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Abstract
Biological systems, including human beings, have the innate ability to perform complex tasks in a versatile and agile manner.
Researchers in sensorimotor control have aimed to comprehend and formally define this innate characteristic. The idea, supported
by several experimental findings, that biological systems are able to combine and adapt basic units of motion into complex tasks
finally leads to the formulation of the motor primitives’ theory. In this respect, Dynamic Movement Primitives (DMPs) represent an
elegant mathematical formulation of the motor primitives as stable dynamical systems and are well suited to generate motor
commands for artificial systems like robots. In the last decades, DMPs have inspired researchers in different robotic fields including
imitation and reinforcement learning, optimal control, physical interaction, and human–robot co-working, resulting in a con-
siderable amount of published papers. The goal of this tutorial survey is two-fold. On one side, we present the existing DMP
formulations in rigorous mathematical terms and discuss the advantages and limitations of each approach as well as practical
implementation details. In the tutorial vein, we also search for existing implementations of presented approaches and release several
others. On the other side, we provide a systematic and comprehensive review of existing literature and categorize state-of-the-art
work on DMP. The paper concludes with a discussion on the limitations of DMPs and an outline of possible research directions.
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1. Introduction

How do biological systems, like humans and animals, execute
complex movements in a versatile and creative manner?

In the past decades, researchers of neurobiology andmotor
control have made a significant effort trying to answer this
research question, and their experimental findings lead to the
formulation of the motor or motion primitives theory. The
motion primitives’ theory explains the execution of complex
motion with the ability of biological systems of sequencing
and adapting units of actions, the so-called motion primitives
(Flash and Hochner, 2005; Mussa-Ivaldi, 1999).

Dynamic Movement Primitives (DMPs) have their roots
in the motor control of biological systems and can be seen as
a rigorous mathematical formulation of the motion primi-
tives as stable nonlinear dynamical systems (Schaal, 2006a,
2006b). In this respect, DMPs represent one of the first
attempts to answer the research question:

How artificial systems, like (humanoid) robots, can execute
complex movements in a versatile and creative manner?

Beyond their biological motivation, DMPs have a simple
and elegant formulation, guarantee convergence to a given

target, are sufficiently flexible to create complex behaviors,
are capable of reacting to external perturbations in real-time,
and can be learned from data using efficient algorithms.
These properties explain the “success” of DMPs in robotic
applications, where they have been established as a
prominent tool for learning and generation of motor com-
mands. Since their formulation in the pioneering work from
Ijspeert et al. (Ijspeert et al., 2002c; Schaal, 2006), DMPs
have been successfully exploited in a variety of applica-
tions, becoming de facto the first approach that novices in
the Imitation Learning (IL) field use on their robots.
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1.1. Existing surveys and tutorials

The popularity of DMPs resulted in a large amount of work
that use, modify, or extend the original formulation of Ij-
speert and colleagues. The pioneering work (Ijspeert et al.,
2001) computes the desired position and velocity as a
mixture of multiple dynamical systems with different time
scales. One year later, (Ijspeert et al., 2002c; Schaal, 2006)
propose a different formulation that became popular and
that we name, in this paper, the classical DMPs. As shown
in Table 1, some tutorials and surveys already tried to
categorize and review existing work on DMPs.

Schaal et al. (2007) presented the classical DMPs as an
attempt to unify nonlinear dynamical systems and optimal
control theory, that is, the two prominent frameworks used
to derive computational models of neurobiological motor
theories (Flash and Hochner, 2005; Mussa-Ivaldi, 1999).
Ijspeert et al. (2013) presented a homogeneous formulation
of rhythmic and discrete DMPs together with some ex-
tensions including coupling terms, generalization to dif-
ferent goals, and online adaptation for collision avoidance.
They also described possible applications in IL and motion
recognition methods. In the same year, Pastor et al. (2013)
presented an extension to classical DMPs with a special
focus on online adaptation of the DMP attractor landscape
by integrating the perceptual information into the action
generation process. Later on, Deniša et al. (2016b) reviewed
the so-called Compliant Movement Primitive (CMP), which
was first introduced by Petrič et al. (2014a). CMPs combine
classical DMP to generate the desired kinematic path and
torque primitives—a weighted summation of Gaussian
basis functions—to generate task-specific dynamics. As
shown in the Deniša et al. review, CMPs are capable of
accurately tracking the kinematic path in a compliant
manner, which makes them well suited for tasks that require
interaction of the robot with the environment.

However, the abovementioned papers, reviews, and
tutorials primarily focused on the methods and advance-
ments within their respective research group and/or focused
on a specific problem or field of application. On the other
hand, the DMP-related literature is extensive and broad,
with contributions from many research groups that made
advancements in several important fields of application.
Therefore, the proposed survey and tutorial on DMPs aim to
scan a wider range and present a tutorial with unified and
structured formulations for various DMP methods and
advancements up to date. This should make it clearer for the
users to see the differences and connections between various
methods and can contribute to easier application. In addi-
tion, we provide a more comprehensive and categorized
survey of all major DMP application areas in robotics. This
can help to inspire the readers to apply the DMPs in various
areas.

In the tutorial part, we present mathematical formula-
tions, implementation details, and potential issues of ex-
isting DMP formulations starting from the classical DMPs
presented in (Ijspeert et al., 2002c; Schaal, 2006) up to

recent extensions of DMPs to Riemannian geometry and
Symmetric Positive Definite (SPD) matrices (Abu-Dakka
and Kyrki, 2020). In the survey part, we meticulously re-
view existing literature on DMPs in a comprehensive and
methodological manner by focusing on the quality and
significance of their continuations without putting a bias on
any particular research group. Details on the systematic
review procedure are given as follows.

1.2. Systematic review process

We performed an automatic search for documents con-
taining the string

DynamicMovement Primitive

in Scopus on 25 November 2020 that returned 1223 papers.
We started the search from 2001 when preliminary work on
DMPs was published. We further refined the search on
20 June 2023 to include last-minute papers.

We manually inspect all the papers and removed the ones
that do not explicitly use DMPs and that only compare
against DMP in their literature review. The first and fore-
most selection criteria were the technical quality of work
and the significance of the contribution with respect to the
DMP state of the art prior to the publication of any particular
paper. In other words, we asked the question “did the paper
make a significant step change in the field?”. Therefore, we
discarded papers that presented similar (or same) ideas
multiple times or that made insignificant improvements to
the state of the art. If multiple papers presented the same/
similar idea, we included the one with the most compre-
hensive technical quality, and if the quality was similar, the
next deciding factors were publication in more prestigious
journals/venues or the most cited ones. This manual se-
lection led to 321 papers on DMPs (out of a total of
373 references) analyzed in this work.

1.3. A taxonomy of DMP-related research

The systematic review of DMP literature led to the tax-
onomy shown in Figure 1, which also describes the structure
of this paper. DMPs are placed at the root of the tree and
branch into two nodes, namely, the tutorial and the survey.
In the tutorial part, we present different DMP formulations
and extensions in rigorous mathematical terms.

The tutorial part spans Sections 2 and 3. Section 2
embraces DMP formulations for discrete and periodic
motions, orientation trajectories, and SPD matrices.
Section 3 discusses extensions of the DMP formalism to
account for skills generalization, joining of multiple
primitives, online adaptation based on force feedback, or
reference velocity. The section ends with a short description
of DMP-related formulations.

The survey part spans Sections 4 and 5. Section 4 presents
DMP integration in larger executive frameworks for manip-
ulation and variable impedance tasks, reinforcement, deep, and
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life-long learning. Section 5 presents DMPs in different robotic
applications including physical interaction, co-manipulation,
rehabilitation, teleoperation, motion recognition, humanoids
and field robotics, and autonomous driving.

The paper ends with a discussion (Section 6) of presented
approaches with the aim of providing, where possible,

guidelines to select the most suitable DMP approach for
specific needs. We have also collected available DMP im-
plementations (see Table 4) and contributed to the community
with further open-source implementations available at https://
gitlab.com/dmp-codes-collection. Section 6 terminates with a
discussion on open issues and possible research directions.

Table 1. Comparison between existing papers, reviews, and tutorials about DMPs and our tutorial survey.

Paper/survey/
tutorial Topics Description

Schaal et al.
(2007)

• Classical DMPs A tutorial that provides a unifying view of the two main approaches used to develop
computational motor control theories, namely, differential equations and optimal
control. In this work, discrete and rhythmic DMPs (Ijspeert et al., 2002c; Schaal,
2006) are presented as a computational model of the motor primitives’ theory
(Mussa-Ivaldi 1999) that unifies nonlinear differential equations and optimal
control. The tutorial has a section dedicated to DMP parameter optimization
beyond ILs. Schaal et al. show how to optimize DMP parameters to minimize
various costs describing, for instance, the total jerk of the trajectory or the end-
point variance.

• Online adaptation
• Optimization

Ijspeert et al.
(2013)

• Classical DMPs A paper on classical DMPs that in addition to its scientific contribution, it presents
both discrete and rhythmic formulations, mostly developed in (Ijspeert et al.,
2002c, 2002; Schaal, 2006), and their application in IL and movement recognition.
The paper also presents extensions of the classical DMP formulation to prevent
high accelerations at the beginning of the motion, to avoid collisions with
unforeseen obstacles (Pastor et al. 2009), and to generalize both in space (e.g.,
reach a different goal) and time (e.g., produce longer/shorter trajectories).

• Online adaptation
• Coupling terms
• Generalization

Pastor et al.
(2013)

• Classical DMPs A paper on classical DMPs that in addition to its scientific contribution, it presents
both discrete and rhythmic formulations, mostly developed in (Ijspeert et al.,
2002c, 2002; Schaal, 2006). The paper also presents extensions of the classical
DMP formulation to avoid collisions with unforeseen obstacles (Pastor et al. 2009)
and to learn impedance control policies via Reinforcement Learning (RL) (Buchli
et al. 2011b). The key difference between Ijspeert et al. (2013) and Pastor et al.
(2013) is the section dedicated to the sensory association and online, context-aware
adaptation of DMP trajectories using the associative skill memory framework
developed in Pastor et al. (2011) and Pastor et al. (2011a).

• Online adaptation
• Coupling terms
• Impedance learning

Deniša et al.
(2016b)

• Classical DMPs A tutorial on CMPs, a framework developed to generate compliant robot behaviors
that accurately track a reference trajectory. CMPs exploit classical DMPs to
generate the desired kinematic landscape and encode task-dependent dynamics as
a combination of Gaussian basis functions (torque primitives). The tutorial shows
how to learn torque primitives from training data, how to generalize CMPs to new
situations, and how to combine existing CMPs to synthesize new robot motions.

• Compliant Movement
Primitives (CMPs)

Survey and
tutorial Topics Description

This paper DMP tutorial This tutorial survey conducts a wide scan of the existing DMP literature with the aim
of categorizing and presenting the published work in the field. The main objective
of this comprehensive literature review is to give the reader an exhausting
overview on DMP-related research, on its major achievements, as well as on open
issues and possible research directions. Our tutorial survey also provides a
structured and unified formulation for different methods developed starting from
the classical DMPs proposed by (Ijspeert et al., 2002c; Schaal, 2006). We believe
that such formulation contributes to an easier understanding of different methods
and extension that can be found in the literature, clarifying connections and
differences among the existing approaches. The tutorial survey also provides an
analysis on pros and cons of various methods and a discussion with guidelines for
different application scenarios.

• Classical
• Orientation
• SPD
• Joining
• Generalization
• Online adaptation
DMP survey

• (Co-)Manipulation
• Variable impedance
• Physical interaction
• Rehabilitation
• Teleoperation
• Motion recognition
• Reinforcement, deep, and
lifelong learning
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1.4. Contribution overview

Our paper has several key contributions that are summarized
as follows.

Concerning the tutorial part:

· We present the classical DMP formulation and existing
variations of this formulation in a unified manner with
rigorous mathematical terms, providing implementation
details and discussing the advantages and limitations of
different approaches (Section 2).

· We describe advanced approaches where DMPs are
integrated into sophisticated control and/or larger ex-
ecutive frameworks (Section 3).

· We release to the community several implementations of
described approaches. Detailed information on these
code repositories is provided in Table 4 and Section 6.
Moreover, we search for existing open-source im-
plementations of the presented formulations and list
them in our repository (Section 6.2).

Concerning the survey part:

· We perform a systematic literature search to provide a
comprehensive and unbiased review of the topic
(Sections 4 and 5).

· We categorize existing work on DMPs into different
streams and highlight prominent approaches in each
category (Figure 1 and Sections 4 and 5).

· We present guidelines to select the most suitable ap-
proach for different applications, discuss limitations
inherent to the DMP formalism, and highlight open
issues and possible research directions (Section 6).

2. Formulation of DMP types

In this section, we will provide a complete description of the
standard formulation of DMPs. Specifically, point attractors
formulation—to encode discrete point-to point motions—in
Section 2.1 and cycle attractors’ formulation—to encode
rhythmic-patterns motions—in Section 2.2. For a better

Figure 1. Structure of this tutorial survey on DMPs.
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understanding, we have summarized the key notations and
the used abbreviations in Table 2.

2.1. Discrete DMP

The discrete DMP is used to encode a point-to-point motion
into a stable dynamical system. In the following subsec-
tions, we will go through the formulation and main features
of discrete DMPs starting with the classical one operating in
R space (Section 2.1.1), then passing by Cartesian space—
S3 and SOð3Þ—in Section 2.1.2, and ending by DMP
formulation for SPD space ðSm

þþÞ in Section 2.1.3.

2.1.1. Classical DMP. The classical discrete DMPs, first
introduced by Ijspeert et al. (2002c), encapsulate training
data into a linear, second-order dynamics (a mass–spring–
damper system) with an additive, nonlinear forcing term
learned from a single demonstration. A DMP for a single
DoF trajectory y of a discrete movement (point-to-point) is
defined by the following set of nonlinear differential
equations (Ijspeert et al., 2002c, 2013)

τ _z ¼ αzðβzðg � yÞ � zÞ þ f ðxÞ, (1)

τ _y ¼ z, (2)

τ _x ¼ �αxx (3)

where x is the phase variable and z is an auxiliary variable.
Parameters αz and βz define the behavior of the second-order
system described by (1) and (2). With the choice τ > 0, αz =
4βz, and αx > 0, the convergence of the underlying dynamic
system to a unique attractor point at y = g, z = 0 is ensured
(Ijspeert et al., 2013). Alternatively, the gains αz and βz can
be learned from training data while preserving the con-
vergence of the system (Tan et al., 2016). In the DMP
literature, equations (1) and (2), as well as their periodic
counterpart (34)–(35), are called the transformation system,
while (3) (or (36)) is the canonical system. f(x) is defined as
a linear combination of N nonlinear Radial Basis Functions
(RBFs), which enables the robot to follow any smooth
trajectory from the initial position y0 to the final configu-
ration g

f ðxÞ ¼
PN

i¼1wiΨiðxÞPN
i¼1ΨiðxÞ

x, (4)

ΨiðxÞ ¼ exp
�
�hiðx� ciÞ2

�
(5)

where ci are the centers of Gaussian basis functions distributed
along the phase of the movement and hi their widths. For a
given N and setting τ equal to the total duration of the desired
movement, we can define ci ¼ expð�αxi� 1=N � 1Þ,
hi ¼ 1=ðciþ1 � ciÞ2, and hN = hN�1 where i = 1, …, N. For
each DoF, the weights wi should be adjusted from the mea-
sured data so that the desired behavior is achieved. The se-
lection of the number of weights should be based on the

desired resolution of the trajectory. For controlling a robotic
systemwithmore than oneDoF,we represent themovement of
every DoF with its own equation system (1)–(2), but with the
common phase (3) to synchronize them.

2.1.1.1. Learning the forcing term. For a discrete mo-
tion, given a demonstrated trajectory yd (tJ), tJ ¼ 1,…,T,
and its time derivatives _ydðtJ Þ and €ydðtJ Þ, it is possible to
invert (1) and approximate the desired shape fd as follows

fdðtJ Þ ¼ τ2€ydðtJ Þ �αzðβzðg � ydðtJ ÞÞ � τ _ydðtJ ÞÞ (6)

By stacking each fd (tJ) and wi into the column vectors

F ¼ ½fdðt1Þ,…, fdðtTÞ�u and w ¼ ½w1,…,wN �u, we obtain
the following linear system

Φw ¼ F, (7)

where

Φ ¼

Ψ1ðx1ÞPN
i¼1Ψiðx1Þ

x1 /
ΨN ðx1ÞPN
i¼1Ψiðx1Þ

x1

« 1 «

Ψ1ðxTÞPN
i¼1ΨiðxTÞ

xT /
ΨN ðxTÞPN
i¼1ΨiðxTÞ

xT

26666664

37777775 (8)

Locally Weighted Regression (LWR) (Atkeson et al.,
1997; Schaal and Atkeson, 1998; Ude et al., 2010) is a
popular approach used to update the weights wi. LWR with
the recursive least squares method uses the error between
the desired trajectory shape and the currently learned shape
and a forgetting factor λ to incrementally update the weights
as follows

PJ ¼
1

λ

�
PJ�1 �

PJ�1φJφJ
uPJ�1

λþ φJ
uPJ�1φJ

�
, (9)

wJ ¼ wJ�1 þ ðfdðtJ Þ � φJ
uwJ�1ÞPJφJ (10)

In the previous equations,wJ =w(tJ) and φJ is the column
vector obtained by transposing the J-th row ofΦ. The initial
value of the parameters is P0 = I, w0 = 0. It is worth
mentioning that the update rules in (9)–(10) represent an
incremental version of LWR. A batch version of LWR is
presented in Ijspeert et al. (2013), and the difference be-
tween the two approaches is highlighted in Schaal and
Atkeson (1998) on page 9. A discrete DMP learned on
synthetic data is shown in Figure 2.

LWR has been the standard method to learn the weights
of DMPs and therefore f(x). As an alternative to LWR, Krug
and Dimitrovz (2013) have shown that learning a forcing
term defined as in (4) can be formulated as a quadratic
optimization problem and efficiently solved.

In general, the problem of learning and retrieving f(x) can
be in principle solved with any regression technique (Stulp
et al., 2013). For instance, Wang et al. (2016) modified f(x)
in (4) by considering a bias term bi, that is, wix + bi, and used
truncated kernels (Ψi vanishes if x � ci is smaller than a
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threshold). This formulation, called DMP+, produces
more accurate trajectories than the original DMP.
Moreover, a learned trajectory can be modified by up-
dating only a subset of the weights. However, DMP+ has
double the parameters of the original DMP, and the

truncated kernel introduces a discontinuity at the trun-
cation point. To remedy this issue, Ginesi et al. (2021b)
exploited the use of Mollifier-like and Wendland basis
functions with promising results. Rouse and Daltorio
(2021) substituted the underlying kernels of stable

Table 2. Description of key notations and abbreviations. Indices, super/subscripts, constants, and variables have the same meaning over
the whole text.

N b # of nonlinear basis functions i b index: i = 1, 2, …, N
J b # of joints or Degree of Freedoms (DoFs) j b index: j = 1, 2, …, J
L b # of demonstrations or DMPs l b index: l = 1, 2, …, L
V b # of via-points or via-goals v b index: v = 1, 2, …, V
T b # of datapoints j b index : j ¼ 1; 2,…,T

m b Dimensions of Sm
þþ n b Dimensions of Rn

{�}d b Subscript for desired value {�}q or {�}q b Quaternion-related variable

{�}R or {�}R b Rotation matrix-related variable {�}++, {�}+ or {�}+ b SPD-related variable
{�}g b Subscript for goal value αz, βz, αx, αs, αg,

αyx, αqg
b Positive gains

τ b Time modulation parameter ci, hi b Centers and widths of Gaussians
T b Time duration t b Continuous time
λ b Forgetting factor r b Amplitude modulation parameter
x b Phase variable y, _y b Trajectory data and its 1st derivative

s b Sigmoidal decay phase z, _z b Scaled velocity and acceleration

p b Piece-wise linear phase g, gq, g+ b Attractor point (goal) in different spaces
ω b Angular velocity bg, bgq and ~g, ~gq b Moving target and delayed goal function in

different spaces

Qt , _Qt b Joint position, its 1st time-derivative gv b Intermediate attractor (via-goal)

q, _q b Unit quaternion, its 1st time-derivative R, _R b Rotation matrix, its 1st time-derivative

f, fq, fR, fq,
Fþ

b Forcing term for different spaces wi b Adjustable weights

Ψi b Basis functions θ and q b An angle and learnable parameters
Sm

þþ b m × m SPD manifold Symm b m × m symmetric matrix space

M b A Riemannian manifold X b An arbitrary SPD matrix

T ΛM b A tangent space ofM at an arbitrary point Λ M b The mean of fXtgTt¼1

9 = LogΛ(Y) b M1T ΛM, maps an arbitrary point Y2M
into 92T ΛM

Y = ExpΛ(9) b T ΛM1M, maps 92T ΛM into Y2M

vec (�) b A function transforms Symm into R
n using

Mandel’s notation.
mat (�) b A function transforms Rn into Symm using

Mandel’s notation.

k, K, KP ,
KO

b Different forms of stiffness gains D,DV , DW b Different forms of damping gains

m and I b Mass and inertia matrices F, fe, and τe b Forces and external forces and torques

DMP Dynamic Movement Primitive IL Imitation Learning
CMP Compliant Movement Primitive UAV Unmanned Aerial Vehicle
RL Reinforcement Learning SPD Symmetric Positive Definite
DoF Degree of Freedom RBF Radial Basis Function
LWR Locally Weighted Regression GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression GP Gaussian Process
NN Neural Network VMP Via-points Movement Primitive
ProMP Probabilistic Movement Primitives LfD Learning from Demonstration
GPR Gaussian Process Regression MoMP Mixture of Motor Primitives
EMG Electromyography ILC Iterative Learning Control
VIC Variable Impedance Control VILC Variable Impedance Learning Control
PI2 Policy Improvement With Path Integrals CMA-ES Covariance Matrix Adaptation-Evolution Strategies
CC-DMP Coordinate Change-DMPs RBF-NN Radial Basis Function-Neural Network
AL-DMP Arc-Length-DMP HRL Hierarchical RL
AEDMP AutoEncoded DMP CNN Convolutional Neural Network
GPDMP Global Parametric Dynamic Movement Primitive PoWER Policy Learning by Weighting Exploration with the Returns
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attractor points or limit cycles in DMPs with the un-
derlying kernels of saddle points, known as Structurally
Homogeneous Centers (SHCs). They demonstrated that
the application of SHCs in the DMP framework was
straightforward and yielded comparable results to the
original approach in terms of ease of use and similarity of
outcomes. Other work focused on using multiple dem-
onstrations to increase the generalization power of the
learned primitive. To learn a suitable forcing term from
multiple demonstrations, some authors used Gaussian
Mixture Model (GMM) (Yin and Chen, 2014; Pervez
et al., 2017a) and Gaussian Mixture Regression (GMR)
(Cohn et al., 1996), while others adopted Gaussian
Process (GP) (Fanger et al., 2016; Rasmussen and
Williams, 2006; Umlauft et al., 2017), or exploited a
deep Neural Network (NN) (Pervez et al., 2017b; Pahič
et al., 2020) developed originally in LeCun et al. (2015).

2.1.1.2. Phase stopping and goal switching. The phase
variable x in (3) provides the ability to manipulate time
during the execution of DMP equations. Moreover, DMP
provides the ability to slow down or even stop the execution
through the phase-stopping mechanism (Ijspeert et al.,
2002c)

τ _x ¼ � αxx
1þ αyxk~y� yk (11)

where ~y is the measured state and y is the one generated from
the DMP. Alternatively, Anand et al. (2021) have shown that
it is possible to modulate the time scaling factor τ as follows

_τ ¼ �kτðτ � uτÞ (12)

where control input uτ is designed such that the decay rate of
the canonical system in (3) is slowed down if the desired
execution time is increased or sped up if the desired exe-
cution time is reduced.

DMPs also provide an elegant way to adapt the trajectory
generation in real-time through goal-switching mechanisms
(Ijspeert et al., 2013)

τ _g ¼ αgðg0 � gÞ (13)

where g0 is the original goal and g is the new one to reach.
DMPs in their standard formulation are not suitable for

direct encoding of skills with specific geometry constraints,
such as orientation profiles (represented in either unit
quaternions or rotation matrices), stiffness/damping, and
manipulability profiles (encapsulated in full SPD matrices).
For instance, direct integration of unit quaternions does not
ensure the unity of the quaternion norm. Any representation
of orientation that does not contain singularities is non-
minimal, which means that additional constraints need to be
taken into account during integration.

2.1.1.3. Alternative phase variables. Equation (3) de-
scribes an exponential decaying phase variable that has been
widely used in the DMP literature. The main drawback of
the exponential decaying phase is that it rapidly drops to
very small values toward the end of the motion. This
“forces” the learning algorithm to exploit relatively high
weights wi to accurately reproduce the last part of the
demonstration (Samant et al., 2016). As an example, in
Figure 3 the exponential decaying phase (brown dot-dashed
line) is very small already after 0.6s, while the expected time
duration of the motion is T = 1s.

To overcome this limitation, Kulvicius et al. (2011)
propose the sigmoidal decay phase s (green solid line in
Figure 3), obtained by integrating

_s ¼ � αseðαs=δtÞðτT�tÞ

½1þ eðαs=δtÞðτT�tÞ�2
(14)

where αs defines the steepness of s centered at time T and δt
is the sampling time. As shown in Figure 3, s = 1 for t < T�
δs, where the time δs depends on the steepness αs, and then it
decays to s = 0.

The sigmoidal decay in Figure 3 has a tail effect since it
vanishes after T + δss, where δs depends on the tunable
parameter αs. The piece-wise linear phase p (blue-dashed
line in Figure 3), proposed by Samant et al. (2016), linearly
decays from 1 to 0 in exactly Ts and then remains constant. p
is obtained by integrating

Figure 2. A classical DMP is used to generate a discrete motion
connecting x0 = 0 and g = 1 (green line in the top left panel).
The training data (black dashed lines) are obtained from a
minimum jerk trajectory connecting x0 and g in T = 1s and used to
learn the weights wi of 10 Gaussian basis functions equally
distributed in time. The results of the parameter learning
procedure are shown in the bottom right panel. The exponentially
decaying phase variable is used as shown in the middle right
panel. Results are obtained with the open-source
implementation available at https://gitlab.com/dmp-codes-
collection/dmp-classical.
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τ _p ¼
� 1

T
, p ≥ 0

0, otherwise

8<: (15)

where p(0) = 1 and T is the time duration of the motion.

2.1.2. Orientation DMP. The classical DMP formulation
described in Section 2.1.1 applies to single DoF motions.
Multidimensional motions are generated independently and
synchronized with a common phase. In other words,
equations (1) and (2) are repeated for each DoF while the
phase variable in (3) is shared. This works when the evo-
lution of different DoFs is independent, like for joint space
or Cartesian position trajectories. Unlike Cartesian position,
the elements of orientation representations like unit qua-
ternion or rotation matrix are constrained. In this section, we
present approaches that extend the classical DMP formu-
lation to represent Cartesian orientations.

2.1.2.1. Quaternion DMP. Unit quaternion
q ¼ νþ u2S3 provides a representation of the orientation
of the robot’s end-effector (Chiaverini and Siciliano, 1999).
S3 is a unit sphere in R

4, ν2R, and u2R
3. Abu-Dakka

et al. (2015a) rewrote DMP equations (1) and (2) for direct
unit quaternion encoding as follows

τ _η ¼ αz
�
βz2 Log

q
�
gq*q

�
� η

�
þ f qðxÞ, (16)

τ _q ¼ 1

2
η*q (17)

where gq 2S3 denotes the goal orientation, the quaternion
conjugation is defined as q ¼ νþ u ¼ ν� u, and * denotes
the quaternion product

q1*q2 ¼ ðν1 þ u1Þ*ðν2 þ u2Þ
¼

�
ν1ν2 � uu

1 u2

�
þ ðν1u2 þ ν2u1 þ u1 × u2Þ:

η2R
3 is the scaled angular velocity ω and treated as unit

quaternion with zero scalar (ν = 0) in (17). The function
Logqð�Þ :S31R

3 is given as follows

LogqðqÞ ¼
arccosðνÞ u

kuk,

½0 0 0�u,

u ≠ 0

otherwise,

8<: (18)

where k �k denotesl2 norm. In practice, to avoid numerical
instabilities, kuk is compared with a small ϵ before
normalizing u.

An early attempt to encode unit quaternion profiles using
DMP was presented by Pastor et al. (2011). Unlike Abu-
Dakka et al.’s formulation, Pastor et al.’s formulation does
not take into account the geometry of SOð3Þ as they just
used the vector part of the quaternion product ðgq*qÞ in (16)
instead of 2 Logqðgq*qÞ which defines the angular velocity
ω that rotates quaternion q into gq within a unit
sampling time.

Equation (17) can be integrated as follows

qðt þ δtÞ ¼ Expq
�
δt
2

ηðtÞ
τ

�
*qðtÞ (19)

where δt > 0 denotes a small constant. The function
Expqð�Þ :R31S3 is given as follows

ExpqðωÞ ¼
cosðkωkÞ þ sinðkωkÞ ω

kωk,

1þ ½0 0 0�u

ω ≠ 0

otherwise:

8<:
(20)

where kωk is compared with a small ϵ before normalizingω
to avoid numerical instabilities.

Both mappings become one-to-one, continuously dif-
ferentiable, and inverse to each other if the input domain of
the mapping Logq (�) is restricted to S3 except for �1 + [0
0 0]u, while the input domain of the mapping Expq(ω)
should fulfill the constraint kωk < π (Abu-Dakka et al.,
2015a). An exemplar unit quaternion DMP is shown in
Figure 4.

Phase-stopping (11) can be rewritten as follows

τ _x ¼ � αxx
1þ αqxdð~q,qÞ

(21)

where

dð~q,qÞ ¼
�
2 π,
2 jLogqðq1*q2Þk;

q1*q2 ¼ 1þ ½0 0 0�
otherwise

Ude et al. (2014) extended DMP quaternion-based
formulation by rewriting (13) to include goal switching
mechanism

τ _gq ¼ αqgLog
q
�
gq, new � gq

�
*gq (22)

so that gq is continuously changing onto gq,new in real-time.
Equation (22) should be integrated using (20) along with
(16) and (17).

As shown by Saveriano et al. (2019) using Lyapunov
arguments, both the quaternion DMP formulations in Pastor
et al. (2011) and in Abu-Dakka et al. (2015a) and Ude et al.
(2014) asymptotically converge to the target quaternion gq
with zero velocity.

Figure 3. Possible phase variables used in different discrete DMP
formulations. All the different possibilities ensure that x, s, p→
0 for t → +∞ (for t > T in practice).
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2.1.2.2. Rotation matrix DMP. In their work on orien-
tation DMPs, Ude et al. (2014) extended DMP formulation
in order to encode orientation trajectories represented in the
form of rotation matrices RðtÞ 2SOð3Þ. Therefore, they
rewrote (1) and (2) in the following form

τ _η ¼ αz
�
βz Log

R
�
RgR

u
�
� η

�
þ fRðxÞ, (23)

τ _R ¼ ½η�×R (24)

where Rg represents the goal orientation. [η]× is a skew
symmetric matrix, such as ½η�u× ¼ �½η�×. The relation be-
tween the angular velocity and the 1st-time-derivative of the
rotation matrix is given by

½ω�× ¼

24 0 �ωz ωy

ωz 0 �ωx

�ωy ωx 0

35 ¼ _RRu (25)

The function LogRð�Þ :SOð3Þ1R
3 is given as follows

LogRðRÞ ¼
�
½0; 0; 0�u,
ω ¼ θn,

R ¼ I
otherwise,

(26)

θ ¼ arccos

�
traceðRÞ � 1

2

�
, n ¼ 1

2sinðθÞ

24 r32 � r23
r13 � r31
r21 � r12

35
The generated rotation matrices can be obtained by in-

tegrating (24) as follows

Rðt þ δtÞ ¼ ExpR
�
δt
½η�×
τ

�
RðtÞ (27)

The function ExpRð�Þ :R31SOð3Þ is given as follows

ExpRðt½ω�×Þ ¼ Iþ sinðθÞ ½ω�×kωk

þð1� cosðθÞÞ ½ω�
2
×

kωk2
: (28)

where θ(t) = tkωk express the rotation angle within time t.
An exemplar rotation matrix DMP is shown in Figure 5.

2.1.3. SPD matrices. Abu-Dakka and Kyrki (2020) gen-
eralized DMP formulation in order to encode robotic manip-
ulation data profiles encapsulated in the form of SPD matrices.
The importance of SPDmatrices comes from the fact that many
robotics data are encapsulated in such matrices, for example,
full stiffness matrices, manipulability ellipsoids, and inertia
matrices among others. By defining X2Sm

þþ as an arbitrary

SPD matrix and Ξ ¼ ftj,XjgTj¼1 as the set of SPD matrices in

one demonstration, where Sm
þþ defines the set of m × m SPD

matrices. Afterward, we can rewrite (1) and (2) as follows

τ _σ ¼ αz
�
βzvec

�
BXj1X1

�
LogþXj

�
Xg

���
� σ

�
þFþðxÞ,

(29)

τ _ξ ¼ σ (30)

where σ = vec(Σ) is the Mandel representation of the
symmetric matrix Σ and Σ is the time derivative of Ξ so
that Σ ≡ _Ξ ¼ ðLogþXj�1

ðXjÞÞ=δt. The function LogXj�1
ðXjÞ :

M1T Xj�1M maps a point Xj in the manifold M to a
point in the tangent space Δ2T Xj�1M. vec (�) is a
function that transforms a symmetric matrix into a vector
using Mandel’s notation, for example, a vectorization of a
2 × 2 symmetric matrix is as follows

vec

�
a b
b d

�
¼

0@ a
d ffiffiffi
2

p
b

1A (31)

ξ is the vectorization of Ξ. Xg 2Sm
þþ represents the goal

of SPD matrix. vecðBXj1X1ðLogþXj
ðXgÞÞÞ is the vectoriza-

tion of the transported symmetric matrix LogþXj
ðXgÞ over the

geodesic from Xj to X1. Then we integrate (30) as follows

bXðt þ δtÞ ¼ ExpþXðtÞ

�
BX11XðtÞðmatðσðtÞÞÞ

τ
δt

�
(32)

where the functionmat(�) is the inverse of vec(�) and denotes
to the matricization using Mandel’s notation. bX2Sm

þþ
represents the new SPD-matrices-based robot skills.
The function ExpþXj�1

ðΔÞ : T Xj�1M1M maps a point

Δ2T Xj�1M to a point Xj 2M, so that it lies on the

Figure 4. A unit quaternion DMP is used to generate a discrete
motion connecting q1 and gq. The training data (black-dashed
lines) are obtained from a minimum jerk trajectory connecting q1
and gq in T = 10s and used to learn the weights wi of 20 Gaussian
basis functions equally distributed in time. The results of the
parameter learning procedure are shown in the bottom right panel.
The exponentially decaying phase variable is used as shown in the
middle right panel. Results are obtained with the open-source
implementation available at https://gitlab.com/dmp-codes-
collection.
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geodesic starting from Xj�1 2Sm
þþ in the direction of Δ. An

exemplar SPD DMP is shown in Figure 6.
Moreover, Abu-Dakka and Kyrki (2020) rewrote (13) for

smooth goal adaptation in case of sudden goal switching as
follows

τ _gþ ¼ αgLog
þ
gþnew

ðgþÞ (33)

so g now is updated continually.

2.2. Periodic DMP

The periodic DMP (sometimes called rhythmic DMP) is
used when the encoded motion follows a rhythmic pattern.

2.2.1. Classical DMP. The classical periodic (or rhythmic)
DMPs were first introduced by Ijspeert et al. (2002b), where
they redefined the second-order differential equation system
described in (1) and (2) as follows

_z ¼ Vðαðβð�yÞ � zÞ þf ðfÞÞ, (34)

_y ¼ Vz, (35)

τ _f ¼ 1 (36)

where V is the frequency and y is the desired periodic
trajectory that we want to encode with a DMP. The main
difference between periodic DMPs and point-to-point
DMPs is that the time constant related to trajectory dura-
tion is replaced by the frequency of trajectory execution
(refer to Ijspeert et al., 2013 and 2002b for details). In

addition, the periodic DMPs must ensure that the initial
phase (f = 0) and the final one (f = 2π) coincide in order to
achieve smooth transition during the repetitions.

Similar to (4), f(f) is defined with N Gaussian kernels
according to the following equation

f ðfÞ ¼
PN

i¼1ΨiðfÞwirPN
i¼1ΨiðfÞ

, (37)

ΨiðfÞ ¼ expðhðcosðf� ciÞ � 1ÞÞ (38)

where the weights are uniformly distributed along the phase
space and r is used to modulate the amplitude of the periodic
signal (Gams et al., 2009; Ijspeert et al., 2002b) (if not used,
it can be set to r = 1 [Peternel et al. 2016]).

Similar to discrete DMPs, LWR (Schaal and Atkeson,
1998) can be used to update the weight to learn a desired
trajectory. In a standard periodic DMP setting (Gams et al.,
2009; Ijspeert et al., 2002b), the desired shape fd is ap-
proximated by solving

fdðtJ Þ ¼
€ydðtJ Þ
V2 � αz

�
βzð�ydðtJ ÞÞ �

_ydðtJ Þ
V

�
(39)

where yd is some demonstrated input trajectory that needs to
be encoded. The weights wi can be updated using the re-
cursive least-squares method (Schaal and Atkeson, 1998)

Figure 5. A rotation matrix DMP is used to generate a discrete
motion connecting R1 and Rg. The training data (black-dashed
lines) are obtained from a minimum jerk trajectory connecting R1

and Rg in T = 10s and used to learn the weights wi of 20 Gaussian
basis functions equally distributed in time. The results of the
parameter learning procedure are shown in the bottom right panel.
The exponentially decaying phase variable is used as shown in the
middle right panel.

Figure 6. An SPD DMP is used to generate a discrete motion
connectingX1 andXg. The training data (black-dashed lines) are
obtained from a minimum jerk trajectory connecting X1 and Xg in
T = 100s and used to learn the weights wi of 20 Gaussian basis
functions equally distributed in time. The cone in the upper left
corner represents the manifold of SPD data and includes the
geodesic of the SPD profile. The results of the parameter learning
procedure are shown in the bottom right panel. The
exponentially decaying phase variable is used as shown in the
middle right panel. Results are obtained with the open-source
implementation available at https://gitlab.com/dmp-codes-
collection.
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with forgetting factor λ based on the error between the
desired trajectory shape and the currently learned shape

wiðtJþ1Þ ¼ wiðtJ Þ þ ΨiPiðtJþ1ÞrerðtJ Þ, (40)

erðtJ Þ ¼ fdðtJ Þ � wiðtJ Þr, (41)

PiðtJþ1Þ ¼
1

λ

0@PiðtJ Þ �
PiðtJ Þ2r2

λ
Ψi

þ PiðtJ Þr2

1A (42)

The initial value of the parameters is wi (0) = 0 and
Pi(0) = 1. The forgetting factor determines the rate of weight
changes. Refer to Schaal and Atkeson (1998) for details on
parameter setting. An exemplar rhythmic DMP is shown in
Figure 7.

The classical periodic DMP described by (34)–(36) does
not encode the transient motion needed to start the periodic
one. Transients are important in several applications like
humanoid robot walking where usually the first step made
from a rest position is a transient needed to start the periodic
motion. To overcome this limitation, Nakanishi et al. (2004)
presented a formulation of rhythmic DMPs including
transient to achieve limit cycle with an application to biped
locomotion. Ernesti et al. (2012) modified the classical
formulation of periodic DMPs to explicitly consider tran-
sients as a motion trajectory that converges toward the limit
cycle (i.e., periodic) one.

2.2.2. Orientation DMP. The same argument used in
Section 2.1.2 is valid here too. Unlike Cartesian position,
the elements of orientation representations like unit qua-
ternion or rotation matrix are constrained. In this section, we
present approaches that extend the classical periodic DMP
formulation to represent periodic Cartesian orientations.

2.2.2.1. Quaternion periodic DMP. To encode unit
quaternion trajectories accurately, the dynamic system in
equations (34) and (35) is reformulated by Abu-Dakka et al.
(2021), taking inspiration from the research on discrete
quaternion DMPs (Abu-Dakka et al., 2015a; Ude et al.,
2014).

_η ¼ V
�
αz
�
βz2 Log

q
�
gq*q

�
� η

�
þ fqðfÞ

�
, (43)

_q ¼ V
1

2
η*q (44)

where gq can take the form of either the identity orientation
1 + [0 0 0]u or the average of the demonstration quaternion
profile. V is the 3 × 3 diagonal matrix of frequencies, and
the nonlinear forcing term is as follows

fðfÞ ¼ Ar

PN
i¼1wiΨiðfÞPN
i¼1ΨiðfÞ

(45)

where wi are the weights needed to follow any given ro-
tation profile. We estimate the weights by

PN
i¼1wiΨiðfÞPN
i¼1ΨiðfÞ

¼

A�1
r

�
V�1 _ω�

�
αz
�
βz 2 Log

q
�
gq*q

�
� ω

���
,

(46)

where Ar is the 3 × 3 diagonal matrix of amplitude
modulators.

The integration of (44) is done similarly as in (19), that is,

qðt þ δtÞ ¼ Expq
�
δt
2
V ηðtÞ

�
(47)

2.3. Formulation summary

A summary of the existence DMP formulations men-
tioned in the earlier sections is shown in Table 3. The
table shows the variations of the formulation in its
standard shape based on the space that they are applied
to. However, the modifications of this standard shape
(e.g., adding a coupling term) are discussed in the next
section as an extension of the DMP formulations.

3. DMP extensions

3.1. Generalization

A desirable property of motion primitives is the ability to
generalize to unforeseen situations. In this section, we
present approaches that allow to adapt DMP motion tra-
jectories to novel executive contexts.

Figure 7. A classical DMP is used to reproduce a rhythmic motion
(brown solid line in the top left panel). The desired trajectory is
obtained by adding Gaussian noise to yd = cos (2πt) with t 2 [0, 2 ]
s and computing the numerical derivatives with δt = 0.01s (black-
dashed lines). The forcing term is obtained as the weighted
summation of 20 Gaussian bases equally distributed in time
(bottom left panel). The results of the parameter learning procedure
are shown in the bottom right panel. Results are obtained with
the open-source implementation available at https://gitlab.com/
dmp-codes-collection/dmp-classical.
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3.1.1. Start, goal, and scaling. Classical DMPs are time-
invariant, meaning that time scaling ςτ with ς > 0 generates
topologically equivalent trajectories (Ijspeert et al., 2013).
Using a simple modification of the transformation system,
namely, substituting (1) with

τ _z ¼ αzðβzðg � yÞ � zÞ þ ðg � y0Þf ðxÞ (48)

where y0 is the initial value of y, Ijspeert et al. (2013)
show that DMPs are also scale-invariant, meaning that the
scaling of the movement amplitude ς(g � y0) with ς >
0 generates topologically equivalent trajectories. The
purpose of the green color used in (48) is to highlight
differences w.r.t. (1). Kulvicius et al. (2011) use a similar
strategy and scale the forcing term by the ratio between

the start- and end-points of the demonstrated and desired
trajectories. Apart from generating scaled—in time and
space—versions of the demonstrated motion trajectory,
classical DMPs also generalize to different initial/target
states. However, the classical formulation—and its ex-
tension in (48)—may exhibit dangerous behaviors like
over-amplification of the trajectory when reaching a
different target and high accelerations when switching to
a different target on-line (Ijspeert et al. 2013; Pastor et al.
2009). To alleviate the second issue, Ijspeert et al. (2013)
replaced hard goal switches with the smooth switching
law as in (13). However, the over-amplification issue still
remains. Moreover, a DMP that uses (48) fails to learn
motions with the same initial and target states (i.e., g = y0,
z0 = 0 → y(t) = y0 = g "t).

Table 3. Summary of DMP basic formulations.

Type of
movement Space System of equations Reference Short description

Discrete R τ _z ¼ αzðβzðg � yÞ � zÞ þ f ðxÞ
τ y ¼ z
τ x ¼ �αxx

Equations (1)–(3)
(Ijspeert et al.,
2002c)

A single DoF, discrete motion
trajectory is encoded into a linear,
second-order dynamical system
with an additive, nonlinear forcing
term. Convergence to the desired
goal g is ensured by a vanishing
phase variable x.

S3 τ _η ¼ αzðβz2Logqðgq*qÞ � ηÞ + fq (x)
τ _q ¼ 1=2η*q

Equations (16) and
(17) (Abu-Dakka
et al., 2015a)

A quaternion-based orientation
trajectory (3 DoFs) is encoded into
a second-order dynamical system
with an additive, nonlinear forcing
term. The error definition complies
with the geometry of the unit
quaternion space.

SOð3Þ τ _η ¼ αzðβz LogRðRg*RuÞ � ηÞ þ fRðxÞ
τ _R ¼ ½η�×R

Equations (23) and
(24) (Ude et al.,
2014)

A rotation matrix-based orientation
trajectory (3 DoFs) is encoded into
a second-order dynamical system
with an additive, nonlinear forcing
term. The error definition complies
with the geometry of the rotation
matrices space.

Sm
þþ τ _σ ¼ αzðβzvecðBXl1X1ðLogþXl

ðXgÞÞÞ � σÞ þ FðxÞ
τ _ξ ¼ σ

Equations (29) and
(30) (Abu-Dakka
and Kyrki, 2020)

An SPD matrices trajectory, m (m +
1)/2 DoFs, is encoded into a
second-order dynamical system
with an additive, nonlinear forcing
term. The error definition complies
with the geometry of the SPD
matrices space.

Periodic R _z ¼ Vðαðβð�yÞ � zÞ þ f ðfÞÞ
_y ¼ Vz
τ _f ¼ 1

Equations (34)–(36)
(Ijspeert et al.,
2002b)

A single DoF, periodic motion
trajectory is encoded into a linear,
second-order dynamical system
with an additive, nonlinear forcing
term. The resulting system
generates a stable limit cycle.

S3 _η ¼ Vðαzðβz2Logqðgq*qÞ � ηÞ þ fqðfÞÞ
_q ¼ V1=2η*q

Equations (43) and
(44) (Abu-Dakka
et al., 2021)

A quaternion-based orientation
trajectory (3 DoFs) is encoded into
a second-order dynamical system
with an additive, nonlinear forcing
term. The error definition complies
with the geometry of the unit
quaternion space.
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In order to remedy those issues, Pastor et al. (2009)
proposed to modify the transformation system as follows

τ _z ¼ αzðβzðg � y� ðg � y0Þxþ f ðxÞÞ � zÞ (49)

where the green color is used to highlight differences be-
tween (49) and (1). The most important change in this
formulation is the term (g� y0)x that has several benefits. It
prevents high accelerations at the beginning of the motion
(g� y� (g� y0)x = 0 for t = 0) or when the goal is close to
the initial state. It allows to reproduce motions with the same
initial and target states and prevents over-amplifications and
trajectory mirroring effects1 when changing the goal.
Hoffmann et al. (2009) derived a multidimensional repre-
sentation of (49) from the behavior of the spinal force fields
in frogs.

The goal can also change over time and, in this case, the
tracking performance of the DMP mostly depends on the
gains αz and βz. As proposed by Koutras and Doulgeri
(2020b), the tracking performance can be improved by
adapting the temporal scaling τ.

Dragan et al. (2015) showed that DMPs solve a trajectory
optimization problem in order to minimize a particular
Hilbert norm between the demonstration and the new tra-
jectory subject to start and goal constraints. In this light,
DMP adaptation capabilities to different start and goals can
be improved by choosing (or learning) a proper Hilbert
norm that reduces the deformation in the retrieved
trajectory.

3.1.2. Via-points. A via-point can be defined as a point in
the state space where the trajectory has to pass. Failing to
pass a via-point may cause the robot to fail the task exe-
cution. Therefore, having a motion primitive representation
with the capability of modulating the via-points is important
in robotic scenarios. It is not surprising that researchers have
extended the DMP formulation to consider intermediate via-
points in the trajectory generation process.

Ning et al. (2011, 2012) extend the classical DMP to
satisfy position and velocity constraints at the beginning and
at the end of a sample trajectory. Their approach to traverse
via-points consists of creating a sample trajectory by
combining locally linear trajectories connecting the via-
points. This sample trajectory is used to fit a DMP that is
constrained to pass the via-points.

Weitschat and Aschemann (2018) considered each via-
point as an intermediate goal (via-goal) gv for v = 1,…, V to
reach. The last via-goal gV corresponded to the target state of
the DMP. In their formulation, they defined a variable goal
as follows

gviaðxÞ ¼
XV
v¼1

ΨvðxÞgv (50)

where Ψv(x) are the Gaussian basis functions centered at the
time corresponding to the v � th via-goal. The effectiveness
of the approach is demonstrated in a task where the robot has

to reach a different target while preventing possible self-
collisions of the end-effector with the robot body. To this end,
the authors placed the via-goals along the trajectory used to
learn the DMP, forcing the generated trajectory to stay close
to the demonstration while reaching the new target.

The problem of generalizing to via-point close (inter-
polation) and far (extrapolation) from the demonstration is
faced by Zhou et al. (2019). Their approach, namely, Via-
points Movement Primitives (VMPs), combines the benefits
of DMP and Probabilistic Movement Primitives (ProMPs)
(Paraschos et al., 2013). Authors assumed that the motion
trajectory is generated as follows

yvmpðxÞ ¼ eðxÞ þ fvmpðxÞ (51)

where x is the phase variable defined as in (3) and the el-
ementary trajectory e(x) can be defined as the linear attractor
e(x) = (y0 � g)x. The shape modulation term fvmp(x) is
defined as follows

fvmpðxÞ ¼
XN
i¼1

wiΨiðxÞ þ ϵf (52)

where the Gaussian kernelsΨi(x) are defined as in (5), wi are
learnable weights, and ϵf is the Gaussian noise. As detailed
in Paraschos et al. (2013), learning the shape modulation
term fvmp(x) means Learning from Demonstrations (LfDs)
the prior probability distribution of the weights wi. Having
separated the generated trajectory into two parts like in (51)
allows to adopt different strategies to pass a via-point yv at
xv. Zhou et al. (2019) proposed to modify the shape
modulation term for interpolation cases—when the via-
point is “close” to the demonstrations. In extrapolation
cases, instead, the elementary trajectory e(x) is rewritten as
the polygonal line connecting y0, yv, and g. This approach
easily generalizes to the case of multiple via-points. VMPs
are experimentally compared with ProMPs, showing better
performance especially in extrapolation cases.

3.1.3. Task parameters. Reaching a different goal, or
passing through via-points, may not be enough to suc-
cessfully execute a task in a different context. Approaches
presented in this section adapt the DMP motion to new
situations by adjusting the weightswi of the forcing term (4),
which modifies the entire DMP trajectory.

Weitschat et al. (2013) considered that L demonstrations
are given, each encoded in a different DMP. In order to
generalize, for instance, to a new goal gnew, they proposed to
interpolate the weights of nearby DMPs, that is., DMPs that
reached points around gnew. In formulas

wnew ¼

P
"o : do < dmax

wod�1
oP

"o : do < dmax
d�1
o

(53)

where o represents the indices of the nearby DMPs for
which it holds that do < dmax, do is the distance (or, more
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generally, a cost) between gnew and go, dmax is the maximum
distance to consider 2 DMPs close, and wnew = [w1,new, …,
wN,new]

u and wo = [w1,o, …, wN,o]
u are the new weights

and the weight of nearby DMPs, respectively.
The approach by Forte et al. (2011, 2012) also assumes

that L demonstrations are given and that each demon-
stration is encoded in a different DMP. Further, the au-
thors exploited GP (Rasmussen and Williams, 2006) to
learn a mapping between the query points ql for l = 1, …,
L (e.g., the goal of each DMP) and the DMP parameters
[wl, gl, τl]. Given the new query point qnew, Gaussian
Process Regression (GPR) (Rasmussen and Williams,
2006) is used to retrieve the new set of parameters
[wnew, gnew, τnew], that can be used to generate a DMP
motion. This approach builds on previous work (Gams
and Ude, 2009; Ude et al., 2010) where raw data from the
L demonstrations are stored in memory and LWR is used
to generate new DMP weights. Alizadeh et al. (2016)
extend the approach in Ude et al. (2010) to retrieve the
DMP weights even when the task parameters are partially
observable. Finally, Zhou and Asfour (2017) extend the
approach in Ude et al. (2010) to consider task-specific
costs while learning the mapping between query points
and DMP weights.

The aforementioned approaches follow a 2-steps
procedure where first the shape parameters w are esti-
mated given new task parameters and then execute the
DMP. Matsubara et al. (2010, 2011) augmented the
forcing term with a style parameter used to capture human
variability across multiple demonstrations. Stulp et al.
(2013) proposed a 1-step procedure where the DMP
forcing term (4) is reformulated to explicitly depend on
the task parameters. Their experiments show that a 1-step
approach gives more freedom w.r.t. the used regression
technique and increases the generalization performance.
Along the same line, Pervez and Lee (2018) embedded
task parameters directly in the forcing term. The authors
proposed to use a mixture of Gaussians (Cohn et al.,
1996) to learn the mapping between the task parameters
(e.g., new goal and the height of an obstacle) and the
forcing term. Given a new query task parameter, re-
gression over the mixture of Gaussians is used to retrieve
the forcing term parameters and generate the DMP mo-
tion. The approach is tested on a variety of tasks including
sweeping and striking and additionally compared with the
approaches presented by Forte et al. (2012), Stulp et al.
(2013), and Ude et al. (2010) showing better perfor-
mance, especially in extrapolation.

A Mixture of Motor Primitives (MoMP) is proposed
in Mülling et al. (2010, 2013) and used to generalize
table tennis skills like hitting and batting a ball. MoMP
uses an augmented state that contains robot position and
velocity as well as the meta-parameters of the table
tennis task like the expected hitting position and ve-
locity. The adapted motion is generated by the weighted
summation of L DMPs and the responsibility of each
DMP, representing the probability that a particular DMP

is the correct one for the sensed augmented state, is also
learned from data.

In high DoF systems, like humanoid robots, it is non-
trivial to find a relationship between the task and the DMP
parameters. This is especially true when the DMPs are used
to encode joint space trajectories. Bitzer and Vijayakumar
(2009) showed that such a relationship is easier to find in a
latent (lower-dimensional) space obtained from training
data. Therefore, they used dimensionality reduction tech-
niques to find the latent space where to fit a DMP and show
that the interpolation of DMP weights in the latent space
results in better generalization performance.

3.2. Joining multiple DMPs

An important and desired feature of any motion primitive
representation is the possibility to combine basic move-
ments to obtain more complex behaviors (Schaal, 1999). We
review here three prominent approaches developed to
smoothly join a sequence of DMPs. In this tutorial, we name
the approach by Pastor et al. (2009) as velocity threshold,
that in Kober et al. (2010b) as target crossing, and that in
Kulvicius et al. (2011, 2012) as basis functions overlay.
Some of the presented approaches modify the DMP for-
mulations in Sections 2.1.1 and 2.1.2. The main differences
are highlighted with green text. The 3 approaches have been
implemented in MATLAB for both position (Section 2.1.1)
and orientation (Section 2.1.2) DMPs. The source code is
included in our public repository (see Table 4). Results on
synthetic data are shown in Figures 8–11.

3.2.1. Velocity threshold. A properly designed DMP rea-
ches the desired target with zero velocity and acceleration,
that is, once a DMP is fully executed the robot comes to a
full stop. This also implies that the velocity “close” to the
target is continuously decreasing. Using this property,
Pastor et al. (2009) propose to combine successive DMPs
by simply terminating the current DMP when the velocity
is below a certain threshold and then starting the following
primitive. When executing a single DMP, it is a common
practice to initialize its velocity to zero—the robot is
assumed to be still. In principle, this initialization can be
used to sequence multiple DMPs (Lioutikov et al., 2016;
Xu and Wang, 2004), but it may generate discontinuities if
the robot does not fully stop in between two consecutive
primitives. To prevent these discontinuities, Pastor et al.
initialized the state of the current DMP with that of the
previous one.

The velocity threshold approach is simple and effective
since it directly applies to the DMP formulations in Sections
2.1.1 and 2.1.2. For instance, Saveriano et al. (2019)
showed how to join multiple quaternion DMPs2 (see
Section 2.1.2.1) with the velocity threshold approach.

Results in Figure 8 are obtained when the velocity
threshold is applied to merge 2 DMPs separately trained
to fit minimum jerk trajectories (black-dashed lines).
Figures 8(a)–(e) show the position and Figures 8(f)–(j)
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the orientation (unit quaternion) parts of the motion. The
merged trajectory is generated by following the first DMP
until the distance from the via-point is below 0.01 [m] and
0.01 [rad]. As shown in Figures 8(d) and (i), the switch

occurs after about 4.7 [s]. Figures 8(e) and (j) show that
the desired trajectory is accurately reproduced. More or
less accurate trajectories can be obtained by tuning the
distance from the via-point. However, the value of this

Table 4. Open-source implementations of DMP-based approaches that we have released to the community. The source code for each
approach is available at https://gitlab.com/dmp-codes-collection.

Approach Author Language Description

Discrete DMP Fares J. Abu-
Dakka

C++ An implementation for discrete DMP based on the work in Abu-Dakka et al.
(2015a) and Ude et al. (2010, 2014).

Periodic DMP Luka Peternel Python An implementation for periodic DMP based on the work in Peternel et al. (2016).
Unit quaternion
DMP

Fares J. Abu-
Dakka

MATLAB and
C++

An implementation for unit quaternion DMP and goal switching based on the
work in Abu-Dakka et al. (2015a) and Ude et al. (2014).

SPD DMP Fares J. Abu-
Dakka

MATLAB An implementation for SPD DMP and goal switching based on the work in
Abu-Dakka and Kyrki (2020).

Joining DMPs Matteo
Saveriano

MATLAB An implementation for joining multiple DMPs based on the work in Saveriano
et al. (2019).

Coupling-force
DMPs

Aljaz
Kramberger

MATLAB An implementation for discrete DMPs and force coupling terms based on the work
in Kramberger et al. (2018).

Figure 8. Results obtained by applying the zero velocity switch approach to join two DMPs trained on synthetic data. The training
trajectory for the position and the orientation are shown as black-dashed lines in (a)–(b) and (f) –(g), respectively. Results are obtained
with the open-source implementation available at https://gitlab.com/dmp-codes-collection.

Figure 9. Constant goal, moving target, and delayed goal obtained with y (0) = 0 [m]; g = 1 [m]; _by ¼ 0:3 [m/s] (left); and q (0) = 1 + [0, 0,
0]u, gq = 0 + [1, 0, 0]u, and bω ¼ ½0:2; 0:2; 0:2�u [rad/s] (right). The sampling time is δt = 0.01 [s]. Only the scalar part [ieqn7] of the
quaternion is shown for a better visualization.
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distance is the time duration of the generated trajectory—
a bigger (smaller) distance results in a shorter (longer)
trajectory. For instance, in the considered case, the total
motion ends after 9.5 [s] while the demonstration lasts for
10 [s]. Depending on the application, the time difference
may cause failures; therefore, it has to be taken into
account. Finally, the velocity threshold approach may
generate discontinuities if the target of the current DMP is
far from the demonstrated initial point of the following
primitive.

3.2.2. Target crossing. There exist movements like hitting
or batting that are correctly executed only if the target is
reached with a non-zero velocity. To this end, Kober et al.
(2010b) extend the classical DMP formulation in Section
2.1.1 to let the DMP to track a target moving at a given
velocity. In their approach, the DMP passes the target with a
given velocity exactly after T seconds. To achieve this, the
acceleration in (1) is re-written as follows

τ _z ¼ ð1� xÞαz
�
βzðbg � yÞ þ τ

�
_by� _y

��
þ f ðxÞ (54)

Figure 10. Results obtained by applying the target crossing approach to join two DMPs trained on synthetic data. The training trajectory
for the position and the orientation are shown as black-dashed lines in (a)–(b) and (f)–(g), respectively. Results are obtained with the
open-source implementation available at https://gitlab.com/dmp-codes-collection.

Figure 11. Results obtained by applying the basis functions overlay approach to join two DMPs trained on synthetic data. The training
trajectory for the position and the orientation are shown as black dashed lines in (a)–(b) and (f)–(g), respectively. Results are obtained
with the open-source implementation available at https://gitlab.com/dmp-codes-collection.
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where _bym is the desired velocity of the moving target bg,
which is defined as follows

bg ¼ bgð0Þ � _byτlnðxÞ
αx

, (55)

bgð0Þ ¼ g � T _by
τ

(56)

By inspecting (55) and (56), and considering that the
term �τ ln(x)/αx represents the elapsed time if x is the phase
defined in (3), it is possible to show that the moving target bg
is designed to reach the goal g after T seconds, that is,bgðTÞ ¼ g (Figure 9-left). The initial position of the moving
target bgð0Þ is obtained by moving the goal position g for T

seconds at constant velocity � _by. High accelerations at the
beginning of the movement are avoided by the pre-factor
(1� x) which is set to zero at the beginning of the motion (x
(0) = 1). The approach by Nemec and Ude (2012) combines
a moving target and a particular initialization of the sub-
sequent DMP to ensure continuity of the movement up to
second-order derivatives.

Saveriano et al. (2019) extended this idea to quaternion
DMP. The angular acceleration in (16) is modified as follows

τ _η ¼ ð1� xÞαz
�
βz2 Log

q
�bgq*q�þ τðbω� ωÞ

þf qðxÞ,
(57)

where bω is the angular velocity of the moving quaternion targetbgq and 2 Logqðbgq*qÞ measures the error between the current

orientation q and bgq. The pre-factor (1 � x) is used to avoid
high angular accelerations at the beginning of the motion. The
moving target for the quaternion DMPs is defined as follows

bgq ¼ Expq
�
� τlnðxÞ

2αx
bω�*bgqð0Þ,

bgqð0Þ ¼ Expq
�
�T

2
bω�*gq, (58)

where gq is the goal quaternion, T is the time duration of the
DMP, and the exponential map Expq (�) is defined in (20).
As shown in Figure 9-right, the moving targetbgq reaches the
goal orientation after T seconds, that is, bgqðTÞ ¼ gq. This
can be easily verified by considering that the initial value of
the moving target bgqð0Þ is computed by moving the goal
orientation gq for T seconds at the desired velocity �bω.

The presented target crossing approach allows crossing the
target after T seconds. Assuming to have two DMPs with time
duration T1 and T2, respectively, one can join them by running
the first DMP for T1 seconds and then switching to the second
one. As for the velocity threshold approach, possible dis-
continuities at the switching point are prevented by initializing
the state of DMP2 with the final state of DMP1. This procedure
can be repeated to join L ≥ 2 consecutive DMPs.

Results in Figure 10 are obtained when the velocity
threshold is applied for merging 2 separately trained DMPs to

fit the minimum jerk trajectories (black-dashed lines). Figures
10(a)–(e) show the position and Figures 10(f)–(j) the ori-
entation (unit quaternion) parts of the motion. The merged
trajectory is generated by following the first DMP for T1 = 5s
and then switching to the second one. The required inter-
mediate velocity is set to 0.01m/s (rad/s for the orientation) in
each direction. The generated trajectory reaches the goal in
10s, that is, demonstration and execution times are the same.
As required, the via-point is crossed at T = 5s with the desired
velocity (Figures 10(c) and (h)). However, the non-zero
crossing velocity introduces a deformation in the first part
of the trajectory (Figures 10(e) and (j)).

3.2.3. Basis functions overlay. The approach by Kulvicius
et al. (2011, 2012) combines multiple DMPs into a complex
one, guaranteeing a smooth transition between the primi-
tives by ensuring that the basis functions composing f(x) in
(4) overlap at the switching instances. First of all, Kulvicius
et al. adopted a sigmoidal phase variable in (14) instead of
the exponentially decaying one (3). As discussed in Section
2.1.1.3, the sigmoidal phase is ≈1 for the large part of the
motion which makes it possible to use smaller forcing terms
to reproduce the demonstrations. On the contrary, the ex-
ponential phase is close to zero already before Ts (Figure 3),
which results in larger forcing terms.

The classical acceleration dynamics in (1) is modified as
follows

τ _z ¼ αzðβzð~g � yÞ � zÞ þf ðsÞ (59)

Similar to target crossing, Kulvicius et al. used a moving
target ~g in the acceleration dynamics, but called it the
delayed goal function. The ~g term in (59) is obtained by
integrating

τ _~g ¼

(
δt
T
ðg � y0Þ, t ≤ T

0, otherwise
(60)

with ~gð0Þ ¼ y0. The delayed goal function in Figure 9
moves linearly from y0 to g in T seconds and then re-
mains constant, that is, ~gðt ≥ TÞ ¼ g.

The nonlinear forcing term f(s) is in green in (59) because
it slightly differs from the classical one in (4). f(s) is defined
as follows

f ðsÞ ¼
PN

i¼1wiΨiðtÞPN
i¼1ΨiðtÞ

s,

ΨiðtÞ ¼ exp

0B@�

� t

τT
� ci

�2

2σ2i

1CA,

(61)

where σi is the width and ci is the center of the i-th basis
function, and s is obtained by integrating (14). The term t/τT
is used in (61) instead of the phase variable x. Being 0 ≤ t/
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τT ≤ 1, the basis functions are equally spaced between 0 and
1. Finally, σi are the widths of each kernel. They are constant
and depend on the number of kernels.

Having presented the main differences with the canon-
ical approach, it is possible to focus on how Kulvicius et al.
(2012) solved the problem of joining L ≥ 2 DMPs. In
general, each of the LDMPs has a different time duration Tl,
desired target gl, and initial position yl0, from which it is
possible to compute the delayed goal functions by
integrating

τ _~g
l ¼

8><>:
δt

T l

�
gl � yl0

�
,

Xl�1

κ¼1

T κ ≤ t ≤
Xl

κ¼1

T κ

0, otherwise

(62)

Note that, being ~glð0Þ ¼ y0, the acceleration (59) is s. For
this reason, the term (1 � x) used in (54) is not needed
in (59).

Assuming that L DMPs have been trained and that each
DMP has N kernels, we can merge them into one DMP as
follows. The centers of the joined DMP are computed as
follows

�cli ¼

8>>><>>>:
T 1ði� 1Þ

TjoinðN � 1Þ, l ¼ 1

Tlði� 1Þ
TjoinðN � 1Þ þ

1

Tjoin

Xl�1

κ¼1

T κ, otherwise

(63)

where Tl is the duration of the l-th DMP and Tjoin ¼
PL
l¼1

Tl

(duration of the joined motion). The widths of the joined
DMP are computed as follows

�σl
i ¼

σl
iT

l

Tjoin
(64)

The centers and widths computed in (63) and (64), re-
spectively, overlap at the transition points allowing for
smooth transitions between consecutive DMPs. The
weights of the joined DMP are obtained by stacking the N
weights of the LDMPs. Therefore, the joined DMP has N*L
kernels and N*L weights. The phase variable (14) is
modified to run for the duration Tjoin of the joint motion.

Saveriano et al. (2019) extended the basis functions
overlay approach to quaternion DMPs. Assuming that a
sequence of L quaternion DMPs is given. The angular
acceleration in (16) is reformulated for each DMP as follows

τ _ηl ¼ αz
�
βz2 Log

q
�
~glq*q

l
�
� ηl

�
þ f lqðsÞ (65)

where l indicates the l-th quaternion DMP and f lqðsÞ is

defined as in (61). The term ~glq is the quaternion delayed

goal function, and it ranges from ql (0) to glq in Tl seconds

(see Figure 9 [right]). To generate this moving target while

preserving the geometry of S3, it is needed that ~glq moves

along the geodesic connecting ql (0) to glq. Therefore, ~g
l
q is

defined as follows

~glqðt þ δtÞ ¼ Expq
�
τ ~ωlðtÞ
2

�
*~glqðtÞ (66)

where

~ωlðtÞ ¼
2

TlLog
q
�
glq*q

lð0Þ
� Xl�1

κ¼1

T κ ≤ t ≤
Xl

k¼1

T κ

½0, 0, 0�u, otherwise

8>><>>: (67)

The angular velocity in (67) is computed for each l. The
term 2Logqðglq*qlð0ÞÞ represents the angular velocity that

rotates ql (0) into glq in a unit time. Note, that the mappings

Logq(�) and Expq(�) are defined in (18) and (20), respec-

tively. The delayed goal ~glq crosses all the via-goals g
l
q, l ¼

1,…, L� 1 and then reaches the goal gLq .

Results in Figure 11 are obtained when the velocity
threshold is applied to merge 2 DMPs separately trained
to fit the minimum jerk trajectories (black-dashed lines).
Figure 11(a)–(e) show the position and Figure 11(f)–(j)
the orientation (unit quaternion) parts of the motion. This
approach does not require a switching rule and auto-
matically generates a smooth trajectory—with continu-
ous velocity as shown in Figure 11(c) and (h)—that
passes close to the via-point which favors the overall
reproduction accuracy (Figure 11(e) and (j)). However,
the distance from the via-point depends on the weights of
the joined primitives and cannot be separately decided.
The trajectory generated with this approach tends to last
longer than the demonstrations. This is due to the sig-
moidal phase that vanishes after T + δss (Figure 3).
Depending on the application, the time difference may
cause failures and has to be taken into account.

3.3. Online adaptation

The standard periodic DMP learning approach approxi-
mates the shape fd(t) of the input trajectory yd in (39) by
changing the weights of the Gaussian kernel functions
(Ijspeert et al., 2013). Updating of the weights is per-
formed in such a way that the difference between the
reference trajectory and the DMP is reduced at every
control step and gradually throughout the periodic rep-
etitions. However, the DMP can also be reshaped by some
external feedback function to achieve different func-
tionalities for different applications, for instance, tasks
that require trial-and-error approach (Kober et al., 2008),
obstacle avoidance (Ginesi et al., 2021a; Hoffmann et al.,
2009; Park et al., 2008; Tan et al., 2011), coaching (Gams
et al., 2016; Petrič et al., 2014b) for robots, and adaptation
of assistive exoskeleton behavior (Peternel et al., 2016).
Alternatively, the frequency of the existing periodic
DMPs can be modulated online (Gams et al., 2009; Petrič
et al., 2011).
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3.3.1. Robot obstacle avoidance and coaching. In
Hoffmann et al. (2009), Park et al. (2008), and Tan et al.
(2011), the detected obstacle was fitted with a potential field
function to change the shape of the DMP to avoid it. More in
detail, Tan et al. (2011) used the potential field to compute a
time-varying goal and modified the resulting DMP trajec-
tory, while Hoffmann et al. (2009), Park et al. (2008), and
Zhai et al. (2022) added an extra forcing term to the DMP.
Similarly in Gams et al. (2016), the human arm was fitted
with a potential field function, which was used to reshape
the DMP to perform coaching. The potential field was
coupled to the position of the human hand to make pointing
gestures and indicate the direction in which the robot arm
position trajectory should change:

_z ¼ Vðαðβð�yÞ � zÞ þCO þ f Þ (68)

The added coupling term CO is the obstacle avoidance
term that contains the potential field and is given in a
simplified form for the sake of explanation as follows:

CO ¼ dsðkO � ykÞexpð�ζ ðO � yÞÞ (69)

whereO is the obstacle (or human pointing gesture) and y is
the robot position. Exponential and ζ functions determine
the potential field, while function ds controls the distance at
which the perturbation field should start affecting the DMP.
For the full formulation of CO and its parameters, see Gams
et al. (2016). In Rai et al. (2017), the method was extended
to include generalization of the obstacle avoidance for-
mulation in (68). In a recent study, Ginesi et al. (2021a)
proposed a novel approach for implementing volumetric
obstacle avoidance by utilizing the theory of super quadratic
potential functions.

Alternatively, the faulty segment of collision DMP tra-
jectory can also be directly adjusted online by the human
demonstrator (Karlsson et al., 2017b). On the other hand,
the method in Kim et al. (2015) considers obstacle
avoidance as a constraint of an optimization problem, which
modifies the DMP trajectory to prevent collisions.

3.3.2. Robot adaptation based on force feedback. Similarly, as
for obstacle avoidance, task dynamics can also be incorporated
into DMP as coupling terms. In Gams et al. (2014), task
dynamics were coupled on the acceleration and velocity level
of the DMP. The presented method was utilized for interaction
tasks, where the human changed the behavior of the robot
based on the exerted dynamics on the manipulator

τ _z ¼ αzðβzðg � yÞ � zÞ þ _Cf þ f ðxÞ, (70)

τ _y ¼ zþ Cf (71)

whereas the force coupling term Cf = ςF is defined as a
virtual or measured force F and ς is a scaling factor, which
essentially changes the dynamic behavior of the DMP,
enabling the motion primitive to instantly react to the
coupled force. Later, Zhou et al. (2016b) introduced a
PD controller-based coupling term formulation CPD ¼

ςðKPðFd � FeÞ � DV _F
eÞ coupled to the velocity part of the

DMP (71). In the formulation Fd represents the desired
force, Fe is the measured force, ς is a scaling factor, and KP

and DV are the proportional and derivative gains of the
Proportional Derivative (PD) controller, respectively. The
coupling term formulation allows for a controlled adapta-
tion of robot motion to changes in the environment.

In Kramberger et al. (2018) this approach was extended,
with a force feedback loop coupled to the velocity (2) and
the goal g of the DMP. The outcome of this approach is a
similar behavior as an admittance controller (Villani and De
Schutter, 2008), with a difference that the execution is
directly on the trajectory generation level.

τ _z ¼ αzðβzððg þ CaÞ � yÞ � zÞ þ f ðxÞ, (72)

τ _y ¼ zþ _Ca (73)

Here _Ca ¼ ςðFd � FeÞ is the first time-derivative of the
admittance coupling term, which changes the velocity and
consequently the integrated coupling term, the position
output of the DMP. The described approach can be used for
Cartesian space motion, where the forces have to be
substituted for desired and measured torques. This approach
can be implemented in robot tasks involving contact with
the environment as well as contact with humans. The
constrained DMP formulation in Lu et al. (2021) unifies the
formulations described in Sections 3.3.1 and 3.3.2 while
ensuring stability of the generated motion.

3.3.3. Exoskeleton joint torque adaptation. In Peternel et al.
(2016), human effort was used to provide information about
the direction in which the assistive exoskeleton joint torque
DMP should change in order to minimize it. The human was
included into the robot control loop by replacing the error
calculation in (41) with the human effort feedback termU(E):

wi

�
tjþ1

�
¼ wi

�
tj
�
þ ΨiPi

�
tjþ1

�
UðEÞ (74)

where E(t) is the current effort measured by human muscle
activity through Electromyography (EMG) signals.3

Equations (34)–(38) and (42) are used in the original form.
Equations (39)–(41) are not used, since (74) is used to
modulate the weights in (37) instead.

The effort feedback term U(E) closes the loop and acts as
feedback for adapting the weights of Gaussian kernels that
define the shape of the trajectory. A positive U(E) increases,
while a negative U(E) decreases the values of weights at a
given section of the periodic DMP that encodes joint torque.
If the shape of the DMP does not provide enough assistive
power, the human has to exert effort (i.e.,muscle activity) to
produce the rest of the power required to achieve the desired
task under given dynamics. In turn, muscle activity feed-
back then increases the magnitude of the DMP until the
human effort term U(E) is minimized. Note that each joint
has its own torque DMP and U(E) term (Peternel et al.,
2016). After that point, the DMPs do not change unless the
task, dynamics, or conditions change. If they change, the
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human has to compensate for the change by an additional
muscle activity, which in turn adapts the DMPs to the new
required joint torques.

3.3.4. Trajectory adaptation based on reference velocity. In
many LfD scenarios, it is desired to modify both the spatial
motion and the speed of the learned motion at any stage of
the execution. Speed-scaled dynamic motion primitives first
presented in Nemec et al. (2013a) are applied for the un-
derlying task representation. The original DMP formula-
tions from (1) and (2) were extended by adding a temporal
scaling factor υ on the velocity level of the DMP

υðxÞτ _z ¼ αzðβzðg � yÞ � zÞ þ f ðxÞ, (75)

υðxÞτ _y ¼ z (76)

From (75) and (76), it is evident that the velocity term is a
function of phase and therefore encoded with a set of RBFs
similarly as in (4). This method allows for modification of the
spatial motion as well as the speed of the execution at any stage
of the trajectory execution. The authors demonstrated the
proposed method in a learning scenario, where after every
learning cycle (using Iterative Learning Control [ILC]) a new
velocity profile was encoded based on the wrench feedback
and thus converged to an optimal velocity for the specific task.
Vuga et al. (2016) extended the approach by incorporating a
compact representation for non-uniformly accelerated motion
as well as simple modulation of the movement parameters.

Later on, in Nemec et al. (2018) the authors extended the
previous approach to also incorporate velocity scaling of the
encoded orientation trajectories represented with unit quater-
nions. The outcome of the presented work is a unified ap-
proach to velocity scaling for tasks executed in Cartesian
space. Furthermore, a reformulation of the velocity approach
called Arc-Length-DMPs (AL-DMPs) was presented by
Gašpar et al. (2018). In this work, they present a method,
where the spatial and temporal components of the motion are
separated, by means of the arc-length based on the time-
parameterized trajectory. Arc-length, based on the differential
geometry of curves, is related to the speed of the movement,
given as the time derivative of the demonstrated trajectory. The
approach is well suited when multiple demonstrations are
compared for the extraction of relevant information for
learning. Following the AL-DMPs idea, Simonič et al. (2021)
introduced a constant speedDMPs to fully decouple the spatial
and temporal part of the task. Pahic et al. (2021) used deep NN
to map images into spatial paths represented by AL-DMPs.
Weitschat and Aschemann (2018) added an extra forcing term
to keep the velocity within a certain predefined limit. The aim
of this work is to guarantee a safe execution of the robot task
when interacting with humans, as well as provide a framework
for safe interaction in a changing environment where the robot
position and velocity have to change over time. For a full
formulation of the coupling term, see Weitschat and
Aschemann (2018).

Tomaintain consistency along the trajectory while ensuring
a bounded velocity for each DoF, it is essential to decrease the
velocities uniformly across all dimensions. This rationale
prompts the consideration of temporal coupling, which in-
volves modifying the DMP time constant, equivalent to the
duration of path traversal, rather than spatial coupling. By
increasing the time constant, the temporal evolution of all
DoFs can be simultaneously reduced by the same factor. A
temporal coupling approach based on tracking error was in-
troduced in Ijspeert et al. (2013) and an enhanced version was
proposed in Karlsson et al. (2017a). However, this method
requires distorting the path in order to slow down the trajectory,
and therefore, it cannot be directly utilized to limit the velocity
or acceleration. One year later, the authors provided stability
analysis of temporally coupledDMPs in Karlsson et al. (2018).
Dahlin and Karayiannidis (2020) in their work proposed a
temporal coupling based on a repulsive potential, keeping the
DMP velocity within the predefined velocity limits while
ensuring the path shape invariance. Subsequently, Dahlin and
Karayiannidis (2021) introduced a temporal coupling method
for DMPs that enables control over the velocity and accel-
eration constraints of the generated trajectory. This approach
incorporates a filtering mechanism that proactively decelerates
the trajectory as the acceleration constraints are approached,
thereby mitigating the potential risk of infeasibility.

3.4. Robots with flexible joints

DMPs are commonly employed for generating trajectories
in manipulators with noticeable elasticity. This choice is
often justified by the relatively low execution speeds, re-
sulting in lower acceleration and jerk levels. However, when
rapid motions with high acceleration and jerk are required,
combining DMPs for trajectory generation with inverse
dynamics for feedforward controls can lead to oscillations in
robots with flexible modes. In industrial settings, where
execution speed is typically faster than the speed during
demonstration due to cycle time requirements, this becomes
a significant challenge. To overcome this issue, Wahrburg
et al. (2021) proposed an extended framework for DMPs
toward flexible joint robots, dominated as FlexDMP, by
introducing a fourth-order system for generating trajectories
as follows

τ
:::
z ¼ α1ðα2ðα3ðα4ðg � yÞ � zÞ � _zÞ � €zÞ þ f ðxÞ, (77)

τ
:::
y ¼ €z, (78)

τ€y ¼ _z, (79)

τ _y ¼ z (80)

where y, _y, €y,
:::
y are position, velocity, acceleration, and jerk,

respectively. The canonical system and forcing terms are
similar to the ones in (3) and (4). For critically damped system
α1 = 4β, α2 = 3/2β, α3 = 2/3β, and α4 = 1/4β, where β > 0.
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3.5. Alternative formulations

LfD is a wide research area, and many different approaches
have been developed to reproduce human demonstrations
(Billard et al., 2016). As already mentioned, the aim of this
tutorial survey is to provide a comprehensive overview of
DMP research, and we intentionally skip the rich literature
in the field of LfD. However, we found some representa-
tions that are closely related to the DMP formulation. This
section briefly reviews them.

Calinon et al. (2009) computed an acceleration command
for the robot in a PD-like form

€y ¼ KPðyd � yÞ þ DVð _yd � _yÞ

where KP is a stiffness and DV a damping gain, y is the
measured state of the robot and _y its time derivative (ve-
locity), and yd and _yd are desired position and velocity
retrieved with GMR, respectively. Authors then showed that
the acceleration command €y can be seen as a mixture of
linear dynamics, each converging to a certain attractor.
Despite later work like Kormushev et al. (2010) referred to
this representation as “a modified version” of DMPs, there
are significant differences with the DMP formulation
properly highlighted by Calinon et al. (2012).

Herzog et al. (2016) computed an acceleration command
for the robot from the linear system

€y ¼ u ¼ KPðyd � yÞ

where y is the measured state of the robot, yd is a human
demonstration, and KP is a control gain computed using
the linear-quadratic regulator method. Then, a compact
representation of the control input trajectory u is com-
puted by means of Chebyshev polynomials. This repre-
sentation does not require a vanishing phase variable to
ensure convergence, but the generalization to different
start/goal positions requires the application of the linear-
quadratic regulator method to find a new sequence of
control inputs.

Regarding periodic motions, Ajallooeian et al. (2013)
proposed a dynamical system-based framework to learn
rhythmic movements with an arbitrary shape and basin of
attraction. They exploit phase-based scaling functions to
represent the mapping between a known, base limit cycle
and a desired periodic orbit. The basic limit cycle can be, for
example, the one generated by periodic DMPs, which
makes the approach of Ajallooeian et al. (2013) a more
general formulation of periodic primitives.

4. DMPs integration in complex frameworks

This section reviews approaches where DMPs have been
integrated into bigger executive frameworks. We categorize
these approaches into five main research areas, namely,
grasping and manipulation, impedance learning, rein-
forcement learning, deep learning, and incremental and
life-long learning.

4.1. Manipulation tasks

4.1.1. Grasping and tool usage. Successfully grasping an
object is the first step toward robotic manipulation.
Grasping necessitates the perception of the environment,
particularly visual perception, to locate the object and de-
termine suitable grasping points based on its geometric
characteristics. In this context, even slight uncertainties can
lead to object slippage and failed grasps. To improve the
robustness of vision-driven grasping, Krömer et al. (2010a)
augmented DMPs with a potential field based on visual
descriptors to adapt hand and finger trajectories according to
the local geometry of the object. This grasping strategy was
integrated within a hierarchical control architecture where
the upper level determines the object’s grasp location and
the lower level locally adjusts the motion to achieve a robust
grasp of the object (Krömer et al., 2010b). Stein et al. (2014)
proposed a point cloud segmentation approach based on the
convexity and concavity of surfaces. This approach is
particularly well-suited for recognizing object handles, and
DMPs are employed to execute grasping with a real robot.

The ability to grasp and use tools is also desirable to
perform daily-life manipulation. In this respect, Guerin et al.
(2014) proposed the so-called tool movement primitives that
transform the demonstrations in a tool affordance frame. The
result is a motion that generalizes to different tool poses and to
tools that share the same affordance(s). Li and Fritz (2015)
considered tool usage with low-cost, non-dexterous grippers
and propose a framework to learn bi-manual strategies for tool
usage and compensate for the lack of dexterity. Bi-manual
robotic manipulation is a challenging task that requires precise
coordination between hand movements and adherence to
spatial constraints. Thota et al. (2016) developed a DMP-based
control framework for bi-manual manipulation that ensures
time synchronization of the two hands while being robust to
spatial perturbations and goal changes.

4.1.2. Motion primitives sequencing. Beyond object
grasping, everyday manipulation requires a precise execution
of complex movements. Often such complex movements are
hard to encode into a single motion primitive, but they can be
conveniently split into simpler motions (e.g., reach and grasp)
that can be properly sequenced and executed (Figure 12).

The possibility of exploiting DMPs as the building blocks
of complex tasks was investigated in Caccavale et al. (2018,
2019) and Ramirez-Amaro et al. (2015). In these works, a
human teacher demonstrated a relatively complex task con-
sisting of several actions performed on different objects. The
demonstration was then automatically segmented intoM basic
motions used to fit M DMPs. While Ramirez-Amaro et al.
(2015) exploit semantic rules (e.g., reach an object with a knife
means cut) to infer high-level human activities, Caccavale et al.
built a hierarchical structure to schedule the execution of the
complex task by selecting the proper DMP for the current
executive context. They used kinesthetic teaching and verbal
cues (open/close gripper commands) to provide task dem-
onstrations. Schwaner et al. (2021) used DMPs to build a
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library of surgical skills which used to autonomously execute
part of a suturing task. Lemme et al. (2014) organize seg-
mented task demonstrations into a motion primitives’ library
learned from self-generated trajectory patches. They also in-
troduced a mechanism to remove unused skills and update the
library. Kinesthetic teaching and haptic feedback were also
used by Eiband et al. (2019) to segment and recognize basic
motions or skills and to build a tree describing geometric
relationships—like reference frames and goal poses—between
consecutive skills. At run time, the robot performed haptic
exploration to locate objects in the scene and update the skill
tree. The transformations in the skill tree were then used to
define the initial and goal pose of the DMPs and execute the
task. Finally,Wu et al. (2018) integrated DMPs into a dialogue
system with speech and ontology to learn or re-learn a task
using natural interaction modalities.

4.1.3. Data collection. Collecting demonstrations becomes
an issue of kinesthetic teaching or marker-based motion
trackers cannot be used. The latter requires an expensive
sensor infrastructure that is hard to build in real-world
scenarios like factory floors. Kinesthetic teaching needs
torque-controlled/collaborative robots that are still un-
common in industrial scenarios. To remedy this issue, Mao
et al. (2015) exploited a low-cost RGB-D camera and track
the human hand using the markerless approach proposed by
Oikonomidis et al. (2011). Collected data were then seg-
mented into basic motions and used to fit DMPs. Also, the
approach in Yang et al. (2022) does not require tracking
markers or manual annotations. Instead, authors exploit
videos of random unpaired interactions with objects by the
robot and human for unsupervised learning of a keypoint

model of visual correspondences. Bayesian optimization is
then used to find the parameters of rhythmic DMPs from a
single human video demonstration within a few robot trials.

The described approaches assume that human teachers
always provide consistent and noiseless task demonstrations.
Ghalamzan E. et al. (2015) encoded noisy demonstrations
into a GMM and computed a noise-free trajectory using
GMR. The noise-free trajectory was then used to fit a DMP
that generalized to different start, goal, and obstacle con-
figurations. Dong et al. (2023) propose to fit a DMP from
correct (positive) and incorrect (negative) demonstrations to
increase the representation and generalization capabilities of
the model. Niekum et al. (2012, 2015) designed a framework
that learns from unstructured demonstrations by segmenting
the task demonstrations, recognizing similar skills, and
generalizing the task execution. Interestingly, a user study on
10 volunteers conducted by Gutzeit et al. (2018) showed that
existing strategies for segmentation and learning are suffi-
ciently robust to enable automatic transfer of manipulation
skills from humans to robots in a reasonable time.

4.1.4. Task learning and execution. Some work (Deniša
and Ude, 2013a, 2013b, 2015; Denisa et al., 2021) exploited
transition graphs and trees to embed parts of a trajectory and
search algorithms to discover a sequence of partial parts and
generate motions that have not been demonstrated. Ap-
proaches that rely on a hierarchical, tree-like structure
to represent the task have limited task generalization ca-
pabilities. Lee and Suh (2013) used probabilistic inference
and object affordances to infer the adequate skill that can
handle uncertainties in the executive context. Beetz et al.
(2010) learned stereotypical task solutions from observation

Figure 12. An example of hierarchical task decomposition and motion primitives sequencing from Agostini et al. (2020).
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and used task planning and symbolic reasoning to execute
novel mobile manipulation tasks. A generative learning
framework was proposed by Wörgötter et al. (2015) to
augment the robot’s knowledge base with missing in-
formation at different levels of the cognitive architecture,
including symbolic planning as well as object and action
properties. Paxton et al. (2016) used task and motion
planning to generalize the execution of complex as-
sembly tasks and proposed a learning by demonstration
approach to ground symbolic actions. Agostini et al.
(2020) performed task and motion planning by com-
bining an object-centric description of geometric rela-
tions between objects in the scene, a symbol to motion
hierarchical decomposition depending on three consec-
utive actions in the plan, and the LfD approach developed
in Caccavale et al. (2019) (Figure 12). A manipulation
task was described at three different levels by Aein et al.
(2013). The top level provides symbolic descriptions of
actions, objects, and their relationships. The mid-level
uses a finite state machine to generate a sequence of
action primitives grounded by the lower level. A common
point among these approaches is that they use DMP to
execute the task on real robots.

4.2. Variable impedance learning control

Impedance control can be used to achieve compliant mo-
tions, in which the controller resembles a virtual spring–
damper system between the environment and robot end-
effector (Hogan, 1985). Such an approach permits smooth,
safe, and energy-efficient interaction between robots and
environments (possibly humans). A standard model for such
interaction is defined as follows

M€yt ¼ KP
t

�
yg � yt

�
� DV

t _yt þ f et , (81)

I _ωt ¼ KO
t

�
LogR

�
RgRt

u
��

� DW
t ωt þ τet (82)

where (81) and (82) correspond to translational and rota-
tional cases, respectively, M,KP

t , andD
V
t are the mass,

stiffness, and damping matrices, respectively, for transla-
tional motion, while I ,KO

t , andD
W
t are the moment of

inertia, stiffness, and damping matrices, respectively, for

rotational motion. bR,Rt 2SOð3Þ are rotation matrices and
correspond to desired rotation goal and actual orientation
profile of the end-effector, respectively. f et and τet represent
the external force and torque applied to the robot end-
effector, respectively.

In fact, Variable Impedance Control (VIC) plays an im-
portant role when a robot needs to interact with any envi-
ronment in order to avoid high impact forces and damage for
the environment or the robot (i.e., change to low stiffness)
(Ajoudani et al., 2012; Abu-Dakka et al., 2018; Peternel et al.,
2018a). On the other hand, it is important in rejecting un-
expected and unpredictable perturbations from the environ-
ment to achieve the desired position tracking precision (i.e.,

change to high stiffness) (Yang et al., 2011). In addition, it is
also important in the coordination of human–robot collab-
orative movements (Peternel et al., 2017b). However, a ro-
botic system still needs to learn how to adapt such VIC to
unseen situations while avoiding hard-coding. Such a para-
digm of learning is called Variable Impedance Learning
Control (VILC). Interested readers can refer to our recent
survey on VILC (Abu-Dakka and Saveriano, 2020) or tel-
eimpedance (Peternel and Ajoudani, 2022).

In this review, we will mention some of the works that
integrate DMP with VIC in a VILC framework. Figure 13
shows a simple generic example where DMP is integrated in
a VIC control scheme.

Buchli et al. (2011a) proposed one of the earliest ap-
proaches that integrates DMP with Policy Improvement
with Path Integrals (PI2) algorithm (Theodorou et al., 2010)
to learn movements (position and velocity presented by
DMP) while optimizing impedance parameters. Later, the
authors exploited a diagonal stiffness matrix and expressed
the variation (time derivative) of each diagonal entry as
follows

_kqj , t ¼ αj
�
tj

u
�
qj þ ϵj, t

�
� kqj , t

�
, j ¼ 1,…, J (83)

where j indicates the j-th joint, kqj , t is the stiffness of joint j,
ϵj,t is a time-dependent exploration noise, each tj is a
vector of N Gaussian basis functions, and qj are the
learnable parameters for joint j. The stiffness parameteri-
zation in (83) is also linear in the parameters, and PI2 can be
applied to find the optimal policy. Later, authors used PI2 to
learn VIC in deterministic and stochastic force fields (Stulp
et al., 2012a). Nakanishi et al. (2011) proposed a method
that optimizes a periodic motion along with a time-varying
joint stiffness.

Basa and Schneider (2015) introduced an extension to
DMP formulation by adding a second nonlinear function to
cope with elastic robots as follows

τ _z ¼ αzðβzðg � yÞ � zÞ þ f ðxÞ þ f2 (84)

where f2 is defined as (4) but without the phase variable x. The
main purpose of f2 is to compensate for the gravitational in-
fluence on the moved DoF at the end of the movement time
and beyond. Differently, Haddadin et al. (2016) used optimal
control to execute near-optimal motion of elastic robots.

Nemec et al. (2016) proposed a cooperative control
scheme that enables a dual-arm robot to adapt its
stiffness online along with the executed trajectory in
order to provide accurate evolution. Umlauft et al.
(2017) used GP along with DMPs (as proposed in
Fanger et al. (2016)) to predict the trajectories. During
the execution, their admittance controller adapts both
stiffness and damping online. The energy-tanks
passivity-based control method has been integrated
with DMPs to enforce passivity in order to stably adapt
to contacts in unknown environments by adapting the
stiffness online (Shahriari et al., 2017; Kramberger et al.,
2018; Kastritsi et al., 2018).
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Methods in Bian et al. (2019), Peternel et al. (2014,
2018b, 2018a), and Yang et al. (2018, 2019) designed
different multi-modal interfaces to let the human to ex-
plicitly teach an impedance behavior to the robot. Most of
them combined EMG-based variable impedance skill
transfer with DMP-based motion sequence planning, in-
heriting the merits of these two aspects for robotic skill
acquisition. Hu et al. (2018) used Covariance Matrix
Adaptation-Evolution Strategies (CMA-ES) to update the
parameters of DMPs and variable impedance controller in
order to reduce the impact during the robot motion in noisy
environments. Dometios et al. (2018) integrated a Coor-
dinate Change-DMPs (CC-DMP) with a vision-based
motion planning method to adapt the reference path of a
robot’s end-effector and allow the execution of washing
actions.

Travers et al. (2016, 2018) proposed a shape-based
compliance controller for the first time in locomotion, by
implementing amplitude compliance on a snake robot
moving in a complex environment with obstacles. Their
approaches allow snake-like robots to blindly adapt to such
complex unstructured terrains, thanks to their propriocep-
tive gait compliance techniques.

Recently, an adaptive admittance controller is pro-
posed (Wang et al., 2020) which integrates GMR for the
extraction of human motion characteristics, DMP to
encode a generalizable robot motion, and an RBF-NN-
based controller for trajectory tracking during the re-
production phase. In their work, Spector and
Zacksenhouse (2021) introduced a residual admittance
policy within the framework of DMPs. This policy ex-
plicitly learned full asymmetric stiffness matrices and
aimed to correct the movements generated by a baseline
policy. The effectiveness of the learned policy was
demonstrated through successful peg insertion tasks in-
volving various shapes and sizes of pegs. Additionally,
the policy exhibited robustness in handling uncertainties
in hole location and peg orientation and showed good
generalization to new shapes. Moreover, the learned
policy demonstrated successful transferability from
simulations to real-world scenarios.

Novel LfD approaches explicitly take into account that
training data are possibly generated by certain Riemannian
manifolds with associated metrics. Abu-Dakka and Kyrki
(2020) reformulated DMPs based on Riemannian metrics,
such that the resulting formulation can operate with SPD
data in the SPD manifold. Their formulation is capable to
adapt to a new goal-SPD-point.

Recently, biomimetic controller has been integrated with
DMPs (Zeng et al., 2021) in order to learn and adapt
compliance skills.

4.3. Reinforcement Learning (RL)

In RL, an agent tries to improve its behavior via trial-and-
error by exploring different strategies (actions) and re-
ceiving a feedback (reward) on the outcome of its actions.
Actions a are drawn from a policy π(s, a) that represents a
mapping between states s and actions a. The goal of RL is to
find an optimal policy π+ that maximizes the cumulative
expected reward, that is, the sum of expected rewards over a
possibly infinite time interval. When the agent is a robot
performing tasks in the real world, the state and action
spaces are inherently continuous. Moreover, the robotic
agent is affected by imperfect (e.g., noisy) perception and
inaccurate models (e.g., contacts). Finally, performing a
large amount of interactions with the real world (rollouts) is
expensive and possibly dangerous. As discussed by Kober
et al. (2013), robotic-specific challenges require specific
solutions to make the RL problem feasible.

4.3.1. DMPs as control policies. One possibility is to use
parameterized policy and use RL to search for an optimal,
finite set of policy parameters. In this respect, DMPs have
been widely used as policy parameterization. The general
idea is shown in Figure 14. More in detail, (Peters and
Schaal, 2008a; Schaal, 2006) showed that various policy
gradient and actor-critic RL approaches can be effectively
applied to improve robotic skills parameterized as DMPs.
Other research focused on developing policy search algo-
rithms specifically for parameterized policies. Inspired by
stochastic optimal control, Theodorou et al. (2010)

Figure 13. General control scheme of VIC and DMP.
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proposed PI2 which is an application of path integral op-
timal control to DMPs. PI2 and DMPs have been suc-
cessfully applied in several domains including VILC
(Buchli et al., 2011a, 2011b) and in-contact tasks (Hazara
and Kyrki, 2016), grasping under-state estimation uncer-
tainties (Stulp et al., 2011a), bi-manual manipulation (Zhao
et al., 2020), nonprehensile manipulation (Sun et al., 2022),
and robot-assisted endovascular intervention (Chi et al.,
2018). Kober and Peters (2011) derived from expectation-
maximization the so-called Policy Learning by Weighting
Exploration with the Returns (PoWER). PoWER and DMPs
have been successfully applied to perform highly dynamic
tasks including ball-in-a-cup (Kober and Peters, 2011) and
pancake flipping (Kormushev et al., 2010).

4.3.2. Limit the search space. Even with parameterized
policies the number of rollouts needs to search for optimal
policy parameters may become large, especially for robots
with many DoFs. Dimensionality reduction techniques can
be exploited to perform policy search in a reduced space
(Colomé and Torras, 2014). The effectiveness of this ap-
proach was demonstrated in the challenging task of clothes
(i.e., soft tissues) manipulation (Colomé and Torras, 2018).
IL arises as an effective approach to policy initialization and
to speed up policy search by reducing the number of rollouts
(Kober and Peters, 2010). In this respect, Kober et al. (2008,
2010a) augmented DMPs with a perceptual coupling term
and propose to initialize the DMP via human imitation and
to refine the motor skill via RL. IL can be eventually
combined with dimensionality reduction (Tan and
Kawamura, 2011), and several rollouts can be performed
firstly in simulation (Cohen and Berman, 2014) to further
speed up the policy search. When multiple demonstrations
are given, one can learn a mapping between policy pa-
rameters and query points (e.g., goal positions) and use the
mapping to generalize to new situations (Section 3.1.3).
This strategy was used by Nemec et al. (2011, 2012, 2013b)
to provide a good initial policy for a new situation which is
then further refined using RL. Being the mapping estimated
using example query points, the search space can be ef-
fectively constrained within query points making the policy
search more efficient. Vuga et al. (2015a, 2015b) combined

this approach with a different DMP formulation to optimize
the velocity of execution. The approach was tested on di-
verse tasks including pouring water into a cup, where it
prevented the water to split from the cup during the motion.
Schroecker et al. (2016) provided demonstrations in the
form of soft via-points (Section 3.1.2) which reduce the
search space to the neighborhood of the taught via-points.
Multiple demonstrations were used by Reinhart and Steil
(2014, 2015) to build a parameterized skill memory that
connects low-dimensional skill parameterization to motion
primitive parameters. This low-dimensional embedding is
then leveraged for efficient policy search. Instead of
learning a mapping from task to policy parameters, Queißer
et al. (2016) used data from the rollouts to incrementally
learn a parametric skill (bootstrapping) and used it to
generate a good initial policy for a new task.

4.3.3. DMP generalization and sequencing. Instead of
using generalization to provide a better initial policy, some
researchers exploit RL to improve and generalize the motion
primitive. André et al. (2015) adapted DMP policies to walk
on sloped terrains. Mülling et al. (2010) generalized to new
situations using a mixture of DMPs. In their approach, RL
was used to estimate the shape parameters as well as to
estimate the optimal responsibility of each DMP. Mülling
et al. (2013) used episodic RL to estimate meta-parameters
like the temporal and spatial interception point of the ball
and the racket typical of table tennis tasks. Lundell et al.
(2017) used parameterized kernel weights and RL to search
for optimal parameters, while Forte et al. (2015) augmented
the given demonstration using RL-based state space ex-
ploration to autonomously expand the robot’s task
knowledge. Metric RL was exploited by Hangl et al. (2015)
to smoothly switch between learned DMP policies and
execute a task in new situations.

RL can be also applied to sequence multiple motion
primitives and perform more complex tasks; a successful
strategy when the robot has to perform, for instance, a
manipulation task (Section 4.1). To sequence multiple
primitives, it is also of importance to learn the goal of
each motion. Tamosiunaite et al. (2011) used continuous
value function approximation to optimize the goal pa-
rameters of a DMP used to perform a pouring task. Kober
et al. (2011, 2012) learned a meta-parameter function that
maps the current state to a set of meta-parameters in-
cluding the goal and duration of the movement. Instead of
separating shape and goal learning into different pro-
cesses, Stulp et al., 2011b, 2012) extended PI2 to si-
multaneously learn the shape and goal of a sequence of
DMPs. Wang et al. (2022) describe both complex ma-
nipulation tasks and user execution preferences as logic
and temporal constraints and use RL to find a set of DMP
parameters that fulfill the constraints.

4.3.4. Skills transfer. Learned skills can be potentially
transferred across different tasks to speed up the learning
process and increase robot autonomy. To this end, Fabisch and

Figure 14. General block scheme of DMP-based policy
improvement.
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Metzen (2014) considered the case where the robot can ac-
tively choose which task to learn to make the best progress in
learning. The process of actively selecting the task was
considered as a non-stationary bandit problem for which a
suitable algorithmic solution exists while intrinsic motivation
heuristics were exploited to reward the agent after the selec-
tion. Cho et al. (2019) defined the complexity of a motor skill
based on the temporal and spatial entropy of multiple dem-
onstrations and used the measured complexity to generate an
order for learning and transferring motor skills. Their exper-
imental findings provided useful guidelines for skill learning
and transfer. In short, humans have to demonstrate, when
possible, the most complex task and then the robot is able to
transfer the motor skills. Vice versa, if demonstrations are not
given, it is more effective to start learning simple skills first and
then transfer the simpler skills to more complex tasks.

4.3.5. Learning hierarchical skills. RL often lacks scal-
ability to high-dimensional continuous state and action
spaces. To remedy this issue, hierarchical RL exploits a
divide et impera approach by decomposing an RL problem
into a hierarchy of sub-tasks in order to reduce the search
space. Different levels in the hierarchy represent informa-
tion at different times and/or spatial scales.

Stulp and Schaal (2011) proposed to represent different
options as DMPs to sequence. PI2 was extended to opti-
mize shape and (sub-)goal of each DMP at different levels
of temporal abstraction. In particular, the shape was ad-
justed based on the cost up to the next primitive in the
sequence, while the sub-goal considers the cost of the
entire sequence of two DMPs. Layered direct policy search
in End et al. (2017) did not rely on a set of predefined sub-
policies and/or sub-goals but instead used information
theoretic principles to uncover a set of diverse sub-policies
and sub-goals.

Reducing the number of rollouts required to discover
optimal policies is also important in Hierarchical RL
(HRL). As already mentioned, IL is a valuable option to
find good initial policies. However, there are applications
like manipulation with multi-fingered robotics hands for
which it is hard or impossible to provide expert demon-
strations. To make policy search more efficient, Ojer De
Andres et al. (2018) used HRL where the upper level
considers discrete action and state spaces to search for
optimal finger gaiting and synchronization among the
fingers. This information was passed to the lower level
where rhythmic DMPs and PI2 generated continuous
commands for the fingers. Another possibility to increase
data-efficiency is to use model-based approaches for RL.
Colome et al. (2015) exploited a friction model to improve
a DMP policy and manipulate soft tissues (a scarf). A
model-based HRL approach was proposed by Kupcsik
et al. (2017) for data-efficient learning of upper level
policies that generalize well across different executive
contexts. Li et al. (2018) proposed a hybrid hierarchical
framework where the higher level computes optimal plans
in Cartesian space and converts them to desired joint

targets using an efficient solver. The lower level is then
responsible to learn joint space trajectories under uncer-
tainties using RL and DMPs. Recently, Davchev et al.
(2022) proposed residual LfD, a framework that combines
DMPs and RL to learn a residual correction policy for
assembly tasks. In the paper, they show that applying
residual learning directly in task space and operating on
the full pose of the robot can significantly improve the
overall performance of the DMPs.

4.4. Deep learning

A popular method of machine learning is NNs. Due to their
non-parametric nature, they can effectively represent non-
linear mappings. A major drawback of NNs in the past was
their computational complexity of learning. In recent years,
there is a renewed interest in NNs. New deep learning
approaches were successfully (LeCun et al., 2015) applied
in machine vision and language processing.

In recent years, deep learning has been applied also in
robotics to learn task dynamics (Yang et al., 2016) and
movement dimensionality reduction (Chen et al., 2015).
The authors (Chen et al., 2015, 2016) introduced a
framework called AutoEncoded DMP (AEDMP) which
uses deep auto-encoders to find movements represented in
latent feature space. In this space DMPs can optimally be
generalized to new tasks, as well as the architecture enables
the DMPs to be trained as a unit. Pervez et al. (2017b) in
their work coupled the vision perception data for object
calcification with task-specific movement definitions rep-
resented with DMPs. The data was modeled with Con-
volutional Neural Networks (CNNs), where the images and
the associated movements were directly processed by the
deep NN, thus preserving the associated DMP properties
and eliminating the need for extracting the task parameters
during motion reproduction. Later on, Kim et al. (2018b)
combined deep RL with DMPs to learn and generalize
robotic skills from demonstration. The framework builds on
an RL approach to learn and optimize a new DMP skill
based on a demonstration. The RL approach is backed up
with a hierarchical search strategy, reducing the search
space for the robot, which allows for more efficient learning
of complex tasks. Furthermore, Pan and Manocha (2018)
presented a deep learning approach for motion planning of
high-dimensional deformable robots in complex environ-
ments. The locomotion skills are encoded with DMPs, and
an NN is trained for obstacle avoidance and navigation. The
data is further optimized with deep Q-Learning showing
that the learned planner can efficiently plan and navigate
tasks for high-dimensional robots in real-time.

Pahic et al. (2018) proposed a deep learning approach for
perception-action couplings, demonstrating the coupling
between the vision-based images and associated movement
trajectories. Later on, they extended the approach to in-
corporate CNNs and give a distinguishing property for-
mulation for the approach (Pahič et al., 2020), which utilizes
a loss function to measure the physical distance between the
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movement trajectories as opposed to measuring the distance
between the DMPs parameters which have no physical
meaning, leading to better performance of the algorithm.
Recently, they extended the usage of GPR to create a da-
tabase needed to train autoencoder NNs for dimensionality
reduction (Lončarević et al., 2021). Mavsar et al. (2022) in
their work presented a recurrent neural architecture, capable
of transforming variable-length input motion videos into a
set of parameters describing a robot trajectory which is later
encoded with DMP, where predictions can be made after
receiving only a few frames, in addition, a simulation en-
vironment is utilized to expand the training database and to
improve the generalization capability of the network, which
is used for handover robotic tasks. Furthermore, Jaques et al.
(2021) in their study introduced the Newtonian Variational
Autoencoder (Newtonian VAE), a framework for learning
latent dynamics. Drawing inspiration from Newton’s sec-
ond law, they define a linear dynamic system in a hidden
space. This system is based on a rigid-body model with J
DoFs. The Newtonian VAE framework enables the for-
mation of a PD-controllable state space, which facilitates
robust path following based on visual demonstrations using
DMPs within the learned latent space.

4.5. Lifelong/Incremental learning

Lifelong (incremental) learning is a framework which
provides continuous learning of tasks arriving sequen-
tially (Chen and Liu, 2018; Fei et al., 2016; Thrun,
1996). The essential component of this framework is a
database that maintains the knowledge acquired from
previously learned tasks TSK1, TSK2, …, TSKN�1. In-
cremental learning starts from the task manager as-
signing a new task TSKN to a learning agent. In this case,
the agent exploits the knowledge in the database as prior
data for enhancing the generalization performance of its
model on the new task. After the new task TSKN is
learned, the database is updated with the knowledge
obtained from learning TSKN. In fact, the incremental
learning framework provides an agent with three capa-
bilities: (i) continuous learning, (ii) knowledge accu-
mulation, and (iii) re-using previous knowledge for
future learning enhancements. Figure 15 shows a general
structure of DMP integrated with a lifelong framework.

Churchill and Fernando (2014) proposed a cognitive ar-
chitecture capable of accumulating adaptations and skills over
multiple tasks in a manner which allows recombination and re-
use of task-specific competences. Lemme et al. (2014) seg-
mented demonstrations based on geometric similarities and
subsequently created a motion primitives library. The library is
updated by removing unused skills and including new ones.
Multiple demonstrations are used by Reinhart and Steil (2014,
2015) to build a parameterized skill memory that connects
low-dimensional skill parameterization to motion primitive
parameters. This low-dimensional embedding is then leveraged
for efficient policy search. Piece-wise linear phase is used to
improve incremental learning performance (Samant et al. 2016).

Duminy et al. (2017) designed a framework for learning which
data collection strategy is most efficient for acquiring motor
skills to achieve multiple outcomes and generalize over its
experience to achieve new outcomes for cumulative learning.

A generative learning framework is proposed to augment
the robot’s knowledge-base with missing information at dif-
ferent levels of the cognitive architecture including symbolic
planning as well as object and action properties (Wörgötter
et al., 2015). Aforementioned approaches use DMPs to rep-
resent the learned skills and execute them on real robots.

Wang et al. (2016) proposed a modified formulation of
DMPs called DMP+ which is capable of efficiently mod-
ifying learned trajectories by improving the usability of
existing primitives and reducing user fatigue during IL.
Later, DMP+ had been integrated into a dialogue system
with speech and ontology to learn or re-learn a task using
natural interaction modalities (Wu et al., 2018).

In the literature, it has been shown that incremental
learning provides better generalization than the isolated
learning approaches in terms of interpolation, extrapolation,
and the speed of learning (Hazara and Kyrki, 2017). Hazara
and Kyrki (2018) improved their Global Parametric Dy-
namic Movement Primitive (GPDMP) (Lundell et al., 2017)
in order to construct, incrementally, a database of motion
primitives, which aims to improve the generalization to new
tasks. Furthermore, it has been transferred incrementally
from simulation to the real world (Hazara and Kyrki, 2019).
Moreover, authors endow incremental learning with a task
manager, which is capable of selecting a new task by
maximizing future learning while considering the current
task performance (Hazara et al., 2019).

5. DMPs in application scenarios

We categorize the applications into several subsections
based on different topics. We first separate the use of DMPs
for robot interaction with the passive environment (e.g.,
tools, objects, and surfaces) and for interaction with an
agent that involves co-manipulation (e.g., human and an-
other robot). Additionally, we examine several other major
application areas, such as human body augmentation/
rehabilitation with exoskeletons, teleoperation, motion

Figure 15. General framework of lifelong/incremental learning
approach.
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analysis/recognition, high DoF robots, and autonomous
driving and field robotics.

5.1. Robots in contact with passive environment

Most of the daily tasks that the robots perform involve some
kind of physical interaction with the environment that requires
control of forces or positions. Nevertheless, simultaneous
control of force and position in the same axis is not possible
(Stramigioli, 2001)4, and thus the control approaches have to
make a compromise between prioritizing position control or
force control (Schindlbeck and Haddadin, 2015). The key to
such control is for the robot to learn appropriate force or
position reference trajectories that can lead to the desired task
performance in interaction with the environment. Factors such
as positional information, muscle stiffness of the human arm,
and contact force with the environment are crucial in com-
prehending and generating robot manipulation behaviors that
resemble those of humans. In Wang et al. (2021), both po-
sitional and contact force profiles are represented using DMPs
to facilitate the transfer of human–robot skills.

5.1.1. Demonstration of interaction tasks. A common
approach to teaching robot motion trajectories is kinesthetic
guidance (Figure 16-Left), where the human operator holds
the robot arm and shows the appropriate movements to be
encoded by DMPs (Abu-Dakka et al., 2015a; Joshi et al.,
2017; Kormushev et al., 2011; Papageorgiou et al., 2020;
Schaal, 2006). Recently, the technology is protruding into
high-risk fields such as invasive surgery, where high-
dimensional fine human-like manipulation skills are

being demonstrated (Su et al., 2021) and executed with
robots (Ginesi et al., 2019; Su et al., 2020). In Kormushev
et al. (2011), the human held the robot arm and used kin-
esthetic guidance to teach the position and orientation
trajectories necessary to perform ironing and door-opening
tasks. In the second stage, the corresponding forces and
torques were recorded with a haptic device in a teleoperation
setup. For setups where the robot arm is equipped with
multiple force/torque sensors, the two demonstration steps
with additional control policies can be combined into one
(Montebelli et al., 2015; Steinmetz et al., 2015).

An alternative to learning force trajectories is to learn the
impedance of the robot by learning the desired stiffness
trajectories. The ability to change the impedance of the arm
is crucial to simplify the physical interaction in unpre-
dictable and unstructured environments (Burdet et al., 2001;
Hogan, 1984). In Peternel et al. (2018a), teleoperation was
used with a push-button interface to command the robot
impedance, which was learned by DMPs that enabled the
robot to perform various collaborative assembly tasks. For
example, the learned position and stiffness DMPs were used
to insert a peg in a groove to bind the two parts or to screw a
bolt (Peternel et al., 2018a). A similar approach was used in
Yang et al. (2018) to learn DMPs used for a vegetable
cutting task.

While teleoperation-based methods are very effective to
teach the robot DMPs for interaction tasks, it usually involves
a complex and expensive system. The method in Abu-Dakka
et al. (2018) enabled the robot to learn stiffness profiles
through measurement of interaction force with the environ-
ment to perform a valve turning task. The method in Peternel

Figure 16. Human operators teach the robot how to perform different tasks. Left scenarios use robots’ gravity compensation mode to
enable kinesthetic guiding, where a human operator guides the robot’s tool center point along the desired trajectory in such a way that
the desired task is successfully executed (Abu-Dakka et al., 2015a, 2018; Caccavale et al., 2019; Sloth et al., 2020). Right scenarios use a
teleoperation system to demonstrate appropriate robot movements either through a haptic interface (Peternel et al., 2018a) or magnetic
trackers (Abu-Dakka et al., 2015a).
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et al. (2017a) used human demonstration and EMG to learn
stiffness DMPs from human muscle activity measurements in
order to perform sawing and wiping (Figure 17) tasks.

Nevertheless, adaptation of a single trajectory is unlikely
to generate an appropriate solution for more general cases,
where the task execution needs to change significantly.
After learning the initial DMP motion trajectories through
kinesthetic guidance, the robot can then adapt them based
on the measured force of interaction while performing the
task. Pastor et al. (2011) introduced a method for real-time
adaptation of demonstrated DMP trajectories depending on
the measured sensory data. They developed an adaptive
regulator for trajectory adaptation based on estimated and
actual force data. Prakash et al. (2020) extended the real-
time adaptation approach incorporating a fuzzy fractional-
order sliding mode controller in order to efficiently and
stably adapt the demonstrated DMP trajectory to fast
movements, such as a ping pong swing. Recently, Cui et al.
(2022) presented a method for coupling multiple DMPs for
modeling robot tasks for transportation tasks of deformable
objects.

Sutanto et al. (2018) presented a data-driven framework
for learning a feedback model from demonstrations. They

used an RBF-NN to represent the feedback model for the
movement primitive. Similar to this research, Gams et al.
(2010) proposed a method for adaptation of demonstrated
movements depending on the desired force, with which the
robot should act on the environment. Thus, they ensured the
adaptation of the learned movements to different surfaces.
This approach was later expanded (Pastor et al., 2011) to
provide the statistically most likely force–torque profile
(Pastor et al., 2012), and furthermore, force–torque data was
used for training a classifier (Straizys et al., 2020) in order to
modulate the demonstrated trajectory for the use with
delicate tasks such as tissue or fruit cutting.

Moving onward from policy learning, Do et al. (2014)
presented an adaptation framework, where not only the
desired adaptation force or trajectory but also the entire skill
can be learned. They demonstrated the method with a
wiping task under different environmental conditions.

5.1.2. Assembly tasks. Assembly presents one of the more
challenging tasks to automate, where not only position
trajectories but also task dynamics have to be taken into
account. To deal with this challenge, various methods were
proposed. Abu-Dakka et al. (2015a) proposed a method that
can learn the orientation aspect of the complex physical
interaction, like the peg-in-the-hole assembly tasks
(Figure 18). The proposed method was integrated into an
industrial assembly framework where the key challenge was
to adapt to uncertainties presented by the assembly task
(Abu-Dakka et al., 2014; Krüger et al., 2014).

Complex assembly tasks that are subject to change
cannot be demonstrated and executed on the fly; therefore,
adaptation methods are required for ensuring a successful
execution. Nemec et al. (2020) used exception strategies,
modeled as DMPs, for dealing with complex assembly
cases. Sloth et al. (2020) presented an exception strategy
framework, combining discrete and periodic DMP, coupled
with force control to learn an assembly task under tight
tolerances. Angelov et al. (2020) incorporated several
different control policies by taking into account the

Figure 17. Using DMPs for adapting to changing surfaces (e.g.,
wiping task) (Kramberger et al., 2018).

Figure 18. An example of using DMPs in assembly tasks (e.g., peg-in-the-hole) (Kramberger et al., 2016b).
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dynamics and sequencing of the task. The approach uses
DMPs to generate free motions and convolutional neural
networks for the assembly.

In some cases, active exploration and autonomous da-
tabase expansion can be used for learning assembly policies
automatically. In Petric et al. (2015), the proposed algorithm
can build and combine CMP motion knowledge from a
database in an autonomous manner.

Complementary to assembly tasks, disassembly is also
challenging by solely using the demonstrated trajectories.
As described in Ijspeert et al. (2013), DMPs have a unique
point attractor in the specified goal parameter of the
movement, essentially repelling the idea of reversibility.
Therefore, Nemec et al. (2018) proposed a framework,
where the disassembly challenge was tackled by learning
two separate DMPs from a single demonstrated motion: one
forward and one backward. Iturrate et al. (2019) took the
idea further and reformulated the DMP phase system with a
logistic differential equation to obtain two stable point at-
tractors. This Reversible Dynamic Movement Primitive
(RevDMP) approach provided a reversibility formulation of
the dynamical system and demonstrated the effectiveness of
the algorithm on a peg-in-hole assembly task.

5.1.3. Learning methods for contact adaptation. Desired
force–torque profiles can be tracked using ILC (Gams et al.,
2014, 2015b). In repetitive robotic tasks, iterative learning
has been gaining increased popularity (Bristow et al., 2006)
due to its effectiveness and robustness. However, in order to
achieve effective results, a careful tuning of learning pa-
rameters is required. Norrlöf (1991) and Tayebi (2004)
presented an adaptive learning approach for automated
tuning of learning parameters.

Another approach is to use RL to adapt DMPs. For
example, in Buchli et al. (2011b, 2011a), stiffness param-
eters were adjusted during the task execution by RL.

Alternatives to the feedback-based adaptation of DMPs
and RL are scalability and generalization approaches.
Matsubara et al. (2011) proposed an algorithm for the
generation of new control policies from existing knowledge,
thereby achieving an extended scalability of DMPs, while a
mixture of motor primitives was used for generation of table
tennis swings (Mülling et al., 2010). On the other hand,
generalization of DMPs was combined with model pre-
dictive control by Krug and Dimitrov (2015) or applied to
DMP coupling terms by Gams et al. (2015a), which were
learned and later added to a demonstrated trajectory to
generate new joint space trajectories.

Stulp et al. (2013) proposed to learn a function ap-
proximator with one regression in the full space of phase
and task parameters, bypassing the need for two consecutive
regressions. Forte et al. (2012) performed a comparison
study of LWR and GPR for trajectory generalization. This
work shows that higher accuracy can be achieved with LWR
trajectory approximation. Koropouli et al. (2015) presented
a generalization approach for force control policies. By
learning both the policy and the policy difference data using

LWR, they could estimate the policy at new inputs through
superposition of the training data.

Deniša et al. (2016a) used GPR-based generalization
over combined joint position trajectories and torque com-
mands in the framework of CMPs. To showcase the ver-
satility of the approach, Petric et al. (2018) applied it for
robot-based assembly tasks. Finally, Kramberger et al.
(2017) extended the approach to account for variations of
the desired tasks, for example, assembly of similar objects.
This enables the robot movements to be automatically
generated with the use of LWR from a demonstrated da-
tabase of successful task executions, which include kine-
matic and dynamic demonstrated trajectories encoded with
DMPs. The newly obtained data is used to account for the
changes in the work-space. Nevertheless, a major problem
in statistical learning is how to efficiently deal with
singularity-free representations of orientation trajectories.
To resolve this issue, Kramberger et al. (2016a) proposed a
formulation for Cartesian space DMPs where orientations
are represented with unit quaternion.

5.2. Human–robot co-manipulation

While control of robot interaction with the passive envi-
ronment can solve the majority of the tasks, in some cases
the robot needs to interact with an active agent (e.g., human
and another robot). Human–robot collaboration is becoming
one of the key fields in robotics (Ajoudani et al., 2018). To
perform a successful physical human–robot collaboration,
the robot must be able to control complex movements in
coordination with the human partner. In this direction, the
ability to modulate the impedance is important to coordinate
the physical interaction during human–robot co-
manipulation of tools (Peternel et al., 2017b). DMPs of-
fer an elegant solution to encode such coordinated dynamic
movements.

In Peternel et al. (2014), the collaborative robot was
taught online through teleoperation how to perform col-
laborative sawing with a human co-worker. The impedance
was commanded to the robot through the muscle activity
measurement using EMG. DMPs were used to encode
coordinated phase-dependent motion and impedance as
demonstrated by the human teleoperator. Teaching through
teleoperation is an effective way to convey the physical
interaction skill to the collaborative robot; however, the
setup can be expensive and is not widely available.

An intuitive alternative to teleoperation is for the robot to
learn the skill directly through physical interaction with the
human partner while they are collaborating. Numerous
methods have focused on learning the synchronized motion
between collaborative partners (Gams et al., 2014;
Kulvicius et al., 2013; Lu et al., 2022; Peternel et al., 2018b;
Prada et al., 2013; Sidiropoulos et al., 2019, 2021; Ugur and
Girgin, 2020; Umlauft et al., 2014; Wu et al., 2022; Zhou
et al., 2016a). For example, in Kulvicius et al. (2013), the
interactive movements were encoded with DMPs and adapted
based on the measured force arising from the disagreements
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between agents during co-manipulation. Similarly, in Gams
et al. (2014), the collaborative movements were encoded with
DMPs and adapted using force feedback and ILC. The ap-
proach in Zhou et al. (2016a) combines two DMPs to encode
the movements of each partner’s arm, which are coupled in a
leader-follower manner.

Besides adapting the collaborative movements, in
Peternel et al. (2018b), the robot used DMPs to also learn
the impedance online directly from the co-manipulation
with the human (Figure 19). The robot started with a ba-
sic skill set that enabled it to collaborate with the human in a
pure follower role. Through the collaborative task execu-
tion, the robot then learned the motion and impedance
trajectories online and encoded them with DMPs. When the
human became fatigued, the robot used the learned ad-
vanced skill to take over the majority of the task execution.

The method in Ben Amor et al. (2014) proposed an
upgraded version of standard DMPs called Interaction
Primitives that can account for a probabilistic nature of
collaborative movements. Rather than having a single value
of weights, the DMP includes weight distributions. This
distribution enabled the robot to learn the inherent corre-
lations of cooperative actions and infer the behavior of the
human partner during the cooperation. Cui et al. (2016,
2019) used visual information to extract context-related
parameters that augment the interaction primitives to in-
crease the robustness during the task execution.

There are also other types of co-manipulation scenarios,
such as within-hand bi-manipulation or human–robot object
handover. For example, in Amadio et al. (2022), Gao et al.
(2019), and Koene et al. (2014) DMPs were used to perform
bi-manipulation, while in Abdelrahman et al. (2020), Iori
et al. (2023), Lafleche et al. (2019), Prada et al. (2014), and
Solak and Jamone (2019) DMPs were used for human–
robot object handover.

When the environment is hazardous for human workers
or when there are too many robots compared to the number
of human workers, the obvious solution is to make robots
collaborate between themselves. The method in Peternel

and Ajoudani (2017) used DMPs to make novice robots
learn from the expert robot through co-manipulation. Ini-
tially, the novice robot remained compliant to let the expert
robot lead the task execution. In the first stage, the novice
robot learned the reference motion through DMPs. In the
second stage, it became stiff to perform the newly learned
motion, while the expert robot initiated stiff/compliant
phases expected in the collaborative task execution. Fi-
nally, the novice robot then learned in which phases of the
task to increase or decrease the impedance and encoded this
impedance behavior with DMPs.

5.3. Human assistance, augmentation,
and rehabilitation

The most common type of co-manipulation is the classic
human–robot collaboration, where a human and a robotic
agent are physically performing industrial or daily tasks.
Another type of co-manipulation occurs when a human is
using a wearable robot such as an exoskeleton. There are
different types of functions that the exoskeleton can be used
for. One function is augmentation where the current human
motion is amplified to augment existing (healthy) human
capabilities such as in tasks involving heavy loads. When
human capabilities are impaired, the exoskeleton has to act
in an assistance function. If human capabilities are impaired
to a larger degree, the exoskeleton can be employed in a
rehabilitation function to perform physical therapy. In the
augmentation function, DMPs can be employed on the robot
to offload a hard and/or repetitive motion of healthy human
workers, while in the assistance and rehabilitation functions,
they can be used to assist impaired humans in their daily
tasks or perform repetitive physical therapy on patients that
would lead to recovery.

Besides the type of exoskeleton function, another im-
portant aspect is the shared load between the exoskeleton
and the human during physical human–robot interaction.
For example, in the case of highly impaired patients in

Figure 19. An example of using DMPs for collaborative human–robot sawing from Peternel et al. (2018b).
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early-stage rehabilitation, DMPs generated by the exo-
skeleton may take almost all the load of the movement and
assume the role of the leader to perform passive physio-
therapy. As the recovery progresses and more active ex-
ercise is preferred, the majority of the load can be shifted to
the human who leads the movements, while the DMP
system can act in a support capacity as a follower. When full
recovery is not possible, DMP can provide assistance in
daily tasks where the load can be partially shared. In case of
augmentation of existing (healthy) human capabilities, the
DMP system can adapt to human movement and add extra
power on the top of the human effort that is needed to
perform a specific heavy-load task. In some cases, the
exoskeleton can learn DMP from human movements to take
over a repetitive action completely.

The methods in Lauretti et al. (2017, 2018) obtained
DMPs offline by learning by demonstration, which were
then used by an arm exoskeleton to support human
movements. In Peternel et al. (2016), the control method
employed DMPs to interactively adapt the joint torques
required to perform the arm exoskeleton assistance and
compensate all the underlying dynamics for periodic
movements (Figure 21-Left). The phase-dependent toque
trajectory was updated online in real-time in order to
minimize the muscle activity feedback measured by EMG.
A similar adaptation capability was achieved for discrete
exoskeleton movements by the DMP-based method pro-
posed in Lanotte et al. (2021). In Petrič et al. (2016), the
robot encoded the assistive motion with DMPs and then
adapted it by taking into account aspects of human motor
control through the Fitts’ law. Li et al. (2021a) introduced a
hierarchical control strategy that enables the learning of
human–machine cooperative operations by integrating
DMPs and GMM. The proposed approach utilizes well-
defined primitives, which offer comprehensive mathemat-
ical formulations and rigorous analyses of stability and
convergence for control methods based on DMPs.

Gait-related assistance and rehabilitation with exoskel-
etons is a very common application of DMPs, and there are
numerous examples (Abu-Dakka et al., 2015; Amatya et al.,
2020; Escarabajal et al., 2023; Huang et al., 2016a; Hwang
et al., 2019, 2021; Schaal, 2006; Yuan et al., 2020; Zou
et al., 2021). In Abu-Dakka et al., 2015, 2020), a parallel
robot was used for ankle rehabilitation, where the move-
ments were generated by DMPs (Figure 20). A similar
parallel robot was applied in Escarabajal et al. (2023) for
knee rehabilitation, where RevDMPs was used to enable a
patient to reverse the movement in order to maintain their
own desired pace. In Huang et al. (2016a), DMPs were used
to learn the gait motion trajectories for a lower body
exoskeleton. This approach was then extended with an RL
method to adapt a force coupling term (similar to earlier
approaches presented in Section 3.3.2) to enable online
adaption of motion trajectories (Huang et al., 2016b). In Luo
et al. (2022), DMPs were adapted to the different starting
and ending locations of the foot in the swing phase of gait.
The method in Xu et al. (2023) used DMPs for leg

exoskeleton movements in a mirror therapy concept where
the motion of the healthy limb is transferred to the impaired
limb. Hong et al. (2023) used DMPs to plan obstacle-
avoidance leg movements during walking with a prosthesis.

Besides normal gait, DMPs were also applied for stair-
ascend (Xu et al., 2020) and sit-to-stand (Kamali et al.,
2016) assistive movements of lower body exoskeletons. In
Joshi et al. (2019), a robotic arm was used to assist humans
with putting the clothes on their body, where the movements
were generated by DMPs. Ding et al. (2022) developed a
framework for assistance of older adults combining DMPs
admittance control for mobility assistance and manipulation
support. The framework was implemented on a mobile
platform with a robotic arm utilized for LfD.

Besides assistive body movement and rehabilitation,
DMPs were also applied for relaxation purposes. For ex-
ample, in Li et al. (2020), a robotic arm provided massage
movement through DMPs.

5.4. Teleoperation

Teleoperation is one of the major fields of robotics and
enables a human to have a direct and real-time control over a
(remote) robot. Typically, the control is done through in-
terfaces that can capture the human commands to be sent to
the robot and that can provide haptic feedback from the
robot. While teleoperation focuses on giving the human
operator a full or shared control over the robot, DMPs are
used to encode autonomous robot behaviors. Therefore,
here we mostly examine cases where teleoperation is used to
teach the robot new autonomous behavior encoded
by DMPs.

In Kormushev et al. (2011), a combination of kinesthetic
teaching and teleoperation was employed to form the DMP-
based robot skill for ironing. After the motion trajectories
were learned through kinesthetic guidance, the corre-
sponding forces were recorded by using a haptic device and
a teleoperation system. In Peternel et al. (2014),

Figure 20. An example of using DMPs for teaching passive
exercises for ankle rehabilitation (Abu-Dakka et al., 2015,
2020).

1164 The International Journal of Robotics Research 42(13)



teleoperation was used to teach the robot how to physically
collaborate with another human. Since there was no haptic
feedback, the teleoperation setup was unilateral, but the
human was able to teach also the impedance of the robot in
addition to motion. The former was commanded by muscle
activity measurement through EMG, while the latter was
commanded by the movement of the human operator’s arm
as measured by an optical motion capture system. Similar
teleoperation-based DMP learning approaches were used in
Lentini et al. (2020) and Yang et al. (2018).

In Peternel et al. (2018a), the human operator taught the
robot through teleoperation how to perform autonomous
assembly actions (Figure 16-right). DMPs were used to
encode the commanded impedance and motion; however, a
more practical push-button impedance command interface
was employed instead of EMG. More importantly, the
teleoperation setup was bilateral, and the haptic interface
provided the human operator with feedback about the forces
the robot felt. Learned DMPs through teleoperation can also
be generalized to improve adaptability (Yang et al., 2018).
In Luo et al. (2023), DMPs were employed to encode skilled
operator movements, which were then used for training
novice operators. The method in Zhang et al. (2023) used
DMPs to partially automate the surgical process of
appendectomy.

A real robot is not always necessary to acquire new skills.
In Beik-Mohammadi et al. (2020), the robot and the envi-
ronment were simulated and the human operator used a
virtual reality system. A combination of DMPs and RL was
used to form an adaptive skill. The scenario proposed in Abu-
Dakka et al. (2015a) was teleoperation in its basis; however,

the human demonstrator did not just pretend that he/she is
embodied in the robot, but the robot task environment was
cloned at the human side (Figure 16-right). This removed the
need for force feedback and a haptic device, since the human
felt the real environment on his/her side, while themotionwas
captured by a non-contact-based sensory system (i.e., mag-
netic trackers) and then mirrored on the robot.

Multiple demonstrations through teleoperation can be in-
consistent, especially if done in a multi-agent shared-control
setting. The method proposed in Pervez et al. (2019) can
synchronize inconsistent demonstrations through shared-
control teleoperation and encode them with DMPs. Maeda
(2022) investigated the possibility of using DMPs to implicitly
blend human and robot policies without requiring the design of
task-specific arbitration functions or the need to provide
multiple (possibly inconsistent) demonstrations.

5.5. High DoF robots

DMPs provide an elegant and fast way to deal with systems
with high-dimensional space by sharing one canonical
system (3) among all DoFs and maintain only a separate set
of transformation systems. By high-dimensional space, we
are referring to systems with 10 or more DoFs (i.e., Walk-
man humanoid robot in Figure 21-right). In this section, we
will quickly mention some of the potential works with a
high number of DoFs.

Ijspeert et al. (2002b, 2002a) used DMPs in an IL
framework to learn tennis forehand, a tennis backhand, and
rhythmic drumming using 30-DoFs humanoid robot. Pastor
et al. (2009) used DMPs to encode a 10-DoFs exoskeleton

Figure 21. Left photo shows arm exoskeleton application from Peternel et al. (2016). The right photo shows high-DoF humanoid robot
Walk-man (Tsagarakis et al., 2017) performing sawing in Peternel and Ajoudani (2017).
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robot arm. Luo et al. (2015) integrated DMPs with sto-
chastic policy gradient RL and GPR in order to design an
online adaptive push recovery control strategy. The ap-
proach had been applied to PKU-HR5 humanoid robot with
20-DoFs. André et al. (2015, 2016) implemented a pre-
dictive model of sensor traces that enable early failure
detection for humanoids based on an associative skill
memory to periodic movements and DMPs. They applied
their algorithm on DARwIn-OP with 20-DoFs in simula-
tion. Pfeiffer and Angulo (2015) represented gestures by
applying DMPs on REEM robotic platform with 23-DoFs.
Nah et al. (2020) proposed an approach to optimize DMP
parameters in order to deal with the complexity of high DoF
system like a whip. They tested their approach in simulation
for 10-, 15-, 20-, and 25-DoF systems. In order to reduce the
number of required rollouts for adaptation to new task
conditions, Queißer and Steil (2018) used CMA-ES to
optimize DMP parameters. In addition, they introduced a
hybrid optimization method that combines a fast coarse
optimization on a manifold of policy parameters with a fine-
grained parameter search in the unrestricted space of ac-
tions. The approach was successfully illustrated in simu-
lation using a 10-DoF robot arm. Liu et al. (2020) proposed
DMP-based trajectory generation to enable a full-body
humanoid robot with 10-DoFs (for the two legs) to real-
ize adaptive walking. Liang et al. (2021) developed an
efficient approach to enable service robots with 26 DoFs
with the skill of performing sign language motions.

Travers et al. (2016, 2018) proposed a framework that
integrates DMP with Gaussian-shaped spatial activation
windows in order to plan the motion for high DoF robotic
systems (e.g., snake-like robot) in complex environments
(with obstacles) by linking low-level controllers to high-
level planners. DMPs can also be applied to soft continuum
robots where the separation between DoFs is more blurred
(Seleem et al., 2023).

5.6. Motion analysis and recognition

DMPs tend to fit topologically similar trajectories with
similar shape parameters wi (Ijspeert et al., 2013). This
behavior, due to the temporal and spatial invariance of
DMPs, makes the shape parameters a useful descriptor to
recognize similar motions. Indeed, Strachan et al. (2004)
have shown that the shape parameters computed for
5 repetitions of 4 classes of discrete hand gestures—
measured with a 3 DoF accelerometer—are linearly sepa-
rable, that is, easy to classify. Lantz and Murray-Smith
(2004) draw similar conclusions for 10 classes of periodic
hand gestures. Xu et al. (2005) used the correlation between
the parameter vectors of two DMPs to measure the simi-
larity between the original motion and recognize gait pat-
terns. Similarly, Ijspeert et al. (2013) used the correlation
between parameter vectors to recognize the 26 letters of the
Graffiti alphabet.

The shape parameters wi are also suitable to fit more
sophisticated classifiers like support vector machines. This

strategy was used to successfully classify gestures observed
with a monocular (Liu et al., 2014) or a binocular (Wang and
Payandeh, 2015) camera. Instead of considering a fixed
number of basis functions (number of shape parameters),
Zhang et al. (2017) used fast dynamic time warping
(Salvador and Chan, 2007) to align parameter vectors of
different lengths and then used K-nearest neighbors to
classify different motions.

Motion recognition can also be used to determine
whether the robot is correctly executing a task by comparing
sensed data with a movement template. In this respect,
André et al. (2016) used an associative skill memory, like
the one in Pastor et al. (2011), as a predictive model of
sensor traces that enables early failure detection. In this
work, DMPs were used to compactly encode the associative
skill memory and speed up the failure detection. Described
approaches demonstrate that DMPs are a valuable option for
gesture recognition especially for systems with limited
computational power. Liang et al. (2021) presented a so-
lution to the motion retargeting problem for generating dual-
arm sign language motions. Their approach involves an
offline-constrained optimization technique that minimizes
the deviation from trajectories generated by DMPs, which
encodes the human demonstrations. It should be noted that
their approach was exclusively applied and tested in an
offline setting.

Humans tend to perform the same task in slightly dif-
ferent manners. Sometimes, differences in the execution
style contain useful information to adapt the motion to
different executive contexts. This is the case, for instance, of
a reaching motion with and without an obstacle on the way.
To capture the execution style, Matsubara et al. (2010)
augmented the forcing term of the DMP with a style pa-
rameter learned from multiple demonstrations. At run time,
different style parameters can be used to smoothly inter-
polate between demonstrated behaviors. Zhao et al. (2014)
not only employed movements with different styles but also
learned a smooth mapping between style parameters and
goal to improve the generalization.

When humans provide seamless demonstrations, DMPs
can be used for online segmentation and recognition. To this
end, Meier et al. (2011) assumed that a library of DMPs is
given and used it to recognize motion segments during a
task demonstration. Instead of using exemplar templates for
each class of primitives, Chang and Kulić (2013) segmented
a video stream using motion to non-motion transitions,
fitted DMPs on segmented data, and performed clustering to
group similar motion segments in an unsupervised fashion.
Song et al. (2020) performed unsupervised trajectory seg-
mentation using the concept of key points, that is, shared
features across different task demonstrations. Mandery et al.
(2016) segmented whole-body motions by detecting con-
tacts with the environment and used them to build a
probabilistic language model where words represent the
poses and sentence sequences of poses. The learned language
model was used to plan whole-body motion trajectories
executed by joining multiple DMPs (see Section 3.2). Kordia
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and Melo (2021) introduced a method for recognizing an
observed trajectory from a library of pre-learned motions and
predicting its target position. They leveraged distinctive
features of the observed trajectory to aid in the recognition
and utilized DMPs for representing the movement.

DMPs have been developed as a computational model of
the neurobiological motor primitives (Schaal et al., 2007).
Experimental findings from neurophysiology related to the
spinal force fields in frogs have inspired the modification of
DMP formulation in Hoffmann et al. (2009). As discussed
in Section 3.1.1, this multidimensional representation
overcomes limitations of classical DMPs like trajectory
overshooting and dependence of the trajectory from the
reference frame used to describe the motion. Hoffmann et al.
(2009) also derived a collision avoidance strategy for
DMPs, inspired by the way humans avoid collisions during
arm motion. DeWolf et al. (2016) investigated the human
ability to cope with changes in the arm dynamics and ki-
nematic structure during motion control. They proposed a
spiking neuron model of the motor control system that uses
DMPs to implement the preparation and planning func-
tionalities of the premotor cortex. The effects of changes in
the robot’s dynamic parameters on the tracking performance
of a DMP trajectory were studied in Kuppuswamy and
Alessandro (2011). Their findings suggest that the change in
the body parameters should be explicitly considered in the
DMP learning process. Hotson et al. (2016) augmented a
brain–machine interface that captures neural signals with a
DMP model of the endpoint trajectories executed by a non-
human primate. The system was used to decode real tra-
jectories from a primate manipulating four different objects.

5.7. Autonomous driving and field robotics

DMPs can be utilized in various autonomous non-stationary
fields of robotics. Perk and Slotine (2006) utilized DMPs for
defining flight paths and obstacle avoidance for Unmanned
Aerial Vehicles (UAVs), where the trajectories were gen-
erated based on the joystick movements controlling the
throttle of the UAV motors. Later, Fang et al. (2014) ex-
tended the approach to encode user-demonstrated UAV
data, extracting and encoding the rhythmic and linear
segments of the flight trajectory, and combining them into a
flight control skill. Furthermore, Tomić et al. (2014) for-
mulated the UAV movements as an optimal control prob-
lem. The output of the optimal control solver was encoded
with DMPs, enabling them to generalize and apply in-flight
modifications to the UAV flight trajectories in real-time.
Similarly, Lee et al. (2018) and Kim et al. (2018a) presented
a framework for UAV cooperative areal manipulation tasks,
based on an adaptive controller which adapts the movement
of the UAV in relation to the mass and inertial properties of
the payload. In addition, DMPs were incorporated in the
control scheme to modify the flight trajectories and avoid
obstacles on the fly. The approach was later extended to
incorporate path optimization, where DMPs play a signif-
icant role in real-time obstacle avoidance (Lee et al., 2020).

Asmentioned before, DMPs represent a versatilemovement
representation, which can be implemented in various tasks and
scenarios. One of the recent applications in this field is also
Autonomous Underwater Vehicles (AUVs). Carrera et al.
(2015) integrated the DMPs in a learning by demonstration
scenario for an AUV. The demonstrated data consisted of the
manipulator and vehicle sensory outputs, which were effi-
ciently used to demonstrate an underwater valve-turning task.

DMPs are also represented in the autonomous driving
domain. In the recent work of Wang et al. (2018, 2019), the
authors propose a framework which decomposes the
complex driving data into a more elementary composition
of driving skills represented as motion primitives. In the
proposed framework, DMPs are utilized to represent the
driver’s trajectory with acceptable accuracy and can be
generalized to different situations.

6. Discussion

This section provides guidelines to choose, among the
several discussed in this work, the most appropriate ap-
proach for a given application. A useful criterion to decide
whether to use a particular approach is the availability of
code that greatly simplifies the implementation. We have
searched for open-source DMP implementations and listed
them in a Git repository (see Section 6.2). To further
contribute to the community, we have also released the
implementations listed in Table 4. This section ends with a
discussion on the limitations inherent to the DMP formu-
lation, the open issues, and the possible research directions.
These are summarized in Table 5.

6.1. Guidelines for different applications

Previous sections present different DMP formulations and
extensions together with possible application scenarios. As
usual, there is not a single formulation that serves all the
scopes and purposes, and the suitable approach to use de-
pends on the goal to achieve and the conditions of appli-
cation. For this reason, we present some guidelines to guide
the user in the process of selecting the formulation to use.

6.1.1. Discrete versus periodic. For a task with distinct
starting and ending points, discrete DMPs are a logical
option to encode the movement trajectories between them.
Examples of these tasks include reaching and pick-and-
place (Caccavale et al., 2019; Deniša et al., 2016a; Forte
et al., 2012; Stulp et al., 2009), specific actions of assembly
(Krüger et al., 2014; Abu-Dakka et al., 2014; Nemec et al.,
2020; Angelov et al., 2020), and cutting (Straizys et al.,
2020; Yang et al., 2018).

When the starting and ending points coincide, periodic
DMPs are the logical option, since the encoded movements
can be repeated over and over again. Good examples of their
application are repetitive tasks such as locomotion
(Nakanishi et al., 2004; Rückert and d’Avella, 2013;
M. Wensing and Slotine, 2017), human body augmentation/
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rehabilitation (Peternel et al., 2016), wiping a surface (Gams
et al., 2016; Kramberger et al., 2018; Peternel et al., 2017a),
and sawing (Peternel et al., 2018b). Nevertheless, even
typically non-repetitive tasks that are executed just once
every now and then can still be encoded with periodic
DMPs when the starting and ending points coincide
(Peternel et al., 2018a).

There are cases where it is not possible to clearly dis-
tinguish if the motion is periodic or discrete. For instance,
Ernesti et al. (2012) have shown that the first step in a gait of
a humanoid robot is a transient toward a periodic motion.
Their representation is a good candidate to encode transients
converging to limit cycle trajectories. Finally, in some cases
like in complex assembly, the task requires a combination of
discrete and periodic DMPs (Sloth et al., 2020).

6.1.2. Space representation. The original formulations of
DMPs were and are still successfully applied to multidi-
mensional independent data with each DoF 2R (Sections
2.1.1 and 2.2.1). These data can be joint or Cartesian po-
sitions, forces, torques, etc., where every DoF of the data
can be evolved independently from the rest. However, such
formulation is not enough to successfully encode data with
specific geometry constraints without pre- and/or post-
processing the data. Examples of such data are i) orienta-
tion, where data are tight up by additional constraints (i.e.,
the orthogonality in case of rotation matrix representation or
the unit norm of the quaternion representation); ii) full
stiffness/damping matrices and manipulability matrices are
encapsulated in SPD matrices.

In many early works, orientation trajectories were
learned and adapted without considering their geometry
constraints (Pastor et al., 2009), leading to improper ori-
entation and hence requiring an additional re-normalization.
In a different example, Umlauft et al. (2017) used ei-
gendecomposition for impedance adaptation.

In order to comply with such geometry constraints, re-
searchers provided a new formulation of DMPs that ensures
proper unit quaternions or rotation matrices over the course
of orientation adaptation (Abu-Dakka et al., 2015a; Koutras

and Doulgeri, 2020a; Saveriano et al., 2019; Ude et al., 2014
and proper SPD matrices over the course of the adaptation
of SPD profiles (e.g., stiffness or manipulability ellipsoids)
(Abu-Dakka and Kyrki, 2020). We believe that using these
geometry-aware DMPs is preferable to encode data with
underlying geometry constraints.

6.1.3. Weights learning method. DMPs represent motion
trajectories as stable dynamical systems with learnable
weights that define the shape of the motion. In the LfD
paradigm, DMP weights are usually learned in a supervised
manner using human demonstrations. The procedure used
to transform human demonstrations into training data for the
DMP forcing term is highlighted in Section 2.1.1.1. The
number of weights, which corresponds to the number of
RBFs used to approximate the forcing term, is a hyper-
parameter that is typically provided by the user. As practical
tuning guidelines, one has to consider that the number of
RBFs increases with the length of the trajectory and with its
complexity, which depends on changes in concavity and
frequency and magnitude of picks. Given the training data,
and the number of RBFs, different techniques can be used to
fit the weights.

LWR is widely used when the forcing term is a com-
bination of RBFs as in (4). However, in the literature one
can use RBF-NN as in Si et al. (2021) or if multiple
demonstrations are given, one can exploit GMM/GMR as in
Li et al. (2021b) and Pervez et al. (2017a) or GPR as in
Fanger et al. (2016) to represent the forcing term and use
expectation–maximization to fit the (hyper-)parameters.
Deep NNs, typically trained via back-propagation, seem an
appealing possibility to map input images into forcing terms
(Pervez et al., 2017b), mimicking the human perception-
action loop. Although appealing, the possibility of ex-
ploiting deep learning techniques as motion primitives re-
quires further investigations.

In real applications, there can be a misplacement between
the DMP trajectory and the robot motion. Typical examples
include assembly or other tasks that require physical in-
teraction with the environment (see Section 5.1). In this

Table 5. A summary of DMP features and limitations that have been solved (3) or partially solved (❙).

Limitation Related work Status

Via-points Ning et al. (2011, 2012), Weitschat and Aschemann (2018), Saveriano et al. (2019), and Zhou et al.
(2019)

3

Start-point Hoffmann et al. (2009), Ijspeert et al. (2013), Weitschat et al. (2013), and Dragan et al. (2015) 3

Goal-point Ijspeert et al. (2013), Weitschat et al. (2013), Abu-Dakka and Kyrki (2020), Dragan et al. (2015), and
Weitschat and Aschemann (2018)

3

Obstacle avoidance Park et al. (2008), Hoffmann et al. (2009), Tan et al. (2011), Kim et al. (2015), and Rai et al. (2017) 3

Geometry-constrained
data

Pastor et al. (2009), Abu-Dakka et al. (2015a), Ude et al. (2014), Saveriano et al. (2019), and
Abu-Dakka and Kyrki (2020)

❙5

Probabilistic Ben Amor et al. (2014) ❙

Extrapolation Pervez and Lee (2018) and Zhou et al. (2019) ❙

High-dim input Pervez et al. (2017a) and Pahič et al. (2020) ❙

Closed-loop Peternel et al. (2016) and Kramberger et al. (2018) ❙

Multi-attractor Nemec et al. (2018) and Iturrate et al. (2019) ❙
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situation, the DMP motion can be incrementally adjusted to
improve the robot’s performance. ILC arises as an inter-
esting approach to iteratively update the DMP weights as it
ensures a rapid convergence to the desired performance
(Abu-Dakka et al., 2015a; Gams et al., 2014; Kramberger
et al., 2018). However, ILC assumes that a target behavior to
reproduce is given. When the target behavior cannot be
easily specified and the robot performance is not satisfac-
tory, RL solutions have to be adopted. As detailed in Section
4.3, DMPs are effective control policies and, combined with
policy search algorithms like PI2 or PoWER, are able to
solve complex and highly dynamic tasks.

6.1.4. Online adaptation. Performing robotic tasks in the
real world requires adaptation capabilities. When adaptation
of DMPs based on some feedback is required, one of the
extension methods should be applied. For example, to
change the existing movement based a detected obstacle, the
method in Gams et al. (2016), Hoffmann et al. (2009), Park
et al. (2008), and Tan et al. (2011) can be used (see Section
3.3.1). If it is necessary to adaptively learn the movement
dynamics based on real-time effort feedback, the method in
Peternel et al. (2016) can be employed (see Section 3.3).

Furthermore, for industrial tasks, such as assembly or
polishing, adaptation strategies combining force control with
demonstrated trajectories can be applied (Abu-Dakka et al.,
2015a; Gams et al., 2010; Kramberger et al., 2016), ensuring
the system will follow the predefined trajectory and adapt to
the environmental uncertainties. For online adaptation DMPs
can be used as a trajectory generator, which output represents
an input to the force control algorithm, on the other hand,
force feedback can directly be incorporated as a coupling term
in the DMP formulation (see Section 3.3.2), eliminating the
need for an additional force controller. A similar approach can
also be utilized for velocity-based adaptation of the move-
ments (see Section 3.3.4).

6.1.5. Impedance versus force. In physical interaction
tasks, DMPs can be used to either learn force or impedance
(Peternel et al., 2017a). If the task requires position control,
then the impedance should be learned with DMPs in
combination with the reference position. If the task requires
to control a specific force, for example, pushing on a surface
during the wiping and drilling, either force or impedance is
feasible. However, if safety is the most critical aspect, the
DMPs should be used to learn impedance control so that the
robot can be made soft.

Furthermore, to overcome any undesirable movements,
the control policy can be augmented with a tank-based
passivity approach (Shahriari et al., 2017). This approach
monitors the energy flow between the modeled sub-systems,
for example,DMP trajectory generation, impedance control,
and environment. In an event of an energy violation, the
system will first try to passively compensate for the vio-
lation and subsequently, if the violation cannot be com-
pensated, for example, the energy tank is depleted, stop the
system. In cases, where the task characteristics are not fully

known, a learning policy can be added on the top of the
passivity approach (Kramberger et al., 2018) in order to
learn the overall energy requirements for the task.

6.2. Resources and codes

The availability of code and datasets is useful to speed up
the setup of novel applications without the need of re-
implementing a promising approach from scratch. We
have searched for available DMP implementation and found
out that several researchers published their DMP codes in
various open-source repositories. We decided to list the
available implementations on the Git repository that ac-
companies this paper (https://gitlab.com/dmp-codes-
collection/third-party-dmp). For each implementation, we
mention the type of DMP, the author, the URL to download
the code, and the used programming language. We also
provide a short description of the key features.

Apart from listing existing approaches, the Git repository
that accompanies this paper contains an implementation that
we decided to release to the community. The list of provided
implementations is given in Table 4.

6.3. Limitations and open issues

As any motion primitive representation, DMPs have
strengths but also inherent limitations. The advantages of
the DMPs have been widely discussed in previous sections.
Here, we present the main limitations of the DMPs and
discuss open issues that require further investigation. A
summary of these limitations is presented in Table 5.

6.3.1. Implicit time dependency. The phase variable used to
suppress the nonlinear forcing term and ensure convergence
to a given goal introduces an implicit time dependency in
the DMP formulation. The reason for representing the time
dependency implicitly as a dynamical system is that such a
phase variable can be conveniently manipulated. For ex-
ample, in Section 2.1.1.2, we have seen how to manipulate
the phase variable to slow down (or even stop) the exe-
cution. A drawback of the time dependency is that the shape
of the DMP motion is significantly affected by the time
evolution of the phase variable. If the phase vanishes too
early, the last part of the trajectory is executed with a linear
dynamics converging to the goal. If the phase lasts too long,
the trajectory may overshoot and fail to reach the goal
within the desired time. In both cases, the DMP motion may
significantly deviate from the demonstration. A properly
designed phase-stopping mechanism can remedy the issue,
but the proper phase-stopping to adopt depends on the
specific application.

In order to overcome this limitation, several authors
focused on learning stable and time-independent (or au-
tonomous) dynamical systems from demonstrations. A
globally stable and autonomous system generates a vector
field that converges to the given goal from any initial state.
Without the need for a phase variable, the generated motion
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depends only on the current state of the system. Notable
approaches to learn stable and autonomous systems exploit
Lyapunov theory (Khansari-Zadeh and Billard, 2011,
2014), contraction theory (Blocher et al., 2017; Ravichandar
and Dani, 2015), diffeomorphic transformations (Perrin and
Schlehuber-Caissier, 2016; Neumann and Steil, 2015), and
passivity considerations (Kronander and Billard, 2015).
These approaches have been effectively used to learn
complex movements from demonstrations.

In general, autonomous systems have the potential to
represent much more complex movements than DMPs. For
example, autonomous systems can encode different motions
in different regions of the state-space. In this respect, DMPs
can only generate a stereotypical trajectory connecting the
start to the goal, regardless of where the initial state is placed
in the state-space. However, the stereotypical motion
generation is also an advantage of DMPs since it makes it
easier to predict the generated motion in regions of the state-
space poorly covered by training data. On the contrary, it is
hard to predict how an autonomous system generalizes
where only a few or no training data are available. DMPs are
known to scale well in high-dimensional spaces since the
learned forcing term always depends on a shared, scalar
phase variable. Autonomous systems perform learning di-
rectly on the high-dimensional state-space, which poses
numerical challenges and requires much more training data.
In synthesis, each representation has its own advantages and
disadvantages and the choice between time-dependent and
autonomous motion primitives depends on the specific
application.

6.3.2. Stochastic information. Representing the demon-
strated motion as a probability distribution has several
advantages. For example, in a probabilistic framework, the
generalization to new a goal (or a via-point) is achieved
using conditioning on the new goal (via-point), while the
covariance computed from the probability distribution can
represent couplings between different DoFs (Paraschos
et al., 2013). As a matter of fact, classical DMPs are de-
terministic and lack stochastic information on the modelled
motion.

Ben Amor et al. (2014) proposed an approach to estimate
the predictive distribution Pðwjy1 :TÞ that relates the DMP
weights w and a partial trajectory y1 :T observed for T time
instants. Pðwjy1 :TÞ is used to estimate the most likely
weights given a partial movement and to reconstruct the
missing part of the trajectory. However, a full probabilistic
characterization of DMPs is still missing.

The ProMP framework (Paraschos et al., 2013) proposed
an alternative movement primitive representation that
contains information about the variability across different
demonstrations as well as different DoFs in the form of a
covariance matrix. This enables to explicitly encode the
couplings between different directions and to increase the
generalization by conditioning on a desired goal, via-point,
or intermediate velocity. The covariance computed by
ProMPs represents the variability and the correlation in the

demonstrations. In other representations, like GPR, the
covariance is a measure of the model uncertainty due to the
lack of training data. An attempt to unify ProMP and DMP
formulations was made in Li et al. (2023). Kernelized
Movement Primitives (KMPs) (Huang et al., 2019; Silvério
et al., 2019) offer the possibility of modelling variability,
correlation, and uncertainty in the same framework.
However, KMP’s computational cost can be elevated
compared to DMP in longer trajectories due to the com-
putation of the inverse of the kernel matrix.

6.3.3. Closed-loop implementation and issues. A vast
majority of methods employ DMPs only as a reference
trajectory generator for the closed-loop controller, which
then actually executes it. However, the DMPs can also be
used as a part of the closed-loop controller itself where the
sensor measurements, for example, forces and torques, are
used as a coupling term in the DMP for changing its be-
havior. In other words, in the open-loop case, the DMP
serves as the plan and does not change online during the
execution (perhaps iteratively after each execution), while
in the closed-loop case, DMP serves as the action generator
and changes online during the execution. Until now, only a
few methods explored the closed-loop concept. For ex-
ample, in Peternel et al. (2016), the DMPs are directly
torque generators for exoskeleton actuators in the control
loop, which is closed by feedback from the human user’s
muscle activity. Nevertheless, in such scenarios, the closed-
loop stability and passivity become crucial considerations
that have to be addressed and resolved before the wide-
spread application (Kramberger et al., 2018).

6.3.4. Coping with high-dimensional inputs. One of the
main limitations of DMP is that it encodes human and robot
trajectories explicitly with the time (i.e., 1–D input) which
may lead to synchronization issues since human motions in
the new evaluations could be significantly different (e.g.,
faster/slower velocity) from the demonstrated ones. In order
to avoid synchronization problem, Ben Amor et al. (2014)
designed a time-alignment strategy, while Pervez et al.
(2017a) estimated the phase signal during the training us-
ing expectation-maximization (Bishop, 2006).

As the DMP models trajectories using basis functions,
this works effectively when learning time-driven trajec-
tories (i.e., 1–D input). However, when demonstrations
comprise high-dimensional inputs, specifying the center
vectors and widths of basis functions becomes quite
cumbersome. Specifically, as discussed in Bishop (2006)
the number of basis functions often increases exponen-
tially when the dimension of inputs increases. To alleviate
this limitation, some approaches investigated modern
deep-learning techniques. Pahič et al. (2020) used a deep
NN to synthesize DMP weights from an input image. The
classical DMP formulation is then used to generate motion
trajectories. Pervez et al. (2017b) used a CNN (LeCun
et al., 2015) to predict 2–D task parameters (e.g., the
position of a target) from an input image and a fully
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connected NN to retrieve the forcing term from the 2–D
parameters and the phase variable. The CNN and the fully
connected NN are trained in two separate stages. The
approach is promising, but the separate training of the two
networks increases the pre-processing and complicates the
learning process.

Alternative approaches in the literature, such as GMM/
GMR (Calinon, 2016), Task-Parameterized GMM (TP-
GMM) (Calinon, 2016), and KMP (Huang et al., 2019,
2021), can be directly applied for learning demonstrations
comprising high-dimensional inputs.

6.3.5. Multi-attractor systems. The well-known second-
order dynamic properties of the DMPs strive toward a sin-
gle attractor system (Ijspeert et al., 2002a). The properties, for
example, convergence andmodulation of the motion, are well
studied and implementations can be found in many research
papers. Because of the second-order dynamics, the system
becomes unstable if, for example, the motion is reversed
during the execution. In the past years, two main approaches
describing the reversibility problem have been introduced. In
the first approach (Nemec et al., 2018), reversibility is
considered as learning two separate primitives, one for each
direction of the motion. The approach is promising, but does
not reflect true reversibility, because it uses one attractor point
for each primitive.

On the other hand, Iturrate et al. (2019) introduced an
alternative formulation with two stable attractor systems.
The first attractor is defined at the starting point y0 of the
trajectory and the subsequent one at the goal g, and the
dynamical system between them guarantees a stable con-
vergence depending on the selected attractor. The approach
demonstrated true reversibility, while keeping all the DMP
properties. Nevertheless, all questions have not been re-
solved yet, and the approach was evaluated on tasks and
joint space position trajectories. A proper formulation for
dealing with orientations, for example, quaternions in task
space, is still missing.

7. Concluding remarks

Since their introduction in the early 2000s, DMPs have
established as one of the most used and popular approaches
for motor command generator systems in robotics. Several
authors have exploited and extended the classical formu-
lation to overcome some limitations and fulfill different
requirements. Their research resulted in a large number of
papers published over the last two decades.

One of the aims of this paper is to categorize and review
the vast literature on DMPs. We took a systematic review
approach and automatically searched for DMP-related pa-
pers in a popular database. A manual inspection of the
resulting papers, guided by clear and unbiased criteria, led
to the papers included in this tutorial survey.

Another aim of our work is to provide a tutorial on DMPs
that presents the classical formulation and the key exten-
sions in rigorous mathematical terms. We made an effort to

unify the notation among different approaches in order to
make them easier to understand. Moreover, we provide
useful guidelines that guide the reader to select the right
approach for a given application. In the tutorial vein, we
have also searched for open-source implementations of the
described approaches and released to the community several
implementations of DMP-based approaches.

Advantages of DMPs have been discussed as well as
their limitations and the open issues. We have summarized
them in Table 5 where we also indicate the solved issues and
the ones that require further investigation. In this respect, as
research on DMP is still very active, we provide a com-
prehensive discussion that will help the readers to under-
stand what has been done in the field and where they can put
their research focus.
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Notes

1. As discussed by Pastor et al. (2009), a transformation system
that uses (48) generates a mirrored trajectory while reaching a
new goal gnew every time the signs of (gnew � y0) and (g � y0)
differ.

2. Saveriano et al. used the multi-dimensional DMP formulation
developed in Hoffmann et al. (2009) for both position and
quaternion DMPs. In this review paper, we reformulate the
merging approaches in Saveriano et al. (2019) to comply with
the formulations in Section 2.1.1 and 2.1.2.1.

3. Note that other feedback that measures human effort can be
used instead of EMG, such as joint torque or limb forces.
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4. There is a duality in impedance-admittance, that is, the force
produces motion and motion produces force; therefore if one is
the input, the other can only be the output of the control system
(Peternel et al. 2017a).

5. The referred work extended the classical DMP to different
space like SOð3Þ or Sm

þþ. Although formally similar, the
extention to other Riemannian manifolds like the Grassmannian
or the Hyperbolic manifolds is non-trivial and still not fully
addressed.
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Lončarević Z, Pahič R, Ude A, et al. (2021) Generalization-based
acquisition of training data for motor primitive learning by
neural networks. Applied Sciences 11(3).

Lu Z,Wang N and Yang C (2021) A constrained DMPS framework
for robot skills learning and generalization from human
demonstrations. IEEE/ASME Transactions on Mechatronics
26(6): 3265–3275.

Lu Z, Wang N and Shi D (2022) DMPS-based skill learning for
redundant dual-arm robotic synchronized cooperative manipu-
lation. Complex and Intelligent Systems 8(4): 2873–2882.

Lundell J, Hazara M and Kyrki V (2017) Generalizing movement
primitives to new situations. In: Y Gao, S Fallah, Y Jin, et al.
(eds) Towards Autonomous Robotic Systems. Cham: Springer
International Publishing, 16–31.

Luo D, Han X, Ding Y, et al. (2015) Learning push recovery for a
bipedal humanoid robot with dynamical movement primitives.
In: IEEE-RAS international conference on humanoid robots,
Seoul, Korea (South), 03–05 November 2015, pp. 1013–1019.

Luo L, FooMJ, RamanathanM, et al. (2022) Trajectory generation
and control of a lower limb exoskeleton for gait assistance.
Journal of Intelligent and Robotic Systems 106(3): 64.

Luo J, LiuW, QiW, et al. (2023) Avision-based virtual fixture with
robot learning for teleoperation. Robotics and Autonomous
Systems 164.

Maeda G (2022) Blending primitive policies in shared control for
assisted teleoperation. In: IEEE international conference on
robotics and automation, Philadelphia, PA, USA, 23–27 May
2022, pp. 9332–9338.
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Pahič R, Ridge B, Gams A, et al. (2020) Training of deep neural
networks for the generation of dynamic movement primitives.
Neural Networks 127: 121–131.

Pahic R, Gams A and Ude A (2021) Reconstructing spatial aspects
of motion by image-to-path deep neural networks. IEEE
Robotics and Automation Letters 6(1): 255–262.

Pan Z and Manocha D (2018) Realtime planning for high-dof
deformable bodies using two-stage learning. In: IEEE in-
ternational conference on robotics and automation, Brisbane,
QLD, Australia, 21–25 May 2018, pp. 5582–5589.

Papageorgiou D, Dimeas F, Kastritsi T, et al. (2020a) Kinesthetic
guidance utilizing DMP synchronization and assistive virtual
fixtures for progressive automation. Robotica 38(10): 1824–1841.

Papageorgiou D, Kastritsi T and Doulgeri Z (2020b) A passive
robot controller aiding human coaching for kinematic be-
havior modifications. Robotics and Computer-Integrated
Manufacturing 61: 101824.

Paraschos A, Daniel C, Peters J, et al. (2013) Probabilistic
movement primitives. In: C Burges, L Bottou, M Welling,
et al. (eds) Advances in Neural Information Processing
Systems 26. Lake Tahoe, Nevada, US: Curran Associates,
Inc., pp. 2616–2624.

Park DH, Hoffmann H, Pastor P, et al. (2008) Movement repro-
duction and obstacle avoidance with dynamic movement
primitives and potential fields. In: IEEE-RAS international
conference on humanoid robots. Daejeon, South Korea,
December, pp. 91–98.

Pastor P, Hoffmann H, Asfour T, et al. (2009) Learning and
generalization of motor skills by learning from demonstra-
tion. In: IEEE international conference on robotics and au-
tomation. Kobe, Japan, pp. 763–768.

Pastor P, Kalakrishnan M, Chitta S, et al. (2011) Skill learning and
task outcome prediction for manipulation. In: IEEE inter-
national conference on robotics and automation. Shanghai,
China: IEEE, pp. 3828–3834.

Pastor P, Righetti L, Kalakrishnan M, et al. (2011a) Online
movement adaptation based on previous sensor experiences.
In: IEEE/RSJ international conference on intelligent robots
and systems, San Francisco, CA, USA, 25–30 September
2011, pp. 365–371.

Pastor P, Kalakrishnan M, Righetti L, et al. (2012) Towards as-
sociative skill memories. In: IEEE-RAS international con-
ference on humanoid robots, Osaka, Japan, 29 November
2012–01 December 2012, pp. 309–315.

Pastor P, Kalakrishnan M, Meier F, et al. (2013) From dynamic
movement primitives to associative skill memories. Robotics
and Autonomous Systems 61(4): 351–361.

Saveriano et al. 1179



Paxton C, Jonathan F, Kobilarov M, et al. (2016) Do what i want,
not what i did: imitation of skills by planning sequences of
actions. In: IEEE/RSJ international conference on intelligent
robots and systems, Daejeon, Korea (South), 09–14 October
2016, pp. 3778–3785.

Perk BE and Slotine JJE (2006)Motion primitives for robotic flight
control. arXiv preprint cs/0609140.

Perrin N and Schlehuber-Caissier P (2016) Fast diffeomorphic
matching to learn globally asymptotically stable nonlinear
dynamical systems. Systems & Control Letters 96: 51–59.

Pervez A and Lee D (2018) Learning task-parameterized dynamic
movement primitives using mixture of gmms. Intelligent
Service Robotics 11(1): 61–78.

Pervez A, Ali A, Ryu JH, et al. (2017a) Novel learning from
demonstration approach for repetitive teleoperation tasks. In:
IEEE world haptics conference, Munich, Germany, 06–
09 June 2017, pp. 60–65.

Pervez A, Mao Y and Lee D (2017b) Learning deep movement
primitives using convolutional neural networks. In: IEEE--
RAS international conference on humanoid robots, Bir-
mingham, UK, 15–17 November 2017, pp. 191–197.

Pervez A, Latifee H, Ryu JH, et al. (2019) Motion encoding with
asynchronous trajectories of repetitive teleoperation tasks and
its extension to human-agent shared teleoperation. Autono-
mous Robots 43(8): 2055–2069.

Peternel L and Ajoudani A (2017) Robots learning from robots: a
proof of concept study for co-manipulation tasks. In:
IEEE-RAS international conference on humanoid robots.
Birmingham, UK: IEEE, pp. 484–490.

Peternel L and Ajoudani A (2022) After a decade of tele-
impedance: a survey. IEEE Transactions on Human-Machine
Systems 53(2): 401–416.
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