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Chapter 1

ntroduction

Domain decomposition methods for the numerical solution of partial differential equations is
a relatively recent field of research. Though the earliest domain decomposition algorithm for
elliptic problems is believed to be the alternating method discovered by Hermann A. Schwarz
in 1869, who used it to establish the existence of harmonic functions on regions with complex
geometries and non-smooth boundaries, the first key ideas emerged in the early eighties through
the works of several scientists among which James Bramble, Toni Y. Chan, Roland Glowinski,
Yuri Kuznetsov, Patrick Le Tallec, Pierre-Louis Lions, Alfio Quarteroni and Olof B. Widlund.
The numerical solution of differential problems of practical interest can be a difficult task to
face: problems issued from Computational Mechanics are usually set on complex geometries
and discretized on very fine grids, leading to large-scale algebraic systems. The widespread
availability of parallel computers increased the need to design algorithms especially suited to
better fit such architectures. The most promising answer to such need appeared to be the use
of domain decomposition algorithms, which can be seen as a divide-and-conquer method, whose
basic idea is the following: the given computational domain, denoted with €2, is partitioned into
subdomains €;, ¢ = 1,..., M, which may or may not overlap. The original problem is then
reformulated upon each subdomain €2;, yielding a family of subproblems of reduced size that
are coupled one to another through the values of the unknown solution at subdomain interfaces.
Very often the interface coupling is removed at the expense of introducing an iterative process
among subdomains, yielding at each step independent subproblems (of lower complexity) upon
subdomains, which can be efficiently faced by multiprocessor systems.

The earliest works on domain decomposition proposed, and analyzed, algorithms for linear, sec-
ond order, self-adjoint, positive definite elliptic model problems in two (or very few) subregions.
As the field matured, scientists were led to face more complex problems set on many subregions:
many such problems issued from Computational Fluid Mechanics, where the need of improving
the capability of calculation in regions with complex boundaries was accompanied by the willing
to merge FEuler’s equation, Navier-Stokes equations, potential flows, and other models, each used
in a suitable subregion of the computational domain, into a single computational model. The
extension of domain decomposition methods to linear parabolic or hyperbolic problem was quite
straightforward, whereas the task of dealing with problems that were both nonlinear and time
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2 CHAPTER 1. INTRODUCTION

dependent, appeared far more difficult.

If, on one hand, domain decomposition methods are nowadays well-understood, as the annual
international symposium on the research on this area held in Cocoyoc (Mexico) in January this
year was the fourteenth of the series, and some survey works have already been published (among
them, we recall the book by P. Bjgrstad, W. Gropp and B. Smith ([95] - 1996), the book by A.
Quarteroni and A. Valli ([89] - 1999), and the recent book by A. Toselli and L. Pavarino, ([85]
- 2002)), on the other hand the research on the subject is still very active.

In the recent years, many people worked on the Euler system of compressible gas dynamics,
proposing algorithms for both sonic and transonic flows on three dimensional domains with un-
structured meshes (among them, we can recall the works by X.-C. Cai and his colleagues). To
our knowledge, only the work by V. Dolean, S. Lanteri and F. Nataf provides a theoretical con-
vergence analysis (in both two and three dimensions) for a non-overlapping Schwarz algorithm
applied to the Euler system (see [40]): the result is accomplished through a linearization of the
flux via a frozen coefficients technique, which consists in linearizing in the neighborhood of a
constant state. In this thesis, an attempt to provide a convergence result for an iteration-by-
subdomain procedure is given. The result is obtained for one dimensional isentropic flows: the
problem is advanced in time by means of a semi-implicit method, leading to a linearization with-
out freezing the coefficients, and emphasis is put on the spatial decomposition. The algorithm
is proved to converge at both time- and fully-discrete level.

Besides, stemming from the remark that they are intrinsically slow, domain decomposition
algorithms are often used, in the case of linear problems, as preconditioners for Krylov subspace
accelerator techniques such as the conjugate gradient (CG) or the generalized minimal residual
(GMRES) method, or, in the case of nonlinear problems, as preconditioners for the solution of
the linear system arising from the use of Newton’s method (these methods are usually referred
to as NKS - Newton/Krylov/Schwarz - methods) or as preconditioners for solvers such as the
nonlinear conjugate gradient method. A wide part of the research in the field is thus now devoted
to the optimization of the interface conditions: this amounts to replace at the numerical level
the original interface conditions with new ones which either are equivalent or at least imply the
original ones. The construction of a preconditioner of Robin/Robin type for the primal Schur
solution of an heterogeneous advection-diffusion problem, presented in this thesis, can be seen
as belonging to this direction of research.

A growing interest in the field, finally, led in the last years many scientists to study the equa-
tions describing the propagation of waves. B Després proposed, for both Maxwell’s system and
Helmholtz equation, a non-overlapping additive Schwarz algorithm. For Maxwell’s system, A.
Alonso and A. Valli proposed a substructuring method for the time-harmonic eddy-current prob-
lem, while F. Ben-Belgacem, A. Buffa, Y. Maday and F. Rapetti proposed a three-field mortar
method. In this thesis, a convergence analysis of a Schwarz algorithm of Després’ type for the
time-harmonic Maxwell system is presented via a Fourier analysis of the interface operator.
The present thesis is thus twofold, as it does not focus neither on a single problem (or a single
kind of problems) nor on a single algorithm. In the framework of non-overlapping partitions,
different types of algorithms are used: in Chapter 2 the hyperbolic system of Euler equations is
solved by means of an iteration-by-subdomains method; in Chapter 3 an heterogeneous model of
advection-diffusion is solved by means of a primal Schur method, with the domain decomposition
algorithm as a preconditioner; in Chapter 4, the Helmholtz equation of acoustics and the Maxwell



system of electromagnetism are solved by an additive Schwarz method. In the following a brief
survey of each chapter is given.

In Chapter 2 the inviscid Euler system of equations is considered. In the first part of the chapter,
following the book by A. Chorin and J.E. Mardsen, the equations governing the dynamics of an
inviscid compressible gas are derived. Then, an iteration-by-subdomains procedure of Dirich-
let/Dirichlet type is proposed in the case of a two-domains decomposition. The underlying ideas
stem from the analysis made by A. Quarteroni in [86] and L. Gastaldi in [56] for linear hyperbolic
systems with constant coefficients: the natural requirement on the interface is the continuity of
the normal inviscid flux, which splits into three conditions of Dirichlet type. The iteration-by-
subdomains algorithm is studied, in the region of smooth flow, for one dimensional isentropic
flows. When the flow is smooth, the Euler system can be put in quasi-linear form, emphasizing
the hyperbolic character of the equations, and, if isentropic, it can be put in diagonal form,
as the characteristic variables can actually be determined. The interface continuity required
is thus the one of the characteristic variables of the system, since it entails the continuity of
the normal inviscid flux. The original contribution of the thesis is the convergence analysis
of the iteration-by-subdomains algorithm in characteristic variables. The flow is assumed to
be subsonic in order to actually have an iteration-by subdomains procedure: in this case, in
fact, one eigenvalue is positive on the interface while the other one is negative, thus there can
be exchange of information from each subdomain to the other one. If the flow is supersonic,
both eigenvalues have the same sign and the whole information travels form one subdomain to
the other one: this trivially reduces the iterative procedure to a sequential solution firstly in a
subdomain, then in the other one. The main interest is set on the spatial decomposition, and
to this aim the original problem is integrated in time by a semi-implicit Euler scheme, which
linearizes the system by evaluating at the n-th time step the space derivative and evaluating
at the (n — 1)-th step the matrix of the coefficients. On one hand, this kind of time marching
scheme keeps trace of the information due to the nonlinearity of the problem (differently from
what happens when a frozen coefficients type linearization is used), and, on the other hand,
allows to decouple the linearized system in two scalar equations which are coupled only through
the boundary conditions. For the continuous problem, it is not possible to have a system of
scalar equations coupled only through the boundary conditions, since the non-zero elements of
the diagonal matrix in the characteristic problem are linear combinations of the characteristic
variables themselves, thus providing a stronger coupling. With this position, the iteration-by-
subdomains procedure for the time-discretized problem is shown to converge for any choice of the
time step At: the interface mapping is proved to be a contraction with constant of order e~C/AL
with C > 0. A fully discrete version of the iteration-by-subdomains algorithm is successively
presented, where the problem is discretized in space with finite elements, and is stabilized via a
Streamline-Diffusion method. Some inflow-outflow type estimate are then given for this scheme
in the single domain case, and used to prove that the discrete mapping on the interface gener-
ated by the scheme is a contraction, provided the entries of the stabilizing matrix are sufficiently
small, but independently of the mesh parameter h. In this sense the result is optimal. Then,
some standard error estimates for the Streamline-Diffusion Method are presented, and used to
give an energy estimate in the single domain case for the error between the exact solution in
primitive variables at time ¢ = ", and the fully discrete solution at time step n: under some
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not so restrictive assumptions, it can be shown that the L? error can be controlled by the L?
error between the exact solution in characteristic variables and its time discretized one , plus
some terms which depend on the approximation error at the previous time step: assuming an
uniform convergence of the fully discrete solution to the time discrete one, as h — 0, at the pre-
vious time steps, these terms vanish uniformly in A, and the approximation error depends only
on the time marching scheme. The complete one dimensional Euler system is then considered:
in this case the characteristic variables cannot effectively be determined, thus their continuity
cannot be used as interface matching condition. An algorithm is then proposed which enforces
the continuity of the characteristic variables of the isentropic case and of the entropy (the only
known characteristic variable of the complete system). When the boundary conditions allow to
evaluate the entropy at the left endpoint of the interval (e.g. if the density and the pressure of
the gas are given), the time discretized system can be reduced, at time step n, to the isentropic
one with an additional forcing term depending on the entropy at the same time step. When the
boundary conditions do not allow to evaluate the entropy at the left endpoint of the interval
the system can be put into a diagonal form with a time marching scheme which keeps space
derivatives of the same order at both time step n and n — 1. This may generate instabilities,
and it implies that at the discrete level a CFL type condition must be taken into account in
order to be able to treat the problem. The chapter is then concluded by the presentation of
some domain decomposition algorithms proposed in literature for three dimensional flows.

In Chapter 3 advection-diffusion problems with strongly dominant convective part are consid-
ered. In the first part of the chapter a review of substructuring methods, previously proposed
in literature for such problems, is addressed. In the second part of the chapter is located the
original part of the thesis on this subject, where a preconditioner of Robin/Robin type for a
primal Schur method is proposed and analyzed for strongly heterogeneous problems. This work
has been done in collaboration with P. Le Tallec and F. Nataf at the CMAP of the Ecole Poly-
technique in Paris. An advection-diffusion equation with discontinuous viscosity coefficients has
been considered, whose theoretical justification comes from the modeling of transport and diffu-
sion of a species through heterogeneous media, where the jumps in the viscosity are due to the
different materials present in the computational domain. A generalized Robin/Robin precondi-
tioner is proposed for the solution of the Steklov-Poincaré equation on the interface. The idea
is to extend both the generalized Neumann/Neumann preconditioner, introduced in [75], which
deals with heterogeneity in the coefficients, and the Robin/Robin preconditioner, introduced in
[2], which is especially suited for non-symmetric problems, in order to obtain a preconditioner
whose performance is not affected by the amplitude of the jumps in the coefficients. The Fourier
analysis is the main tool used to study the effectiveness of the preconditioner in the special case
of the plane decomposed into the left {z < 0} and right {z > 0} half planes. The preconditioner
is firstly defined for a constant convective field perpendicular to the interface, then its robustness
with respect to the direction of the convective field is analyzed. Since the original problem is
non-symmetric, one can estimate the reduction factor of a GMRES algorithm (to be used at the
discrete level) for the preconditioned Schur complement system: the result obtained is optimal
since this reduction factor is bounded from above by a constant which is independent of both
the coefficient of the problem and the mesh parameter h. This is very important since it allows
to deal with very large discontinuities in the viscosity. Moreover, the formula obtained for the



upper bound implies that the reduction factor improves with the enlargement of the jump in
the viscosity. The generalization to a decomposition into an arbitrary number of subdomains
is then addressed, by means of the variational formulation of the problem. The chapter is then
concluded by the presentation of some numerical tests in 3D, which have been carried out in col-
laboration with M. Vidrascu at the INRIA in Rocquencourt (France). The numerical evidence
is in agreement with the theory, as the proposed preconditioner showed fair insensitivity to the
jumps in the coefficients and to the variations of the convective field: it remained sensitive to the
number of subdomains, but this seems unavoidable for advection-dominated problems without
the introduction of a coarse grid correction. The original results of this chapter can be found
also in [57] and, in shorter form, in [58].

Finally, Chapter 4 is devoted to additive Schwarz algorithms for the solution of time-harmonic
acoustic and electromagnetic equations. In the first part of the chapter, following the book by
J.-C. Nédélec [83], the Helmholtz equation of acoustics and the Maxwell’s system of electromag-
netism are introduced. Then, a survey of Schwarz algorithms previously proposed in literature
for Helmholtz equation is presented, stemming from the early works of B. Després ([35], [38]),
who proposed an interface condition of Robin type, linked to a radiation condition at finite
distance, up to the recent contribution of M. Gander, F. Magoulés and F. Nataf ([51]): the
convergence properties of these algorithms are studied, by means of a Fourier analysis, in order
to enlighten their possible drawbacks, and the way these drawbacks have been overtaken. The
Schwarz algorithm can be interpreted as an iteration operator acting on the interface, and its
reduction factor is defined as being the modulus of the symbol in the Fourier space of this itera-
tion operator: since the Helmholtz equation is scalar, the same holds for the symbol considered.
In particular, Després’ algorithm is shown to converge only for propagative modes (i.e. low
frequencies in the Fourier space), where the reduction factor is strictly less than 1, whereas for
evanescent modes (i.e. high frequencies in the Fourier space) the reduction factor is exactly 1,
implying no convergence at all. Such drawback can be overtaken either with a slight modification
of the Robin interface condition, as done by M. Gander et al. in [51], or with the addition of a
second order space derivative in the direction tangential to the interface, as done by P. Chevalier
in his thesis ([30]), and again by M. Gander et al. in [51]. The last part of the chapter is the
original contribution of the thesis on this subject. Moving from the additive Schwarz algorithm
with Robin type interface conditions proposed by B. Després for the Maxwell’s system, we intro-
duce a slightly more general interface condition, where the zero-th order term is multiplied by a
complex number Z, with non-zero real part, instead of a purely imaginary one. The convergence
properties of the algorithm are analyzed, in the case of R? partitioned in two half-spaces, by
means of a Fourier transform. Differently from Helmholtz equation, the interface problem is no
longer scalar, but, in the Fourier space, its symbol is a 2 x 2 matrix. The reduction factor is
thus introduced as being the spectral radius of the iteration matrix, as it equals the infimum of
all compatible matrix norms. We showed that there is no possible choice of the the parameter Z
ensuring convergence for both evanescent and propagative modes. If Z is is real, the reduction
factor is 1 for propagative modes and greater than 1 for evanescent ones. If Z is purely imagi-
nary (and this is the case of B. Després’ algorithm), the spectral radius of the iteration matrix
is strictly less than 1 for propagative modes, independently of the choice of the parameter Z,
and convergence is ensured, whereas in the case of evanescent modes the spectral radius of the
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matrix is exactly 1, and the iterative mapping does not converge. Finally, if Z = p + iq, the
algorithm shows again a reduction factor greater than 1 for evanescent modes. Thus, on one
hand, the algorithm with Z purely imaginary suffers of the same drawback as the algorithm for
Helmholtz equation: convergence is ensured only for propagative modes. Moreover, in the case
of Maxwell’s system, it is not enough to multiply the zero-th order term in the Robin interface
condition by a complex number with non-zero real part, in order to achieve convergence also
for evanescent modes, as done in the case of Helmholtz equation. An opportunity to overcome
this drawback is then proposed, by means of the addition, to B. Després’ interface condition,
of the vectorial tangential Laplacian, which is defined, for any vector field u tangential to the
interface, as Aru := Vpdivru — rot rrot pu. Since a similar approach, in the case of Helmholtz
equation, ensured convergence for all modes, and since the Maxwell’s system can be seen as a
vectorial Helmholtz problem, we could expect (or, at least, hope) that the same could occur also
in this case. However, a convergence analysis for this last algorithm has not yet been performed
in this thesis.

A brief summary of the results obtained is addressed at the end of each chapter.



Chapter 2

)~

L

c;,omain Decomposition Methods
for Compressible Flows

In this chapter we deal with the motion of ideal compressible fluids. In the first part of the
chapter we derive the equations governing the dynamics of an inviscid ideal compressible gas. In
Section 2.2 we propose an iteration-by-subdomains algorithm to solve Euler system. In Section
2.3, stemming from some results obtained by A. Quarteroni in [86] and by L. Gastaldi in [56]
for a domain decomposition approach to linear hyperbolic systems with constant coefficients, a
convergence analysis is addressed for one dimensional flows, for both the problem continuous
in space and discretized in time (the main attention is focused on the spatial decomposition)
and the fully discrete problem. The result is obtained in the region of smooth flow, where the
quasi-linear form of the system is valid, and for isentropic flows, since, in this latter case, the
characteristic variables can actually be determined, and their continuity can be used as matching
condition on the interface. In the last part of the chapter, in Section 2.4 we propose an algorithm
for the complete one dimensional system, and in Section 2.5 we report some algorithms proposed
in literature for three dimensional flows.

2.1 The Euler Equations for Compressible Flows

In this section, following mainly the book by A. Chorin and J. Mardsen, we develop the basic
equation of the mechanics of ideal compressible fluids. These equations are derived from the
conservation laws of mass, momentum, and energy.

2.1.1 Derivation of the Equations

Let Q be a region in R¢, (d = 2,3), the two- or three-dimensional space, filled with a fluid.
Let u(x,t) = (u1(x,t),...,uq(x,t)) be a vector, depending on the space-time variable (x,t) =
(z1,...,zq4,t), representing the velocity of a particle of fluid moving through x at time ¢. We
call u(x,t) the spatial velocity of the fluid.
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We assume that for each time ¢ the fluid has a well-defined mass density p(x,t), so that if D is
any subregion of €2, the mass of fluid in D at time ¢ is given by

m(D.) = [ plot)dx

where dx is the volume element in the plane or in space. The assumption that p exists is a
continuum assumption, which does not hold if the molecular structure of the fluid is taken into
account. However, for most macroscopic phenomena occurring in nature, this assumption is
believed to be extremely accurate.
The derivation of the equations is based on three basic principles:

1) mass is neither created nor destroyed

2) the rate of change of momentum of a portion of the fluid equals the force applied on it

(Newton’s second law)

3) energy is neither created nor destroyed

Conservation of mass

Let D be a fixed (in time) subregion of Q. The rate of change of mass in D is

d _d [ Op
Em(D,t) = %/Dp(x,t) dx—/D p (x,1) dx.

Let n denote the unit outward normal defined at points of 8D, the boundary of D, assumed
to be smooth and with area element do: the volume flow rate across 0D per unit area is u - n,
while the mass flow rate per unit area is pu - n.

The principle of conservation of mass states that the rate of increase of mass in D equals the
rate at which mass is crossing dD in the inward direction. Thus, the integral form of the law of
conservation of mass reads

— x,t dx:—/ u-ndo.
p” Dp( ) "

By the divergence theorem, the previous statement is equivalent to

op . .
/D [E + div (pu)] dx =0,

and, since this latter statement holds for all D C €, it is equivalent to

% + div (pu) =0,

which is the differential form of the law of conservation of mass, also called continuity equation.

Balance of momentum

For any continuum, forces acting on a piece of it are divided into two types: the stress forces,
where a piece of material is acted on by forces across its surface by the rest of the continuum,
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and the body forces (also called external forces, such as gravity or magnetic fields), which exert
a force per unit volume on the continuum.

Definition. A continuum is called an ideal fluid if for any motion of the fluid there is a function
p(x,t) called “pressure”, such that if S is a surface in the fluid, with a chosen unit normal n,
the force of stresses exerted across the surface per unit area, at x € S and at time t, is given by

p(x, t)n.

Without entering into details of the hypotheses underlying this definition, we only observe
that the absence of tangential forces means that there is no way for rotations to start or stop.
Equivalently, if rot u = 0 at time ¢ = 0, then it must be identically zero for every time.

If D is a region in the fluid, the total force exerted, at time ¢, on the fluid inside D by the
stresses on its boundary is

Sap = {force on D} = —/ pndo,
oD

with negative sign because n points outwards. The divergence theorem provides

SOD = —/ Vpdx.
D

Denoting with b(x, t) the given body force per unit mass, the total body force is

B :/ pudx.
D

By Newton’s second law (force =mass X acceleration) we are led to the differential form of the
law of balance of momentum:

u

—=-V b

where D% = 0; + u- V is called the material derivative, since it takes into account the fact that
the fluid is moving with velocity u.

Conservation of energy

We have developed d + 1 equations for the d + 2 unknowns p, p, and u, because the equation
for Du/Dt is a vector equation consisting of d scalar equations. We therefore need one more
equation to avoid an under-determined problem.

For a fluid moving in a domain €2, with velocity field u, the kinetic energy contained in a region
DcCQis

1
Puinsic = 5 | pllull®.dx.

with |[u]|? = (uf + ... + u3). We assume that the total energy of the fluid can be written as

Etotal = Einterna,l + Ekinetica



10 CHAPTER 2. DDM FOR COMPRESSIBLE FLOWS

namely the sum of the kinetic energy and the internal thermodynamic energy, which derives
from sources such as intermolecular potentials and internal molecular vibrations. If energy is
pulled into the system or we allow the fluid to do work, the amount of Fiya will change.

For ideal gases, the internal energy is given by

p 1
e=~ | ——
p\v-1)’

where the constant v > 1 is the ratio between the specific heat at constant volume and the
specific heat at constant pressure, thus the total energy per unit volume is

1
e = oplull* + pe.

Assuming that no heat enters the fluid domain from its boundaries, the only variations in the
total energy are induced when the fluid does work. The work done by a fluid volume D per unit
time is given by — |, spPu-ndo, and it must equal the rate of change of the total energy in D.
The divergence theorem provides the integral form of the conservation of energy:

0 .
E/DedX——/Ddlv(pu)dx.

By the transport theorem (see [31], p. 9), this integral formulation is equivalent to the differential
equation

de
ot

which is called the first law of thermodynamics.
The Euler equations for an ideal compressible fluid are thus

+div[(e + p)u] =0,

( (9/) .
e +div(pu) =0
Du
< p—Dt =—-Vp+pb
de .
L E +d1v[(e +p)u] =0

On the other hand, if we assume that the whole energy is kinetic, and that the rate of change
of kinetic energy in a portion of fluid equals the rate at which the pressure and body forces do
work, i.e.

d
— Exinetic = _/ pndo +/ pu - bdx,
dt aD; Dy

the application of divergence theorem and the previous formulas entail necessarily divua = 0.
This means that if we assume Fiota1 = Fiinetic, then the fluid must be incompressible. The Euler
equations for incompressible flows are thus
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er_
Dt
2
Dt

0

= —-Vp+pb

divu =0

\

considered together with the boundary condition u-n = 0.

2.1.2 Isentropic Fluids

A flow is called ”isentropic” if there exists a function w called ” enthalpy” such that

1
Vw = — Vp.
p

This terminology arises in thermodynamics, and without even entering here a detailed discussion
of thermodynamic concepts, we make a few general comments.

The basic quantities appearing in thermodynamics, each of them a function of x and ¢ depending
on the given flow, are the pressure p, the density p, the temperature ¥, the entropy s, the enthalpy
(per unit mass) w and the internal energy per unit mass €, which is given by

_ P
€E=wW — —.

p
These quantities are related by the First Law of Thermodynamics, commonly accepted as a basic
principle

1
dw = 9ds + —dp (TD1)
p
which is a statement of conservation of energy: it can be equivalently expressed as

de = 0ds + L.dp. (TD2)
)i

When the pressure is a function of the density p only, the flow is clearly isentropic, as

w = /p AU

A

As a consequence the internal energy satisfies de = (p dp)/p?, or, equivalently

p
_ ("N
For isentropic flows with p = p(p), the integral form of conservation of energy states that the

rate of change of energy in a portion of fluid equals the rate at which work is done in it:

d d 1
— Eiotal = — —p|lul? dv = -bdV — -ndA
dt " T /wt (2pIIU|I +p6> /thu 6thu "



12 CHAPTER 2. DDM FOR COMPRESSIBLE FLOWS
Thus, Euler equations for isentropic flows, with p = p(p), in a domain € are

Op .
n +div(pu) =0

Ou
p§+(u-V)u: —Vw + pb
in , and

u-n=0

on 00 (or u-n =V -n if 9Q is moving with velocity V). In general, these equations lead to a
well-posed initial value problem only if p’(p) > 0: this agrees with the common experience that
the increase of the surrounding pressure on a volume of fluid causes a decrease in the occupied
volume and thus an increase in density.
When dealing with ideal gas dynamics, the isentropic assumption is

p=Kp’,

where K and v (the ratio of specific heats) are constants and v > 1. Hence the enthalpy is given
by

N /” VK7™ yKprT!
w = ——ds = ———
s v-—1

whereas the internal energy is
Kpr—1
€ =

y—1°

2.1.3 The Navier-Stokes Equations for compressible fluids

In none of the cases of the previous section, the possibility of energy dissipation due to friction
is taken into account: the viscous effects are neglected and we assume that the fluid is inviscid.
When these effects are considered, we end up with the system of Navier-Stokes equations, which,
in conservative form, reads (see [71]):

oW

T + divF(W) = div G(W) (2.1.1)
in Q x (0,7), where W is the vector of conserved variables W = (p, pu, pE), where we have
simply indicated with E the total energy per unit mass, and where the convective and diffusive

terms F(W) and G(W) are given by

pu 0
F(W)=| pu®u-+pl G(W) = T
(PE +p)u T-u—gq

Here u ® u is the tensor whose components are u;u;, I is the unit tensor d;;, q is the heat flux,
which is related to the absolute temperature by the standard Fourier law
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q=—kV4d,

where k£ > 0 is the heat conductivity coefficient, and finally (7 - u); := > ; Tijlys where 7 is the
viscous stress tensor, whose components are defined as

2 .
Tij 1= ,u(DZ-u]- + Djui) + (C — #) dlvuéi]’,

with g > 0 and ¢ > 0 being the shear and bulk viscosity coefficients, respectively.
In system (2.1.1), the divergence of F(W) (and similarly for G(W)) is the (d + 2)-vector

div F(W) = (div (pu),div (pu @ u + pI),div [(pE + p)u])
while the divergence of a tensor T is the vector with components

i

As the continuity equation for the density p is hyperbolic, equations (2.1.1) provide an incomplete
parabolic system. It is not difficult to see that dropping all the diffusive terms (that is taking
u=C =k =0 or, equivalently 7 = 0 and q = 0) leads back to the conservative formulation of
Euler system.

2.2 Multidomain formulation of the Euler Equation

The formulation of the Euler system in terms of the conserved variables W = (p, pu, pF) reads

aa—‘lv +divF(W) =0. inQx(0,7T), (2.2.1)

where Q C R?, d = 2,3. Let the domain § be decomposed into two non-overlapping subdomains
Q1 and Qs. If we denote with I' the interface between 21 and €9, and with W; the restriction
of W on €;, = 1,2, equations (2.2.1) can be reformulated as

Wi | divF(W;) =0  inQ; x (0,7)
ot (2.2.2)

F(W;) n=F(W3)-n onIx(0,7).

for ¢ = 1,2, where n is the unit normal vector on I" directed from €2 to Q9, and where F(W) -n
is the (d + 2)-vector

(pu-n,pu(u-n)+pn, (pE +p)u-n).

In other words, the subdomain restrictions W1 and Wy satisfy the Euler equations in £2; and €29
separately, where they inherit the boundary and initial conditions prescribed for W on 052 and
at ¢t = 0, together with suitable interface conditions. The interface equation (2.2.2), prescribes
the continuity across I' of the normal inviscid flux, and this is a natural consequence of the
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fact that the variable W is a distributional solution of (2.2.1) in Q. Condition (2.2.2)2 can be
rewritten as

piar-n = pouz-n
pluljul -N+pin; = pPoug Uz -0+ pong ji=1,...,d (2.2.3)
(P E1+p1)ur-n = (p2E2+po)ug-n

Since u is continuous across I', condition (2.2.3); is equivalent to
p1 = p2 V(x,t) € T x (0,T) such that u-n # 0,

which is in agreement with the physics of compressible fluid flows, that allow two kind of dis-
continuities: shock waves and contact discontinuities. We won’t enter here the details of this
topic, but we refer the interested reader to [60], [66], [96] or [31] for an exhaustive treatment of
this subject. We only recall that in case of contact discontinuities the normal velocity is zero,
the pressure is continuous, but density, tangential velocity and temperature may have non-zero
jumps.

Within the frame of iterative substructuring methods, the interface conditions (2.2.3) has to be
split into Dirichlet conditions for W1 on I' N {u - n < 0} and Dirichlet conditions for Wy on
I'n{u-n > 0}. Thus, an iteration-by-subdomains approach would read:

Given W? and WY, solve for k > 1

( k+1
avg; +divF(W¥h) =0  inQ; x (0,7)
q
| F(W{™).n=F(W§)-n on (TN{u-n<0}) x (0,T),
and ( k+1
avgi +divF(WA ™) =0  in Qy x (0,7)
<
{ F(W5t!).n = F(WF) . n on ('N{u-n>0}) x (0,7).

If the interface I' moves with the time, I' = T'(¢), we denote with o(t) the velocity at time ¢
along the normal direction n = n(t¢), and the matching condition (2.2.2)s must be replaced by

[Wi(t) = Wa(t)]o(t) = [F(Wi(t)) - F(W2(2))] - n(t)  on (). (2.24)

In particular, if T'(¢) coincides with (or simply intercepts) a shock front §(¢), then equation
(2.2.4) can be easily recognized as the Rankine-Hugoniot jump condition across the shock front
(again, see [31] or [60]).

In the following sections, we carry out a convergence analysis for an iteration-by-subdomains
algorithm for one-dimensional flows, since they allow to enlighten the role of interface conditions
in substructuring methods.
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2.3 The 1-D Isentropic Euler Equation

We consider here an inviscid isentropic compressible fluid in one space dimension: the vector of
conserved variables is W = (p, pu) and the flux vector F is given by

F(W):( pu )

pu® +p

Thus the conservative form of the equation reads

OW  OF(W)
ot + Oz
where Q = (a,b) C R is an interval.
In a region of smooth flow, using the Jacobian of the flux F(W), system (2.3.1) can be put in
form of quasi-linear hyperbolic system

=0, inQpr:=Qx(0,7T) (2.3.1)

ou ou

— 4+ A(U)— = i =0 T 2.3.2

N a2 =0 mer=ax©1) (232)
where U = (p,u) : Q x (0,T) — R? is the vector of physical unknowns, also called “primitive

variables”, whereas

u p
A(U) = ,
lp u
where ¢ = /K~vyp?~! is the speed of sound, K > 0 being a suitable constant, and v being the

ratio of specific heats. The matrix A is diagonalizable with distinct real eigenvalues (thus system
(2.3.2) is strictly hyperbolic), namely A = LAL !, where A = diag(\, X2), with

AM=u4+c, I=u-—c

while L is the matrix of left eigenvectors, given by

c/p 1
L=

—c/p 1
From a mathematical point of view, equation (2.3.2) has to be considered together with an
initial condition Uy(z) = U(z,0) and with suitable boundary conditions in order to have a
well-posed initial-boundary value problem. Without entering the details of well-posedeness, we
simply recall that it is not admissible to assign values on the outgoing components, since they
could contradict the effect of the initial condition making it impossible for a solution to exist (for
an extensive discussion on boundary conditions for hyperbolic problems, see for instance [70]
and [84]). Among the various set of boundary conditions that render this problem well posed,
we consider the following ones

p(a,t) = gl(t) te (OaT)
(2.3.3)

p(b, t) = gQ(t) te (O’T)a
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namely, we assign the value of the density, or, equivalently, the value of the speed of sound. The
same result we are going to present in the following could be obtained also with different choices
of suitable boundary conditions, for instance assigning the velocity on the left endpoint of the
interval, u(a,t) = b1(t), and the density on the right end one p(b,t) = ba(t).

We require the initial value Ug(z) = U(z,0) to be a continuous vector function, with first
component attaining the values ¢1(0) and g2(0) at the endpoints of the interval, hence the
solution of our problem is continuous for the whole time of smooth flow. Moreover, we assume the
solution U(¢, z) to be bounded for the whole time of smooth flow. Concerning this assumption,
we recall that the Euler system develops shocks in a finite time, even in the presence of regular
initial data. So far, equation (2.3.2) fails, and one must use a weak formulation based on the
conservative form of the equation (2.3.1).

With an iteration-by-subdomain approach in sight, we finally assume that the flow is subsonic,
ie. 0 < u < ¢ sothat Ay > 0 and X9 < O for each (z,t) € Qr, which amounts to have
information traveling from each subdomain to the other one. In fact, if the flow is supersonic,
both eigenvalues are positive, the whole information is a traveling wave from Q; to 2, and the
domain decomposition approach is trivially reduced to the sequential solution firstly in 21 and
then in Q5.

The nonlinearity of the problem does not allow to define directly the characteristic variables V:
we therefore introduce them by means of the following differential form (see [62], as well as [89])

dV := LdU = (%dp + du, —g + du). (2.3.4)

Hence, a direct integration provides

VvV, = u+/£dp=u+/\/K'yp7/23/2dp
p

:u+

¢ + const,
v—1

and similarly for V5, so that we have in conclusion

2
C
y-1"

V=(R:,R_), Ry :=u+ (2.3.5)

namely, Vi = R, and Vo = R_ are the Riemann invariants which are constant along the
characteristic lines C1 = {(z(t),t) | '(t) = u & c}. Problem (2.3.2) can therefore be decoupled
into its characteristic formulation

88—‘;+A(V)88—Z:O in Qr :=Q x (0,7)
Vi (a,t) — Vz(a,t) = ¢1(t) te (O,T) (2.3.6)
Vv, (b7 t) - V2(ba t) = ¢2(t) te (OaT)

where we have set
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4 4
t)=—/K )7 d t)=——/K t)7.
$1(t) pom (g1(2)) an, 210) pom| (92(2))
More, we can observe from (2.3.5) that the eigenvalues A\; and A2 can be expressed as linear
combinations of the characteristic variables

/\1 1 1+ Y 3 — Y V1
= . (2.3.7)
A2 3—7v 147 Vo
Denoting with C' the matrix in (2.3.7), system (2.3.6) can therefore be rewritten as
2
\'2 > CuV; 0 v, 0
+ | = ) : = . (2.3.8)
V2 t 0 Z CQjVj V2 T 0
7j=1

Remark 2.3.1 From (2.3.7), we observe that, differently from the case of constant coefficients,
system (2.3.8) is not constituted of two independent scalar equations coupled only through the
boundary conditions, and this is a consequence of the nonlinearity of the original problem. [

2.3.1 An Iteration-by-subdomain algorithm for the time-discretized problem

Since the Riemann invariants are constant along the characteristics, we can introduce a domain
decomposition of the spatial domain €2, where we enforce the continuity of the characteristic
variables on the interface. Notice that the continuity of these latter variables guarantees the
continuity of the physical ones. In that order, let a € (a,b) and set Q; := (a, @), as well as
Q9 := (a, b). So far, we can consider the decomposed problem

( Ba_IerA(Ul)aa—If:O in Q1 x (0,7)
aa—tf—l—A(UZ)aa—lf =0 inQy x(0,7)
{ pla,t) = gi(t) vt € (0,T) (2.3.9)
p(b;t) = g2(t) Vi € (0,T)
Vi(e,t) = Vi(a,t) vt € (0,7)
| Vi(e,t) = V3(a,t) vt € (0,T),

that can be decoupled, owing to (2.3.4), into its characteristic form,
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, aa—\f+A(V1)aa—‘;:O in 9 x (0,7)
GB—‘T + A(V%%—‘f =0 in Q9 x (0,T)
! Vi(a,t) — Va(a,t) = ¢1(2) t€(0,7) (2.3.10)
Vi(b,t) — Va(b, 1) = ¢2(1) t€(0,7)
Vi(a,t) = V3(a,t) vt e (0,T)
| Vi(a,t) = V3(a,t) vt € (0,T).

We are mainly interested in a spatial decomposition, thus, owing to (2.3.8), we advance in time
the decomposed problem (2.3.10) by means of a semi-implicit method: this can be interpreted
as a linearisation of system (2.3.8), leading to the following two systems of ordinary differential
equations

ﬂvuw1+Aaﬂ“k?V““4=ﬁv“z in Oy
X

V%m-}-l(a) _ V%,n-i—l(a) — qsl (tn—|—1)

and
IBVQ,n—I—l 4 A(V2,n)%v2,n+l — IBVQ,n in QZ

VI (B) — V3T () = ot )

where § = 1/At is the inverse of the time step, which are coupled only through the interface
conditions

Vi @) = V" (a)

2,n+1 1,n+1
V5" (@) = V" a).

At each time step an iterative procedure can be introduced to solve the coupled system. From
now on, since we are not dealing with time, we drop any index referring to time discretisation,

and we set f() := gVin @) .= gV2n ¢ 1= ¢ (1)), dy := do(t"T)), as well as

A(VE) in Oy
A=
A(V2n) in Qs

The iteration-by-subdomain procedure can therefore be written, for £ > 0, as
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p
,8V1JC+1 +Adivl’k+1 — f(l) in Ql

T

¢ V%’k_H(a) B Vé’kﬂ(a) — ¢ (2.3.11)

V¥ (@) = V¥ (a)

)
BV2ETL 4 A%V““ =f@ inQy

VIR (b) — VEFT (D) = 4o,

having chosen any initial guess V%’O(a) € R and V%’O(a) eR.

Convergence Analysis of the Iteration-by-Subdomain Method

In order to prove the convergence of the iterative algorithm, following what is done by A.
Quarteroni in [86] for a spectral collocation method and by L. Gastaldi in [56], both in the case
of constant coefficients, we define, for each subdomain, the error vector (in characteristic form)
as

ik+l | xpiktl ; ik+l | xpiktl ;
EVRTL = v i BRI v (2.3.13)

fori=1,2.
It can be easily viewed that the vector functions EbF+1 .= (EXF1 ELF ) i — 12 satisfy the
following error equations

( d
BEFT 4 Ald—E}”““ =0 in(
Xz

d _1k+1 .
BELFTL L\, BT =0 inQ
2 2dz? ' (2.3.14)

E[*(0) = B} ()

1,k+1 2k
( E, - () =E, (a),
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as well as

( gEZHL 4 )\ldiE%k+1 —0 inQ,
Z

d 2,k+1 .
BEZFTL 4 Ny —EZF 1 =0 in O,
I da (2.3.15)

2,k+1 1,k
E; () = E;%(q)

[ E2F () = EPMT0).

Now, let us consider what happens within ;. Since the system is completely decoupled, we
can have an explicit representation of the solution of the error equation. We get from (2.3.14),-
(2314)4

B+ (2) = B2*(a) exp { - B0 (2)), (2.3.16)

T
D (z) .= / dy .
a )‘Q(y)
Similarly, we get from (2.3.14)1-(2.3.14)3:

with

E}’kﬂ(ﬂv) _ Eé’kﬂ(a) exp { — B (z)}, (2.3.17)
with z g
0@ = [ 5

Then, we get from (2.3.16) and (2.3.17):

EV(a) = exp { - 5(<1><1)(a) + \If(l)(a)> }Eg’k(a). (2.3.18)

Notice that

Wy o [ W _ [ dy
Ry i

since Ao(z) < 0 for all z € Q1. Analogously, A;(z) > 0 for all z € Qy, provides & (a) > 0. We
can therefore state the following Lemma.

Lemma 2.3.1 The solution of problem (2.3.14) satisfies:
E " (a) = 01 E2*(a) (2.3.19)
with o1 < 1.

Proof. Setting
o1 :=exp { - B(2V(a) + ¥V()) }
(2.3.19) follows immediately from (2.3.18). O
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A similar argument within Q9 provides

B () = exp { - 5(2@ (1) + ¥?) () } B (0, (2:3.20)

where we have

3@ (p) := " dy o) = [
a A(y) b A2(y)

Once again, since A (z) > 0 and Az(z) < 0 for all z € Qy, we have @@ (b) > 0, ¥ () > 0, and
we can state the counterpart in 29 of Lemma 2.3.1.

Lemma 2.3.2 The solution of problem (2.3.15) satisfies:
EZF(q) = 0oETF () (2.3.21)
with o9 < 1.

Proof. Setting
09 1= exp { - 5((1)(2) (b) + @ (a)) }
(2.3.21) follows immediately from (2.3.20). O

We are therefore in condition to prove the convergence of the iteration by subdomain procedure.
In that order, let us introduce the following sequence of interface errors:

Ef := [E7*(0)]? + [E2*(a)]® for k > 1. (2.3.22)

From the previous Lemmas we can immediately deduce the following convergence result.

Theorem 2.3.1 The interface error defined in (2.3.22) reduces at each iteration according to
the law
Effl < oEF (2.3.23)

for each k > 1, where the reduction factor is given by
0 := max [(01)2, (02)2} < 1.

Proof. Owing to (2.3.19) and (2.3.21) we get that the interface error is ruled by

E;M = (0B (o)) + [0 By (o)
for each k£ > 1. 0

From the previous theorem, we have

lim Ef =0.

k—00
Next, we have to prove that the error E*(z), defined in (2.3.13), can be controlled by the error
on the interface EX, for each z € Q, so that the convergence for the iterations on the interface
guarantees convergence in the whole Q.
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Let us focus on what happens within ;:

Vi € (a,0) : [El’k(x)r - [E}”“(x)r + [E;’“(x)r (2.3.24)
Now, owing to (2.3.16)
(B @) < B} )], (2.3.25)
and, owing to (2.3.17)
[E}”“(x)r < [E}”C(a)]2 - [E;’“(a)]2 < [E;’“(a)r. (2.3.26)
Therefore, (2.3.25)-(2.3.26)imply
[El’k(x)r < [E;’“(a)]2 n [E%’k(a)r <2 [E;’“(a)r. (2.3.27)
In a similar way, we get for each = € Qs:
[EQ’k(ax)]Q < [E%’“(a)]2 n [E%’“(oz)]2 <2 [E%’“(a)r. (2.3.28)
Consequently, (2.3.27)-(2.3.28) provide
[Ek(x)]2 <2 [E’;]Q, (2.3.29)

for all z € .
We can therefore state the following result.

Theorem 2.3.2 The iteration-by-subdomain strategy in (2.3.11)-(2.3.12) converges as k — oo,
for any choice of the time step At.

Proof. In order to complete the proof we have to show that this convergence does not depend
on the time step. This is an immediate consequence of the fact that each of the quantities
T (a), (), T® (a) and &) (b) is greater than 0, so that the exponentials involved attain
values less than 1, and we have a contraction on the interface for any choice of At. 0

Notice that each one of the iterated solution of systems (2.3.14)-(2.3.15) can be viewed as an
iteration on the interface, so that it can be reformulated in terms of a mapping M : R? — R?,
which is defined, for each ¢ = (£1,&2) € R?, as

& ViH @)
M — (2.3.30)
&a VZEHL ()

where the values Vi’kﬂ(a) and Vg’kﬂ(a) are obtained from systems (2.3.11)-(2.3.12) with
assigned incoming values on « given by Vé’kﬂ(a) =& and V%’kﬂ(a) = &1. As an immediate
consequence of Theorem 2.3.2, we can state the following result.
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Lemma 2.3.3 For any choice of the time step B = 1/At, the mapping M defined in (2.3.30)
s a contraction. Moreover, there exists C > 0 such that the reduction factor K is given by

C
K =¢ a:.

Proof. Since all the problems involved are linear, it is enough to prove contractivity for the
mapping M?, which is the one obtained from M when f = ¢; = ¢y = 0. Namely, it is enough
to prove that there exists a constant K < 1 such that, for each £ € R?,

M| < K |€[? (2.3.31)

From Lemmas 2.3.1 and 2.3.2, this latter mapping can be expressed in matrix form as

0 o1 &1
MOE = : )
o2 0 &2

with o1 and oy as defined thereby. Thus, inequality (2.3.31), as well as its uniformity with
respect to the time step = 1/At, is an easy consequence of Theorem 2.3.1, with

K = max [e_%t[é(l)(a)“l’(l)(“)], e~ 2t (2P (0)+¥ ) (a)]

O

Remark 2.3.2 The expression for the contractive constant suggests to choose « in order to have
K as small as possible: the constant K is optimal whenever the arguments in the maximum are
equal, namely o must satisfy

ady ady_bdy_/bdy
o >‘2(y),

a A1(y) a AQ(y) B e A1(y)

which can be rewritten as

_ [A1 = As](a) + [A1 = A5](b)

= 5 ,

where we have denoted with Ay (kK = 1,2) any primitive of 1/Ag(x). Since in our framework
A = A (V™) (k= 1,2), V" being the solution at the previous step in the time marching process,
this could allow to possibly adapt the spatial decomposition at each time step. O

[A1 = Az](e)

Remark 2.3.3 Notice that the fixed point of the mapping M is the solution of the Steklov-
Poincaré interface equation, that reads

1 —01 & 0

—09 1 & 0

when f = ¢1 = ¢ = 0. Therefore, each iteration of the mapping M° can be viewed as one step
in a non-preconditioned Richardson iterative method to solve the Steklov-Poincaré equation. (I
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An Equivalent Algorithm

As a matter of fact, the procedure in (2.3.11)-(2.3.12) could be advanced (at least in principle)
in parallel, but this is somehow redundant. In fact, the iteration by subdomain algorithm can
be efficiently exploited in the following sequential way:

STEP 1.
Given &9 € R, solve for each k > 0:

d
BV h vyt = Y in 0

1,k+1
V2 (Oé) = 51197
then solve

d
BV 4 de Vi = 1Y in gy

V¥ (a) = ViF () + 41

Notice that the value of V}’kﬂ(a) is completely determined by the value of V;’kﬂ(a) and by
the physical boundary condition at the left endpoint of the interval.

STEP 2.
Set ¢571 = V¥t (a) and solve
d

BV 4 g VIR = fY in

2,k+1
VT ) = &1,

then solve

d .
,3\/—5’16+1 + >\1%V§’k+1 = f1(2) in Qo

Ve (B) = VI () + ¢o.
Once again, the value of Vg’kﬂ(b) is completely determined by the value of V%’kﬂ(b) and by

the physical boundary condition at the endpoint.

STEP 3.
Set ¢Ft! = Vg’kﬂ(a), go to STEP 1 and iterate.

We can easily prove convergence for this latter algorithm, stated in the following theorem.
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Theorem 2.3.3 The iteration by subdomain in STEP 1 - STEP 3 is equivalent to (2.3.11)-
(2.3.12), and it converges as k — oo, independently of the choice of the time step At.

Proof. Consider the sequences
{Vg’k(a)}k and {V}”“(a)}k,

stemming from the iteration-by-subdomain method in (2.3.11)-(2.3.12) as well as the sequences

{et} ama {&} .

stemming from STEP 1- STEP 3. It can be easily viewed that the latter ones are subsequences
of the previous ones, which are convergent. Convergence also for the sequences {¢F}, and {¢5}
is therefore straightforward. 0

2.3.2 Fully discrete finite elements approximation for the single domain prob-
lem

In this section, following what is done in [56] for linear hyperbolic systems with constant coeffi-
cients, we focus our attention on the finite dimensional approximation for the system stemming
from a semi-implicit time discretisation of system (2.3.10).

The scalar case and its finite elements approximation via the Streamline Diffusion
Method

Since system (2.3.10) consists of two scalar transport equations coupled only through the bound-
ary conditions, let us consider the following problem

p ) :
—— u+ u = f(x) in Q = (a, b)
Alw) (2.3.32)
u(a) = ¢

where 8 > 0, A(z) > X\, > 0 Vz € © and we have denoted with u’ the space derivative of u with
respect to z, i.e.

o= B

The variational formulation of problem (2.3.32) reads

Findu eV : a(u,v) = L(v), YoeV (2.3.33)

where

a(w,v) = /Q {% wv + %[w"u — w'u']} + %(wv) (b)
(2.3.34)
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In order to approximate the solution of problem (2.3.32) with finite elements, let 7}, be a subdi-
vision of the interval € into a finite number of subintervals [z;_1, ;] such that |z; —z;_1| < h
for j =1,..., N, where

a=zp<z1<...<zTN =D

We introduce the following finite element spaces (for further details on Finite Element Methods
see the Appendix, whereas, for a more exhaustive treatment of the topic, we refer to the books
by C. Johnson [67] or A. Quarteroni and A. Valli [88]):

ViQ) == {v e C'(Q) | vx € Py, VK € Tn} k>1, (2.3.35)

VA(Q) = {v e Vh(Q) | v(a) = o} : (2.3.36)
and a possible discrete version of (2.3.33) reads

Find uy, € Vh : &h(uh,vh) = Eh(vh), Yoy, € Vh (2.3.37)

with

1 1
ap(w,v) = /Q {%(x) wv + E[w'v — wv']} + §(wv) (b)
(2.3.38)
~ 1
Lp(v) = / Frv + 5&no(a)
Q
where A\, fn and &, are suitable approximations of the data A, f and £. This choice is unfor-
tunately not satisfactory, since problem (2.3.37) must be stabilized. As it is quite natural in

the case of transport problems, we will use a Streamline Diffusion technique, which consists in
adding to the original variational formulation the element residual

p ' /
6h/}([mw+w — fnl v,

where the value of § > 0 may depend on A, and meas(€2), but is independent of h. The discrete
problem we deal with is therefore

Find uy, € Vh : ah(uh,vh) = Lh(vh), Yoy, € Vh (2.3.39)

where
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(2.3.40)

In order to have well-posedness for problem (2.3.39) we assume the bilinear form ay(.,.) to be
positive, namely

R B 1 BohX;, (z)
pt o= ;2?2 ()\h(w) + 2 X () ) > 0, (2.3.41)

which is fulfilled for each § such that

0<d<d:=2 ming A, ()

max{— ming )\;Z(x),()}’ (2.3.42)

The above condition has to be interpreted in the following way: if ming A} (z) > 0, then no
upper bound is needed for 4.
Inflow-outflow estimates for the finite elements approximation

In this section, adapting to our problem the approach of [53] and [56], we give some estimates
of inflow-outflow type for the scalar problem (2.3.39) which will be used in the sequel. In that
order, let ) := (a,b) and let us consider the following problems:

(P1) Find up, € V() such that

/{%(:c)“”%—fh}-(vwhu'): 0 WoeVhQ)
Q

(2.3.43)
up(a) = x
and
(P2) Find u* € V*(Q) such that
/8 m m\/ _ . A h
/Q {)\h(w) up’ + (up’) fh} (v + dhv') 0 Yo € V1 () -



28 CHAPTER 2. DDM FOR COMPRESSIBLE FLOWS

We are in the position to prove the following result.

Lemma 2.3.4 Assume \p(z) > My > 0 for all z € Q, X, € L®(Q) and (2.3.41), and let uy,
and uy® be the solutions to problems (2.3.43) and (2.3.44) above. Then there exists a constant
Hg < 1 such that

(up, — u)? (b) < Ha (x — xm)®, (2.3.45)

provided § is sufficiently small.

Proof. The difference e, := up — uj' satisfies the following error equation

/n {%Ew) om * elm} (o dh') =0 (2.3.46)

em(a) =X~ Xm

If A\p(b) < Ap(a), we take in (2.3.46) v = ey, and we get

0 :/Eefn+/eme§n+5h/£6m€;n+5h/(ein)2
Q A Q Q b Q

_ [ (B BN 5 L Bsh\ ,1° /2
_/Q(/\h—i- 2)\% >em—l—2[(1—l— }\h)em]a—i-éh/ﬂ(em).

The third term on the right hand side is positive, while assumption (2.3.41) provides positivity
also for the first one, so that we have

(1 + %) e (b) < (1 + %) ez (a).

Inequality (2.3.45) follows with

(2.3.47)

If A\p(b) > Ap(a), let o € WH() be the linear function such that p(a) = 0 and (b) =1, i.e.

r—a
(P("I")_ b_a'

We take v = (1 4+ ny) e, in (2.3.46), with n > 0, and we get
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0 :/Q{A%emﬂgn}-{(1+W)em+5h[(1+n¢)em1'}

ﬁe?n(lJrW) +/(1+77<p)6me§n+5h/ £(1+W)emein +5h/ ﬁw'efn
Ah 0 S Jadn B o Ah

~

S~

v

(1) @)

+5h/ (1+np)(el,)? +<5h/ ne emen,
Q Q
| L ——

®3)

(2.3.48)
Since ¢ is linear,
1 b 1
1) = 5[(1+7790)e?n]a—§/ns0'63n
Q
Sh [ B 2 1% 1 [ BohN, ) 1/ﬂ5h ) o
2) = |2 - 1 _ - E2E
(2) 5 [)\h( +7790)%L+2/Q 232 (1+np)es, 3 J, oy 1
5h b Oh 5h b
@) =+ [mp’efn]a—g /Q ne'eZ, = 5 (ne'er], s
and this entails
B BhX 1 [ B6h
h
(2.3.49)

+% H (1 + %) (14 np) +5h7790'} efn]z + 5h/ﬂ(1 + 1) (€h,)?

The third term of the sum is positive independently of . Concerning the first one we have two
opportunities: if Sdh — Ay, > 0 in 2, this term is positive without any further restriction on 7,

while if Béh — A, < 0 for some z € (), taking into account the definition of ¢, its positivity is
guaranteed if

n<n' = 2(b-—a)yu". (2.3.50)

where p* is the one defined in (2.3.41).
We obtain from (2.3.49)

[b‘sﬁha + (1 + %) (1 +77)] e (b) < [béﬁha - (1 + %)] em(a). (2.3.51)
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Let
An(b) = Ap(a) }
So = §>0|n,:= B6h 2.3.52
0 S“p{ >0 | = Boh o < (2.3.52)
and define
§* :=min {&°, &}, (2.3.53)

where ¢° is the one introduced in (2.3.42). Thus, for any 1 €]n.,n*], inequality (2.3.45) follows
with

Snh Béh
g 4 (14 22

Ho = — — <1, (2.3.54)
by (14 £55) (14 n)

N

S]

provided 0 < § < §*.

We then introduce the finite element space
Vh(Q) = {v e VQ) | v(b) = 0} (2.3.55)
and, in a similar way it is not difficult to prove the following lemma.
Lemma 2.3.5 Assume there exists My > 0 such that up(x) < —Ms for all x € Q, assume
pr, € L®(Q) and
!
[+ :=igf( B +1ﬁ6huh> >0,

lunl 2 [pal?
Let wp, and wj' be the solutions to problems

(P1) Find wy, € V() such that
/{Lwh—kwh—fh}-(v%—éhv'): 0 Yo € V()
a Lun(z)

wp(b) = &

and

(P2) Find w* € V7(Q) such that

/Q{uhi(x)w;m (wpr) —fh} oish)= 0 VoevA@)



2.3. THE 1-D ISENTROPIC EULER EQUATION 31

respectively. Then, there exists a constant Ko < 1 such that

(wh —wi)? (a) < Ko (€ = ém)?, (2.3.56)
provided § is sufficiently small. O

The finite elements formulation in the vector case

In this section we go back to the complete system (2.3.10) and we introduce the finite element
spaces:

Wh(Q) = [Vh(Q)]2 and  WH(Q) == VA(Q) x V(Q). (2.3.57)

At each time step, neglecting any index referring to the time step, the stabilized fully discrete
formulation for system (2.3.6) reads:

Find Vi, € WH(Q) such that

( d‘)
/(ﬂA 1Vh+— £, 0+ hDP )dx:O Vo € W)

) Vil (@) = [Vl (0) = (2:3.58)

( [Vl () = [Vil, (b) = ¢2

where clearly Aj, = A(V}) and f}, = ﬁA,:lVZ, while D = diag(d1, d2) is so far a suitable diagonal
matrix.

If, following what is done in the first partof this Section, we introduce the bilinear forms

+ — ﬁ lﬁ(slh’\llh Bo1h 11 11
ay (u,v) '_/Q{|:/\1h, + 2 X, uv + 1+ i [uv’ — u'v] + 61hu'v

Boyh
A1 (D)

_ L ,8 1 /852h>\12h 1 ,352h i ! 1,1
aj, (u,v) := /Q { [|)\2h| + 2 X uv + 5 1 o [uv’ — w'v] + dohu'v

e

as well as the linear forms

1
= b
+2[+

] uv(b)

Ff (v) = / (v + Sho) %(Hfj(’;))uv(a)
Fr (v) = / (v + Sho) %(1-%) wo(b),
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problem (2.3.58) can equivalently be written as

Find Vi, € Wh(Q) such that
an(V,0) =Fp(p) Vo € WHQ)
Vi(a) — Va(a) = ¢1 (2.3.59)

V1(b) — Va(b) = ¢2

ay (V1,01) Fif (1)
ap(V,p) = and Fp(p) =

ay, (Va,p2) Fy (p2)

where

2.3.3 Fully Discrete Multidomain Formulation and Iterative Algorithm

In this section we go back to the multidomain formulation of Section 2.3.1 and we prove con-
vergence for an iteration-by-subdomains procedure in the fully discrete case.

To this aim, let us denote once again with a the interface between the two subdomains (which,
for sake of simplicity, is assumed to coincide with a node of the mesh), and consider the finite
element spaces which are the restrictions to Q; = (a,a) and Q3 = (, b) of the spaces W(Q)
and W(Q), namely

Wh(Q,) == [V’L(Qj)]2 j=1,2 (2.3.60)

WEQ) = V) x VMQ) and W Q) == VE(Q,) x V(Qy), (2.3.61)

and consider the discretized version of the multidomain formulation (2.3.10)

/91 (ﬂA;IV}l + %V}l - f,(f), o+ hDZ—i) dz=0 V¢ e W) (2.3.62)
/92 (ﬁA;lvi + %V,ﬁ — £ o+ hD%) dz=0 Y € WHQ) (2.3.63)
[Vi], (@) = [Vi], (@) + ¢1 (2.3.64)

[Vi], (0) = [Vi], (b) + ¢2 (2.3.65)

[Vi], (@) = [Vi], () (2.3.66)

[Vi], (@) = [V3], () (2.3.67)
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where, as usual, f,gi) denotes the restriction of fj, to Q;, (1 = 1,2).
We introduce, as in the continuous case, an iterative procedure to solve system (2.3.62)-(2.3.67)
above. At the (m + 1)-th iteration, it reads as follows

d d
/ (5A;1V};m+1 + o R +hD£) dr=0 V¢ € W) (2.3.68)
1931

/ (5Ahlvi’m+1 b Lyzmat ) hD@) dr=0 Vi € Wi)  (2.3.69)
Q, dz dz

Vi @ = [Vt @) + (2.3.70)
Vit o) = [V ) + e (2:3.71)
[v}l m+1]2 (a) = [V,Q;m]z (@) (2.3.72)
[v,im“]l( ) = [V};m]l(a) (2.3.73)

Convergence Analysis

Procedure (2.3.68)-(2.3.73) can be interpreted as a discrete iterative mapping Mj, : R? — R?,
acting in the following way:

Vi) (o

My, - — . (2.3.74)

Vi), @ Vi, @

where [V,ll’mﬂ]l (o) and [VZ’mH]Z () stem from the solutions of systems (2.3.68)-(2.3.70)-

(2.3.72) and (2.3.69)-(2.3.71)-(2.3.73), respectively.
The convergence properties of the mapping M, are given in the following theorem.

Theorem 2.3.4 The discrete mapping My, is a contraction on the interface, provided the en-
tries of the diagonal matriz D are sufficiently small.

Proof. The mapping My, is linear, thus it is enough to prove that it is contractive on the error,
and to this aim it is immediate to see that the difference EJ™ := VI — VI™ (j = 1,2) satisfies
the following error equations (as usual, subindices denote components)

/Q (5A,;1E,1;m+1 + %E};m“, @+ th—i) dr =0 V¢ € W) (2.3.75)
1
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/Q (ﬁAhlEi’mH + %Ef;’”“,w + hD%) dz =0 VY € WhQy) (2.3.76)
[E};mH] (o) = [E};m“] (@ (2.3.77)
[Ef;m“] L (0) = [Ef;m“] ®) (2.3.78)
[E};mﬂ] (@) = [Eim] (@) (2.3.79)
[Ei’mﬂ]l (a) = [E};m]l (@) (2.3.80)

Equations (2.3.75) and (2.3.76) consist of two scalar equations coupled only through the bound-
ary conditions. The boundedness assumption on p and u entails boundedness also for Vj, and
V), at each time step. More, since

Al I+ 3—9u Vi1

_Z , (2.3.81)
A2n 3—v 1+7v V5o

where the vector (Vi 1, Vi 2) is evaluated at the previous time step, we get |, , A, € L*®(Q;)

(for 7 = 1,2). As a consequence if the entries of D are small enough, we can apply Lemmas
(2.3.4) and (2.3.5) in both ©; and Q.
Let us focus on ;: from Lemma (2.3.5) there exists a constant Ko, < 1 such that

2 2
[ (@) < Ko, [E}™] (@)

Moreover, from (2.3.77) and Lemma (2.3.4) there exists a constant Hg, < 1 such that

[E};m“]j () < Ho, [E};m“]z (a) < Ho, - Ko, [E};m“]z (@). (2.3.82)

From a similar argument within €25 there exist constants Ho, < 1 and Kq, < 1 such that

(8271 (0) < Ho, - Ko, [B3™1] (@) (2:3.83)

Gathering together (2.3.79), (2.3.80), (2.3.82) and (2.3.83) we have
IMRE}'* < K [ER[*
where

K= IIla.X{I{Q1 . KQI, HQ2 . KQZ} <1,
and this concludes the proof. 0
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2.3.4 Error Estimates

In this section we study the approximation error we get from the characteristic approach to
the Euler system. For that purpose, we firstly derive some standard approximation errors for
the Streamline Diffusion Method in the single domain case, then we give an estimate for our
approach in the same situation.

Error Estimates for the Streamline Diffusion Method

In this section we give some standard error estimates for the Streamline Diffusion finite elements
discretisation of a transport problem. In that order, we consider the following problem

p ' .
——u+u = f(zr) inQ=/a,b)

Alw) (2.3.84)
u(a) = ¢

where 8 > 0, A(z) > A\, > 0 Vz € €, and, as in equation (2.3.32), we have denoted with u’ the
space derivative of u with respect to .
Problem (2.3.84) is well known to have a unique solution, which is given, for z € Q, by

u(z) = exp (_5 /%) < [§—|—/:f(t) exp (5/: %) dt] (2.3.85)

For f(z) € L?(Q), and B/A(z) € L*®(Q), the solution u belongs to H'(Q) and satisfies the
following a priori estimate

ullegr < C([IFllo + [£]) (2.3.86)

Since in our framework A and f depend on the solutions at the previous time step, the streamline
diffusion method for problem (2.3.84) reads

Find up, € V(Q) such that

IB ! ! h
L. - She'] =0 Vg € VMO
/n [Ah(x) unct =] o+ Ohe] P eV (2.3.87)

up(a) = &.

where A\, and f; are suitable approximations of A and the right hand side f, respectively,
and where the finite element spaces V() and V*(Q2) are the ones introduced in (2.3.35) and
(2.3.36). Problem (2.3.87) is well known to have a unique solution under the coerciveness
assumption (2.3.41).

Let us consider the following auxiliary problem

P it i =f) Q= b)

An(z) (2.3.88)
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whose exact solution is given by

i(z) = exp (—ﬂ /w%) y [§+/: Fult) exp (ﬁ/: %) dt] , (2.3.89)

and, if f, € L?(Q), it satisfies an a priori estimate analogous to (2.3.86).
Under the coerciveness assumption (2.3.41), it is not difficult, by means of standard arguments,
to prove the following error estimates.

Lemma 2.3.6 Let 4 and up be the solutions of problems (2.3.88) and (2.3.87) respectively.
Assume that (2.3.41) is satisfied, that \p(z) € L*°(Q), and that Ap(z) > A\ > 0 for all z € Q.
Moreover, assume fy, € L2(Q). Then there exist constants depending on (3, §, u* and k, but
independent of h such that

16— up [ + (@ — up)® (b) + R0 — up||3 < Chlla|pn
(2.3.90)
< Ch(lful3 + 1€1)

where p* is the constant in the coerciveness assumption 2.3.41.

Proof. The difference (4 — uyp,) satisfies the following equation

/ [/\i(ﬁ —up) + (4 —up)'| [¢+0he'] =0 Yo € VI(Q)
o [An(z) (2.3.91)

(4 —up)(a) =0

Let ITf4 be the interpolant of @ in V() (notice that, since & C R, we have H'(2) C C°(1),
and the interpolant is well-defined for any k > 1); if we choose ¢ = (II¥% — uy), which belongs
to V(Q), we have

0= /Q [%(I)(u —up) + (4 — uh)’] [(Hﬁa — up) + Sh(ITF 4 — uh),] _

= /Q %Ex)(a — TR 4) (TR G — up) + /Q %(w)(n’ga —up)? + /Q(a — TEa) (TR G — up) +

4 / (T — wp) (T — ) + 6h/
Q

2
: [(Hga - uh)'] + 5h/ (4 — T @) (TR G — )’

Q

Boh_ ks k. 1 BSh .k .
+/Q>\h($) (It — up) (R a — up) +/Q () (0 — Ta) (i a — up)',

ie.,

/Q )\}fw) (Hﬁﬁ — uh)2 + (5h/Q [(Hﬁﬂ — uh)’] 2 + /Q (1 + Aii:)) (HI}CL’& _ Uh)(Hﬁ’& —upy) =
(2.3.92)

= [ [yt )+ ks ] [t o)+ om0t o]
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Let us focus on the left hand side in (2.3.92): an integration by parts of the third term, together
with the fact that (IIF4 — up,)(a) = 0, provides:

/n (1 * Ai(zh)> (Ih — un) (T — up)' =

|

YA A 1 [ poh A
=3 (1 + T(b)) (Hlﬁu — uh)Q(b) + 3 ; % Ap(z) (Hﬁu — uh)Z.

Thus, we have the following estimate for the left hand side
2
/ Hhu —up)? + 6h/ [(H’ga — uh)'] +/ (1 L pon ) (TE G — up) (TR G — )’
An (T Q Q An(z)

- /Q ()\hﬂ(m) + %/\gjz) /\;1(35)) (Tfa — up)? + (Sh/Q [(Hﬁ@ - uh)’]2
(2.3.93)

1 BSh\ . 21" 1 [ Bon oo 2
§<1+T(x)) (I 4 — up) L-i—i Q%)\h(w) (I 4 — up)

+; (1 + /\ﬂé(z)) (Hhu —up)?(b)

> (| TR — upl§ + ORI (T a — up)'IF + 5 (Hhu —up)*(b).

where the inequality stems from the coerciveness assumption (2.3.41) and the positiveness of £,
d, h, and Ap.
Now, let us consider the right hand side in (2.3.92): we have

/Q [ Ahﬁ(x) (F — @) + (e — a)'] [(H’ga ~up) + OR(IE G — uh)'] _

— /Q g (Hhu - u) (Hﬁu - Uh);l_\/ (ITF 4 — o) (TIFa — th-l_\g /\i(zz) (ki — ) (T — )’

(1) (2)

+5h/ Hhu—uh) .

J

—~
=

(4)

So far, we focus on the terms in the above summation. By standard arguments, we have for the

first one:
2
Ho) ’

. B kA
)< —2 [ |mka —a) (mka - ‘ <2 HH _
( ) ~ ming |)\h| / ‘ hu uh) W 1 nt g 4011
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where a; > 0 is a constant. Since the interpolant Hfl'& coincides with 4 on the nodes of the
mesh, an integration by parts of the second term, leads

() = [(ha— a)([Tfa — w)].

a

- / (54 — 2) (T4 — )’

2 2
- /(a _Iha) (I — wp)' < asdh H(H’ga - uh)’HO o
Q

‘Hhu—u

4042(5}7, ‘ 0

with ag > 0 constant. We then have, for the third term:

( < ﬁ(sh / ‘ Hk ~ Hhu _ Uh)

man )\h

<2 (o o

with a3 > 0 constant. Finally, we have for the last term:

-,
+4a3 H h'u Uh )

2

2
4) < 5hHH’“— ' HH’““—A'
(4) < a4dh ||(TTza Uh) 4@4 ) .
with a4 > 0 constant.
We thus have
* N B6h
TR G — wplls + ORI G — up)'[l5 + = < + 7 (D) (T 6 — up)?(b) <
B 1 Boh k- 2
<[ = Iy 4 — kg —
< (A*al 4o+ O ) I — alf + Shal(Tha - I3
B 2 p 1 1 ks 12
2 |k P L2 _
el + (a4 2 G ) I )13

For any o (j =1, ..,4) such that

and 1 *
sl v
« dop T 2

we get

gt Sk . B5h

T — w3 4 11 (T — ) I + 5 (1 +5y) W —u)*0) <

8 ) : o
< (Lot gz + ) I alf + shel@tha - a3

NCh—1
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< Ch™!|ga — allf + Cohl| (M — )13

< ChHﬂH%{l(Q),

where the last inequality follows from standard interpolation estimates for finite elements. Fi-
nally, using the fact that I1F4(b) = 1(b), we can conclude

¥l — wll? + SRl — un)' 13 + (i — up)?(b) <
< 20" [Tt — up 3 + 26K (T — wn)' 3 + (IT5d — up)*(0)
+2u° i — TIfall3 + 26R] (IWa — @)']3
<2 (4" + Ch™") |l — a3 + 206h] (e — o |3

< Ch”ﬂH%rl(Q),

and this concludes the proof. O
We can now consider the difference between the solution u of problem (2.3.84) and the solution
up, of problem (2.3.88). We can prove the following estimate.

Lemma 2.3.7 Let u and up, be the solutions of problems (2.3.84) and (2.3.87), respectively.
Assume that (2.3.41) is satisfied, that f, fn € L2(Q), A, A\p € L®(Q) and A(x), Ap(z) > A >0
for all x € Q. Then, the following error estimate holds

p*llw — up|[§ + Shllu’ —up[IF <
(2.3.94)

< ch(lifallo+€2) +C(If = fulld + 1A = Mnl3)

where C is a constant depending on B, Q, A\, § and k, but independent of h.

Proof. We have

p*llu — unllg + SRl — whllg < pllu—allg + 18 — unl§ + Ohllu’ — @'+ 0hl|a" —wj|IF (2.3.95)

where 4 is the solution of problem (2.3.88). The bound for the second and fourth term in the
right hand side is given by Lemma 2.3.7 above. We therefore focus on the other two terms. For
simplicity of notations, we set in the following
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g(z) =0 /aw % and gp(z):=p /: )\jzjy)' (2.3.96)

Since A(z), A\p(z) > A > 0 for all z € Q, the functions g(z) and gp, () are positive and monotone
increasing (0 = g(a) < g(z) < g(b) and 0 = gx(a) < gn(z) < gn(b), Vz € Q)
Up to a constant, we have by means of standard arguments

2

= a2 = / ‘g(egu)_egh(w))ﬂg(w) / e96) f(5) ds — e~ 9n(®) / e95) £, (s) ds| d
Q a

T T 2
</ (\s(e“’(” = @) et [Tt p(s) s — @ [Tem g o d5> ds
Q a .
2 T T
< / (Jete@ — e=9)|)” o + / (e—g(w) / IO f(s)ds — e-h(@) / e945) £, (5) d
Q Q a o
< 52 / ‘e—g(x) — e~ 9n(2) 2 dz +/ ‘e—g(m) _ o~ 0n(@) /x
B Q Q a
T T 2
/ / egh(S)(f(s) - fh(s))‘ ds) dx
< & / ‘e—g(m)—e—gh@) ? do + / (‘e—g(z) _ o on(®) / ’
< ; g i
x 2 x 2
+/ (e—yh(z)/ 1£(s)] ds) d$+/ (e—gh(z)/ eI) | £(s) — fa(s)] ds) dr
Q a 0 .
2 2
S 52 / ‘e*g(l‘) _ efgh(ib) dx +/ (‘e!](iﬂ) _ 6*gh(a:) / ‘e_q(s)f(s)‘ d3> dx
Q 0 Q

2 2
+/Q (egh(w)/ﬂ‘eg(S) — e9n() 17 (s)] ds) daH_/Q (egh(w)/ﬂegh(S) 17 (s) = fu(s)] ds) dr

=I+II+III+1IV.

_I_

2
)d:v

eg(s)f(s)‘ ds

+ ‘e*gh(w)

(e90) — egh(s))f(s)‘ ds + ‘e*gh(z)

2
eI £(s) ‘ ds) dz

e9(s) _ oan(s)

Focusing on the first term we immediately have

I<g? /Q 9(@) — gn(a)? da.

In order to estimate the terms II, III, and IV above, we observe that the bounds on g(z) and
grn(z) entail

819 Bl2]
1<e9@ < emng X 1 < e9n(@) < gming Ay
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Using the above estimate, as well as Jensen’s inequality, we obtain for the second term:

812 812
< [ fers® - @) 95 1712 do <1975 171 [ l9ta) - gn(o)? da.
Q Q

A direct application of Holder inequality provides for the third term

2
< [ (e —en @) isl,)" < 90116 [ lg(o) - @) da.
Q 0 Q

Finally, again using Jensen’s inequality in the last term, we get

®) 2 2619 ) , 2610] )
IV < /Q /Q ) |f(s) — fuls)] ds ) da < /Q 12017 = fulBde < 1925 (1f — full2

We therefore have

. 2810 2819/
lu —al§ < (£2+ Q1+ e > )IIfII%)/Q\g(w) —gn()|* dz + Qe > |If — full§-

Observing that
An(s) — Als)

foo - as= [ [* (505~ see) | a0 [ (o [ P o) o
(L) < [ (o [r-ra) <[22

we get, up to a constant

lu = a3 < 192265 (17 = ull + 1A= Mwli)- (2:3.97)

Since u and 4 are the solutions of equations (2.3.84) and (2.3.88), we have, up to a multiplicative
factor

2

|u' =@ ||0—/‘f In) -I-—()\u—)\hu) dz

2
< [V-nf s | (Aﬁ) i — dyuf? d

2
Sllf—fh||§+( B )/\m_xhum
Q

ming A ming Ap,

2
<lf =53+ [ %] ([or=ralapas+ [l apac).
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Since f}, is bounded in the L? norm, the same holds true for @, and this entails, owing to the
Holder inequality,

2
lu —a'|[§ < |If — Fullg + N (allg 11X = Xallg + IXn G lu — all3) - (2.3.98)
Gathering together estimates (2.3.90), (2.3.95), (2.3.97) and (2.3.98), the thesis follows. O

In a similar way it is not difficult to prove the corresponding result when the transport term is
negative for each = € €2, and the boundary condition is given in z = b.

Lemma 2.3.8 Let v and vy, be the solutions to problems

B ) :
—— v+ v = f(x) in Q = (a, b)
¢(=) (2.3.99)
v(b) =7

and
Find v, € V*(Q) such that

(2.3.100)
vp(b) = 1.
respectively, with 8 > 0, ((z), Cp(z) < <0 for each x € Q. Assume that
.| B 1 B6h¢, (z)
£ := min - = >0, 2.3.101
e = 0e0 | Gu(m) ~ 2 (o) ( )

and that f, fn, ¢, Cn € L®°(Q). Then, there exist a constant C depending on [, 6, ps, Q, (s
and k, but independent of h such that

xl|v = wnl[§ + OBl —wp [l <
(2.3.102)

< Ch( Il +72) +C(IF = Fall + 1€ = GulE).-

Error estimates for the primitive variables

In this section we derive an energy estimate for the FEM approximation through the charac-
teristic approach. Since our main attention focused on the spatial domain decomposition, we
give in this section an estimate of the difference between the exact solution at time ", U(t", z),
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and the approximate one stemming from the characteristic approach. Since Vi = u+ % ¢ and

Vo=u— % ¢, the inverse change of variable is

1 [y-1 2
p(t,z) = F1(V(t,z)) = Xy [T(Vl - V2)(t,$):|
U(t,z) = (2.3.103)

u(t, z) = Fy(V(t,z)) = %(V1 + Vo) (t 7).

Due to the nonlinearity of the change of variables, when we map the discretized (either in time or
in both time and space) characteristic variables back to the primitive ones, we do not obtain the
solution of a discretized version of the original problem in the primitive variables. However, we
expect these resulting functions to be a good approximation of the primitive variables. Under
these considerations, we denote with V" the solution, at time step m, of the single domain
problem discretized in time as in Section 2.3.1,

BV + APTIVE = gVl (2.3.104)

where A1 = diag(/\’ffl, /\gfl), as defined therein, and we define, with a little abuse of notation,

p"(z) = F1(V"(z))
U™ (z) := F(V"(x)) = (2.3.105)
u"(z) = Fp(V"*(2)),
and
ph(z) = F1(Vi(z))
Up(z) :== F(Vi(z)) = (2.3.106)
up(z) = Fo(Vy(z)).

where V}(z) is the fully discrete approximation of V(¢",z) via the Streamline Diffusion FEM.
We are in position to prove the following result.

Lemma 2.3.9 Let U(t",z) and V(t",z) be the solutions of problems (2.3.2) and (2.3.6) re-
spectively, at time t = t", and V}(z) be the solution of problem (2.3.58) at time step n. As-
sume that, U(t", z), V(t",z) € L*(Q), and that V" 1(z) € L®(Q). Assume moreover that
A* > |)\?_1($)|, |)\Z]_1(:v)| > X >0 (5=1,2), for all z € Q, that v < 3, and that (2.3.41) and
(2.3.101) are satisfied. Then, at time step n, the following error estimate holds

[un, o) - Ug(x)Hz <c|var,z - V"(x)Hz

+O |V i@) - Vit @)+ on (Hv;;—l(x)Hj g1 ()2 + |92<t”>|2) ,

where g1 (t") and g2(t™) are the boundary conditions in (2.3.3) for t = t", and where the constant
C may depend on 3, 8, 2, and A, but is independent of h.
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Proof. First of all, notice that, under our assumptions, the function V", solution of problem
(2.3.104), belongs to L?(). Then, since

[ve, ) - v, = [vien.0) - U@, + U2, 2) - R

we have to analyze both terms in the above summation. Concerning the first one, we observe
that, since v < 3, the function Fi(.) is Lipschitz continuous, with Lipschitz constant that we
indicate with L. We set, for simplicity of notations, C := [(y — 1)2/(16K7)]1/7_1, and we
obtain

2 |2

[ o0 - 03,0 = [ e Vi) = Vale )77 =€ [V3, (@) = Viala)] 7

2 12

<C? /Q ‘ Vi(t", z) — Vz(t”,x)]% — [Vii(z) = Vi ()] 1

<Lt [ |Va(t',2) = Valt® )] - Vi (o) - Vip(o)]|

<2022 (/Q ‘Vl(t",x)— Z,l(w)‘2+/ﬂ‘v2(t"’””)_Vzﬂ("")‘?)

<K |vie ) - Vi) + K [Vie) - Vi@ + K |[Vaer, o) - Vi)

2
+K |[Vi(@) - Via(@)] .
where we have set K := 4C2L%.

The linearity of Fy(.) allows a simpler treatment of the second term:

/Q‘UQ(t",J;)— /\ Vi) + Valt", )] ~ 5 [VEa(@) + VEa(@)] |
5%(/9 Vi(t",2) - 2,1(w)\2+/9\v2(t",m)— z,Q(x)D
1 2 1 2 1 )
< i e visol. s e vi
1 2
+3| Vi@ - Vi@

Therefore, there exists a constant K = max{1/2,4C? L%} such that

o - < (1o v+ o)



2.3. THE 1-D ISENTROPIC EULER EQUATION 45

pnder our assumptions, we are in the position to use the estimates of the previous section, with
f=BA~1V"~L and f}, as in (2.3.58), and we get from Lemma 2.3.7 and 2.3.8

[uer,2) - R Hz <c|varx) - V”(x)Hz

+0n ([} + 1P+l ) + 0 (-] +|

2
In— In—1
ot -5

where A"~ = (A1 DY) AR~ . = (Ap1 1,/\22 1). Owing to (2.3.7) and (2.3.81), we easily have

- - 2 2
=t =3 < e |[vete@) - vitt@)||
where C is the matrix in (2.3.7) and (2.3.81), whereas |||.|||? is any compatible matrix norm. We

have
€115 < IIV" 1||0,

as well as, for j = 1,2

_ _ 2 2
65l =#osmvim - g i < 47 (5 vyt =xmvig) |

0

/\n IAZJI
< f— ([v @[, m =500+ g, v = vazt|o)

Thus,

L Tl N

and this concludes the proof.
O

Remark 2.3.4 A few comments on Lemma 2.3.9 are in order. The assumption that the exact
solution belongs to L?(Q2), at time ¢ = ", in both primitive (U) and characteristic form (V),
is not that restrictive in the region of smooth flow. The bounds on the modulus of the time
discrete )\?_1, and fully discrete \?7!, j = 1,2, approximations of the eigenvalues u + ¢ and

h,j ?
u — ¢ are justified by the assumption we made on the flow to be subsonic. Finally, since for ideal
gases the ratio v ~ 5/3, the assumption on v is not restrictive either. O

An immediate corollary of the above Lemma, is the following.

Corollary 2.3.1 Assume that

Vi v o
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uniformly in h. Then, we have

ot -orf, < e v,

1
h
Remark 2.3.5 The above results are valid at time step n, and our attention was mainly paid
to the convergence of the iteration-by-subdomain procedure. Further work needs however to
be done in order to link the approximation error at the n-th time step to the initial condition
U(0, z). O

2.4 The complete 1-D Euler System

The flow of an ideal inviscid compressible polytropic gas in one space dimension is governed by
the complete one-dimensional Euler system,

oW n OF (W)
ot ox
Q = (a,b) being an interval, where the vector of conserved variables is V = (p, pu, pE), as usual

p being the density of the fluid, u its velocity, and F its energy per unit mass. The inviscid flux
vector F(W) can therefore be written as

=0 inQr:=Qx(0,7), (2.4.1)

F(W) = (pu, pu” + p, (pE + p)u).

For ideal polytropic gases, the pressure p and the internal energy e are related to the other
thermodynamic quantities p and 9 through the equations of state

p = Rpd, € =cyd,
where R > 0 is the difference between the specific heat at constant pressure cp > 0 and the
specific heat at constant volume cy > 0. These relations entail
b= (’7 - 1)p67

with v > 1 being as usual the ratio of specific heats. Moreover, from (TD2) we obtain

p = kp” exp(s/cy), (2.4.2)

for a suitable constant K > 0.
In a region of smooth flow, using (TD2) to express the derivatives of € in terms of s and p, the
quasi-linear form of (2.4.1) in terms of the vector of primitive variables U = (p, u, s) reads

%_‘; + 408 0 i Qr=ax0,7) (2.4.3)

or
where the matrix A is given by
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u p 0
AU):=| &/p u ps/p |,
0 0 w

where ¢ = \/g—ﬁ is the speed of sound, and p, := %.

The matrix A is diagonalizable with distinct real eigenvalues (thus system (2.4.3) is strictly
hyperbolic), namely A = L~'AL, where A = diag(\1, A2, \3), with

AM=u+4+c, l=u—c, A3=u

while L is the matrix of left eigenvectors, given by
c/p 1 ps/(pc)
Li=| —c/p 1 —ps/(pc)

0 0 1

For subsonic flows, in which the left endpoint of the interval is the upstream boundary, i.e. 0 <
u < ¢, the eigenvalues A1 and A3 are positive, while \s is negative, whereas if the flow is supersonic
(u > ¢ > 0), all the eigenvalues are positive. Since in this latter case the whole information travels
from the left endpoint to the right one, this would trivially reduce an iteration-by-subdomains
approach, based on Dirichlet transmission conditions, to a sequential solution of equation (2.4.3)
from the left end subdomain to the right end one. Thus, we make again the assumption that
the flow is subsonic.

In principle, since the matrix A is diagonalizable, system (2.4.3) can be transformed, using the
left eigenvectors of A, into a fully decoupled problem. Similarly to the isentropic case, this
can be accomplished introducing the characteristic variables, which are defined by means of the
differential form (see [62])

dY = LdU = (Sdp + du + 22ds, — dp + du — 22ds, ds), (2.4.4)
P pc P pc
so that system (2.4.3) becomes
oY oY
o pAT— =0 i = Q x (0,T
and splits into three scalar equations
Y ; oY ; . .
B—t] +Aj8—; =0 inQr:=Qx(0,T), j=1,23,

coupled only through the boundary conditions. This entails that, for 7 = 1,2, 3, the component
Y is constant along the characteristic curve

Cj = {(z;(t), 1) | z3(t) = Aj} -
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Unfortunately, though the matrix A is diagonalizable, the field (2.4.4) is not irrotational, and
the characteristic variables cannot be explicitly determined, except for the entropy s, which is
constant along the characteristic curve Cy = {(z(t),t) | 2'(t) = u}. As a clear consequence,
we are not able to completely decouple system (2.4.3) into a system of scalar equations as in
the isentropic case, and we have to compensate the lack of knowledge on the characteristic
variables by choosing other variables to fulfill the interface continuity requirements in a domain
decomposition setting.

A first opportunity, under the assumption that no eigenvalue of A is zero, is to enforce the
continuity on the interface of the variables

Z:LU:(u+c+&s,u—c—&s,s), (2.4.5)
pc pc

and iterate accordingly, even if they are not characteristic variables (we can call them pseudo-
characteristic variables). This amounts to consider the functions Z;, Zy, Zj3 associated with
the eigenvalues u + ¢, u — ¢ and u respectively. In the subsonic case, the interface conditions
in the iterative process become (subindices denote components, while superindices denote the
subdomain and the iteration step)

Z%,k—f—l _ Zi’k
Zé’kﬂ = Zg’k and
2k+1 _ 1k
Z; =127

since the characteristic curve Cs, associated with the eigenvalue u — ¢ is incoming in €2y, while
the characteristic curves C; and Cs, associated with the eigenvalues u + ¢ and u respectively,
are incoming in {J9. We are therefore prescribing for each subdomain a boundary condition at
the interface for each variable associated to an incoming characteristic line.

An iteration by subdomain procedure of Dirichlet-Dirichlet type based on these transmission
conditions for the problem continuous in space arising from a semi-implicit time discretisation
can be shown to converge, provided the inverse of the time step § = 1/At is sufficiently large.
Another opportunity relies on the Riemann invariants for the isentropic case: in the polytropic
case the functions Ry and R_, defined in (2.3.5), are no longer constant along the characteristic
lines C; = {(z(t),t)|2'(t) = A}, 7 = 1,2, nevertheless we can enforce on the interface the
continuity of a set of variables (we can call them pseudo-Riemann invariants), defined by the
Riemann invariants of the isentropic case and the entropy s, which is the only characteristic
variable that can be explicitly determined from (2.4.4), namely

V:=(R:,R_,s), (2.4.6)

associated with the eigenvalues u + ¢, u — ¢ and u respectively.
In both cases, it is straightforward to see that the continuity across the interface of the variables
Z or V entails the continuity of the inviscid flux, given in (2.2.3).

Remark 2.4.1 When considering discretisation, at the interface point zr one has to enforce
three additional conditions (besides the other three related to Z or V'), in order to recover all the
six interface variables, and this can be accomplished by imposing to the variables U to satisfy
equation (2.4.3) at the interface point zp for any outgoing component. If the flow is subsonic, we
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have to impose two additional conditions for 2; and one for 5. An opportunity is to multiply
equation (2.4.3) on the left by the matrix L and consider the components corresponding to the
outgoing eigenvectors. Observing that, for r = 1,2, 3,

(L [U, + A(U)U,] ) - (LUt n LAUz>T _ (LUt + ALUw)T =L . (U, + A, U],

where L(") denotes the 7-th column of the matrix L, this amounts to take, for any outgoing
component, the scalar product at the interface point zr between the left eigenvectors of A (17,
r =1,2,3), and the equation. Thus, for sake of simplicity, we enforce the equations

|:lr- (8U1 + A @)] (-TI‘at) =0 forr=1,3

ot " Oz
(2.4.7)
oU, 0U,
2 . _ —_— =

with

1= (5,1,&), 2= (—5,1,—&), 1?:=(0,0,1).
p- - pc p pc

Notice that, in the case of an hyperbolic system with constant coefficients, equations (2.4.7)
above correspond to the natural choice of imposing the equation for the outgoing characteristic
variable to be satisfied at the interface point zp. Equations (2.4.7) can therefore be seen as a
direct generalization of the constant coeflicients case and are sometimes called the compatibility
equations. 0

Now, let us consider what happens in the framework of this latter opportunity. Owing to the
diagonalisation of A, we can write (2.4.3) as

LU, + ALU, = 0. (2.4.8)

We cannot actually decouple system (2.4.8) into a system of scalar equations, but we can evaluate
the difference between the time derivative of the variables V and the quantity LU; as well as
the difference between the space derivative of V and LU,. Let us set

Rt = Vt - LUt
(2.4.9)
R*.=V, - LU,
So far, owing to (2.4.9), equation (2.4.8) becomes
V;+ AV, = R'+ AR? (2.4.10)

Noticing that such a formulation for equation (2.4.3) can be achieved with any change of vari-
ables, let us see what happens with our choice. We have
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[ C Dbs ] i 7
—pt+up + —5¢ —pg t Uy + —38;
pc
LU= | _Sp, 4u— s, |, and LU= | _E, 4+, Psg (2.4.11)
p pc p pc
| St ] | Sz ]
as well as
- 2 - _ 2 _
Ut + — 1Ct Ug + — 105C
_ 2 — 2
Vi=1 4 - ¢ | and V=1 e |- (2.4.12)
-1 v — 1
L St i L Sx i

i 1 ps T r 1 pg 7
1St ———3S8z
v—1pc v—1pc
R=| __1 P |, and RP=| __1 ps_ (2.4.13)
7—1pct y—1pc*
L 0 | i 0 |

Remark 2.4.2 As we could have expected since the entropy s is effectively a Riemann invariant,
the third components of the " rests” R! and R” are zero. Moreover, since the only difference with
respect to the isentropic case is that the entropy is no longer constant, the first two components
of R! and R” depend only on s; and s, respectively. O

Setting C, := 1/(y — 1), system (2.4.10) reads

)
(Vl)t + >‘1(V1)a; = Cﬁfi[st + Alsz]
1 (V2)i + X (Va)e = —07%[375 + A2Syz] (2.4.14)
[ (V3)e +A3(V3)e = 0

In our framework V3 = s; using (2.4.14)3 and taking into account the fact that A\; — A3 = ¢ as
well as Ay — A3 = —c¢, we finally get the system
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(Vl)t +)‘1(V1)m = K’y(v3)w
(Vz)t + /\2(V2)w = K,Y(VQ,)w (2.4.15)

(Va)e +A3(Vs)z = 0
where we have set K, := C,(ps/p), which is completely equivalent to (2.4.3).

2.4.1 Domain Decomposition

Letting

K :=

O O O
o O O

K’Y
K, (2.4.16)
0

we can write system (2.4.15) into a matrix form:

V, + TV, = 0. (2.4.17)
where we have set T := A — K. Owing again to (2.3.7), system (2.4.17) reads

2
Vl Z Clej 0 a(V1 — V2)2 Vl 0
j=1
Vo, + 2 Vs = 0 (2.4.18)
0 Z CQjVj a(V1 — V2)2
\% 7=l \% 0
M 0 0 (V1 +Vy)/2 L
where .
o = —7 .
16Cy 7y

So far, letting as usual a € (a,b) and setting Q; := (a, @) as well as Qy := («, b), we introduce a
domain decomposition method to solve system (2.4.17) where we enforce the continuity on the
interface of the variables V. It reads

V] +T)VL=0  inQ; x(0,7)
V24 TAV2=0  inQyx(0,7) (2.4.19)

Vi(a,t) = V(a,t) Vte (0,T),

considered with the occurring boundary conditions.

We can advance in time system (2.4.19) in order to obtain a problem continuous in space: so
far, two rather different situations may occur, according to the boundary condition on the left
endpoint if the interval x = a.
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Case 1: s(a) known

If the value of the entropy in £ = a can be effectively determined, which is the case of physical
boundary conditions among the following ones

u(a) pla)

s(a) s(a),
(notice that the case when p(a) and p(a) are given, owing to (2.4.2), belongs to such a frame-
work), we can advance in time system (2.4.19) by means of a semi-implicit method, obtaining

(2.4.20)

pVLn+l L prylntl - gyln — fln in Oy
BVt L pny2etl — gy2n — ¢2n ip Q, (2.4.21)

Vl,n-i—l(a) — V2’n+1(04),

where § = 1/At is the inverse of the time step, and the boundary conditions must be satisfied
at time step n + 1..

At each time step, the third equation is completely decoupled from the others, so it can be
solved once for all in the whole spatial domain 2. This guarantees the continuity of V3 on the
interface. Moreover, it can be used in the right hand side in the first two equations, and we get
a reduced system. Indeed, defining in each subdomain the two dimensional vector functions

il [ K, (V3™ ), + "]
Fonrl .= in Q4
| K, (V3™ )+ £

(2.4.22)
- 2,n+1 2n
K (V3" e + 11"
F2ntl .= in Qo,
2,n+1 2,
| K (V3" )+ "
and dropping any index referring to the time discretisation, we get the system
BV + AV, = F! in O
BV? + AVZ = F? in Qo (2.4.23)

Vi(e) = V*(a),

where we have set V' := (Vi, V%), i = 1,2, and A := diag (A1, \2), and where the remaining
boundary conditions are only the ones for V; and V.

So far, at each time step, we reduce ourselves to the isentropic case with an additional forcing
term, given by the derivative of the entropy at the same time step. An iteration-by-subdomains
procedure can thus be used to solve the coupled problem, and its convergence analysis is exactly
the same as in the case of isentropic flows.
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Case 2: s(a) unknown

If the value of the entropy in z = a cannot be determined, the third equation in (2.4.15) is no
longer decoupled from the others, and cannot be used as right hand side in the previous ones.
We can therefore choose a different type of time discretization, which is almost explicit

VI L APV = VI L K-V = Y in 0y
BVEMTL L APYIREL — gy2n L KL VER = 20 g Q, (2.4.24)

Vl,n—l—l (Ot) — V2,n—|—1 (Oé),

where K is the matrix in (2.4.16), while 8 = 1/At is the inverse of the time step, and boundary
conditions have to be satisfied at time step n + 1. So far, at each time step we use in the right
hand side of the first two equations the space derivative of the entropy at the previous one, but
a few considerations are in order.

Since we have at both (n + 1)-th and n-th step spatial derivatives of the same order, such a
discretisation may suffer of serious instabilities. The stability of this scheme is at the moment
an open problem and will not be discussed here. At the discrete level, however, this amounts
to the necessity of taking into account a CFL-type condition, in order to overcome this stability
drawback.

An iteration by subdomains procedure can then be introduced to solve, at each time step, system
(2.4.24). Dropping any index referring to time discretization, at the (k + 1)-th iteration step,
the solutions VI#+1 and V2k+1 gatisfy

(2.4.25)

V%]H_l(a) _ V}’k(a), V;’IH—I(O{) — ij’k(()é) j=13.

The resulting system is diagonal, and a convergence analysis for the problem discretized in
time but continuous in space can be accomplished, following the lines of the isentropic case:
the iteration-by-subdomains algorithm can be proved to converge under some restriction on the
time step.

Theorem 2.4.1 The iteration-by-subdomains method in (2.4.25) is convergent provided [ is
sufficiently large.

Proof. We define, for each subdomain, the error vector

Ei,k .— VZ _ Vi,k

for ¢+ = 1,2, which satisfies the following error equation

BEF+L L AR — g inQ, i=1,2
(2.4.26)

E%,k—f—l(a) — E}’k(a), E;’k+1(04) — E2,k(a) ] = 1, 3,
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Physical Boundary Conditions | Boundary Conditions for the Error Equation

B} () + B} () = 0
p(a), u(a), u(b B} (a) = Bf(a) - %mfﬂ‘l(a) (e @r2ev — gsar/zer)

E¥(b) + EE(b) =0

B (a) + B (a) = 0
pla), u(a), p(b) B (o) = Bla) — = VR (@) (O — o)

Eg(b) = Elf(b) - % Kyp7=1(b) (esk(b)/2cv _ es(b)/2cv)

Table 2.1: Boundary Conditions for the Error Equation in Case 2.

with boundary conditions depending on the ones for the primitive variables and are reported in
Table 2.1. Owing to (2.4.26), we define the interface error at the (k + 1)-th iteration step as

E§+1 — (Eiak-f-l(a), Eg’kﬂ(a), Eé’kﬂ(a)) )

The solutions of system (2.4.26) are given by

i E}’kﬂ(a) 67,3@(1)(;5) 7 r Ei’k(a) efﬁ{)@)(w) y
El’k+1(:c) _ E;,k(a) e_,a\p(l)(x) EZ,k+1(x) _ Eg’kﬂ(b) 6—,3\11(2)(z)
| By () e EUO | By (a)e 00

where we have set

W e [ Wy .e [ =W [ W
W= [t [ 0= G nh @)= 5

Recalling that, from the subsonic assumption, A\;(z) > 0, A2(z) < 0 and A3(z) > 0 for all z € Q,
and proceeding as in the previous section, we immediately have

2 2
[E%,k+1(a)] _ [Eg,k(a)] 672,3[{>(1)(a)+\11(1)(a)]’
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and a direct application of Lagrange’s theorem provides

2/ Kyp'—
EX(q) — BV (a) = 5 (“Yﬂ €O/QCVE1 K+ (g)
vy

with & € [min {s(a), s*™(a)}, max {s(a), s*™(a)}], and this entails
[Eé,k—kl(a)]Q _ [Cl(a)]z [EIZC(O‘)]Q 672,3[5(1)((1)-1—‘1/(1)(0,)]

__Cvl=l) /20y

VEvp'~1(a)

where we have set Cy(a) :=

If u(b) is given, we have
2 2
[Eg,k+1(a)] _ [Ei’k(a)] e—2,3[<I>(2)(b)+\IJ(2)(a)],

whereas, if p(b) is given, we have from Lagrange’s theorem

EI{?‘Fl(b) o ElQC-l—l( ) — 2 V K(;-yp’)’ 61/QCV Ek—|—1(b)
Cy

where &, € [min {s(b),s**1(b)} , max {s(b),s**1(b)}], which implies

(B2 (@)]” < [B1¥(0)]

! 28O I @] L oy (b)]2 [E%,”“(a)]2 e 2B[ED O+ ()]

/ 1
where we have set Co(b) := — 015757_ ef1/2Cv At each iteration step, we thus have, if u(b)
is given,

[ = K1) [BE @]+ Ka(8) B2 ()]
where we have set

K1(8) = e PIOOIEI@] iy (g) i [P V@OW] [0y () o P EV O],

whereas, if p(b) is given,

2

B <Ka(8) [BE )]+ Ka8) [BRH @)+ Ks(8) [BE (o)

where
IC3(B) = [Co(b))? e 2P O+¥P ()]

Noticing that £1(8) < 1, the iterative mapping on the interface is a contraction provided g is
large enough to have

max {K»(8), K3(8)} < 1,

i.e., provided
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log [W] log [W]

B> max) = W)+ e0@] T 2[¥0(0) +2O0)]

With an argument similar to the one in the previous section, we can show that, for each = € (,
the error EF(z) is controlled, in the Euclidean norm, by the error on the interface, ensuring
convergence in the whole spatial domain and concluding the proof. 0

Remark 2.4.3 The above results suffers evidently of a couple of severe drawbacks. First of all,
no stability analysis has been made for the time integration scheme, and the procedure could
blow up. Secondly, the resulting algorithm is proved to converge if 3 satisfies a lower bound: this
can actually be a quite restrictive upper bound on the time step At, which might be forced to
be very close to zero, causing an unsustenable increase of the computational cost at the discrete
level. O

2.5 Three dimensional flows

In this last section we present some algorithm proposed in literature for compressible flows in the
three dimensional space. The three-dimensional Euler equations in the region of smooth flow,
can be written in quasi-linear form,with respect to the primitive variables U = (p, u1, u2, us, s),

as
3

ou .
=+ kz_lAkaU =0 inQx(0,7), (2.5.1)
where
U1 p 0 0 0 Ug 0 p O 0
SAlp ur 0 0 ps/p 0 w 0 O 0
Aq = 0 0 w O 0 , Ag:=1¢c%/p 0 wy 0 ps/p |,
0 0 0 w 0 0 0 0 w 0
0 0O 0 O U1 0 0 0 O Ug
and

U3 0 0 »p 0
0 ug 0 0 0
As:=| 0 0 w3 0 0 |,
AElp 0 0 wuz ps/p
0 0O 0 O U3

where we have set ¢ := ,/g—ﬁ and p, :=

op
%.
As usual, we partition the domain € into two non-overlapping subdomains ; and €, and
we denote with I' the interface. For any point x € I' and any time ¢ € (0,7"), we denote by
C = C(n) the characteristic matrix C' = ), n; Ay, n being the unit vector normal to I' directed

from Q5 to Q9. The eigenvalues of C' are given by

AMl=u'n+e¢ Ad=u-n—-c¢ A345=u-n, (2.5.2)
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and, since they are real but not distinct, system (2.5.1) is not strictly hyperbolic. We finally,
denote by L the matrix of the left eigenvectors of C, which is given by

C Ds
- ny n2 ng —
P pc
C Ds
—; n1 no ns _E
L := 2.5.3
0 o o o E (2.5.3)
0 71(2) 7'2(2) T?SQ) 1
—7'1(1) — 7'1(2) —7'2(1) — 7'2(2) —T?Sl) — T3(2) 1

where 7)) and 72 are two unit orthogonal vectors, spanning the plane orthogonal to n.
Assuming that at time ¢ the interface I is not characteristic at point x, namely, that no eigenvalue
is zero at x, A. Quarteroni and A. Valli proposed in [89] matching conditions which are naturally
extrapolated from the one-dimensional case. The idea is thus to enforce the continuity of the
‘characteristic’ variables LU, and reads as follows

5 5
Y LyUig=> LUy, atxel, r=1,..,5. (2.5.4)
g=1 g=1

It can be easily verified that, as a consequence of (2.5.4), the interface conditions (2.2.3) are
satisfied.

In order to have well-posed problems, the iteration-by-subdomain algorithm used for solving
the multi-domain problem alternates the solution of the Euler equations (2.5.1) in ©; and in
g, with the Dirichlet boundary condition (2.5.4) imposed at a point x on I' for all indices r
corresponding to incoming characteristic lines. For instance, if we assume that at time ¢ the
interface point x is an outflow point for ; and that the flow is subsonic (namely, 0 < u-n < ¢,
with n directed from ©; to €2), one has to impose at the (m + 1)-th iteration

5 5
D Ly UT =Y Ly Uy,  atxeTl,
q=1 q=1

and

5 5
> Ly Ugdt =) Ly UT,  atxel, k=1,3,45
g=1 qg=1

When a numerical discretisation is applied, the compatibility equations, described in Remark
2.4.1 have to be imposed at x. Proceeding as in (2.4.7), in each subdomain €2;, ¢ = 1,2, they
are obtained by taking the scalar product of (2.5.1) (stated for UP*! instead of U) with the
k-th left eigenvector 1¥, k = 1,...,5, but only for those values of k for which the eigenvalue A
is associated with a characteristic line that is directed outward from €; at x.

The same kind of approach has been proposed by V. Dolean et al. in [40], where they consider
the quasi-linear form of the Euler system (2.5.1) in the unknowns U= (p,u1,u2,us,p), where
the Jacobian matrices Ay (k =1,..,3) are given by
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uy p 0 0 0 u 0 p 0 0
0 wp 0 0 1/p 0 w 0 O 0
A=]10 0 w 0 0 |, Ao:=]|0 0 wu 0 1/p|,
0 0 0 w O 0 0 0 w O
0 p2 0 0 wu 0 0 pc? 0
and
ug 0 0 p 0
0 w3 0 O 0
As:=]1 0 0 w3 O 0
0 0 0 wug 1/p
0 0 0 pc? g

Considering a general partitioning of the domain Q = (J,Q (K = 1,..,N) with interfaces
I'y; = 09, N0CY, the idea is the following: integrate in time system (2.5.1) by a backward Euler
implicit scheme, involving a linearisation of the flux functions in the neighborhood of a constant
state (i.e. freeze the coefficients), then decompose the operator Ay; = Zs’nzl(nkj)m/lm, where
ny; is the unit vector normal to I'y; directed from €, to €2, into its positive and negative part,

Arj = Al + Ay

Owing to the diagonalisation of Ay;, one has .A,jfj = TAij_l, where A,jfj = diag ([)\ﬁj]i)lsnsg)
with [)\ﬁj I = %()\ﬁj + |)\ﬁj [). We recall that, on the interface I'y;, the eigenvalues of Ay; are
given by )\lfj =u-ng +c /\Izcj =u-ng —c Agil,f’) = u - ng;.

So far, V. Dolean et al. propose an additive Schwarz algorithm without overlap that reads as

follows.

Given U} (k=1,..,N), find Uy, such that
EfJ'ZH'l =f in Q
ALUTH = 45U on Ty,
A Upth = AU on Ty,
where the operator L is defined as

- 1
LU = —

Ath + A10,U + A20,U + A30,0.

In [40] a convergence analysis of the above algorithm is performed via a Fourier analysis for a
two-domain decomposition in both the two- and three-dimensional cases, and some numerical
results are given (see also [39]).
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2.6 Conclusions

We proposed an iteration-by-subdomain algorithm with interface matching conditions of Dirich-
let /Dirichlet type, and we proved its convergence, for both the time discrete and the fully discrete
problem, in the case of one dimensional isentropic flows. Convergence is achieved for any choice
of the time step At in the time marching scheme, and independently of the mesh parameter
h. Aside the fact that ideal fluids are not real ones, showing possibly a dramatically different
behavior, a few more comments are in order.

Firstly, we considered isentropic flows, which is not such a restrictive assumption, since this
is a good approximation of several phenomena occurring in nature. Then, the result has been
obtained for the quasi-linear form of Euler system, thus the convergence of the iterative algorithm
is ensured only in the region of smooth flow. Since it is well known that the Euler system
develops shocks in a finite time, further work needs to be done to extend this result also in the
presence of shocks or rarefaction waves. Finally, a convergence result for the quasi-linear system
in higher dimensions without freezing the coefficients is not yet available, and it appears rather
complicated.

The result obtained is clearly not optimal, nevertheless it is an attempt to give a theoretical
convergence analysis for a domain decomposition approach to the Euler system, a task that, to
our knowledge, hasn’t been faced yet.
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Chapter 3

s ubstructuring Methods for
Advection-Diffusion Equations

This chapter deals with a class of elliptic equations that are not symmetric, due to the presence
of first order terms in the differential operator. These equations describe advection-diffusion
processes which typically arise in fluid mechanics or in the modeling of a wide range of physical
phenomena. The problem is important in itself in both engineering and environmental sciences,
and this is for instance the case of the diffusion and transport of polluant in air and water, or the
transport of electrons in semiconductor devices, and it is a key ingredient in the Navier-Stokes
equations. We will focus our attention here on the case in which the transport phenomena,
governed by the advective terms, are dominant with respect to the diffusive ones, driven by the
principal second-order part of the operator, which is the case of the majority of situations of
practical interest.

We investigate the solution of advection-diffusion equations in the framework of iterative sub-
structuring methods with non-ovelapping multi-domain partitions (for overlapping partitions
see for instance the works by X.-C. Cai and O. B. Widlund - [25], [26], [27], and [98]- and
M. Garbey [52]). Such methods based on transmission conditions at the interface are very ef-
fective when the diffusive part of the operator is more relevant, whereas when the problem is
convection-dominated the natural interface conditions may generate instabilities.

Many scientists worked in the past years on this subject, and, in the first part of the chapter,
we address a review of the principal substructuring methods appeared in literature: we describe
adaptive methods, originally introduced by C. Carlenzoli and A. Quarteroni in [28], and futherly
developed by L. Trotta [97] and F. Gastaldi, L. Gastaldi and A. Quarteroni [55], coercive meth-
ods, which have been studied by A. Alonso, L. Trotta and A. Valli in [6], by F. Nataf and F.
Rogier in [81], and by A. Auge, G. Lube and F.Otto in [13], and the Robin/Robin method, firstly
introduced, by Y. Achdou and F. Nataf in [3], as an extension to non-symmetric problems of the
Neumann/Neumann preconditioner for the Steklov-Poincaré interface equation. In the second
part of the chapter, we present a work done in collaboration with P. Le Tallec and F. Nataf at
CMAP of the Ecole Polytechnique in Paris: we consider an advection-diffusion problem with

61
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discontinuous viscosity coefficient, a kind of problem which may arise, for instance, from the
modeling of transport and diffusion of a species through an heterogeneous medium, where the
different viscosity coefficients depend on the physical properties of different materials present
in each subregion of the computational domain. We propose and analyze a preconditioner of
Robin/Robin type for the solution of the associated Steklov-Poincaré interface equation. In the
last part of the chapter, some numerical results in three dimensions are presented. The original
results of this section can also be found in [57] and, in shorter form, in [58].

3.1 Advection-diffusion problems and their multi-domain for-
mulation

Let Q be a bounded domain in R? (with d = 2,3). We consider in Q the boundary value
problem:

Lyu:= —vAu+div(bu)+au =f inQ
(3.1.1)
u =0 on 09,

where v > 0 is a diffusion coefficient, b = b(x) is a given flow field, and a = a(x) is a reaction
term: when a is constant, it may arise from an implicit time discretization of the evolution
problem and represent the inverse of the time step, namely a = 1/At. Finally, f = f(x)
represents a given body force.

We consider the domain 2 partitioned into two non-overlapping open subdomains 2; and €,
we define the interface as

' =001 NNy,

we denote with n; (x) and ny(x) the unit vectors normal to 99, and 9 respectively, pointing
outwards, and we set n(x) := nj(x) for x € I'. We finally denote with u;, i = 1,2, the restrictions
of the solution u of problem (3.1.1) to each subdomain ;.

With these positions, problem (3.1.1) can be equivalently reformulated in multidomain form,
with different suitable choices of matching conditions at the interface.

An immediate choice consists in enforcing the continuity across I' of the solution u and of its
normal derivative g—g. This is called the Dirichlet/Neumann (DN) formulation, which reads as
follows.

For ¢ = 1,2, find u; = u|q; such that

/

L,,ui = f in Qi, 1= 1,2
u; =0 on 08; NN, 1=1,2
3 (3.1.2)
Ul = U2 onI'
8u1 BUQ T
V——=V— O0Onlt.
\  On on
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Assuming that the interface I' is Lipschitz, taking into account the local direction of the flow
field b(x), we partition it as T' = T'™® U T°U U T, with

s :={xeTl|b(x) n(x) <0}
rou .= {x € | b(x) - n(x) > 0} (3.1.3)
% :={xel|b(x) n(x)=0}.

When the subset I'’ has zero surface measure, we can replace the Dirichlet matching condition
(3.1.2)3 with a Robin type one, which arises from an alternative weak formulation of problem
(3.1.1), where also the convective term is integrated by parts. We obtain the following equivalent
Robin/Neumann (RN) formulation.

For i = 1,2, find u; = u|q, such that

( Lyu; = f inQ;, 1=1,2
u; =0 on 0Q; NIN, i=1,2
4 (3.1.4)
I/%—b-nulzl/%—b-an onT
on on
I/%_I/% on I
\ " dn  On '

Another set of interface conditions that can be used also when I'? has positive surface measure
is obtained by simply replacing the term b - nu; in (3.1.4)3 with Su; (i = 1,2), where § is a
given function in L*°(T") such that 8 # 0 almost everywhere in I'. The associated multi-domain
formulation is the so-called 3-Robin/Neumann (RgN) formulation, which reads as follows.

For ¢+ = 1,2, find u; = u|q; such that

( Luuz:f in Qi; ’i:1,2
u; =0 on 0; NN, i=1,2
{ (3.1.5)
I/%—ﬁulzll%—ﬂ’U,Q onT'
on on
I/% = 1/% onT
( " on  On )

Let us notice that any of the choices above for the matching conditions on the interface can
be rigorously justified. Moreover, although their equivalence can be proved (see F. Gastaldi et
al. [55]), each set of conditions DN, RN, and RgN generates different iterative substructuring
schemes between ; and 2. Clearly, the choice of the matching conditions depends heavily on
the data and the structure of the problem one is focusing on.
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3.1.1 Variational formulation

Problem (3.1.1) can be put in variational form, by introducing the bilinear form associated with
the operator L, which is defined, for each w,v € H*(Q), as

a®(w,v) == / [vVwVv + div (bw)v + awv] . (3.1.6)
Q

which can be easily verified to be continuous in H*(2). The weak formulation of problem (3.1.1)
is thus

Find v € H}(Q) : a®(u,v) = (f,v)q, Yve HY(Q) (3.1.7)

where (.,.)q denotes the inner product in L?(€2).
When dealing with existence and uniqueness analysis of problem (3.1.7) it is usual to assume
that there exists p > 0 such that

%div b(x)+a(x) >pu>0 (3.1.8)

for almost every x € . Under this assumption, the bilinear form a®(.,.) is coercive, and the
well-known Lax-Milgram Lemma ensures that there exists a unique solution of problem (3.1.7)
(for more details see for instance [88]).

The multidomain formulations presented in differential form in the previous section can be easily
rewritten in a weak form, and to this aim we define, for 1 = 1,2, the spaces

Vi == {v; € H' () | vijpnnon; = 0} (3.1.9)

If we introduce the restricted bilinear forms
a(wi, v;) == [vVw;Vv; + div (bw;)v; + aw;v;] . (3.1.10)
Q;
it can be shown that problem (3.1.7) is equivalent to the following multi-domain problem:

Find u; € Vi, ug € V5 such that

( Cl(l)(’Uq,’Ul) = (fa Ul)Ql vvl € H&(Ql)
Up = U2 onT
Y aS(uz,v) = (f,02)0, Vug € HY () (3.1.11)
2 2
Zag(%nzﬂ) = Z(faRi,“)m Vi € A,
v =1 i=1

where A = Trr(H}(S2)), is the space of traces on T' of functions belonging to Hi (), and R;u
denotes any possible extension of y to €;. This is the weak form of the Dirichlet/Neumann
formulation.
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If we integrate by parts also the convective term in a%(.,.), we derive an alternative weak
formulation which uses the following bilinear form:

aft(w,v) == / [vVwVv —wb - Vv + awv]. (3.1.12)
Q

When I'? has zero surface measure, we consider the restrictions of af?(.,.) to Q;, for i = 1,2,
aZR(wi,vi) = / [vVw;Vv; — w;b - Vv; + aw;v;] . (3.1.13)
Q;

Notice that, for i = 1,2, the bilinear forms a)(.,.) and af(.,.) coincide on the space H{ (),
since we have

aft(wi, v;) = a(w;, v;) — / b - n;w;v;,
I

for all w;,v; € V;, and this entails well-posedeness for the Robin/Neumann formulation (3.1.4),
whose weak form reads

Find u; € V1, ug € V5 such that

( a{z(ula’ul) = (favl)fh V'UI € H&(Ql)

Za ui, Ript) Z(fa wa, VYu €A,

! (3.1.14)
af (uz,v2) = (f,v2)0, Yy € HE(2)

Za ui, Rips) Z(f, e, Vu€A.

\ =1 =

Finally, for any type of I'?, the variational form of the 8-Robin/Neumann formulation reads:

Find u; € V1, ug € V5 such that

( a’{z(ulavl) = (fa Ul)Q1 VUl € H&(Ql)
2 2
> al (ui, Rip) = > (f, Rim)a, Vi € A,
1=1 i=1
) (3.1.15)
Clg(UQ,’UQ) = (fa IU2)QQ Yuy € H&(QQ)
2 2
Za ui, R Z(f, wa; YueA.

\ =1 =1

B

where the bilinear form a;

(.,.) (i =1,2) is defined, for each w;,v; € V;, as
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aiﬂ(wi,vi) = al(w;, v;) + /(b -n — fB)n - nw;v;. (3.1.16)
r

3.2 Iterative Substructuring Methods

We face here the task of solving the multi-domain problems, described in the previous section,
by iterative methods. The key idea is the following: given an initial guess u{ and u9 for the
restriction of the solution u of (3.1.1) to ©; and Q9 respectively, we build a sequence of sub-
problems in €4 and €y with boundary conditions on the interface I' that are either of Dirichlet,
Neumann or Robin type, according to the formulation we choose, generating two sequences of
functions {u¥} and {u£}, which will converge to u; and uy. This approach based on transmission
conditions at the interface is usually referred to as Iterative Substructuring.

We present in the following three types of iterative methods: we firstly deal with methods that,
considering the fact that for strongly dominant convection the problem is almost hyperbolic,
take into account the direction of the flow field across the interface (we refer to these methods
as adaptive). The second family of methods are based on bilinear forms which are coercive in
each subdomain (we refer to these methods as coercive). Finally, the third family of methods
we consider here seeks for a direct parallel preconditioning of the Steklov-Poincaré interface
equation. Among them, the first two family of procedures are sequential, whereas the third one
is naturally parallel. Since this is the most desirable feature when seeking for a decomposition
into a great number of subdomains, also the first two family of methods can be written in parallel.
However, their sequential nature turns out to generate a redundant sequence of iterate solutions,
which contains as a subsequence the solutions stemming from the sequential procedure.

3.2.1 Adaptive Methods: ADN, ARN, ARgN

The difficulties arising when the viscosity coefficient v is small can be heuristically explained in
the limiting situation as ¥ — 07. When considering a subproblem in either Q; or Qs, with a
boundary condition at the interface, this should be consistent with the hyperbolic limit. This
amounts to take into account the local direction of the characteristic curves at the interface, and
to impose a Neumann boundary condition on the outflow part of the interface and a Dirichlet
boundary condition on the inflow part.

The idea is to define a sequence {u¥,uf}, where u¥ satisfies L,uf = f in Q;, together with
suitable boundary conditions at the interface I" that depend on the local direction of the flow
field b(x). These algorithms are thus called adaptive, because the role played by the conditions
on I' varies according to the flow conditions, and we have Adaptive Dirichlet/Neumann (ADN),
Adaptive Robin/Neumann, or Adaptive S-Robin/Neumann algorithms, depending on the choice
of interface conditions. Such methods have been proposed, and motivated by the fact that, in the
one-dimensional case with a = 0, the convergence rate of the algorithm is of order exp(—b/v),
by Carlenzoli and Quarteroni in [28], then further developed by Trotta [97] and F. Gastaldi et
al. [55]

Recalling that the interface can be partitioned as I' = T Uy T°" U0, with It T°ut and I'°
defined as in (3.1.3), in the rest of the section we present these adaptive algorithms.
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The Adaptive Dirichlet/Neumann method

The Adaptive Dirichlet/Neumann algorithm enforces on each subdomain a Dirichlet condition
on the corresponding inflow part of the interface I' and a Neumann condition on the outflow
part. On T'°, where the flux is parallel to the interface, one can either enforce the Dirichlet or
the Neumann condition. However, once this choice is made for one domain, one has to impose
on the complementary domain the condition which has not been enforced on the other one. Its
differential form reads as follows.

Given u? in €;, solve for each &k > 0

( ,,u]fH f in Ql
u’f“ =0 on 091 N AN
< . 3.2.1
u’f"'l =\ on Tn y 0 ( )
Buk+1 Bu’2c out
L 14 an = V% on F
and
( ,,u’zﬂ'l f in Q9
k“ =0 on 09 N 0N
S u12c+ Mk—l—l on Tout (3'2'2)
k+1 k+1
{ 1/8%2 = 1/8%1 on InyTo
n n
with _
N = 0" ufpin jpo + (1 = ) ufjpingpo on T UTY, (3.2.3)
and
P = 0" o+ (1= 0" uGpow o T, (3.2.4)

where 9" and 9" are two positive parameters that allow, if needed, under-relazation to guarantee
convergence. Typically a single parameter ¢ is enough (and sometimes ' = 9" = 1, that is no
relaxation at all, is a suitable choice), whereas the presence of two parameters provides more
flexibility in achieving optimal convergence.

As the sequence {u¥,uk} converges in a suitable sense, its limit {u1,us} satisfies (at least for-
mally) the differential problem (3.2.25), and would be the desired solution. Convergence for the
ADN scheme has been proved by F. Gastaldi et al. in [55], for a problem set on the unit square
(0,1)2, with a constant advective field b = (b,0) and a constant reaction term a = a.

The solution of (3.2.1)-(3.2.4) is sequential as it yields the solution of (3.2.2) in Q9 only after
having solved problem (3.2.1) in ;. This sequence guarantees the quickest convergence, but it
might not be the best option when seeking for parallelism, especially when dealing with many
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subdomains. In that order, the algorithm can be parallelized with an obvious modification which
consists of solving problem (3.2.1) in €4, and in parallel the following modified problem in Qs:

(( Lust! = f in Qy
u’2“+1 =0 on 99 N 0N
9 u12€+1 — nk on Tout (3'2'5)
aulzc+1 8u’f in 0
| v o u% on I"UT
with
0" i= 9" uf pou + (1= 9")ufjrowe  on T (3.2.6)

It is straightforward to see that the iterative algorithm (3.2.1)-(3.2.5)-(3.2.3)-(3.2.6) generalizes
naturally to the case in which the domain  is decomposed into many subdomains.

The Adaptive Robin/Neumann and S-Robin/Neumann methods

These methods enforce on each subdomain a Robin condition on the corresponding inflow part of
the interface I and a Neumann condition on the outflow part. If I'? has a zero surface measure,
the Adaptive Robin/Neumann algorithm (ARN) reads as follows.

Given u? in Q;, solve for each k > 0

(Lt = f in Q;
ubtl =0 on 9§ N 0N
{ ) 3.2.7
Yty =2 onTi® (8.2.7)
8,u’llc—i—l 8’u’,2c out
\ - 1/% onT
and
( L,,u’2°+1 = in Q9
u’2“+1 =0 on 99 N 0N
< 'QZ)(UIQC_H) _ #k+1 on Tout (3.2.8)
au]26+1 aulf-f-l o
{ o v an onI'

with
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P(v) :=v % —b-nw, (3.2.9)
M= ﬁ'@b(u’;)‘rin +(1- 0')¢(u’f)‘rin on '™, (3.2.10)

and
P = 9" (ul ) pous + (1= 9")4p(uf)jpowe on T, (3.2.11)

The convergence of the ARN algorithm is a consequence of Theorem 3.2.2, as a particular case
of a family of iteration-by-subdomain methods.

The Adaptive 5-Robin/Neumann algorithm is obtained from the previous one by simply replacing
the flux 1¥(v) in (3.2.9) with the modified flux

ov

P(v) =v " B, (3.2.12)

which allows to omit the assumption on I'%. In fact, with this choice of the flux v (v), one
may impose on I'C either the same condition of I'™ or the same condition of I'°*. In any
case, once this choice is made for one domain, one has to impose the other condition on the
complementary domain. However, in order to guarantee solvability for (3.2.7) and (3.2.8) in the
ARgN framework, we have to make the following assumptions on f:

1 . 1
ﬂgib-nonfm, ﬂzib-nonfo‘lt,

and z %b -1 on I'? according to choice made for the boundary condition on this part of the
interface.

In the same way as the ADN method, the ARN and the ARgN algorithms are sequential, but
they can be easily parallelized by simply replacing (3.2.8)3, (3.2.8)4, and (3.2.11) by

o k+1 o k .
’(/J(’u,IQH—l) _ ,uk on Iwout’ v 1(;2 — aul on Fm,

n n
and

,Uk = ﬂllqb(ulf)‘r‘out + (]. — ﬁ'l)¢(u§)|pout on ]_-\Out’

so that the resulting algorithm can be easily extended to a decomposition of the domain €2 into
many subdomains.

3.2.2 Coercive Methods: 7-DR and y-RR

Other kind of iterative procedures do not pay a significant attention to the local direction of the
advective field b on I', but they require that the bilinear forms associated with the boundary
value subproblem in each subdomain §2; and €, are coercive in H'(2;) and H! () respectively,
under the only assumption that %divb +a > p >0 in Q. These methods are in fact a family
of schemes depending on a real parameter v = y(x) which is in general a given non-negative
function of L*°(T"), which influences the rate of convergence of the algorithm. No requirement
on the boundary value to vanish on any part of 9€);, j = 1,2 is made, though the bilinear
forms a{(.,.) and aJ(.,.) introduced in (3.1.10) are coercive in V; N HL,,(€1) and Vo N Hllout (Q2),
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respectively, and the bilinear forms aft(.,.) and af*(.,.) introduced in (3.1.13) are coercive in

in Hllout(Ql) and Vo N H%in(Qg) respectively, but not in H'(Qy) nor in H'(Qy).

The iterative methods we present in this section have, with respect to the ones introduced in the
previous sections, the drawback to use bilinear forms that are somehow a little more complicated,
and an additional parameter v which has to be considered besides the relaxation parameter .
However, the flow direction does not have to be taken into account and they can easily extend
to systems of equations.

The -Dirichlet/Robin method

This scheme has been proposed by Alonso et al. in [6], and reads as follows: at each step we
have a boundary value problem in €; with a Dirichlet condition on I' and a boundary value
problem in Q5 with a Robin condition on I'. Given y > 0, the differential form of the scheme is
the following:

Given A%, solve for each k > 0

L,,ullﬁ'1 =f in

U = on 1N 2.
M=o 09, N o0 (3.2.13)
u’f"'l =\ on I’
and
(( Lkt = in Qy
E+1 _
Qv = 0 on 0€2y N 0f} (3.2.14)

Oukt! 1 Bl oubt! 1 bl
. 5b-n+'y ustt =v o 5b-n+’y uit onT,

then set
N = guftl + (1-9)A"  onT. (3.2.15)

In order to have the variational formulation of this scheme, we introduce the local bilinear forms
b 1.. 1
a; (w;,v;) == vVw; - Vu; + idlvu +a | wv; p + 3 (vib - Vw; — w;b - Vv;), (3.2.16)
Q; Q;

which are continuous and coercive in H'(£2;), i = 1,2, with continuity and coercivity constants
ﬁf and ozf respectively, and we define the spaces Vi, V5 and A as in Section 3.1.1. The variational
formulation of the -Dirichlet/Robin method is therefore
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find u¥t! €V} -

a’l{(ulf+1’vl) = (fa ’Ul)Ql V’Ul € V10 (3217)
k+1
ulal = \k

and

( find ukt € V5 -

¢ Q(’UIQCH,W) + /FWUSEIUQW = (f;v2)a, + (f; R1var)ey (3.2.18)

by, k+1 k+1
—aj (uy aRlvz\r) + / YUy V2T Yoo € Vo,
r

\

where R; denotes any extension operator from A to V;, and finally setting A**! as in (3.2.15).
Notice that problem (3.2.18) is coercive in Vs, for any v > 0. The variational iterative scheme
up above is thus well defined.

Remark 3.2.1 This scheme is different from the ADN scheme, since the Dirichlet boundary
condition is imposed on the whole interface, disregarding the fact whether is an inflow or an
outflow boundary. However, if the flow has the same direction on the whole interface T', we
recover the ADN scheme. O

Let us introduce, for i = 1,2 and for A € A, the ai-’-harmonic extension of A\, that we denote with
E’f)\, as being the solution of the Dirichlet boundary value problem

a?(Ezb/\,fui) =0 Yuv; € VZ-0

(B! =\

For each A\, ;u € A and 7 = 1,2 we define the Steklov-Poincaré operators S; : A — A/, as

<SZA7 /J’> = GS(E?)\, Eg):u)a

and we set
(SN, 1) = ab (BN, BYp) — y(A, )
(SSVA, ) = ab(BEA, Bu) + (A, wa.
We therefore have
§=57 457 =5 +5,

and the iterative scheme (3.2.17)-(3.2.18)-(3.2.15) is equivalent to a preconditioned Richardson
method for the Steklov-Poincaré operator S, with Sgy) as a preconditioner:

AL = 3 1 g(S9) (T — SAR).
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The convergence of the y-Dirichlet/Robin method is ensured by the following result, which is
proved in [6] and [89].

Theorem 3.2.1 There exists v* > 0 such that for each v > v* and for each \° € A the
iterative scheme (3.2.17)-(3.2.18)-(3.2.15) is convergent in A, provided the relazation parameter
¥ is chosen in a suitable interval (0,7,). O

The y-Robin/Robin method

The -Robin/Robin method is another iteration-by-subdomain procedure proposed by Alonso
et al. in [6]. It extends to the non-symmetric case the Robin method proposed by P.-L. Lions in
[79] for symmetric elliptic operators. Given a function v = (x) in L*°(I") stisfying y(x) > 4 > 0,
the scheme reads as follows.

Given A\° € L?(T), for each k > 0 solve

( L,,ullﬁ'1 =f in 4
k+1 __
) u; =0 on 021 N N (3.2.19)
k+1 1
uaflg — (Eb-n—'y) ulf+1 =X onT
\ n
and
( L,,uIQH'1 =f in Q9
k+1 _
Jua = 0 on 082y N 0N (3.2.20)
ouk+l 1 Sukt1 1
v ?n - (ib'n+7> ué“ :y% — (Eb-n—i—’y) ulfH on I,
\
then set fil
0 1
ML — z/% — <§b ‘n— 7) ubt! onI. (3.2.21)
n
It is worthwhile to note that
8uk+1 1
X+t =y (§b ‘n+ 7) W 2y = N 4 2y (T — Wb,

so that, since A € L?(T") and v € L®(T'), we have \¥ € L?(T") for each k > 0. We can therefore
introduce the variational form of the scheme up above as

Given A\° € L2(T), for each k > 0
find ulfﬂ eV

(3.2.22)
G?(u]fﬂavl) + / ’Yulff;lvur = (f,v1)a, + / ’Y/\kv1|1“ Vv € i
r r
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and
( find ukt! €V
) ab(ubtt vg) + /F’YUIQHFI’UQW = (f,v2)a, + (f, Rivar)e, (3.2.23)
‘ (" Ravgr) + [ o Ver €V

then set

AR 0F oy (uh L — it onT, (3.2.24)

where again R; denotes any extension operator from A to V;, and al(.,.), i = 1,2 are the bilinear
forms introduced in (3.2.16). It is thus straightforward to see that the bilinear forms

a?(uz‘aw)Jr/’Yum, i=1,2
N

used in (3.2.22) and (3.2.23) are coercive in V;, for each v > 0.

The v-Robin/Robin methods generalizes some other methods appeared in literature, for instance
by choosing v = %\b - n| we recover the ARN method without relaxation, by choosing v =
$4/|b - n]2 + 4av we recover the method proposed by Nataf and Rogier in [81], and by choosing
v = %\/|b -n|? + 4kv, with k > 0, the method proposed by Auge et al. in [13].

The convergence of the y-Robin/Robin method is provided by the following result which is
proved in [6] (see also [89]) and is inspired by the results of P.-L. Lions and Nataf and Rogier.

Theorem 3.2.2 Assume that either Q is a Lipschitz polygonal domain or that 0 is regqular
enough, say 0Q € C?. Moreover, suppose that br € (L*°(T))%. Then, for each \° € L*(T") and

for each i = 1,2, the sequences uf converge in H'(S);) to the restriction u|n; of the solution u

of (3.1.1). O

3.2.3 Primal Schur methods: the Robin/Robin algorithm

In this section we present another method based on the solution of problem (3.1.1) by a primal
Schur method, which amounts to the reduction of the problem in 2 to an interface problem on T,
and the parallel direct preconditioning of the Steklov-Poincaré equation. This kind of approach
was originally introduced by J.-F. Bourgat et al. in [19], and is well suited for parallelism
in a multidomain formulation. We assume throughout this section that 2 is a rectangular
domain R?, say © =)0, L[x]0, 5[, and is partitioned into N non-overlapping vertical strips ; =
(li,li41)x]0,n[, 1 <4 < N — 1, with interfaces denoted by I'; ;11 = {l;+1}x]0,7[. We consider

the global interface I' = UZI\; 11 ['; i+1, we consider the restriction on the interface of the solution
of (3.1.1), Ur = (’U,|Fi’i+1)1§i§]\7_1, and we define the Steklov-Poincaré operator on I' as
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v (mg0a0)" " ) o [(mPoo) |

v (Ow; Ow;
2\ 0n;  Onit Tiiv1) 1cicn—1

where w;, for i = 1,2, are the solutions of

(( Lybw;, = f in Q;
w; = 0 on 0€; NON
{ (3.2.25)
w; = Uji_1 on I'_j;fori=2,...,N
L w; = U on I'j;y1fori=1,...,N -1

where we have set u; :=ur, ;-
Problems (3.2.25) are linear, thus, setting SUr = X (Ur,0) and x = —3(0, f), the interface
problem can be written as

SUp = x. (3.2.26)

The idea is the following: we split the Steklov-Poincaré operator into a sum of local operators
in each subdomain,

S=8 +...+ 8, (3.2.27)

which solve problems with Dirichlet boundary condition on I', and we precondition the interface
equation (3.2.26) with a weighted sum of the local inverses, which approximates the inverse of
the operator § = X(.,0). This procedure can be interpreted as a preconditioned Richardson
algorithm where, given an initial guess A\° for the trace on the interface of the solution u of
problem (3.1.1), the we seek the fixed point of the sequence {\*}, where

ML =2 49 (1S + ...+ onSyY) (x — SAF)

for each £ > 0, where o; > 0 are averaging parameters, whereas ¢ is possibly a relaxation
parameter.

The original method in [19] proposed, for the Poisson problem in a two domain decomposition
setting, to split S into a sum of Dirichlet to Neumann operators, S;, for ¢ = 1,2, with

auz-
)
ani |r

Si:ul'*l—)l/

and to use as a preconditioner a system of problems in each subdomain with Neumann con-
ditions on the interface. This algorithm was given the name of Neumann/Neumann method.
When applied to advection-diffusion equations, such method showed a poor behavior, since the
symmetry of the local operators reflected into a lack of capability to handle the non-symmetry
of the global differential operator.
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The Robin/Robin Algorithm

This method, proposed by Y. Achdou et al. in [3] is a generalization of the Neumann/Neumann
algorithm to non-symmetric problems: the key idea relies in replacing the Dirichlet to Neumann
local operators with Dirichlet to Robin ones, which are able to take into account the action of
the convective field. The Steklov-Poincaré operator S is therefore split as in (3.2.27), where, for
1=1,..., N, we have

ou; 1
Siur— ([v——=b-nju;) .
Bni 2 T
Notice that, since n; = —n;4q for i = 1,..., N — 1, the terms %b - n; u; vanish in the sum and
we recover the operator S.
The approximate inverse of S proposed in [3] is, at the continuous level, the operator 7 defined
as:

N-1

7 (g 00m) | = (m000) "

(3.2.28)
1
T : (9i)1<i<n—1 +— (5 (vi + 'Ui+1)1"i,i+1)
1<i<N-1
where v; (for i =1,..., N) is the solution of
( Lyy,= 0 in €
v;= 0 on 0; NN
)  ben 3.2.29
V@UZ_ nzvi: gi on I'j;yifori=1,...,N—-1 ( )
ony; 2 ’
9v: b-n
v UZ——nZvi: gi—1 on I'j_q;fori=2,...,N.
\  On,; 2 ’

Although the Robin boundary conditions in (3.2.29) are not standard ones, they nevertheless
stem from an integration by parts of the advective term %(b -Vu)v in (3.1.1), and they lead to
a well-posed problem in each subdomain, as stated in the following Proposition (see [3]).

Proposition 3.2.1 Let Q be an open set of R?, f € L*(Q), A € H /2(89), b € (C1(Q))?,
a € R such that a — %div b > u > 0 for some p € R. Then there exists an unique v € H ()
such that

/uVu-Vv—i—(b-Vu)v—I—auv—/
Q

1b-nu'u:(/\,v)—l—/fv Vv € HY(Q),
o0 2 Q

where (.,.) denotes the duality pairing between H~'/2(0Q) and HY?(d%).
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Proof. It relies on the Lax-Milgram Lemma, where the only thing that is not obvious is the
coercivity of the bilinear form

1
(u,v)l—>/uVu-Vv+(b-Vu)v+auv—/ —b - nuw.
o o0 2

An integration by parts provide

/ v|Vu|? + (b- Vu)u + au?® — lb nu? = / v|Vul|? + (a — 1div b)u? > min(,u,u)||u||%p(m.
Q o0 2 Q 2

and this concludes the proof. O
When the operator is symmetric, or when the flow field is parallel to the interface (i.e., b-n = 0),
one recovers the Neumann/Neumann preconditioner, which can be showed to be exact on a two-
domain decomposition with uniform velocity. A Fourier analysis shows that the Robin/Robin
preconditioner shares this feature with the Neumann/Neumann one. This is assessed in the
following proposition (again, see [3]).

Proposition 3.2.2 (Y. Achdou, F. Nataf) In the case where the plane R? is decomposed
into the left (21 =] — 00,0[xR) and right (2 =]0, +oo[xR) half planes and where the velocity
field is uniform, we have

ToS =Id.

Proof. For i = 1,2, we denote with 7; the tangential vector to {2;, and we set n := n;. We
express the action of the operator Sug, for uy € HY 2(R), by means of the Fourier transform
with respect to ¥, and to this aim we denote with ¢ the Fourier variable and with F~! the
inverse Fourier transform. The Fourier transform w.r.t. y of (3.2.25); yields

(a+b-0d; — vy + ib - i€ + vE2) iz, €) = 0,

where i = —1. For a given ¢ these are ODEs in z whose solutions must be bounded at
infinity and satisfy the Dirichlet condition @ (0,&) = 49(£). Thus, the solutions are w; =

FL(a(¢) e)‘1+(§)‘”) and wo = F (G (¢) e ©)%), where, for i = 1,2,

_ —b-n+/4av+ (b-n)? +4ib - 7; v + 4622

+
)\i 2v
Computing §ﬂ0, since Op, = 0y and O, = —0,, we have
o~ v R R v _ .
Sty = 5 (6351111 - a:cw2)|$:() = 5 (’\ik(g) - ’\2 (f)) UO(O,

hence

S(ug) = %}'_1 (\/4a1/ +(b-n)?+4ib - 7; év + 46202 ao(g)) :

In the same way it is possible to compute 7 (g), for g € H~'/2(R), and the Robin condition
at £ = 0 entails that the solutions v; and ve of problem (3.2.29) may be expressed as v; =
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—1 2_@(&) /\+(§)$ _
F (\/4G,V+(b-n)2+4ib.7-i Ev+4£202 et and V2

Finally, since 7 (§) = &(1(0,€) + 92(0,£)), we have

F-1 29(§) s Oz
\/4au+(b-n)2+4ib-n Ev+4£2p2 :

1
T(g) =2F"" §(€) ],
(9) <\/4a1/+ (b-n)2+4ib-'ri£1/-|—4§21/29(€)>
and the thesis follows. O

As long as the domain € is subdivided into strips, the Robin/Robin preconditioner is very close
to a nilpotent operator, whose nilpotency is the number of subdomains. We set n := (1,0), we
introduce the space H%, = Hfi_ll H*(T;i11), s € R, consisting of H® functions on the N —1
interfaces: as, for U € ‘H}, we have U = (ui)lgiSN—la the space H3 is endowed with the norm
U |35, = supy<i<n—1 l[uill mrs(r; ;,,) and we can state the following result, which is proved in [2].

Theorem 3.2.3 (Y. Achdou, P. Le Tallec, F. Nataf, M. Vidrascu) LetQ = (0, Ho) xR
be decomposed into N non-overlapping vertical strips Qi = (I;,l;41) X R, 0 < i < N — 1, with
interfaces Ty j41 = {li+1} X R, and let H = ming(l;11 — ;) be the size of the smallest subdomain.
Assume that the velocity field b is uniform, that

N
e=exp{—(b-n++/(b-n)? +4av)H/v} <1, and pE(l—?)ﬁ<1.

Then, for n > [N/2], we have

N 1
) i . [n/[N/2]]-1
(T 0S8 = Id)"|L(ns,) < 21—p) (1—eN 2" ’

where [z] denotes the integer part of a real number x. O

3.3 Heterogeneous Advection-Diffusion Problems

This section contains the original contribution of the thesis to the substructuring approach for
advection-diffusion problems, which has been developed in collaboration with P. Le Tallec and
F. Nataf at the CMAP of the Ecole Polytechnique in Paris.

We consider an advection-diffusion problem with discontinuous viscosity coefficients. Such prob-
lems arise from the modeling of transport and diffusion of a species through heterogeneous media,
where different materials with different physical properties are present in the computational do-
main. These differences may be rather significant, and this would reflect into large discontinuities
for the coefficients of the problem. For instance, the project “Couplex” of the French National
Agency ANDRA deals with the modeling of the far field simulation of a nuclear waste disposal,
constituted by a central layer of clay (with a viscosity coefficient of order 10~7 m? /year) which
contains the repository, and is surrounded by layers of dogger, marble and limestone (where the
viscosity is of order 10~* m? /year), but there are some problems in physics and engineering with
even larger jumps in the coefficients.

The idea is to extend both the generalized Neumann/Neumann preconditioner, introduced in
[75], which deals with heterogeneity in the coefficients, and the Robin/Robin preconditioner,
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described in the previous section, which is especially suited for non-symmetric problems, in
order to obtain a preconditioner whose performance is not affected by the amplitude of the
jumps in the coefficients. Although each subregion can be furtherly subdivided into smaller
subdomains, the basic decomposition is driven by the physics of the problem, and we focus in
this section on the treatment of the interfaces of discontinuity for the viscosity coefficients. The
results of this section can be found, in shorter form, in [57] and [58].

3.3.1 The Domain Decomposition Algorithm

Let Q be a bounded domain in R%, (d = 2,3), which we assume to be partitioned into two
non-overlapping subdomains €21 and 9, with interface I'. 'We consider the following general
advection-diffusion problem

—div (v(z)Vu) +b-V(u) +au = f in Q

u= 0 on aQD (3'3'1)
u@ = on 00y
on

where the function v(z) is piecewise constant

121 if z € O
v(z) =
125} if € Qy

and where the reaction term may arise from an implicit time discretization of the evolution
problem, and represent the inverse of the time step (i.e. a = 1/At). Throughout the rest of the
chapter we assume, without loss of generality, that 11 < .

We propose a domain decomposition algorithm of Robin/Robin type, and we introduce, at the
continuous level, the global interface operator

S HYA(T) x L2(Q) x L2(09) — H-Y2(T)

(ur, f,o) — v Owr + v Oy 052
TsJ, P 1 8’1’1/1 2 6712 Fa
wj (j = 1,2) being the solution of problem
Lj wj = f n Qj

w; = 0 on 02p N 99

(3.3.3)
Sw
I/j% = on 0Qx N 08,

w; = ur on F,
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where we have denoted with L; (j = 1,2) the operators

Ljw := —vjAw +b - Vw + aw. (3.3.4)

Since the operator ¥ is linear with respect to each variable, we can easily reduce (3.3.1) to the
Steklov-Poincaré formulation of a coupled problem on the interface

S(ur) = x, (3.3.5)

where we have set S(.) := 3(.,0,0) as well as x := —3(0, f, ¢). We split the operator S into the
sum of two Dirichlet to Robin local operators, S = 81 + Sy, with

ow; b-n;
Sjrur — (vj—L — Lw; for j =1,2. 3.3.6
j - ur ( ]an 2 j . J ) ( )
Since n; = —ngy, the terms %b - n; u; vanish in the sum and we recover the operator S.

Following [2], we propose as a preconditioner for the Steklov-Poincaré equation at the continuous
level an approximate inverse of S, which is the weighted sum of the inverses of the operators S
and Sz, namely

T = Di1S;'Dy + D2S; Dy (3.3.7)

where D and D are two suitable operators on the interface satisfying Dy + Dy = Id, and must
be able to handle large jumps in the viscosity coefficients. The operator 7T is therefore defined
as follows

T H2T) — HYAT)

(3.3.8)
g + Di(vi)r + Dz (v2)r
where v; (j = 1,2) is the solution of
ﬁj(’l)j) =0 in Qj
v; =0 on 0€2p N 08
o0, 3.3.9
vl =0 ondQynaoQ, (8.3.9)

Ov; b-n;
(Vj%jj— 2]’Uj>r =D;j(g) onT

In the following section, by means of Fourier techniques, we study the choice of the weighting
interface operators.
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3.3.2 Construction of the preconditioner

Recalling that the Robin/Robin preconditioner is exact in a two half-plane decomposition of R?,
(see Proposition 3.2.2), in this section we consider the case where Q = R? is decomposed into
the left (21 =]—o00,0[ x R) and right (2 =]0, +o00[ x R) half-planes, we assume the convective
field to be uniform and directed from Q; to Qy perpendicularly to the interface, i.e. b = (b,,0),
and we assume that the solution u of problem (3.1.1) is bounded as |z| — +o0.

We can express the action of the operator S in terms of its Fourier transform in the y direction
as

Sur = F1 ($(©)ar(e)), ur € Hf*(T)

where we have denoted with ¢ the Fourier variable and with F~! the inverse Fourier transform.
We consider, for j = 1,2, the problem

Lj(wj) =0 in Qj
(3.3.10)
w; = ur on P,

and we have to compute the Fourier transform of (v1(0w;/0n1) + ve(Ows/0ng))r. Performing
a Fourier transform in the y direction on the operators L;, we get

(a + byOy — vj0yy + v;E€) j(z,€) = 0, (3.3.11)

for j = 1,2. For a given &, equation (3.3.11) is an ordinary differential equation in z whose
solutions have the form «;(£) exp{\; (§)z} + B;(¢) exp{)\;' (€)z}, where

Lo b B+ dayy 422
Eoey = 3.12
M) > (3312)

The boundedness assumption on the solutions w; (j = 1,2) for £ — oo, implies (&) =
B2(&) = 0, while the Dirichlet condition on the interface provides f1(£) = a2(€) = 4r. Hence

(32), - o (2)
! oni /) p '\ oz |2=0

1,
= Sir (bm + \/b% + davq + 41/12§2>

In a similar way we get

>\ ony r 2 0z /|4
1,
= —glr (bm—\/b%+4au2+4u§§2)
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Therefore we have the following expression for S:

~

1
Sar = 5 (\/bg +damn + 4022+ \[B2 + davy + 4u§§2> ar (3.3.13)

In order to find the operators D; and D, in (3.3.7), we look for an operator 7 that, in the
Fourier space, can be represented as

T = Tay 4, = 1S 'y + do S, Mo, (3.3.14)

and whose symbol is therefore given by

R d? d3
G=2 ( 1 + 2 ) g. (3.3.15)

Vb2 +davy + 42E2 (/b2 + davy + 4v3E2

Hence, we immediately have that

2 2¢2 2 2¢2
Symb(T o S) = d? <1+ Vb2 + davy + 4v3¢E ) 2 <1+ Vb2 + davy + 43¢

3.3.16
Vb2 + davy + 4/3€2 2 Vb2 + davy + 41/%52) ( )

We recall that the condition number of a matrix A is given by

Amax (AT A)

A) == ||All2 ||[A7 |y = .
k2(A) = [|All2||A7 ]2 Ao (ATA)

Thus, the condition number of the discrete version of the operator (7 o S) can be estimated by
means of its Fourier transform, as

\/max¢ [Symb(T o §) 2

cond(7 o S) ~ :
\/ming |Symb(T o S)|?

Since the operator (7 o §) is symmetric with respect to y, its symbol is real and positive, thus
the monotonicity of the square root allows us to estimate the condition number of the discrete
version of the operator (7 o S) as

maxg Symb(T o S)
ming Symb(T o S)

cond(7 o S) ~

In the following, therefore, we focus on the choice of the weights d; and ds in order to achieve a
good conditioning of the operator 7 oS, i.e. cond(7 oS) < K, with K a constant independent
of the coefficients of the problem, as well as good parallelization properties for the algorithm.
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Figure 3.1: a = b, = 1,14 = 1076, = 1072, ¢ =3

Exactness on a two domains decomposition

Since the original Robin/Robin algorithm provides exact preconditioning on a two domain de-
composition, an immediate choice is to look for d; and ds such that 7 shares the same feature.
This is equivalent to solve the following system

2 (14 Vb2 + davy + 4v3€2 a2 {1+ Vb2 + davy + wiE? 1
V02 + davy + 47 Vb; +4dav, + 43¢ (3.3.17)
di+dy =1

Notice that, for a given £, the first equation in (3.3.17) describes, in the (d,ds) plane, an ellipse,
to which the straight line di + ds = 1 is tangent. As an example, see Figure 3.1, where we have
plotted the ellipse and the line for positive values of d; and ds (which are the ones we are
interested in) with the choices a = b= 1,17 = 1075, = 1072, ¢ = 3.

Therefore the solution of system (3.3.17) is unique and is given, for each £, by

B Vb2 + davy + 4v3E2
VB2 + davy + 432 + /02 + davy + 402E2

di(§)

_ V2 + davy + 4v3€2
V2 + davy + 4v3E2 + /b2 + davy + 4v3E2

da(£)
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It is not difficult to observe that the functions d;(£) and do(§) are symmetric on the (d, ) plane
with respect to the line d = 1/2, are bounded, monotone (d; (£) decreasing, and do(€) increasing,
respectively) and tend to the values vi/(v1 + v2) and vo/(v1 + v2) respectively, as & tends to
infinity. In Figure 3.2 we have plotted the behavior of d2(¢) with the same coefficients used in
Figure 3.1.

Exactness for the two domain decomposition setting can therefore be achieved in a unique way
as a function of the Fourier variable £. Unfortunately this is not satisfactory, since if we consider
the operators in the physical space associated to the symbols d;(§) and do(€), we have

D, =80 (81 + 52)71

Dy =850 (81 + 82)_1

It is evident that the two operators above depend on both subdomains, hence a parallel algorithm
based upon D; and D, cannot be carried on, since we cannot express the operator (S; + Sp) !
in terms of a boundary value PDE in each subdomain. A different choice is therefore in order.

Approximation of d;(£) and dy(¢)

For sake of simplicity at the computational level, we look for constant approximations of the
functions d;(£) and dy(§), which amounts to the multiplication by a constant in the physical
space.

We define

Ty=F! (771) (3.3.18)

where, taking into account the normalization condition d; +de = 1 and the assumption v < vy,
we have set do = d, di = 1 — d, and where, for sake of simplicity, we have set Tq := T;_q4, the
latter being defined in (3.3.14).

Remark 3.3.1 If 1 > vy, a symmetric argument stemming from the choice dy =d, do =1—d
would lead the same results we present in the following. O

From (3.3.18) we reduce Symb(T40 S) in (3.3.16) to a bivariate function F(d,¢)

2 14 Ay2£2 2 14 422
Pldg) = (1- a2 (14 Vit t ”35 Lo 14 Vit et ”125 (3.3.19)
V02 + davy + 47€2 Vb2 + davy + 4v3€2

which is defined on the subset of the (d, &) plane given by [1/2,v] X [0, &mnaz], where we have set

vi= 2 (3.3.20)
v+ 1o

Notice that the bounds on the variable d stem from the boundedness of the function ds () that we
want to approximate. On the other hand, the function F(d, &) is symmetric in £ and this allows
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Figure 3.2: dy(¢), with a = b, = 1,1, = 1076, 1y = 1072

us to consider only positive values of £, whereas £,,4, denotes the largest frequency supported
by the numerical grid: in that order, we recall that the minimal representable wavelength is
Amin = 2h, where h is the mesh size, thus {max is of order 7/h. Since da(0) < d2(§) < da(&maz),
and is monotonically increasing, we have to face three different cases.

1
Case 1: de [E’dZ(O)]

Let the constant d be fixed in the interval [1/2,d3(0)[: the function F'(d, &) is shown to be strictly
increasing in &. Infact, for a given d, a tedious rather than difficult computation provides

[b?c(l/l + o) + 4cw11/2] (v — 1)

X
3
(\/b% + 4davy + 43FE2 /b2 + davy + 41/%52)

OcF(d,€) = 4¢

1-d d
X + X 3.3.21
<\/b?5 +davy +432€2 /b2 + dave + 41/22§2> ( )

x [(1 — d)\/82 + davy + 02E2 — d\[B2 + dany + 4:/%52] :

whose sign is ruled by the last factor in the product which, since vo > vy, is positive.
Thus, we have

F(d, §maz)

cond(Tgo 8) ~ F(d,0)

= G(d).
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Setting

A Vb2 + davy + A2E2, . + /b2 + davy + 4V3EL, . Vb2 + davy
Vb2 + davy + 4PE2,,, Vb2 + davy + /b2 + davy

and noting that A > 0, we can expand G(d) as

\/b% + 4av; + 4V%§’r2naw d2

Vb2 + davy + 4V3E2,,.,
Vb2 +4

(1—d)2+ M d2

Vb2 + davy

We have, for each d € [1/2,d2(0)]:

Vb2 +4av;

since the sign is ruled by the last factor in the product which (under our assumption v < vs)
is negative. Therefore, cond(74 o S) is decreasing as a function of d in [1/2,d2(0)]. If, following
what is done in [2] when the viscosity coefficients coincide (v1 = 1), we set d = 1/2, we get

7 1 ¢) = 1+ 1 b2 + 4davy + 4v2€2 N b2 + davy + 4v3E2
2'>) 2 4 b2 + davy + 4v3€2 b2 + davy +402€2 |
In order to evaluate the performance of the preconditioner 7o, let us consider what happens if
b, = 0. Assuming a # 0, we have:

0,G(d) = 24d(1 — d) VB Hdan + 478 VB +dan) _
[(1 _ )2 4 Yathan dQ] VB2 +4avy + 40382, /B2 +4day

2 4o/ (14nv1) va(14+nrs)
va(1+nv2) vi(1+nv1)

/Vl %3

2 + Vo V1

where we have set 7 := 6’2”% = At£2,,,- Developing the ratio in (3.3.22), we can easily estimate
cond(7y/5 0 §) with

[\/E\/er_l\@r ! 1122 +2[\/£\\/ﬁz—2}2 * [\/ﬁ\/-?\/ﬁr ViZj (3:3.23)

where the first two terms in the sum are bounded between 0 and 1, while for the last one we

have:
[ V12 ]2 1+771/2>l 1+ nwy
vty Vitmn = aVitm

cond(7y/2 0 S) (3.3.22)
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If nu1 > 1, we have

1 [v
cond(7yj30S) > 1 V—?,

which turns out to be very large when v; < 5.
Case 2: d € [d2(0), d2(€max)]

Let the constant d be fixed in the interval [d2(0), d2(&maz)]- We can prove the following result.

Lemma 3.3.1 Let Ty be the operator whose Fourier transform is defined in (3.3.14) with dy =
1 —d and do = d. Then, for each d € [dy(0),d2(Emaz)], the condition number of the discrete
version of the operator (Tgo S) satisfies the following estimate

1 < cond(Tg08) < max {F(d2(0),&maz), F (d2(Emaz),0)} - (3.3.24)
and there ezists dy € |d2(0), d2(€maz)| which minimizes cond(7g 0 S).

Proof. Developing the square (1 — d)?, and gathering together all the terms involving d and ¢,
F(d,£) can be written as

2
(1= &)/ + davy + 23€2 — do/ B + damn + 7€)
/b2 + dave + 4U3€2 \ /b2 + davy + W2

As an immediate consequence of (3.3.25) we have

F(d,¢) =1+ (3.3.25)

F(d,§) > 1
V(d, &) € [d2(0),d2({maz)], and the value 1 is attained along the curve d = dy(€).

Owing to (3.3.21), when d is fixed in the interval [d2(0),d2({maz)], OcF(d, &) is positive for
¢ > dy*(d), negative for ¢ < dy'(d) and vanishes in & := dy*(d), i.e. on the curve d = dy(£),
hence the function F(d,€) is strictly decreasing in [0,&p[, attains its minimum in & and is
increasing in [€g, &maz]- Therefore, for a given d € [dy(0), d2(£maz)], the condition number of the
operator T; 0 S is easily estimated as

cond(TgoS) ~ max{F(d,0), F(d,E&maez)} (3.3.26)

and the lower estimate in (3.3.17) follows.

If we focus on the functions F'(d,0) and F(d, &mag ), it is not difficult to see that in [d2(0), d2(€maz )]
the first one is increasing , while the latter one is decreasing. Since F'(d2(0),0) = F(d2(émaz)s Emaz) =
1, there exists dy such that

F(do,0) = F(do, &maz)- (3.3.27)
Hence,
F(d,&maz) for d € [d2(0), do]

max F(d, &) = { (3.3.28)
¢ F(d,0) for d € [do, d2(Emaz)]
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The upper estimate in (3.3.24) follows. In order to evaluate dy, let us go back to equation
(3.3.27): it is easy to see that the only solution occurring in the interval |do(0), d2(€maz)[ is

[(bi + davy + 4032€2,,.) (b2 + davy) ] 1/4
[(b% + davy + 43E2,,.) (U2 + davs) ] 1/4 + [(b?c + davy +4v2€2,,,.) (2 + davy) ] 1/4

do =

bl

while the other one

(B2 + davsy + 402€2,.,) (b2 + davy) | /*

dF =
[(B2 + davy + 42€2,.,) (B2 + davg) |/ — [(02 + davy + 42€2,,,) (B2 + dary) ]/

is greater than 1.
We have in conclusion that the condition number of the operator 7308 is minimum when d = dj,
and

(\/b% +4av1 +AV}E2,, .+ /b2 +4avs —|—41/%§,,2nam) (\/b% +4av1+4/b2+4avy )
]1/2>2' (3329)

cond(7g, 0 S) ~

([\/b% Fhavo+4v2€2,,, /b2 +havs ] 2y [\/bg a1 +4v2€2, 4, /b2 +havs
O
Case 3: d € [d2(émax), V]

When d is fixed in the interval [d3(&max), V], owing again to (3.3.21), the function F(d,§) is
strictly decreasing in &, therefore

cond(Tgo0 &) ~ FF(d’ 0 _ H(d).

(d,&max)

Since H(d) = [G(d)]™", we have, for each d € [dg(fmax) =2 ]

vt
[F(d,0)]”
[F(d, &maz)]?

where the inequality is an immediate consequence of the previous section. Therefore, the con-
dition number of (74 o S) is increasing in the interval [da({max), V] as a function of d.
More, since F(v,&maz) > 1, we have

O4H(d) = —0,4G(d) >0

cond(7, o S) < F(v,0)

If b, # 0, we define 7 := g—g, and we have

]2 (1+ () + [Vl'fyzr (1 + ﬁ) (3.3.30)

d(7,08) <
cond(7, o S) [1/1—|—1/2

where
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1+
=y —. 3.3.31
o) = [T (3:3:31)

The right hand side in (3.3.30) is decreasing as a function of 7, since

1 [1+n1 vo—1y
'(n) =54/ >0
v () 2V 1+ nve (14 n14)?

and it is not difficult to see that

vi [e(n)]? —vi < 0.

Hence

cond(7;, 0 S) < [ “ ]2 (14 ¢(0)) + [ 2 ]2 (1+ i) (3.3.32)

v+ 1y vy + 12 (P(O)

We therefore have from (3.3.31) and (3.3.32)

2 2
cond(7, o S) <2[ - ]—FZ[ v2 ]

v+ vy v+ g

V43 (3.3.33)
(11 +19)?

< 2.

On the other hand, if b, = 0 (i.e. if there is no convective term) we simply have

2 2
F(v,0) = [ n ] <1+ Q)Jr[ v ] <1+,/ﬂ)
v+ 1y 121 S o %) vV

1

2 2
< (EAE [vi +v5 + (V1 + v2) Vr1v2 ]
(3.3.34)
V2 4 2 1

< 1722 4+ =

(1/1 =+ l/g) 2

1

1+ = 2.

< + 2 <

Since F(d2(0),0) = F(d2(&maz), Emaz) = 1, the continuity of F(d,{) guarantees the continuity
of cond(7g 0 S), as a function of d, in the whole interval [1/2,v]. We have therefore proved the
following result.
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Interval [1/2,d2(0)] | [d2(0),do] | [do,d2(max)] | [d2(&max): V]
F(d, &maz) F(d,0)
Z\®Smaz) | @ F _T\&Y
cond(7g0 S) F(d,0) (d, &maz) (d,0) Fd,Emas)
Behavior J d T T

Table 3.1: Definition and behavior of cond(7; o §) with respect to d

Theorem 3.3.1 Let Ty = F ! (72) When the plane R? is decomposed into the left and right

half-planes, and the convective field b is uniform and perpendicular to the interface, the condition
number cond(Tg 0 S), as a function of d, is optimal in

[(b?z + 4avy + 41/%@2”%) (bi + davy) ] 1/4

dy = ,
[(b% + davy + 4v2E2,..) (B2 + davy) ] 1/4 + [(b?c +davy + W2E2,..) (B2 + dav) ] 1/4

where the condition number is given in (3.3.29), is decreasing in the interval [1/2,dy), and
increasing in the interval (dy,v].
Moreover, we have

cond(T; 0 S) < 2, (3.3.35)

independently of the coefficients of the problem.
O

We have resumed the definition and the behavior of the estimate condition number of 750 S
in Table 3.1, but a few comments on the above result are in order. We have shown that the
choice d = 1/2, which is natural in the case of constant viscosity may lead to problems whose
conditioning is very bad. The optimal choice of the weight, d = dy, depends on all the coefficients
of the problem; moreover, dy depends also on &y ax, thus it depends on the mesh parameter h.
On the other hand, the weight v (3.3.20) depends only on the viscosity coefficients, where the
discontinuity is located. For sake of generality and simplicity of implementation, since also the
conditioning of 7, o § is very good, we choose as a preconditioner the operator 7,. Notice
that such weights are exactly the ones used by P. Le Tallec et al. in [75] when introducing
the Generalized Neumann/Neumann method for elasticity problems. Such choice pays a major
attention to the information stemming from the subdomain in which the viscosity is larger: this
is not so evident when the viscosity jump is small, but for very large jumps (say, 10* — 106)
this amounts to almost neglect the contribution of one of the two subdomains. This is not so
strange, however, since for advection-dominated flows, the problem in the less viscous region in
the presence of large jumps of the viscosity is very close to a pure transport problem.
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by | a dy v cond(71/208) | cond(7g, 0 S) cond(7, o S)

1 1 ].999715601 | .99999900 | ~ 3004.798211 | ~ 1.015268461 | ~ 1.015835611
1] 0.1 .999495544 | .99999900 | ~ 8884.104495 | ~ 1.048893915 | ~ 1.049942042
1 | 10 | .999837253 | .99999900 | ~ 971.3739450 | ~ 1.004777051 | ~ 1.005093540
0 1 1.999967615 | .99999900 | ~ 951.5605638 | ~ 1.000936218 | ~ 1.000997997
0 | 0.1 .999968299 | .99999900 | ~ 993.0520980 | ~ 1.000937543 | ~ 1.000997999

Table 3.2: Condition Numbers for v; = 1073, 15 = 103, &0 = 100

by | a dy v cond(7;/208) | cond(Tg, 0 S) cond(7, o S)

1 1 ] .602083675 | .99990001 | ~ 1.172493844 | ~ 1.037780797 | ~ 1.370231679
1] 0.1 .602083675 | .99990001 | ~ 1.170997997 | ~ 1.037780797 | ~ 1.370231679
1 | 10 | .623797395 | .99990001 | ~ 1.180152596 | ~ 1.026982600 | ~ 1.290022659
0 1 ].996847690 | .99990001 | ~ 9.822576218 | ~ 1.004646014 | ~ 1.008981928
0 | 0.1 | .998182603 | .99990001 | ~ 29.59142199 | ~ 1.006665791 | ~ 1.009635852

Table 3.3: Condition Numbers for v; = 107, 1y = 1072, &0, = 100

To conclude our analysis in the case of a convective field perpendicular to the interface, we
have reported in Tables 3.2-3.5 the values of dy and v as well as the condition number for
the operators (71/2 0 S), (Tq, © S) and (7, o §), with &4, = 100 and different choices for the
parameters involved (b;, a, v1 and ). It turns out that, as we expected, the preconditioner 7; /2
provides large condition numbers when v, At €2, > 1 and v; < ve. More, as we expected from
the theoretical analysis, the performance of the preconditioner 7, is not affected by the growth
of the ratio v»/v1, as dy and v get very close each other. We observe that both preconditioner
T4, and 7, perform very well and are very close to be exact.

3.3.3 Robustness with respect to the convective field

In this section we focus our attention on the effectiveness of the Robin/Robin type preconditioner
T, =7 (%)

is uniform but not orthogonal to the interface, namely b = (b;, by), always with the additional

( which, from now on, will be simply denoted by 7)) when the convective filed

by | a do v cond(71/208) | cond(Tg,0S) cond(7, o S)

1 1 | .829608824 | .99999900 | ~ 5.482335873 | ~ 1.333314647 | ~ 1.757435981
1 ]0.1 | .818812164 | .99999900 | ~ 5.518448891 | ~ 1.394195189 | ~ 1.886383877
1 | 10 | .870267866 | .99999900 | ~ 4.734773820 | ~ 1.150535609 | ~ 1.378705905
0 | 1 |.999822203 | .99999900 | ~ 31.56162183 | ~ 1.000675726 | ~ 1.000968316
0 | 0.1 |.999899763 | .99999900 | ~ 99.31197087 | ~ 1.000809394 | ~ 1.000989842

Table 3.4: Condition Numbers for v1 = 1077, vy = 107!, &nazr = 100
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by | a do v cond(Ti/208) | cond(Tg, o S) cond(7, o S)

1 1 1.991240729 | .99999990 | ~ 233.8988119 | ~ 1.136576301 | ~ 1.155596278
1 | 0.1 |.985266826 | .99999990 | ~ 427.4783464 | ~ 1.405586166 | ~ 1.446490440
1 | 10 | .995027989 | .99999990 | ~ 90.69553856 | ~ 1.040043706 | ~ 1.049413925
0 | 1 |.999982173 | .99999990 | ~ 314.4616791 | ~ 1.000281568 | ~ 1.000315213
0 | 0.1 |.999989758 | .99999990 | ~ 952.8609609 | ~ 1.000296071 | ~ 1.000315866

Table 3.5: Condition Numbers for v; = 1075, 15 = 10, &0z = 100

requirement for the solutions u; to be bounded as |z| — +o00. A Fourier transform in the y
direction on the operator L; yields
(a + by0y — vj0zy + ibyé + v;€°) Wj(z, €) = 0, (3.3.36)
2

for j = 1,2, where i = —1. For a given &, equation (3.3.36) is again an ordinary differential
equation in z whose solutions have the form «;(¢) exp{A; (§)z} + B;(£) exp{)\j' (€)z}, where

N by + \/bg + davj + W3 + by
)‘j (5) =

7 , (3.3.37)

with Re(/\;c) z 0, as Re(z) indicates the real part of a complex number z. The boundedness
assumption on the solutions w; (j = 1,2) for £ — oo, still implies a1(£) = f2(§) = 0, while
the Dirichlet condition on the interface provides f1(€) = ag(€) = 4r. Hence, once again

AN
lanlr_ '\ oz |z=0

1
= §ﬂr (bm + \/bg + davy + 4V12§2 + 4‘Lby1/]f>

as well as

L (20) (0
2 ony ) 2 ox |2=0

1 R .
= —gir (bx - \/b% + davy + 4362 + 4zby'fj€)

and we have the following expression for S:

A

1
Sir = 2 <\/bg + davy + W32 + 4ibyn € + \/b% + davy + 4032 + 4z'byV2§> Up (3.3.38)

Using as approximate inverse the operator T, we define
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2 2
N = [ v ] N = [ v2 ] , (3.3.39)
Sl ) S o )

and the symbol of the preconditioned operator is easily determined as

() = Ny (1 n Vb2 + davy + 4v3€2 + 4z'by1/2§>

Vb2 + davy + 42€2 + dibyu €
(3.3.40)

N [1g Vb2 + davy + 4V3E2 + dibyui €
2 .
Vb2 + davy + 4v3€2 + 4ibyuat

Remark 3.3.2 Notice that in the case of purely elliptic problems, i.e. when a = b; = b, = 0,

we have ®(¢) = 1, which implies exact preconditioning in this simple case. The proposed
preconditioner is thus an extension of the generalized Neumann/Neumann one introduced in
[75]. O

Due to the presence of the first order term, the resulting linear system at the discrete level is
non-symmetric, and we use an iterative method of Krylov type, such as GMRES. In that order,
we recall that the reduction factor p in a GMRES iteration is given, for a positive real matrix
A with symmetric part M, (see [94]) by

()‘min(]‘/[))2

=1 e
Amax(AT A)
We can prove the following result.

Theorem 3.3.2 Let T = F ! (’f;) In the case where the plane R? is decomposed into the left

and right half-planes and the convective field is uniform, the reduction factor for the associated
GMRES preconditioned by T can be bounded from above by a constant independent of the time
step At, the convective field b and the wviscosity coefficients v1 and vo. Moreover, under the
assumption vy < vo we have

1
ToS)<1— , 3.3.41
p( ° ) 5+6(1/1/1/2)2+5(l/1/1/2)4 ( )
and, if the convective field is parallel to the interface
1
p(ToS)<1-— (3.3.42)

1+2300_ (v /v2)k/2 + (v vo)*

Proof. The reduction factor for the associated GMRES algorithm preconditioned by 7 can be
estimated, in the Fourier space, by the quantity

B (ming Re <I>(§))2
maxg |®(¢)[?
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where ®(¢) is the function defined in (3.3.40). Thus, it is enough to show that

maxe |®(¢)|*
(i Re (€] <C (3.3.43)

with the constant C' independent of a, b;, by, v1 and v5. Recalling that, for a complex number
2z € C, z71 = z/|2|2, the function ®(¢) can be written as

B(¢) = Ni [1+2()] + N2 [1 + ;82} : (3.3.44)

where we have set

© b2 + dave + 4v3E2 + 4ibyro
z(€) = :
b2 + davy + 402E2 + 4ibyv €

Hence
Re (I)(f) = N1 + N2 + [Nl + |ZEVT§|2:| Rez(&), (3345)
as well as
Im®(¢) = [Nl — ‘Z‘EVT?P] Imz(¢). (3.3.46)

Since Re z(&) > 0, we have from (3.3.45)

v? v3 v3
Re®(£) > Ny + Na = o +1V2)2 o +2V2)2 > o +2V2)2 (3.3.47)
In order to have an estimate for maxg [®(¢)|2, let us consider |z(£)|. We have
26 = [(bg + davy + 402¢2)2 + (4byl/2§)2] 14
T (B2 +davy + 4v2€2)2 + (4by1n €)2
(3.3.48)
~ ([bg + davs]? + 8 B2 + 262 + davy] V22 + 16 y§g4) HA
— \[62 + 4arn]? 4 8 [b2 + 202 + darn | vEE2 + 16 V¢! ’
which is bounded, as
1< J2(6)] <2, (3.3.49)

vy
and it is not difficult (altought rather tedious) to see that its first derivative is given by

dz()| _ 1

1 _3y4 F +2G¢ + HE
=g

[Q(&)

(VZ - Vl) 57

where
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F = [bi(bﬁ + 2b§) + 32a21/11/2] [bg(l/l + o) + 2a1/11/2] + 2ab§ [b?E(QI/% + burivg + 21/12) + 6b§1/11/2]
G = [b2(v2 +v?) + 16a2v3] (v1 + o) + 8abivivs (V3 + vive + 12)

H = [b3 4 2b7] vivs (vo + v1) + davivs

Q(&) = [b2 + 4a1]” + 8[b] + 2b + davi]v7E” + 16 V1€

As the coefficients F', G and H are positive, the function |z(£)| is decreasing in (—o0,0), increas-
ing in (0, 400), and we have

. B B b2 + davs - Rz
min=(©)] = |20) = [E e, supl=(©) = lim |s(6)] = 2

So far, we focus on |®(£)|? to prove its boundedness from above. We have from (3.3.45) and

(3.3.46)

|B(€)|* = [N1 + Na +91(€) cos 9] + [1h2(€) sind)?, (3.3.50)
where 9 = 9(€) is the argument of z(£), and v (£) and 12(€) are defined as
Ny

P1(€) = N1 |z(§)] + 2] (3.3.51)
and
N M
Pa(§) = N1 |2(€)] EGIE (3.3.52)
Hence we have, for all ¢
D(E)]” < [Ny + Na + 91 () + [12(&)] = (&) (3.3.53)

The left inequality in (3.3.49) entails 11(£) > 0, as well as the right one entails 1,(¢) < 0, for
all ¢ € R. Moreover, since

NP — Na] diz(e)
w“““[ EGE ] e

and

oo [N1]z(6)2 + No | d|z(8)]
¢“9“[ BGE ] i

the same argument shows that () is increasing in (—oo,0) and decreasing in (0, +00), while
12(€) behaves in the opposite way.
The function ¥(¢) is therefore increasing in (—o0,0) and decreasing in (0, +00), as
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(&) = 2[N1 + Na + 91 (O] ¥1(€) + 2[12(&)] ¥2(8),

where the two terms on the right hand side have the same sign. This entails
max|8(&)[* < ¥(0),
and we have to focus on the calculation of ¥(0), considering two different cases.

i) If by # 0, let us define 7 := 4a/b2. We have

\II(O):[Nl (1+ /1+771/2>+N2 (1+ /1+771/1>} [ [1+nvy Ny /1+771/1]2
14+ 1+nvo 1+nn 1+nvo
(3.3.54)
It can be easily verified that the right hand term is decreasing as a function of 7: since 7 is
positive, it attains its maximum when 7 = 0. This provides

maxe [B(€)| < (2N; +2Ny)? + (N7 — N,)?

= b5N?+ 6NNy + 5N

(3.3.55)
R N
(14wt " ()t ()t
So far, gathering together (3.3.47) and (3.3.55), we can conclude
2
maxe |2 (E)| < (m +4u2)4 [5 vi 6 viv; 4 vy i

(ming Re ®(¢)) 125 (r1 +12) (v1 + 1) (v1 + 1)

(3.3.56)

2 4
=546 (ﬂ> +5 (ﬂ) < 16,
1) 12]
where the last inequality follows from the assumption v < vs.

i1) If by = 0, namely the flux term is parallel to the interface, |z(0)| = y/v2/v1, and we have

2 2
maxcio© < [ (10 /2) 4w (1 f2)] 4 [y /2 - 2
g vy V1 1)
= ¥[V + s+ 2030 + 2010 —|—2y7/2 1/2+2V (3.3.57)
(1/1+V )4 1 2 12 1V TV
42202 2 32 0 M),
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0.2+

0.1+

—0.2 1

Figure 3.3: b= (1,1), a = 0.1, ; = 1077,y = 107!

Gathering together (3.3.47) and (3.3.57), we get

m 2 T s\ k2 s\ 4
(mizgjg?)y <1+2y (;7;) + (V—:) <16 (3.3.58)
k=1

where, once again, the last inequality follows from the assumption vy < vs.
From (3.3.56) and (3.3.58), on one hand, estimates (3.3.41) and (3.3.42) are straightforward,

while, on the other hand,

15
p(TOS) < Ea

independently of the coefficients of the problem, and this concludes the proof. g

Remark 3.3.3 The assumption v; < 1o is not restrictive, since it can be easily seen that a
symmetric argument would give the same result as long as vo < 1. O

Remark 3.3.4 It appears from estimates (3.3.41) and (3.3.42) that the reduction factor of the
GMRES algorithm for the preconditioned system improves with the growth of the ratio vy /vy:
this allows the treatment of large discontinuities. Moreover, since the bound does not depend
on the Fourier variable £, its independence from the mesh easily follows. O

Figures 3.3 through 3.8 show the distribution of the eigenvalues of the preconditioned operator
T oS for several different choices of the coefficients involved, considering cases in which 1 < v,
and a maximal frequency &4, = 100. It turns out that, as we could expect from (3.3.41) and
(3.3.42), the preconditioner performs very well for large values of the ratio v, /v1. Moreover, for
advection dominated problems 7 is almost exact.
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0.2+

Figure 3.4: b= (1,1), a = 0.1, v; = 10 5,05 = 102

—0.02 -

—0.04 -

—0.06 -

2.2

Figure 3.5: b = (1,1), a = 10, v; = 10™7, 15 = 107!
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0.2+

0.1+

—0.1+

—0.2

Figure 3.6: b= (1,1),a =10, v; =10 %, 15 = 102

0.16 4
0.14 4
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0.02 4

—0.02 +
—0.04 +
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—0.14 o
—0.16 o

Figure 3.7: b = (10,5), a = 1, v; = 1077, = 107!
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Figure 3.8: b = (10,5), a = 1, v; = 1076, 1 = 1072

3.3.4 The case of many subdomains

In this section we focus on the extension of the proposed preconditioner to the case of a decom-
position into an arbitrary number of subdomains. In order to be able to treat also more general
partitions, we firstly introduce the variational form of the algorithm, then we extend to this case
the substructuring technique discussed in the previous sections.

Variational formulation of the continuous problem

Let us consider in R¢ (with d = 2,3) the domain partition

N
Q=] %,
k=1

with Q; N Qy = 0 for j # k, on which we are solving the general advection-diffusion problem

—div (v(z)Vu) +b(z) - V(u) +a(z)u = f inQ

u =0 ondlp (3.3.59)
y(g:)% = @ on BQN

with piecewise constant viscosity
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where 1q, is the characteristic function of the domain (2.
In order to restrict ourselves to well-posed problems, we assume that the velocity field b €
W1(Q) is of bounded divergence, that

a— %div(b) >u>0,

for some p € R, and that the Neumann boundary conditions are given only on a subset 9y of
the domain boundary where we have outflow conditions,

b-n>0 Vz € 00y,

where as usual n denotes the unit vector normal to 9 pointing outwards. The variational
formulation of (3.3.59) reads

Find u € H(Q) : a(u,v) = L(v) Vv e H(Q), (3.3.60)
where
H(Q) = {v e H'(Q) : vjgn, =0},

and

a(u,v) = / vVu - Vu+ (b - Vu)v + auv,
Q

L(v) = /fou+/aQN<pfu.

In order to extend the substructuring technique discussed in the previous section to this general
partitioning, we define the interfaces

T =00\ 09, T =Ugl,

and we have to describe the action of the advection-diffusion operator on each subdomain €.
The simple restriction of the bilinear form a(u,v) to Q

ag(u,v) = /Q vgVu - Vv + (b Vu)v + auv
k

is not satisfactory because of its lack of positiveness. To overcome this problem, an integration
by parts of the advective term 1/2(b(z) - Vu)v leads to the local symmetrized form

1
ag(u,v) := / {VkVu -Vo+ - [(b:-Vu)v — (b-Vv)u] + (a — 1div b)uv} +/ 1b - DUV
Qp 2 2 0N NIy,

= ax(u,v) — Eb - DU,
Tk
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Summing up on k, and letting

o [ e[
Qp IN N NNy,

the variational problem (3.3.60) is equivalent to
n
Findu € H(Q) : Y {ak(u,v) — Lp(v)} =0 Vv € H(Q), (3.3.61)
k=1

since the interface terms — ka 1/2b - ngzuv added locally to each form a; cancel each other by
summation. However, since we have by construction

ay(u,u) = /Q {l/k|Vu\2 + (a — %divb)uQ} + /an o %b - nyu? Vu € H(Qy),
k N k

where we have denoted with H(Qy) = {vk =)q,, VE H(Q)} the space of restrictions, their
presence is very important since it guarantees that the local bilinear form ay(u,v) is positive on

Finite Element Approximation

In order to approximate numerically the variational problem (3.3.61) above with finite elements,
we replace the space H(f2) with a suitable finite element space Hp (€2) (for a brief outline of
finite element methods for advection-diffusion problems see the Appendix). In the numerical
tests reported at the end of this Chapter, we use second order isoparametric finite elements
defined on regular triangulations of {2, as they are a good compromise between accuracy and
cost-efficiency. Other choices are of course possible, but in any case the triangulations respect
the geometry of subdomain decomposition: the interfaces I'y will coincide with interelement
boundaries, which means that each subdomain can be obtained as the union of a given subset
of elements in the original triangulation.

When problem (3.3.59) is advection-dominated, these finite elements techniques must be sta-
bilized. In the following we will use Galerkin Least-Squares techniques (GALS), but different
choices (such as the Streamline Diffusion introduced in Chapter 1) can be made. The GALS
technique consists in adding to the original variational formulation the element residuals

. di(h) (=div (v(z)Vu) + b(z) - Vu + a(z)u — f) (—=div (v(z)Vv) + b(z) - Vv + a(z)v)

where T; is an element of the triangulation, with a suitable choice of the local positive stabiliza-

tion parameter ¢;(h). The stabilized finite elements formulation then reads

n

Find uy, € Hy(Q) : > {akn(un,vn) — Lin(va)} =0 Vo, € Hy (), (3.3.62)
k=1

where
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agp(u,v) = ag(u,v) + Z / 0; (—div (vxVu) + b - Vu + au) (—=div (v, Vv) + b - Vv + av)
T;c, i

L) = Lew)+ 3 / 5i(B)f (—div (e Vo) + b - Vo + av).
TiCQk Ti
Substructuring

The variational structure of problems (3.3.61) and (3.3.62) allows to reduce them to an interface
problem by means of standard substructuring techniques. Notice that, since the variational
structure of the original problem and of its finite elements discretization are very similar, and
this will be true also for the numerical domain decomposition we introduce in this section, we
will use the same notation for both the continuous and the discrete problem and omit all the
subscripts h in all finite elements formulations: just remember that, when dealing with finite
elements, the bilinear and linear forms ay(.,.) and Lg(.) should be replaced by their discrete
counterparts agp(.,.) and Ly, (.) as defined in the previous section.

Following [2], we consider the local space of restrictions H(€) defined in the previous section
and we introduce the space

HP () = {uk € H(Q), vy = 0 in m}

consisting of functions of H(€ ) with zero continuous extension in 2 \ €, the global trace space
V = TrH(2) r, the local trace spaces

Vi, = {’Ek = TI"Uk|Fk, Vi € H(Qk)} = {Q_)k = TI"U|Fk, NS H(Q)} ,

the restriction operators

Ry : H(Q) — H(Qk), Rk 1V = Vg,

the ai-harmonic extension Tr,;1 : Vi — H(Qy ), defined as

ap(Try 'O, vp) =0 Vop € HO(Q),  Tr(Tr,'@p)ir, = T,  Try, 'k € H(Qy) (3.3.63)

as well as its adjoint Tr; ™, defined by

ak(vk,Tr,;*ﬂk) =0 Vug € HO(Qk,), TI‘(rI‘I“',;>l<’l_L]c)|1~]C = Ug, TI‘;*’U,k; € H(Q)- (3.3.64)

Since the bilinear form ay, is elliptic on HC(2;) by construction, problems (3.3.63) and (3.3.64)
are well-posed, and we can define the local Schur complement operator Sy : Vi, — V', as

(Skiik, D) = ag(Try, 'k, Tr, *0p) Vg, 0 € V.
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If we decompose the local degrees of freedom Uy of up = Rju into internal (U,g) and interface
(Ug) degrees of freedom, the matrix Ay associated to the bilinear form aj can be decomposed
into

A B,
Ak = [ég i, |
and we have
—(A3) ™' By
T7",;1 = ,
Id

as well as
Skﬁk = (Ak — BZ(A%)_IBIC) Uk
We can therefore decompose each restriction of the solution u and test function v into Ryu =
u) + Trk_l(Rku) and Ryv = v) + Tr,*(Rgv), and eliminate the local internal component ul
since it is solution of the local well-posed problem
ap(ud,vg) = Ly (vg) Yoy, € HP (Qy), uy € HP(Q).

Thus, we can introduce the global Schur complement operator

N
S= R{SiR
k=1

and we reduce problems (3.3.61) and (3.3.62) to the interface problem

Si=F iV, (3.3.65)

where the right-hand side is defined as

(F,5) = Ek: Ly (Tr; * (R0))
- zk: [Li(vg) — L (vg — Ty * (Ry?))]
- Ek: [Li(vg) — ax(ul, vy — Tr*(Ryv))]  (construction of ud)
- zk: [Li(vg) — ax(uf,vk)]  (definition of T7, *),

where vy, is any function in H(Qy ) such that vy = ¥ on T'.
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Definition of the preconditioner

The preconditioner we propose here for the solution of (3.3.65) is an extension of the ones
proposed in [2] and [75] and a generalization of the one discussed in the previous section to an
arbitrary number of subdomains. We precondition the interface operator S = Zszl RfSkRk
with a weighted sum of inverses:

N
T =Y D} (Sy) ™" Dy, (3.3.66)
k=1
with
N
> DRy = Idr. (3.3.67)
k=1

Notice that, as well known in domain decomposition literature, for any Fj, € V). the action of the
operator (S;) ' Fy is simply equal to the trace on Ty, of the solution wy, of the local variational
problem

ak(wk,vk) = (Fk,Trkvk) Yoy, € H(Qk),wk c H(Qk),

which, by construction of the bilinear form ay, is associated to the operator

—div(vxVw) + b - Vw + aw

with Robin boundary condition on the interface

ow 1
Vg — — =—b-nw = F on I'.
k on, 2 k k k
In order to achieve good parallelization properties for the preconditioned algorithm, as the
bilinear form changes with the subdomains, the weights D), should be chosen as local as possible.

The following section is dedicated to their construction.

Construction of the weights Dy

Since we have to take into account what happens in the neighborhood of each interface point,
the map Dy is defined on each degree of freedom of the interface I'y. For P € I'y, we define the
set

Np := {jE{l,...,N} |PEP]'},

consisting of all indexes corresponding to the subdomains €2; whose interface boundary contains
P. We define the weight Dy, on the degree of freedom u(P) by
— Vi _
Dy a(P) = Cp =—— u(P),
djenp Vi
where the constant Cp is chosen in a suitable way to satisfy (3.3.67), and it depends only on
the number of subdomains to which the point P belongs. As an example, consider a domain
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Q € R? decomposed into N parallelepipedal subdomains: if the point P is a vertex that belongs
to 8 subdomains, the set Np will consists of 8 indexes and we choose Cp = 1/3, if P lies on
a side which separates 4 subdomains, Np consists of 4 indexes and we choose Cp = 1/2, and
finally if P belongs to a face and separates only two subdomains we choose Cp = 1.

Remark 3.3.5 The preconditioner introduced in this section transforms naturally into the
Robin/Robin one as long as the viscosity is continuous (and into the generalized Neumann/Neu-
mann as long as the operator is symmetric). Thus, it is well-suited for a subdivision of each
region physically homogeneous into smaller subdomains. In this latter case, however, if the
number of subdomains is large, the introduction of a coarse space may help to reduce the high
number of initial iterations due to the presence of constant-like functions which scale badly
in energy norm when expanded from a local subdomain to the full domain. The traditional
remedy consists in the introduction of a small coarse global space which includes these constant
like functions and to solve the interface problem by a direct solver on the coarse space and by
a Robin/Robin preconditioned iterative solver on its orthogonal. O

3.4 Numerical results in three-dimensions

This section contains the results of some numerical tests carried out at the INRIA in Roc-
quencourt (France) with the group of M. Vidrascu. The advection-diffusion problem (3.3.1) is
discretized by means of the stabilized Galerkin Least-Squares technique described in the previ-
ous section using second order elements on an hexaedral decomposition. The interface problem
(3.3.65) is solved by a GMRES algorithm preconditioned by the operator 7. The algorithm
stops when the ¢? norm on the interface of the initial residual is reduced by a factor of 10710,

3.4.1 A two-domains model problem

The first experiment deals with a partition of the unit cube [0, 1] x [0, 1] % [0, 1] into two subdo-
mains ; = [0,0.5] x [0, 1] x [0, 1] and Q9 = [0.5, 1] x [0, 1] % [0, 1]. We choose different convective
fields

-

i) b= €7: the velocity is perpendicular to the interface,
i) b=2¢+ €3: the velocity is parallel to the interface,
) b=2¢ + 38 + 5&: we refer to this velocity as “oblique”,

as well as a = 1. We consider large jumps between the viscosity coefficients, we choose f = 0
in the whole 2 and we impose u = 1 on the bottom face of the cube as well as homogeneous
Dirichlet conditions on the rest of the boundary 0f).

The total number of finite elements is 1728, the total number of degrees of freedom is 14023 and
the number of degrees of freedom on the interface is 625. The number of iterations is reported
in Table 3.6: when two results are present, the first one refers to a convective field directed from
the more viscous region to the less viscous one, while the second refers to the opposite case.
The results show that the preconditioner is almost insensitive to the choice of the convective
fields, although it performs slightly better when the flux is directed towards the less viscous
region. Nevertheless, a strong improvement in the number of iterations is observed when one
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i, Vs vi/vs b= (%£1,0,0) b=(0,1,1) b= (%1,3,5)
101,107  10* 10 11 17 15 17
102,106 12 16 13 7 8
101,107  10° 10 11 17 15 17
107,10~ 1" 5 5 2 7T 7
10-1,10°7 108 10 11 17 15 17
103,103 3 3 3 3 3
1,107 107 6 7 9 11 11

Table 3.6: Number of iterations for the two-domain 3D model problem: res < 10710

N 25 5F .75

Figure 3.10: b= (1,3,5), v1 = 1,15 = 10~7. Section: 3z —y = 0.5.
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vy, Vo v /vy Test 1 Test 2 Test 3
10-1,10°° 10* 33 33 34
101,106 10° 32 33 34
10~1,107 106 32 33 34
103,1073 106 29 28 21
1,1077 107 29 31 29

Table 3.7: Number of iterations for the multidomain model problem: res < 100

of the two subproblems is not advection-dominated as well as when both subdomains have very
little viscosity. However, the number of iterations is reasonable in all cases and it appears to
be, as we expected from the theory, fairly insensitive to the viscosity jumps. Finally, we have
represented in Figure 3.9 and 3.10 two cross-sections (which take into account the direction of
the convective field) of the results for b= (=1,0,0), v1 = 10}, 5 = 106 and for b= (1,3,5),
v1 = 1,5 = 1077 respectively; in both cases, ; is on the left side of the figure.

3.4.2 Influence of the number of subdomains

We investigate here the robustness of the preconditioner with respect to the number of subdo-
mains and to their mutual position. We consider the cube © = [—0.5,0.5] x [—0.5,0.5] x [0, 1]
partitioned into 8 subdomains, numbered in a clockwise helicoidal way from ©; = [-0.5,0] X
[—0.5,0] x [0,0.5] to Qg = [0,0.5] x [—0.5,0] x [0.5,1]. We consider the velocity field

b = —2myé, + 21w & + sin(27z) &5.
and we consider the cube as constituted of different materials disposed in the following ways:

Test 1: vy = vy = v5 = vg, and Vo = v3 = g = vy: this is the configuration considered in the
previous section, but each physical domain here is decomposed into four smaller subdomains.

Test 2: v1 = v5 = vg = vg, and o = v3 = V4 = v7: the homogeneous subdomains 2; and 9 are
shown in Figure 3.11.

Test 3: v1 =v3 = vg = vg, and v = vy = V5 = v7: this case is a black and white decomposition
where each subdomain of one kind is surrounded by subdomains of the other one. Figure 3.12
shows Q5.

Test 4: We choose v1 = 1071, v3 =102, 5= 1073, 15 = 10~* and vy = vy = v5 = v7 = 1075,

We choose again f = 0 in the whole 2, and Dirichlet conditions » = 1 on the bottom face and
u = 0 on the rest of 9€2. The total number of finite elements is still 1728, the total number of
degrees of freedom 14023, but the number of interface degrees of freedom has raised to 1801. We
report in Table 3.7 the number of iterations, and we observe that the preconditioner is sensitive
to the number of subdomains (33 against 20), but it appears once again insensitive to the jumps
in the viscosity coefficients. Even more interesting, the preconditioned system is not affected
by the larger number of different viscosity coefficients (see the results of Test 4 in Table 3.8).
Finally, we have reported in Figure 3.13 a section of a result for Test 3.
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Figure 3.11: The subdomains Q; (left) and Qy (right) in Test 2.

Figure 3.12: The domain {23 in Test 3.

Figure 3.13: Test 3, v; = 1071, vp = 1077, Section: z = 0.25.

Vo,V4, V5, V7 V3
102

14!
1071

1076

Table 3.8: Number of iterations in Test 4. Residual < 1010
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Figure 3.14: The three layers model. Section: y = 0.5

3.4.3 A three layers model problem

The third experiment deals with a parallelpipedal domain ©Q = [0,1.5] x [0,1] x [0,1] which
is partitioned into three layers Q; = [0,0.5] x [0,1] x [0,1], Q9 = [0.5,1] x [0,1] x [0,1], Q3 =
[1,1.5] x[0,1] x [0, 1]. It is a very simplified model of transport and diffusion of a species through
different layers of materials, and is inspired by the project “Couplex” of the French national
agency ANDRA. We choose v; = v3 = 0.1, vy = 107%, a discontinuous convective field given by

{5 =3¢ —2&  inQand Q3

b =— é'l in QQ,
and a discontinuous reaction term given by

a = .001 in ; and Q3
a=".1 in Q.

We choose f =1 and we impose the following boundary conditions:

g—z =0 on [0,0.5] x [0,1] x {0}, [1,1.5] x [0,1] x {0} and {0} x [0,1] x [0,1]

u=~0 elsewhere

We report in Table 3.9 the total number of finite elements (NE), the total number of degrees of
freedom (NDF), the number of interface degrees of freedom (NIDF') and the number of iterations
(ITER). Once again the result is quite satisfactory: discontinuity in all coefficients appears not
to affect the performance of the preconditioner. We finally report in Figure 3.14 the cross-section

y = 0.5 of the solution.
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Partition NE NDF NIDF ITER
Ix1x1 2808 14275 838 13

Table 3.9: A three layers model problem

3.5 Conclusions

We proposed a preconditioner which is a generalization of the Robin/Robin preconditioner to
advection-diffusion problems with discontinuous coefficients. We have shown its robustness,
assessed theorically by a Fourier analysis in the special case of the two half-planes, where the
preconditioner provides a reduction factor for the associate GMRES which is bounded from
above independently of the coefficients of the problem. Moreover, a more accurate estimate
entails that the reduction factor improves with the growth of the jump in the viscosity, and
this allows to handle very large viscosity jumps. The robustness of the preconditioner has then
been confirmed by some numerical tests in three dimensions, which are reported in Section 3.4,
where the preconditioner has shown fair insensitivity to the jumps in the viscosity coefficients
as well as to the convective field. Unfortunately, the preconditioner remains sensitive to the
number of subdomains, but this seems unavoidable in the case of advection-dominated problems
without coarse grid correction. Consequently, if, on one hand, the extension of the preconditioner
to a partition into many subdomains is quite straightforward stemming from the variational
formulation of the problem, on the other hand, when the number of subdomains is large, the
introduction of a coarse grid correction space could become mandatory, in order to avoid (or at
least reduce) the initial stagnation of the algorithm.

The preconditioner transforms naturally into the Robin/Robin one when the viscosity is con-
tinuous, and, probably being its most interesting feature, it has the same algebraic structure
as this latter one. Therefore it can be easily implemented into a software which contains the
Robin/Robin or the Neumann/Neumann preconditioner.

However, if the extension to systems of advection-diffusion equations appears to be quite straight-
forward, further work needs to be done: a convergence analysis in a more general setting is not
yet available (and it appears to be quite difficult), the extension to the case of discontinuous
convective fields should be addressed, the introduction of a coarse space to reduce the sensitivity
to the number of subdomains should be analyzed, and, finally, the algorithm should be tested
on more complex situations.



Chapter 4

chwarz Algorithms for Wave
Equations

This chapter is devoted to a domain decomposition approach to the solution of equations de-
scribing the propagation of waves. Wave equations are used to model phenomena such as the
sound emitted by a loud speaker, or the electromagnetic field generated by an antenna, or the
diffraction of such field by a building.

In the last years, a growing interest in the field led many scientists to work on wave equations,
especially in the numerical approximation framework, and this involved also people working on
domain decomposition methods. Several contributions appeared in this directions, on both the
Helmholtz equation, following the early works by B. Després ([35], [36], [16]), and the Maxwell
system, among which we recall the works by A. Alonso and A. Valli ([9], [12], [11] [7], [10]),
F. Ben-Belgacem ([15]), and Y. Maday, F. Rapetti and B. Wohlmuth ([80]). The most recent
developments on this subject seek for an optimization of the interface conditions in order to
improve the numerical efficiency of the algorithms proposed. Among them, we recall the thesis
by P. Chevalier ([30]), and the work by M. Gander and F. Nataf ([51]) on Helmholtz equations.
In the first part of the chapter we briefly introduce the equations of acoustics and electromag-
netics. Then, in Section 4.2 we analyze the convergence properties of some Schwarz algorithm,
previously appeared in literature, for Helmholtz equations. Finally, in Section 4.3, we analyze
the convergence properties of a slightly more general version of the Schwarz algorithm proposed
by B. Després for the Maxwell system.

4.1 Acoustic and Electromagnetic Waves

The most common wave equations that can be encountered in physics or in engineering are
the acoustic wave equation, also known as Helmholtz equation, describing the propagation of
a sound through a medium, and the Maxwell system, which describes the propagation of the
electromagnetic fields. We won’t present here a detailed mathematical analysis of such equations,
but in the rest of this section, following mainly the book by J.-C. Nédélec [83], we describe their

111
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main features.

4.1.1 The Helmholtz Equation

The propagation of the sound in a medium is described by the acoustic wave equation, which
can be derived from the inviscid Navier-Stokes equations for compressible gases. In the case of
small displacements of the gas, in fact, a linearization leads to an equation for the displacements
and the small pressure variation in the gas. If the medium is homogeneous with mean density
po, this results in the system of equations

du
vy +Vp=0,
(4.1.1)
10p .
6—25 + p()lell = 0,

where c is the speed of sound in the medium, u is the velocity of displacement in the medium
and p is the pressure, which is supposed to be isotropic. After eliminating the displacement u,
we are left with a scalar wave equation for the pressure p:

2
01—2% _Ap=0. (4.1.2)
To be able to solve equation (4.1.2), we have to specify the domain in which we look for a
solution, and we must prescribe initial data as well as suitable boundary conditions to have a
well-posed problem.
In that order, let Q be a region in R¢, (d = 2,3), with bounded regular boundary 99 (a curve
or a surface). The domain in which the above equation has to be solved is either an interior
domain, denoted by €;, which coincides with €, or its complement Q. = R%\Q;. The unit
normal n is defined as pointing outwards with respect to ;.
A complete set of data is obtained by prescribing initial values of p and its first time derivative
Op/0t, while the classical boundary conditions are the Dirichlet and Neumann ones. The problem
to be solved, up to a multiplicative constant depending on the choice of physical units, is therefore

(Z—Z)—Apz() €N, t>0
p(0,z) = po(z) z €9

4 (4.1.3)
%(O,x):pl(x) z €N

| B(p)(t,z) =0 z€ON, t>0

where the trace operator B(p) is either a Dirichlet or a Neumann one.
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Harmonic solutions and plane waves

It is usual to look for time harmonic solutions of the equation (4.1.3): it amounts to seek for
solutions in the form

p(t,z) = Re [u(m) ei“’t] ,

where i is the imaginary unit and w is called the pulsation of the wave. The function u(z) is
complex valued and equation (4.1.3) reduces to the well-known Helmholtz equation

~Au—k*u=0 inQ, (4.1.4)

with Dirichlet or Neumann boundary conditions. The quantity & = w/c is called the wave
number, whereas the quantity f = w/2x is called the frequency.

The Helmholtz equation has some very special family of solutions. The first one are the so-called
“plane waves”: up to a multiplicative factor, these solutions are complex-valued functions of the
form

u(z) = ¢®D|E = k.

If the vector k is real, these solutions are of modulus 1, while if k is complex and such that
(E : E) = k?, these solutions are exponentially decreasing in an half-space determined by the
imaginary part of the vector k and exponentially increasing in the other half-space.

The second special family of solutions consists of the “spherical waves”, which are functions that
depend only on the radial variable r (the distance from the origin): an example in R? is given

by the function
sin kr
u(z) = , r=/1? + 13 + 13,
T

which can be easily seen to satisfy equation (4.1.4). Notice that when r is large, r times a
spherical wave is asymptotically a plane wave: this latter wave can therefore be used as a model
describing a remote punctual acoustic source.

When we consider equation (4.1.4) in the framework of an interior problem we speak of stationary
wave solutions. In that case, it is well-known that the operator —A, with its boundary conditions
on 052, is self-adjoint and has a compact resolvent in L2(;), admitting a spectral decomposition
with positive eigenvalues of finite order. As a consequence, the Fredholm alternative argument
tells us that either k2 is not an eigenvalue and there is a unique solution of equation (4.1.4), or
k? is an eigenvalue and the corresponding eigenfunctions are solutions of equation (4.1.4) with
zero right-hand side.

When we deal with an exterior problem, we speak of progressive wave solutions, a situation
extremely different from the previous one. The operator —A, with its boundary conditions,
neither is self-adjoint, nor it has a compact resolvent in L?(£).). Since plane waves are solutions
to the homogeneous system in the whole space, it is thus natural to impose additional boundary
conditions at infinity to equation (4.1.4) in order to guarantee uniqueness. We can eliminate
the plane waves by simply look for solutions u that decrease at infinity as 1/r. However, this
is not enough for uniqueness (for instance the spherical wave (sinkr)/r is a non-zero solution
of (4.1.4) in the free space), and we add therefore at infinity the extra “Sommerfeld radiation
condition”, (also called “outgoing wave condition”)
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g—:f +iku| < r% at infinity (4.1.5)
The formulation of the exterior problem is therefore
—Au—ku=0 in €2,
(4.1.6)
u=20 (or%:()) on 0N}
together with the radiation condition (4.1.5), which can be written in a weaker form as
2
/ 8—U +iku| dr <e.
. |or
We denote by H the Hilbert space
U Vu ou . 9
H = {u, AT +r2)1/2’5 +iku € L (Qe)}
endowed with the norm
2 2 2
9 9 U Vu ou .
wl|gr = ||lu o T o2 + |5 +iku
lullz =l ||L2(Qe) H (1 +72)1/2 12(0.) H (14 12)1/2 L2(6) ‘ or L2(9)

and we state the following result (for proof see [83]).

Theorem 4.1.1 The exterior Dirichlet and Neumann problem (4.1.6)-(4.1.5) admit at most one
solution in the Hilbert space H. O

4.1.2 The Maxwell Equations

Maxwell equations describe the propagation of electromagnetic waves, which are defined by the
electric field, denoted with £, and the magnetic field, denoted with H. We start by describing
their laws in a dielectric isotropic medium, which is characterized by the electric permittivity €
and by the magnetic permeability p.

The speed of waves in the dielectric medium is given by 1/,/ep. We denote by ey and po
respectively the permittivity and the permeability of the vacuum, and by ¢ the speed of light in

the vacuum, which is
1

Vel

The relative permittivity and the permeability of the medium are defined as

CcC =

€ = €r€o, er > 1,

B = prpro-  pr > 1
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In the absence of electric and magnetic charges and currents, the electric and magnetic fields
are governed by the system of equations

—eaa—lt? +rotH =0
(4.1.7)

H

— +rotE =0
Mot
The system above has to be completed by transmission conditions at the interfaces separating
different dielectric media. Along a surface I' of discontinuity of € or p the tangential components
of the fields £ and H are continuous and, denoting with n the unit normal to I', these jump
conditions take the form:

[E X o] =0,
(4.1.8)
[H x n], =0.

Isotropic conducting media are characterized, aside of € and p, by the conductivity o, which is
a real positive number. In such medium Maxwell system reads

oF
—EE +rotH —ocFE =0

H
,uaa—t + rotE =0,

while the interface conditions (4.1.8) holding for dielectric media remain unchanged.

Time-harmonic solutions

Also in the case of Maxwell system, it is quite usual to consider harmonic solutions which are
the complex-valued fields E and H such that the fields

E(t,z) = Re (E(z)e™"),

H(t,z) = Re (H(z)e™?)

where 7 is the imaginary unit and w is the pulsation, satisfy the Maxwell system. Thus, the
fields E and H must satisfy the harmonic Maxwell equations:

—jweE +rotH—-—cE =0
(4.1.9)
twuH + rotE = 0.

As in the case of acoustic waves, to be able to solve system (4.1.9) one must specify the domain
in which is looking for a solution, as well as suitable boundary conditions. Thus, let €2 be a
region in R (d = 2,3), with bounded regular boundary 99 (a curve or a surface). Once again,
we denote with ; the interior domain, which coincides with 2, and with . the exterior domain,
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which coincides with its complement 2, = R%\Q; (the unit normal n being defined as pointing
outwards with respect to ;).

Waves usually propagate in unbounded domains, and, similarly to the case of the Helmholtz
equation, one must be able to describe precisely the behavior of the solutions at infinity, which
is equivalent to define the radiation conditions. They typically have the form

)
|E(z)| < g, for large 7,
T
C
¢ H(z)| < gt for large r, (4.1.10)
I
VEE — JiH x —| < =, for large ,
{ T T

where C' is a constant.
Thus, a possible formulation of the time harmonic exterior Mazwell problem is the following;:

Find E and H, such that

( —iweE +1otH—-0cE =0 in Q,
twpH + rotE = 0 in Q.

Exn=7" on Of)

[ E and H satisfy (4.1.10)

where the tangential vector field T is a given datum defined on 9€). In the case of an object
lit by an incident plane wave, with electric field E™, the boundary condition takes the form
YT =E" xn.

Similarly, a possible formulation of the time harmonic interior Mazwell problem is the following:

Find E and H, such that
—tweE +rotH—cE =0 in €;
iwpH 4+ rotE =0 in €,

Exn=7" on 0N

Y again being given, tangent to 2. Another boundary condition quite common deals with the
so-called impedance conditions, also called Leontovich conditions:

[(E X n) + fn x (H x n)] 5, =9,

where 8 and g are given.
In any case, we can rewrite system (4.1.9) in terms of the unknown E: for the interior problem
we have
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rot (,u_l rot E) — w%E + iwoE =0 in Q
(4.1.11)
Exn=7" on 0f)

with the additional requirement that divE = 0 in €.
Setting
u:=E—Er, (4.1.12)

where Ev is defined in © and satisfies Ey x n = T on 0f2, we can finally rewrite system (4.1.11)
as

rot (/[1 rot u) —w?eu +iwou=F in Q
(4.1.13)
uxn=0 on 0f2
where we have set F := —rot (4 'rot Ey) + w?¢Ey — iwoEy.

Weak formulation of the problem

We introduce the Hilbert spaces
H(ot; Q) = {ve[L*(@)]" | rotv e [L2(2))°}

Hy(rot;Q) = {v € H(rot;Q) | (n x v)j90 = 0},
endowed with the graph norm

V1l 1 eot s0) 2= (V1[50 + [Tt V][5 o) /2.

as well as the bilinear form
m(w,v) := / (p_lrotw TOt V — w?ew - V + iwow - v),
Q

defined on H(rot;{2), where Vv denotes the conjugated of a complex number v. The weak
formulation of (4.1.13) reads

find u € Hy(rot;2) : m(u,v)=(F,v) Vv € Hy(rot;€2). (4.1.14)

In the case of a conductor, €, 4 and o are assumed to be symmetric matrices, uniformly positive
definite in ©, and with these positions the bilinear form m(.,.) is continuous and coercive in
H (rot ;Q); thus, existence and uniqueness of the solution follow from the Lax-Milgram lemma.
Notice that in the so-called low-frequency case, which corresponds to omitting the term

—/w25w-7
Q

in the definition of m(.,.), the coerciveness result still holds with an even easier proof. Finally,
as long as o = 0, the bilinear form m(.,.) fails to be coercive, and existence and uniqueness of
the solution stem from the Fredholm alternative theorem.
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4.2 Domain Decomposition for Helmholtz Equations

In this section we present a domain decomposition approach to solve Helmholtz equation (4.1.4)
and we introduce the algorithms appeared in literature within the framework of non-overlapping
Schwarz methods.

Let €2 be a bounded domain in R?, with boundary 82 regular enough (say, Lipschitz continuous),
and let u be the unique weak solution of problem

—Au—wu=f in

(On +iw)u=20 on 09,

that can be rewritten as
Find v € H*() such that

/Vu-Vv—w2/uv+z'w/ uv:/fv, (4.2.1)
Q Q 19} Q

for each v € H'(Q). Notice that the boundary condition on 9 is a simplification of the
Sommerfeld radiation at infinity.

We partition the domain 2 into two non-overlapping subdomains 2 and €9, with interface T,
and we can show that the equation (4.2.1) is equivalent to a transmission problem.

Proposition 4.2.1 Problem (4.2.1) is equivalent to the following multidomain formulation.
Find uy and uo weak solutions of

(—Auy —w?uy=f1  in(y
—Aug — wPuy = fi in Q9
(On + iw)uy =0 on 99y N oY,

< (On +iw)ug =0 on 99 N 9, (4.2.2)
U1 = u2 onT,

\ g—x = gzz on I

with f; = fiq,, for 1 =1,2.
Proof. We denote with A the usual space of traces on the interface,

A:={ne H'/2(T) | 7 = v, for a suitable v € H'(Q)}.
Then, the weak formulation of (4.2.2) is the following
Find u; € H} (1), ug € HE(Q2) such that
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( a’l(ulavl) = (fa '01)91 VUI € Hll‘(Ql)
Ul = U onI
! (4.2.3)
0/2(’21,2,’1)2) = (fa 102)92 V’Ug S H%\(QQ)
( a2(u2, Rop) = (f, Rip)a, + (f; Rep)o, — ar(ur, Rip) Y € A,

where R;u denotes any possible extension of y to €;, and where the bilinear forms a(.,.)
(1 =1,2) are defined as

ai(ui, v;) == / Vu; - Vu; — w2/ wu;v; + iw/ UiV; Yu;, v; € Hl(Ql).
Q; Q; 9Q;NON

We start by considering the solution u to (4.2.1). If we set uw; := u|q,, 1 = 1,2, we have that
u; € HE(Q;), and that (4.2.3)1, (4.2.3)2, and (4.2.3)3 are trivially satisfied. Moreover, for each
u € A, the function Ry defined as

L RLU, in Ql
Ru = { Rop  in Qg

belongs to H'(Q2), thus we have

a(u’RIJ’) = (fa R/I‘)a

which is equivalent to (4.2.3)4, the weak form of the Neumann condition (4.2.2)g
On the other hand, let u;, ¢ = 1,2, be the solutions of (4.2.3). Setting

Ui in Ql
U = .
ug in o,

we immediately have from (4.2.3)s that u € H'(Q). Then, taking v € H'(Q), we have that
p:= v € A. Define Ry as before: clearly, (v|o, — Riu) € H{(€;), thus from (4.2.3)1, (4.2.3)3,
and (4.2.3)4 it follows that

2

a(u,v) = [ai(wi, v|Q — Rip) + a;(ui, Rip)]
i=1

=10l = Rip) + (f, Rap)e]
i=1

:(f,’U)

and this concludes the proof. O
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4.2.1 A Schwarz algorithm for Helmholtz equation

In this section we introduce an iterative algorithm of Schwarz type with non overlapping sub-
domains. This kind of approach has been used in literature by several people, among which
B. Després in [35] and [16], P. Chevalier in [30], and M. Gander et al. in [51], who proposed
different suitable interface conditions, that we are going to outline in the following.

Let ©Q; (j =1,..,N) be open sets such that Q@ = U;Q;. We define the global external boundary
¥ := 09, the local external boundaries 3, := 0Q; N %, and the interfaces I'j, := 0Q; N 0%,. We
set I'; := U;I'jp, so that 9Q; = I'; UX;. We denote with n; the outward normal to 9€2;. Finally,
let B; be an operator acting on the interface I';. We introduce the following Schwarz iterative
procedure.

Given u? (j=1,..,N) in Q;, solve for m > 1

( —AUTH — w2u;-”+1 = fj in Q;
2 ; m+1
< a—n] t+iw Jui " =0 on X, (4.2.4)
( Bj(u™) = Bj(ug) on L, Vp s.t. Ty, # 0.

The key point in the above algorithm is the shape of the interface operators B;, that must be
chosen in a suitable way to recover, at convergence, the continuity of both the solution and of
its normal derivative across the interfaces I'j,. Such algorithm has been firstly proposed by B.
Després in [35], with the choice

for the interface transmission operator. In the rest of this section, we will outline a convergence
analysis of the above algorithm (4.2.4) in a two-domains decomposition, following mainly the
analysis made by P. Chevalier in his thesis [30], and M. Gander et al. in [51], who generalized
Després’ approach.

For that purpose, it is useful to consider the local Steklov-Poincaré operators. In a two-domain
decomposition, owing to (4.2.2)5-(4.2.2)g, these local operators are defined as

S;: H'/2(T) x L2(Q) — H~'%(D)

) P (4.2.5)
ur, a.
an
wj (j =1,2) being the solution of problem
( —ij - w2wj = fj in Qj

0
< (a—nj-l-’iw) wj =0  on Xj,

| wj = ur onI
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It is immediate to see that Sy(ugr, fa) = g—xilr, thus the transmission problem (4.2.2) entails
that uy is solution of the problem
[ —Aup —w?u = fi in Q4
0 . _0 >
< a—m + w U]_ — on 15 (4.2.6)
ou
8—1 + Sa(uqr,0) = =82(0, f2) on T
\ On

A transparent condition for the interface I is thus given by the operator (9, +S2). An optimal
choice for the operators B; in (4.2.4) would thus be

Bj = 8nj + Sj—|—1-

Unfortunately, as it is well known, the operators S; are nonlocal, thus they are not differential
operators along the interface.

We can clarify this with a Fourier analysis of the operator Se. For that purpose, we consider the
plane R? decomposed into the left Q; = (—00,0) x R and right half plane Q3 = (0, +o0) x R,
with interface I' = {0} x R. Let v be the solution of

([ —Av —w?v =0 in Q9
Qv on T (4.2.7)
lim r <@ +iwv) =0
| r—oo or

where the Sommerfeld outgoing condition stems from the unboundedness of the domain. We
perform a Fourier transform with respect to y, which is defined as

F:o(z,y) —s 3z, k) = / o(e,y) e+ dy,
R

where k is the Fourier variable, with inverse denoted by F~!, and we can show that if v is
solution of (4.2.7), then ¥ is solution of

Ox? (4.2.8)
(0, k) = (k).

Among the two solutions of this system, one must choose the one physically admissible (the one
not exponentially growing), obtaining

o(z, k) = d(k) e AB) 2,



122 CHAPTER 4. SCHWARZ ALGORITHMS FOR WAVE EQUATIONS

where (k) := /|k|2 — w? is the root of the characteristic equation A\? 4+ (w? — k%) = 0 which is
either positive real or purely imaginary:

Ak) = VE?2 —w? for |k| >w, Ak)=ivVw?—Ek?for k| <w.

So far, we can easily evaluate the symbol of the Steklov-Poincaré operator, which is given by

S(k) = /[k]? — w2

Since its symbol is not a polynomial in k, the Steklov-Poincaré is not a differential operator,
thus, one must choose the interface operators B; by looking for a suitable approximation of the
Steklov-Poincaré operator by means of a differential one.

Remark 4.2.1 The peculiarity of the Steklov-Poincaré operator stems from its difference of
behavior according to the frequency k. In fact, when |k| > w, the symbol S is real and problem
(4.2.8) is elliptic, whereas as long as |k| < w, S is purely imaginary and problem (4.2.8) is not
coercive. O

Convergence Analysis

We denote with II; the approximate Steklov-Poincaré operator on the interface I'j, we express
the interface operator B; as

and we analyze the convergence to the zero solution of the coupled problem (4.2.4) when
f(z,y) = 0 (it suffices, since the problem is linear). After a Fourier transform with respect
to y, we obtain

8211711-{—1

or?

+ (B> = w®)artt =0 <0, keR

(85 + mi(R)a7 ™ (0) = (95 +m(k))a3 (0)

and

92antt L
322 + (Jk* —wH)astt =0 z>0, keR
i

(0z +ma(k))az ™ (0) = (9p + m2(k))af (0)

where we have denoted with k the Fourier variable and with (k) the symbol of the operator
II;. Since the Sommerfeld condition excludes both growing solutions and incoming modes at
infinity, the solutions of these ordinary differential equations are

At (z, k) = a5 (0,k) BT antl(z, k) = ap(0,k) e AR,

where, again, A(k) := /|k|?> — w? is either real (and positive) or purely imaginary. Using the
transmission conditions and the fact that
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~n—+1
0y
ox

we get one step of the Schwarz iteration as

ﬂ;H—l(:L‘, k) _ _)\)il({:];)—i_‘i‘ﬂttl({:];) e)\(k)z,ag(()’ k‘),

(z,k) = A(R)att!,  FE—(x,k) = —A(k)as™!

_ k) + ma(k)

—A(k) + ma(k)
If we evaluate the second equation at £ = 0 for the n-th iteration step, we insert it into the first
one, and we evaluate this latter in = 0, we get

—A(k) +mi1(k)  A(k) + ma(k)
k) + (k) —A(k) + m2(k)

Then, introducing the convergence rate o(k) defined as

ant (xz, k) AEzER (0, k).

a0, k) = a0, k).

L Ak) +m(k) Ak) + mo(K)
o(k) = AE) +mi(k) —A(k) + ma(k)

we obtain by induction

a3"(0, k) = 0" (k) 43 (0, k).

It is not difficult to see that a similar argument in s gives
3" (0, k) = o" (k) @5(0, k).

Remark 4.2.2 It is immediate to observe, from the above calculations, that if we could choose
II; = S;, the Steklov-Poincaré operator, we would have (k) = A(k) and mo(k) = —A(k), and
consequently (k) = 0, ensuring convergence in two iterations for the algorithm, independently
of the initial guess u?-((), k), j = 1,2. Unfortunately, as we observed in the previous section, due
to the presence of the square root in the symbol, the Steklov-Poincaré is a non-local operator in
the real domain, and the choice 7;(k) = (k) is not admissible. O

In Després’ framework, we can easily evaluate the convergence rate of the Schwarz algorithm
(4.2.4) as

2

(k)| = k) +iw  AEk) —iw (A(k) —iw)?| | A(k) —iw
CENZIN®) T iw Ak) —iw| | k) +iw)2| | A (k) + iw
The behavior of the symbol A(k) varies according to the frequency k, thus we have the following

situations.
For k < w (i.e. for propagative modes), A(k) is purely imaginary and

2
w? —k? —w

Vw2 — k2 +w

2
ivw? — k2 —iw

ivVw? — k2 + 4w

lo(k)| = <1
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For k > w (i.e. for evanescent modes), A(k) is real and

2

\/kQ—wQ—iw 1
- )

vk —w2+zw

since it is the ratio of two conjugated complex numbers.

lo(k)| =

Remark 4.2.3 The case k = w represents the resonance frequency, and it corresponds to the
resolution of an ill-posed problem, since the global problem could be rewritten as

Opzu = 0 in Q,
Opu =10 on T,

which admits infinitely many solutions. O

What we observe from the above argument, is that the Schwarz algorithm (4.2.4) does not
converge for evanescent modes, whereas the reduction factor p(k) is very small for low frequencies
(k < w). This is not in contradiction with Després’ work, since he considered a problem with
radiation conditions at finite distance, which allows only to propagative modes to “enter” the
system.

4.2.2 Modified Transmission Conditions on the Interface

As we showed in the previous section, the Schwarz algorithm (4.2.4) with the choice B; =
On; +iw does not converge for evanescent modes. To overcome this problem, several propositions
have been made in literature, seeking for an optimization of the interface conditions in order
to improve the convergence rate of the algorithm for the propagating modes and to achieve
convergence also for the evanescent ones. In this section, we present the approaches introduced
by P. Chevalier in [30], which consists in adding to Després interface conditions a space derivative
of second order in the direction tangential to the interface, and M. Gander et al. in [51], who
seek for an optimization of the convergence rate of the algorithm based on a slight modification
of the transmission conditions proposed so far.

If we consider the Taylor expansion of the symbol S, , in the neighborhood of & = 0,

o [ k2 k? K
S(k) =iwy/1 — i = iw — z— +18—3 + O(K®),

and we denote with 8" its truncated at the n-th order, its inverse Fourier transform F —18m is
a differential operator along the interface in the physical space. The choice made by B. Després
in [35] consists in an approximation of order zero of the Steklov-Poincaré operator, i.e.

0
Bj = ~— +iw,
7 On;j
which is the exact condition for a plane wave.
In his thesis P. Chevalier observes that choosing a second order approximation of the symbol of
the Steklov-Poincaré operator does not help at all the convergence of evanescent modes, since
the convergence rate in this case is given by (see [30], p. 79):
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(|ivw? — k2 —iw +4iE2 _
e if k< w
Vw2 —k +iw — 5
lo2) (k)| = < ]
VEZ — w2 —iw 4 ik _
2y if k> w
L[ VE? —w? +iw — g

and, again, [g)(k)| = 1 for k¥ > w. This is a consequence of the fact that the zero-th order
Taylor expansion is a good approximation of the symbol S as long as it is purely imaginary (i.e.
for k¥ < w), thus one must improve the approximation along the real axis.

Observing that S behaves like |k| for large k, and it is symmetric in k, P. Chevalier proposes to
approach S with

SUk) =iw+nk?, neC.

Within this framework, since a low frequency approximation, given by i(w + Im(n)k?), is mixed
with an high frequency approximation, given by Re(n)k?, the real part of 5 will allow to approach
S for large values of k. Moreover, since 8! (k) coincides with S(k) when k = 0, also this condition
is exact for a plane wave.

An inverse Fourier transform on the operator S* (k) leads, in the physical space, to the differential
operator St = jw — 10yy, which can be written in the more general form

St =iw —no?

where 92 denotes the second order derivative along the direction tangential to the interface. The
convergence of the Schwarz algorithm with this interface conditions is given by the following
result, which is proved in [30].

Theorem 4.2.1 (P. Chevalier) If Re(n) > 0 and Im(n) > —%, the Schwarz algorithm (4.2.4)
for a two domain decomposition with interface conditions given by

Bj = 0p; +iw—nd2,  j=1,2

converges for all modes. O

Optimized Interface Conditions

Another way to overcome the problem of convergence for the evanescent modes is the optimiza-
tion of interface conditions. Stemming from an analogous approach used for advection-diffusion
problems by C. Japhet et al. (see [63], [64], and [65]), M. Gander et al. proposed in [51] an
optimization procedure for the interface conditions, that we present in this section. They ap-
proximate the symbol of the Steklov-Poincaré operator with polynomials of degree at most 2
(in order to avoid an increase in bandwidth for the local subproblems), the choice of which
relies on the optimization of the convergence rate, and it can be either a constant H?‘ = +aq,
a € C, or a constant plus a second order derivative along the interface, H?Q = +(¢1 +(20?), with
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¢,¢2 € C. According to the choice of the approximate operator II;, we thus will speak of “Opti-
mized Robin Transmission Conditions” and “Optimized Second Order Transmission Conditions”
(002), respectively.

Optimized Robin Transmission Conditions
The idea is to approximate the Steklov-Poincaré operator with

I} =+(p+ig), pgeR,
and to optimize the convergence rate over p and ¢. It can be easily seen that, with this position,
the convergence rate (so far a function of p, ¢, and the frequency k) becomes
k< w?

o(p, g, k) = (4.2.9)

k> w?

Remark 4.2.4 Notice that the case k = w is still the resonance frequency, with o(p,q,k) =1
independently of the choice of the parameters p and q. However, the point kK = w represents
one single mode in the spectrum and a Krylov method can easily take care of it as long as the
Schwarz algorithm is used as a preconditioner. Moreover, if the point k¥ = w does not lie on a
node of the discretization grid, this is not necessary. O

Differently from the case of positive definite problems (see, for instance, [64] or [65]), one can-
not minimize g over all the relevant frequencies, and one must face the following optimization
problem

min max k 4.2.10
PR (xce(kmin,w)u(wtkmax) ol ”) ’ 210
where w™ and w™ are parameter to be chosen in a suitable way to exclude the inflexion point
k = w, while kp;, is the smallest frequency relevant to the subdomain whereas k. denotes the
largest frequency supported by the numerical grid (of order 7/h, h being the mesh size).

The solution of the optimization problem (4.2.10) is given by the following result.

Theorem 4.2.2 (M. Gander, F. Magoulés, F. Nataf) Under the three assumption

202 < (w7)2+ (wh)?, wT <w
202 > K2+ (wh)?, (4.2.11)
2w° < kr2nin + krznax’

the min-mazx problem (4.2.10) has a unique solution and the optimal parameters are given by

* % __ \/(;JZ - (w7)2\/klgnax - w?
Pt =4q —\/ 5 :
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The optimal convergence rate is then given by

( x % k)) ma ax—w?

max o\p,q, = 1 -

k€ (kmin,w™ )U(wT, kmax) 2_(,-V2\ 7 3 _(,,—\2
1++2 (“,T(‘ﬂ wé )4 + 7“;’2“;‘1“})2

O

The proof of the above theorem is rather tricky and can be found in [51]. We only observe that
assumptions (4.2.11) are not restrictive. In fact, letting w® = w 4 6, with 61 > 0, assumption
(4.2.11); amounts to 2(64 +6_)w+ 62 4+ 62 > 0, which is satisfied, for instance, for §_ = §; > 0.
Since in practice ki, is small and w is close to w, also assumption (4.2.11), is not restrictive
either. Finally, the thumb rule to take at least ten points per wavelength leads typically to a
mesh size h < £-: if kpax = 7/h, this gives kpayx > 5w and also assumption (4.2.11)3 is easily
satisfied.

Optimized Second Order Transmission Conditions
The idea is to approximate the Steklov-Poincaré operator with

9% = +(G1+87),  (,GeC

and to optimize the convergence rate over (; and (3. The following Lemma allows to simplify
the above interface condition

Lemma 4.2.1 Let u; and uy be the solutions in ; (5 =1,2) of
—Auj — wPuj = f
with interface conditions

(2 +e) (2 +8) ) = (5 +a) (~pm +6)

with o, € C, a+ B # 0, and n; denoting the outward normal to the domain ;. Then, the
following second order interface condition is satisfied as well

i+a’8_w2_ 1 & (u1) = _i_l_aﬁ_wz_ 1 0 (us)
i a+B  a+por2) Y \ony a+pB  a+porz)
O

Owing to Lemma 4.2.1, M. Gander et al. propose to approximate the symbol of the Steklov-
Poincare operator with

2
app . _ aff —w 1 9
% (a+ﬂ +a+ﬁk

which leads to a very simple formula for the convergence rate, given by
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o= () (5)

where, as usual, A(k) = Vk? — w?, and one can play with the role of the parameters «, 8 € C to
optimize g. By symmetry, it is enough to consider only positive values of the frequency k, and
to optimize the convergence rate one has to solve the min-max problem

min <ke(k max lo(a, B, k)|> , (4.2.12)

a’ﬂe(c minyw_)U(w+;kmax)

where, again the parameters w~ and w™ are chosen to exclude the resonance frequency k = w.
With these positions, the convergence rate o(a, 8, k) consists of two factors, whereas A(k) is
real for evanescent modes and purely imaginary for propagative ones, so if one chooses « purely
imaginary (a € iR), and (8 real (8 € R), one of the two factors in the convergence rate is of
modulus one, the first factor for vanishing modes, and the second one for propagative ones. This
allows to optimize the convergence rate on a single parameter according to the region in the
frequency domain. With this choice of o and  the min-max problem decouples, and one can
consider the simpler problem

min ( max lo(e, B, k)|) , (4.2.13)

a€iR,BER \ k€(kmin,w™ )U(wt, kmax)

which is solved by the following result, proved in [51], that we state here without proof.

Theorem 4.2.3 (M. Gander, F. Magoulés, F. Nataf) The solution of the min-maz prob-
lem (4.2.13) is unique and the optimal parameters are are given by

ot 1= (W = ki) (@ — (W)Y €iR

and
B = [(kimax — 0*) ((w")* —w”)]/* €R.

The convergence rate is then, for propagating modes, given by

min

(@2 = @ )+ (@ = )18

min

w2 — ()24 (w2 — k2. )1/4 2
. ‘Q(a*’ﬂ*’k)‘:(<2 (W)HV = (@* — K2y) )

ke(kminywi)

whereas, for evanescent modes is given by

2
g g (B = G = () = )
e 127 P = ((km =BT (@ =)
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4.3 Domain Decomposition for Maxwell Equations

Let © be a bounded domain in R3. We consider the Maxwell problem in the auxiliary unknown
u, defined in (4.1.12)

rot (rotu) — w?u="F in Q
(4.3.1)
(rotuxn) xn+iwuxn=0 on 9N,

where we have set 4 = ¢ = 1 for simplicity of notations (notice that since o = 0 the original
wave problem is not positive). The boundary condition is a simplification of the Silver-Muller
condition at infinity, and, recalling that the unknown u must be divergence free since it equals
a curl, it is immediate to see that the solution u of (4.3.1) satisfies in 2 the vector Helmholtz
problem

—Au - w?u=F. (4.3.2)

4.3.1 Multidomain formulation

We split 2 into two non-overlapping subdomains 27 and 9, we denote as usual the interface
with T'. According to the physics of the problem, we have to enforce the continuity across the
interface of the tangential components of u and rotu. Since these are the natural conditions,
we end up with well-posed problems. The coupled problem reads

Find u; € H(rot, ;) such that

'rot(rotuj)—wzuj:F inQ;, j=1,2
(rotuj xn) Xxn+iwu; xn=0 ondNNIN; j=1,2

< (4.3.3)
U Xn=us Xn onT

{ rotu; Xn=rotuz Xn onI

which can be proved to be equivalent to the single domain problem (4.3.1)

4.3.2 A Non-overlapping Schwarz Algorithm

During the last years, several proposition have been made in order to solve the coupled problem
above. We consider here a Schwarz algorithm without overlap which reads

( 1ot (rotu}t!) —wPultt =F in
rot (rot ugﬂ) — w2ug+1 =F in Q9

{ (4.3.4)
rotu™ xn+Znxuf xn=rotu} xn+Znxu} xn onT,

[ rotuf ™ xn—-Znxul xn=rotu} xn—Znxul} xn onT
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where Z = p+1iq € C is a suitable parameter, and n indicates the iteration step. This approach
with the choice Z = iw has been firstly proposed by Després et al. in [38], where they show that
such algorithm converges weakly in H(rot,;), (j = 1,2) to the solution of the single domain
problem, and that u} and rot uj X n converge to u; and rot u; x n respectively. We will show in
the following that the convergence properties of this algorithm depend heavily on the radiation
boundary condition. To be more specific, we will show that the algorithm (4.3.4) converges only
for propagative modes, while for the evanescent ones the convergence rate is exactly 1. However,
since the radiation condition allows only the propagative modes to come into the system, this
is not in contradiction with Després’ work.

Convergence Analysis

Since the problems involved are linear, it is enough to analyze the convergence to the zero
solution for the homogeneous system. The tool for performing a convergence analysis is the
Fourier transform. In that order, we denote by (z,y,z) a point in R3, and we consider the
domain §) = R? partitioned in the left (Q; =] — oo, 0[xR?), and right (£; =]0, +oo[xR?) half
spaces, with interface I' = {0} x R?. With this position, the unit outward normal directed from
Q; to Q9 is n = (1,0,0), and, for sake of simplicity in notations, throughout this section, we
will denote u the solution in €2; and v the one in Q5.

Since the solutions u and v represent the rotational of the magnetic fields in ; and o, ,
they must be divergence free, and using this fact in (4.3.4)1-(4.3.4)2, each iteration step in the
Schwarz algorithm solves the following coupled problem of vectorial Helmholtz equations.

—Au™t — 2t =0 in
divu™t! =0 in Q4 (4.3.5)
rotu" ! xn+ Znxu"! xn=r0tv?* xn+Znxv" xn onT
and
—AVMTL W2yt =0 in Qo
divv™tl =0 in Q9 (4.3.6)

rotv'"tl xn—Znx v xn=rotu”" xn—Znxu®xn onT,

We perform a partial Fourier transform in the y and z directions, that we denote with F, and
we call k; and ko the corresponding dual variables. The transform F is defined as

F:E(z,y,z) — E(w, k1,ke) = // E(z,y, z) e "F19+k22) gy 7.
R2

We can show that, if u and v are solutions of (4.3.5)-(4.3.6), then u and V are solutions of
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92un+1
i + (B2 + k5 —w?)u"tt =0 in
T
4.3.7
BQVW‘_H ( )
——5z T (2 4+ k3 —w?)¥" =0  inQ
T
which must satisfy the transformed divergence free conditions
O, U —ikay ! —ikoW T =0 in Oy
(4.3.8)

E)ﬁ?’f“ - z'kﬁg“ - ’L.kgvg—i_l =0 in QQ,

as well as the transformed interface conditions on I'. For any fixed k; and ko, (4.3.7) are systems
of ordinary differential equations whose solutions are

@ = @1 (k1, k2) % + i (K1, ko) e A®

v = do(k1, ko) €% + Ba(k1, ko) e A®

where we have set A = A(k1, ko) 1= \/k? + k5 — w?, which is either real (and positive) or purely
imaginary. Among these solutions, we must choose the ones physically admissible, that is the
ones which are not exponentially increasing at infinity: this implies @ = 8; = (0,0,0), and
the solutions are completely determined by the boundary conditions at the interface I' and the
divergence free conditions (4.3.8).

Since, for each w € H(rot,€2), we have

m = ( — ikiws + ikgv/\\lg, — Oy W3 — ikgﬁl, Oy Wo + iklﬁl), (4.3.9)
and
rotw x n = (0, [rot w]s, —[rot w]s), n x w x n = (0,wsy, ws), (4.3.10)

where the subindeces denote components, it can be easily shown that the interface conditions
(4.3.5)3 and (4.3.6)3 transform naturally into

U ik At ZUnT = 9,90 + ik VY + ZVD !
(4.3.11)
Opust! + kot + ZULT! = 0,V + ikoV] + ZVE

and

Vit ik ¥ — Z90 ! = 9,48 + ik 4l — Zug
(4.3.12)
Dp VT 4 ikgV T — Z9PT = 9,07 + ikoU} — ZUY

all evaluated at z = 0. The divergence free conditions (4.3.8) provide, for all (z, k1, k2),

ui(z, ki, ko) =i Fatly (2, k1, ko) -)l\-k2u3(:v,k1,k2)
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and o - - .
Vi(z, k1, ko) = —i 1Va2(2, k1, ka) + KoV (2, Ky, ko)

A 7
that can be used in (4.3.11) and (4.3.12) obtaining
. k2 . k1ko . . o K2, kiko . N
)\ugﬂ—ylug“——1)\2ug+1+2u3+1——>\ S—i-)\ vy + 1}\2 vy + ZVy
(4.3.13)
~ kikg k2 . o kiko ., k3
G - SRt - Rt 4 Zagt = O+ R VG 4 29,
where u”+1 art 1(0, k1, k) and V7 =V (0, k1, ke), for i = 2,3, and
2
Aot 4 %vgﬂ + —kl)f” Vot 4 zentl = aap — %ﬁg ’“1;“2 U} + Z0Y
(4.3.14)
~ kiko . k2 N o Kkiko ., k3. ~
VDT 4 —1)\ 2vg+1 + 72‘,?4—1 + ZVit = 2ab 1)\2u§l )\2 5+ Zuj.

We set u := (ug,u3), v := (v, v3), and we express the action of one iteration of the Schwarz
algorithm as

Bia"t! = Biv",  Byv"T! = Byu”, (4.3.15)

where the matrices By, El, By and Eg are the following ones:

k2 kiks k? k1ks
A— T—FZ T N —)\+T+Z ~
Bl = ; Bl =
k1ko k2 kiko k2
as well as
U B T N T
A A - A A
BZ — ) BZ =
k1ko k% k1ko k%
— A+=-7 - A——=—-Z
A + A A A

It is immediate to see that By = —Bs and B; = —Eg, providing

U = BBV = AV", V"7 = By'Bu" = Au™.

Thus, given an initial guess @° and ™ 0
v", we have, for each n > 1

Gl = AMR0, gt = A2g0, (4.3.16)
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Since

"< (1Al 1O,

where [||.||| is any matrix norm compatible with the vector norm ||.||, we define the convergence
rate (or, equivalently, the reduction factor) of the algorithm as being the spectral radius of the
matrix A. Owing to the definition of the spectral radius of a matrix A, we therefore have

A) := max 4.3.17
p(4) e aa(b ) 17l ( )
where we have denoted with o(A) the spectrum of the matrix A,

Remark 4.3.1 The choice of defining the reduction factor as the spectral radius of the interface
mapping matrix is quite natural, since it equals the infimum of all compatible norms:

p(A) = Inf [11A1l-

Thus, if p(A) < 1, there exists a norm such that the interface mapping is a contraction with
respect to this norm, and the algorithm converges for all compatible norms. O

A simple algebraic manipulation provides

[ w+z2eikg ohik: 7
—w?+ 724 (2A — ’“ MUYz w4 224 (2) - MRy 7
A= : (4.3.18)
okik2 7 w? 4+ 72— MZh
2 2
W Z24 @AMy 7 ey 7oy on - R 7

Since A = /|k|2 — w? (with |k|? := k? + k3 for sake of simplicity in notations) is either real or
purely imaginary according to the sign of |k|? — w?, the matrix A will have a different shape
in the two different regions of the Fourier space separated by the resonance frequency |k| = w.
The eigenvalues of A are thus

( W+ Z2 + i|k[?

fo0?— \k|2 .
Vi = 72 2 if k2 < w?
P 2+ i (2 — R
4 (4.3.19)
2 2
. w?+ 7% + |k \/\k|2——w2 - ,
,YH:_w2+Z2+7(|k|2_2 ) if |k‘ >w,
\ VIk|2=

and we thus have two different spectral radii to consider , pr(A) and pg(A) (where the subscripts
L and H stay, in a certain sense, for Low and High frequency), depending on the value of
|k|? — w?. In the following lemma we prove that the non-overlapping Schwarz algorithm (4.3.4)
cannot converge for all modes.
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Lemma 4.3.1 Let Z = p+iq, p,q € R, be a complex number. There is no possible choice of
the parameters p and q in R such that the Schwarz algorithm (4.3.4) is convergent for all modes.

Proof. If ¢ = 0 and Z = p is real, the eigenvalues of the iteration matrix are

( w? + p? £+ i|k|?—E2—
VE = VT, if k|2 < w?
T (2 — [k P)
w2—|k|2
2 2 2 y4
VP v if |k|? > w?

+ _
TH= Z P+ (k]2 — 202)

If |k|?> < w?, the eigenvalues of A are complex: the numerators are conjugated, while the

—w? +p? +i

denominator remains unchanged. Thus we have |v{| = |y, | = pr, and it is quite immediate to
see that
2, 2)2 4_p°
pi(A) = worr) +2|k| L =1,
(e 4 12+ el (2 — K22

since, evaluating the difference between the numerator (N) and the denominator (D) in the
above formula, we easily have

2
b
N=D = (@ +p%) = (- +9%) + s 1M = (2w — )] = 0.

For evanescent modes, the situation is even worse. Both eigenvalues are real and if p > 0 we
have |vz| < |v7;|- Thus,

2
w? + p? + |k ——L—
VIR -—w?
pir(A) = > 1.

2
(—(JJ2 +p2 + 7’\k|€—7w2(|k|2 — 2w2)>

Indeed, the difference between the numerator (N) and the denominator (D) in the above formula,
after some algebraic manipulations, reads

p

since |k|? > w?. On the other hand, if p < 0, we have |v};| < |yy| and

2
N — D = 4w? <p2 + (Jk]? — w? +p%) + |k|2p7—w2(|k|2 — w2)> > 0,

2
2, .92 2
<w +p* — |k 7#2&12)
>1

p%{(A) = 2 )
(—(JJ2 +p2 + 7’\k|€—7w2(|k|2 — 2w2)>
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once again, since in this case

2 2
N — D = 40 <p2—|- ot (|k|2 )—4pp7) > 0.

=2

If p =0 and Z = iq is purely imaginary, the eigenvalues are

( 2 2 2 q
. U rEN G £ 1R < o?
[ e a7 11 B B
S
2 2 | 112 q
PO e £ 7 > o2
T S P (RP - 2?) if k[ > w
\ |k|?

If |k|? < w?, the eigenvalues of A are real and it is not difficult to see that, if w? — ¢2 > 0, then
Iy | < |Af|, whereas, if w? —¢% <0, |y | > |y{|- Thus, if w? — g2 > 0, we have

(s 4w )
(w24 +W<2w2—|k|2>)2

since |k|? < 2w? — |Ek|?. On the other hand, if w? — ¢% < 0, it is still more evident that

p1(A) =

<1, (4.3.20)

2
G )
(2 42 + o = k1)

p2(A) = S <1 (4.3.21)

for any choice of ¢.
If |k|> > w?, the eigenvalues of A are complex: the numerators are conjugated, while the
denominator remains unchanged. Thus |v{;| = |v4| = pu, and we have

2
(w2_q2)2+ k4 q
P2 (A) = M s — 1, (4.3.22)
(w? 4+ ¢2)? + |k|2 (|k‘2 - 2w2)

since, evaluating the difference between the numerator (N) and the denominator (D) in the
above formula, we easily have

N-D=(w - ¢’ - (@ +¢")* + 5 Ikl = (k[ + 20%)2] =o.

Ikl2

Finally, let us consider the case Z = p + iq, with p,q # 0. In this case the eigenvalues of A are
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)
24 .2 || - k[
[w +p° - iQ\/Z—W] +Z[2pq:|:p\/T—k|2]
vE = if |k)? < w?
2w2—|k . 2w2—|k|?
[_wz AR |k|2] I [2pq+p\/°;‘2—||k 2]
<
2 2 || . |k|?
B e R ki =)
vE = if |k[2 > w?
w2 42— o2 |k|*—2w : |k[2—2w
k [ w*+p°—q +p\/m]+z[2pq+q\/|k|2—_w2]

Since most of the problems occurred when |k|? > w?, we start our analysis from this case: both
eigenvalues have the same denominator, thus, in order to evaluate the spectral radius of A, it
is enough to compare the moduli of the numerators, which we denote with N(v};) and N(yg),
respectively. After some calculations, we have

_ k|2
NG = INCr)[2 = 4p ——= (w2 4 2 4+ @),
N

thus, if p > 0, then |y};| > |75/, and the opposite if p < 0. The spectral radius is thus

(
_ Ik

il? = et "“‘2} , s ] ) itp>0
2 w2 k|2 ’

|:7w2+p —a V2w2—||kk‘|2:| +[2pq+p \/2 w2—|lljc‘\2:|

P2 (A) = 4 (4.3.23)
B [w +p?—¢®—q 2 2} {2pq+p 2 2} )
{ [_w AL = } [2pq+p w2—|k\2]

We then calculate the difference between the numerator N and the denominator D in both the
occurrences in (4.3.23). If p > 0, we get after some calculations

2 k‘2
N —D = 402 <2p2+p&> >0,

VIE -2

independently of ¢, while, if p < 0,

p
N-D =8 —4—— L (K~ w?) (p* — ) + 24% [ + w? |

HE =2

= swp? — 4 ——L_L2(? — w?) + w? + (K + w?) | >0,

=

again independently of ¢. So far, it is not necessary to analyze what happens in the case
|k|? < w? a
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Remark 4.3.2 We can resume the above analysis in the following way: if the coefficient Z in
the Robin transmission condition on the interface is real, the Schwarz algorithm without overlap
(4.3.4) does not converge neither for propagative modes, where the reduction factor is exactly
1, nor for evanescent modes, where the reduction factor is greater than 1. On the other hand, if
Z is purely imaginary, the Schwarz algorithm without overlap (4.3.4) converges for propagating
modes, where it shows a reduction factor that can be very small for the low frequencies, but it
does not for evanescent ones, namely

pr(A) <1 for propagative modes

pa(A) =1 for evanescent modes

This is the same situation occurring in the case of Helmholtz equation (see Section 4.2.1) for a
non-overlapping Schwarz algorithm with Robin transmission conditions at the interface. Finally,
if the coefficient Z is complex with non zero real part the reduction factor for evanescent modes
is greater than 1. This is a situation completely different from the case of Helmholtz equation,
where the reduction factor associated to the Schwarz algorithm with a complex interface coef-
ficient was smaller than 1 for both propagative and evanescent modes: in that occurrence the
real part of Z allowed to control the interface operator a long as |k| increased. Unfortunately,
for Maxwell’s system, this is not the case. An hint in that direction could have come from the
following simple remark. In the case of Helmholtz equation, there is a sort of duality between
a purely imaginary and a real coefficient, which does not hold in the case of Maxwell’s system:
in each region of the frequency space, one of the twos guarantees convergence, while the other
one does not. See (4.2.9): the choice Z = iq provides a reduction factor strictly less than 1
for propagative modes and exactly 1 for the evanescent ones, and the vice versa happens with
7 = p. O

Remark 4.3.3 Notice that the choice made by B. Després, Z = iw, simplifies a little bit the
expression of the spectral radius, but shows the same drawback. Infact, with Després choice, we
have

( A
2 %2
pL(4) = 2=t

> <1 if [k]? < w?
2w—|k|?
(2w + 772—“&)

Ll
k?—w?

=1 if |k2 > w?

2 —
pH(A) - 4w? 1 (|k]2—2w)?

\ k]2 —w?

and, again the algorithm does not converge for evanescent modes. However, B. Després, on
one hand, considers a radiation condition at finite distance, which allows only the propagative
modes to be significant in the system, and, on the other hand, states a weak convergence result,
which is not in contradiction with the fact that the interface iteration map is non-expansive. [
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Second Order Interface Conditions

Another way to overcome the lack of convergence for evanescent modes, in the case of Helmholtz
equation, relied on the addition of a Laplacian in the direction tangential to the interface. The
use of a second order derivative, stemmed from the need to preserve the symmetry of the original
problem. A similar approach can be used in the case of the Maxwell’s system by means of the
vectorial tangential Laplacian operator Ar, which is a second order differential operator acting
along the direction tangential to the interface. The vectorial tangential Laplacian (also known
as Hodge operator) is defined, for any vector field u tangent to the surface, as

Aru := Vrdivru — Errot TUu. (4.3.24)

where the operators Vi (tangential gradient), ot (tangential rotational), divp (surfacic diver-
gence), and rot p (surfacic rotational), are defined as

Vrp=nxVyp xn IE}I‘QOZVFQOXH
divru = div (u x n) rotru = divr(u X n)

for any scalar field ¢ defined on I'; and for any vector field u tangential to I'.
The idea is to consider again a non-overlapping Schwarz algorithm as in (4.3.4), with modified
interface conditions: we thus propose the following procedure

Given u} and uJ in Q; and Qs respectively, solve for n > 1

( rot (rot u?“) — u}Qu?lH'1 =F in Q4
(rotup xn) Xxn+iwu; Xxn=>0 on 09 N oM
4
rot u!™ x n+iwn x uft! x n+nAruftt =
L =rotuj X n+iwn x uy X n+ nAruj on I,
(4.3.25)
and
(ot (rot ug"'l) — wng""1 =F in Q9
(rotug xn) Xxn+iwug Xxn =20 on 992 N 9Ny
4
rot uf ! x n—iwn x ujtt x n+nAruptt =
\ =rotu} xn—iwnxu? xn+nAru? onTl
(4.3.26)

where n = a + i, a,8 € R, is a complex number, while the reason of the choice Z = iw
relies in the convergence analysis of the previous section: the case Z = iq is the only one
such that the iterative map is a contraction for “Jow” frequencies, and it is not expansive for
“high” ones. Finally, we set ¢ = w linking the interface condition to the radiation condition on
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the boundary. A convergence analysis for the above algorithm is not yet available, but a few
comments are in order. On one hand, the use of a tangential second order operator in the case
of Helmholtz equation led to an algorithm convergent for all modes: since we have reduced the
original Maxwell’s system to a vectorial Helmholtz problem, an analogous approach with the
addition of a surfacic second order operator of rotational type could be promising in this latter
case. On the other hand, the use of a complex coefficient in the Robin transmission condition in
the case of Helmholtz equation ensured convergence for all modes, but the same approach does
not help in the case of Maxwell’s system. A convergence analysis of this latter algorithm must
therefore be faced.

4.4 Conclusions

We have analyzed the non-overlapping additive Schwarz algorithm proposed by B. Després for
the Maxwell’s system, with a Robin interface condition depending upon a parameter. We have
performed a convergence analysis in the special case of the space R? partitioned in two half
spaces by means of the Fourier transform: we have reduced the iteration step to a mapping
on the interface, whose symbol, in the Fourier space, is a 2 X 2 matrix, and we have defined
its convergence rate as being the spectral radius of this matrix. The algorithm is showed to
converge for propagative modes (i.e. for low frequencies in the Fourier space), independently of
the choice of the parameter. Unfortunately, for evanescent modes (i.e. for high frequencies in
the Fourier space) the convergence rate is exactly 1, no matter how one chooses the parameter,
and the algorithm does not converge. This is the same drawback occurring when such algorithm
is applied to the Helmholtz equation. Differently from this latter case, it is not enough to
replace the purely imaginary coefficient, in front of the zero-th order term in the Robin interface
condition, with a complex one with non zero real part, to achieve convergence also for evanescent
modes: the convergence rate becomes greater than 1. We then proposed, as an opportunity
to overcome this drawback, the addition to the interface condition of the vectorial tangential
Laplace operator (multiplied by some constant 7 € C): since a similar approach, consisting in the
addition of a second order derivative in the direction tangential to the interface, was successfully
used for Helmholtz equation, this could be promising in order to achieve convergence also for
evanescent modes, but the convergence analysis is not yet available and further work needs to
be done in this direction.
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Appendix A

In this appendix, we give a brief review of some instances which are well-known in literature.
We recall some basic definitions and properties of some function spaces, and we give a brief
presentation of the finite elements method for the approximation of elliptic partial differential
equation.

A.1 Function Spaces

In this section we recall the definitions of some function spaces which have been often used in
the book. A complete presentation of this subject can be found for instance in Yosida [100],
Brezis [22], J.-L. Lions and Magenes [76], and Adams [4].

1. Hilbert and Banach spaces

Let V be a complex linear space. A scalar product on V is a map (-,-) : V. x V — C, linear in
the first argument and such that (w,v) = (v, w) for each w,v € V (symmetry; the bar denotes
complex conjugation); (v,v) > 0 for each v € V (positivity); and (v,v) = 0 if, and only if, v = 0.
In the case of a real linear space, the map (-, -) takes values in R.

A seminorm is a map || - || : V — R such that ||v|| > 0 for each v € V; ||cv|| = || ||v]| for each
c€ Candwv e V;and ||w+v|| <|w||+ ||v]| for each w,v € V (triangular inequality).

A norm on V is a seminorm satisfying the additional property that ||v|| = 0 if, and only if,
v = 0. Two norms || - || and ||| - ||| on V are equivalent if there exist two positive constants M
and M5 such that

Mulfo]| < [[[oll] < Ma|lv]]

for each v € V.

Tt is readily verified that any scalar product defines a norm by setting: ||v|| := (v,v)'/?. More-
over, any norm defines a distance: d(w,v) = ||lw — v||.

A linear space V endowed with a scalar product (respectively, a norm) is called pre-hilbertian
(respectively, normed) space. A sequence vy, is a Cauchy sequence in a normed space V if it is a
Cauchy sequence with respect to the distance d(w,v) = ||w — v||. If any Cauchy sequence in a
pre-hilbertian (respectively, normed) space V is convergent, the space V is called a Hilbert space
(respectively, Banach space).

141
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In a Hilbert space the Schwarz inequality holds:

|(w,v)| < ||w|||[v]| for each w,v € V.

2. Dual spaces

If (V,]||-||v) and (W, ||-||w) are normed spaces, we denote by L(V; W) the set of linear, continuous
functionals from V' into W, and for F € L(V; W) we define the norm

F()llw

vy o= sup 2

vev oy

v#0
Thus L(V; W) is a normed space; if W is a Banach space, then £(V; W) is a Banach space, too.
If W = C (respectively, W = R, if V is a real normed space), the space L(V; C) (respectively,
L(V;R)) is called the dual space of V and is denoted by V'. The norm in V' is indicated by
I v
The bilinear form (-,-) from V' x V into C (respectively, R) defined by (F,v) := F(v) is called
the duality pairing between V' and V.

3. Weak convergence

In a normed space V it is possible to introduce another type of convergence, which is called
weak convergence. It is defined as follows: a sequence vy, is called weakly convergent to v € V' if
F(vy) converges to F(v) for each F € V'. Clearly, if the sequence v,, converges to v in V, it is
also weakly convergent. The converse is not true, unless V is finite dimensional.

It can be proved that the weak limit v, if it exists, is unique. Moreover, if v,, is weakly convergent
to v € V, one has

|lvl] < Tim inf [[on].
n—00

4. The Riesz theorem and the Lax-Milgram lemma

An important result which holds in Hilbert spaces is the following one.

Theorem A.1.1 (Riesz representation theorem) Let V be a (real or complex) Hilbert space,
endowed with the scalar product (-,-)y. If F € V', then there exists a unique wr € V such that

F) = (wg,v)y VoveV.

As a consequence of the Riesz representation theorem, if V' is a Hilbert space, then the dual V'
is a Hilbert space which can be canonically identified to V.
Another consequence of the Riesz theorem is the following result.
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Theorem A.1.2 (Lax Milgram lemma) Assume that V' is a real Hilbert space, endowed with
the scalar product (-,-)y and the norm || - ||y, that A: V xV — R is a bilinear form, and that
F : V — R is a linear continuous functional, namely, F € V'. Assume, moreover, that A is
continuous, namely,

9> 0: |A(w,v)| <llw||v |]v||v Vw,veV,

and coercive, namely,
Ja>0:Av,v) > a2 VoveV.

Then there exists a unique u € V solution to
A(u,v) = F(v) VoveV,

and, moreover,

1
llully < —[|F]lv.
a

If V is a complex Hilbert space, the Lax—Milgram lemma holds provided that (9.1.5) is substi-
tuted by the assumption

Ja>0:|A(v,v) > oy} VveV.

5. LP spaces

Let Q be an open set contained in R%, d > 1, and consider in Q the Lebesgue measure. A very
important family of Banach spaces is the following one. Let 1 < p < oo, and consider the set of
measurable functions v such that

/ lo(x)Pdx < 00, 1<p < oo, (A.L1)
Q
or, when p = oo,

sup{|v(x)||x € Q} < c. (A.1.2)

These spaces are usually denoted by LP(Q2) and the associated norm is

1/p
[[v]|zr (o) = (/Q |v(x)|”dx> , 1<p<oo, (A.1.3)

or, when p = oo,
0[] oo @) := sup{lo(x)|[x € Q}. (A.1.4)

More precisely, LP(€2) is indeed the space of classes of equivalence of measurable functions,
satisfying (A.1.1) or (A.1.2), with respect to the equivalence relation: w = v if w and v are
different on a subset having zero-measure. In other words, in the space LP(Q2) two functions,
different on a subset which has zero-measure, are identified to each other. Thus the definition
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of the space L*°(Q) in (A.1.2) and of its norm in (A.1.4) should be modified in the following
way: v € L*(Q) if

inf{M > 0||v(x)] < M almost everywhere in Q} < oo,

and
|[v]| Lo () := inf{M > 0| |v(x)| < M almost everywhere in 2},

where ‘almost everywhere in {2’ means ‘everywhere except on a subset of {2 having zero-measure’.
The space L%(Q) is a Hilbert space, endowed with the scalar product

(w,0)12(0) = [ ) () dx

often indicated by (w,v)o,q or simply (w,v).
If 1 < p < o0, the dual space of LP(f) is given by L? (), where (1/p) + (1/p') = 1 (and p' = 0
ifp=1).

6. Distributions

Let us recall that C§°(€2) (or D(€2)) denotes the space of infinitely differentiable functions having
compact support; that is, vanishing outside a bounded open set Q' C Q which has a positive
distance from the boundary 92 of €.

It is useful to define the concept of convergence for sequences of D(2). We say that v, € D(Q)
converges to v € D(Q) if there exists a closed bounded subset K € € such that v, vanishes
outside K for each n, and for every non-negative multi-index « the derivative D®wv,, converges
to D*v uniformly in 2. We recall that if @ = (o, ..., @), @; non-negative integers, then

olely
D= ozt .0z
where |a| := a1 + ... + a4 is the length of a.
The space of linear functionals on D(£2) which are continuous with respect to the convergence
introduced above is denoted by D'(Q) and its elements are called distributions. If L € D'(Q)
and v € D(Q), the action of the functional L on v is usually denoted by the duality pairing
(L,v).
It is easily seen that each function w € LP(Q), 1 < p < oo, can be associated with the following
distribution:

v — / x)dx, v € D(Q).
However, setting for instance Q2 = (—1,1), the Dirac functional
— (6,v) :=v(0), ve D),

is a distribution which cannot be represented through any function belonging to LP(2), 1 < p <
00.
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We introduce now the derivative of a distribution. Let a be a non-negative multi-index and L
a distribution. Then D*L is the distribution defined as follows:

(DL, v) := (-1)*(L, D*) Vv e D(Q).

Note that, from this definition, a distribution turns out to be infinitely differentiable. On the
other hand, when L is a smooth function, it is easily verified by integrating by parts that its
derivative in the sense of distributions coincides with the usual derivative.

Let us also recall that the Dirac distribution ¢ is the distributional derivative of the Heaviside

function:
1 >0

H(a:)::{O T

Finally, we say that the a-derivative of a distribution L is a function belonging to LP(2),
1 < p < o0, if there exists a function g, € LP(€) such that

(D“L,v) = /an(x)v(x) dx Vv e D).

7. Sobolev spaces

We finally introduce another class of functions, which furnish the natural environment for the
variational theory of partial differential equations.
The Sobolev space WFP(), k a non-negative integer and 1 < p < oo, is the space of functions
v € LP(Q) such that all the distributional derivatives of v of order up to k belong to LP(2). In
short

WkEP(Q) := {v € LP(Q)| D% € LP(R) for each non-negative

multi-index « such that |a| < k}.

Clearly, for each p, 1 < p < co, WOP(Q) = LP(Q) and W*2P(Q) c Wk»(Q) when k; < ky. For
1 < p < oo, WEP(Q) is a Banach space with respect to the norm

1/p
[v]|kp02 := Z HDaUHI[)Jp(Q)
|| <k
Moreover, its seminorm is defined as follows:
1/p
|U‘k,p,§2 = Z HD“UIIZ(Q)
|a|=k

On the other hand, W*(f) is a Banach space with respect to the norm

[[0l]k, 00,00 1= max [ D%l [ 1 (),
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while the corresponding seminorm is denoted by

= a. Da oo .
]k 00,02 max [[D*v]| oo ()
In particular, when p = 2 we write H*(Q) instead of W52(Q), || - ||x,0 and | - |¢q instead of
| lk,2,0 and | - |k 2,0, respectively.

Note that H*(Q) is a Hilbert space with respect to the scalar product

(’U),’U)]c’n = Z (Daw,DaU)O,Q.
| <k

Finally, for 1 < p < oo we denote by WéC P(Q) the closure of C§°(Q2) with respect to the norm
|| ||x.p.0> and with W=*#(Q) the dual space of W(f’p(Q). As before, when p = 2 we write HE ()
and H*(Q) instead of W§’2(Q) and W~52(Q), respectively.

It can also be proved that W(? P(Q) = LP(Q) and that, if Q has a Lipschitz continuous boundary
and 1 < p < oo, WFP(Q) is indeed the closure of C*®(Q) with respect to the norm || - || 0. In
other words, C®(Q) is dense in W*P(Q) for 1 < p < oo.

It is sometimes useful to consider the Sobolev space W*P(£2), where s € R and 1 < p < 0. For
the general definition, we refer to Adams ([4]). In particular, we only recall that, if Q@ = R and
p =2, W92(R%) = H*(R%) can be characterized as follows by means of the Fourier transform

(6):
H*RY) = {v e L*(RY)[ (1 + [¢[*)*?3(¢) € L*(RY)}.

When considering vector-valued functions v : © — R, the Hilbert space
H(div; Q) := {v € (L*(Q)%|divv € L*(Q)}

is also often used. It is endowed with the graph norm

V1] xgaiv ) = (IVIE 0+ [ldiv ][ o) /2.

Similarly to the preceding cases, if {2 has a Lipschitz continuous boundary, it can be proved that
H(div; Q) is the closure of (C*(Q))? with respect to the norm || - || fr(aiv ;0)-
For three-dimensional vector-valued functions we also introduce the Hilbert space

H(rot; Q) := {v € (L2(Q))? | rot v € (L2(Q))3},

endowed with the graph norm

/2.

¥l z2rot ) = (V1[G 0 + ot V][5 o)

Again, if Q has a Lipschitz continuous boundary, then H (rot ; Q) is the closure of (C*(2))? with
respect to the norm || - |[ g (rot ;0)-

Another important class of Sobolev spaces is given by W*P(X), where s > 0, 1 < p < ®©
and ¥ is a suitable subset of the boundary 92 (again, we write H*(X) instead of W*2(%)).
Their definition needs the introduction of some technical tools, especially if ¥ is a non-smooth
hypersurface (for instance, the boundary of a polygonal domain). For this we refer to Adams

([4]) or Brezzi and Gilardi ([23]); however, we return on a characterization of these spaces in the
following section. When ¥ = 99, the dual space of H*(99) is denoted by H~*(0f).
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A.1.1 Some results about Sobolev spaces

In this section we present without proofs some relevant properties enjoyed by functions belonging
to Sobolev spaces. We mainly limit ourselves to the Hilbert spaces H*(f2), referring the reader
to J.-L. Lions and Magenes ([76]) or Adams ([4]) for the general case and all the proofs.

Let us start with the so-called trace theorems. The trace on the boundary 92 of a function
v € H%(Q) is, in a sense to make precise, the value of v restricted to 9. Indeed, the latter
statement has not even a meaning, as a function in H*(2) is not univocally defined on subsets
having measure equal to zero. If we denote by C°(Q) the space of continuous functions on £,
the precise result reads as follows.

Theorem A.1.3 (Trace theorem) Let Q be a bounded open set of R%. Assume that the bound-
ary 0K is smooth and that s > 1/2.

(a) There exists a unique linear continuous map 7o : H*(2) — H~1/2(0Q) such that yov =
vjgq for each v € H5(2) N C°(Q).

(b) There ezists a linear continuous map Ro : HS~1/2(0Q) — H*(Q) such that voRop = ¢ for
each ¢ € H3~1/2(09).

Analogous results hold true if we consider the trace ysv over a smooth subset X3 of the boundary
0. In particular, for 1/2 < s < 1, it is enough to assume that the boundary OS2 or the set X
are Lipschitz continuous.

Thus, we have seen that any function belonging to H*~1/2(%), s > 1/2 and ¥ smooth, is the trace
on ¥ of a function in H*(Q). This provides a useful characterization of the space H*~1/2(%).
For vector functions belonging to H(div;{2) the following trace result can be proved.

Theorem A.1.4 (Normal trace theorem) Let Q be a bounded open set of RY with a Lipschitz
continuous boundary 0.

(a) There ezists a unique linear continuous map v, : H(div;Q) — H~Y2(0Q) such that
YoV = (V- 10%)jaq for each v € H(div;Q) N (CO(Q))<.

(b) There exists a linear continuous map Ry, : HY?(0Q) — H(div;Q) such that v,Rne = ¢
for each ¢ € H™1/2(5Q).

Here we have denoted by n* the unit outward normal vector on 9€2. Let us note, moreover, that
the normal trace of a vector function v € H(div; Q) over a Lipschitz continuous subset X of 0Q
different from the whole boundary 99 does not belong in general to H~/2(X), but to a larger
space, which is usually denoted by H&)l/ 2(Z]) (see, for instance, J.-L. Lions and Magenes, [76]).
Now, let us introduce the space

Xyo == {y € (H"?(00))% | ¢ -n* =0, div,y € H/2(69Q)},

where div ;1 denotes the tangential divergence of 1 (see, for example, Bégue et al., [14]).
For three-dimensional vector functions belonging to H(rot ; 2) the following trace result can be
proved (see Alonso and Valli, [8]).
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Theorem A.1.5 (Tangential trace theorem) Let Q be a bounded open set of R? with a Lipschitz
continuous boundary OS).

(a) There exists a unique linear continuous map vr : H(rot;) — Xpq such that y,v =
(n* X v) g0 for each v € H(rot;Q) N (C(Q))3.

(b) If either the boundary 0 is smooth or Q is a convez polyhedron, then there ezists a linear
continuous map Ry : Xgq — H(rot;Q) such that v, R, = 9 for each 1) € Xaq.

By means of these trace operators it is possible to characterize the spaces H}(f2), Ho(div; Q) :=
(C§°(2))? and Hy(rot; Q) := (C§°(2))3 (here the closure has to be intended with respect to the
norms || - || g(givy) and || - [| (ot ;0), respectively). As a matter of fact, if the boundary 9 is
Lipschitz continuous, we have:

H;(Q) = {v e H'(Q)|yv =0}
Hy(div;Q) = {ve H(div;Q)|y,v =0}
Hy(rot;Q) = {v e H(rot;Q)|v,v =0}

A similar characterization holds for the space
HL(Q) := {v e HY(Q) |ygv = 0}.
An important result is the so-called Poincaré inequality.

Theorem A.1.6 (Poincaré inequality) Assume that Q is a bounded connected open set of R®
and that ¥ is a (non-empty) Lipschitz continuous subset of the boundary 0Q. Then there exists
a constant Cq > 0 such that

/sz(x) dx < CQ/QWU(X)de

for each v € HL().

As a consequence of the density of C*°(Q2) in H'(f2) (under the assumption that OQ is Lipschitz
continuous), it is easily proved that for each w,v € H'(Q) the following Green formula holds:

/(Djw)vdx:—/ijvdx+/ (Yow) (yov) nj dvy, j=1,...d,
Q Q 1)

where we have denoted by D; the partial derivative % and by dry the surface measure on 0f).
Similarly, if w € H(div;) and v € H'(Q), we find that

/Q(divw)'udx = —/Qw -Vodx + /an(%w) (yov) dry.

Finally, if w € H(rot;Q) and v € (H(Q))3, we find that

/(rotw) -vdx = / w - rot v dx —I—/ (v2w) - (yov) d7y.-
Q Q N
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As we have already noted, the functions belonging to the Sobolev spaces W*P(Q2) are not uni-
vocally defined over subsets having measure equal to zero. However, if suitable restrictions on
the indices s and p are assumed, these functions indeed turn out to be regular functions. This
is made clear by the following theorem.

Theorem A.1.7 (Sobolev embedding theorem) Assume that Q is a (bounded or unbounded)
open set of R% with a Lipschitz continuous boundary, and that 1 < p < co. Then the following
embeddings are continuous.

(a) If 0 < sp < d, then W*P(Q) C LP"(Q) for p* = dp/(d — sp).
(b) If sp =d, then W*P(Q) C LY(Q) for any q such that p < g < oo.
(c) If sp > d, then W5P(Q) C C°(Q).

In the one-dimensional case, we have in particular that H'(Q) c C°(Q), with continuous em-
bedding.

A.2 Finite elements approximation of elliptic problems

In this section we give a brief presentation of the finite element approximation theory. For more
details, we refer the interested reader, for example, to Ciarlet ([32]) and Quarteroni and Valli
([88]).

To start with, assume that the set @ C RY d = 2,3, is a polygonal domain, that is, Q is a
bounded open connected subset such that €2 is the union of a finite number of polygons (for
d = 2) or polyhedra (for d = 3).

The finite element approximation is based on a finite decomposition

where
e ecach K is a polygon or a polyhedron with a non-empty internal part K

e KiNKy=0 for each distinct K1, K> € Ty,

o if F=K NKy; #0 (K; and K> being distinct elements of 7) then F' is a common face,
side, or vertex of K7 and Ko

e diam (K) < h for each K € Tj,.

Th is called a triangulation of Q (see Fig. A.1).

In what follows we assume further that each element K of 7j, can be obtained as K = Tk (K),
where K is a reference polygon or polyhedron and Tk is a suitable invertible affine map, i.e.
Tk (x) = BgX + bk, Bi being a non-singular matrix.

Moreover, we will confine ourselves to considering two different cases:
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Figure A.1: Triangulation of 2: admissible (left), non-admissible (right).

e The reference element K is the unit d-simplex; that is, the triangle with vertices (0,0),
(1,0), (0,1) (when d = 2), or the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1)

(when d = 3). As a consequence, each K = Tk (K) is a triangle or a tetrahedron.
e The reference element K is the unit d-cube [0,1]¢. As a consequence, each K = TK(K ) is
a parallelogram (when d = 2) or a parallelepiped (when d = 3).

Let V}, denote a finite dimensional subspace of Hi (). A Galerkin finite element approximation
to (3.1.7) is defined as follows:

find up, € Vi, = alup,vp) = (f,vn) Y vy € Vp, (A.2.1)

where we have set, for simplicity, a(.,.) := a°(.,.), the latter one being defined in (3.1.6).
The most frequent example is when V}, is given by piecewise polynomials. They can be introduced
as follows. When the reference element K is the unit d-simplex, let us define

X7 = {v, € C°(Q) | vpk EPH(K)VY K €Th}, 721,

where P, (K) denotes the set of polynomials defined in K and of degree less than or equal to r
globally with respect to all space coordinates. Then we set

Vi ={vn € X} | vpjo0 = 0}
= X7 N HY(Q).

When the reference element K is the unit d-cube, the space V}, is defined in the same way, but
in this case the space Xj is given by

X5 o= {vp € C°(Q) | vpx o Tk € Q(K) ¥V K € Ty},

where Q,(K) denotes the set of polynomials defined in K and of degree less than or equal to r

with respect to each variable z1,...,z4.

The family of triangulations 7}, is said to be regular if there exists a constant o > 1 such that
hk

— <0 VKeT, Yh>0,
PK
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where hy denotes the diameter of K and px the maximum diameter of a ball contained in K.
Under this assumption, denoting by npv € V}, the interpolant of a continuous function v at the
nodes of Ty, the following interpolation error estimate holds:

||’U, — 7rhu||0,g + h||u - 7rhuH1,Q S C’hr+1|u|r+179. (A.2.2)

It is well known from the Lax—Milgram lemma that problem (A.2.1) has a unique solution under
the assumption that the bilinear form a(-,-) is continuous and coercive in H{ (£2) (see assumption
(3.1.8)).

Besides, from the Céa lemma, it follows that

v o
b= unllo < 7 inf {lu—valle,

where 7 and « are the continuity and coerciveness constants of a(-,-), respectively. By the
interpolation error estimate (A.2.2), we finally find that

llu —upll1,0 < Ch |ulr11,0,

provided that v € H™T1(Q).

A.2.1 Algebraic formulation of the discrete problem

The unknowns of the finite dimensional problem (A.2.1) are given by the pointvalues of u at
the finite element nodes a;. In fact, denoting by IV}, the total number of the nodes and by ¢;
the basis functions of V}; that is, the unique functions in V}, satisfying ¢;(a;) = ;; for each
1,7 =1,..., Ny, each element u, € V}, can be represented through

Np,
up(x) = un(a;)p;(x).
j=1

Introducing the notation
u = {up(a;)}j=1,.,N,
and
£:={(f,0)ti=1,. Ny
problem (A.2.1) can be rewritten as
Au =f.

The matrix A is called the finite element stiffness matrix and is given by

Alj = a’((Pja(Pl)7 l,j=1,..., Np.
The stiffness matrix A is positive definite; that is, for any v € RV», v # 0, (Av,v) > 0, where
(+,+) denotes the Euclidean scalar product. Indeed, let v, € V}, be the function defined as

Np,

vp(x) = Z v p;(x).

=1
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Then
Np,
> viale), 1) v;

1,j=1
= a(vp,vp) > 0,

(Av,v)

and (Av,v) = 0 if and only if v, = 0, or, equivalently, v = 0. In particular, any eigenvalue
of A has a positive real part. Besides, when the bilinear form a(-,-) is symmetric, it follows
immediately that A is also symmetric.

Another important remark is concerned with the condition number

2(A) == [|A]2 ||A7Y]2 = VAmax (AT A)

K .
Amin (AT A)
In the symmetric case, we have the simplified relation
Amax(A4)
A) = max\/

and it can be proved that

A.2.2 The multi-domain formulation for finite elements

For sake of simplicity inpresentation, we split {2 into two subdomains §2; and €29, such that
QUQ=Q, QN =0, and we set T := O N Q. We also suppose that the interface T' does
not cut any finite element 7". This implies that the global triangulation 7} of Q induces two
triangulations 75 1 of Q; and Th,2 of Qo that are compatible on I'; that is, they share the same
edges on I (see Fig. A.2).

Let us start with the variational formulation of our problem (an alternative characterisation
based on a purely algebraic argument is given in Section 2.3). To this purpose let us define

Ap = {’Uh|p | Up € Vh}, Vi,h = {Uh\ﬂi | Vp € Vh},

and set
Vion = {vn € Vi | vpr = 0}

It can be shown that the finite element problem (A.2.1), after identifying uy, with uyq, and
ug,p With up|q,, is equivalent to the multi-domain problem

((a1(uip,v1n) = (Foin)e,  Yoin €V,
uip =ugp  onl
\ az(ugp,v20) = (frv2.1)0 Voogn € Vo) (4.2.3)

2 2
> ai(uip Rippn) = Y _(f,Rintn)e; ¥ pn € Ap,

\ =1 =1
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Figure A.2: Splitting of Q and finite element triangulation

where the bilinear forms a;(.,.) are any of the ones defined in Section 3.1.1, while R; , i = 1,2, is
any extension operator from Ay into V; 5. In practical implementation, these extension operators
will be taken equal to the finite element interpolant m; pup, which belongs to V; p,, equals pp, at
the nodes on the interface I', and vanishes at the internal nodes in €2;.

The formulation (A.2.3) may be generalised to many subdomains, possibly including cross-
points. Note, in particular, that if R; »up is the restriction to €2; of the finite element shape
function associated with a cross-point P, then (A.2.3), enforces the continuity of the ‘normal’
derivative in P in a natural form.

A.2.3 Algebraic formulation of the discrete Steklov-Poincaré operator

In order to give the algebraic interpretation of the operator 3 at the finite dimensional level, we
distinguish between the finite element nodes belonging to I' and to each subdomain 7 and Q.
We denote the corresponding vectors of finite element unknowns with u;, us and ur respectively,
and their lenghts by Ni, No and Nrp. The stiffness matrix A of the finite element problem is
therefore a Nj, x Nj, matrix with N, = N; + Ny + Np, while the vector corresponding to the
datum f is denoted by f € RNr. The resulting system can therefore be written in block form as

An 0 Air u; fi
O A22 AQF u9 = f2 ; (A24)
Ar1 Are Arr ur fr

where we have used the following notations: for i = 1,2

(Aii)jk = az‘(%’g)#y)), Jk=1,...,Nj
where <p§-i) are the basis functions associated to the nodes lying inside €2;, while a;(.,.) denotes
the restriction to €; of a(.,.), which is either the bilinear form a°(.,.) defined in (3.1.6), or
the bilinear form af(.,.) defined in (3.1.12), according to the choice of interface conditions.
Moreover, we have

(AIT)P(] = a1(<pt(1r)a @ér)) + 0'2(()051F)a (P](JF))’ pg=1,... aNFa
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(4)

where ¢ ;. are the basis functions associated to the nodes lying on I', and finally, for 1 = 1,2

(AiF)jp = a’l((p](JF)agogz))a J=1,... yNi, p=1,...,Np,

while Ar; denotes the transpose of A;r, for i = 1,2.
After eliminating u; and uy we get the reduced system:

Ehur = XTI, (A25)

with
xr = fr — Ar1 A — Ara Ay o

and
Sh = Arr — Ar1AjPAir — Ao Ay Aoy,

Once the solution ur of (A.2.5) is available, the subdomain components u; and uy can be easily
recovered from (A.2.4) at the cost of two independent solves A;;" and A, .
We can split the matrix of interface contributions as

Arr = AR + AR,
where Ag% denotes the contribution from the subdomain €;, i = 1,2. We can therefore write
Yp=21p+ Yo

with '
Yih = Ag% — AriA; Airy, i=1,2.

The matrix ¥, is the Schur complement matriz, the algebraic counterpart of the discrete Steklov-

Poincaré operator
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