the supply voltage shall be
within the ±10% range for 95% of the measured samples.

To keep the overall computation time within reasonable limits,
the optimal EV charging schedules for each pair of EVshare and
PVshare values were computed day-by-day over an average week
in summer and winter, respectively, namely when the solar irra-
diation is close to its maximum and its minimum, respectively.

5. Optimisation results

The smart EV charging algorithm was implemented in Matlab,
and it relies on the standard quadprog function of the Optimiza-
tion Toolbox to solve the core QP problem. All data structures
were built and formatted to make them compatible with quad-
rog, possibly using the sparse operators to reduce the memory
equirements whenever possible. Figs. 3(a)–3(b) shows the aggre-
ated weekly net-load profiles at the substation transformer com-
uted both without considering the EVs and with the additional
oads due to EV charging when EV = 60%. In the latter case,
share

8

both the profiles obtained with constant EV charging (lines with
circle markers) and those resulting from the proposed V2G-based
smart charging policy (dashed lines) are plotted. Figs. 3(a)–3(b)
refer to the summer and winter scenarios respectively, assuming
that (i) no PV systems are installed (plots on the left) and (ii)
about 30% of users are equipped with PV generators (plots on the
right).

In all cases, the effect of smart EV charging is twofold, i.e., po-
wer consumption peak shaving and reverse power flow pre-
vention. The latter effect is especially visible when the effect
of PV penetration is stronger (i.e., in the summer season), and
it confirms the correct operation of the optimisation algorithm,
since it still handles the reverse power flows quite well.

The efficiency of the proposed V2G-based smart EV charging
policy is assessed in terms of relative NLV reduction (NLVR) with
respect to the scenario in which no smart EV charging is used.

Figs. 4(a) and 4(b) show the contour lines of the NLVR surfaces
as a function of both PVshare and EVshare in the summer and winter
scenarios, respectively. These diagrams quantify the joint effect
of EV and PV penetration in ideal conditions (i.e., when a perfect
schedule is possible), thus highlighting the operating conditions
that maximise the NLVR. Indeed, up to about 60% NLVR could
potentially be reached in both the summer and winter scenarios,
although the pair of PVshare and EVshare values that best minimises
the NLVR strongly depends on the season. The contour lines in
the winter scenario indeed just look like a zoomed view of those
on the left side of the plot in the summer case. This is simply
due to the fact that in winter, a much larger PV penetration
would be needed to reach the same NLVR values seen in summer.
Quite interestingly, if no PV generators at all are deployed, the
maximum NLVR (between 50% and 55% in both seasons) in the
case at hand is reached if EV is about 30%. While these
share
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Fig. 4. Ideal contour curves of the NLVR surfaces as a function of increasing shares of users equipped with PV systems and/or EVs in summer (a) and winter (b),
espectively. Results are computed in ideal conditions, i.e. assuming that the user behaviour’s and profile is exactly the same as expected.
Fig. 5. Contour curves of the NLVR surfaces obtained assuming a basic day-ahead persistence model of PV generation and load profiles as a function of increasing
shares of users equipped with PV systems and/or EVs in summer (a) and winter (b), respectively. In this case, the EVs charging profiles computed over a given day
are applied to the following day. However, the constraints due to the unavailability of different EVs at different times of the day override the V charging schedule.
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numbers depend on the specific case study considered, this result
is very important because it confirms that the optimal V2G-based
EV charging scheme is potentially very effective, regardless of
whether the distributed generators are installed or not. The effect
of PV generators is twofold. To a certain extent (e.g., when PVshare
oes not exceed 40%) the PV generators support the increasing
lectricity demand due to EVs if EVshare grows, thus contributing
o the net-load variance reduction provided by the V2G-based
V charging policy. However, if PVshare increases excessively and
s not supported by an increase in EVshare, the NLVR sharply
ecreases in summer, because the overall net-load is so heavily
ffected by the reverse power flows, that the EVs are no longer
ble to handle the PV overproduction.
Figs. 5(a) and 5(b) show the NLVR contour lines computed

hen the optimal V2G-based EV charging schedule is based on
he load and PV generation profiles of the previous day (persis-
ence model). This model is straightforward to apply and suitable
o test the impact of the smart EV charging algorithm on NLVR
n more realistic conditions, namely when the load, the PV gen-
ration, and the EV usage conditions significantly differ from
he expected ones. The persistence model provides a reasonable
ower bound for the algorithm performance evaluation. Indeed,
he contour curves in Figs. 5(a) and 5(b) are qualitatively similar
o those in Figs. 4(a) and 4(b), but the NLVR surfaces when the
ersistence model is used decrease by about 10% compared to
he ideal case in both summer and winter (the NLVR peaks are
round 50%). This is nonetheless a remarkable result, especially

iven the broad range of PVshare and EVshare values. In conclusion, d

9

he presented analysis clearly shows that, in all cases, a good
itigation of the net-load variance can be obtained if at least 20%
f users own an EV. Moreover, the net-load variance is dominated
y the PV reverse power flows and it can be hardly reduced by the
roposed V2G EV smart charging policy (especially in summer)
hen PVshare exceeds 50% and EVshare is lower than about 30%.

. Impact analysis

Since the implications of smart EV battery charging are wider
han just active power support, the results of additional simula-
ions are presented in this Section. Such simulations provide an
verview of the impact of the proposed smart EV charging pol-
cy on district-level energy independence, grid voltage stability
nd lines congestion, and EVs’ battery wear. All results are ob-
ained in realistic conditions, i.e., when the day-ahead persistence
orecasting model is applied.

.1. Energy independence analysis

Several Authors found that smart EV charging is useful to in-
rease district self-consumption (SC) and self-production (SP) [66,
7]. SC expresses how efficient a system is in consuming or stor-
ng the generated PV energy, whereas SP represents the fraction
f the total appliances and EV consumption that is covered by
roprietary PV production. In principle, both indexes should be
aximised, in accordance with the concept of net-zero energy

istricts [83], but it is realistically not always possible because, for
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Fig. 6. Increments of the district-level self-consumption (SC) (a) and self-production (SP) values (b) due to the proposed EV smart charging policy in the summer
cenario.
nstance, an increase in PVshare with a constant EVshare decreases
C and increases SP at the same time. The total relative SC
nd SP increments at the district level obtained by adopting the
roposed smart EV charging policy are shown in Fig. 6(a)–(b)
n the summer scenario. The results in winter are qualitatively
imilar, but milder. Therefore, they are omitted for the sake of
revity.
Not surprisingly, the highest SC and SP increments are ob-

tained for a pair of (PVshare, EVshare) values quite different from
those corresponding to the NLVR maxima in Figs. 5(a) and 5(b),
i.e. (40%, 70%) in Fig. 6(a) and (50%, 80%) in Fig. 6(b). This is due to
the fact that an algorithm aimed at smoothing the NLV can help
but is not conceived to maximise the exploitation of the available
solar energy. Even if it is not shown in the paper, the baseline
maximum SC and SP values are around 50%. Hence, half of the
PV generated energy is either consumed or stored in the EVs and
half of the total load demand is covered by PV. Based on that,
the shown increases in SC and SP just by smart charging the EVs
(no stationary storage required) are quite remarkable. Once again,
we can conclude that the benefits of jointly increasing PV and
EV penetration are generally well visible. Interestingly enough,
the increment in SC can be up to a few percent points higher
than the SP one, meaning that the smart EV charging is slightly
more effective in smoothing the reverse power flows, rather than
handling excessive load peaks.

6.2. Bus voltage stability and lines congestion

The correct and stable operation of the IEEE 906-bus LV distri-
bution system used as a case study was checked through repeated
three-phase power flow analyses based on the classic Newton-
Raphson method implemented in OpenDSS7 for increasing values
of PVshare and EVshare with and without using the V2G-based smart
EV charging policy. Given that the distribution system under test
is supposed to operate in almost balanced conditions, due to the
reasons explained in Sections 4.2–4.4, the bars representing the
range (with 99% probability) of bus voltage amplitude variations
shown in Fig. 7 refer to the positive sequence bus voltages only,
over the whole grid in a typical summer week (i.e., in the worst
case due to the large amount of generated PV power) for different
levels of PVshare and EVshare. In particular, each triplet of bars in
Fig. 7 represents the range of bus voltages obtained respectively
(from left to right) in the baseline case (i.e., without consider-
ing the EVs), including the additional load due to standard EVs
charging (i.e., at the maximum possible rate), and by using the
proposed V2G-based smart EV charging algorithm.

7 OpenDSS: Open Distribution System Simulator v9.0.0, R. Dugan, D.
ontenegro, A. Ballanti, https://www.epri.com/pages/sa/opendss
10
As it can be easily seen, if PVshare = 90% the ±10% upper
and lower voltage limits recommended in [18] are exceeded both
without EVs and when the EVs are charged with the standard
approach. This is due mainly to the reverse power flows caused
by the surplus of generated PV power. On the contrary, the
V2G-based smart EV charging policy tends to better exploit the
available PV power, with an evident reduction of the range of
bus voltage fluctuations. In particular, in this case the voltage
amplitude values are generally confined within the ±10% limits
(with a few exceptions), since it is not possible to fully control the
voltage values at all buses (as explained in Section 3) when the
number of (controllable) EV charging stations is small compared
to the share of users equipped with PV generators. The stabilis-
ing action of the V2G-based approach becomes more and more
evident as the values of EVshare and PVshare grow. The additional
load due to standard EV charging may cause a much higher risk
of under-voltages (i.e., below the 0.9 p.u. limit specified in [18])
especially if such additional load is not at least partially supplied
by PV generators. In this case, the lower voltage limit is clearly
exceeded even when EVshare = 30%. The V2G-based smart EV
charging policy strongly reduces the risk of such events, which
become negligible when at least 60% of users own an EV.

In order to analyse the impact of the proposed solution on grid
congestion issues, Fig. 8 shows the range (with 99% probability)
of the line current values normalised by the respective ampacities
in a typical summer week. Again, the bar diagrams are plotted
for different levels of PV penetration and for increasing values of
EVshare. The meaning of the triplets of bars in each plot is the same
as in Fig. 7.

Quite interestingly, when PVshare ≥ 60%, a high production–
consumption simultaneity is noted, so the EVs are naturally
recharged by the PV generators, and the smart EV charging is less
effective in reducing the grid congestion levels. In any case, the
benefit of the proposed policy is quite evident, and it becomes
more effective when the values of EVshare and PVshare grow. In this
case, the peak line currents may be reduced by more than 50%.

6.3. Battery wear analysis

One of the strongest criticisms to V2G-based EV charging
policies is the actual stress on EVs’ batteries, whose lifetime might
be significantly reduced by the larger number of charging and dis-
charging cycles. The relative reduction of the battery capacity of
the j−th EV consists of two contributions [84,85], i.e., ∆Cj

Cj
(y, TK ) =

∆CCAL
j
Cj

(y, TK )+
∆CCYC

J
Cj

(y, TK ), where y represents the years of battery
use, TK is the average battery pack temperature

∆CCAL
j (y, TK ) = αCAL · eβCAL·TK · (y · 12)0.5 (13)

Cj

https://www.epri.com/pages/sa/opendss
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Fig. 7. Range (with 99% probability) of the bus voltage amplitude values in a typical summer week for increasing levels of PV and EV penetration. Each triple of bars
includes: the baseline case (i.e., without considering the EVs), the case when the additional load due to standard EVs charging is considered, and the dual results
obtained by using the V2G-based smart EV charging algorithm.
Fig. 8. Range (with 99% probability) of the lines current loading values normalised by their respective ampacity in a typical summer week for increasing levels of
PV and EV penetration. Each triplet of bars includes: the baseline case (i.e., without considering the EVs), the case when the additional load due to standard EVs
charging is considered, and the dual results obtained by using the V2G-based smart EV charging algorithm.
is the capacity reduction due to the pure calendar-time ageing
and
∆CCYC

j

Cj
(y, TK ) = αCYC · eβCYC ·TK · (NCEQ

j )0.5 · y (14)

s the contribution due to the charging–discharging cycling effect,
ith NCEQ

j being indeed is the number of equivalent full charging
nd discharging cycles.
Both expressions (13) and (14) are empirical and rely on

oefficients that are estimated experimentally [85]. In particular,
n the case at hand

• the coefficients αCAL = 1.985 · 10−7, βCAL = 0.0510 K−1,
αCYC = 4.42 · 10−5, and βCYC = 0.02676 K−1 are based on
some tests on Li-ion batteries for EVs [84].

• TK = 304 K (i.e., 31 ◦C). Even if EVs cannot not be charged
always at the same temperature, this is a conservative value
which includes also the raise over the environmental tem-
perature just due to charging (e.g., about 10 ◦C for the full
recharge of a 60 kW h battery when a 3.7 kW station is
used [86]).

• The NCEQ
j values were estimated with the Palmgren-Miner

rule [84].

The total battery lifetime is estimated by computing the value
of y for which ∆Cj

Cj
= 20% given by the sum of (13) and (14), which

is a conservative, but realistic assumption [84]. This assumption
is equal to setting SOH = 80% as the minimum allowable state-of-
health of the battery, i.e., the capacity left after y years compared
o the original capacity C . Fig. 9 shows the box-and-whiskers
plots of the total relative EV battery lifetime reduction caused by
11
the proposed V2G-based smart charging policy. Since the number
of full charging and discharging cycles NCEQ

j highly depends on
battery capacity, the results of PHEVs only (8–10 kW h) are
presented, because the BEVs never reach the end-of-life in the
simulated 10 years of EV time span. Both box-and-whiskers plots
are reported for increasing values of EVshare and PVshare.

A first noticeable difference between PHEVs and BEVs is that,
for the same values of EVshare and PVshare, the median value of the
battery lifetime reduction of the majority of PHEVs is much higher
than in the BEVs case (10%–20% instead of 0%–5%). This is due to
the much smaller size of PHEVs’ batteries, which causes a larger
number of full charging–discharging cycles NCEQ

j when the V2G-
based EV charging policy is applied. Noticeable max reductions of
35% are shown for PHEVs, whereas for BEVs this value is around
30%. Interestingly enough, the interquartile range of BEVs’ battery
lifetime reduction is instead quite larger than in the PHEV case,
because of the broader range of possible Cj values, which affects
the variability of NCEQ

j as well.

7. Conclusions and future work

In this work, a centralised V2G-based smart EV charging algo-
rithm aimed at reducing the net-load variance by leveraging the
EV charging stations is proposed. The algorithm performance was
analysed by increasing both the number of users equipped with
an EV charging station and the PV penetration level. The optimal
scheduling problem was solved through quadratic programming,
while keeping into consideration a variety of user-driven and
grid-related constraints, such as the bus voltage limitations.

The optimisation results show sizeable benefits if the PV and
EV penetration levels are simultaneously increased, so the local
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Fig. 9. Distribution of the relative lifetime reduction of PHEVs and BEVs due to
he application of the proposed V2G-based smart EV charging algorithm.

eneration supports the additional EV demand. In such condi-
ions, the overall net-load variance over the considered distribu-
ion grid can be reduced up to about 60% in ideal conditions, or
bout 50% when a basic persistence forecasting model of loads
nd PV generation profiles is used. Thanks to V2G-based smart
V charging, self-consumption and self-production increments by
p to 27% and 20% respectively, are attainable at the district level.
owever, such benefits decrease if the distributed PV generation
s excessive, since the EV smart scheduling cannot efficiently
anage a large PV overproduction. This does not depend on

he scheduling algorithm per se, but on the baseline operating
onditions of the grid. In general, the V2G-based smart EV charg-
ng scheme has also a positive impact on grid voltage stability
nd lines congestion, as confirmed by the negligible amount of
ver-voltage, under-voltage and over-current events. Finally, a
reliminary battery wear analysis shows that, in this specific case
tudy, V2G-based smart EV charging may significantly reduce the
attery lifetime, with the BEVs suffering much less than PHEVs
ue to their larger battery capacity and lower cycling ageing.
This paper analyses the potential for active power support

ith centralised smart EV charging when the coordinator has full
ccess to the information regarding the EVs connecting to the
ystem. Hence, future work may try to address this limitation.
irstly, the optimisation could be done by including more effec-
ive forecasting techniques in the case of missing information
n loads and generators. Secondly, a solution to address the EV
mart charging problem in real-time could be devised. Finally,
future work should try to analyse the economic benefits for

he EV owners and DSOs that participate in a smart EV charging
rogram, considering different compensation schemes.
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