
Published in Transactions on Machine Learning Research (11/2022)

Action Noise in Off-Policy Deep Reinforcement Learning:
Impact on Exploration and Performance

Jakob Hollenstein jakob.hollenstein@uibk.ac.at
Department of Computer Science, University of Innsbruck

Sayantan Auddy sayantan.auddy@uibk.ac.at
Department of Computer Science, University of Innsbruck

Matteo Saveriano matteo.saveriano@unitn.it
Department of Industrial Engineering, University of Trento

Erwan Renaudo erwan.renaudo@uibk.ac.at
Department of Computer Science, University of Innsbruck

Justus Piater justus.piater@uibk.ac.at
Department of Computer Science, University of Innsbruck

Reviewed on OpenReview: https: // openreview. net/ forum? id= NljBlZ6hmG

Abstract

Many Deep Reinforcement Learning (D-RL) algorithms rely on simple forms of exploration
such as the additive action noise often used in continuous control domains. Typically,
the scaling factor of this action noise is chosen as a hyper-parameter and is kept constant
during training. In this paper, we focus on action noise in off-policy deep reinforcement
learning for continuous control. We analyze how the learned policy is impacted by the noise
type, noise scale, and impact scaling factor reduction schedule. We consider the two most
prominent types of action noise, Gaussian and Ornstein-Uhlenbeck noise, and perform a
vast experimental campaign by systematically varying the noise type and scale parameter,
and by measuring variables of interest like the expected return of the policy and the state-
space coverage during exploration. For the latter, we propose a novel state-space coverage
measure XUrel that is more robust to estimation artifacts caused by points close to the state-
space boundary than previously-proposed measures. Larger noise scales generally increase
state-space coverage. However, we found that increasing the space coverage using a larger
noise scale is often not beneficial. On the contrary, reducing the noise scale over the training
process reduces the variance and generally improves the learning performance. We conclude
that the best noise type and scale are environment dependent, and based on our observations
derive heuristic rules for guiding the choice of the action noise as a starting point for further
optimization. https://github.com/jkbjh/code-action_noise_in_off-policy_d-rl

1 Introduction

In (deep) reinforcement learning an agent aims to learn a policy to act optimally based on data it collects by
interacting with the environment. In order to learn a well performing policy, data (i.e. state-action-reward
sequences) of sufficiently good behavior need to be collected. A simple and very common method to discover
better data is to induce variation in the data collection by adding noise to the action selection process.
Through this variation, the agent will try a wide range of action sequences and eventually discover useful
information.

1

https://openreview.net/forum?id=NljBlZ6hmG
https://github.com/jkbjh/code-action_noise_in_off-policy_d-rl

Published in Transactions on Machine Learning Research (11/2022)

A motivating example: Mountain-Car

noise
Type Gaussian Ornstein-

Uhlenbeck
Scale 0.6 0.5
Return -30.2 -30.4
+- 0.1 1.3

Table 1: Untrained random policies, Gaussian
(σ = 0.6) and Ornstein-Uhlenbeck (σ = 0.5)
achieve similar returns and appear interchange-
able.

0 50000
Training Steps

0

100

R
et

ur
n

DDPG

0 50000
Training Steps

0

100

SAC

0 50000
Training Steps

0

100

TD3

Gaussian Ornstein-Uhlenbeck

Figure 1: Training with the action noises (Table 1) shows the impact
of noise type; Ornstein-Uhlenbeck solves the task, but Gaussian does
not. Other algorithm parameters are taken from the tuned param-
eters found by Raffin (2020). The lines indicate the medians, the
shaded areas the quartiles of ten independent runs.

Action Noise In off-policy reinforcement learning algorithms applied to continuous control domains, a go-to
approach is to add a randomly-sampled action noise to the action chosen by the policy. Typically the action
noise is sampled from a Gaussian distribution or an Ornstein-Uhlenbeck process, either because algorithms
are proposed using these noise types (Fujimoto et al., 2018; Lillicrap et al., 2016), or because these two
types are provided by reinforcement learning implementations (Liang et al., 2018; Raffin et al., 2021a; Fujita
et al., 2021; Seno & Imai, 2021). While adding action noise is simple, widely used, and surprisingly effective,
the impact of action noise type or scale does not feature very prominently in the reinforcement learning
literature. However, the action noise can have a huge impact on the learning performance as the following
example shows.

A motivating example: Consider the case of the Mountain-Car (Brockman et al., 2016; Moore, 1990)
environment. In this task, a car starts in a valley between mountains on the left and right and does not have
sufficient power to simply drive up the mountain. It needs repetitive swings to increase its potential and
kinetic energy to finally make it up to the top of the mountain on the right side. The actions apply a force
to the car and incur a cost that is quadratic to the amount of force, while reaching the goal yields a final
reward of 100. This parameterization implies a local optimum: not performing any action and achieving a
return of zero.

Driving the environment with purely random policies based on the two noise types (Gaussian, σ = 0.6,
Ornstein-Uhlenbeck σ = 0.5, see Table 1), yields similar returns. However, when we apply the algorithms
DDPG, TD3 and SAC (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2019) to this task, the
resulting learning curves (Figure 1) very clearly depict the huge impact the noise configuration has. While
returns of the purely random noise-only policies were similar, we achieve substantially different learning
results. Learning either fails (Gaussian) or leads to success (Ornstein-Uhlenbeck). This shows the huge
importance of the action noise configuration. See Section A for further details.

Exploration Schedule A very common strategy in Q-learning algorithms applied to discrete control is to
select a random action with a certain probability ε. In this epsilon-greedy strategy, the probability ε is often
chosen higher in the beginning of the training process and reduced to a smaller value over course of the
training. Although very common in Q-learning, a comparable strategy has not received a lot of attention for
action noise in continuous control. The descriptions of the most prominent algorithms using action noise,
namely DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al., 2018), do not mention changing the noise
over the training process. Another prominent algorithm, SAC (Haarnoja et al., 2019), adapts the noise to
an entropy target. The entropy target, however, is kept constant over the training process. In many cases
the optimal policy would be deterministic, but the agent has to behave with similar average action-entropy
no matter whether the optimal policy has been found or not.

2

Published in Transactions on Machine Learning Research (11/2022)

An indication that reducing the randomness over the training process has received little attention is that
only very few reinforcement learning implementations, e.g., RLlib (Liang et al., 2018), implement reducing
the impact of action noise over the training progress. Some libraries, like coach (Caspi et al., 2017), only
implement a form of continuous epsilon greedy: sampling the action noise from a uniform distribution with
probability ε. The majority of available implementations, including stable-baselines (Raffin et al., 2021a),
PFRL (Fujita et al., 2021), acme (Hoffman et al., 2020), and d3rlpy (Seno & Imai, 2021), do not implement
any strategies to reduce the impact of action noise over the training progress.

Exploration schedules for action noise are also not mentioned in several recent surveys (Yang et al., 2022;
Ladosz et al., 2022; Amin et al., 2021)

Contributions

In this paper we analyze the impact of Gaussian and Ornstein-Uhlenbeck noise on the learning process
of DDPG, TD3, SAC and a deterministic SAC variant. Evaluation is performed on multiple popular
environments (Table E.1): Mountain-Car (Brockman et al., 2016) environment from the OpenAI Gym,
Inverted-Pendulum-Swingup, Reacher, Hopper, Walker2D and Half-Cheetah environments implemented us-
ing PyBullet (Coumans & Bai, 2016–2021; Ellenberger, 2018).

• We investigate the relation between exploratory state-space coverage X, returns collected by the
exploratory policy R and learned policy performance P .

• We propose to assess the state-space coverage using our novel measure XUrel that is more robust to
approximation artifacts on bounded spaces compared to previously proposed measures.

• We perform a vast experimental study and investigate the question whether one of the two noise
types is generally preferable (Q1), whether a specific scale should be used (Q2), whether there is any
benefit to reducing the scale over the training progress (linearly, logistically) compared to keeping it
constant (Q3), and which of the parameters noise type, noise scale and scheduler is most important
(Q4).

• We provide a set of heuristics derived from our results to guide the selection of initial action noise
configurations.

Findings We found that the noise configuration, noise type and noise scale, have an important impact and
can be necessary for learning (e.g. Mountain-Car) or can break learning (e.g. Hopper). Larger noise scales
tend to increase state-space coverage, but for the majority of our investigated environments increasing the
state-space coverage is not beneficial: increased state-space coverage was associated with a reduction in
performance. This indicates that in these environments, local exploration, which is associated with smaller
state-space coverage, tends to be favorable. We recommend to select and tune action noise based on the
reward and dynamics structure on a per-environment basis.

We found that across noise configurations, decaying the impact of action noise tends to work better than
keeping the impact constant, in both reducing the variance across seeds and improving the learned policy
performance and can thus make the algorithms more robust to the action noise hyper-parameters scale and
type. We recommend to reduce the action noise scaling factor over the training time.

We found that for all environments investigated in this study noise scale σ is the most important parameter,
and some environments (e.g. Mountain-Car) benefit from larger noise scales, while other environments require
very small scales (e.g. Walker2D). We recommend to assess an environment’s action noise scale preference
first.

2 Related Work

By combining Deep Learning with Reinforcement Learning in their DQN method, Mnih et al. (2015) achieved
substantial improvements on the Atari Games RL benchmarks (Bellemare et al., 2013) and sparked lasting
interest in Deep Reinforcement learning (D-RL).

3

Published in Transactions on Machine Learning Research (11/2022)

Robotic environments: In robotics, the interest in Deep Reinforcement Learning has also been rising and
common benchmarks are provided by OpenAI Gym (Brockman et al., 2016), which includes control classics
such as the Mountain-Car environment (Moore, 1990) as well as more complicated (robotics) tasks based on
the Mujoco simulator (Todorov et al., 2012). Another common benchmark is the DM Control Suite (Tassa
et al., 2018), also based on Mujoco. While Mujoco has seen widespread adoption it was, until recently, not
freely available. A second popular simulation engine, that has been freely available, is the Bullet simulation
engine (Coumans & Bai, 2016–2021) and very similar benchmark environments are also available for the
Bullet engine (Coumans & Bai, 2016–2021; Ellenberger, 2018).

Continuous Control: While the Atari games feature large and (approximately) continuous observation
spaces, their action spaces are discrete and relatively small, making Q-learning a viable option. In contrast,
typical robotics tasks require continuous action spaces, implying uncountably many different actions.

A tabular Q-learning approach or a discrete Q-function output for each action are therefore not possible
and maximizing the action over a learned function approximator for Q(s, a) is computationally expensive
(although not impossible as Kalashnikov et al. (2018) have shown). Therefore, in continuous action spaces,
policy search is employed, to directly optimize a function approximator policy, mapping from state to best
performing action (Williams, 1992). To still reap the benefits of reduced sample complexity of TD-methods,
policy search is often combined with learning a value function, a critic, leading to an actor-critic approach
(Sutton et al., 1999).

On- and Off-policy: Current state of the art D-RL algorithms consist of on-policy methods, such as
TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017), and off-policy methods, such as DDPG (Lil-
licrap et al., 2016), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2019). While the on-policy
methods optimize the next iteration of the policy with respect to the data collected by the current iteration,
off-policy methods are, apart from stability issues and requirements on the samples, able to improve policy
performance based on data collected by any arbitrary policy and thus can also re-use older samples.

To improve the policy, variation (exploration) in the collected data is necessary. The most common form
of exploration is based on randomness: in on-policy methods this comes from a stochastic policy (TRPO,
PPO), while in the off-policy case it is possible to use a stochastic policy (SAC) or, to use a deterministic
policy (Silver et al., 2014) with added action noise (DDPG, TD3). Since off-policy algorithms can learn
from data collected by other policies, it is also possible to combine stochastic policies (e.g. SAC) with action
noise.

State-Space Coverage: Often, the reward is associated with reaching certain areas in the state-space.
Thus, in many cases, exploration is related to state-space coverage. An intuitive method to calculate state
space coverage is based on binning the state-space and counting the percentage of non-empty bins. Since
this requires exponentially many points as the dimensionality increases, other measures are necessary. Zhan
et al. (2019) propose to measure state coverage by drawing a bounding box around the collected data and
measuring the means of the side-lengths, or by measuring the sum of the eigenvalues of the estimated
covariance matrix of the collected data. However, so far, there is no common and widely adopted approach.

Methods of Exploration: The architecture for the stochastic policy in SAC (Haarnoja et al., 2019) consists
of a neural network parameterizing a Gaussian distribution, which is used to sample actions and estimate
action-likelihoods. A similar stochastic policy architecture is also used in TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017). While this is the most commonly used type of distribution, more complicated
parameterized stochastic policy distributions based on normalizing flows have been proposed (Mazoure et al.,
2020; Ward et al., 2019). In the case of action noise, the noise processes are not limited to uncorrelated
Gaussian (e.g. TD3) and temporally correlated Ornstein-Uhlenbeck noise (e.g. DDPG): a whole family
of action noise types is available under the name of colored noise, which has been successfully used to
improve the Cross-Entropy-Method (Pinneri et al., 2020). A quite different type of random exploration
are the parameter space exploration methods (Mania et al., 2018; Plappert et al., 2018), where noise is
not applied to the resulting action, but instead, the parameters of the policy are varied. As a somewhat
intermediate method, state dependent exploration (Raffin et al., 2021b) has been proposed, where action noise
is deterministically generated by a function based on the state. Here, the function parameters are changed
randomly for each episode, leading to different deterministic “action noise” for each episode. Presumably

4

Published in Transactions on Machine Learning Research (11/2022)

among the most intricate methods to generate exploration are the methods that train a policy to achieve
exploratory behavior by rewarding exploratory actions (Burda et al., 2019; Tang et al., 2017; Mutti et al.,
2020; Hong et al., 2018; Pong et al., 2020). Another alternative can be a two-step approach, where in the
first stage intrinsically-motivated exploration is used to populate the replay buffer, and in the second stage
the information in the buffer is exploited to learn a policy (Colas et al., 2018).

It is however, not clear yet, which exploration method is most beneficial, and when a more complicated
method is actually worth the additional computational cost and complexity. In this work we aim to reduce
this gap, by investigating the most widely used baseline method in more detail: exploration by action noise.

Studies of Random Exploration Exploration in Deep Reinforcement Learning is also the subject of
multiple surveys. However, the topic of action noise is only covered very sparsely. Yang et al. (2022) only
briefly mention action noise as being used in DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al., 2018) but
do not provide further discussion. A section on randomness-based methods that focuses mostly on discrete
action spaces, or for continuous action spaces on parameter noise, is provided by Ladosz et al. (2022). Amin
et al. (2021) provide a section on randomized action selection in policy search, nicely divided into action-space
and parameter-space methods, and discuss temporally correlated or uncorrelated perturbations. However,
they also do not point to any empirical study specifically comparing the effects of random exploration.

Generally, however, it appears that most work focuses on proposing modifications of the action noise, rather
than investigating the effects of the baseline parameters. For example, for stochastic policies, Rao et al.
(2020) show that the weight initialisation procedure can lead to different initial action distributions of the
stochastic policies. Chou et al. (2017) propose stochastic policies based on the β-distribution. Nobakht &
Liu (2022) use gathered experience to tune the action noise model.

In contrast to these works, in our previous work (Hollenstein et al., 2021), we investigated action noise as
the immediate means to control the environments, i.e. adding action noise to a constant-zero policy. Not
surprisingly, we found that there are dependencies between environment dynamics, reward structure and
action noise. However, this study did not investigate the influence of action noise on learning progress or
results. In this work, we investigate the impact of action noise in the context of learning.

3 Methods

In this section, we describe the action noise types, the schedulers to reduce the scaling factor of the action
noise over time and the evaluation process in more detail. We briefly list the analyzed benchmark environ-
ments and their most important properties. We chose environments of increasing complexity that model
widely used benchmark tasks. We list the used algorithms and then describe how we gather evaluation data
and how it is aggregated. Last, we describe the methods we use for analyzing state-space coverage.

3.1 Noise types: Gaussian and Ornstein-Uhlenbeck

The action noise εat
is added to the action drawn from the policy:

at = clip
amin,amax

ãt + β

(
clip
−1;1

[εat
] · amax − amin

2 + amax + amin
2

) (1)

where ãt ∼ πθ(·|st) for stochastic policies or ãt = πθ(st) for deterministic policies. We introduce an additional
impact scaling factor β, which is typically kept constant at the value one. In Section 3.2 we describe how
we change β over time to create a noise scheduler. The action noise εat

is drawn from either a Gaussian
distribution or an Ornstein-Uhlenbeck (OU) process. The noise distributions are factorized, i.e. noise samples
are drawn independently for each action dimension. For the generation of action noise samples, the action
space is assumed to be limited to [−1, 1] but then rescaled to the actual limits defined by the environment.

Gaussian noise is temporally uncorrelated and is typically applied on symmetric action spaces (Hill et al.,
2018; Raffin, 2020) with commonly used values of µ = 0 and σ = 0.1 with Σ = I ·σ. Action noise is sampled

5

Published in Transactions on Machine Learning Research (11/2022)

according to
εat
∼ N (µ,Σ) (2)

In this setup, Gaussian action noise is sampled and clipped to the action limits as needed.1

Ornstein-Uhlenbeck noise is sampled from the following temporal process, with each action dimension
calculated independently of the other dimensions:

εat
= εat−1 + θ(µ− εat−1) · dt+ σ

√
dt · ϵt (3)

εa0 = 0 ϵt ∼ N (0, I) (4)

The process was originally described by Uhlenbeck & Ornstein (1930) and applied to reinforcement learning
in DDPG by Lillicrap et al. (2016). The parameters we use for the Ornstein-Uhlenbeck noise are taken from
a widely used RL-algorithm implementation (Hill et al., 2018): θ = 0.15, dt = 0.01, µ = 0, σ = 0.1 · I.

Due to the huge number of possible combinations of environments, algorithms, noise type, noise scale and the
necessary repetition with different seeds, we had to limit the number of investigated scales. We set out with
two noise scales σ encountered in pre-tuned hyper-parameterization (Raffin, 2020), 0.1, 0.5, and continued
with a linear increase, 0.9, 1.3, 1.7. Much smaller noise scales vanish in the variations induced by learning
and much larger scales lead to Bernoulli trials of the min-max actions without much difference.

Because the action noise is clipped to [−1, 1] before being scaled to the actual action limits, a very large scale,
such as 1.7, implies a larger percentage of on-the-boundary action noise samples and is thus more similar
to bang-bang control actions, the latter having been found surprisingly effective in many RL benchmarks
(Seyde et al., 2021).

3.2 Scheduling strategies to reduce action noise

0% 20% 40% 60% 80% 100%
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g

R
at

io

Noise Schedulers

Constant
Logistic
Linear

Figure 2: Action noise is used for exploration. The agent should favor exploration in the beginning but later favor
exploitation. Similar to ϵ-greedy strategies in discrete-action Q-learning, the logistic and linear schedulers reduce the
impact of noise (scaling ratio, β in (1)) over the course of the training progress.

In (1) we introduce the action noise scaling-ratio β. In this work we compare a constant-, linear- and logistic-
scheduler for the value of β. The effective scaling of the action noise by the noise schedulers is illustrated in
Figure 2. The noise types are described in more detail in Section 3.1.

Changing the σ (see (3) and (2)) instead of β could result in a different shape of the distribution, for
example when values are clipped, or when the σ indirectly affects the result as in the Ornstein-Uhlenbeck
process. To keep the action noise distribution shape constant, the action noise schedulers do not change the σ
parameter of the noise process but instead scale down the resulting sampled action noise values by changing

1An alternative way of sampling Gaussian action noise would be to use a truncated Gaussian distribution. We investigate
non-truncated Gaussian distributions together with clipping, as they are more common in practice.

6

Published in Transactions on Machine Learning Research (11/2022)

the β parameter: this means that the effective range of the action noise, before scaling and adjusting to
the environment limits, changes over time from [−1, 1], the maximum range, to 0 for the linear and logistic
schedulers.

3.3 Environments

For evaluation we use various environments of increasing complexity: Mountain-Car, Inverted-Pendulum-
Swingup, Reacher, Hopper, Walker2D, Half-Cheetah. Observation dimensions range from 2 to 26, and action
dimensions range from 1 to 6. See Table E.1 for details, including a rough sketch of the reward. The table
indicates whether the reward is sparse or dense with respect to a goal state, goal region, or a change of the
distance to the goal region. Many environments feature linear or quadratic (energy) penalties on the actions
(e.g. Hopper). Penalties on the state can be sparse (such as joint limits), or dense (such as force or required
power induced by joint states). Brockman et al. (2016), Coumans & Bai (2016–2021), and Ellenberger (2018)
provide further details.

3.4 Performed experiments

We evaluated the effects of action noise on the popular and widely-used algorithms: TD3 (Fujimoto et al.,
2018), DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., 2019), and a deterministic version of SAC
(DetSAC, Algorithm D.1). Originally SAC was proposed with only exploration from its stochastic policy.
However, since SAC is an off-policy algorithm, it is possible to add additional action noise, a common solution
for environments such as the Mountain Car. The stochastic policy in SAC typically is a parameterized
Gaussian and combining the action noise with the stochasticity of actions sampled from the stochastic policy
could impact the results. Thus, we also compared to our DetSAC version, where action noise is added to
the mean action of the DetSAC policy (Algorithm D.1).

We used the implementations provided by Raffin et al. (2021a), following the hyper-parameterizations pro-
vided by Raffin (2020), but adapting the action noise settings.

The experiments consisted of testing 6 environments, 4 algorithms, 5 noise scales, 3 schedulers and 2 noise
types. Each experiment was repeated with 20 different seeds, amounting to 14400 experiments in total. On a
single node, AMD Ryzen 2950X equipped with four GeForce RTX 2070 SUPER, 8 GB, running about twenty
experiments in parallel this would amount to a runtime of approximately 244 node-days (which accounted
for about 6 weeks on our cluster).

Section I lists further details such as the returns averaged across seeds for each experimental configuration.

3.5 Measuring Performance

For each experiment (i.e. single seed), we divided the learning process into 100 segments and evaluated
the exploration and learned policy performance for each of those segments. At the end of each segment,
we performed evaluation rollouts for 100 episodes or 10000 steps, whichever was reached first, using only
complete episodes. This ensures sufficient data points when the episode length varies greatly (e.g. for
the Hopper). This procedure was performed for both the deterministic exploitation policy as well as the
exploratory (action noise) policy. The two resulting datasets of evaluation rollouts are used to calculate
state-space coverages and returns. These evaluation rollouts, both exploring and exploiting, were not used
for training and thus do not change the amount of training data seen between training steps. We took the
mean over these 100 measurements to aggregate them into a single value. This is equivalent to measuring
the area under the learning curves. For the evaluation returns, this is called the Performance P and is our
main measure for learning performance. Similarily, aggregated evaluation returns measured in this fashion
are denoted by R.

The learning algorithm uses a noisy (exploratory) policy to collect data and exploratory return and state-
space coverage could be assessed based on the replay buffer data. However, to get statistically more robust
estimates of the quality of the exploratory policy (returns and state-space coverage), we performed the
above mentioned exploratory evaluation rollouts and used these rollouts for assessing state-space coverage

7

Published in Transactions on Machine Learning Research (11/2022)

(a) Xbin divides the state-
space into bins and mea-
sures the ratio of non-empty
bins.

(b) XBBM measures the
spread by the mean of the
side-lengths of the bounding
box.

(c) XNN measures the
spread of the data by the
sum of the eigenvalues of
the covariance of the data.

too little

good

too much

(d) XUrel (ours) measures
the symmetric KL-diver-
gence between a prior over
the state space and the col-
lected state-space data.

Figure 3: Illustrations of the state-space coverage measures. XUrel scales to high dimensions (unlike Xbin) and is not
susceptible to estimation artifacts due to points close to the support boundary (unlike XBBM, XNN and kNN based
estimators).

and exploratory returns instead of the data in the replay buffer. Again, these 100 measurements were
aggregated by taking the mean and denoted as the exploratory state-space coverage X and the evaluation
state-space coverage E.

3.6 State-Space Coverage

We assess exploration in terms of state-space coverage. We assume that the environment states s ∈ Rd
have finite upper and lower limits: low ≤ s ≤ high, low,high ∈ Rd. We investigate four measures:
Xbin,XUrel, XBBM, XNN, which are illustrated in Figure 3.

The most intuitive measure for state-space coverage is a histogram-based approach Xbin, which divides the
state space into equally many bins along each dimension and measures the ratio of non-empty bins to the
total number of bins:

Xbin = # of non-empty bins
number of bins (5)

The number of bins, as the product of divisions along each dimension, grows exponentially with the dimen-
sionality. This means that either the number of bins has to be chosen very low, or, if there are more bins
than data points, the ratio has to be adjusted. We chose to limit the number of bins. For a sample of size m
and dimensionality d the divisions k along each dimension are chosen to allow for at least c points per bin

k = ⌊∗⌋
(
m

c

) 1
d

(6)

However, for high-dimensional data, the number of bins becomes very small and the measure easily reaches
100% and becomes meaningless, or, the required number of data points becomes prohibitively large very
quickly. Thus, alternatives are necessary.

Zhan et al. (2019) proposed two state-space coverage measures that also work well in high-dimensional spaces:
the bounding box mean XBBM, and the nuclear norm XNN. XBBM measures the spread of the data by a d
dimensional bounding box around the collected data D = {. . . , s(j), . . .} and measuring the mean of the side
lengths of this bounding box:

XBBM = 1
d

d∑
i

[
max
j
s

(j)
i −min

j
s

(j)
i

]
(7)

XNN, the nuclear norm estimates the covariance matrix C of the data and measures data spread by the
trace, the sum of the eigenvalues of the estimated covariance:

XNN(D) := trace
(
C(D)

)
(8)

8

Published in Transactions on Machine Learning Research (11/2022)

As shown below in Section 3.6.1, extreme values or values close to the state-space boundaries can lead to
over-estimation of the state-space coverage by these two measures. We therefore propose a measure more
closely related to Xbin but more suitable to higher dimensions: XUrel(D). The Uniform-relative-entropy
measure XUrel assesses the uniformity of the collected data, by measuring the state-space coverage as the
symmetric divergence between a uniform prior over the state space U and the data distribution QD:

XUrel(D) = −DKL
(
U ||QD

)
−DKL

(
QD||U

)
(9)

The inspiration for this measure comes from the observation that the exploration reward for count-based
methods without task reward would be maximized by a uniform distribution. We assume that for robotics
tasks reasonable bounds on the state space can be found. In a bounded state space, the uniform distri-
bution is the least presumptive (maximum-entropy) distribution. The addition of the DKL

(
U ||QD

)
term

helps to reduce under-estimation of the divergence in areas with low density in QD. Note that QD is only
available through estimation, and the support for QD is never zero as the density estimate never goes to
zero. To estimate the relative uniform entropy we evaluated two divergence estimators, a kNN-based (k-
Nearest-Neighbor) estimator and a Nearest-Neighbor-Ratio (NNR) estimator (Noshad et al., 2017). Density
estimators based on kNN are susceptible to over- / under-estimation artifacts close to the boundaries (sup-
port) of the state space (see Figure B.1 for an illustration). In contrast, the NNR estimator does not suffer
from these artifacts. If not specified explicitly, XUrel refers to the NNR-based variant.

kNN XUrel estimator: XUrel can be estimated using a kNN density estimate q̂k(s), as described in (Bishop,
2006), where Vd denotes the unit volume of a d-dimensional sphere, Rk(x) is the Euclidean distance to the
k-th neighbor of x, and n is the total number of samples in D:

Vd = πd/2

Γ(d2 + 1)
(10)

q̂k(x) =k

n

1
VdRk(x)d = k

nVd

1
Rk(x)d (11)

where Γ denotes the gamma function.

NNR XUrel estimator: Alternatively, XUrel can be estimated using NNR, an f -divergence estimator, based
on the ratio of the nearest neighbors around a query point.

For the general case of estimating DKL
(
P ||Q

)
, we take samples from X ∼ Q and Y ∼ P . Let Rk(Yi) denote

the set of the k-nearest neighbors of Yi in the set Z := X ∪ Y . Ni is the number of points from X ∩Rk(Yi),
Mi is the number of points from Y ∩Rk(Yi), M is the number of points in Y and N is the number of points
in X, η = M

N . The NNR measure requires the density of P and Q to be bounded with the lower limit CL > 0,
and measures the ratio of points from two different distributions around a query point. Assuming all points
of a sample of size n are concentrated around a single point, we lower-bound the density to CL = 1

n . To
limit the peaks around a single point we upper-bound the densities to CU = n

1 .

DKL(P ||Q) ≈D̂g(X,Y) (12)

D̂g(X,Y) := max

 1
M

M∑
i=1

ĝ

(
ηNi

Mi + 1

)
, 0

 (13)

where ĝ(x) := max
(
g(x), g(CL/CU)

)
(14)

g(ρ) :=− log ρ (15)

3.6.1 Evaluation of Measures on Synthetic Data

To compare the different exploration measures, we assumed a d = 25 dimensional state space, generated
data from two different types of distributions, and compared the exploration measures on these data. The
experiments were repeated 20 times, and the mean and min-max values are plotted in Figure 4. Each

9

Published in Transactions on Machine Learning Research (11/2022)

sampled dataset consists of 5000 points. For most measures the variance is surprisingly small. While the
data are d-dimensional, they come from factorial distributions, similarly distributed along each dimension.
Thus, we can gain intuition about the distribution from scatter plots of the first vs. second dimension. This
is depicted at the top of each of the two parts. The bottom part of each comparison shows the different
exploration measures, where the scale parameter is depicted on the x axis and the exploration measure on
the y axis.

(a) Growing Uniform: Figure 4(a) depicts data generated by a uniform distribution, centered around
the middle of the state space, with minimal and maximal values growing relatively to the full state space

−1 0 1

−1
0
1

Scale:
1%

−1 0 1

−1
0
1

Scale:
17%

−1 0 1

−1
0
1

Scale:
34%

−1 0 1

−1
0
1

Scale:
50%

−1 0 1

−1
0
1

Scale:
67%

−1 0 1

−1
0
1

Scale:
83%

−1 0 1

−1
0
1

Scale:
100%

−1 0 1

−1
0
1

Scale:
116%

−1 0 1

−1
0
1

Scale:
133%

−1 0 1

−1
0
1

Scale:
150%

0 100
Scale

0.0

0.5

1.0

X
bi

n

5pt. Bin
Coverage

0 100
Scale

0

1

2

X
B

B
M

Bounding Box
Mean

0 100
Scale

0

5

10

X
N

N

Nuclear Norm

0 100
Scale

−4

−2

0

X
U

re
l

U-RelEntropy
(NNR) (ours)

0 100
Scale

−100

−50

X
U

re
l

U-RelEntropy
(kNN) (ours)

(a) Growing Uniform distribution: evaluation of the state-space coverage measures on synthetic data – for larger scale values
more points are clipped to the state-space boundaries, leading to an expected decrease in state-space coverage for scales larger
than 100%. This behavior is only captured by XUrel (NNR).

−1 0 1

−1
0
1

Scale:
1%

−1 0 1

−1
0
1

Scale:
17%

−1 0 1

−1
0
1

Scale:
34%

−1 0 1

−1
0
1

Scale:
50%

−1 0 1

−1
0
1

Scale:
67%

−1 0 1

−1
0
1

Scale:
83%

−1 0 1

−1
0
1

Scale:
100%

−1 0 1

−1
0
1

Scale:
116%

−1 0 1

−1
0
1

Scale:
133%

−1 0 1

−1
0
1

Scale:
150%

0 100
Scale

0.0

0.5

1.0

X
bi

n

5pt. Bin
Coverage

0 100
Scale

1.0

1.5

2.0

X
B

B
M

Bounding Box
Mean

0 100
Scale

0

10

20

X
N

N

Nuclear Norm

0 100
Scale

−5

−4

−3

X
U

re
l

U-RelEntropy
(NNR) (ours)

0 100
Scale

−90

−80

−70

X
U

re
l

U-RelEntropy
(kNN) (ours)

(b) Growing Distance of Modes of 2-Mixture of Truncated Normal: evaluation of the state-space coverage measures on synthetic
data. For larger scale values, the location of the mixture components is closer to the boundary – leading to an expected reduction
in coverage for larger scale values. Xbin, XBBM, XNN fail to capture this behavior.

Figure 4: state-space coverage measures may not accurately represent the real coverage. Each comparison (a-b) shows
the different exploration measures Xbin, XBBM, XNN and XUrel (ours) on synthetic 25 dimensional data. Xbin becomes
constant and XBBM and XNN suffer from estimation artifacts for points close to the support boundary. The different
data generating distributions depend on a scale parameter. The distributions are factorial and similarly distributed
along each dimension. The scatter plots in (a-b) depict first vs. second dimension. The mean and min-max variation
is shown. In the majority of cases the variance is surprisingly small.

10

Published in Transactions on Machine Learning Research (11/2022)

according to the scale parameter from 1% to 150%. Since in the latter case, many points would lie outside
the allowed state space; these values are clipped to the state-space boundaries. This loosely corresponds
to an undirectedly exploring agent that overshoots and hits the state-space limits, sliding along the state-
space boundaries. Note how the estimation (kNN vs. NNR) has a great impact on the XUrel measure’s
performance here: We would expect a maximum around a scale of 100% and smaller values before and after
(due to clipping). Here the XUrel (NNR) measure most closely follows this expectation. The ground-truth
value of the divergence would follow a similar shape. However, since the densities are limited for the NNR
estimator, the ground-truth divergence would show more extreme values.

(b) Bi-Modal Truncated Normal moving locations: Figure 4(b) shows a mixture of two truncated
Gaussian distributions, with equal standard deviations but located further and further apart (depending
on the scale parameter). In this case, the state-space coverage should increase until both distributions
are sufficiently far apart, should then stay the same, and finally begin to drop because the proximity to
the state-space-boundary limits the points to an ever smaller volume. The inspiration for this example
distribution is an agent setting off in two opposite directions and getting stuck at these two opposing limits.
While somewhat contrived and more extreme than the inspiring example, it highlights difficulties in the
exploration measures. Both the bounding-box mean XBBM and the nuclear norm XNN completely fail to
account for vastly unexplored areas between the extreme points.

Since the XUrel NNR measure is clipped (by definition of NNR) the measure reaches its limits when the
density ratios become extreme, which presumably happens for very small and large scale parameters in this
setting. The XUrel kNN approximator is better able to capture the extreme divergence values, however, as
pointed out before, this comes at the cost of under-estimating the divergence for points close to the support
boundary.

The experiments on synthetic data showed that the histogram based measure is not useful in high-dimensional
spaces. The alternatives XBBM and XNN are susceptible to artifacts on bounded support. This susceptibility
to boundary artifacts is also present in the kNN-based XUrel estimator, because of these results we employ
the NNR-estimator based XUrel in the rest of this paper and refer to it as XUrel.

4 Results: What action noise to use?

In this section we analyze the data collected in the experiments described in Section 3.4. We first look at the
experiments performed under a constant scale scheduler since this is the most common case in the literature.
In this setting we will look at two aspects: first, is one of the two action noise types generally superior to
the other (Q1)? And secondly, is there a generally preferable action noise scale (Q2)? Then, we compare
across constant, linear and logistic schedulers to see if reducing the noise impact over the training process
is a reasonable thing to do (Q3). Finally we compare the relative importance of the scheduler, noise type
and scale (Q4). See Section F.1 for a brief description of the statistical methods used in this paper and the
verification of their assumptions.

4.1 (Q1) Which action noise type to use? (and what are the impacts)

To compare the impact of the action noise type, we look at the constant β = 1 case, group the aggregated
performance and exploration results (see Section 3.5) by the factors algorithm, environment, and action
noise scale and standardize the results to control for their influence. These standardized results are then
combined for each noise type. Figure 5 illustrates the results. The comparisons are performed by Welch-t-
test, symmetric p-values are listed.

Figure 5 (c) shows that Ornstein-Uhlenbeck noise leads to increased state-space coverage under the ex-
ploratory policy X as measured by XUrel. For completeness Figure 5 (d) shows the state-space coverage
of the evaluation policy. Here Ornstein-Uhlenbeck increases coverage which might indicate slightly longer
trajectories for policies trained under Ornstein-Uhlenbeck noise, however whether this is preferable or not is
task dependant. Exploration likely incurs additional costs, e.g. through action penalties, but also by moving
the agent away from high-reward-trajectories. Since Ornstein-Uhlenbeck noise is temporally correlated, it

11

Published in Transactions on Machine Learning Research (11/2022)

G OU
−2.5

0.0

2.5

P
(E

va
l-R

et
ur

ns
)

(a)

G H0= OU
p = 0.40

G OU
−2.5

0.0

2.5

R
(E

xp
l.-

R
et

ur
ns

)

(b)

G > OU
p < 10−21

G OU
−2.5

0.0

2.5

X
(E

xp
l.-

X
U

re
l)

(c)

G < OU
p < 10−50

G OU
−2.5

0.0

2.5

E
(E

va
l.-

X
U

re
l)

(d)

G < OU
p < 10−10

Figure 5: Comparison of standardized measures (P , R, X, E), for Gaussian (G) and Ornstein-Uhlenbeck (OU)
noise types, (a-d). Values are standardized to control for and combine algorithm, environment and noise scale: (a)
For learned performance P , measured by evaluation returns, neither of the two noise types is significantly better.
(b) For Returns collected under the exploration policy R, Gaussian noise collects data with slightly better returns
(p < 10−21). (c) For State-space coverage of the exploratory policy X Ornstein-Uhlenbeck performs better. (d)
The State-space coverage of evaluation rollouts E is slightly larger for Ornstein-Uhlenbeck noise without significantly
affecting the evaluation returns P . Overall neither of the two noise types is superior.

Environment P pP dP R pR dR X pX dX E pE dE

Half-Cheetah - 0.89 - G 0.002 0.22 OU 0.004 0.21 - 0.20 -
Hopper OU <10−3 0.27 G <10−4 0.29 G <10−8 0.41 - 0.71 -
Inverted-
Pendulum-Swingup - 0.38 - G <10−51 1.15 OU <10−56 1.22 G 0.002 0.22

Mountain-Car OU <10−10 0.47 OU <10−19 0.66 OU <10−5 0.34 OU <10−21 0.71
Reacher G <10−30 0.87 G <10−26 0.80 OU <10−40 1.01 OU <10−29 0.84
Walker2D - 0.039 - G 0.010 0.18 OU <10−9 0.46 - 0.28 -

Table 2: Per environment the noise type is important: Comparison of Evaluation Returns P , Exploratory Returns R,
Exploratory-XUrel X, and Evaluation-XUrel E. Values are standardized to control for and aggregate over algorithm,
and noise scale. The results are compared using a Welch-t-test. Significantly better noise type for each environment
and measure is reported (p < 0.01), as well as two-tailed p-values p(·) and Cohen-d effect size d(·). While overall
neither of the two noise types leads to significantly better performance P (see Figure 5), per environment noise type
difference is significant.

is more efficient in covering more state-space but also in moving the agent away from high-reward trajecto-
ries. Thus exploratory returns R are larger for Gaussian noise and conversely smaller for Ornstein-Uhlenbeck
noise, see Figure 5 (b). The learning process is able to offset some differences in the data as shown in Figure 5
(a): the significant differences in exploratory returns R and exploratory state-space coverage X do not trans-
late into significantly-different performance across environments. When viewed on a per-environment basis,
Table 2 (column P) shows that, the preferable noise type depends on the environment: Ornstein-Uhlenbeck
is preferable for Hopper and Mountain-Car, but Gaussian for the Reacher environment. Table 2 (column
X) shows that Ornstein-Uhlenbeck leads to larger state-space coverage, as before, and Gaussian noise leads
to larger exploratory returns (column R). The only exceptions to this are the Hopper environment, where
the Ornstein-Uhlenbeck is more likely to topple the agent and the Mountain-Car environment, where the
returns are very closely related to increasing the state-space coverage and thus exhibits an improvement of
R by Ornstein-Uhlenbeck noise.

These results show that the noise type is important and significantly impacts the performance for some
environments. Neither of the two noise types leads to better performance, evaluation return P , in general.
However Ornstein-Uhlenbeck generally increases state-space coverage. This is likely due to the effect, that
in many cases the environment acts as an integrator over the actions: in many environments the action
constitutes some type of velocity or force control, which by stepping forward, and thus integrating forward
in time, amounts to changes in position, or respectively changes in velocity.

12

Published in Transactions on Machine Learning Research (11/2022)

0.
1

0.
5

0.
9

1.
3

1.
7

σ

−4

−2

0

2

4

P
(E

va
l-R

et
ur

ns
)

(a)

ρ(P, σ): -0.31

0.
1

0.
5

0.
9

1.
3

1.
7

σ

−2

0

2

R
(E

xp
l.-

R
et

ur
ns

)

(b)

ρ(R, σ): -0.55

0.
1

0.
5

0.
9

1.
3

1.
7

σ

−2

0

2

X
(E

xp
l.-

X
U

re
l)

(c)

ρ(X,σ): 0.56

0.
1

0.
5

0.
9

1.
3

1.
7

σ

−2

0

2

E
(E

va
l.-

X
U

re
l)

(d)

ρ(E, σ): 0.05

Figure 6: Across environments larger noise scales σ are effective in increasing state-space coverage (c), but reduce
exploratory returns (b). Measures (P , X, R, E) are standardized to control for and aggregate over algorithm,
environment and noise type. (a) Evaluation Performance P is negatively correlated with action noise scale (ρ =
−0.31). (b) Larger noise scales correlate with smaller exploratory returns R. (c) Increasing the noise scale σ increases
exploratory state space coverage X. (d) State-space coverage of evaluation rollouts E: the learned trajectories appear
unaffected by larger noise scale.

Environment ρ(P,R) ρ(P,X) ρ(P, σscale) ρ(R,X) ρ(R, σscale) ρ(X,σscale)
All 0.57 -0.03 -0.31 -0.30 -0.55 0.56
Half-Cheetah 0.22 -0.28 -0.35 -0.64 -0.74 0.75
Hopper 0.69 0.15 -0.87 0.27 -0.74 -0.17
Inverted-Pendulum-Swingup -0.15 0.23 0.27 -0.88 -0.83 0.77
Mountain-Car 0.94 0.87 0.58 0.76 0.37 0.75
Reacher 0.84 -0.88 -0.56 -0.96 -0.84 0.69
Walker2D 0.76 -0.44 -0.81 -0.52 -0.82 0.63

Table 3: Data quality, measured by exploratory returns R, does not completely determine performance, measured
by evaluation returns P . ρ denotes Spearman correlation coefficients. Generally R is positively, but surprisingly not
always strongly, correlated with P . For some environments, exploratory state-space coverage X is beneficial, while
generally it is associated with decreased evaluation performance P . Across environments and noise types, increasing
the noise scale increases exploratory state-space coverage X but reduces exploratory returns R.

4.2 (Q2) Which action noise scale to use?

To analyze the impact of action noise scale, we look at the constant (β = 1) case, and control for the impact
of the factors algorithm, environment and noise type: by grouping the results according to these factors and
standardizing the results. Then results for the same noise scale are combined.

An interesting observation shown in Figure 6 (c) is that state-space coverage of the exploratory policy X
correlates positively with action noise scale σ (ρ Spearman correlation coefficients). The takeaway from this
is that instead of changing the noise type, one might increase state-space coverage by increasing σ. This
however leads to a reduction in the exploratory returns R, see Figure 6 (c), (ρ(R, σ) = −0.55). Subsequently,
larger noise scales σ are associated with decreased learned performance, i.e. smaller evaluation returns P ,
Figure 6 (a), when viewed across environments. Note that for very small noises (σ = 0.1) the variance of
the results P becomes very large. It appears that, in many cases, less noise is actually better, but too little
noise often does not work well. A good default for σ appears to be > 0.1 but < 0.9. The scale σ does
not appear to have a strong effect on the evaluation state-space coverage E, Figure 6 (d). When viewed
separately for each environment (Table 3), the association between X and σ is consistent. The only exception
is the Hopper task, where a large noise is more likely to topple the agent, making it fail earlier, thereby
reducing state-space coverage. The association between ρ(R, σ) is consistently negative, with the exception
of the Mountain-Car where more state-space coverage directly translates to higher returns, because the

13

Published in Transactions on Machine Learning Research (11/2022)

−2

0

2

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Half-Cheetah

−2

0

2

Hopper

−2

0

2

Inverted-Pendulum-Swingup

−2

0

2

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Mountain-Car

−2

0

2

Reacher

−2

0

2

Walker2D

Schedulers
Constant
Linear
Logistic

Figure 7: In the majority of cases action noise schedulers improve performance. The figure shows the comparison
of the learned policy performance, measured by evaluation returns P , for each environment and scheduler. Data is
standardized to control for influence of algorithm, environment, noise scale σ and noise type. In the majority of cases
the linear and logistic schedulers perform better than or comparably to the constant scheduler.

var(P) P
Scheduler < Constant < Linear < Logistic > Constant > Linear > Logistic

Constant 0 0 0 0 1 1
Linear 4 0 1 4 0 2
Logistic 4 1 0 4 1 0

Table 4: In the majority of cases, using a scheduler reduces variance of the performance (evaluation returns) var(P),
and improves expected performance P . The evaluation returns P are standardized to control for the influence of
algorithm, noise scale σ and noise type. Levene’s tests are used to assess difference in variance var(P) and a multiple-
comparison Games-Howell test indicates superior performance P . The table shows the number of environments on
which each scheduler (row) is significantly better than the other schedulers (column). See Table H.1 for full per-
environment results.

environment is underactuated and energy needs to be injected into the system. Offline-RL findings indicate
that it is easier to learn from expert data than from data of mixed-quality (Fu et al., 2020). As such, we
would expect a very strong correlation between exploratory returns R as a measure of data quality and
evaluation returns P as a measure of learned performance. Indeed, ρ(P,R) shows that overall exploratory
returns R and evaluation returns P are mostly positively correlated. However, the correlation is not always
very strong and can even be negative. This is interesting, because this means that exploratory returns are
not the only determining factor for learned performance. For example, in the Inverted-Pendulum-Swingup,
ρ(P,R) is slightly negative while ρ(P,X) is positive. The results indicate that, the noise scale σ has to be
chosen to achieve a trade-off between either increasing state-space coverage X or returns R as required for
each specific environment.

4.3 (Q3) Should we scale down the noise over the training process?

The previous sections indicated that there is no unique solution for the best noise type and that this choice is
dependent on the environment. The analysis of the noise scale showed an overall preference for smaller noise
scales, but also showed that, in contrast, some environments require more noise to be solved successfully. In
this section we analyze schedulers that reduce the influence of action noise (β) over the training progress.

Figure 7 shows the performance for each environment and each scheduler. The data is normalized by environ-
ment and algorithm before aggregation. The general tendency observed across environments is that, when
the environment reacts negatively to larger action noise scale (Half-Cheetah, Hopper, Reacher, Walker2D;
as shown in Table 3), reducing the noise impact β over time consistently improves performance. The re-

14

Published in Transactions on Machine Learning Research (11/2022)

Spearman Correlation η2 Effect Size
Envname ρ(P,X) ρ(P, σ) ρ(P,R) η2

Scheduler η2
Type η2

σ

All -0.503 -0.120 0.770 0.005 0.000 0.084
Mountain-Car 0.662 0.442 0.959 0.032 0.060 0.261
Inverted-Pendulum-Swingup -0.003 0.123 0.163 0.005 0.009 0.115
Reacher -0.872 -0.382 0.803 0.048 0.181 0.181
Hopper -0.349 -0.599 0.651 0.045 0.022 0.660
Walker2D -0.658 -0.494 0.677 0.014 0.017 0.607
Half-Cheetah -0.581 -0.259 0.745 0.007 0.002 0.148

Table 5: Spearman correlation coefficients and ANOVA η2 effect sizes on P for: scheduler, noise type and noise
scale σ. Action noise scale σ is associated with the largest effect size for evaluation returns P . Results are shown
across all environments (standardized and controlled for environment and algorithm, first row), and per environment
(standardized and controlled for algorithm). Generally, exploratory returns R and evaluation performance P are
positively associated, while generally larger state-space coverage X appears to impact performance P negatively.

verse effect appears to be less important: for environments benefiting from larger noise scales, the constant
scheduler does not consistently outperform the linear and logistic schedulers.

Table 4 shows summarized results indicating the number of environments where scheduler (1), indicated by
row, is better than scheduler (2), indicated by column, in terms of variance var(P) and mean performance
P . See Table H.1 for full results on the pairwise comparisons. Performance differences are assessed by a
Games-Howell multiple comparisons test, while variance is compared using Levene’s test.

The tests underlying Table 4 show that the differences observed in Figure 7 are indeed significant. Further-
more, the schedulers (linear, logistic) reduce variance var(P) compared to the constant case in four out of six
cases. Keeping the impact β constant has no beneficial effect on variance in any environment. This indicates
that using a scheduler to reduce action noise impact increases consistency in terms of learned performance.

4.4 (Q4) How important are the different parameters?

In the previous sections we looked at each noise configuration parameter independently, first for the constant
β case (Q1, Q2), secondly for scheduled reduction of β (Q3). However, the question remains whether all the
parameters are equally important. We standardize results to control for environment and algorithm, and
compare across all noise types, noise scales σ and all three schedulers.

Table 5 shows Spearman correlation coefficients ρ(P,X), ρ(P, σ), ρ(P,R) across all three schedulers (compare
to Table 3 which showed correlations for the constant β = 1 case only). Across environments the schedulers
reduce correlation ρ(P, σ) between learned performance (measured by evaluation returns P) and noise scale
σ: from ρ(P, σ) = −0.31 in the constant scheduler case to ρ(P, σ) = −0.12 when compared across all
three types of schedulers. This is a further indication that using a scheduler increases robustness to σ.
The correlations between ρ(P,R) are increased to 0.77 vs. 0.57, presumably because reducing β makes the
exploratory policy more on-policy and thus P and R become more similar. Interestingly, the schedulers also
increase the negative correlation ρ(P,X) between the performance and the exploratory state-space coverage,
from −0.03 in the constant case to −0.50 when viewed across all schedulers. This could be driven by the
environments reacting positively to reduced state-space coverage, which under the schedulers achieve more
runs high in R but low in X, and thus a stronger negative correlation.

The three columns on the right in Table 5 show η2 effect sizes of a three-way ANOVA on the evaluation
returns P : η2

Scheduler, η2
Type, η2

σ. The η2 effect sizes measure the percentage-of-total variance explained by
each factor. Only in the Reacher environment, action noise type is very important. Surprisingly, in all cases
the most important factor is action noise scale, while the requirement for a large or small action noise scale
varies for each environment.

15

Published in Transactions on Machine Learning Research (11/2022)

Envname Scheduler σ Type Horizon Recommendation
All lin 0.1/0.5 OU
Mountain-Car log 1.7 OU L large σ, OU, sched
Inverted-Pendulum-Swingup con 0.5 Gauss L large σ
Reacher lin 0.1 Gauss - small σ, Gauss, sched
Hopper lin/log 0.1 OU S small σ, sched, OU
Walker2D lin 0.1 OU S small σ, OU, sched
Half-Cheetah lin/log 0.5 Gauss/OU S small σ

Table 6: Comparison of best-ranked noise type, scale and scheduler across all environments and for each environment
individually. Scheduler, type and scale are investigated separately by standardizing the values to control for environ-
ment, algorithm and the other two respective factors. Horizon indicates whether we expect a long (L) or short (S)
effective planning horizon. Recommendation indicates action noise configuration choices in order of importance as
per Table 5, for options with effect sizes η2 > 0.01 (small effect).

5 Discussion & Recommendations

The experiments conducted in this paper showed that the action noise does, depending on the environment,
have a significant impact on the evaluation performance of the learned policy (Q1). Which action noise
type is best unfortunately depends on the environment. For the action noise scale (Q2), our results have
shown that generally a larger noise scale increases state-space coverage. But since for many environments,
learning performance is negatively associated with larger state-space coverage, a large noise scale does not
generally have a preferable impact. Similarly, very small scales also appear not to have a preferable impact,
as they appear to increase variance of the evaluation performance (Figure 6). However, overall, reducing the
action noise scaling factor over time (Q3) mostly has positive effects. Finally we also looked at all factors
concurrently (Q4) and found that for most environments noise scale is the most important factor.

It is difficult to draw general conclusions from a limited set of environments and extending the evaluation
is limited by the prohibitively large computational costs. However, we would like to provide heuristics
derived from our observations that may guide the search for the right action noise. Table 6 shows the best-
ranking scheduler, scale and type configurations for each, and across environments. The ranking is based on
the count of significantly better comparisons (pairwise Games-Howell test on difference, p ≤ 0.01, positive
test statistic). For each of scheduler, type and scale we standardize to control for the other two factors.
Intuitively, the locomotion environments require only a short effective planning horizon: the reward in the
environments is based on the distance moved and is relevant as soon as the locomotion pattern is repeated;
for example a 30-step horizon is enough for similar locomotion benchmarks (Pinneri et al., 2020). In contrast,
the Mountain-Car environment only provides informative reward at the end of a successful episode and thus,
the planning horizon needs to be long enough to span a complete successful trajectory (e.g. closer to 100
steps). Similarly, the Inverted-Pendulum-Swingup uses a shaped reward that does not account for spurious
local optima: to swing up and increase system energy, the distance to the goal has to be increased again.
These observations are indicated in the column Horizon (Table 6). Finally, the recommendation column
interprets the best-ranked results under the observed importance (Q4) reported in Table 5. Given these
results, we provide the following intuitions as a starting point for optimizing the action noise parameters
(read as: to address this ▷ do that):

Environment is under-actuated ▷ increase state-space coverage We found that in the case of the
Mountain-Car and the Inverted-Pendulum-Swingup, both of which are underactuated tasks and require a
swinging up phase, larger state-space coverages or larger action noise scales appear beneficial (Table 3 and
Table 5). Intuitively, under-actuation implies harder-to-reach state-space areas.
Reward shape is misleading ▷ increase state-space coverage Actions are penalized in the Mountain
Car by an action-energy penalty, which means not performing any action forms a local optimum. In the
case of the Inverted-Pendulum-Swingup, the distance to the goal forms a shaped reward. However, when
swinging up, increasing the distance to the goal is necessary. Thus, the shaped reward can be misleading:

16

Published in Transactions on Machine Learning Research (11/2022)

following the reward gradient to greedily leads the agent to a spurious local optimum. Optimizing for a
spurious local optimum implies not reaching areas of the state space where the actual goal would be found,
thus the state-space coverage needs to be increased to find these areas.
Horizon is short ▷ reduce state-space coverage The environments Hopper, Reacher, Walker2D model
locomotion tasks with repetitive movement sequences. In the Mountain-Car, positive reward is only achieved
at the successful end of the episode, where as in the locomotion tasks positive reward is received after each
successful cycle of the locomotion pattern. Thus effectively the required planning horizon is shorter compared
to tasks such as the Mountain-Car. Consistently with the previous point, if the effective horizon is shorter,
the rewards are shaped more efficiently, we see negative correlations with the state-space coverage and the
noise scale: if the planning horizon is shorter, the reward can be optimized more greedily, meaning the
state-space coverage can be more focused and thus smaller.
Need more state-space coverage ▷ increase scale Our analysis showed that, to increase state-space
coverage, one way is to increase the scale of the action noise. This leads to a higher probability of taking
larger actions. In continuous control domains, actions are typically related to position-, velocity- or torque-
control. In position-control, larger actions are directly related to more extreme positions in the state space.
In velocity control, larger actions lead to moving away from the initial state more quickly. In torque control,
larger torques lead to more energy in the system and larger velocities. Currently most policies in D-RL
are either uni-modal stochastic policies, or deterministic policies. In both cases, larger action noise leads
to a broader selection of actions and, by the aforementioned mechanism, to a broader state-space coverage.
Note that while this is the general effect we observed, it is also possible that a too large action can have a
detrimental effect, e.g. the Hopper falling, and the premature end of the episode will lead to a reduction of
the state-space coverage.
Need more state-space coverage ▷ try Ornstein-Uhlenbeck Depending on the environment dynam-
ics, correlated noise (Ornstein-Uhlenbeck) can increase the state-space coverage: for example, if the environ-
ment shows integrative behavior over the actions, temporally uncorrelated noise (Gaussian) leads to more
actions that “undo” previous progress and thus less coverage. Thus correlated Ornstein-Uhlenbeck noise
helps to increase state-space coverage.
Need less state-space coverage or on-policy data ▷ reduce scale | use scheduler to decrease β
If the policy is already sufficiently good, or the reward is shaped well enough, exploration should focus
around good trajectories. This can be achieved using a small noise scale σ. However, if the environment
requires more exploration to find a reward signal, it makes to sense to use a larger action noise scale σ in
the beginning while gradually reducing the impact of the noise (Q3). The collected data then gradually
becomes “more on-policy”.
In general ▷ use a scheduler We found that using schedulers to reduce the impact of action noise over
time, decreases variance of the performance, and thus makes the learning more robust, while also generally
increasing the evaluation performance overall. Presumably because, once a trajectory to the goal is found,
more fine grained exploration around the trajectory is better able to improve performance.

6 Conclusion

In this paper we present an extensive empirical study on the impact of action noise configurations. We
compared the two most prominent action noise types: Gaussian and Ornstein-Uhlenbeck, different scale
parameters (0.1, 0.5, 0.9, 1.3, 1.7), proposed a scheduled reduction of the impact β of the action noise over the
training progress and proposed the state-space coverage measure XUrel to assess the achieved exploration in
terms of state-space coverage. We compared DDPG, TD3, SAC, and its deterministic variant detSAC on the
benchmarks Mountain-Car, Inverted-Pendulum-Swingup, Reacher, Hopper, Walker2D, and Half-Cheetah.

We found that (Q1) neither of the two noise types (Gaussian, Ornstein-Uhlenbeck) is generally superior
across environments, but that the impact of noise type on learned performance can be significant when
viewed separately for each environment: the noise type needs to be chosen to fit the environment. We found
that (Q2) increasing action noise scale, across environments, increases state-space coverage but tends to
reduce learned performance. Again, whether state-space coverage and performance are positively correlated,

17

Published in Transactions on Machine Learning Research (11/2022)

and thus a larger scale is desired, depends on the environment. The positive or negative correlation should
guide the selection of action noise. Reducing the impact (β) of action noise over training time (Q3), improves
performance in the majority of cases and decreases variance in performance and thus increases robustness to
the action noise choice. Surprisingly, we found (Q4) that the most important factor appears to be the action
noise scale σ: if less state-space coverage is required, the scale can be reduced. More state-space coverage
can be achieved by increasing the action noise scale. This approach is successful even for Gaussian noise
on the Mountain-Car. We synthesized our results into a set of heuristics on how to choose the action noise
based on the properties of the environment. Finally we recommend a scheduled reduction of the action noise
impact factor β of over the training progress to improve robustness to the action noise configuration.

Acknowledgments

We would like to thank Bart Keulen, David Peer, Onno Eberhard, Sebastian Blaes and the TMLR Reviewers
for the useful discussion.

References
Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A Survey of Exploration

Methods in Reinforcement Learning. arXiv:2109.00157 [cs], September 2021.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Christopher M. Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

C. Alan Boneau. The effects of violations of assumptions underlying the t test. Psychological Bulletin, 57:
49–64, 1960.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. arXiv:1606.01540 [cs], June 2016.

Morton B. Brown and Alan B. Forsythe. Robust tests for the equality of variances. Journal of the American
Statistical Association, 69(346):364–367, 1974.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network distil-
lation. In International Conference on Learning Representations, 2019.

Itai Caspi, Gal Leibovich, Shadi Endrawis, and Gal Novik. Reinforcement Learning Coach. Zenodo, Decem-
ber 2017. URL https://doi.org/10.5281/zenodo.1134899.

Po-Wei Chou, Daniel Maturana, and Sebastian A. Scherer. Improving stochastic policy gradients in contin-
uous control with deep reinforcement learning using the beta distribution. In International Conference on
Machine Learning, volume 70, pp. 834–843, 2017.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling exploration and exploitation
in deep reinforcement learning algorithms. In International Conference on Machine Learning, volume 80,
pp. 1038–1047, 2018.

Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation for games, robotics and
machine learning. 2016–2021. URL http://pybullet.org.

Benjamin Ellenberger. PyBullet gymperium. GitHub repository, 2018. URL https://github.com/benelot/
pybullet-gym.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. arXiv:2004.07219, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in Actor-Critic
Methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, October 2018.

18

https://doi.org/10.5281/zenodo.1134899
http://pybullet.org
https://github.com/benelot/pybullet-gym
https://github.com/benelot/pybullet-gym

Published in Transactions on Machine Learning Research (11/2022)

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. ChainerRL: A Deep Rein-
forcement Learning Library. Journal of Machine Learning Research, 22(77):1–14, 2021. ISSN 1533-7928.

Paul A. Games and John F. Howell. Pairwise Multiple Comparison Procedures with Unequal N’s and/or
Variances: A Monte Carlo Study. Journal of Educational Statistics, 1(2):113–125, 1976.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Ku-
mar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and
Applications. arXiv:1812.05905 [cs, stat], January 2019.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore, Prafulla Dhariwal, Christo-
pher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor,
and Yuhuai Wu. Stable Baselines. GitHub repository, 2018. URL https://github.com/hill-a/
stable-baselines.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Nor-
man, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov,
Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang,
Bilal Piot, and Nando de Freitas. Acme: A Research Framework for Distributed Reinforcement Learning.
arXiv:2006.00979 [cs], June 2020.

Jakob Hollenstein, Matteo Saveriano, Auddy Sayantan, Erwan Renaudo, and Justus Piater. How does the
type of exploration-noise affect returns and exploration on Reinforcement Learning benchmarks? In
Austrian Robotics Workshop, pp. 22–26, 2021.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee. Diversity-
driven exploration strategy for deep reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 10489–10500, 2018.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python, 2001. URL
http://www.scipy.org.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic Manipulation. arXiv:1806.10293, 2018.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning:
A survey. Inf. Fusion, 85:1–22, 2022. doi: 10.1016/j.inffus.2022.03.003.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement learning. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 3059–3068. PMLR, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proc. 4th Int. Conf.
Learning Representations, (ICLR), 2016.

Thomas Lumley, Paula Diehr, Scott Emerson, and Lu Chen. The importance of the normality assumption
in large public health data sets. Annual review of public health, 23(1):151–169, 2002.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning. arXiv:1803.07055, 2018.

Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R. Devon Hjelm. Leveraging exploration
in off-policy algorithms via normalizing flows. In Conference on Robot Learning, pp. 430–444, 2020.

19

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://www.scipy.org

Published in Transactions on Machine Learning Research (11/2022)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Andrew William Moore. Efficient memory-based learning for robot control. Technical Report UCAM-
CL-TR-209, University of Cambridge, Computer Laboratory, 1990. URL https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-209.pdf.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. A Policy Gradient Method for Task-Agnostic Explo-
ration. arXiv:2007.04640, 2020.

Hesan Nobakht and Yong Liu. Action space noise optimization as exploration in deterministic policy gradient
for locomotion tasks. Applied Intelligence, 52(12):14218–14232, 2022.

Morteza Noshad, Kevin R. Moon, Salimeh Yasaei Sekeh, and Alfred O. Hero. Direct estimation of information
divergence using nearest neighbor ratios. In IEEE International Symposium on Information Theory, pp.
903–907, 2017.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal Rolínek,
and Georg Martius. Sample-efficient cross-entropy method for real-time planning. In Conference on Robot
Learning, volume 155, pp. 1049–1065, 2020.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim
Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration. In International
Conference on Learning Representations, 2018.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. In International Conference on Machine Learning, volume
119, pp. 7783–7792, 2020.

Antonin Raffin. RL baselines3 zoo. GitHub repository, 2020. URL https://araffin.github.io/project/
rl-baselines-zoo/.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021a.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning. In
Conference on Robot Learning, volume 164, pp. 1634–1644, 2021b.

Philip H. Ramsey, Kyrstle Barrera, Pri Hachimine-Semprebom, and Chang-Chia Liu. Pairwise comparisons
of means under realistic nonnormality, unequal variances, outliers and equal sample sizes. Journal of
Statistical Computation and Simulation, 81(2):125–135, 2011.

Gary C. Ramseyer and Tse-Kia Tcheng. The Robustness of the Studentized Range Statistic to Violations
of the Normality and Homogeneity of Variance Assumptions. American Educational Research Journal, 10
(3):235–240, 1973.

Nirnai Rao, Elie Aljalbout, Axel Sauer, and Sami Haddadin. How to Make Deep RL Work in Practice.
arXiv:2010.13083, 2020.

Derek C. Sauder and Christine E. DeMars. An Updated Recommendation for Multiple Comparisons. Ad-
vances in Methods and Practices in Psychological Science, 2(1):26–44, 2019.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy
Optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-
mization Algorithms. arXiv:1707.06347, 2017.

20

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf
https://araffin.github.io/project/rl-baselines-zoo/
https://araffin.github.io/project/rl-baselines-zoo/

Published in Transactions on Machine Learning Research (11/2022)

Takuma Seno and Michita Imai. D3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin A. Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? Solving continuous control with bernoulli
policies. In Advances in Neural Information Processing Systems, pp. 27209–27221, 2021.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Determin-
istic policy gradient algorithms. In International Conference on Machine Learning, pp. 387–395, 2014.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In Advances in Neural Information Processing
Systems, 1999.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip
DeTurck, and Pieter Abbeel. #Exploration: A Study of Count-Based Exploration for Deep Reinforcement
Learning. In Advances in Neural Information Processing Systems, pp. 2753–2762. 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. DeepMind Control
Suite. arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

George E. Uhlenbeck and Leonard S. Ornstein. On the theory of the Brownian motion. Physical review, 36
(5):823, 1930.

Raphael Vallat. Pingouin: Statistics in Python. Journal of Open Source Software, 3(31):1026, 2018.

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving Exploration in Soft-Actor-Critic
with Normalizing Flows Policies. arXiv:1906.02771, 2019.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng, Peng Liu, and Zhen
Wang. Exploration in Deep Reinforcement Learning: A Comprehensive Survey. arXiv:2109.06668 [cs],
July 2022. doi: 10.48550/arXiv.2109.06668.

Zeping Zhan, Batu Aytemiz, and Adam M Smith. Taking the scenic route: Automatic exploration for
videogames. In CEUR Workshop Proceedings, pp. 26–34, 2019.

21

Published in Transactions on Machine Learning Research (11/2022) Appendix

Appendices

A A motivating example

The action is generated as ãt ∼ πθ(st), at = ãt + εat , where εat denotes the action noise. We calibrate the
noise scale to achieve similar returns for both noise types. To calibrate the action noise scale, we assume a
constant-zero-action policy upon which the action noise is added and effectively use at = εat

as the action
sequence. We find that a scale of about 0.6 for Gaussian action noise and a scale of about 0.5 for Ornstein-
Uhlenbeck noise lead to a mean return of about −30. This is shown in Table 1. A successful solution
to the Mountain-Car environment yields a positive return 0 <

∑
rt < 100. We then use these two noise

configurations and perform learning with DDPG, SAC and TD3. The resulting learning curves are shown
in Figure 1 and very clearly depict the huge impact the noise configuration has: with similar returns of the
noise-only policies, we achieve substantially different learning results, either leading to failure or success on
the task.

To achieve a swing-up, the actions must not change direction too rapidly but rather need to change direction
with the right frequency. Ornstein-Uhlenbeck noise is temporally correlated and thus helps solving the
environment successfully with a smaller scale σ. In this environment, the algorithms tend to converge either
to the successful solution of the environment by swinging up, or to a passive zero-action solution which incurs
no penalty.

B Boundary Artifacts
Figure B.1: k-nearest-neighbor density estimators suffer from boundary artifacts
when estimating densities with bounded support. The density around a query
point is estimated by the volume required to include the k nearest points. Top
right, high density region: the volume to include k-points is smaller when the
density is high. bottem left, low density: in lower densities a larger volume is
required to include k points. This also illustrates the boundary artifacts: when
querying the density close to the support boundary, part of the query volume
is outside the support. Thus the volume required to contain k points is over-
estimated. This problem is amplified in higher dimensional spaces as the boundary
artifacts occur as soon as any single dimension of the sphere protrudes outside the
support.

C Action Noise in SAC

SAC as defined by (Haarnoja et al., 2019) does not use action noise for exploration. Instead, actions
are sampled from a stochastic Gaussian policy However, since SAC is an off-policy algorithm, additive
action noise can additionally be used. The SAC algorithm uses a target entropy parameter. The entropy
coefficient of SAC is trained such that the average entropy of the Gaussian policy matches this target. In
the implementation we use (Raffin et al., 2021a), the entropy target can be automatically chosen based on
the size of the action space. In the Mountain-Car this amounts to a target entropy of 1. The entropy of a
Gaussian is defined as HN (σ) = ln

(
σ
√

2π e
)

. A σ = 1.7 approximately translates to an entropy target of
1.95.

In SAC the value function V contains an additional entropy bonus term: V (st) = Eat∼π
[
Q(st, at)

]
+

αH(π(·|st)). This term is weighted by the entropy coefficient α. Additionally, the SAC policy is defined
as a softmax operation over the Q function: πsoftmax(at|st) = exp(1

αQ(st,at))
Z(st) where Z is a normalizing term,

chosen s.t.
∫
πsoftmax(a|st) da = 1. Here, the entropy coefficient α plays a double role, in both the entropy

bonus and the softness of the softmax operation. Thus, increasing the scale of the Gaussian has a direct
influence on the smoothness of the softmax and can thus change the learning performance. Using action
noise is independent of the softmax and can be tuned independently. Furthermore, action noise allows for
the use of a correlated noise process, which in the case of the Mountain-Car has a large beneficial influence.
This explains why using action noise can be beneficial even for stochastic policies.

22

Published in Transactions on Machine Learning Research (11/2022) Appendix

P X R E
Environment Algorithm Type Scale Entropy Target

Mountain-Car SAC

- 1.95 -34 -2.85 -34 -2.86
auto -7 -4.28 -7 -4.29

Gauss

0.1 auto -5 -4.15 -6 -4.22
0.5 auto 3 -2.94 -18 -3.93
0.9 auto 17 -2.27 -18 -3.55
1.3 auto 23 -2.06 -21 -3.38
1.7 auto 24 -1.97 -25 -3.34

OU

0.1 auto -1 -3.94 -3 -4.11
0.5 auto 51 -1.80 37 -2.62
0.9 auto 68 -1.49 53 -2.22
1.3 auto 72 -1.42 57 -2.21
1.7 auto 73 -1.39 57 -2.14

Table C.1: Comparison of SAC with Action noise against SAC relying on the stochastic policy for exploration.
Increasing the entropy target increases the state space coverage.

D Deterministic SAC

Algorithm D.1 (Deterministic) Soft Actor-Critic
Initialize parameter vectors ψ, ψ̄, θ, ϕ.
for each iteration do

for each environment step do
µt, σt = fϕ(st)
εt ∼ A ▷ A . . . action noise process
at = µt + εt ▷ DetSAC
πϕ(·|st) = N (·|µt, σt) ▷ SAC
a′t ∼ πϕ(·|st)
at = a′t + εt
st+1 ∼ p(st+1|st, at)
D ← D ∪

{
(st, at, r(st, at), st+1)

}
end for
for each gradient step do

. . . original SAC update (Haarnoja et al., 2019)
end for

end for

23

Published in Transactions on Machine Learning Research (11/2022) Appendix

E Benchmark Environments

Environment Illustration dim(O)dim(A)Reward

Mountain-Car 2 1 1(st, sG) −|at|22

Inverted-
Pendulum-Swingup 5 1 |φ(st)− φG|1

Reacher 9 2 ∇−|st − sG|2 −|φ(st)|22 − 1(φ(st), φlimit) −|at|1

Hopper 15 3 ∇−|st − sG|1 −|φ(st)|22 − 1(φ(st), φlimit) −|at|1

Walker2D 22 6 ∇−|st − sG|1 −|φ(st)|22 − 1(φ(st), φlimit) −|at|1

Half-Cheetah 26 6 ∇−|st − sG|1 −|φ(st)|22 − 1(φ(st), φlimit) −|at|1

Table E.1: Benchmarks environments used in our evaluation in increasing order of complexity. |O| denotes Observa-
tion space dimensions. |A| denotes Action space dimensions. Explanation of Reward components: 1(b, c) indicator
function (sparse reward or penalty) of b w.r.t. to the set c; |b|n n-norm of b; φ(st) angular component of state;
∇−b finite-difference reduction of b between time-steps; φmax joint limit; sG goal state; |φ(st)|22 denotes an angular-
power-penalty. Factors in the reward are omitted. Distances e.g. |st − sG|n may refer to a subspace of the vector st.
Section 3.3

24

Published in Transactions on Machine Learning Research (11/2022) Appendix

F Statistical Methods

Section Where Statistic n/N non-Normal ̸= Variance
Section 4.1 Figure 5 Welch t-Test 2400/4800 CLT Robust

Table 2 Welch t-Test 400/800 CLT Robust
Section G Table G.1 Mann-Whitney-U Test 400/800 Robust Robust
Section 4.3 Table 4 Levene’s Test 800/2400 Robust -

Table 4 Games-Howell-Test 800/2400 α · 0.2 Robust
Section 5 Table 6 (All) Scheduler Games-Howell-Test 4800/14400 α · 0.2 Robust
Section 5 Table 6 (All) Scale Games-Howell-Test 2880/14400 α · 0.2 Robust
Section 5 Table 6 (All) Type Games-Howell-Test 3600/14400 α · 0.2 Robust
Section 5 Table 6 (Env) Scheduler Games-Howell-Test 800/2400 α · 0.2 Robust
Section 5 Table 6 (Env) Scale Games-Howell-Test 480/2400 α · 0.2 Robust
Section 5 Table 6 (Env) Type Games-Howell-Test 1200/2400 α · 0.2 Robust

Table F.1: Summary of applied tests, per group sample size n and cumulative size across groups N , see Section F.1
about the α adjustment in the Games-Howell test. For large sample sizes the t-statistic approaches a normal dis-
tribution (CLT). Sample sizes of 30 (Boneau, 1960) are usually assumed to be large enough. (Lumley et al., 2002)
provide further evidence for the adequacy of our sample sizes.

F.1 Statistical Methods Details

We use statistical methods implemented in (Jones et al., 2001; Vallat, 2018) as well as our own implemen-
tations.

Welch t-test : does not assume equal variance. Reporting two-tailed p-value. Significant for one-tailed
when p

2 < α.

Games-Howell test Performing multiple comparisons with a t-test increases the risk of Type I errors.
To control for Type I errors, the Games-Howell test (Games & Howell, 1976), a multiple-comparison test
applicable to cases with heterogeneity of variance, should be used (Sauder & DeMars, 2019). Sample sizes
should be n ≥ 6 in each group.

The test statistic t is distributed according to Tukey’s studentized range q. (Games & Howell, 1976) describe
that the test has been found to be robust to non-normality by (Ramseyer & Tcheng, 1973), especially in the
case of equal sample sizes. This holds in our case. (Ramsey et al., 2011) have found the concurrent violation
of homogeneity of variance and non-normality can increase type-I errors. Their results indicate that an error
level of α = 0.05 can be achieved by applying a reduction of the significance level of α and find controlling for
this error by reducing the significance level to 0.38α. Further evidence for reducing the significance threshold
to 0.01 in order to achieve error rates < 0.05 is provided by (Ramseyer & Tcheng, 1973).

t = x̄i − x̄j
σ

(16)

σ =

√√√√(s2
i

ni
+
s2
j

nj

)
(17)

df =

(
s2

i

ni
+ s2

j

nj

)2

(
s2

i
ni

)2

ni−1 +

(
s2

j
nj

)2

nj−1

(18)

(19)

25

Published in Transactions on Machine Learning Research (11/2022) Appendix

The p-value is then calculated for k sample-groups as

qt·
√

2,k,df (20)

ANOVA We perform a balanced N-way ANOVA, i.e. with N independent factors, each with multiple levels
(categorical values). Since the study design is balanced this is equivalent to a type-I ANOVA in which the
order of terms does not matter (because the design is balanced).

Eta squared η2 The effect size eta squared η2 denotes the relative variance explained by a factor to the
total variance observed: η2 = SSC(x)

SSTotal

DF Sum of Squares F PR(>F)
C(y) 9.0 4167.583 478.576 0
C(x) 9.0 91.118 10.463 1.7e-15
C(y):C(x) 81.0 81.172 1.036 0.397
Residual 901.0 871.798
Total 5211.672

Table F.2: ANOVA example. The partial η2 for a factor is calculated as the sum of squares, variance explained by
that factor, divided by the sum of the variance explained plus the unexplained residual variance.

Effect sizes are interpreted as:

η2 ≥ 0.01 small effect (21)
η2 ≥ 0.06 medium effect (22)
η2 ≥ 0.14 large effect (23)

(24)

Levene’s Test assesses (un)equality of group variances.

zij =|yij − ỹj | (25)

F =N − p
p− 1

∑p
j=1 nj(z̃j − z̃)2∑p

j=1
∑nj

i=1(zij − z̃j)2 (26)

d1 =p− 1 (27)
d2 =N − p (28)

z̃j = 1
nj

nj∑
i=1

zij (29)

z̃ = 1
N

p∑
j=1

nj∑
i=1

zij (30)

where p is the number of groups, nj is the size of group j and N is the total number of observations. ỹj
is the median of group j, zij denotes sample i in group j. The F statistic follows the F-distribution with
degrees of freedom d1, d2.

This variant of Levene’s test, ỹj median instead of mean, is also called Brown-Forsythe test (Brown & Alan
B. Forsythe, 1974) and is more robust to non-normal distributions.

Cohen-d effect size : Cohen-d is illustrated in Figure F.1 and measures the distance of the means of two
sample groups normalized to the pooled variance:

26

Published in Transactions on Machine Learning Research (11/2022) Appendix

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)

98%

d

d = 2.00

A
B

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)

92%

d = 1.40

A
B

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)

79%

d = 0.80 Large

A
B

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)

69%

d = 0.50 Medium

A
B

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)
58%

d = 0.20 Small

A
B

−2 0 2 4
x

0.0

0.2

0.4

PD
F(

x)

50%

d = 0.00

A
B

Figure F.1: Illustration of Cohen-d effect size: the Cohen-d measures the standardized difference between the means
of two groups, equivalent to a z-score. Effect sizes d ≥ 0.2 are called small, d ≥ 0.5 medium, d ≥ 0.8 large effects.
Under equal-variance Gaussian assumption this can be interpreted as n-percent of group A below the mean of group
B. Illustrated as the shaded area.

Effect size = [Mean Group A]− [Mean Group B]
Pooled Std Deviation (31)

d = x̄1 − x̄2
s

(32)

s =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2 (33)

G (Q1) Which action noise type to use? – Mann-Whitney-U Test

Environment P pP dP R pR dR X pX dX E pE dE

Half-Cheetah - 0.08 - - 0.86 - OU 0.005 0.21 - 0.28 -
Hopper OU <10−5 0.27 G <10−4 0.29 G <10−10 0.41 - 0.69 -
Inverted-
Pendulum-Swingup - 0.040 - G <10−40 1.15 OU <10−47 1.22 - 0.32 -

Mountain-Car OU <10−10 0.47 OU <10−15 0.66 OU <10−11 0.34 OU <10−21 0.71
Reacher G <10−32 0.87 G <10−21 0.80 OU <10−35 1.01 OU <10−26 0.84
Walker2D OU <10−5 0.15 G 0.006 0.18 OU <10−13 0.46 G <10−6 0.08

Table G.1: Comparison of noise types as in Table 2, p-values of Mann-Whitney-U test are reported instead of the
Welch-t-test. Similar tendencies are shown.

27

Published in Transactions on Machine Learning Research (11/2022) Appendix

H Impact of Scheduler on Variance and Learned Performance

var(P) P
< Constant < Linear < Logistic > Constant > Linear > Logistic

Scheduler Envname

Constant

Half-Cheetah No No No No
Hopper No No No No
Inverted-Pendulum-Swingup No No No Yes p < 10−5

Mountain-Car No No Yes p < 10−6 No
Reacher No No No No
Walker2D No No No No

Linear

Half-Cheetah Yes p < 10−3 No Yes p < 10−6 No
Hopper Yes p < 10−6 No Yes p < 10−6 No
Inverted-Pendulum-Swingup No No No No
Mountain-Car No No No No
Reacher Yes p < 10−29 Yes p < 10−15 Yes p < 10−6 Yes p < 10−6

Walker2D Yes p < 10−4 No Yes p < 10−6 Yes p < 10−6

Logistic

Half-Cheetah Yes p < 10−4 No Yes p < 10−6 No
Hopper Yes p < 10−8 No Yes p < 10−6 No
Inverted-Pendulum-Swingup No No No No
Mountain-Car No Yes p = 0.002 Yes p < 10−5 Yes p < 10−6

Reacher Yes p < 10−4 No No No
Walker2D Yes p < 10−6 No Yes p < 10−4 No

Constant Sum 0 0 0 0 1 1
Linear Sum 4 0 1 4 0 2
Logistic Sum 4 1 0 4 1 0

Table H.1: In the majority of cases, using a scheduler reduces variance var(P) of the performance (evaluation returns),
and improves expected performance P . The rows shows whether “Scheduler” is significantly better than the scheduler
indicated in the columns var(P) and P . The evaluation returns P are standardized to control for the influence of
algorithm, noise scale σ and noise type. Levene’s test is used to assess difference in variance var(P) and a multiple-
comparison Games-Howell test indicates superior performance P .

I Performed experiments

This section lists the achieved final returns, calculated as the average of the evaluation returns of the last
5 out of our 100 training segments, for each noise setting, for the constant Table I.1, linear Table I.2, and
logistic Table I.1 schedulers.

Each noise configuration is repeated with 20 random seeds. Table I.4 lists the performance P for each noise
configuration as the mean across the 20 seeds.

Choosing a fixed set of 20 different seeds could introduce randomness artifacts, making one algorithm appear
to perform better than the other. To combat these biases, each run was performed from an independently,
randomly drawn seed. The seeds are sampled using os.urandom, which provides a string of random bytes
suitable for cryptographic use. This should be sufficient to ensure independence between seeds.

28

Published in Transactions on Machine Learning Research (11/2022) Appendix

Return
Scale 0.1 0.5 0.9 1.3 1.7 0.1 0.5 0.9 1.3 1.7
Type Gauss Gauss Gauss Gauss Gauss OU OU OU OU OU

Scheduler Environment Algorithm

Constant

Half-Cheetah

DDPG 179 269 392 417 341 165 214 279 293 289
DetSAC 1719 1741 857 587 590 1619 1578 1156 787 731
SAC 1702 1856 531 389 292 1906 1550 1139 766 680
TD3 1891 1651 1158 856 701 1582 1470 975 940 722

Hopper

DDPG 1113 541 348 344 276 1131 808 666 507 461
DetSAC 2170 1101 837 572 542 2159 1602 1345 966 836
SAC 2291 979 808 717 604 2298 1599 1330 992 875
TD3 2294 1833 1525 1370 1186 2258 1873 1539 1213 1164

Inverted-Pendulum-Swingup

DDPG 819 819 816 827 818 822 859 879 877 878
DetSAC 838 884 880 886 887 842 887 886 888 888
SAC 881 887 883 888 884 886 888 889 887 888
TD3 868 883 881 882 883 873 879 882 884 886

Mountain-Car

DDPG -0 52 84 67 74 -0 94 84 26 56
DetSAC 5 14 37 47 78 13 85 94 94 94
SAC 4 23 42 60 52 9 92 94 94 94
TD3 5 94 65 74 74 -0 94 74 74 94

Reacher

DDPG 17 18 18 18 17 16 15 14 13 13
DetSAC 19 19 19 19 19 18 18 17 16 15
SAC 18 18 17 16 16 18 17 16 15 13
TD3 17 16 15 15 14 17 16 15 15 14

Walker2D

DDPG 787 519 391 263 321 849 759 443 471 465
DetSAC 1814 1211 424 305 311 1616 1139 740 661 646
SAC 1883 1233 448 392 383 1710 1068 712 691 641
TD3 2001 1878 1618 1321 1228 1821 1870 1596 1353 1230

Table I.1: This table shows the final evaluation return (mean over last five percent of training) for each configuration
under the Constant regime. The mean across all 20 runs is reported.

Return
Scale 0.1 0.5 0.9 1.3 1.7 0.1 0.5 0.9 1.3 1.7
Type Gauss Gauss Gauss Gauss Gauss OU OU OU OU OU

Scheduler Environment Algorithm

Linear

Half-Cheetah

DDPG 158 155 154 150 142 176 142 138 127 124
DetSAC 1826 2538 1131 888 924 1547 1989 2062 1564 1657
SAC 1991 2471 1331 791 860 2249 2217 2062 1784 1735
TD3 1957 2366 2034 1658 1731 1976 2069 2168 1881 1339

Hopper

DDPG 1039 1071 883 864 790 965 937 999 964 871
DetSAC 2276 1923 1634 1540 1318 2308 1913 1702 1484 1297
SAC 2288 1840 905 814 789 2208 1899 1697 1579 1341
TD3 2057 2107 1688 1581 1610 2099 2051 1943 1818 1633

Inverted-Pendulum-Swingup

DDPG 836 830 832 838 835 823 817 829 830 750
DetSAC 867 882 885 878 882 778 887 887 888 888
SAC 884 883 879 881 888 879 888 886 888 887
TD3 866 857 836 845 830 850 859 866 868 857

Mountain-Car

DDPG -0 56 46 31 65 -0 67 55 26 45
DetSAC 13 -0 5 28 38 5 33 95 95 95
SAC -1 4 9 37 18 4 71 90 94 95
TD3 -0 -0 37 56 84 -0 79 74 74 74

Reacher

DDPG 16 16 16 16 16 16 16 16 16 15
DetSAC 18 19 20 19 20 19 18 17 17 17
SAC 18 18 18 18 18 18 18 17 17 17
TD3 17 18 19 19 19 17 17 17 16 17

Walker2D

DDPG 791 755 635 476 360 820 839 661 642 460
DetSAC 1602 1348 1048 970 894 1656 1276 1167 1014 876
SAC 1678 1630 845 637 652 1859 1334 1164 945 1028
TD3 1780 1660 1584 1254 1238 1820 1766 1765 1647 1622

Table I.2: This table shows the final evaluation return (mean over last five percent of training) for each configuration
under the Linear scheduler regime. The mean across all 20 runs is reported.

29

Published in Transactions on Machine Learning Research (11/2022) Appendix

Return
Scale 0.1 0.5 0.9 1.3 1.7 0.1 0.5 0.9 1.3 1.7
Type Gauss Gauss Gauss Gauss Gauss OU OU OU OU OU

Scheduler Environment Algorithm

Logistic

Half-Cheetah

DDPG 158 156 143 136 124 180 153 129 128 108
DetSAC 1639 2168 1923 1559 1208 1680 2100 1921 1719 1235
SAC 1995 2199 1984 1746 1413 2158 2217 1927 1613 1511
TD3 1694 2329 1864 1373 1363 2030 2047 1954 2002 1682

Hopper

DDPG 902 1181 1103 1246 1147 1104 1057 1059 1207 1153
DetSAC 2237 1824 1691 1533 1338 2280 1822 1622 1482 1314
SAC 2130 1888 1654 1485 1385 2239 1855 1704 1469 1257
TD3 2132 1922 1642 1796 1736 2037 2000 1786 1759 1694

Inverted-Pendulum-Swingup

DDPG 837 832 841 821 676 756 842 832 747 845
DetSAC 839 887 887 888 889 792 886 888 889 889
SAC 873 888 888 889 889 876 889 888 888 888
TD3 860 851 847 846 851 854 852 869 875 871

Mountain-Car

DDPG -0 70 74 36 45 -0 74 74 74 45
DetSAC 4 76 94 95 95 5 52 94 95 95
SAC 9 85 94 95 95 4 85 95 95 95
TD3 -0 5 52 94 94 -0 94 79 84 84

Reacher

DDPG 16 16 15 15 15 16 16 15 15 15
DetSAC 18 17 17 17 17 19 17 17 17 17
SAC 18 17 17 17 16 18 18 17 17 17
TD3 17 19 19 19 19 17 17 16 16 16

Walker2D

DDPG 905 792 659 426 341 792 885 676 457 324
DetSAC 1701 1371 986 891 789 1526 1201 923 914 767
SAC 1642 1274 1018 882 837 1676 1413 1148 850 805
TD3 1759 1622 1294 1196 879 1842 1693 1611 1607 1630

Table I.3: This table shows the final evaluation return (mean over last five percent of training) for each configuration
under the Logistic scheduler regime. The mean across all 20 runs is reported.

30

Published in Transactions on Machine Learning Research (11/2022) Appendix

P
Scale 0.1 0.5 0.9 1.3 1.7 0.1 0.5 0.9 1.3 1.7
Type Gauss Gauss Gauss Gauss Gauss OU OU OU OU OU

Scheduler Environment Algorithm

Constant

Half-Cheetah

DDPG 192 218 343 322 259 174 204 254 238 249
DetSAC 1148 1272 743 594 577 1026 1070 869 690 651
SAC 1109 1413 567 437 354 1158 1102 848 676 621
TD3 1284 1179 885 680 603 1053 1052 760 770 626

Hopper

DDPG 950 498 343 288 222 946 717 572 407 321
DetSAC 1957 1100 814 671 632 1927 1458 1205 903 817
SAC 1976 1108 813 746 690 2044 1464 1215 906 813
TD3 1911 1547 1199 1005 804 1961 1575 1178 963 776

Inverted-Pendulum-Swingup

DDPG 738 751 746 748 743 738 760 755 753 760
DetSAC 793 857 855 858 864 815 843 840 842 842
SAC 841 860 856 863 860 827 850 850 846 847
TD3 703 763 748 761 749 705 758 749 755 751

Mountain-Car

DDPG -0 44 62 59 65 -0 87 80 23 53
DetSAC 1 6 15 23 41 4 52 73 78 80
SAC -5 3 17 23 24 -1 51 68 72 73
TD3 2 82 58 70 70 -0 77 69 67 87

Reacher

DDPG 14 15 15 15 15 14 12 11 10 9
DetSAC 17 18 17 17 18 16 15 13 11 10
SAC 16 16 16 14 13 16 15 13 11 9
TD3 15 12 11 10 9 14 12 11 10 9

Walker2D

DDPG 484 367 280 243 239 498 455 327 336 346
DetSAC 1324 1034 448 301 293 1175 846 674 625 594
SAC 1413 1103 406 369 367 1290 824 658 600 588
TD3 1504 1419 1098 842 730 1491 1440 1137 885 717

Linear

Half-Cheetah

DDPG 172 178 187 177 163 187 162 165 169 167
DetSAC 1230 1923 913 743 707 1030 1230 1186 907 905
SAC 1248 1840 966 654 627 1435 1346 1260 958 899
TD3 1300 1727 1360 1099 1076 1292 1288 1243 1086 763

Hopper

DDPG 896 769 607 527 498 877 774 696 594 546
DetSAC 2076 1551 1302 1174 977 2035 1667 1356 1131 969
SAC 1966 1554 783 713 701 1977 1601 1346 1117 999
TD3 1772 1602 996 854 920 1854 1688 1452 1315 1177

Inverted-Pendulum-Swingup

DDPG 713 749 757 756 748 729 753 755 751 671
DetSAC 818 861 857 857 859 774 844 838 840 840
SAC 850 860 857 858 862 835 847 849 848 848
TD3 696 748 746 745 740 720 746 743 755 747

Mountain-Car

DDPG -0 46 39 28 60 -0 64 52 24 40
DetSAC 2 -0 2 16 23 1 23 75 79 77
SAC -7 -3 -1 16 7 -3 45 59 68 73
TD3 -0 -0 33 46 73 -0 69 68 69 68

Reacher

DDPG 14 14 14 13 13 14 12 12 12 11
DetSAC 17 18 18 18 19 16 15 14 13 11
SAC 16 17 17 17 17 16 15 14 13 11
TD3 15 17 17 17 17 14 12 12 11 11

Walker2D

DDPG 484 467 372 293 256 509 495 371 331 272
DetSAC 1233 976 800 742 705 1206 973 860 757 689
SAC 1235 1291 622 510 491 1391 972 852 713 742
TD3 1477 1384 918 665 612 1457 1397 1273 1176 1072

Logistic

Half-Cheetah

DDPG 175 168 166 166 162 182 177 160 167 165
DetSAC 1059 1358 1094 875 781 1065 1350 1122 967 768
SAC 1269 1433 1094 943 822 1329 1418 1115 912 842
TD3 1224 1700 1292 943 931 1260 1234 1126 1109 915

Hopper

DDPG 874 874 727 662 586 932 835 713 659 589
DetSAC 2064 1543 1361 1139 988 2027 1586 1268 1092 962
SAC 1911 1533 1306 1096 1000 2057 1589 1322 1073 941
TD3 1827 1337 845 932 939 1803 1650 1358 1220 1104

Inverted-Pendulum-Swingup

DDPG 726 756 750 757 589 656 748 759 676 739
DetSAC 794 841 838 842 843 777 846 845 843 840
SAC 843 850 849 849 845 838 856 852 848 840
TD3 717 753 756 753 750 712 752 751 746 740

Mountain-Car

DDPG -0 66 70 32 42 -0 66 72 70 42
DetSAC 0 51 73 76 79 2 37 75 79 79
SAC -0 52 62 68 71 -4 48 72 70 72
TD3 -0 3 39 71 81 -0 81 71 80 80

Reacher

DDPG 14 12 11 11 10 14 12 12 11 10
DetSAC 16 14 13 12 11 16 15 13 11 11
SAC 16 15 14 12 11 16 15 14 11 10
TD3 15 17 17 17 17 15 13 12 11 11

Walker2D

DDPG 508 468 352 269 237 498 462 350 267 242
DetSAC 1266 992 751 686 642 1146 922 732 699 650
SAC 1232 955 766 672 652 1237 1022 795 680 636
TD3 1442 1313 672 608 476 1460 1326 1154 1000 982

Table I.4: This table shows the performance P as the mean across the 20 different seeds.

31

Published in Transactions on Machine Learning Research (11/2022) Appendix

J Hyperparameters

Environment Walker2D Inverted-
Pendulum-
Swingup

Hopper Mountain-Car Half-Cheetah Reacher

env_wrapper TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

gamma 0.99 0.99 0.99 0.99 1 0.99
buffer_size 1000000 1000000 1000000 50000 1000000 1000000
learning_starts 1000 1000 1000 0 10000 1000
gradient_steps -1 -1 -1 1 -1 -1
train_freq (1, ’episode’) (1, ’episode’) (1, ’episode’) 1 (1, ’episode’) (1, ’episode’)
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
timesteps 2000000 1000000 2000000 60000 2000000 1000000
ID Walker2DBullet

Env-v0
Inverted
Pendulum
SwingupPyBullet
Env-v0

HopperPyBullet
Env-v0

MountainCar
Continuous-v0

HalfCheetah
PyBulletEnv-v0

ReacherPyBullet
Env-v0

batch_size 256 64 256 64 256 64
ent_coef 0 0 0 auto auto 0
tau 0.005 0.005 0.005 0.005 0 0.005

a SAC/DetSAC Hyperparameters

Environment Walker2D Inverted-
Pendulum-
Swingup

Hopper Mountain-Car Half-Cheetah Reacher

env_wrapper TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

gamma 1 1 1 0.99 1 1
buffer_size 200000 200000 200000 1000000 200000 200000
learning_starts 10000 10000 10000 100 10000 10000
gradient_steps -1 -1 -1 -1 -1 -1
train_freq (1, ’episode’) (1, ’episode’) (1, ’episode’) (1, ’episode’) (1, ’episode’) (1, ’episode’)
learning_rate 0.001 0.001 0.001 0.001 0.001 0.001
policy_kwargs {’net_arch’:

[400, 300]}
{’net_arch’:
[400, 300]}

{’net_arch’:
[400, 300]}

None {’net_arch’:
[400, 300]}

{’net_arch’:
[400, 300]}

timesteps 1000000 300000 1000000 300000 1000000 300000
ID Walker2DBullet

Env-v0
Inverted
Pendulum
SwingupPyBullet
Env-v0

HopperPyBullet
Env-v0

MountainCar
Continuous-v0

HalfCheetah
PyBulletEnv-v0

ReacherPyBullet
Env-v0

b TD3 Hyperparameters

Environment Walker2D Inverted-
Pendulum-
Swingup

Hopper Mountain-Car Half-Cheetah Reacher

env_wrapper TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

TimeFeature
Wrapper

gamma 1 1 1 0.99 1 1
buffer_size 1000000 200000 1000000 1000000 200000 200000
learning_starts 10000 10000 10000 100 10000 10000
gradient_steps -1 -1 -1 -1 -1 -1
train_freq (1, ’episode’) (1, ’episode’) (1, ’episode’) (1, ’episode’) (1, ’episode’) 1
learning_rate 0.0007 0.001 0.0007 0.001 0.001 0.001
policy_kwargs {’net_arch’:

[400, 300]}
{’net_arch’:
[400, 300]}

{’net_arch’:
[400, 300]}

None {’net_arch’:
[400, 300]}

{’net_arch’:
[400, 300]}

timesteps 1000000 300000 1000000 300000 1000000 300000
ID Walker2DBullet

Env-v0
Inverted
Pendulum
SwingupPyBullet
Env-v0

HopperPyBullet
Env-v0

MountainCar
Continuous-v0

HalfCheetah
PyBulletEnv-v0

ReacherPyBullet
Env-v0

batch_size 256 100 256 100 100 100

c DDPG Hyperparameters

Table J.1: Hyperparameters for SAC, TD3 and DDPG are taken from (Raffin, 2020) or left at default values defined
in (Raffin et al., 2021a).

32

Published in Transactions on Machine Learning Research (11/2022) Appendix

K Environment Limits

Environment MountainCarContinuous-v0 InvertedPendulumSwingupPyBulletEnv-v0 ReacherPyBulletEnv-v0 HopperPyBulletEnv-v0 Walker2DBulletEnv-v0 HalfCheetahPyBulletEnv-v0
s(0) -1.2000 . . . 0.6000 -1.0993 . . . 1.0931 -0.2700 . . . 0.2700 -1.2433 . . . 0.8614 -1.2316 . . . 0.1270 -0.6542 . . . 0.5536
s(1) -0.0700 . . . 0.0700 -6.1276 . . . 6.0216 -0.2700 . . . 0.2700 -0.0000 . . . 0.0000 -0.0000 . . . 0.0000 -0.0000 . . . 0.0000
s(2) -1.0000 . . . 1.0000 -0.4799 . . . 0.4798 -1.0000 . . . 1.0000 -1.0000 . . . 1.0000 -1.0000 . . . 1.0000
s(3) -1.0000 . . . 1.0000 -0.4799 . . . 0.4795 -5.0000 . . . 3.4373 -3.5129 . . . 1.8573 -1.8748 . . . 2.0801
s(4) -21.9001 . . . 21.2146 -1.0000 . . . 1.0000 -0.0000 . . . 0.0000 -0.0000 . . . 0.0000 -0.0000 . . . 0.0000
s(5) -1.0000 . . . 1.0000 -5.0000 . . . 1.6368 -3.6400 . . . 0.7000 -1.9558 . . . 1.3548
s(6) -10.0000 . . . 10.0000 -3.1416 . . . 3.1416 -3.1416 . . . 0.0000 -3.1416 . . . 0.0000
s(7) -1.2745 . . . 1.2701 -1.5708 . . . 1.5342 -1.5708 . . . 1.0625 -1.5708 . . . 1.0959
s(8) -10.0000 . . . 10.0000 -1.3921 . . . 2.1682 -2.2274 . . . 1.5482 -5.0000 . . . 1.1894
s(9) -5.0000 . . . 5.0000 -5.0000 . . . 4.6218 -3.6561 . . . 3.8614
s(10) -1.3917 . . . 1.8215 -1.5703 . . . 1.8112 -4.8688 . . . 2.1159
s(11) -5.0000 . . . 5.0000 -4.2228 . . . 4.3884 -5.0000 . . . 3.7174
s(12) -3.2458 . . . 2.1586 -3.7981 . . . 1.5704 -3.7094 . . . 4.0843
s(13) -5.0000 . . . 5.0000 -4.9543 . . . 3.1231 -5.0000 . . . 5.0000
s(14) -0.0000 . . . 1.0000 -2.8370 . . . 1.2062 -2.7263 . . . 1.6122
s(15) -4.9879 . . . 4.1318 -5.0000 . . . 4.6168
s(16) -1.7225 . . . 1.7902 -5.0000 . . . 3.2957
s(17) -3.7233 . . . 4.2734 -5.0000 . . . 5.0000
s(18) -4.0686 . . . 1.5315 -3.9515 . . . 3.3214
s(19) -5.0000 . . . 2.7369 -5.0000 . . . 5.0000
s(20) -0.0000 . . . 1.0000 -0.0000 . . . 1.0000
s(21) -0.0000 . . . 1.0000 -0.0000 . . . 1.0000
s(22) -0.0000 . . . 1.0000
s(23) -0.0000 . . . 1.0000
s(24) -0.0000 . . . 1.0000
s(25) -0.0000 . . . 1.0000

Table K.1: The calculation of XUrel requires defined state space limits for each environments. However, some
environments define the limits as (−∞,∞). In these cases we collected state space samples and defined the limits
empirically.

33

	Introduction
	Related Work
	Methods
	Noise types: Gaussian and Ornstein-Uhlenbeck
	Scheduling strategies to reduce action noise
	Environments
	Performed experiments
	Measuring Performance
	State-Space Coverage
	Evaluation of Measures on Synthetic Data

	Results: What action noise to use?
	(Q1) Which action noise type to use? (and what are the impacts)
	(Q2) Which action noise scale to use?
	(Q3) Should we scale down the noise over the training process?
	(Q4) How important are the different parameters?

	Discussion & Recommendations
	Conclusion
	A motivating example
	Boundary Artifacts
	Action Noise in SAC
	Deterministic SAC
	Benchmark Environments
	Statistical Methods
	Statistical Methods Details

	(Q1) Which action noise type to use? – Mann-Whitney-U Test
	Impact of Scheduler on Variance and Learned Performance
	Performed experiments
	Hyperparameters
	Environment Limits

