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Abstract: We present an implicit-explicit finite volume scheme for two-fluid single-temperature flow in all Mach
number regimes which is based on a symmetric hyperbolic thermodynamically compatible description of the
fluid flow. The scheme is stable for large time steps controlled by the interface transport and is computational
efficient due to a linear implicit character. The latter is achieved by linearizing along constant reference states
given by the asymptotic analysis of the single-temperature model. Thus, the use of a stiffly accurate IMEX Runge
Kutta time integration and the centered treatment of pressure based quantities provably guarantee the asymptotic
preserving property of the scheme for weakly compressible Euler equations with variable volume fraction. The
properties of the first and second order scheme are validated by several numerical test cases.

Keywords: All-speed scheme, IMEX method, reference state strategy, single temperature two-fluid flow, asymp-
totic preserving property, symmetric hyperbolic thermodynamically compatible model

1. Introduction

In continuum mixture theory, the constituents of a multiphase system, also called mixture, are present at every
material element even if an element represents a pure phase. This approach is applicable to model both situations
– the case of miscible [26] and immiscible [33, 5] multicomponent systems. The material interfaces, if present, are
zones of rapid but smooth changes of a parameter distinguishing the phases of the mixture, typically the volume
or mass fraction .

Despite the fact that almost any application in science and engineering deals with multiphase systems and there
is an obvious need for a consistent and reliable mathematical model to describe such multicomponent systems,
the continuum mixture theory is far from being complete and no widely accepted model exists. Perhaps, the
most widely used approach is based on equations for every individual constituent of the system, i.e. phase mass
balance, phase momentum balance, phase energy balance, etc. The key problem here is to find a closure for
this system of equations which is represented by the coupling terms describing the exchange of mass, energy,
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and momenta between the mixture constituents. Note that a first-principle theory to provide such a closure is
currently not available. Consequently, various heuristic and phenomenological approaches are used. The Baer-
Nunziato (BN) model [1] introduced in 1986 is a representative of this class of mathematical formulations and
since then an active line of research has been done to adapt it to various applications, [32, 10, 33] and recently to
low Mach number flows [27].

In this paper, we deal with another class of governing equations for mixtures, here in the single-temperature
simplification, which represents an attempt to build a mixture theory based on the first-principle reasoning. The
equations belong to the class of the so-called Symmetric Hyperbolic Thermodynamically Compatible (SHTC)
equations [11, 13, 12]. The key ingredients are the variational principle and the second law of thermodynamics.
The variational principle is used to deduce a reversible part of the evolution equations that is subject to entropy
conservation. The second law of thermodynamics yields an irreversible part of a model and controls entropy pro-
duction. In contrast, to the BN class of mixture models, the governing equations of the SHTC model are formulated
not directly in terms of the phase quantities but mainly in terms of mixture quantities such as mixture mass den-
sity, mixture momentum, mixture energy, etc. The SHTC equations can be rewritten in terms of the phase balance
equations, i.e. in a BN form, see [30, 28]. In this way, a new term appears in the phase balance equations, that is
usually missing in the BN-type models, see [28]. The latter can be identified as lift forces [9] acting on a rotating
fluid element of one phase immersed in another one.

In this work, we are interested in a single-temperature SHTC mixture model [20] which is a special case of the
two-velocity, two-pressure, two-entropy SHTC model of two-phase flows derived in [30, 29]. In [34] the full model
has been numerically solved based on an explicit time integration. The difficulty lies in handling the two entropy
balance laws of the full two-fluid SHTC model and only one energy conservation law. One the other hand, applica-
tions such as sediment transport, granular flows or aerosol transport can be modeled with the single temperature
approach resulting in one mixture entropy balance law associated to one energy conservation law. These appli-
cations lie within weakly compressible flow regimes, characterized by small Mach numbers. A severe difficulty in
the construction of a numerical scheme applied to weakly compressible flow regimes is posed by the scale differ-
ences between acoustic and material waves. The focus of the numerical simulation usually lies on the evolution
of the slower material waves following the two-fluid interface for which a time step controlled by the local flow
speed is sufficient. The time step of an explicit scheme, as proposed in [29, 31] for compressible two-phase flow
in the SHTC framework, is bounded by the smallest Mach number. This leads to very restrictive time steps in
the low Mach number regime and consequently to long computational times, especially when long time periods
are considered. This problem can be overcome by considering implicit-explicit (IMEX) time integrators, where
fast waves are treated implicitly leading to the Courant-Friedrichs-Lewy (CFL) condition that is restricted only by
the local flow velocity. It allows larger time steps while keeping the material waves well resolved. Additionally,
an implicit treatment of the associated stiff pressure terms, which trigger fast acoustic waves, has the advantage
that centered finite differences can be applied without loss of stability while guaranteeing a Mach number inde-
pendent numerical diffusion of the scheme, see e.g. [8, 14, 18] for a discussion on upwind schemes. Indeed, the
correct amount of numerical diffusion is crucial to obtain the so-called asymptotic preserving (AP) schemes [15].
Since the flow regime of the two-phase flow considered here is characterized by two potentially distinct phase
Mach numbers, different singular Mach number limits can be obtained depending on the constitution of the mix-
ture. For their formal derivation we apply asymptotic expansions, as done for the (isentropic) Euler equations,
see [6, 7, 8, 14, 17, 18, 25]and the references therein. We refer the reader to our recent work on the isentropic
SHTC two-fluid model [21]. To obtain physically admissible solutions, especially in the weakly compressible flow
regime, the numerical scheme has to yield correct asymptotic behavior. This means a uniformly stable and con-
sistent approximation of the limit equations as the Mach numbers tend to zero.

The profound knowledge of the structure of well-prepared initial data can be used to construct an AP scheme
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by applying a reference solution (RS)-IMEX approach. This approach was successfully applied to construct AP
schemes for the (isentropic) Euler equations [3, 16, 19, 35] and isentropic two-fluid flow [21]. This leads to a
stiff linear part which is then treated implicitly whereas the nonlinear higher order terms are integrated explicitly
respecting the asymptotes in the low Mach number limit. By doing this, nonlinear implicit solvers can be avoided
which are computationally costly.

The paper is structured as follows. In Section 2, we briefly recall the model and give its non-dimensional formu-
lation. For well-prepared initial data, we analyze its singular Mach number limit towards the incompressible Euler
equations with variable density. Using the knowledge of the limit reference state, we construct first a semi discrete
scheme in Section 3.2 and derive a fully discrete scheme in Section 3.3. The construction of higher order schemes
within this framework is shortly discussed, too. Further, the AP property of the scheme is proven in Section 4.
Finally, in Section 5, a series of 1D and 2D test problems is presented to numerically verifying the convergence of
the proposed scheme and its behavior in compressible and weakly compressible flow regime.

2. Single temperature two-fluid flow

In this section we recall the SHTC two-fluid model derived in [30, 29]. We concentrate on the model in the thermal
equilibrium regime [20] which is a legitimate approximation for many applications mentioned in the Introduction.
Thus, we deal with the mixture of two fluids in which every material element (control volume) is characterized by
the temperature T with T = T1 = T2, where the lower indices denote the respective phase l = 1,2. Moreover, we
assume that every material element of volume V and mass M is occupied by both fluids, i.e. V = ν1 +ν2 and
M = m1 +m2, with νl and ml being the volume and mass of the l-th phase in the control volume V . However,
to characterize the fluid content in a control volume, it is convenient to use non-dimensional scalars: the volume
fractions αl and mass fractions cl defined as

αl =
νl

V
, cl =

ml

M
= ϱl

ρ
= αlρl

ρ
, (1)

where

ρ = M

V
= ϱ1 +ϱ2 =α1ρ1 +α2ρ2 (2)

is the mass density of the mixture, ϱl is the mass density of the l-th phase in the control volume V , and ρl is the
mass density of the l-th phase. The volume and mass fractions obey the constraints

α1 +α2 = 1, c1 + c2 = 1. (3)

Moreover, each phase is equipped with its own velocity field vl ∈ Rd , where d denotes the space dimension,
and the mixture control volume is assume to have the velocity defined as the center of mass velocity, i.e. as the
weighted average given by

v = c1v1 + c2v2. (4)

The mixture momentum ρv = ϱ1v1 +ϱ2v2 is equal to the sum of the phase momenta. Additionally, one needs to
characterize the relative motion of the phases which, in the SHTC theory, is done using the relative velocity field

w = v1 −v2. (5)

For each phase, an entropy sl and internal energy el (ρl , sl ) is prescribed yielding the phase pressures

pl = ρ2
l

∂el

∂ρl
, l = 1,2. (6)
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We consider an ideal gas equation of state (EOS) given in terms of the respective density and single temperature
resulting in

sl (ρl ,T ) = cv,l log

(
T

T0,l

(
1

ρl

)γl−1)
, T0,l =

1

(γl −1)cv,l
, el (ρl ,T ) = cv,l T, pl (ρl ,T ) = (γl −1)cv,lρl T, (7)

where γl denotes the ratio of specific heats and cv,l the specific heat at constant volume for each phase l = 1,2. To
conclude the definition of the mixture state variables, we have the specific mixture internal energy e = c1e1+c2e2,
the mixture pressure p = ρ2 ∂e

∂ρ =α1p1 +α2p2 and the total energy density of the mixture given by

ρE = ρe +ρ ∥v∥
2

2
+ρc1c2

∥w∥2

2
. (8)

The total mixture entropy reads S = c1s1 + c2s2. All state variables are summarized in the vector

q = (
α1,α1ρ1,α2ρ2,ρv,w,ρE

)T . (9)

The SHTC model with a single temperature can be written in the following way

∂α1

∂t
+v ·∇α1 =−p1 −p2

τ(α)ρ
, (10a)

∂(α1ρ1)

∂t
+∇·(α1ρ1v1) = 0, (10b)

∂(α2ρ2)

∂t
+∇·(α2ρ2v2) = 0, (10c)

∂(ρv)

∂t
+∇·(ρv⊗v+pI +ρc1c2w⊗w) = 0, (10d)

∂w

∂t
+∇·

([
w ·v+µ1 −µ2 + (1−2c1)

∥w∥2

2

]
I

)
+ (∇×w)×v =−c1c2w

τ(w)
, (10e)

∂(ρE)

∂t
+∇·

(
v(ρE +p)+ρ

[
w ·v+µ1 −µ2 + (1−2c1)

∥w∥2

2

]
c1c2w

)
= 0. (10f)

Here µl = el + pl

ρl
− sl T, l = 1,2 denote the chemical potentials. In the above formulation, the volume fraction

is advected in a non-conservative way with the fluid flow v balanced by a pressure relaxation source term. The
mixture mass is conserved due to (10b), (10c), the momentum due to (10d) and the total energy due to (10f).
The relative velocity is not conserved and driven by the difference in the chemical potentials µ = µ1 −µ2 and
a friction source term. The relaxation parameters τα and τ(w) characterize the relaxation rates of the mixture
towards pressure (p1 = p2) and relative velocity (v1 = v2) equilibrium.

Moreover, the model is equipped with the entropy balance law

∂(ρS)

∂t
+∇·(ρSv) =Π≥ 0 (11)

with the entropy production term

Π= 1

Tτ(α)ρ2
(p1 −p2)2 + 1

Tτ(w)ρ2
c2

1c2
2∥w∥2. (12)

For details on the derivation of the model and its thermodynamical properties we refer to [31, 30, 29, 28].
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Since each phase is equipped with a respective pressure and density, a sound speed for each phase al , as well as
a mixture sound speed a can be defined by

(al )2 = ∂pl

∂ρl
= γl

pl

ρl
and a2 = ∂p

∂ρ
= c1 (a1)2 + c2 (a2)2 . (13)

Accordingly, a Mach number can be assigned to each phase. As usual it is defined by the ratio between the flow
velocity v and the sound speed al . In the case that the flow is characterized by (at least) one small Mach number,
different scales arise in the model that yield stiffness in the governing equations (10). To obtain a better under-
standing of the scales which are present in the model, we will rewrite system (10) in a non-dimensional form.

2.1. Non-dimensional formulation of the two-fluid model

Let us denote the non-dimensional quantities by ( •̃ ) and the corresponding reference value by (•)ref. We assume
that the convective scales are of the same order, i.e. vl ,ref = vref = xref/tref. The ratio of the phase densities, how-
ever, can be large, especially when considering a mixture of a light gas and liquid. To take this potentially large
difference into account, we define two different reference densities ρl ,ref. Note, that the volume fraction and mass
fractions are already non-dimensional quantities. Further, we define two reference pressures pl ,ref from which we
can compute the reference sound speeds aref and reference internal energies eref via the EOS (7). They are given
by (

al ,ref
)2 = pl ,ref

ρl ,ref
, el ,ref =

pl ,ref

ρl ,ref
, Tref =

1

γl (γl −1)cv,l

pl ,ref

ρl ,ref
, l = 1,2. (14)

The dimensional state variables q are then expressed as the product of non-dimensional quantities and reference
values as follows

ρl = ρ̃lρl ,ref, pl = p̃l pl ,ref, el = ẽl
pl ,ref

ρl ,ref
, µl = µ̃l

pl ,ref

ρl ,ref
, vl = ṽlvref, v = ṽvref, w = w̃vref. (15)

Further, a respective reference Mach number Ml is assigned to each phase l = 1,2

Ml =
vref

al ,ref
. (16)

Inserting expressions (15) into the dimensional equations (10), dropping the tilde ( •̃ ) and using (16), we obtain
the following non-dimensional formulation

∂α1

∂t
+v ·∇α1 =− 1

τ(α)ρ

(
ρ1,ref

ρref

p1

(M1)2 − ρ2,ref

ρref

p2

(M2)2

)
, (17a)

∂(α1ρ1)

∂t
+∇·(α1ρ1v1) = 0, (17b)

∂(α2ρ2)

∂t
+∇·(α2ρ2v2) = 0, (17c)

∂(ρv)

∂t
+∇·

(
ρv⊗v+

(
α1
ρ1,ref

ρref

p1

(M1)2 +α2
ρ2,ref

ρref

p2

(M2)2

)
I +ρc1c2w⊗w

)
= 0, (17d)

∂w

∂t
+∇·

([
w ·v+ µ1

(M1)2 − µ2

(M2)2 + (1−2c)
∥w∥2

2

]
I

)
+ (∇×w)×v =−c1c2w

τ(w)
, (17e)

∂(ρE)

∂t
+∇·

(
v

(
ρE +α1

ρ1,ref

ρref

p1

(M1)2 +α2
ρ2,ref

ρref

p2

(M2)2

))
(17f)

+∇·
(
ρ

[
w ·v+ µ1

(M1)2 − µ2

(M2)2 + (1−2c1)
∥w∥2

2

]
c1c2w

)
= 0 (17g)
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with the scaled total energy

E = c1
ρ1,ref

ρref

e1(ρ1,T )

(M1)2 + c2
ρ2,ref

ρref

e2(ρ2,T )

(M2)2 + ∥v∥2

2
+ c1c2

∥w∥2

2
(18)

and the mixture density ρ = ρ̃ρref = α1ρ̃1ρ1,ref +α2ρ̃2ρ2,ref with ρ̃ = α1ρ̃1
ρ1,ref

ρref
+α2ρ̃2

ρ2,ref

ρref
. In the next section we

introduce well-prepared initial data that will be used for the formal asymptotic analysis of (17) in the low Mach
number limits.

2.2. Well-prepared data and low Mach number limits

As we have seen from the Mach number definition (16), the difference in the flow regimes of the two phases
depends mainly on the material constants γl and cv,l . In particular, from the single temperature EOS (7), we
obtain

a2
1

γ1(γ1 −1)cv,1
= a2

2

γ2(γ2 −1)cv,2
⇔ a2

1 =
γ1(γ1 −1)cv,1

γ2(γ2 −1)cv,2
a2

2 (19)

and consequently, with al ,ref =
√
γl (γl −1)cv,l Tref, we find a direct relation between two Mach numbers

M1 =C M2, C =
√
γ2(γ2 −1)cv,2

γ1(γ1 −1)cv,1
> 0. (20)

In the following, for simplicity, we consider the case M1 = M2 = M , where 0 < M ≪ 1, i.e. C = 1. The cases C > 1
and C < 1 can be treated in a similar manner. For a full analysis of model (17) in the isentropic case we refer the
reader to [21], where the singular limit for two different Mach numbers 1 ≫ M1 > M2 > 0 and 1 ≈ M1 ≫ M2 > 0 are
considered.

We proceed by expanding sufficiently smooth phase state variables with respect to M . Note that the volume and
mass fractions are non-dimensional quantities and are not expanded with respect to the Mach number.

ρl = ρl ,(0) +Mρl ,(1) +O (M 2), l = 1,2,

T = T(0) +MT(1) +M 2T(2) +O (M 3),

v = v(0) +Mv(1) +O (M 2).

(21)

Since the relative velocity is subject to a relaxation process, we set τ(w) = M leading to the desired zero background
relative velocity w(0) = 0 in the limit, thus

w = Mw(1) +O (M 2). (22)

To obtain Mach number expansions also for the remaining thermodynamical quantities, we apply EOS (7) which
yields

pl =
(
cv,l (γl −1)ρl ,(0)T(0)

)+Mcv,l (γl −1)
(
ρl ,(0)T(1) +ρl ,(1)T(0)

)+O (M 2),

µl =
(
T(0)

(
cv,lγl − sl (ρl ,(0),T(0))

))+M

(
cv,l (γl −1)

(
ρl ,(0)T(1) +ρl ,(1)T(0)

)
ρl ,(0)

−T(1)sl (ρl ,(0),T(0))

)
+O (M 2),

ρl el =
(
cv,lρl ,(0)T(0)

)+Mcv,l
(
ρl ,(0)T(1) +ρl ,(1)T(0)

)+O (M 2)

(23)

and imply the following expansions

pl = pl ,(0) +M pl ,(1) +M 2pl ,(2) +O (M 3),

µl =µl ,(0) +Mµl ,(1) +M 2µl ,(2) +O (M 3),

ρl el =
(
ρl el

)
(0) +M

(
ρl el

)
(1) +M 2 (

ρl el
)

(2) +O (M 3).

(24)
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We insert the Mach number expansions (21),(24) and ρ(0) = α1ρ1
(0) +α2ρ2

(0) in the non-dimensional formulation
(17) and sort by the equal order of the Mach number. Terms of the order O (M−2) and O (M−1) arise in the relaxation
source term of equation (17b) yielding

ρ2,ref

ρref
p1,(0) =

ρ1,ref

ρref
p2,(0) and

ρ2,ref

ρref
p1,(1) =

ρ1,ref

ρref
p2,(1), (25)

as well as in the momentum equation (17d)

∇
(
α1
ρ1,ref

ρref
p1,(0) +α2

ρ2,ref

ρref
p2,(0)

)
= 0 ⇔∇p1,(0) = 0, ∇p2,(0) = 0 and (26)

∇
(
α1
ρ1,ref

ρref
p1,(1) +α2

ρ2,ref

ρref
p2,(1)

)
= 0 ⇔∇p1,(1) = 0, ∇p2,(1) = 0. (27)

This implies that pl and ρl el are constant in space up to the second order perturbation pl ,(2) and
(
ρl el

)
(2). Fur-

thermore, from the relative velocity equation (17e) we have the following conditions

∇µ1,(0) =∇µ2,(0), and ∇µ1,(1) =∇µ2,(1). (28)

In particular this means that the difference of the chemical potentials µ(0) and µ(1) are constant in space. Taking
these observations into account as well as w(0) = 0, O (M−2) order terms in the energy equation (17g) reduce to

∂ρ(0)e(0)

∂t
+∇·(ρ(0)e(0)v(0))+p(0)∇·v(0) = 0. (29)

We further assume that the phase pressure relaxation towards a common pressure is faster than the characteristic
time of pressure wave propagation, and one obtains a uniform mixture pressure p(2) =α1

ρ1,ref

ρref
p1,(2)+α2

ρ2,ref

ρref
p2,(2) =

p2,(2). This motivates the following assumption on the dynamics of the volume fraction in the low Mach number
limit.

Assumption 2.1 (Transport of interfaces). In the low Mach number limit we assume

∂α1

∂t
+v(0) ·∇α1 = 0. (30)

With this assumption, we can rewrite the energy equation at the leading order (29) as follows

α1
∂(ρ1e1)(0)

∂t
+α2

∂(ρ2e2)(0)

∂t
+ρ(0)e(0)∇·v(0) +p(0)∇·v(0) = 0. (31)

In fact, (31) can be written as a convex combination with respect to the volume fraction

α1

(
∂(ρ1,(0)e1,(0))

∂t
+ (
ρ1,(0)e1,(0) +p1,(0)

)∇·v(0)

)
+α2

(
∂(ρ2,(0)e2,(0))

∂t
+ (
ρ2,(0)e2,(0) +p2,(0)

)∇·v(0)

)
= 0. (32)

Since the volume fraction can be arbitrary under the constraint 0 <αl < 1, l = 1,2, (32) implies

∂(ρ1,(0)e1,(0))

∂t
+ (
ρ1,(0)e1,(0) +p1,(0)

)∇·v(0) = 0 and
∂(ρ2,(0)e2,(0))

∂t
+ (
ρ2,(0)e2,(0) +p2,(0)

)∇·v(0) = 0. (33)

which is consistent with the limit of single phase flow of the Euler equations, see e.g. [8, 17, 18].
Then, analogously to [8] for the case of the Euler equations, we obtain from (33), that ρl ,(0)el ,(0) are constant

in space and time and consequently we obtain from (24) that also the phase pressures at leading order pl ,(0) and
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ρl ,(0)T(0) are constant in space and time. Furthermore, we obtain the divergence free mixture velocity constraint
∇·v(0) = 0. Summarizing, we can formally write the following expansions for the pressure and internal energy

p = p(0) +O (M 2), p(0) = constant, (34a)

ρl el = ρl ,(0)el ,(0) +O (M 2), ρl ,(0)el ,(0) = constant. (34b)

To obtain the expansion for the temperature, we look at the constraint for the chemical potentials. First, (34b)
implies that ρl ,(0)T(0) are constant. Therefore, we can define two constants El > 0 such that

T(0)ρ1,(0) = E1, T(0)ρ2,(0) = E2. (35)

Then it follows from ∇(µ1,(0) −µ2,(0)) = 0 that

0 =
(

cv,2 log

((
ρ0,2

E2

)γ2−1 T γ2

(0)

T0

)
− cv,l log

((
ρ0,1

E1

)γ1−1 T γ1

(0)

T0

))
∇T(0) (36)

and consequently T(0) is constant unless both phases coincide. Since we consider a general case of different phase
densities, it follows from (35), that the phase densities ρl ,(0) are constant as well. From relation (34a) follows
p(1) = 0 thus ρl ,(0)T(1) +ρl ,(1)T(0) = 0 which implies

T(1) =−ρl ,(1)

ρl ,(0)
T(0). (37)

Relation (28) yields T(1) is constant and together with (37) implies

µl =µl ,(0) +O (M 2), ρl = ρl ,(0) +O (M 2), T = T(0) +O (M 2), {µl ,(0), ρl ,(0) ,T(0)} = constant. (38)

Plugging these expansions in (17b) and (17c) and single out the first order perturbations for the phase densities,
it follows v(1) = 0 and w(1) = 0. Consequently, we have for the friction source term τ(w) = O (M 2). We proceed by
defining a set of well-prepared initial data.

Definition 2.2 (Well-prepared initial data for variable volume fraction). Let q ∈ R4+2d denote the state vector and
let both phases be in the same Mach number regime denoted by M. Let Assumption 2.1 hold. Then the set of well-
prepared initial data is given as

ΩM
w p =

{
q ∈R4+2d :

ρ1,ref

ρref
p2

(k) =
ρ1,ref

ρref
p1,(k), k = 0,1,2; ∇p1,(0) = 0, ∇p2,(0) = 0; ∇p1,(1) = 0, ∇p2,(1) = 0;

∇µ1,(0) =∇µ1,(0), ∇µ1,(1) =∇µ2,(1); ∇·v(0) = 0, v(1) = 0; τ(w) =O (M 2)
}

(39)

using the Mach number expansions (21),(24).

For well-prepared initial data, we obtain formally for M → 0 and τ(w) = O (M 2) the following incompressible
limit equations with variable volume fraction

∂α1

∂t
+v(0) ·∇α1 = 0, ρ(0) =α1ρ1,(0) +α2ρ2,(0), (40a)

∂v(0)

∂t
+v(0) ·∇v(0) +

∇p(2)

ρ(0)
= 0, ∇·v(0) = 0, (40b)

where p(2) is the second order perturbation of the uniform pressure given by −∇·(∇p(2)/ρ(0)
) = ∇2 :

(
v(0) ⊗v(0)

)
acting as the Lagrangian multiplier. Note that the limit velocity equation is derived applying ∂tα=−v(0) ·∇α in the
momentum formulation (17d).
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3. Numerical scheme

Let us write the two-fluid model (17) in the following compact form

∂q

∂t
+∇·f (q)+B(q) ·∇q = r(q), (41)

were q denotes the vector of state variables defined in (9), f the flux function consisting of the conservative terms,
B(q) is the matrix that contains the non-conservative contributions and r the relaxation source terms acting on
the volume fraction and the relative velocity.

In the following, we construct a numerical scheme for the two fluid single-temperature model (41) which is sta-
ble independently of the Mach numbers M 1 and M 2. This allows to follow the dynamics associated with the flow
velocity v, especially the transport of the volume fraction that represents the interface between the two phases. In
addition we require the new scheme to be asymptotically preserving (AP), meaning that the numerical scheme in
the singular limit as M → 0 has to be consistent with a discretization of the incompressible limit equations (40).

To achieve this goal, we use an operator splitting approach, dividing the flux f into terms f ex treated explicitly
and f im integrated implicitly. The components of the non-conservative terms B only involve terms with respect
to the velocities v and w and are treated explicitly. The resulting implicit system is in general nonlinear due to the
nonlinearity of the flux function f im and nonlinearity of EOS (7). This, however, implies a huge computational
overhead since nonlinear solvers would be required to solve large coupled implicit systems. To reduce compu-
tational costs, we construct a linear implicit numerical scheme whose implicit part can be solved by direct or
iterative linear solvers. To avoid that the AP property is lost during the linearization process, we use the so called
reference solution (RS) approach detailed in the subsequent section that has been successfully applied to construct
schemes for the Euler equations and isentropic two-phase flows [24, 3, 16, 21].

3.1. Reference solution approach

In the singular limit as M → 0, the stiffness in the system is mainly connected to the pressure and chemical poten-
tial terms in the momentum and relative velocity equation. Further, these terms are coupled with the evolution
equation for the total energy density ρE . Therefore, to obtain a time step that is dominated by the mixture veloc-
ity v, these terms need to be treated implicitly. It follows from the EOS (7), that the mixture pressure p depends
linearly on ρE and we can write

p = (
φp −1

)(
ρE −ρEkin

)
, with φp (α1,α2,ρ1,ρ2) = γ1α1ρ1cv,1 +γ2α2ρ2cv,2

α1ρ1cv,1 +α2ρ2cv,2
, (42)

where Ekin contains all kinetic energy contributions

Ekin = ∥v∥2

2
+ c1c2

∥w∥2

2
. (43)

For the chemical potentials we have a nonlinear dependence on ρE via the phase entropies sl (q), l = 1,2, given by

µ= µ1

M 2
1

− µ2

M 2
2

=φµ(ρE −ρEkin), where φµ(q) = γ1cv,1 − s1(q)−C 2(γ2cv,2 − s2(q))

α1ρ1cv,1 +C 2α2ρ2cv,2
(44)

with C being the ratio of Mach numbers defined in (20).
Note that for single phase flow,φp = γ−1 is constant andφµ = 0. Consequently, formulations (42), (44) reduce to

the Euler case, studied in [4], and is consistent with single phase flow. Therefore, we linearize only the difference
of the chemical potentials µ with respect to ρE around a reference state qRS as follows

µ=µRS +
(
∂µ

∂(ρE)

)
RS

(
ρE − (ρE)RS

)+O
((
ρE − (ρE)RS

)2
)

, (45)
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where
∂µ

∂(ρE)
= cv,1(γ1 −1)− s1(ρ1,T )−C 2(cv,2(γ2 −1)− s2(ρ2,T ))

α1ρ1cv,1 +C 2α2ρ2cv,2
=O (1) (46)

for all C = M1
M 2 . The reference state is set to

qRS = (α1,α1ρ1,(0),α2ρ2,(0),ρ(0)v,w, (ρE)RS)T , (ρE)RS = ρ(0)e(0) +ρ(0)Ekin, (47)

where ρl ,(0),ρl ,(0)el ,(0) are constant leading order states from (38) and

ρ(0) =α1ρ1,(0) +α2ρ2,(0), ρ(0)e(0) =α1
ρ1,(0)e1,(0)

M 2
1

+α2
ρ2,(0)e2,(0)

M 2
2

.

We split µ into a part that is linear in ρE given by

µ̂= µ̂RS +
(
∂µ

∂(ρE)

)
RS
ρE , µ̂RS =µ(qRS)−

(
∂µ

∂(ρE)

)
RS

× (ρE)RS (48)

and a nonlinear part
µ̄=µ− µ̂=O

((
ρE − (ρE)RS

)2
)

. (49)

Note that if considering well-prepared initial data, µ̄ is of order M 2
l , l = 1,2. This can be seen by multiplying

µ= µ1

M 2
1
− µ2

M 2
2

, without loss of generality, by M 2
1 . Then we obtain

µ1 −C 2µ2 =µ1,RS −C 2µ2,RS +
(
∂µ

∂(ρE)

)
RS

× (
ρĚ − (ρĚ)RS

)+O
(
(ρĚ − (ρĚ)RS)2) , (50)

where
ρĚ =α1ρ1e1 +C 2α2ρ2e2 +M 2

1ρEkin. (51)

For the difference between the total energy density and its reference value we obtain

ρĚ − (ρĚ)RS = M 2
1α1

(
ρ1e1

)
(2) + (M2C )2α2

(
ρ2e2

)
(2) +M 2

1ρ(2)Ekin = M 2
1

(
c1e1,(2) + c2e2,(2) +ρ(2)Ekin

)
(52)

with ρ(2) = M 2
1α1ρ1,(2) +M 2

2α2ρ2,(2). Therefore, it follows

µ̄= µ1 −C 2µ2

M 2
1

− µ̂=O

(
(ρĚ −ρĚRS)2

M 2
1

)
=O (M 2

1 ). (53)

Consequently, the nonlinear term µ̄ vanishes as M1 tends to 0 and can be treated explicitly without imposing
a sever time step restriction. Note that for compressible flow M1 ≈ 1, these terms are important to obtain the
correct wave speeds and cannot be neglected.

Taking these considerations into account, the following subsystem will be treated explicitly

∂α1

∂t
+v ·∇α1 = 0, (54a)

∂(α1ρ1)

∂t
+∇·(α1ρ1v1) = 0, (54b)

∂(α2ρ2)

∂t
+∇·(α2ρ2v2) = 0, (54c)

∂(ρv)

∂t
+∇·(ρv⊗v

)= 0, (54d)

∂w

∂t
+∇·

([
w ·v+ (1−2c1)

∥w∥2

2

]
I

)
+ (∇×w)×v = 0, (54e)

∂(ρE)

∂t
+∇·

(
ρ

[
w ·v+ (1−2c1)

∥w∥2

2

]
c1c2w

)
= 0. (54f)
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Written in compact notation, we have
∂q

∂t
+∇·f ex(q)+B(q)∇q = 0. (55)

Subsystem (54) is weakly hyperbolic, since it lacks one linearly independent eigenvector for the characteristic
speed λv1 . The complete list of characteristic speeds is given by

λ0 = 0, λv1 = v ·n (8×), λv2 = (v+ (1−2c1)w) ·n. (56)

Applying, e.g. the Rusanov numerical fluxes, a numerical solution of the weakly hyperbolic system (54) can be
obtained. Further, rewriting pressures and chemical potentials in terms of ρE and using the decomposition

µ= µ̂+ µ̄ and ∂µRS =
(
∂µ

∂(ρE)

)
RS

,

the implicitly treated subsystem is given by

∂α1

∂t
=− 1

τ(α)ρ

(
ρ1,ref

ρref

p1

M 2
1

− ρ2,ref

ρref

p2

M 2
2

)
, (57a)

∂(α1ρ1)

∂t
= 0, (57b)

∂(α2ρ2)

∂t
= 0, (57c)

∂(ρv)

∂t
+∇·((φp −1)

(
ρE −ρEkin

)
I +ρc1c2w⊗w

)= 0, (57d)

∂w

∂t
+∇·([∂µRS ρE + µ̂RS + µ̄

]
I
)=−c1c2w

τ(w)
, (57e)

∂(ρE)

∂t
+∇·

(
ρv

(
ρE +p

ρ

)
+µ ρc1c2w

)
= 0 (57f)

which yields the corresponding compact form

∂q

∂t
+∇·f im(q) = r(q). (58)

In the following, we construct an IMEX scheme for two subsystems (55) and (58). We start with the time semi-
discrete scheme.

3.2. Time semi-discrete scheme

Let the time interval (0,T f ) be discretized by t n = n∆t , where ∆t denotes the time step subject to a time step
restriction based on a CFL condition given by

∆t ≤ ν ∆x

max
x∈Ω

(|λv1 (x, t n)|, |λv2 (x, t n)|) . (59)

Therein, λv1 , λv2 are the characteristic speeds of the explicit subsystem (56) evaluated at time level t n . For a first
order scheme in time, we apply the forward Euler method for the explicit subsystem (55)

q(1) = qn −∆t∇·f ex (qn)−∆tB(qn) ·∇qn (60)
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and a backward Euler method for the implicit subsystem (57). We find that there are still some nonlinear terms
present yielding a nonlinear coupled system. Extending the approach from [4] for the Euler equations, we linearize
certain flux terms in time yielding the following time discretization

(α1ρ1)n+1 = (α1ρ1)(1), (61a)

(α2ρ2)n+1 = (α2ρ2)(1), (61b)

(ρv)n+1 = ρv(1) −∆t∇
(
(φn

p −1)ρE n+1 + p̂n
)
−∆t∇·

((
ρc1c2

)n+1
wn ⊗wn

)
, (61c)

wn+1 =w(1) −∆t∇
(
∂µn

RS(ρE)n+1 + µ̂(1)
RS + µ̄n

)
− ∆t

τ(w)
(c1c2)n+1wn+1, (61d)

(ρE)n+1 = (ρE)(1) −∆t∇·
(

(ρv)n+1

(
ρE +p

)n

ρn+1 +µn(ρc1c2)n+1wn+1

)
, (61e)

where p̂n =−(φn
p −1)ρE n

kin. Rewriting the relative velocity equations with ρn+1 = (α1ρ1)n+1 + (α2ρ2)n+1 implies

wn+1 =
(

τ(w)

τ(w) +∆t (c1c2)n+1

)
w(1) −

(
∆t τ(w)

τ(w) +∆t (c1c2)n+1

)
∇(
∂µn

RS(ρE)n+1 + µ̂n
RS + µ̄n)

. (62)

Substituting the relative velocity and momentum in the total energy equation yields a linear implicit equation for
the total energy given by

(ρE)n+1 −∆t 2∇·
((
ρE +p

)n

ρn+1 ∇
(
(φn

p −1)(ρE)n+1
))

−∆t 2∇·
((
τ(w)µn(ρc1c2)n+1

τ(w) +∆t (c1c2)n+1

)
∇(
∂µn

RS(ρE)n+1))

= (ρE)(1) −∆t∇·
((
ρE +p

)n

ρn+1

(
ρv(1) +∆t∇(

(φp −1)ρEkin
)n −∆t∇·

((
ρc1c2

)n+1
wn ⊗wn

)))

−∆t∇·
((
τ(w)µn(ρc1c2)n+1

τ(w) +∆t (c1c2)n+1

)
w(1) −

(
∆t τ(w)µn(ρc1c2)n+1

τ(w) +∆t (c1c2)n+1

)
∇(
µ̂n

RS + µ̄n))
.

(63)

Having obtained the total energy (ρE)n+1 we can successively update the relative velocity

wn+1 =
(

τ(w)

τ(w) +∆t (c1c2)n+1

)(
w(1) −∆t∇µn+1) (64)

and the momentum
(ρv)n+1 = ρv(1) −∆t∇pn+1 −∆t∇·

((
ρc1c2

)n+1
wn+1 ⊗wn+1

)
. (65)

Finally, the volume fraction at the next time level is obtained from the pressure relaxation

∂α1

∂t
=− 1

τ(α)ρ

(
p1

M 2
1

− p2

M 2
2

)
. (66)

Rewriting the source term in terms of the state variables q, we find

∂α1

∂t
=− 1

τ(α)

(
(γ1 −1)cv,1c1

α1
− (γ2 −1)cv,2c2

1−α1

)
ρE −ρEkin

α1ρ1cv,1 +α2ρ2cv,2
(67)

which is a nonlinear ordinary differential equation inα1 and can be solved implicitly applying the backward Euler
scheme and the Newton algorithm to solve the nonlinear implicit system which concludes the time semi-discrete
scheme. We proceed with the construction of the fully discrete scheme in the next section.
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3.3. Fully discrete scheme

In time, we set as before t n+1 = t n +∆t , where ∆t obeys the CFL condition (59). In space, we consider a two-
dimensional computational domainΩdivided into cells C I = [x1,i−1/2, x1,i+1/2]×[x2, j−1/2, x2, j+1/2] withx= (x1, x2)T .
The common edge between two neighboring cells ΩI and ΩJ is denoted by ∂ΩI J and the set of neighbors of ΩI

associated with the unit normal vector pointing from the cell ΩI to ΩJ given by nI J is denoted by NI . We con-
sider a uniform mesh size ∆x1,∆x2 in each direction and the barycenter of C I is denoted by xI = (i∆x1, j∆x2) for
i , j = 1, . . . , N . We use a finite volume framework, where the solution on the cell C I at time t n is approximated by
the average given by

qn
I ≈ 1

|ΩI |
∫
ΩI

q(x, t n) dx. (68)

A fully discrete finite volume (FV) method for (55) reads

q(1)
I = qn

I −∆t
∑

K∈NI

|∂ΩI K |
|ΩI |

(
F ex(qn

I ,qn
K ) ·nI K +D(qn

I ,qn
K ) ·nI K

)
, (69)

using a Rusanov numerical flux

F ex(qn
I ,qn

K ) ·nI K = 1

2

(
f ex(qn

I )+f ex(qn
K )

) ·nI K − sI K I (qn
K −qn

I ), (70)

where s = maxk (|λk (qI )|, |λ(qI )|) denotes the maximum eigenvalue at the interface ∂ΩI K . The non-conservative
product is approximated in the following way

D(qn
I ,qn

K ) ·nI K = 1

2
B

(
q̃n) · (qn

K −qn
I ), q̃ = 1

2

(
qn

K +qn
I

)
. (71)

The implicit elliptic equation for the total energy (63) is based on centered finite difference approximation for the
space discretization and can be formulated on cell C I in the following way(

ρE
)n+1

I −∆t 2
(
L n

I

(
ρE

)n+1
I +K n

I

(
ρE

)n+1
I

)
=(
ρE

)(1)
I −∆t

∑
K∈NI

|δΩI K |
|ΩI |

F (q(1)
I ,q(1)

K ) ·nI K

−∆t 2L n
I

(
ρE n

kin

)−∆t 2K n
I

(
(ρE)n

RS − (∂µn
RS)−1µ̄n)

.

(72)

Here, the weighted Laplacians are discretized as follows

LI
(
ρE

)
I =

∑
K∈NI

|∂ΩI K |
|ΩI |

G1(qI ,qK )
[
H1(ρE)

]
(qI ,qK ), K I

(
ρE

)
I =

∑
K∈NI

|∂ΩI K |
|ΩI |

G2(qI ,qK )
[
H2(ρE)

]
(qI ,qK ) (73)

with

Gk (qI ,qK ) = 1

2

(
gk (qI )+ gk (qK )

)
, Hk (qI ,qK ) = |∂ΩI K |

|ΩI |
(
hk (qI )−hk (qK )

)
, k = 1,2 (74)

where

g1 = (ρE +p)n

ρn+1 , h1 =φn
p −1, g2 = τ(w)µn(ρc1c2)n+1

τ(w) +∆t (c1c2)n+1 , h2 = ∂µn
RS. (75)

The divergence terms are approximated as

F (q(1)
I ,q(1)

K ) ·nI K = 1

2

(
g1(qI )ρv(1)∗

I + g1(qK )ρv(1)∗
K

)
·nI K , (76)

where ρv(1)∗ contains the relative velocity flux component
(
(ρc1c2)n+1wn ⊗wn

)
with centered differences analo-

gously to (76). The coefficient matrix resulting from the linear equation (73) is strictly diagonal dominant. There-
fore, the linear system of equations has a unique solution independent of the Mach number regime. Numerically
it is solved by a preconditioned linear iterative solver GMRES provided by PetSc [2].
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Once the energy ρE is computed at t n+1, the relative velocity (64) and momentum (65) are updated consecu-
tively by the FV method

wn+1
I =w(1)

I −∆t
∑

K∈NI

|∂ΩI K |
|ΩI |

F im
(w)(q

n+1
I ,qn+1

K ) ·nI K +∆tr(w)(q
n+1
I ), (77a)

ρvn+1
I = ρv(1)

I −∆t
∑

K∈NI

|∂ΩI K |
|ΩI |

F im
(ρv)(q

n+1
I ,qn+1

K ) ·nI K . (77b)

The numerical flux F im is constructed by the finite difference approximation defined analogously as in (76) based
on the implicit flux f im. The update of the volume fraction is approximated by the backward Euler method

αn+1
I =α(1)

I +∆tr(α)(q
n+1
I ), (78)

where r(α) denotes the pressure relaxation source term. Update (78) approximates on each cell the correspond-
ing ordinary differential equation (ODE) independently. To solve the nonlinear implicit system arising from the
backward Euler discretization of the ODE, a Newton algorithm is applied.

The steps of the reference solution implicit-explicit finite volume (RS-IMEX FV) scheme can be summarized as
follows:

1. Compute the explicit update q(1)
I given by (69) based on the advective terms f ex and B with the numerical

flux (70) and the approximation of the non-conservative terms (71) under the material CFL condition (59).

2. Compute the implicit update qn+1
I given by the following consecutive steps:

a) Solve the linear implicit equation (72) with centred elliptic operators (73) for the total energy (ρE)n+1
I

based on a linearization using reference states qn
RS defined in (47).

b) Compute first the update of relative velocity wn+1
I given in (77a) and then the momentum ρvn+1

I given
in (77b) using the respective full nonlinear flux components given in f im discretized with centred nu-
merical fluxes. Due to the knowledge of (ρE)n+1

I and the consecutive execution, both updates can be
done explicitly.

c) Solve on each cell the nonlinear implicit system (78) for the volume fraction αn+1
I arising from the

implicit treatment of the pressure relaxation process r(α) using a Newton algorithm.

3.4. Higher order extension

The above procedure fits in the framework of IMEX Runge Kutta methods, using a forward Euler scheme for the
explicit and an backward Euler scheme for the implicit subsystems. The corresponding Butcher tableaux are given
in Table 1. For an s stage IMEX Runge Kutta method, the Butcher tableaux (A,b,d) for the implicit and (Ã, b̃, d̃) for
the explicit parts are given by

A =


a11 · · · 0

...
. . .

...
as1 · · · ass

 , b =


b1
...

bs

 d =


d1
...

ds

 , Ã =


ã11 · · · 0

...
. . .

...
ãs1 · · · ãss

 , b̃ =


b̃1
...

b̃s

 d̃ =


d̃1
...

d̃s

 . (79)

Consequently, the IMEX method can be written as

qn+1
I = qn

I −∆t
s∑

k=1
b̃k

(
∇·f ex(q(k))+B(q(k)) ·∇q(k)

)
+bk

(
∇·f im(q(k))−r(q(k))

)
, (80)
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IMEX-RK Scheme
d A

bT

d̃ Ã

b̃T

Backward/Forward Euler
1 1

1

0 0

1

ARS(2,2,2)

0 0 0 0

γ 0 γ 0

1 0 1−γ γ

0 1−γ γ

0 0 0 0

γ γ 0 0

1 δ 1−δ 0

δ 1−δ 0

γ= 1− 1p
2

, δ= 1− 1
2γ

Table 1: Butcher tableaux of the first and second order scheme.

with the stages evaluated at time t (k) = t n +dk∆t

q(k)
I = qn

I −∆t
k−1∑
i=1

ãki

(
∇·f ex(q(i ))+B(q(i )) ·∇q(k)

)
−∆t

k∑
i=1

aki

(
∇·f im(q(i ))−r(q(i ))

)
. (81)

To be consistent with the asymptotic limit, we apply globally stiffly accurate (GSA) IMEX-RK methods like for the
time discretization. For the first order method forward/backward Euler method is applied, for the second order
method ARS(2,2,2) is used, see Table 1. A second order method in space is achieved by a second order recon-
struction with a minmod limiter in the Rusanov numerical flux (70). In the implicit part, central finite differences
yield second order accuracy. Note that for GSA Runge Kutta methods, the final update (80) coincides with the last
computational stage (81) and thus does not need to be performed.

4. Asymptotic preserving property

Motivated by the analysis in Section 2.2, we consider the case M1 = M2 = M ≪ 1. For the cases M1 ̸= M2 and
M1 ≈ 1 ≥ M2 > 0 we refer to the study of the isentropic case performed in [21]. The principle idea is the same and
the proof can be performed along the lines presented in [21] combined with the analysis for the case M1 = M2

presented here.
Applying an analogous asymptotic analysis as in Section 2.2 on the semi-discrete scheme consisting of (60),

(63), (64), (65), (78) and using well-prepared initial data as defined in Definition 2.2, we can prove the asymptotic
preserving (AP) property for the semi-discrete scheme.

Theorem 4.1 (Asymptotic preserving property). The first order RS-IMEX FV scheme consisting of the explicit part
(60), the linear implicit elliptic system (63) and the implicit updates (64), (65) and (78) is asymptotic preserving
up to O (∆t ). More precisely, for well-prepared initial data q0 ∈ ΩM

w p the RS-IMEX FV scheme yields a consistent
approximation of limit equations (40) up to O (∆t ).

Proof. For the proof of the AP property we refer a reader to Appendix A.

We want to point out, that the O (∆t ) errors arising in the velocity equation and divergence free constraint at
leading order are due to the non-constant volume fraction in the low Mach number limit. For single phase flow,
i.e. the Euler equations, or homogeneous mixtures, i.e. constant α, we obtain a stronger result of ∇·vn+1 =O (M 2).
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Corollary 4.2 (Asymptotic preserving property for constant volume fraction). For constant volume fraction or
single phase flows, we have

vn+1
(0) = v(1)

(0) −∆tvn
(0) ·∇vn

(0) −∆t
∇pn+1

(2)

ρn+1 . (82)

Moreover, the energy update
(ρe)n+1

(0) = (ρe)n
(0) −∆t ((ρe +p)n

(0)v
n+1
(0) ) (83)

and T n+1
(0) = TRS+O (M 2) yield ∇·vn+1

(0) =O (M 2) since (ρe+p)n
(0) are constant. Consequently, for well-prepared initial

data, the RS-IMEX FV scheme gives a consistent approximation of the limit equations as the Mach number tends to
0 independently of ∆t .

Proof. The proof can be done following the lines of the proof of Theorem 4.1. Due to ρn and ρn+1 being a convex
combination of the states ρ1,RS and ρ2,RS, they are constant. As a consequence, we obtain (82). Further, ∇·vn+1

(0) =
O (M 2) since (ρe +p)n

(0) is constant. As the initial data are well-prepared, i.e. q0 ∈ΩM
w p , we also obtain recursively

qn ∈ΩM
w p for all successive time iterations n > 0.

5. Numerical results

In this section, we illustrate by numerical experiments theoretical properties of the first and second order RS-IMEX
FV scheme, denoted respectively by RS-IMEX1 and RS-IMEX2, proposed in Section 3. All test cases are performed
under the material CFL condition (59) based on the eigenvalues of the explicit subsystem (55) which are of the
order of the advection scale. The initial conditions, if not mentioned otherwise, are given in dimensional form
using the transformations (15), (35) and the definition of the Mach numbers (16). Whenever possible, we compare
the numerical results obtained with our RS-IMEX FV schemes with an exact or explicit reference solution of the
two-fluid model with single temperature (10). Note that for a fully explicit scheme, the CFL condition depends di-
rectly on the Mach numbers M1, M2 and on the relaxation parameters τ(α),τ(w). Therefore, a fully explicit scheme
which treats the relaxation source terms explicitly, is only comparable to the CFL condition (59) of the RS-IMEX FV
scheme for sonic and supersonic flows M1, M2 ≥ 1 and slow relaxation processes τ(α),τ(w) ≫ 1. Thus, for test cases
with well-prepared initial data, τ(w) =O (M 2), the RS-IMEX FV scheme allows significantly larger time steps in low
Mach number regimes. Moreover, the case of pressure equilibrium which can be interpreted as “instantaneous”
relaxation, is impossible to resolve with a purely explicit scheme. Thus, also in the case of an explicit scheme a
nonlinear system has to be solved for α1 to guarantee p1 = p2. This underlines the necessity of a semi-implicit AP
scheme in such situations.

5.1. Numerical convergence study

To verify the experimental order of convergence (EOC) we construct an exact solution of the homogeneous two-
fluid model single temperature system (10) given by a stationary vortex. It is obtained by considering zero radial
velocities and a constant solution to be in angular direction, i.e.

vr = 0, wr = 0,
∂

∂t
(·) = 0,

∂

∂θ
(·) = 0. (84)

In Appendix B, the two-phase model (10) without the relaxation source terms is written in polar coordinates (118).
Applying (84), it reduces to

∂p

∂r
= α1ρ1vθ

2
1 +α2ρ2vθ

2
2

r
, (85a)

∂

∂r

(
vθ

2
1 − vθ

2
2

2
+µ1 −µ2

)
− vθ

(
1

r

∂

∂r
(r wθ)

)
= 0, (85b)
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with p =α1p1+α2p2, wθ = vθ1−vθ2, vθ = c1vθ1+c2vθ2. We set the phase velocities and the profile for the volume
fraction to

vθ l = r vc,l exp
(
νv,l (1− r 2)

)
and α1 = cα+αc exp

(
να(1− r 2)

)
,

respectively. This yields two equations for three unknowns ρ1, ρ2 and T . To eliminate one unknown, we set
ρ2 = cρρ1 with cρ being constant. Then, the unknowns ρ1 and T can be determined via the following system of
ordinary differential equations

α1
∂p1

∂ρ1
+α2cρ

∂p2

∂ρ2
α1
∂p1

∂T
+α2

∂p2

∂T
∂µ1

∂ρ1
− cρ

∂µ2

∂ρ2

∂µ1

∂T
− ∂µ2

∂T



∂ρ1

∂r
∂T

∂r

=


α1ρ1vθ

2
1 +α2ρ2vθ

2
2

r
−p1

∂α1

∂r
+p2

∂α1

∂r

− ∂

∂r

(
vθ

2
1 − vθ

2
2

2

)
+ vθ

(
1

r

∂

∂r
(r wθ)

)
 . (86)

Applying the ideal gas law yields

∂p1

∂ρ1
= (γ1 −1)cv,1T,

∂p2

∂ρ2
= (γ2 −1)cv,2T (87a)

∂p1

∂T
= (γ1 −1)cv,1ρ1,

∂p2

∂T
= (γ2 −1)cv,2ρ2 (87b)

∂µ1

∂ρ1
= (γ1 −1)cv,1T

ρ1
,

∂µ2

∂ρ1
= (γ2 −1)cv,2T

ρ2
(87c)

∂µ1

∂T
= (γ1 −1)cv,1 − s1,

∂µ1

∂T
= (γ2 −1).cv,2 − s2 (87d)

To obtain the initial condition on the computational domain [−1,1]2, we integrate (86) numerically with RK4,
starting with the initial data ρ1 = 1,ρ2 = 1, T = 2. The parameters in order to obtain the velocities vl ,θ and the
volume fraction α1 are set as

cα = 0.4, αc = 10−4, να = 10, vc,1 = 2 ·10−5, vc,2 = 2.5 ·10−5, νv,1 = 15, νv,2 = 14. (88)

This setting yields two different phase velocities and consequently a non-zero relative velocity. To obtain a vortex
in the compressible flow regime, we assign the following material parameters

γ1 = 7

5
, γ2 = 5

3
, cv,1 = 1, cv,2 = 1. (89)

The maximal Mach number for phase 1 is 0.62, for phase 2 it is 0.21 and the maximal mixture Mach number is
0.54. Consequently, the flow is compressible.

Since the sound speeds depend on the magnitude of the pressures which itself depend on cv,l , we scale cv,l with
one over the Mach number M to achieve flows in a desired Mach number regime. In the next test case, we set
cv,l /M 2 which yields a maximum Mach number of 0.018 for the phase 1 and 0.014 for the phase 2 and the mixture
Mach number of 0.016. Setting

γ1 = 2, γ2 = 2.8, cv,1 = 20, cv,2 = 20, (90)

the vortex flow is now weakly compressible. Note that, according to Definition 2.2, the initial data are ill-prepared
since the phase densities are not constant. However, we see from Tables 2 and 3 that the numerical scheme RS-
IMEX2 FV converges with the expected EOC of two for both Mach number regimes. The results are obtained with
a material CFL condition (59) with ν= 0.25.
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16 32 64 128

α1 6.31E-03 — 1.15E-03 2.45 2.20E-04 2.38 4.69E-05 2.23

ρ1 2.98E-02 — 9.44E-03 1.65 2.24E-03 2.07 3.94E-04 2.50

ρ2 2.78E-02 — 8.21E-03 1.75 1.60E-03 2.35 2.56E-04 2.64

v1,1 5.51E-02 — 1.40E-02 1.98 2.44E-03 2.51 3.33E-04 2.87

v2,1 5.51E-02 — 1.40E-02 1.97 2.45E-03 2.51 3.41E-04 2.84

v1,2 6.85E-02 — 1.58E-02 2.11 2.50E-03 2.65 3.41E-04 2.87

v2,2 6.85E-02 — 1.58E-02 2.11 2.49E-03 2.66 3.51E-04 2.82

T 4.45E-02 — 1.84E-02 1.27 3.92E-03 2.23 6.54E-04 2.58

Table 2: Two-fluid stationary vortex: L1 error and EOC for the second order RS-IMEX FV scheme in the compressible regime
with parameters given in (89).

16 32 64 128

α1 6.53E-03 — 1.29E-03 2.34 2.57E-04 2.32 5.42E-05 2.24

ρ1 6.95E-03 — 1.70E-03 2.02 4.68E-04 1.86 1.19E-04 1.97

ρ2 2.73E-02 — 1.20E-03 4.50 3.23E-04 1.89 8.17E-05 1.98

v1,1 4.11E-01 — 1.32E-02 4.95 2.09E-03 2.66 3.08E-04 2.76

v2,1 4.11E-01 — 1.33E-02 4.95 2.09E-03 2.66 3.08E-04 2.76

v1,2 4.17E-01 — 2.64E-02 3.98 6.14E-03 2.10 1.41E-03 2.12

v2,2 4.17E-01 — 2.64E-02 3.98 6.14E-03 2.10 1.41E-03 2.12

T 2.50E-02 — 3.20E-03 2.96 8.24E-04 1.95 2.01E-04 2.03

Table 3: Two-fluid stationary vortex: L1 error and EOC for the second order RS-IMEX FV scheme in the weakly-compressible
regime with parameters given in (90).
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Test T f state α ρ1 ρ2 v1,1 v2,1 T

RP1 0.2
left 0.3 2 1.2 0 0 1.2

right 0.3 2 2 0 0 1

RP2 0.2
left 0.7 1 2 -1 -1 1

right 0.3 1 2 1 1 1

Table 4: Initial condition for the 1D Riemann problems presented in Section 5.2 with γ1 = 1.4 and γ2 = 2 and cv,1 = cv,2 = 1 on
the domain [0,1] with initial jump at x = 0.5.

5.2. 1D Riemann Problems

To test the first and second order versions of the RS-IMEX FV scheme in a high Mach number regime, we consider
two Riemann Problems (RPs) for the homogeneous system (10) omitting the pressure relaxation source term act-
ing on the volume fraction (10a) and the friction source term in the relative velocity equation (10e). The initial
configuration on the domain [0,1] is given in Table 4 and the initial jump position is located at x = 0.5. The first
RP (RP1) consists of an initial jump in density of phase two and the temperature where the volume fraction is kept
constant. The second RP (RP2) is a double rarefaction test with an initial jump in the volume fraction resulting in
a discontinuous mixture density and internal energy. In Figure 1, we compare the results for the first and second
order RS-IMEX FV schemes using 2000 cells and the material CFL condition (59). For the RS-IMEX1 FV scheme
we set ν = 0.8 and for the RS-IMEX2 FV scheme ν = 0.4. This results in ∆t = 4 · 10−4 and 2 · 10−4, respectively.
The reference solution was computed by a second order explicit SSP-RK2 FV scheme using 10000 cells resulting in
∆t = 7.65 ·10−6. Note that the CFL condition for the explicit scheme is dictated by the fastest wave speed arising in
the model which depends on the sound speeds of the respective phases, [31]. Moreover a comparable time step
of the explicit scheme for 2000 cells is 3.3 ·10−5 which is 10 times smaller than the one used for the IMEX schemes.
Since there are no shear processes present, RP1 consists of 5 waves. The wave speeds and positions produced
by both RS-IMEX FV schemes are in good agreement with the reference solution, where the first order scheme is
more diffusive on the fast waves than the second order scheme, for which we can observe small oscillations on
the outermost fast travelling waves, see right panel of Figure 1. Their appearance is local and does not impair the
results on the material wave which is the focus of the simulation and is captured accurately by both RS-IMEX FV
schemes since the chosen time step is oriented towards its accurate capturing only. Moreover, the phenomenon
of spurious oscillations around discontinuities is a known problem for higher order numerical schemes. To fully
resolve all waves, an acoustic time step can be chosen or additional artificial viscosity can be added in the explicit
upwind part at the cost of more diffusive material waves.

The wave structure of RP2 is more intricate, as can be seen in Figure 2. This is due to the initial jump in the
volume fraction. It consists of the contact wave associated with α1 and three waves traveling to the left of the
boundaries of the domain and two waves to the right. Note that due to the single temperature assumption, the
wave propagation is not symmetric. We can observe, that the first order RS-IMEX1 FV scheme is too diffusive in
order to capture the complicated sequence of slower waves. On the other hand, the second order RS-IMEX2 FV
scheme shows a great improvement in the capturing of the slower waves near the initial jump position.

5.3. Advection of a Bubble

We consider a diagonally advected bubble initially centered at (x0, y0) = (0.5,0.5) with the radius r0 = 0.2. The
computational domain is set to [0,1]× [0,1] and is discretized by 256× 256 rectangular mesh cells. Further we

19



0.0 0.2 0.4 0.6 0.8 1.0
x

1.6

1.8

2.0

2.2

2.4

1

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245
x

1.98

2.00

2.02

2.04

2.06

2.08

2.10

2.12

2.14

1

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.0 0.2 0.4 0.6 0.8 1.0
x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245
x

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

2

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.00

0.05

0.10

0.15

0.20

u 1
,x

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245
x

0.08

0.06

0.04

0.02

0.00

u 1
,x

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

u 2
,x

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245
x

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

u 2
,x

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.95

1.00

1.05

1.10

1.15

1.20

1.25

T

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245
x

1.20

1.22

1.24

1.26

1.28

T

SSP-RK2 ref
RS-IMEX1
RS-IMEX2

Figure 1: Numerical solutions of the homogeneous Riemann problem RP1 obtained at time T f = 0.2 with constant volume
fraction without relaxation source terms using the new first and second order RS-IMEX FV schemes. The reference
solution is computed by the explicit second order SSP-RK2 FV scheme. From top left to bottom right: Phase den-
sities ρ1, ρ2, phase velocities v1,1, v2,1 and temperature T . Left: Computational domain x ∈ [0,1]. Right: Zoom on
x ∈ [0.21,0.245].
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Figure 2: Numerical solutions of the homogeneous Riemann problem RP2 obtained at time T f = 0.2 with an initial jump in
the volume fraction without relaxation source terms using the new first and second order RS-IMEX FV schemes.
The reference solution is computed by the explicit second order SSP-RK2 FV scheme. From top to bottom: Phase
densities ρ1, ρ2, phase velocities v1,1, v2,1 and temperature T . Left: Computational domain [0,1]. Right: Zoom on
material waves.
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apply periodic boundary conditions. The velocity fields are given by

v1 = (1,1)T ,v2 = (1,1)T . (91)

The bubble of phase 1 is moved through a second phase 2 which is modeled by a change in the volume fraction
given in dependence of the radius r =

√
(x −x0)2 + (y − y0)2. The initial volume fraction is given by

α1(r,0) = (αL −αR )
arctan(−θ (r − r0))

π
+ (αL +αR )

2
, (92)

where αL = 0.9, αR = 0.1 and θ = 2000. The parameter θ indicates the diffusivity of the interface in the initial data.
To have a bubble, that is initially in pressure equilibrium, we set ρ2 such that p1 = p2, i.e.

ρ2 =
(γ1 −1)cv,1

(γ2 −1)cv,2
ρ1, (93)

where ρ1 = 2. To ensure that the phase-pressure equilibrium holds during the simulation, we set the relaxation
parameter τ(α) = 10−16, i.e. “instantaneous” pressure relaxation. Further, we set the initial temperature to T = 2.
Finally, we set γ1 = 1.4, γ2 = 2, cv,1 = 1 and cv,2 in accordance with (20) by

cv,2 =
γ1(γ1 −1)cv,1

γ2(γ2 −1)
C 2. (94)

As before, C denotes the ratio between the Mach numbers and will be used to adjust the flow regimes. Note,
that the relative velocity equation for initially constant chemical potentials does not reduce to pure advection, but
creates perturbations in w. Therefore, to decrease these perturbations which can interfere with the advection of
the bubble, we assume a high friction by setting τ(w) = 10−8 and τ(w) = 10−12 depending on the Mach number
regimes associated with C = 10 and C = 50, respectively. This leads to the Mach numbers M1,max = 1.336 and
M2,max = 1.336 ·10−1 for the first case and M1,max = 1.336 and M2,max = 2.67 ·10−2 for the second case. The bubble
is evolved up to the final time T f = 1 when the bubble is back in its initial position. In Figure 3 the volume fraction
α together with the mixture Mach number (16) is plotted along the diagonal for the first and second order schemes.
Both schemes use a material CFL condition (59) with ν= 0.5 for the first order scheme and ν= 0.25 for the second
order scheme. The numerical solutions are in good agreement with the initial data. The RS-IMEX1 FV scheme
is quite diffusive whereas the RS-IMEX2 FV scheme captures well the initial configuration. Note further, that the
mixture Mach number changes rapidly from ≈ 1.23 inside the bubble to ≈ 0.38 outside of the bubble and from
≈ 1.24 to ≈ 0.36 for C = 10 and C = 50, respectively. Even though the phase Mach number M2 is significantly
smaller in the second case, the mixture Mach number does not change due to the averaging with respect to the
mass fraction. It is therefore not a good indicator to the individual Mach number regimes that determine the
scales in the model.

5.4. Kelvin Helmholtz instability

We modify a set-up from [23, 22] for the single phase Euler equations to the single temperature two-phase model
(10). It describes two phases flowing in opposite directions which creates the Kelvin Helmholtz instability. We
apply periodic boundary conditions and set the computational domain to [0,1]× [0,1]. The two fluids are charac-
terized by γ1 = 2 and γ2 = 1.4, respectively. Further ρ1 = 1 and ρ2 is set according to (93) in such a way that the
initial condition is in pressure equilibrium. Furthermore, we require both fluids to have the same Mach number.
We set cv,1 = 1/ε2 and cv,2 with C = 1 according to (94). Setting T = 12.5 with ε= 1 yields the maximal initial Mach
number M = 10−1, and choosing ε= 0.1 yields the maximal initial Mach number M = 3 ·10−2. To ensure that the
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Figure 3: Numerical solutions of the diagonally advected bubble obtained at time T f = 1 by the first and second order RS-
IMEX FV schemes displayed along the diagonal from [0,0] to [1,1]. Top: Case C = 10. Bottom: Case C = 50. Left:
Volume fraction α1. Right: Mixture Mach number Mmix.

flow stays in pressure equilibrium, we set τ(α) = 10−16 and in accordance with the well-prepared initial data, we
set τ(w) = M 2. Initially, we choose the same phase velocities, defined as

v1,1 = v2,1 =


vL − vm exp((y −0.25)/L), if 0 ≤ y < 0.25

vR + vm exp(−(y −0.25)/L), if 0.25 ≤ y < 0.5

vR + vm exp((y −0.75)/L), if 0.5 ≤ y < 0.75

vL − vm exp(−(y −0.75)/L), if 0.75 ≤ y ≤ 1

, (95)

where vL = 0.5, vR = −0.5, vm = (vL − vR )/2 and L = 0.025. In y-direction we apply an initial perturbation v1,2 =
v2,2 = 10−2 sin(4πx) which yields an initial relative velocity w = 0 and divergence free velocity field ∇·v = 0.

The volume fraction is set as

α1 =


αL −αm exp((y −0.25)/L), if 0 ≤ y < 0.25

αR +αm exp(−(y −0.25)/L), if 0.25 ≤ y < 0.5

αR +αm exp((y −0.75)/L), if 0.5 ≤ y < 0.75

αL −αm exp(−(y −0.75)/L), if 0.75 ≤ y ≤ 1

(96)

where αL = 0.9, αR = 0.2 and αm = (αR −αL)/8. In Figure 4 numerical solutions computed by the second order
RS-IMEX FV scheme for the passively transported volume fraction for the Mach numbers 10−1 and 3 · 10−2 are
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Figure 4: Kelvin-Helmholtz instability: numerical solutions for the passively transported volume fractionα1 obtained at time
T f = 3 for the two-fluid single temperature model. The numerical solution is obtained by the new second order RS-
IMEX FV scheme. Top panel: Mmax = 10−1. Bottom panel: Mmax = 3 · 10−2. Left column: 256× 256 grid. Right
column: 512×512 grid.

depicted. Two different grids consisting of 256× 256 and 512× 512 mesh cells and the material CFL condition
(59) ν= 0.25 were used. The final time is T f = 3. One can observe that despite we deal with a mixture of inviscid
fluids, the mesh refinement does not yield new small scale vortices. The latter is typical for the Kelvin-Helmholtz
instabilities in an ideal fluid. This is due to the fact that we solve numerically the non-homogeneous system (17),
i.e. physical dissipation is included due to the relative velocity equation. Therefore, only large vortices are present
which corresponds to the frequency modes of the initial data. Moreover, since the initial data are well-prepared
in the sense of (2.2), the L1 errors in the phase densities decreases with the Mach number. We refer to Table 5 that
validates the AP property of the RS-IMEX FV scheme.

M ρ1 ρ2

10−1 1.896 ·10−3 1.327 ·10−3

3 ·10−2 5.037 ·10−4 3.525 ·10−4

Table 5: Kelvin-Helmholtz instability: L1 error of the phase densities for different Mach numbers computed on a mesh with
512×512 grid cells at final time T f = 3.
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6. Conclusions

We have derived an analyzed a new implicit-explicit finite volume (RS-IMEX FV) scheme for single-temperature
SHTC model. We note that the two-fluid model allows two velocities and pressures. Further, it includes two dissi-
pative mechanisms: phase pressure and velocity relaxations. In the proposed scheme these are treated differently.
The relative velocity relaxation term is linear and is resolved as a part of the implicit sub-system, whereas the
pressure relaxation is strongly nonlinear and therefore is treated separately by the Newton method.

Our RS-IMEX FV method is constructed in such a way that acoustic-type waves are linearized around a suitably
chosen reference state (RS) and approximated implicitly in time and by means of central finite differences in space.
The remaining advective-type waves are approximated explicitly in time and by means of the Rusanov FV method.
The RS-IMEX FV scheme is suitable for all Mach number flows, but in particular it is asymptotic preserving in the
low Mach number flow regimes.

Many multi-phase flows, such as granular or sediment transport flows, can be modeled within the single-
temperature approximation. In turn, many of these flows are weakly compressible and therefore impose se-
vere time step restrictions if solved with a time-explicit numerical scheme. Therefore, the proposed RS-IMEX
FV scheme is suitable to model various environmental flows.

The proposed method was tested on a number of test cases for low and moderately high Mach number flows
demonstrating the capability of the scheme to properly capture both regimes. The theoretical second order accu-
racy of the scheme was confirmed on a stationary vortex test case. We compared the second order scheme against
its first order variant and shown that the second order scheme has remarkably more accurate approximation of
discontinuities. Finally, the asymptotic preserving property was verified by approximating the Kelvin-Helmholtz
instability with well-prepared initial data.
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A. Proof of Theorem 4.1

We will show the AP property for the first order time semi-discrete scheme (60) - (61). Indeed, to obtain a con-
sistent approximation of the limit equations, an appropriate time discretization is essential. Thereby we will use
techniques that were developed in the context of the AP proof for the Euler equations, see for instance [3], and for
the isentropic two-phase subsystem, see [21]. For simplicity we consider without loss of generality ρ1,ref

ρref
= 1 and

ρ2,ref

ρref
= 1.

Let the initial data be well-prepared, i.e. q0 ∈Ωw p as given in Definition 2.2. We assume that at time level t n we
have the Mach number expansion for each phase l = 1,2

ρn
l = ρl ,RS +O (M 2), T n = TRS +O (M 2) ρl ,RS,TRS = const., (97)

in pressure equilibrium up to order O (M 3), see Assumption 2.1,

pn
1,(k) = pn

1,(k), k = 0,2, pn
1,(0) = p1(ρ1,RS,TRS), pn

2,(0) = p2(ρ2,RS,TRS) = const. (98)
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Further, for the velocities we assume in concordance with Definition 2.2 that

vn = vn
(0) +O (M 2), ∇·un

(0) = 0, wn =O (M 2), τ(w) = M 2. (99)

Moreover, we assume that the data at the next time level has the Mach number expansion (21) for the phase
densities, temperature and mixture velocity leading to the Mach number expansions (24) for pressures, chemical
potentials and internal phase energies. Our aim is to show that the first order IMEX FV method yields a consistent
approximation of the incompressible Euler system with variable volume fraction (40). To obtain this goal, we show
that qn+1 ∈ΩM

w p , where the divergence free property of the velocity field is fulfilled up to a O (∆t ) term.
Plugging the expansion (97) at level t n into the explicit update (60) we directly have for the volume fraction

α(1)
1 =αn

1 −∆tvn
(0) ·∇αn

1 . (100)

Rewriting equations for (α1ρ1)(1), (α2ρ2)(1) in terms of ρv and w and using (100), ∇·vn
(0) = 0 and wn

(0) = 0, we have
at leading order

α(1)
1 ρ(1)

1,(0) =αn
1ρ1,RS −∆tρ1,RSv

n
(0) ·∇αn

1 −∆t∇·(ρn
(0)c

1c2wn
(0)) =α(1)

1 ρ1,RS, (101)

thus ρ(1)
1,(0) = ρ1,RS. With the same strategy we obtain ρn+1

1,(1) = 0. Analogously, we obtain ρ(1)
2,(0) = ρ2,RS and ρ(1)

2,(1) = 0.

Summarizing, the phase densities satisfy the expansion (97) at the intermediate time level t (1). Using wn
(0) = 0 and

the evolution of the volume fraction (100), we obtain for the momentum and relative velocity equations

(ρv)(1)
(0) = (ρv)n

(0) −∆tvn
(0) ·∇(ρv)n

(0), (102a)

w(1)
(0) = 0, w(1)

(1) = 0. (102b)

Multiplying the energy equation in the explicit update (60) by M 2 and using the notation (51), yields

(α1ρ1e1)(1) + (α2ρ2e2)(1) +M 2(ρEkin)(1) = (α1ρ1e1)n + (α2ρ2e2)n +M 2(ρEkin)n +O (M 2). (103)

For the leading order terms of the internal energy, we obtain directly(
α1(ρ1e1)(0) +α2(ρ2e2)(0)

)(1) = (
α1(ρ1e1)(0) + (α2(ρ2e2)(0)

)n

which completes the analysis of the explicit part (60).
For the implicit part, we will follow the reasoning of [3], where the AP property is shown for the Euler equations

analyzing the structure of the implicit elliptic operator. Since α1ρ1 does not change during the implicit part, the
expansion of the phase densities at t n+1 fulfills (97). Therefore, we obtain ρn+1

1,(0) = ρ1,RS and analogously ρn+1
2,(0) =

ρ2,RS for the second phase density.
Next, we analyze the elliptic update of the total energy (63). Analogously to the fully discrete operators LI and

K I in (73), we define semi-discrete operators

Lh =∇·
((

(α1ρ1e1)n + (α2ρ2e2)n +M 2(ρEkin)n +αn
1 pn

1 +αn
2 pn

2

ρn+1

)
∇(φn

p −1)

)
, (104)

Kh =∇·
(
τ(w) (µn

1 −µ2
2)(ρc1c2)n+1

τ(w) +∆t (c1c2)n+1
∇(
∂µn

RS

))
. (105)

Note that with (42) we have Lh =O (1). From (46) and τ(w) =O (M 2) it follows Kh =O (M 2). Using the notation as in
(51), we define

ρĚ = (
α1ρ1e1 +α2ρ2e2 +M 2ρEkin

)
, p̌ = (α1p1 +α2p2) µ̌=µ1 −µ2. (106)
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Now taking into account the scaling of wn given in (99), we write the implicit update for the total energy (73) as(
I − ∆t 2

M 2 (Lh +Kh)

)
(ρĚ)n+1 = (ρĚ)n −∆t∇h · ((ρĚ + p̌)nv(1))− ∆t 2

M 2 Lh(M 2ρE n
kin)− ∆t 2

M 2 Kh(ρĚ)n
RS +O (M 2). (107)

The operators Lh and Kh are symmetric, positive definite and the inverse of A = I − ∆t 2

M 2 (Lh +Kh) exists. Conse-
quently, system (107) has a unique solution for any M > 0. Similar as in [3], we obtain that the eigenvalues of A−1

are 1 and O (M 2). Applying analogous arguments as in [3, Lem. 4.6], we derive

(ρe)n+1 = (ρe)n −∆t∇h · ((ρe +α1p1 +α2p2
)n
vn)+O (M 2). (108)

Focusing on the leading order terms and using the evolution of the volume fraction (100), ∇·vn
(0) = 0, see (99),

pn
1,(0) = pn

2,(0), see (98), and EOS (7), yields for the temperature the following expansion(
α(1)

1 ρ1,RScv,1 +α(1)
2 ρ2,RScv,2

)
T n+1

(0) =(
αn

1ρ1,RScv,1 +αn
2ρ2,RScv,2

)
TRS −∆tvn

(0)

(
ρ1,RScv,1 −ρ2,RScv,2

)
TRS∇αn

1 +O (M 2)

=
(
α(1)

1 ρ1,RScv,1 +α(1)
2 ρ2,RScv,2

)
TRS +O (M 2).

Since the factor α(1)
1 ρ1,RScv,1 +α(1)

2 ρ2,RScv,2 is positive and independent of M , we derive T n+1
(0) = TRS +O (M 2), thus

the temperature has a correct asymptotic expansion. Moreover, in the limit as M → 0, we obtain T = TRS. Further,
the update of the relative velocity (64) and momentum (65) yield

wn+1
(0) = 0, ∇µn+1

(0) = 0, ∇µn+1
(1) = 0, (109)

(ρv)n+1
(0) = (ρv)(1)

(0) −∆t∇pn+1
(2) , ∇pn+1

(0) = 0, ∇pn+1
(1) = 0. (110)

Since the mass densities of the phases are not evolved at the implicit step, it holds ρn+1 = (α1ρ1)(1) + (α2ρ2)(1).
Using the volume fraction, we can rewrite the momentum equation as

vn+1
(0) = v(1)

(0) −∆t
ρn

ρn+1v
n
(0) ·∇vn

(0) −∆t
∇pn+1

(2)

ρn+1 (111)

which is consistent with the low Mach number limit (40) up to a O (∆t ) term. From the energy equation (61e) we
obtain

(ρe)n+1
(0) = (ρe)n

(0) −∆t∇·(((αn
1 (ρe)1,RS +αn

2 (ρe)2,RS)+pn
(0)

)
vn+1

(0)

)+O (M 2). (112)

Using the definition of the internal mixture energy, we obtain

α(1)
1 (ρe)1,RS +α(1)

2 (ρe)2,RS = αn
1 (ρe)1,RS +αn

2 (ρe)2,RS

−∆t∇·(((αn
1 (ρe)1,RS +αn

2 (ρe)2,RS)+pn
(0)

)
vn+1

(0)

)+O (M 2).

Applying the evolution of the volume fraction (100) and ∇pn
(0) = 0, we obtain

(αn
1 −∆tvn

(0) ·∇αn
1 )(ρe)1,RS + (αn

2 +∆tvn
(0) ·∇αn

1 )(ρe)2,RS = αn
1 (ρe)1,RS +αn

2 (ρe)2,RS

−∆tvn+1
(0) ·∇(

(αn
1 (ρe)1,RS +αn

2 (ρe)2,RS)
)

−∆t
(
(αn

1 (ρe)1,RS +αn
2 (ρe)2,RS)+pn

(0)

)∇·vn+1
(0) +O (M 2),

which reduces to

(vn
(0) −vn+1

(0) ) ·∇(
αn

1 (ρe)1,RS +αn
2 (ρe)2,RS

)= (
(αn

1 (ρe)1,RS +αn
2 (ρe)2,RS)+pn

(0)

)∇·vn+1
(0) +O (M 2).

27



The left hand side is of order O (∆t ) and the factor (αn
1 (ρe)1,RS +αn

2 (ρe)2,RS)+ pn
(0) is positive. Consequently, we

obtain the result ∇·vn+1
(0) =O (∆t )+O (M 2).

Finally, we apply the pressure relaxation on the volume fraction, and we obtain

pn+1
1 = pn+1

2 −τ(α)ρn+1M 2
(
αn+1 −αn

∆t

)
. (113)

Thus pn+1
1,(0) = pn+1

2,(0) and pn+1
1,(2) = pn+1

2,(2) since pn+1
1,(1) = pn+1

2,(1) = 0. Note that this is due to phase densities and the tem-

perature fulfill expansion (97) at the new time level t n+1. Moreover, ρn+1(α
n+1−αn

∆t ) =O (1) with respect to the Mach
number, since the time step is independent of the Mach number as well.
This concludes the proof.

B. Polar coordinates

We consider a continuous solution of the homogeneous part of system (10) without relaxation source terms. Let
the Cartesian coordinates in 2D be denoted by x = (x1, x2). We define the polar coordinates in terms of radius r
and angle θ as

x1 = r cos(θ), x2 = r sin(θ). (114)

The velocity based quantities are defined by

v1 = vr cos(θ)− vθ sin(θ), w1 = wr cos(θ)−wθ sin(θ), (115a)

v2 = vr cos(θ)+ vθ sin(θ), w2 = wr cos(θ)+wθ sin(θ). (115b)

Using
∂x1

∂r
= cos(θ),

∂x1

∂θ
=−sin(θ)

r
,

∂x2

∂r
= sin(θ),

∂x1

∂θ
= cos(θ)

r
, (116)

we obtain for
q = (α1,α1ρ1,α2ρ2, vr , vθ, wr , wθ,ρE)T (117)
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the following system in polar coordinates

∂α1

∂t
+ vr

r

∂

∂r

(
rα1)+ vθ

r

∂

∂θ
α1 = 0, (118a)

∂(α1ρ1)

∂t
+ 1

r

∂

∂r

(
rα1ρ1vr

1)+ 1

r

∂

∂θ

(
αρ1vθ

1)= 0, (118b)

∂(α2ρ2)

∂t
+ 1

r

∂

∂r

(
rα2ρ2vr

2)+ 1

r

∂

∂θ

(
α2ρ2vθ

2)= 0, (118c)

∂(ρvr )

∂t
+ 1

r

∂

∂r

(
r
(
ρvr

2 +ρc(1− c)wr wr +p
))

+ 1

r

∂

∂θ

(
ρvr vθ+ρcc2wr wθ

)= ρvθ
2 +ρc(1− c)wθ

2 +p

r
,

(118d)

∂(ρvθ)

∂t
+ 1

r

∂

∂r

(
r
(
ρvr vθ+ρc(1− c)wr wθ

))
+ 1

r

∂

∂θ

(
ρvθ

2 +p +ρc(1− c)wθ
2)=−ρvr vθ+ρcc2wr wθ

r
,

(118e)

∂wr

∂t
+ ∂

∂r

(
vr wr + vθwθ+ (1−2c)

wr wr +wθwθ

2
+µ1 −µ2

)
+ vθ

(
1

r

∂

∂θ
wr − 1

r

∂

∂r
(r wθ)

)
= 0,

(118f)

∂wθ

∂t
+ 1

r

∂

∂θ

(
vr wr + vθwθ+ (1−2c)

wr wr +wθwθ

2
+µ1 −µ2

)
+ vr

(
1

r

∂

∂r
(r wθ)− 1

r

∂

∂θ
wr

)
= 0,

(118g)

∂(ρE)

∂t
+ 1

r

∂

∂r

(
r

(
vr (ρE +p)+ρ

[
vr wr + vθwθ+ (1−2c1)

wr
2 +wθ

2

2

]
c1c2wr

))
+ 1

r

∂

∂θ

(
vθ(ρE +p)+ρ

[
vr wr + vθwθ+ (1−2c1)

wr
2 +wθ

2

2

]
c1c2wθ

)
= 0.

(118h)
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