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The literature of human and other host-associated microbiome studies is 
expanding rapidly, but systematic comparisons among published results of 
host-associated microbiome signatures of differential abundance remain 
difficult. We present BugSigDB, a community-editable database of manually 
curated microbial signatures from published differential abundance studies 
accompanied by information on study geography, health outcomes, host 
body site and experimental, epidemiological and statistical methods using 
controlled vocabulary. The initial release of the database contains >2,500 
manually curated signatures from >600 published studies on three host 
species, enabling high-throughput analysis of signature similarity, taxon 
enrichment, co-occurrence and coexclusion and consensus signatures. 
These data allow assessment of microbiome differential abundance 
within and across experimental conditions, environments or body sites. 
Database-wide analysis reveals experimental conditions with the highest 
level of consistency in signatures reported by independent studies and 
identifies commonalities among disease-associated signatures, including 
frequent introgression of oral pathobionts into the gut.

Despite substantial progress in experimental techniques and com-
putational methods for culture-independent profiling of the human 
microbiome, the analysis and interpretation of microbial differential 
abundance studies remains challenging. A large body of experimen-
tal and observational studies on humans and in animal models has 
reported associations between host-associated microbiomes and the 
onset, progression and treatment of a variety of diseases, including 
atherosclerosis1, cardiovascular diseases2, cancers3 and diabetes4. This 
growing body of published results provides opportunities for synthesis 
of accumulated knowledge, identification of common patterns across 

different diseases and exposures and interpretation of new studies by 
comparison to previous results. However, without a systematic catalog 
of published differential abundance results, even identical microbial sig-
natures reported in different research fields are unlikely to be noticed. 
Even within research fields, systematic review in the absence of a cata-
log or common reporting of differential abundance results are time 
consuming, static and generally do not summarize all taxa reported.

This situation has parallels to early challenges in the interpretation 
of differential gene expression analyses5, which have been addressed 
in the field by gene set enrichment analysis (GSEA). GSEA allows for the 
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with contributions from more than 25 curators trained in-house and 
currently contains >2,500 microbial signatures extracted from >600 
scientific articles (Fig. 1a). The curated papers cover two decades of 
microbiome research, with the majority of studies being published in 
the last 5 years (459 of 628 articles, 73.1%; Supplementary Fig. 1). Among 
these papers are microbiome studies of participants from more than 50 
different countries, with more than 50% of the studies originating from 
China and the United States (201 and 157 studies, respectively; Fig. 1b).

Studying microbiome samples from 14 broad body areas compris-
ing more than 60 refined anatomical sites according to the UBERON 
Anatomy Ontology28 (Supplementary Table 1), the majority of studies 
in BugSigDB analyzed gut (440 of 628 studies, 70.1%), oral (80 of 628 
studies, 12.8%) and vaginal microbiome samples (59 of 628 studies, 
9.4%; Fig. 1c). The signatures were generated by both 16S amplicon 
sequencing (92.5%) and metagenomic shotgun sequencing (MGX; 
7.5%; Table 1) and contained taxonomic levels from phylum to strain 
standardized based on the NCBI Taxonomy29 (Supplementary Fig. 2). 
BugSigDB is implemented as a semantic MediaWiki30 web interface 
available at https://bugsigdb.org that supports data entry, semantic 
validation, quality control and web-based programmatic access to 
annotations for studies, experiments, signatures and individual taxa 
(Supplementary Fig. 3 and “Data entry, validation and access” in the 
Methods).

Most of the roughly 1,400 unique taxa contained in BugSigDB are 
reported as differentially abundant in fewer than five signatures (1,009 
of 1,370 unique microbes, 73.6%; Fig. 1d). Conversely, genera Strepto-
coccus, Prevotella, Bacteroides and Lactobacillus are each reported 
as differentially abundant in more than 100 signatures, reflecting the 
large number of species belonging to these genera and paralleling pre-
vious observations of gene signatures with certain genes often being 
disproportionately reported as differentially expressed31. Signatures 
contain six microbes, on average, with roughly 55% of the signatures 
containing five or more microbes (Fig. 1e).

Study conditions associated with each signature are classified 
according to the Experimental Factor Ontology32 (Fig. 1f), with large 
proportions associated with different types of cancer (23.1%), anatomi-
cal system diseases, such as asthma and endometriosis (22.6%), and 
metabolic diseases, such as obesity and diabetes (15.3%). Apart from 
different disease categories, substantial proportions of signatures 
in BugSigDB are also associated with diet (6%), the use of antibiotics 
(4.8%) and birth delivery mode (vaginal versus Cesarean section; 4.1%). 
These distributions approximately reflect the human microbiome lit-
erature. Non-human host species remain underrepresented, although 
the database can support any host organism.

Condition-specific associations were investigated for the ten 
most-reported taxa (Fig. 1g). For instance, signatures containing the 
Bacteroides genus are related to metabolic disease (21%) more fre-
quently than all signatures (13%; P = 0.003, χ2 = 8.4, d.f. = 1, two-sided 
proportion test). Bacteroides is similarly enriched in signatures of anti-
biotic exposure (11% of Bacteroides-containing signatures being associ-
ated with antibiotics exposure versus 5% of all signatures; P = 0.0009, 
χ2 = 11.2, d.f. = 1). BugSigDB makes such commonalities across groups of 
related studies straightforward to identify and provides for continuous 
updates of these associations as the database grows.

Curated metadata and common practices in microbiome 
research
BugSigDB provides curated metadata at the level of study (study design 
and automatically generated citation information), experiments within 
a study that each define one contrast for differential abundance analysis 
(such as characteristics about study subjects, lab analysis, statistical 
analysis and α-diversity) and up to two signatures within an experiment, 
each of which contains one or more taxon (see Table 1 for summary sta-
tistics of studies and experiments and “Definition of semantic concepts” 
in the Methods for details of the design). In this article, we use ‘study 

comparison of coherent expression patterns among predefined gene 
signatures that share a biological function or property or that were 
identified together by a previous study6,7. GSEA is a key tool in gene 
expression data analysis6, with a wide range of subsequent methods8 
to account for correlations between genes9, redundancy of functional 
annotation10, different types of null hypotheses11 and the application 
of GSEA for the analysis of genomic regions12, metabolomic data13 and 
disease phenotypes14.

Analogously, differential microbial abundance analysis can yield 
lists or ‘signatures’ of microbial clades at multiple taxonomic levels 
that are associated with a phenotype of interest. The properties shared 
by these clades are often not obvious but could include common envi-
ronmental exposures, metabolic or ecological requirements or physi-
ological characteristics. Although nascent attempts to apply concepts 
of GSEA to the results of microbiome differential abundance analyses 
exist15–18, major obstacles have prevented their broad utility and adop-
tion. The most notable obstacle has been the lack of comprehensive 
databases of signatures designed for enrichment analysis, such as those 
available for GSEA, including the Gene Ontology19, KEGG20, MSigDB21,22 
and GeneSigDB23. Several databases provide important information 
on microbial physiology and morphology24–27 but are not designed 
for enrichment analysis and, by design, exclude the vast majority of 
experimentally derived microbial signatures associated with cancer, 
inflammation, diet or other conditions studied in human and other 
host-associated microbiome research.

This study provides two main contributions to enable 
high-throughput comparison of published microbial signatures. First, 
it describes BugSigDB, a database of published microbial signatures 
of sufficient scale and diversity to capture replicable patterns of dif-
ferential abundance across a broad spectrum of the host-associated 
microbiome literature. BugSigDB provides curated published signa-
tures of differentially abundant microbes associated with a wide range 
of health outcomes, pharmaceutical usage (for example, antibiotics), 
experiments on animal models, randomized clinical trials and micro-
bial attributes and is built on the technology of Wikipedia to allow 
community contributions, revisions and review for quality control. 
Second, we provide a systematic analysis of the results reported by 
hundreds of published microbiome studies and identify replicated pat-
terns even across 16S amplicon and shotgun sequencing approaches, 
demonstrating that interpretation of new microbiome studies can be 
supported by systematic comparison to previously published signa-
tures. Database-wide analysis revealed common patterns of microbe 
co-occurrence and mutual exclusivity within signatures and identi-
fied antibiotic treatment and human immunodeficiency virus (HIV) 
infection as the experimental conditions with the highest level of 
consistency in signatures reported by independent studies. ‘Bug set’ 
enrichment analysis of ten individual colorectal cancer-associated 
fecal microbiome datasets (N = 663) detected published meta-analysis 
signatures used as positive controls, supporting direct application of 
methods adapted from gene set analysis and taxonomy-aware enrich-
ment methods. This analysis also identified commonalities among 
signatures of other diseases, including elevated frequency of oral 
pathobionts in the gut, and identified the most common patterns of 
co-occurrence and mutual exclusion across all conditions or related 
conditions or unique to one condition. Together, the BugSigDB data-
base and analysis methods described here improve the interpretation 
of new microbiome studies by systematic comparison to published 
microbial signatures.

Results
A curated database of published microbial signatures
BugSigDB comprises a comprehensive database of manually curated, 
host-associated microbial signatures from published microbiome stud-
ies of human, mouse and rat (Fig. 1). The database has been simultane-
ously developed and expanded over the course of more than 4 years 
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group’ to refer to cases in case–control studies, the exposed group in 
exposure–control studies and whichever group corresponds to the 
condition of interest with increased microbial relative abundance in 
other comparisons of two-sample groups.

Signatures are available primarily from observational study 
designs: case–control (281 studies, 44.7%) and cross-sectional stud-
ies (171 studies, 27.2%) were most prevalent, while prospective cohort 
studies (66, 10.5%), time series/longitudinal studies (51, 8.1%), labora-
tory studies (29, 4.6%), randomized controlled trials (28, 4.4%) and 
meta-analyses (6, 0.9%) were also present. Study subject information 
includes host species (95.9% human of 1,223 experiments), location, 
condition, body site (Fig. 1), antibiotics exclusion criteria (median 
exclusion time = 60 d) and sample size in study and control sample 
groups (median total sample size = 25).

A survey of statistical methods most frequently applied for dif-
ferential abundance testing in BugSigDB revealed that nonparametric 
tests, such as Wilcoxon family tests and the related LEfSe software33, 
were most frequently used, whereas recently suggested tools for 
differential abundance tests accounting for the compositionality 
of microbiome data34 were rarely used (Supplementary Results Sec-
tion 1.1). Furthermore, when stratifying experiments by body site and 

condition, oral and vaginal samples were frequently reported with 
increased α-diversity in the study group, as opposed to samples from 
the gastrointestinal tract, which were frequently found with decreased 
α-diversity in the study group (Supplementary Tables 2–4).

Conditions with replicable microbiome changes across 
studies
BugSigDB facilitates meta-analysis of differential abundance studies 
and enables the identification of experimental conditions and dis-
ease phenotypes where microbiome changes replicate across studies. 
Focusing on 1,194 signatures derived from human fecal samples in 311 
published studies, we computed signature similarity within conditions 
and assessed whether the resulting similarity exceeds the similarity of 
randomly sampled signatures (Fig. 2). This simultaneously determines 
whether signatures of the same phenotype reproduce across studies 
and whether different phenotypes share similar microbial signatures.

To do this, we applied two alternative approaches for comput-
ing similarity between signatures: (1) the more restrictive Jaccard 
index35 based on pairwise overlaps between signatures harmonized 
to genus level and (2) the more sensitive semantic similarity36 based 
on taxonomic distance between signatures of mixed taxonomic levels 
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Fig. 1 | BugSigDB, a curated database of experimentally derived microbial 
signatures. a–c, BugSigDB is a community-editable collection of published 
microbiome studies reporting differentially abundant host-associated 
microbiota (including bacteria, archaea, fungi, protists and viruses) that 
currently includes >2,500 microbial signatures extracted from >600 scientific 
articles over the course of more than 4 years (a). These papers report microbiome 
studies of participants representing different countries and ethnogeographies 
(b) and microbiome samples from different human body sites (c). d, Number of 

signatures associated with a specific microbe, with the top 10 most frequently 
reported microbes annotated. BugSigDB signatures contain taxonomic levels 
from phylum to strain standardized based on the NCBI Taxonomy29. e, Signature 
sizes, with more than 50% of the signatures containing five or more microbes. 
f, Percentage of signatures annotated to major disease categories when 
classifying the study condition associated with each signature according to the 
Experimental Factor Ontology32. g, Top 10 most frequently reported microbes 
and the number of associated signatures stratified by disease category.
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(“Signature similarity” in the Methods). Hierarchical clustering of 
signature similarity for both similarity measures was in good agree-
ment, reflecting the dominance of genera reported so far in BugSigDB, 
but demonstrated better resolution using semantic similarity than 
the sparse results obtained from the application of Jaccard similarity 
(Supplementary Fig. 4). The advantages of semantic similarity may 
grow as taxonomic ranks in BugSigDB become more mixed due to 
increased reporting of species-level results made possible by shotgun 
metagenomics.

To assess replication by independent studies of the same condi-
tion, we compared semantic similarity between signatures reported 
for a single condition to the similarity of randomly sampled signatures 

Table 1 | Overview of curated metadata annotations in 
BugSigDB

Count Percentage

Studies

Study design

 Case–control 281 44.7

 Cross-sectional 171 27.2

 Prospective cohort 66 10.5

 Time-series/longitudinal 51 8.1

 Laboratory experiment 29 4.6

 Randomized control trial 28 4.4

 Meta-analysis 6 0.9

Experiments

Host species

 Homo sapiens 1,173 95.9

 Mus musculus 44 3.6

 Rattus norvegicus 6 0.5

Location

 China 350 28.7

 United States 350 28.7

 Italy 51 4.2

 Spain 48 3.9

 South Korea 42 3.5

 Other (56 more) 378 31.0

Body site

 Feces 694 56.9

 Saliva 40 3.3

 Uterine cervix 40 3.3

 Vagina 36 2.9

 Mouth 29 2.4

 Other (67 more) 380 31.2

Condition

 Obesity 103 8.5

 COVID-19 74 6.1

 Antimicrobial agent 64 5.3

 Diet 55 4.5

 Human papillomavirus infection 42 3.4

 Other (173 more) 877 72.2

Antibiotics exclusion

 0–2 weeks 64 5.2

 2 weeks–1 month 216 17.6

 1–3 months 265 21.6

 More than 3 months 89 7.3

 Not reported 591 48.3

Lab analysis

Sequencing type

 16S 1,117 92.5

 MGX 91 7.5

Sequencing platform

 Illumina 810 67.4

Count Percentage

 Roche454 180 15

 Ion Torrent 87 7.2

 RT–qPCR 77 6.4

 Other (12 more) 48 4.0

16S variable region

 V3-4 363 36.7

 V4 297 30.0

 V1-3 90 9.1

 V1-2 63 6.4

 V4-5 44 4.4

 Other (16 more) 133 13.4

Statistical analysis

Statistical test

 Mann–Whitney (Wilcoxon) 339 29.2

 LEfSe 330 28.4

 Kruskal–Wallis 94 8.1

 DESeq2 85 7.3

 t-test 73 6.3

 Other (36 more) 240 20.7

Multiple hypothesis correction

 Yes 576 48.6

 No 608 51.4

Significance threshold

 0.05 1,049 88.1

 0.1 68 5.7

 0.01 28 2.4

 0.001 12 1.0

 Other (18 more) 34 2.8

α-Diversity

 Increased 187 15.3

 Decreased 229 18.7

 Unchanged 410 33.4

 Not reported 399 32.6

Note that the unit in the count column is the number of studies for study design and the 
number of experiments for all other variables. BugSigDB defines experiments as semantic 
units within studies based on a defined set of characteristics about study species, lab 
analysis, statistical analysis and α-diversity (“Definition of semantic concepts” in the 
Methods).

Table 1 (continued) | Overview of curated metadata 
annotations in BugSigDB
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in repeated simulation and ranked conditions based on the resulting 
empirical P value (Fig. 2a). Differential abundance signatures of antibi-
otic treatment and HIV infection were among the most consistent, each 
investigated by five or more studies in BugSigDB37–49. Closer inspection 
of signatures of decreased abundance after antibiotics treatment 
(semantic similarity = 0.64, one-sided resampling P = 0.0005; Fig. 2d,e 
and Supplementary Fig. 5) revealed enrichment for genera of fastidious 
anaerobes that are often short-chain fatty acid producers and displayed 
frequent loss of Bifidobacterium and Blautia, in agreement with previ-
ous reports50. However, signatures of decreased abundance in individu-
als infected with HIV versus those in uninfected healthy individuals 
(semantic similarity = 0.68, resampling P = 0.002; Fig. 2b,c and Sup-
plementary Fig. 6) displayed a loss of abundant members of healthy gut 
microbial communities, as typically observed for diseases associated 
with gastrointestinal inflammation51, but also resembled a response 
to antibiotics treatment, a likely side effect of antibiotics often being 
prescribed for individuals positive for HIV infection to prevent or treat 
opportunistic and associated infections52. Additional examples of 
replicable microbiome shifts between studies included similarity (1) 
among fecal signatures of decreased abundance in individuals with 

coronavirus disease 2019 (COVID-19), which displayed alterations 
associated with intensive care units and antibiotics treatment53 (Sup-
plementary Fig. 7), and (2) among stomach signatures of individuals 
with gastric cancer driven by consistently increased abundance of 
Streptococcus, Lactobacillus and Prevotella (Supplementary Fig. 8).

Bug set enrichment analysis of colorectal cancer signatures
We integrated BugSigDB signatures with the manually curated 
metagenomic datasets from curatedMetagenomicData54 to system-
atically benchmark enrichment methods from the EnrichmentBrowser 
package7,55 and evaluate whether top-performing gene set enrichment 
methods can be directly applied to microbiome data. We applied two 
enrichment methods that have performed well in previous bench-
marking of gene set analysis methods7 (overrepresentation analysis 
(ORA11) and pathway analysis with downweighting of overlapping genes 
(PADOG31)) to ten colorectal cancer datasets from curatedMetagen-
omicData. We performed enrichment analysis of all microbiome sig-
natures from BugSigDB simultaneously and used as ‘spike-in’ controls 
two signatures of the colorectal cancer-associated fecal microbiome 
derived previously by two independent meta-analyses of individual 
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Fig. 2 | Analysis of signature similarity in BugSigDB identifies conditions 
with replicable microbiome changes across studies. a, Signature similarity 
analysis for conditions from at least two studies for the same body site. Signatures 
were stratified by direction of abundance change into signatures with decreased 
abundance (left) and increased abundance (right) in the study group. Conditions 
are divided into two groups: conditions with highest reproducibility for 
signatures of decreased abundance (top) and increased abundance (bottom) 
in the study condition. Shown is the nominal P value (x axis, negative log 
scale) obtained from testing whether the semantic similarity of signatures for 
each condition (y axis) exceeds the semantic similarity of randomly sampled 
signatures (one-sided resampling test). The size of each dot corresponds to the 
number of studies investigating a condition; HPV, human papillomavirus.  

b–e, Example exploration of two top-ranked conditions in more detail: fecal 
signatures of decreased abundance for individuals infected with HIV (b and c) and 
fecal signatures of decreased abundance for individuals treated with antibiotics 
(d and e). Semantic similarity between signatures is shown in b and d. Each node 
corresponds to a signature. The size of each node is proportional to the number of 
taxa in a signature. More similar signatures are connected by shorter and thicker 
edges. Microbial contents of the signatures shown in b and d (y axis) delineating 
the genera contained in these signatures (x axis) are shown in c and e. Signatures 
are clustered by semantic similarity, and the relative frequency of each genus 
across signatures is indicated by a color scale. The display of contained taxa is 
restricted to genera occurring in at least two signatures (full signatures are shown 
in Supplementary Figs. 5 and 6). Additional work cited includes refs. 37–49.
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participant data56,57 from eight of the studies included in this dataset 
(Fig. 3). The two signatures based on meta-analysis are thus expected to 
be among the most enriched of all microbiome signatures in the eight 
training studies for the meta-analyses due to their shared utilization 
in both datasets and in the remaining two independent studies due to 
the relevance and large sample size of the colorectal cancer signatures. 
The two meta-analysis signatures can thus also be considered robust 
against spurious signals from studies with small sample sizes that were 
not included in the analysis (Supplementary Results Section 3.2 and 
Supplementary Tables 5 and 6).

ORA of 647 BugSigDB signatures yielded 19 signatures enriched in 
contrasts using 662 colorectal cancer samples and 653 control samples 
from ten datasets (false discovery rate P value of <0.05, one-sided Fish-
er’s exact test; Fig. 3a). Only signatures containing five or more genera 
associated with any condition were included. The two positive-control 
spike-in signatures from Thomas et al.56 and Wirbel et al.57 were top 
ranked, as expected. Other enriched signatures included colorectal 
cancer signatures from Wu et al.58 and Allali et al.59. These are notable 
because neither study was included in the ten datasets from which 
the meta-analysis signatures were computed. Additionally, both were 

based on 16S amplicon sequencing, whereas the meta-analysis signa-
tures were based on shotgun sequencing. This analysis therefore also 
provides a proof of concept for integrating species-level signatures 
from shotgun metagenomic data with genus-level signatures derived 
from 16S amplicon profiles (“Bug set enrichment analysis” in the Meth-
ods) and also affords independent replication of the signatures from 
Thomas et al.56 and Wirbel et al.57.

The presence of 11 enriched signatures (58%) from saliva samples 
from studies of oral diseases, such as gingivitis, peptic esophagitis 
and oral carcinoma, is consistent with recent reports that oral-to-gut 
microbial introgression is a feature of colorectal cancer60 and that 
periodontal diseases are a well-established risk factor for colorectal 
cancer61,62. Frequently overlapping genera between the enriched signa-
tures include Fusobacterium, Porphyromonas and Peptostreptococcus, 
and all displayed strongly increased abundance in individuals with 
colorectal cancer relative to healthy controls (Fig. 3b).

Although these findings demonstrate the usefulness of ORA as 
a fast and effective enrichment method for microbiome signatures, 
the method has known shortcomings in the presence of correlated 
features63 or an inappropriately large feature universe64. The PADOG 
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Fig. 3 | Bug set enrichment analysis reveals associations of the human 
microbiome with colorectal cancer and other disease phenotypes. a, ORA 
of BugSigDB signatures with differentially abundant genera between 662 
colorectal cancer samples and 653 control samples pooled from ten published 
metagenomic datasets. Each dot corresponds to an enriched published signature 
from BugSigDB (false discovery rate P value (Padj) of <0.05, one-sided Fisher’s 
exact test, color scale). The size of each dot corresponds to the number of 
differentially abundant genera in a signature, given as a proportion on the x axis. 
Asterisks (*) indicate prior meta-analytic signatures from Thomas et al.56 and 
Wirbel et al.57, which reported differentially abundant species and genera from 
meta-analysis of eight colorectal cancer datasets. These act as positive controls, 
as several of the datasets being tested for enrichment were included at the time 

these signatures were derived. b, Differentially abundant genera (x axis) in the 
top 15 enriched signatures (y axis) from the overrepresentation analysis in a. The 
x axis is sorted by occurrence frequency of each genus in decreasing order, and 
the y axis is sorted by Jaccard similarity between signatures. c, Percentile of ranks 
(y axis) of both meta-analytic signatures for ORA, PADOG and CBEA relative to all 
signatures when applied to the ten published metagenomic datasets individually 
(x axis). Number symbols (#) indicate datasets not included as training sets in the 
meta-analyses of Thomas et al.56 and Wirbel et al.57. d, Assessment of statistically 
significant differences of the percentile ranks on the n = 10 independent datasets 
shown in c between the three methods using a two-sided Wilcoxon’s signed-rank 
test. Box plots show median (vertical line), interquartile range (box) and ±1.5× 
interquartile range (whiskers). Additional work cited includes (refs. 97–113).
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method, a top performer in several independent assessments7,65,66, is 
theoretically superior, as it applies sample permutation to preserve 
correlations and, by working on the full abundance matrix, does not 
require thresholding on differential abundance or the definition of 
a feature universe. In addition, the method downweights frequently 
overlapping microbes between signatures (such as those displayed in 
Fig. 1d), leading to increased sensitivity and the identification of more 
specific signatures for the phenotype under investigation.

We therefore benchmarked PADOG against ORA in each of the ten 
individual participant shotgun metagenomics datasets of colorectal 
cancer and compared the rankings of the two spike-in signatures from 
the meta-analyses of Thomas et al.56 and Wirbel et al.57 (Fig. 3c). On aver-
age, PADOG ranked the spike-in signatures better than ORA, although 
the difference was statistically significant only for the spike-in signature 
from Thomas et al.56 (P = 0.049, two-sided Wilcoxon signed-rank test; 
Fig. 3d). This difference was largest for datasets with smaller sample 
sizes, where the lack in power was more detrimental for ORA than for 
PADOG (Supplementary Fig. 9).

Despite the apparent effectiveness of established gene set enrich-
ment methods for application to microbiome data, these methods 
were not developed with microbiome data in mind34,67. Competitive 
balances for taxonomic enrichment analysis (CBEA18) is a recent taxo-
nomic enrichment method specifically developed for microbiome data 
that accounts for compositionality via application of an isometric log 
ratio transformation of relative abundance data for the computation 
of sample-level enrichment scores. Benchmarked against ORA and 
PADOG in the colorectal cancer setting (Fig. 3c), CBEA tended to rank 
the spike-in signature from Thomas et al.56 significantly higher than 
ORA (P = 0.021, Wilcoxon signed-rank test) but did not display a notable 
performance gain over PADOG (P = 0.92; Fig. 3d).

Microbe co-occurrence and mutual exclusivity within 
signatures
BugSigDB enables the exploration of compositional patterns within 
signatures of differential abundance for different body sites. Focusing 
on 1,194 signatures of fecal microbiomes from 311 published studies, we 
analyzed patterns of co-occurrence and mutual exclusivity for individual 
microbes and groups of microbes (Fig. 4). Inspection of the top 20 gen-
era most frequently reported as differentially abundant in signatures 
from fecal samples (Fig. 4a) revealed genera predominantly belong-
ing to the phyla Firmicutes (13 genera) and Bacteroidetes (4 genera), 
in agreement with those being the dominant phyla of the human gut 
microbiome68,69. Among the 20 were Bacteroides, Prevotella and Rumi-
nococcus, three dominant gut genera that are highly variable in relative 
abundance70 and have a large effect on gut microbiome clustering71.

When comparing the proportions of signatures where these gen-
era were reported either with increased or decreased abundance in the 
study sample group (Fig. 4a, Abundance in group), the genera most 
disproportionately increased in the study group were Enterococcus 
(64 of 73 signatures, 87.7%), Lactobacillus (73 of 105, 69.5%), Veillonella 
(50 of 74, 67.6%) and Streptococcus (83 of 128, 64.8%). Pathogenicity of 
certain Streptococcus and Enterococcus species is well documented72,73, 
whereas Lactobacillus and Veillonella are typically considered to 
be commensal gut microbiota of limited pathogenicity74,75. Genera 
decreased in the study group were Roseburia (77 of 103, 74.8%), a ben-
eficial gut organism with established anti-inflammatory activity76, and 
Alistipes (61 of 88, 69.3%), for which protective and harmful associations 
with a range of diseases have been described77.

To elucidate the extent to which frequency of differential abun-
dance in disease phenotypes can be explained by prevalence in the 
healthy gut microbiome, we contrasted these findings with the preva-
lence of these genera in 9,623 stool samples from healthy adult partici-
pants from 68 different studies in curatedMetagenomicData (Fig. 4a,  
Prevalence). We observed a strong negative correlation between preva-
lence, measured as the percentage of control samples in which the 

genus is observed at non-zero relative abundance, and the proportion of 
BugSigDB signatures in which the genus is reported with increased abun-
dance in disease (r = −0.84, P = 3 × 10−6, two-sided Pearson correlation 
test; Fig. 4c). This indicates that across the many diseases and exposures 
present in BugSigDB, high-prevalence genera tend to be lost in study 
groups relative to controls, and low-prevalence genera have increased 
abundance in the study group. This was particularly apparent for Ente-
rococcus, a genus of low prevalence in healthy samples (13%) that was 
reported almost exclusively with increased abundance in the diseased 
group (64 of 73 signatures, 88%). The presence of Enterococcus, accom-
panied by exclusion of other genera of the Clostridia class (below), may 
therefore be considered as a commonly reported ‘dysbiotic’ signature.

The human gut is a complex ecosystem where microbes compete 
and cooperate78. To investigate which of these interactions are asso-
ciated with disease, we next studied patterns of co-occurrence and 
mutual exclusivity for the top 20 genera most frequently reported 
as differentially abundant. For each pair of microbes, we counted the 
number of signatures where both microbes were reported with either 
the same or opposite direction of change in relative abundance (Fig. 4a, 
top and bottom heat maps). This resulted in clusters of co-occurrence 
driven primarily by functional and phylogenetic similarity, with fre-
quent co-occurrence of genera of the phylum Bacteroidetes and blocks 
of positive associations in the class Clostridia (Fig. 4a, top red heat map, 
third cluster from top to bottom). However, clusters of mutual exclu-
sivity displayed clear signs of the established Firmicutes–Bacteroi-
detes gradient in gut microbiomes68 and a strong negative association 
between Bacteroides and Prevotella within the phylum Bacteroidetes, as 
previously reported54 and also observed in healthy samples (r = −0.49, 
P < 2.2 × 10−16, two-sided Spearman correlation test; Fig. 4a, bottom 
blue heat map, third cluster from top to bottom). Overall, these pat-
terns largely recapitulated the correlation of these genera in healthy 
adult stool samples (Fig. 4b), arguing against the existence of specific 
disease-promoting interactions between these genera. Exceptions were 
patterns of pronounced mutual exclusivity within the class Clostridia in 
signatures associated with disease, as observed for Clostridium, Entero-
coccus and Streptococcus, which were not observed in healthy samples.

Shared and exclusive patterns in pooled microbial signatures
BugSigDB provides opportunities for the discovery of microbial bio-
markers and reassessment of previous findings across a much larger and 
more heterogeneous data source than previously possible. To identify 
similarities between microbial shifts within and across body sites, we 
aggregated signatures for one body site at a time and within body sites 
for one condition at a time (“Signature pooling” in the Methods). To 
account for differences in sample size between studies, we applied a vot-
ing approach where each taxon of a pooled signature obtained a weight 
based on the aggregated sample size of reporting studies and performed 
hierarchical clustering based on pairwise similarity between the weighted 
metasignatures (Fig. 5). Clustering of 27 metasignatures, representing 
body sites studied by at least two studies in BugSigDB and generated 
from 1,909 individual signatures of either increased or decreased dif-
ferential abundance in the study group, resulted in two major body site 
clusters: a cluster primarily composed of oral and nasal sites and a cluster 
dominated by vaginal and gastrointestinal sites (Fig. 5a). This clustering 
was largely invariant to the similarity measure used for clustering (Sup-
plementary Fig. 10), confirming the expected dominant effect of host 
body site of origin and, in particular, the availability of oxygen.

Within body site clustering of fecal metasignatures of 34 dif-
ferent conditions, studied by at least two studies in BugSigDB and 
generated from 504 signatures of increased relative abundance in 
the study group, revealed similarities in reported differential abun-
dance patterns between disease phenotypes (Fig. 5b). This included 
similarities in microbial shifts for (1) HIV infection and different gas-
trointestinal cancers, both characterized by chronic inflammation 
of the gastrointestinal tract and microbial signatures that point to 
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shared pathogenic pathways including tryptophan catabolism and 
butyrate synthesis79, (2) chronic kidney disease and autism, linked 
through deleterious copy number variants80,81 and pathogenic gut 
microbiota-derived metabolites produced by species of the Clostridia 
class82,83, and (3) type 2 diabetes and schizophrenia, consistent with 
observations that people with schizophrenia are at increased risk of 
type 2 diabetes and, conversely, that traditional risk factors for type 
2 diabetes are common in people with schizophrenia and can affect 
the gut microbiome, especially obesity, poor diet and a sedentary 
lifestyle84. A strong enrichment of genera of the Clostridia class drove 
the similarity between the metasignatures of Hashimoto’s thyroiditis 
(12 of 14 genera, 85.7%, P = 2.1 × 10−05, two-sided proportion test) and 
chronic fatigue syndrome (11 of 17, 64.7%, P = 0.003). Chronic fatigue 
is common in individuals with Hashimoto’s thyroiditis, a disorder that 
affects the thyroid gland potentially through a gut microbiota-driven 
thyroid–gut axis85 that may reduce thyroid hormone production and 
cause extreme fatigue86.

Genera reported as differentially abundant exclusively in one 
condition, in particular those replicated by independent studies, are 
candidates for condition-specific biomarkers (Supplementary Fig. 11, 
prioritized by relative sample size). This included an exclusive abun-
dance increase of the genus Hungatella for colorectal cancer, which is 
notable given a reported role of Hungatella hathewayi in driving host 
colonic epithelial cell promoter hypermethylation of tumor suppressor 
genes in colorectal cancer87. However, an exclusive decrease in abun-
dance was observed for Marvinbryantia in type 2 diabetes, for which 
a reduction in Marvinbryantia through treatment with glucagon-like 
peptide-1 receptor agonist drugs, such as liraglutide, has been shown 
to contribute to treatment success4.

Discussion
We compiled published signatures of microbial differential abundance 
in the BugSigDB database, assessed applicability of GSEA methods for 
enrichment analysis of microbial signatures and identified common 
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Fig. 4 | Microbe co-occurrence and mutual exclusivity in BugSigDB reveals 
recurrent groups of taxa within signatures of differential abundance. a, 
Microbe–microbe co-occurrence and mutual exclusivity across 1,194 signatures 
of fecal microbiomes from 311 published studies. ‘Abundance in group 1’ 
shows the top 20 genera most frequently reported as differentially abundant 
in the study group of these signatures. Stars indicate microbes that tend to 
be predominantly unidirectional, that is, reported specifically with increased 
or decreased abundance in the study group (based on a greater than twofold 
difference in proportions). ‘Prevalence’ shows the prevalence of these genera in 
9,623 healthy adult stool samples pooled from 68 different studies. The top heat 
map shows co-occurrence between these top 20 genera, that is, in how many 
signatures these microbes are reported together as differentially abundant with 
the same direction of abundance change (that is, occurring together in either the 

signature of increased or decreased abundance). The bottom heat map shows 
mutual exclusivity between these top 20 genera, that is, in how many signatures 
these microbes are reported as differentially abundant with opposite direction of 
abundance change (that is, one microbe in the signature of increased abundance 
and the other in the signature of decreased abundance or vice versa). b, 
Spearman correlation between the top 20 genera in healthy adult stool samples 
as indicated by circles of varying size in a. c, Proportion of signatures where each 
of the top 20 genera was reported with increased abundance in the study group (y 
axis) against the prevalence of these genera (x axis) in healthy adult stool samples 
as shown in a. The correlation coefficient and P value of a two-sided Pearson 
correlation test are shown at the top. The error bands indicate the 95% confidence 
interval of the linear regression fit.
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patterns of co-occurrence and mutual exclusion in differential abun-
dance results across a broad sample of the human microbiome lit-
erature. BugSigDB is a Semantic MediaWiki that allows contribution, 
review and correction by the microbiome research community and is 
usable through its web interface and through bulk exports compatible 
with all major GSEA software. BugSigDB supports any taxon and any 
host species present in the NCBI Taxonomy and therefore non-human 
hosts and studies of viromes and eukaryotes. BugSigDB has been ini-
tially seeded by ~25 trained curators with more than 2,500 manually 
curated signatures from the figures, tables, main text and supplemen-
tary materials of more than 600 primary publications, providing a 
broadly relevant collection of machine-readable knowledge of micro-
bial differential abundance. Manually curated metadata include study 
design, geography, health outcomes, host body sites and experimental 
and statistical methods. Initial analyses of the database (1) identify 

human diseases with the highest consistency among independently 
published signatures of differential abundance, (2) demonstrate the 
capability of established GSEA methods to prioritize colorectal cancer 
signatures in the analysis of individual participant colorectal cancer 
datasets and add to evidence of frequent introgression of oral patho-
bionts into the gut, (3) demonstrate that the prevalence of genera in 
fecal microbiomes of control populations is strongly correlated with 
being reported as decreased across diverse study conditions, (4) con-
firm the broad relevance of the Firmicutes–Bacteroidetes gradient in 
shaping common patterns of co-occurrence and mutual exclusivity in 
the published microbiome literature and identify other less dominant 
patterns and (5) define sample size-adjusted consensus signatures of 
body sites and conditions that can simplify and clarify future analyses.

There is concern over replicability of human microbiome studies 
due to numerous sources of variation in complex experimental and 
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Fig. 5 | Pooled genus-level microbial signatures display robust body site 
specificity and shared and exclusive patterns of gut dysbiosis between 
disease phenotypes. a, Clustering of 27 metasignatures (y axis) representing 
host body sites studied by at least two studies in BugSigDB and generated 
from 1,909 individual signatures. The clustering shows a separation of vaginal 
and gastrointestinal sites (top) from oral and nasal sites (bottom). A total of 
560 different genera (x axis) colored by phylum were observed across the 
metasignatures. The numbers of genera in each metasignature are shown 
in the bar plot on the left. The following three panels display representative 
genera that frequently occur across metasignatures (‘shared’), predominantly 

occur in either cluster of body sites (‘compartmentalized’) or were reported 
in only one body site as differentially abundant (‘exclusive’). The size of each 
dot corresponds to the relative sample size of studies reporting a genus as 
differentially abundant. b, Clustering of fecal metasignatures drawn from 34 
different conditions, each represented by at least two studies in BugSigDB and 
generated from 504 individual signatures with increased abundance in the study 
group. The clustering shows a separation of cancer phenotypes (top) from non-
neoplastic diseases (bottom). A total of 248 different genera colored by phylum 
were observed across the fecal metasignatures. The number of genera in each 
metasignature is shown in the bar plot on the left.
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computational quantification pipelines88,89. We propose an approach 
based on semantic similarity that can be used in systematic reviews 
to evaluate replication of differential abundance signatures of mixed 
taxonomic levels reported by independent studies, even when different 
laboratory methods, such as 16S amplicon sequencing versus MGX, 
were used. This taxonomy-aware framework provides an effective 
assessment of the replicability of microbiome differential abundance 
signatures for subsets of the literature, allowing ranking of the relative 
replicability of microbiome signatures consisting of different taxo-
nomic levels across many disease phenotypes. We identified signatures 
associated with antibiotics treatment and chronic inflammation of 
the gastrointestinal tract as having the highest level of consistency or 
replication in signatures reported by independent studies.

We pooled signatures across host body sites and experimental 
conditions to expand the analysis of replicability also to the ~45% of sig-
natures containing fewer than five taxa that are too small individually 
to be effectively compared between studies. Using a voting approach 
that weights each taxon by sample size of reporting studies, we con-
structed consensus ‘metasignatures’, revealing shared and specific 
patterns of gut dysbiosis by disease phenotype. These metasignatures 
provide a framework for simplifying the interpretation of results from 
future studies in the context of the published literature, distinguish-
ing specific from generic results and informing enrichment tests by 
defining a universe of reported abundance changes for a body site or 
condition of interest.

Although single-species biomarkers are of primary interest for 
therapeutic interventions, they are not sufficient for capturing com-
plex ecological patterns of co-occurrence and mutual exclusivity and 
interactions between microbes that may be relevant to health and 
disease. Inspection of published signatures in BugSigDB is an alterna-
tive approach to studying ecological patterns that complements the 
analysis of co-occurrence and coexclusion in individual participant 
metagenomic profiles. In agreement with previous results54, but across 
a much larger corpus of microbiome studies, we confirmed coexclu-
sions not specific to disease, such as the phylum-level Firmicutes–Bac-
teroides gradient and the genus-level Bacteroides–Prevotella gradient 
within the Bacteroides phylum. However, patterns of mutual exclusivity 
for Clostridium, Enterococcus and Streptococcus genera were specific 
to disease-associated signatures and were not detectable in healthy 
samples. To distinguish between disease markers and common false 
positives in biomarker discovery, we compared stool signatures of 
disease conditions to prevalence in ~10,000 stool specimens from 
healthy participants. Across the many diseases and exposures present 
in BugSigDB, prevalent genera in healthy fecal microbiomes tend to 
be reported with decreased abundance in diseased-associated fecal 
microbiomes. On the other hand, genera of low prevalence in healthy 
fecal microbiomes, such as Enterococcus, tend to be reported with 
increased abundance in the disease group. Genera such as Lactobacillus 
and Veillonella, which are prevalent in the stools of healthy individuals 
and are frequently reported as increased in many study conditions, are 
more likely false positives or at least are not well suited as candidate 
biomarkers. Future work can use stratification of BugSigDB signatures 
by experimental, cross-sectional and longitudinal study designs to 
better infer causality.

BugSigDB enables systematic comparison of microbial signa-
tures from new microbiome studies to previously published results. 
Although concepts of GSEA are applicable, microbiome data present 
new challenges, including smaller signature sizes, taxonomic relation-
ships between features and mixed-taxonomy signatures. We therefore 
benchmarked two gene set enrichment methods (ORA11 and PADOG31) 
that performed well in previous benchmarking7 and a recent taxonomic 
enrichment method (CBEA18) developed specifically for microbiome 
data. Valid application of gene set enrichment methods is limited to 
analysis at a single taxonomic level, and ORA further requires defining 
a realistic feature ‘universe’ and significance threshold for differential 

abundance; nonetheless, all methods performed well in prioritizing 
signatures of colorectal cancer across numerous colorectal cancer 
datasets. As PADOG addresses both (1) shortcomings of ORA in the 
presence of intermicrobe correlation and (2) compositional bias in 
signature databases with certain taxa occurring more frequently than 
others, typically a result of technical or biological sampling bias67,90, we 
recommend PADOG over ORA for the routine application of enrich-
ment analysis to microbial signatures, especially for datasets with 
smaller sample sizes where a lack in power typically hinders detect-
ing individually differentially abundant features. Recently emerg-
ing microbiome-specific enrichment methods such as CBEA18 have 
the advantage of taking into account the compositional nature of 
microbiome data; however, they lack the independent benchmarking 
and implementation of major GSEA approaches. Although we found 
CBEA to be a sound alternative to ORA and PADOG, we did not observe 
notable gains of applying CBEA over PADOG in the colorectal cancer 
benchmark setup, indicating that basic study characteristics, such as 
sample size and, to a lesser extent, accounting for correlation within 
microbial signatures, have a larger impact on identifying relevant 
signatures in practice than mitigating effects of compositionality.

BugSigDB is a large and diverse collection of the currently avail-
able literature on microbial differential abundance and thus also 
has certain limitations inherent to the currently available literature. 
Because more than 90% of the studies included in the first release of 
BugSigDB are based on 16S amplicon sequencing, enrichment analyses 
were performed at the genus level. However, some genera are func-
tionally heterogeneous, such as streptococci, which groups deadly 
pathogens with common commensals and useful food-fermenting 
species. Species- and strain-level variations are neglected, although 
they can contribute to functional differences between individuals that 
are important in a clinical context91,92. With the availability of more 
shotgun sequencing studies in the future, it will be possible to perform 
enrichment analysis at higher taxonomic resolution up to the species 
or strain level. Furthermore, studies included in BugSigDB are hetero-
geneous in their design and execution, including antibiotics exclusion 
time frames ranging from current use to within the previous year. 
Restoration of baseline microbial composition following antibiotic 
treatment typically takes around 1 month in children and 1.5 months in 
adults, although several common species of the gut microbiome might 
take substantially longer50,93. Inclusion of this and other study informa-
tion in BugSigDB allows further investigation and sensitivity analysis 
into potential sources of heterogeneity in the literature. We anticipate 
that broader adoption of the recently developed STORMS reporting 
guidelines for human microbiome studies94 will contribute to more 
efficient extraction of information from the literature for BugSigDB.

Although natural language parsing programs have the potential to 
complement the manually curated information in BugSigDB, the major-
ity of the curated information is too complex for currently available 
text mining algorithms. Natural language parsing programs typically 
extract patterns from unstructured text on a sentence-by-sentence 
basis95,96, but BugSigDB standardizes microbial signatures and asso-
ciated experimental, epidemiological and statistical methods from 
diverse figures, tables, supplements and textual descriptions that often 
span multiple sentences. This places many key results outside the cur-
rent capabilities of text mining applications and necessitates manual 
curation, but improvements in machine learning, using BugSigDB 
as a gold-standard dataset, may enable more efficient extraction of 
published microbiome methods and results in the future. Moreover, 
automated contributions of signatures from differential abundance 
software via the BugSigDB application programming interface can 
streamline standardized reporting of results. As the community con-
tributes additional host species and signatures of microbial physiology 
and morphology, BugSigDB will dynamically expand, leading to com-
plementary insights and improvements to the systematic interpreta-
tion of microbiome studies.
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Methods
Definition of semantic concepts (study, experiment, signa-
ture and taxon)
Taxon. A taxon, or taxonomic unit, is a unit of any rank (that is, kingdom, 
phylum, class, order, family, genus, species and strain) designating a 
microbial organism or a group of microbial organisms.

Signature. A microbial signature or set refers here to a simple unor-
dered list of microbial clades (taxa) sharing a common property or 
response to a study condition.

Experiment. BugSigDB defines experiments as semantic units within 
studies and records key characteristics about study subjects, lab 
analysis, statistical analysis and α-diversity. For study subjects, this 
includes host species, location, condition, body site, antibiotics 
exclusion and sample size in study and control sample groups. To 
define the two sample groups that are contrasted for differential 
abundance, BugSigDB records the diagnostic criteria applied to 
define the specific condition/phenotype represented in the study 
group. Recorded lab analysis fields include sequencing type (16S or 
MGX) and sequencing platform (such as Illumina or Roche454). For 
16S rRNA sequencing, the 16S variable region is also recorded. For 
the statistical analysis, recorded fields include (1) the statistical test 
or computational tool applied for differential abundance testing, (2) 
whether multiple testing correction has been applied to adjust for an 
inflation of false-positive findings, (3) the significance threshold used 
to render taxa as differentially abundant, (4) confounding factors 
that have been accounted for by stratification or model adjustment 
and (5) factors on which study subjects have been matched on in a 
case–control study, if applicable.

Study. BugSigDB collects and standardizes microbial signatures from 
published 16S and MGX microbiome studies. Studies are categorized 
by study design, and each study is associated with a study identifier 
such as a PubMed ID and/or a DOI, depending on whether studies are 
indexed in PubMed.

Data entry, validation and access
BugSigDB is implemented as a semantic MediaWiki30 web interface 
available at https://bugsigdb.org and supports data entry, semantic 
validation and web-based programmatic access to annotations for 
studies, experiments, signatures and individual taxa. The semantic 
Wiki (1) enforces data entry to follow the nomenclature of the NCBI 
Taxonomy Database29, (2) enforces metadata annotation of signatures 
to follow established ontologies and controlled vocabulary for body 
site28, disease condition32 and type of evidence, (3) provides an applica-
tion programming interface to access all signatures, potentially filtered 
on taxonomy and metadata attributes, and (4) allows commenting 
and error reporting on data elements and relationships. The data 
curation interface provides type-forward autocomplete to assist with 
valid data entry (including validation against the NCBI Taxonomy29, 
Experimental Factor Ontology32, UBERON Anatomy Ontology28 and 
administrator-defined controlled vocabulary for other fields such as 
statistical test and sequencing methods) to facilitate organization, 
filtering and comparison of signatures. External contributions from the 
community, including signatures, annotations and comments, are sup-
ported similar to Wikipedia. The quality of contributions is controlled 
by tagging contributions as verified after review by a trusted editor, a 
method for flagging suspect entries and the option to exclude from 
analysis unreviewed contributions or based on elements of study qual-
ity, such as sample size, suspected contamination, paper retraction, 
batch effects, uncontrolled confounding or a combination of these 
factors. In addition to standard semantic MediaWiki quality control 
tags on study level, custom methods are available for flagging taxa 
according to prevalence in frequently investigated host body sites, 

inclusion in published contamination blacklists114,115 and absence of 
known association with a host.

Signatures can be searched and browsed by study and exper-
imental attributes and by individual taxa at https://bugsigdb.org. 
Bulk export of all signatures and associated metadata is available in 
plain text formats for use in any programming language and soft-
ware (including .csv and the .gmt standard used by GeneSigDB23 and 
MSigDB21) of the current database version or as weekly and semian-
nual snapshots. The companion bugsigdbr R/Bioconductor pack-
age (bioconductor.org/packages/bugsigdbr) provides advanced 
features, such as ontology-based filtering, limitation of taxonomic 
level, look-up of individual signature and taxon pages and conversion 
to application-centric formats. The exported files are compatible with 
most enrichment software and are included by default in our lab’s 
EnrichmentBrowser R/Bioconductor package55 to facilitate a large 
number of GSEA methods and visualizations. The BugSigDBStats 
R package continuously integrates with https://bugsigdb.org and 
provides weekly updated database statistics in an HTML report page 
(https://waldronlab.io/BugSigDBStats).

Signature similarity
Signature similarity was computed based on two different measures: (1) 
Jaccard index based on pairwise overlaps between signatures harmo-
nized to genus level and (2) semantic similarity between signatures of 
mixed taxonomic levels. Pairwise calculation of Jaccard similarity for 
genus-level signatures was performed using the calcJaccardSimilarity 
function of the BugSigDBStats package. Genus-level signatures from 
BugSigDB were obtained using bugsigdbr’s getSignatures function. 
Taxonomic clades given at a more specific taxonomic level (species or 
strain) were transformed by cutting the taxonomic tree at the genus 
level. The Jaccard index, also known as the Jaccard similarity coefficient, 
is defined as the size of the intersection divided by the size of the union 
of two input signatures A and B:

J(A,B) = |A ∩ B|
|A ∪ B| (1)

Note that, by design, 0 ≤ J(A, B) ≤ 1.
Semantic similarity was computed based on Lin’s measure of 

semantic similarity116, as implemented in the ontologySimilarity pack-
age from the ontologyX R package series117. Measures of semantic 
similarities have been proposed for comparing concepts within a tax-
onomy118 with numerous applications for biomedical ontologies36. Of 
note, semantic similarity has conceptual parallels with the computation 
of UniFrac distance119. Here, individual taxa can be considered nodes 
of the NCBI Taxonomy when represented as a directed acyclic graph. 
Computing semantic similarity between two taxa corresponds then 
to computing a topological similarity such as the shortest path link-
ing the two taxon nodes. More specifically, computing Lin’s measure 
of semantic similarity between two taxa corresponds to computing 
the information content of the lowest common ancestor (LCA) of the 
two taxa116. The more frequently a taxon occurs (that is, the higher its 
probability of being an ancestor of other taxa in the taxonomy), the 
lower its information content. If the LCA of two taxa corresponds to a 
taxon at a higher taxonomic level, these taxa are not very similar, and 
this is reflected in a low-information content of their LCA. Given pair-
wise semantic similarities between individual taxa, semantic similarity 
between two signatures (that is, two taxon sets) is then obtained using 
a best-match average combination approach120 where each taxon of 
the first signature is paired with the most similar taxon of the second 
signature and vice versa.

Bug set enrichment analysis
Metagenomic datasets providing species-level relative abundance for 
fecal microbiomes of individuals with colorectal cancer and healthy 
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individuals were obtained from curatedMetagenomicData 3.0 (ref. 54). 
Relative abundance proportions were multiplied by read depth and 
rounded to the nearest integer before obtaining integer read counts 
compatible with bulk RNA-sequencing (RNA-seq) tools for differential 
expression analysis and GSEA. For genus-level analysis, species-level 
counts were summed across branches using the splitByRanks function 
from the mia package. Given a recent assessment that reported good 
performance of bulk RNA-seq tools for microbiome data121, differen-
tial abundance analysis was performed following the limma-trend 
approach122. Read counts were transformed to log (counts per mil-
lion) using edgeR’s cpm function with a prior count of 3 to dampen 
the variances of logarithms of low counts123. Genus- and species-level 
microbial signatures from BugSigDB were obtained using bugsigdbr’s 
getSignatures function. To keep signatures meaningfully sized, taxo-
nomic clades given at the species or strain level were transformed by 
cutting the taxonomic tree at the genus level. ORA and PADOG were 
performed as implemented in the EnrichmentBrowser package55. CBEA 
was performed as implemented in the CBEA package18.

Taxon co-occurrence
Genus-level signatures from BugSigDB were obtained using the getSig-
natures function of the bugsigdbr package. Signatures were filtered by 
body site for fecal samples and stratified by direction of abundance 
change (increased/decreased). The top 20 most frequently occurring 
genera in the resulting signatures were reported. Prevalence of these 
genera was computed as percentage of healthy adult stool samples 
in which the genus was observed at non-zero relative abundance in 
metagenomic datasets from curatedMetagenomicData 3.0 (ref. 123). 
The correlation between prevalence in healthy samples and the propor-
tion of signatures with increased abundance for the top 20 genera was 
assessed using a Pearson’s correlation test as implemented in the cor.
test function of the stats package. Taxon co-occurrence in signatures 
associated with disease was contrasted against Spearman rank correla-
tion of the top 20 genera in healthy samples using the cor function of 
the stats package.

Signature pooling
Signatures were pooled for one body site at a time and within body sites 
for one condition at a time, as implemented in the getMetaSignatures 
function of the bugsigdbr package. Taxa within a pooled signature 
were weighted based on the aggregated sample size of the studies 
that reported this taxon as differentially abundant divided by the total 
sample size of studies contributing to the pooled signature. Resulting 
weighted metasignatures were clustered by semantic similarity, where 
the weights were incorporated into the best-match average combina-
tion approach36, as implemented in the weightedBMA function of the 
BugSigDBStats package. Analysis was restricted to body sites and 
conditions studied by at least two studies in BugSigDB and contain-
ing at least five taxa in the resulting pooled signature. Robustness of 
the clustering was evaluated by comparing to rank-biased overlap124.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
BugSigDB is available via a Semantic MediaWiki web interface at https://
bugsigdb.org under open-source and open-data licenses described at 
https://bugsigdb.org/Project:About. Weekly and semiannual snap-
shots are provided in plain text file formats at https://github.com/wal-
dronlab/BugSigDBExports for cross-language and cross-application 
compatibility; unprocessed snapshots are available as .csv files at 
https://bugsigdb.org/Help:Export. The companion bugsigdbr R/Bio-
conductor package provides advanced data manipulation, including 
ontology-aware and taxonomy-aware features (https://bioconductor.

org/packages/bugsigdbr). The NCBI Taxonomy database is available 
at https://www.ncbi.nlm.nih.gov/taxonomy. The Experimental Factor 
Ontology is available at https://www.ebi.ac.uk/efo. The UBERON Anat-
omy Ontology is available at https://www.ebi.ac.uk/ols/ontologies/
uberon.

Code availability
Source code and open issue tracking are provided at https://github.
com/waldronlab/BugSigDB. Statistical analysis was performed using 
R125 and Bioconductor126 and is reproducible using the code provided 
on GitHub127.
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