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Abstract—With more detailed spatial information being rep-
resented in very-high-resolution (VHR) remote sensing images,
stringent requirements are imposed on accurate image classifi-
cation. Due to the diverse land-objects with intraclass variation
and interclass similarity, efficient and fine classification of VHR
images especially in complex scenes is challenging. Even for some
popular deep learning (DL) frameworks, geometric details of
land-object may be lost in deep feature levels, so it is difficult to
maintain the highly-detailed spatial information (e.g., edges, small
objects) only relying on the last high-level layer. Moreover, many
of the newly developed DL methods require massive well-labeled
samples, which inevitably deteriorates the model generalization
ability under the few-shot learning. Therefore, in this paper, a
lightweight shallow-to-deep feature fusion network (SDF2N) is
proposed for VHR image classification, where the traditional
machine learning (ML) and DL schemes are integrated to learn
rich and representative information to improve the classification
accuracy. In particular, the shallow spectral-spatial features are
first extracted, and then a novel triple-stage fusion (TSF) module
is designed to learn the saliency and discriminative information at
different levels for classification. The TSF module includes three
feature fusion stages, i.e., low-level spectral-spatial feature fusion,
middle-level multi-scale feature fusion, and high-level multi-layer
feature fusion. The proposed SDF2N takes advantages of the
shallow-to-deep features, which can extract representative and
complementary information of crossing layers. It is important
to note that even with limited training samples, the SDF2N still
can achieve satisfying classification performance. Experimental
results obtained on three real VHR remote sensing data sets in-
cluding two multispectral and one airborne hyperspectral images
covering complex urban scenarios confirm the effectiveness of the
proposed approach compared with the state-of-the-art methods.

Index Terms—very high resolution (VHR) image classification,
spectral-spatial feature extraction, shallow-to-deep feature fusion,
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extended multi-attribute profiles (EMAP), squeeze-excitation
(SE) attention mechanism.

I. INTRODUCTION

THE rapid development of new generation Earth-
Observation (EO) satellites allows the acquisition of an

increasing number of high-resolution (HR) and very-high-
resolution (VHR) remote sensing images. This results in
VHR multispectral (VHR-MS) images with very high spatial
resolution and HR hyperspectral (HR-HS) images with high
spectral-spatial resolution, which makes it possible to analyze
land surface objects at an unprecedented detailed scale [1],
[2]. Accurate and robust identification of multi-class objects
in VHR remote sensing images is of great significance in
various applications [3], [4]. However, such high spatial and
spectral resolutions lead to many issues and challenges in
image processing and applications. For example, the limited
number of spectral bands but over-rich spatial representation
of objects in VHR-MS images; the rich but redundant spectral-
spatial information in HR-HS images; and the difficult feature
extraction for classification. Moreover, the lack of a sufficient
number of training samples is the primary cause of low
classification performance especially for complex scenarios
(e.g., urban land-use) [5]–[8]. Therefore, it is still a very
challenging task in real applications to obtain high quality
and reliable semantic land-cover mapping results from VHR
remote sensing images with a limited number of samples.

In the past decades, researchers have made great efforts to
exploit effective spectral-spatial joint methods for VHR image
classification [9]–[16]. According to the feature extraction and
fusion strategies in the literature, such classification methods
can be divided into two main groups based on the use of
traditional machine learning (ML) and on the advanced deep
learning (DL) models.

For traditional ML models, many spectral-spatial feature
extraction and fusion approaches have been proposed to fully
exploit the properties of VHR images, thus improving the
classification performance. These approaches include filtering-
based methods (e.g., Gabor filter [9], guided filter [10]),
morphology-based methods [e.g., attribute profiles (AP) [17],
extended attribute profiles (EAP) [18], and extended multi-
attribute profiles (EMAP) [19]], sparse-based methods [12],
[20], multiple kernel-based methods [13], [21], and other
integrated learning strategies [22]. ML-based classification
methods have clear advantages due to their high flexibility,
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low time consumption, and low training data requirement,
which lead to their successful application to VHR image
classification [11]. The concepts of morphological profile (MP)
and extended MP (EMP) to model the spatial information
were presented in [23], [24]. As an extension of MP, AP was
proposed in [17], which models the spatial information more
precisely than MP since more attributes of the input image can
be considered. In [25], the K-means and principal component
analysis (PCA) were utilized to learn the spatial feature. Then,
spectral-spatial features were generated for HS image classi-
fication by concatenating the spatial feature representations in
all or some principal components (PCs). In [26], a spectral-
spatial multiple kernel learning method was proposed for HS
image classification. Unlike the direct stacking methods, it
used the spectral-spatial weighted composite kernel structure
to better integrate spectral-spatial information. However, the
performances of these methods are still far to be satisfactory
due to the limited handcrafted feature representation, sensitive
parameter settings, and possible poor generalization abilities.

Thanks to the discriminative feature representations and
end-to-end learning capabilities, recently many DL-based
frameworks have achieved remarkable success in the re-
mote sensing image classification [e.g., Convolutional Neural
Networks (CNNs) [14], [27], Recurrent Neural Networks
(RNNs) [15], [28], Generative Adversarial Networks (GANs)
[16], [29], and hybrid networks [30]]. The existing DL-based
methods are usually constructed with multiple layers, which
consider the low-level features as the input and produce the
output for the middle-level or high-level features. However,
neurons and layers in different models have their unique
connections, and the effective integration of spectral-spatial
information is mainly achieved through the specific design
of forward and backward response units. This fusion strat-
egy is limited by the characteristics of the network, which
result in a poor interpretability. Therefore, except the internal
fusion within each unit or layer, external fusion operations
including the concatenate (concat), add, multiply, and at-
tention weighting mechanism operations are usually applied.
For instance, in [31], a novel cross-resolution hidden layer
feature fusion (CRHFF) approach was proposed for joint
classification of multi-resolution MS and PAN images. Hence
the latent information is extracted and fused according to an
autoencoder like deep network. In [32], a novel fast dense
spectral–spatial convolution network (FDSSC) was proposed
based on 3-D densely connected structures for the accurate
classification of HS image. In [33], a spectral–spatial unified
network (SSUN) was developed to extract spatial and spectral
features according to a multiscale CNN and a long short-
term memory (LSTM) network, respectively, and then features
were cascaded together for image classification. In [34], a
spectral–spatial residual network (SSRN) was proposed for
HS image classification to learn deep discriminative features
from abundant spectral features and spatial contexts based
on consecutive specific residual blocks. In addition to the
above CNN-based frameworks, there are some other advanced
frameworks such as Graph Convolutional Network (GCN)
and Transformer. By considering the rich spectral-spatial in-
formation of HS images, in [35], a novel miniGCN was

proposed to train large-scale graph networks in a minibatch
fashion. In [36], a new transformer-based backbone network,
named SpectralFormer, was proposed to extract more spectral
information of HS images. Although these DL-based methods
have shown promising progress in VHR remote sensing image
classification, there are still some open issues that require
further investigations. They consist in:

1) Most of spectral-spatial fusion deep networks are de-
signed for HS image classification, only few studies in
the literature focus on VHR-MS image classification,
with the result and the model generalization remains poor
when simultaneously considering the two tasks.

2) The spectral-spatial fusion frameworks on the one hand,
often do not integrate multi-level features, thus they have
shortcomings for accurately identifying the interior and
edges of high-detailed objects. On the other hand, some
existing fusion strategies are not able to properly utilize
the shallow-to-deep features and the saliency information
presented at different scales.

3) Most of DL-based networks require a large number of
training samples to support an effective model learning.
Thus, their accuracy and stability in the few-shot learning
cases are relatively poor.

Inspired by the aforementioned classification methods and
also motivated to overcome the existing open issues, in this
paper, we propose a novel shallow-to-deep feature fusion
network (named SDF2N) for VHR remote sensing image
classification. The main contributions of this network can be
summarised as follows.

1) Based on the joint fusion of shallow spectral-spatial
features and the corresponding deep multi-scale features,
it is capable to better capture the detailed spectral-
spatial and shallow-to-deep information. Accordingly, the
classification performance of highly-detailed land-objects
in VHR images is enhanced step by step by following a
hierarchical feature fusion process.

2) A novel triple-stage fusion (TSF) strategy with three core
feature fusion stages is designed. It can sequentially cap-
ture and fuse the specific discriminative and representa-
tive spectral-spatial features presented in VHR images at
low, middle and high levels. Therefore, the identification
ability especially for the edge details of complex objects
or small objects is significantly improved.

3) Differently from other advanced DL-based methods, the
proposed SDF2N approach shows its stability and excel-
lent classification performance especially in the small-
sample cases, and is in general suitable for different
types of VHR data sets such as MS, HS and unmanned
aerial vehicle (UAV)-RGB camera images. This greatly
increases the potential use of the proposed approach
to deal with complex scenes in practical multi-sensor
applications.

Experimental results obtained on three real VHR remote
sensing data sets including two MS data sets and one HS
data set confirmed the effectiveness of the proposed approach
comparing with the state-of-the-art methods.
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The reminder of this article is organized as follows. Section
II briefly introduces the related work. The proposed SDF2N
approach is described in details in Section III. Experimental
results and the related analysis are presented in Section IV.
Finally, Section V draws the conclusions and provides future
directions.

II. RELATED WORK

Notations used in this paper are summarized in Table I.

A. Extended Morphological Profile (EMAP)

As one of the most popular shallow feature extraction
techniques, the morphology-based methods are proven to be
useful to enhance the classification performance on VHR
images. The popular algorithms include MP [23], EMP [24],
AP [17], EAP [18], and EMAP [19]. Their rigorous mathemat-
ical foundation and inherent ability to capture spectral-spatial
information have led to the rapid development of ML-based
feature extraction and fusion strategies. It is worth noting that
they also have the advantage to be effective also with a limited
number of training data [11]. Among them, the AP and its
expansions, i.e., EAP and EMAP, are the most widely used
approaches owning to the stronger capability to model local
spatial context information [25].

Let X ∈ RH×W×M be a VHR image, where H , W ,
and M represent height, width, and the number of bands,
respectively. Let φλ and γλ be the attribute thickening and
attribute thinning, respectively. AP calculated on a given band
xm (m ⊆[0, M ]) of X can be defined as:

AP (xm) = {φλN
(xm), ..., φλ1(xm),xm,

γλ1(xm), ..., γλN
(xm)}

(1)

where N is the number of attribute thinning and thickening
operations.

As an extension of AP, the EAP is achieved by consecutively
applying the thinning and thickening filters to the original
spectral bands or on their PCs:

EAP (X) = {AP (x1), ..., AP (xM )} (2)

The EMAP is designed by stacking different types of EAP
generated according to different attribute parameters [37], to
comprehensively model complex objects in an image [11]. In
this work, three attributes including area (a), diagonal box
(db), and standard deviation (sd) are selected to generate the
EMAP features, which can be formulated as:

EMAP (X) = {EAPa(X), EAPdb(X), EAPsd(X)} (3)

where the thresholds for the above attributes are a=150, db=50,
and sd=20.

B. CNN

CNN is a feed-forward neural network containing at least
one convolution layer. In the field of remote sensing image
processing, it is popular for pixel-wise classification [38]. In
general, four types of layers are included in a CNN architec-
ture: (1) the convolution layer, (2) the pooling layer, (3) the
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Fig. 1. SE Module [42].

batch normalization (BN) layer, and (4) the fully connected
(FC) layer [39]. According to the processing dimensions, the
convolution can be 1-D, 2-D, and 3-D. For the most common
2-D convolution, a 2-D kernel moves along the height and
width directions of an image, which extracts deep features
within a specified local neighborhood. In order to better model
the spectral-spatial characteristics of VHR images, the 2-D
convolution is selected as the base module in this work.
The mathematical formulation of the 2-D convolution can be
expressed as:

X l+1 = F (X l) = fδ(ω
l ∗ (X l) + bl) (4)

where X l represents the input feature maps of the lth con-
volution layer, X l+1 is the output feature maps of the lth
layer [also the input set of the (l + 1)th layer] [40], ωl and bl

are the weights and bias of the lth layer, respectively, and fδ
represents the ReLU activation function.

C. Squeeze-Excitation (SE) Attention Mechanism

Attention has arguably become one of the most important
concepts in the DL field. It is inspired by the biological
systems of humans that tend to focus on distinctive parts
when processing large amounts of information [41]. Among
the popular attention mechanisms, one widely used module is
the squeeze-excitation (SE) attention [42]. It can adaptively
re-calibrate channel-wise feature responses by explicitly mod-
eling interdependencies between channels [41]. In particular,
SE module mainly uses global average-pooled features and FC
features to compute channel-wise attention. As shown in Fig.
1, the structure of SE mainly consists of squeeze, excitation
and scale steps [6], [43]. Let us assume U ∈ RH×W×M
represent a given input feature vector.

1) Squeeze: The global average pooling (AvgPool) and FC
operations are selected to build the squeeze transform Fsq , and
the input feature vector U is squeezed into a global spatial
1-D feature vector (i.e., channel descriptor), which can be
formulated as:

zm = Fsq(um) =
1

H ×W

H∑
i=1

W∑
j=1

um(i, j) (5)

where um is the mth feature map of U , i and j are the
elements of the feature map, and zm is the output of the
squeeze operation.
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TABLE I
NOTATIONS USED IN THIS PAPER

Symbol Description Symbol Description

H Height W Width

r A reduction ratio W1 ∈ R
W
r
×W The FC layer for reducing dimension

W2 ∈ RW×
W
r The FC layer for infreasing dimension M Number of bands

m ⊆[0, M ] - B Number of EMAP features

w Window size X ∈ RH×W×M VHR image

X′ ∈ RH×W×B EMAP features I ∈ Rw×w×B Input features of TSF

U ∈ RH×W×M A given 3-D feature vector N Number of attribute operations

xm The mth feature of X zm Output of the squeeze operation

um The mth feature of U ũm Output feature of SE module

φλ Attribute thickening operation γλ Attribute thinning operation

a Area attribute db Diagonal box attribute

sd Standard deviation attribute l Number of layers

ω Weight b Bias

F Convolution operation Fsq Squeeze transform

Fex Excitation transform Fsc Scale transform

fδ ReLU activation function fσ Sigmoid function

(i, j) Pixel location s The weight calculated by SE module

1 ≤ d ≤ 128 The dth channel 1 ≤ k ≤ w Local window size

t ∈ Rdk,k - ε A very small constant

I′ A given output feature vector C Number of classes

c ⊆[0, C] - y ∈ {1, 2, ..., C} The category label of I′

ŷ ∈ {1, 2, ..., C} The predicted label of I′ ωc The weight vector of cth class

... ...

...
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Fig. 2. Flowchart of the proposed SDF2N for VHR image classification. It comprises shallow feature extraction, triple-stage fusion (TSF) and image
classification three modules, where the TSF module consists of three sequential feature fusion stages: low-level spectral-spatial feature fusion, middle-level
multi-scale feature fusion, and high-level multi-layer feature fusion.

2) Excitation: The excitation transform Fex performs a
nonlinear transformation on the squeezed result based on a
FC layer, and compresses the weights of different features to

0-1 through the sigmoid function:

s = Fex(z,W ) = fσ(W2fδ(W1z)) (6)
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where W1 ∈ RW
r ×W and W2 ∈ RW×W

r are the FC layers
for reducing and increasing dimension, respectively. r is a
reduction ratio, s is the output of the excitation operation
(which also can be seen as the weight vector), and fσ
represents the sigmoid function.

3) Scale: The scale transform Fsc is also called the
reweight or feature recalibration. The previous output s is
applied to weight the input feature set U . So the final output
ũm can be obtained through the Fsc operation.

ũm = Fsc(um, sm) = smum (7)

III. PROPOSED SDF2N

Fig. 2 illustrates the architecture of the proposed SDF2N
approach, which consists of three main parts: (1) shallow
feature extraction; (2) triple-stage fusion (TSF) ; (3) image
classification. In particular, a novel TSF strategy is designed
to sequentially capture and fuse the shallow-to-deep features
in VHR image at different levels. In particular, the rich shallow
artificial spectral-spatial features are fused in stage 1 at low
level, the multi-scale features are fused in stage 2 at middle
level, and the multi-layer abstract and discriminative features
are fused in stage 3 at high level. More details are provided
as follows.

A. Shallow Feature Extraction

Considering that VHR images usually contain several broad
spectral bands, EMAP can effectively capture spectral-spatial
features in an unsupervised fashion, and then provide richer
shallow features as the input of DL-based networks. Therefore,
we firstly extracted the EMAP features from the original VHR
image X . Let X ′ ∈ RH×W×B be the new data, where B
is the number of EMAP features (B is equal to 7M in this
paper). A patch with a size of w×w is created as the feature
region (around each pixel). Therefore, the actual size of the
input data is I ∈ Rw×w×B .

B. Triple-Stage Fusion (TSF) Module

1) Stage 1 - Low-Level Spectral-Spatial Feature Fusion:
The handcrafted EMAP features generated in the previous
step contain rich spectral-spatial information but with high
redundancy. Therefore, the first stage of the TSF module
is designed to overcome the drawback so as to effectively
fuse the spectral-spatial information in a compound set of
discriminate features (see Fig. 2).

Table II lists the structure parameter settings in this stage.
Specifically, a 1 × 1 convolution layer with 128 kernels is
first employed to transform I into F (I) ∈ Rw×w×128 for
capturing the complex and learnable interactions of cross-
channel information. Next, the BN is connected behind to
avoid the gradient vanishing phenomenon. It can be formalized
as:

I2 = F (I1) = fδ[ω
1 ∗ (I1) + b1] (8)

I3 = BN(I2) =
I2 − E(I2)√
Var(I2) + ε

(9)

4 3 4 2

2 3 2 8

4 5 4 3

6 5 4 9

3 4

5 5 Pool Size = 2
Stride = 2

Pool Size = 2
Stride = 2

4 8

6 9

MaxPoolAvgPool

Fig. 3. The illustration of an example of the AvgPool and MaxPool operations.

TABLE II
NETWORK AND PARAMETERS SETTINGS IN THE STAGE 1 OF THE

PROPOSED SDF2N

Layers Filter Size Activation Strides Padding Output Shape

Conv 1 128×1×1 ReLU 1 same 32×32×128
BN / / / / 32×32×128

AvgPool 1 2×2 / 2 valid 16×16×128
MaxPool 1 2×2 / 2 valid 16×16×128
Concat 1 / / / / 16×16×256

SE Module 1 / / / / 16×16×256

where I1 is equal to I , E(I2) and Var(I2) are the expectation
and variance function of I2, respectively, and ε is a very small
constant value (i.e., 1e− 5) that maintain stability.

Then, two kinds of pooling layers, i.e., the global max
pooling (MaxPool) and the AvgPool, are combined to obtain
the texture detailed information and background information,
respectively. This can also improve the representability of
geometric details of complex objects. The pooling operations
are illustrated in Fig. 3. Let the input feature maps of two
pooling layers be I3 ∈ Rw×w×128. For each feature map
I3
d ∈ Rw×w, the MaxPool selects the maximum value, while

the AvgPool calculates the average value of a specific area
Rdk,k as its representation.

I4
t = MaxPool(I3) = max

t∈Rd
k,k

I3
t (10)

I5
t = AvgPool(I3) =

1

|Rdk,k|
∑
t∈Rd

k,k

I3
t (11)

I6 = Concat(I4, I5) =
{
I4, I5

}
(12)

where 1 ≤ d ≤ 128, and 1 ≤ k ≤ w.
Finally, in order to improve the feature representation by

modelling the interdependencies between different channels
[43], the SE attention module is adopted to realize the
weighted recalibration for low-level features.

I7 = SE(I6) (13)

2) Stage 2 - Middle-Level Multi-Scale Feature Fusion:
After fusing of the spectral-spatial information in the previous
stage, stage 2 aims to generate and fuse the middle-level multi-
scale features. Filters are pivotal for the convolution operation
in CNN [44]. The larger a scale filter, the larger the receptive
field and stronger semantic representation (see Fig. 4). For
complex image objects, the joint use of different scales can
better retain the discriminant information. Therefore, in this
stage, two types of filters (1 × 1 and 3 × 3) are used to
construct a multi-receptive field feature learning mechanism,
i.e., 1 × 1: I8 = F (I7), 3 × 3: I9 = F (I8), and 5 ×
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3×3

5×5

1×1

3×3

1×1

5×5

Image Data

Image Label

Fig. 4. Illustration of multi-receptive fields.

TABLE III
NETWORK AND PARAMETERS SETTINGS IN THE STAGE 2 OF THE

PROPOSED SDF2N

Layers Filter Size Activation Strides Padding Output Shape

Conv 2 128×1×1 ReLU 1 same 16×16×128
Conv 3 128×3×3 ReLU 1 same 16×16×128
Conv 4 128×3×3 ReLU 1 same 16×16×128
Conv 5 128×3×3 ReLU 1 same 16×16×128

Concat 2 / / / / 16×16×384
SE Module 2 / / / / 16×16×384

5: I10 = F (F (I8)). Due to the fact that larger receptive
results in weaker spatial geometric features but requires more
parameters, two 3 × 3 convolution layers are used in this work
instead of the 5 × 5 convolution. This reduces the number
of parameters, and increases the nonlinear expression ability.
Finally, the same as in stage 1, the concatenation operation and
SE module are used to further fuse the generated multi-scale
features as

I11 = Concat(I8, I9, I10) (14)

I12 = SE(I11) (15)

3) Stage 3 - High-Level Multi-Layer Feature Fusion:
In this stage, inspired by the classic VGG [45] and SSUN
frameworks [33], middle-level features go through three pairs
of convolution and pooling layers to extract the discriminative
and abstract high-level features in a hierarchical manner. In
particular, three high-level feature extraction architectures,
i.e., a 3 × 3 convolution layer with 128 kernels and the
corresponding 2 × 2 MaxPool layer are firstly stacked layer-
by-layer as follows:

I l+1 = F (I l) (16)

I l+2 = MaxPool(I l+1) (17)

I l+7 = Flatten(I l+2) (18)

I l+8 = FC(I l+7) (19)

TABLE IV
NETWORK AND PARAMETERS SETTINGS IN THE STAGE 3 OF THE

PROPOSED SDF2N

Layers Filter Size Activation Strides Padding Output Shape

Conv 6 128×3×3 ReLU 1 same 16×16×128
MaxPool 2 2×2 / 2 valid 8×8×128
Flatten 1 / / / / 8192

FC 1 128 ReLU / / 128
Conv 7 128×3×3 ReLU 1 same 8×8×128

MaxPool 3 2×2 / 2 valid 4×4×128
Flatten 2 / / / / 2048

FC 2 128 ReLU / / 128
Conv 8 128×3×3 ReLU 1 same 4×4×128

MaxPool 4 2×2 / 2 valid 2×2×128
Flatten 3 / / / / 512

FC 3 128 ReLU / / 128
Add / / / / 128

where l ∈ {12, 14, 16}. Then three pairs of convolution and
MaxPool layers are followed by a flatten layer and an FC
layer.

Finally, three high-level FC vectors are fused according
to the add operation. Therefore, after the above sequential
fusion operations, the high-level information at different layers
is acquired to further enhance the semantic representation
ability for land-objects in VHR images and thus improve the
classification performance:

I25 = Add(I20, I22, I24) (20)

C. Image Classification
In the final classification step, the obtained high-level fea-

tures are first fed to the dropout layer to randomly discard
half of features, which can avoid over-fitting and enhance the
stability and generalization ability of the model. After that, the
representative and discriminative features are input into the FC
layer with the Softmax classifier for classification, where the
cross entropy is used as the loss function. For the given output
feature vector I ′ and its category label y ∈ {1, 2, ..., C}, the
probability distribution can be expressed:

P (y = c | I ′) = softmax(ωcI
′)

=
exp(ωcI

′)∑C
c′=1 exp(ωc′I

′)

(21)

where ωc is the weight vector of the cth class. The final
decision function of the Softmax can be formulated as follows:

ŷ =
C

argmax
c=1

P (y = c | I ′)

=
C

argmax
c=1

ωcI
′

(22)

where ŷ represents the predicted label of the feature vector I ′.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Description of Data Sets
Experiments were conducted on three real VHR remote

sensing data sets, including two satellite MS images, and one
airborne HS image.
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(a) (b)

Fig. 5. The ZH17 data set: (a) false color composite image (RGB: near-
infrared, red and green bands) and (b) ground reference map.

(a) (b)

Fig. 6. The SH data set: (a) false color composite image (RGB: near-infrared,
red and green bands) and (b) ground reference map.

TABLE V
NUMBER OF SAMPLES OF THE ZH17 DATA SET

No. Class Name Color Samples (pixel)

1 Roads 154786
2 Buildings 150627
3 Trees 111072
4 Grass 129125
5 Bare Soil 10619
6 Water 9040
7 Swimming Pools 6052

1) Zurich 17 (ZH17): The first data set was acquired by the
QuickBird satellite over the urban area of the Zurich, Switzer-
land. The image contains 1025 × 1112 pixels and four spectral
(blue, green, red and near-infrared) bands with an approximate
resolution of 0.62 m after the pansharpening operation. The
false color composite image and the corresponding ground
reference map of the ZH17 data set are visualized in Fig. 5.
As shown in Table V, in this scenario, there are seven land-
cover classes including roads, buildings, trees, grass, bare soil,
water, and swimming pools.

2) Shanghai (SH): The second data set was acquired by
the Gaofen-2 satellite over the urban areas of Shanghai, China.
The image contains 1220 × 1200 pixels and four spectral (blue,
green, red and near-infrared) bands with a spatial resolution
of 1 m after the pansharpening operation. Fig. 6 (a) and
(b) present the false color composite image and the ground
reference map, respectively. There exist five land-cover classes

(a) (b)

Fig. 7. The UP data set: (a) false color composite image (RGB: bands 90,
50, and 10) and (b) ground reference map.

TABLE VI
NUMBER OF SAMPLES OF THE SH DATA SET

No. Class Name Color Samples (pixel)

1 Buildings 195439
2 Roads 84444
3 Water 78043
4 Trees 11381
5 Grass 24868

TABLE VII
NUMBER OF SAMPLES OF THE UP DATA SET

No. Class Name Color Samples (pixel)

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3682
9 Shadows 947

in the study area (i.e., buildings, roads, water, trees and grass).
Detailed information on these classes is provided in Table VI.

3) PaviaU (UP): The third data set was acquired by the
Reflective Optics Systems Imaging Spectrometer (ROSIS)
sensor over the Pavia University, northern Italy. This image
consists of 103 spectral bands (wavelength from 0.43 to 0.86
µm) having a size of 610 × 340 pixels and a spatial resolution
of 1.3 m. In order to remove the redundancy in spectral bands,
the PCA transformation was performed on the original full
bands, where the first four PCs that retain 99% information
of the input bands were kept for classification. Fig. 7 (a) and
(b) present the false color composite image and the ground
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reference map, respectively. There are nine complex classes in
this data set, i.e., asphalt, meadows, gravel, trees, painted metal
sheets, bare soil, bitumen, self-blocking bricks, and shadows
(more information on classes can be seen in Table VII).

B. Parameter Settings

To demonstrate the effectiveness of the proposed SDF2N
approach, six reference methods were compared on the three
considered data sets, including two traditional ML-based
classification methods, i.e., support vector machine (SVM)
and random forest (RF), and four state-of-the-art DL-based
classification approaches, i.e., FDSSC [32], SSUN [33], SSRN
[34], and SpectralFormer [36]. For the SVM classifier, the
radial basis function (RBF) was selected as kernel function.
For the RF classifier, the number of decision trees was set to
500. For three CNN-based reference networks FDSSC, SSUN
and SSRN, the spatial window size of the input was set as 32
× 32, the batch size was set to 128, and the value of epochs
was defined as 100. For the SpectralFormer, the values of
patches, band-epochs, epochs were set to [7, 7, 480], [7, 3,
900], and [7, 7, 480] in ZH17, SH and UP three data sets,
respectively. For the proposed SDF2N, the Adam optimizer
with a learning rate of 0.001 was used for model training. In
addition, the parameter settings of the input window, batch and
epoch were consistent with the aforementioned CNN-based
reference methods. Finally, in order to keep consistency with
the the proposed method, the EMAP features were also used
as input to the six reference methods.

The DL-based methods (i.e., FDSSC, SSUN, SSRN, Spec-
tralFormer, and SDF2N) were implemented by TensorFlow or
PyTorch on an NVIDIA P40 GPU with 24 GB memory. The
ML-based methods (i.e., SVM and RF) were implemented by
Matlab R2020b on a computer with Intel(R) Core(TM) i5-
7300 CPU, RAM 8 GB.

To quantitatively evaluate the classification performance
among all compared methods, different indices such as the
overall accuracy (OA), the class accuracy (CA), the kappa
coefficient (Kappa), and the computational time cost (T) were
calculated. Final experimental results were obtained by repeat
running ten times of each method with randomly generated
training samples.

C. Experimental Results

In this section, we report the quantitative and qualitative
analysis on the results obtained by the proposed approach and
six reference methods on three VHR remote sensing data sets.

1) Results on the ZH17 data set: A detailed comparison
of the classification performance of seven methods was done
under different numbers of training samples, which were
randomly selected as 1%, 2%, 3%, 4%, and 5% of samples for
each class. Note that the randomization and classification were
repeated ten times to assess average performance. The standard
deviations (SD) of OA values are illustrated by the shaded ar-
eas in Fig. 8. In the figure, the red curve corresponds to the OA
values obtained by the proposed SDF2N method, which clearly
shows higher values than the others with subtle fluctuation.
Among four DL-based reference methods, FDSSC and SSUN
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Fig. 8. OA results obtained by different methods with different numbers of
randomly selected training samples (ZH17 data set). Each curve represents the
average OA after ten-times random sampling, and the shaded area represents
the SD of ten OA values.
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Fig. 9. OA results obtained by different methods with different numbers of
randomly selected training samples (SH data set). Each curve represents the
average OA after ten-times random sampling, and the shaded area represents
the SD of ten OA values.

outperformed SSRN and SpectralFormer. Unfortunately, the
FDSSC performance fluctuated greatly under different random
samplings. The SpectralFormer achieved the lowest accuracy
but with stable performance. In addition, although the SVM
and RF have the most stable performance, their accuracies are
much lower than those of DL-based methods.

Table VIII summaries the classification accuracies obtained
by different methods with 1% training samples. From the
table, one can see that two ML-based methods obtained
the worst average OA values among all considered methods
(i.e., SVM: 90.32% and RF: 91.00%). Considering five DL-
based methods, the proposed SDF2N approach resulted in
the highest classification accuracy (OA=97.13%), significantly
outperforming four reference deep networks, i.e., FDSSC
(95.29%), SSUN (95.40%), SSRN (93.76%), and Spectral-
Former (91.17%). Moreover, the proposed SDF2N approach
produced a smallest SD value of OA (±0.16), indicating its
stability.

The classification maps obtained by different methods under
the first group of random samples are shown in Fig. 11. One
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Fig. 10. OA results obtained by different methods with different numbers of
randomly selected training samples (UP data set). Each curve represents the
average OA under ten-times random sampling, and the shaded area represents
the SD of ten OA values.

subset highlighted in Fig. 11 is further compared in Fig. 12.
We can see that the classification maps proposed by SVM
and RF present much noise, which leads to a decrease of OA
values. Classification maps obtained by FDSSC [Fig. 12(c)],
SSUN [Fig. 12(d)], SSRN [Fig. 12(e)], and SpectralFormer
[Fig. 12(f)] contain some confusion between roads (in green)
and trees (in yellow). Compared with the ground reference
map [see Fig. 5(b)], the best classification map is obtained
by using the proposed SDF2N approach that resulted in an
OA=97.14% [see Fig. 11(g) and Fig. 12(g)]. Most importantly,
it is easy to observe that the proposed method alleviates the
mis-classification pixels in the edges and interiors of adjacent
objects (e.g., roads and trees), thus confirming its superiority
on the other six compared methods.

2) Results on the SH data set: Fig. 9 illustrates the OA
values obtained by different methods with a number of training
samples increasing from 0.1% to 0.3% of total samples. In
Fig. 9, among seven curves, the proposed SDF2N approach
(represented by the red curve) achieved higher OA values
with more stable performance. Due to the fact that on the
SH data set the land-cover types are relatively simple, all
DL-based methods except the SpectralFormer obtained high
classification accuracies with a limited number of training
samples. The SpectralFormer may be more suitable for HS
image classification owing to its strong capability in spec-
tral feature learning, rather than the large-scene VHR image
especially the one with very few broad spectral bands. In
the meantime, performance with a small number of training
samples demonstrates the stability of the advanced network.
Therefore, although the accuracies of the FDSSC method are
slightly higher than those of the SDF2N in some conditions,
its overall fluctuation is more significant than that of SDF2N.
In addition, comparing with other reference methods, SVM,
RF and SpectralFormer resulted in more stable performances
while their accuracies are quite lower.

Table IX reports the average classification accuracies and
their SD values with 0.1% training samples. We can see that
on this data set the obtained results are in line with the results

of the previous data set. In particular, despite the lower SD
values and computational time costs, SVM and RF resulted
in the lowest average OA values which are equal to 88.82%
and 88.46%, respectively. By taking advantages of powerful
capability in extracting high-level semantic features, all five
DL-based methods obtained high classification accuracies even
in the few-shot learning cases. Among them, the proposed
SDF2N achieves the highest accuracy (i.e., OA=96.56%) with
a smallest SD value (i.e., SD=0.43).

Fig. 13 shows the classification maps obtained by different
methods by using the first group samples. Fig. 14 further
illustrates the local classification results of the areas high-
lighted in Fig. 13. From Fig. 14, one can see that the proposed
SDF2N method obtained the fewest misclassified pixels [see
Fig. 14(g)]. Compared with other six reference methods, the
SDF2N approach better models the object external edges and
internal homogeneity of similar classes, thus reducing the mis-
classification errors, such as buildings (in blue) and roads (in
green) classes, which are easy to be confused as shown in Fig.
13(g) and Fig. 14(g).

3) Results on the UP data set: Fig. 10 illustrates the
accuracy obtained by different methods by using different
numbers of samples. Compared with the previous two data
sets, OA results better show the advantages of the proposed
SDF2N that provides the highest classification accuracy. On
the contrary, the SSRN method achieved the lowest OA value.
This may be due to the insufficient number of training samples
in the model training process. In addition, the SpectralFormer
obtained higher performance than in other data sets. This
demonstrated it is more suitable for HS image classification
with sufficient spectral information.

Table X presents the average classification accuracies of
the seven methods with 1% training samples, which are
consistent with the quantitative results of the previous two data
sets. The proposed SDF2N obtains the highest classification
accuracy (OA=97.09%) and relatively small standard deviation
(SD=0.64). In particular, the OA of the SDF2N is higher of
roughly 2%-5% than those of other methods and is obtained
with a low computation cost (39.31 s).

Fig. 15 visualizes the classification maps of the first random
sampling group obtained by different methods. In addition,
subsets highlighted in the red rectangle in Fig. 15 are further
compared in Fig. 16. It should be noted that the classification
map obtained by the SDF2N method presents more regular
and correct classification results with less confusions among
classes [see Fig. 15(g) and Fig. 16(g)]. It effectively reduces
the misclassification especially for those complex objects with
adjacent edges [e.g., asphalt (thistle) and trees (dark green)]
and similar spectral characteristics [e.g., trees (dark green) and
meadows (bright green)].

4) Ablation Study for the Proposed SDF2N: To further
validate the effectiveness of the proposed SDF2N, a detailed
ablation study was also made based on different combinations
of the three fusion stages in the TSF module on the three
data sets. As shown in Table XI, when only a single stage
is considered (see rows 1-3), relatively poor performance are
obtained as the multi-level features are not fused and utilized.
In addition, although the combinations of two fusion stages
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TABLE VIII
CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT METHODS ON THE ZH17 DATA SET

Classes SVM RF FDSSC SSUN SSRN SpectralFormer SDF2N

Roads 89.62 89.54 97.11 95.29 95.97 87.76 97.48
Buildings 87.78 91.09 94.84 95.80 96.38 91.71 98.10

Trees 90.19 90.33 92.76 94.59 90.83 92.56 95.26
Grass 93.86 92.87 95.69 95.95 91.86 93.38 97.09

Bare soil 86.91 88.71 96.59 95.83 95.77 89.03 97.47
Railways 95.02 94.58 94.01 91.62 70.33 91.88 97.11

Swimming pools 97.04 96.59 96.88 96.35 97.72 95.41 98.80

OA
90.32 91.00 95.29 95.40 93.76 91.17 97.13
±0.12 ±0.20 ±1.83 ±0.17 ±0.53 ±0.41 ±0.16

Kappa
87.38 88.26 93.85 94.01 91.86 88.50 96.26
±0.16 ±0.27 ±2.40 ±0.69 ±0.69 ±0.54 ±0.21

T(s)
117.18 59.07 2606.99 300.80 1388.83 6545.93 485.59
±6.07 ±0.67 ±41.62 ±3.28 ±13.91 ±122.48 ±11.93

TABLE IX
CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT METHODS ON THE SH DATA SET

Classes SVM RF FDSSC SSUN SSRN SpectralFormer SDF2N

Buildings 85.51 88.77 92.54 93.42 94.25 90.35 96.15
Roads 84.72 77.75 98.52 89.77 97.41 82.66 94.07
water 99.55 99.91 96.70 99.04 98.66 99.05 99.34
Trees 86.12 74.64 54.14 72.15 43.85 93.46 96.78
Grass 96.29 92.81 99.46 98.39 98.93 97.68 99.43

OA
88.82 88.46 93.97 93.45 94.64 90.97 96.56
±0.75 ±0.55 ±4.39 ±0.57 ±1.40 ±0.58 ±0.43

Kappa
83.43 82.67 91.16 90.16 91.97 86.48 94.84
±1.09 ±0.81 ±5.97 ±0.84 ±2.07 ±0.93 ±0.63

T(s)
14.37 26.86 490.15 129.87 325.17 6399.58 165.48
±0.90 ±1.06 ±22.10 ±2.80 ±25.52 ±112.22 ±6.69

TABLE X
CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT METHODS ON THE UP DATA SET

Classes SVM RF FDSSC SSUN SSRN SpectralFormer SDF2N

Asphalt 93.85 95.06 98.67 96.53 96.04 91.66 98.73
Meadows 99.53 99.25 99.36 99.81 99.61 99.93 99.93

Gravel 65.31 68.23 94.11 76.45 94.17 72.35 90.40
Trees 90.17 86.64 66.29 89.79 39.32 92.28 91.72

Painted metal sheets 98.85 98.34 99.29 94.00 100.00 99.95 99.11
Bare soil 98.22 99.25 99.87 99.60 100.00 98.23 99.97
Bitumen 75.96 87.43 97.11 67.15 92.58 78.33 81.91

Self-blocking bricks 91.24 90.35 97.29 90.49 96.88 90.60 95.47
Shadows 97.29 99.81 28.98 52.62 13.18 90.29 71.66

OA
94.63 95.02 94.88 94.36 92.16 94.86 97.09
±0.31 ±0.63 ±0.86 ±0.29 ±0.75 ±0.52 ±0.64

Kappa
92.85 93.38 93.19 92.48 89.55 93.17 96.14
±0.42 ±0.85 ±1.15 ±1.02 ±1.02 ±0.69 ±0.86

T(s)
13.92 14.35 211.12 26.47 115.03 451.74 39.31
±2.51 ±0.25 ±21.82 ±0.74 ±8.63 ±11.66 ±1.21

show better performance (see rows 4-6) than using a single
stage, the proposed shallow-to-deep TSF structure (see row 7)
resulted in the highest performance. This further demonstrates
the effectiveness of the proposed SDF2N that sequentially

takes advantages of the three fusion stages to improve the
classification performance in VHR images.
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(a) 90.23% (b) 90.78% (c) 96.09% (d) 95.67% (e) 93.56% (f) 91.23% (g) 97.14%

Fig. 11. Classification maps obtained by different methods on the ZH17 data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f) SpectralFormer. (g)
SDF2N.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12. Classification maps obtained by different methods at a local subset on the ZH17 data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f)
SpectralFormer. (g) SDF2N. (h) Ground reference map.

(a) 88.16% (b) 88.57% (c) 82.02% (d) 93.37% (e) 96.19% (f) 90.82% (g) 97.20%

Fig. 13. Classification maps obtained by different methods on the SH data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f) SpectralFormer. (g)
SDF2N.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 14. Classification maps obtained by different methods at a local subset on the SH data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f)
SpectralFormer. (g) SDF2N. (h) Ground reference map.

(a) 94.77% (b) 95.67% (c) 94.61% (d) 94.16% (e) 91.55% (f) 95.51% (g) 96.68%

Fig. 15. Classification maps obtained by different methods on the UP data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f) SpectralFormer. (g)
SDF2N.

V. CONCLUSION

In this paper, a novel shallow-to-deep feature fusion network
(SDF2N) has been proposed to hierarchically extract and
fuse the saliency and discriminative features for VHR remote

sensing image classification. Specifically, the SDF2N contains
three core feature fusion stages: (1) the low-level feature
fusion stage, which is used to fuse the rich spectral-spatial
features; (2) the middle-level feature fusion stage, which
utilizes different size filters for integrating multi-scale spatial
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 16. Classification maps obtained by different methods at a local subset on the UP data set. (a) SVM. (b) RF. (c) FDSSC. (d) SSUN. (e) SSRN. (f)
SpectralFormer. (g) SDF2N. (h) Ground reference map.

TABLE XI
ABLATION STUDIES OF DIFFERENT FUSION STAGES

Combination strategies
OA(%)

ZH17 SH UP

Stage 1
95.44 94.28 95.65
±0.19 ±0.89 ±0.76

Stage 2
95.81 94.75 95.74
±0.23 ±0.40 ±0.62

Stage 3
96.37 94.57 95.54
±0.16 ±0.65 ±0.57

Stage 1&2
96.46 95.55 96.85
±0.25 ±0.80 ±0.57

Stage 1&3
96.98 95.25 96.68
±0.16 ±1.37 ±0.46

Stage 2&3
96.26 95.35 96.38
±0.41 ±0.64 ±0.42

Stage 1&2&3
97.13 96.56 97.09
±0.16 ±0.43 ±0.64

context information; and (3) the high-level feature fusion
stage, which includes three hierarchical layers for learning
abstract and discriminative information. Compared with six
popular and state-of-the-art reference methods, experimental
results obtained on three real VHR remote sensing data sets
confirmed the effectiveness of the proposed SDF2N approach.
It effectively alleviates the inaccurate identification problems
of complex objects especially in the high-detailed edges, and
improves the classification accuracy. In addition, the proposed
SDF2N approach has the better model stability especially
in the small-sample cases, where it is superior to the other
considered reference state-of-the-art methods.

For future developments, we will explore more efficient
shallow-to-deep feature fusion modules for a large complex
scene classification in VHR satellite images.
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