
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

RISE AND PITFALLS OF SYNTHETIC DATA

FOR ABUSIVE LANGUAGE DETECTION

Camilla Casula

Advisor:

Sara Tonelli

Fondazione Bruno Kessler

October 2024





Abstract

Synthetic data has been proposed as a method to potentially mitigate a num-
ber of issues with existing models and datasets for abusive language detection
online, such as negative psychological impact on annotators, privacy issues,
dataset obsolescence and representation bias. However, previous work on the
topic has mostly focused on downstream task performance of models, without
paying much attention to the evaluation of other aspects.
In this thesis, we carry out a series of experiments and analyses on synthetic
data for abusive language detection going beyond performance, with the goal
of assessing both the potential and the pitfalls of synthetic data from a qualita-
tive point of view. More specifically, we study synthetic data for abusive lan-
guage detection in English focusing on four aspects: robustness, examining the
ability of models trained on synthetic data to generalize to out-of-distribution
scenarios; fairness, with an exploration of the representation of identity groups;
privacy, exploring the use of entirely synthetic datasets to avoid sharing user-
generated data; and finally we consider the quality of the synthetic data, through
a manual annotation and analysis of how realistic and representative of real data
synthetic data can be with regards to abusive language.
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Chapter 1

Introduction

In 2022, in Kenya, Meta was sued by an employee of a content mod-
eration outsourcing firm, claiming extremely low pay and widespread
trauma among the company’s content moderators, who suffered severe
post-traumatic stress disorder after being exposed to graphic and violent
content as part of their job (Perrigo, 2022). In 2023 another tech giant,
ByteDance, was accused of failing to protect the mental health of its con-
tent moderators in Kenya, among other allegations (Perrigo, 2023). Fur-
ther accounts report poor working conditions and mental health risks
for content moderators in Colombia, Brazil, and other countries as well
(McIntyre et al., 2022; McIntyre, 2023). In general, tech companies typi-
cally employ content moderators (often from the Global South) through
outsourcing to moderate content that is consumed across the globe, for a
market that is currently estimated at a minimum of 8 billion US dollars,
although these workers often do not earn acceptable wages (Jackson,
2024; Graham and Ferrari, 2022). These workers are employed not only
to directly review and act on harmful content on social media, but also
to produce new data that will then be used to train machine learning
(ML) models for automatic content moderation (Jackson, 2024).

Mental health risks for annotators are among the reasons why the
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CHAPTER 1. INTRODUCTION

use of synthetic data has been proposed for training machine learning
models to detect abusive content (Juuti et al., 2020), especially in light of
the increasingly realistic texts large language models (LLMs) are able to
generate (Yang et al., 2024).

A large portion of online content moderation tools and procedures
are proprietary to specific platforms, as in many cases the responsibil-
ity to remove potentially harmful content falls upon them from a legal
standpoint.1 This results in the content moderation pipelines that are ac-
tually employed on platforms being largely opaque to the general public
(Roberts, 2019; Graham and Ferrari, 2022). While the decision-making
processes of social media platforms are mostly locked behind closed
corporate doors, a large body of research on the topic of abusive and
offensive content detection has emerged in recent years. In this work,
we will focus on textual content, although efforts have been also made
regarding audio, image, video, and multimodal content as well (Gomez
et al., 2020; Ibañez et al., 2021, among others).

The field of abusive content detection has gained a large amount of
traction in recent years. In particular, since 2018, there has been an
increased effort from the research community in establishing common
guidelines and benchmarks (e.g. Basile et al. (2019); Zampieri et al. (2019b,
2020)). More recently, there has been an expanding body of work propos-
ing the use of synthetic data to mitigate some of the known issues with
data and models typically used for this task (Wullach et al., 2021; D’Sa
et al., 2021; Hartvigsen et al., 2022, among others).

In this thesis, we will focus on the use of synthetic data for detect-
ing abusive language from a two-fold perspective. First, detailing how
over the past few years the use of synthetic data has been popularized

1For instance, in the EU, this responsibility falls under the Digital Services Act (European Parliament
and Council of the European Union, 2022).

2



CHAPTER 1. INTRODUCTION

thanks to large language models (LLMs) achieving better performance
and realism in generating text, keeping in mind also other aspects that
are often neglected in machine learning research, such as fairness or pri-
vacy. Second, investigating the pitfalls and qualitative implications of
this approach, as well as exploring the possible risks of using synthetic
data for this task.

. Warning: this work contains potentially offensive or upsetting examples.

3



CHAPTER 1. INTRODUCTION

1.1 Research Questions

The aim of this work is that of investigating both the potential and the
risks of approaches based on synthetic data for subjective tasks such as
abusive language detection. In particular, we are interested in going
beyond mere performance, which is the main focus of the overwhelming
majority of papers in the machine learning field (Birhane et al., 2022). In-
stead, the main focus of our experiments and analyses will be on aspects
that have received much less attention in the past, such as robustness,
fairness, privacy, and realism (for a discussion of ML values and their rep-
resentation we refer the reader to Birhane et al. (2022)). We nonetheless
also consider performance, in order for our work to be contextualized
within the larger body of research on this topic.

The overarching research questions whose thread will be followed
along this entire work are related to the two sides of the synthetic data
coin, i.e. its potential and its drawbacks:

• RQ1: Can we expect synthetic data to be able to improve current
abusive language detection models?

– RQ1.1 From a performance standpoint;

– RQ1.2 From a model robustness standpoint;

– RQ1.3 From a model and data fairness standpoint;

• RQ2: What are the implications of synthetic data in terms of quality?

– RQ2.1 Can synthetic texts mitigate privacy issues?

– RQ2.2 Are synthetic texts realistic enough to emulate real data?

– RQ2.3 Do any model improvements come at other costs?

4



CHAPTER 1. INTRODUCTION

1.2 Contributions

The contributions of this thesis, alongside the main relative publications,
are detailed below.

• An in-depth evaluation of advantages and disadvantages of syn-
thetic data for abusive language and hate speech detection, across
a variety of models and architectures, from the point of view of per-
formance and robustness.

– Camilla Casula and Sara Tonelli. 2023. Generation-Based Data
Augmentation for Offensive Language Detection: Is It Worth
It?. In Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, pages 3359–3377,
Dubrovnik, Croatia. Association for Computational Linguis-
tics.

• An analysis of the implications of synthetic data with regards to
the distribution of identity group mentions, and the impact of these
changes on fairness.

– Camilla Casula and Sara Tonelli. 2024. A Target-Aware Anal-
ysis of Data Augmentation for Hate Speech Detection. arXiv
preprint arXiv:2410.08053.

• An exploration of the potential of synthetic data to mitigate issues
related to privacy.

– Camilla Casula, Elisa Leonardelli, and Sara Tonelli. 2024. Don’t
Augment, Rewrite? Assessing Abusive Language Detection
with Synthetic Data. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 11240–11247, Bangkok, Thai-

5



CHAPTER 1. INTRODUCTION

land and virtual meeting. Association for Computational Lin-
guistics.

• A manual investigation of the language present in synthetic data,
with details on how it might lead models to rely on spurious cor-
relations when trained on it. This type of analysis could serve to
future researchers aiming at using synthetic data to know about po-
tential pitfalls they could look out for.

– Camilla Casula, Sebastiano Vecellio Salto, Alan Ramponi, and
Sara Tonelli. Delving into Qualitative Implications of Synthetic
Data for Hate Speech Detection. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Processing. To
appear. Association for Computational Linguistics.

• A tool to inspect textual datasets in a highly customizable and mod-
ular way, which was used across many of the experiments included
in this thesis: Variationist.

– Alan Ramponi∗, Camilla Casula∗, and Stefano Menini. 2024.
Variationist: Exploring Multifaceted Variation and Bias in Writ-
ten Language Data. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 3: System
Demonstrations), pages 346–354, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

1.3 Context

Before dealing with the specifics of this work, it is important to address
some preliminary concepts regarding the speed at which new methods

1∗ Equal contribution.
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and models in natural language processing (NLP) evolve and exponen-
tially grow in size (Bender et al., 2021; Zhao et al., 2023), although the
details of the language models that are now the state of the art in NLP
will be discussed in Section 2.2.2.

In particular, this thesis features experiments carried out over the
span of three years using a variety of language models. Some of the
models used in the experiments of this work, such as GPT-2 (1.5B pa-
rameters, Radford et al. (2019)) were considered large in 2021 (Bender
et al., 2021), and had already been ‘downgraded’ to the rank of smaller
pretrained language models by 2023 (Zhao et al., 2023). As a conse-
quence, with the rapid expansion of model sizes and capabilities, com-
parisons across approaches have become more difficult to carry out,
since a method that might work well with one model might not work
as well with another one, even a mere few months later. Where possi-
ble, the experimental setups across the chapters of this work were kept
as consistent as possible. However, readers should be aware that, in
addition to being thematically ordered based on the research questions
and topics of interest, the experimental chapters should also be consid-
ered from a chronological point of view, with earlier chapters featuring
‘older’ models and later chapters being more reflective of the current
state of the art with regards to (currently large) language models.

1.4 Structure of the Thesis

The chapters of this thesis follow roughly the same thread as the research
questions, focusing on one often overlooked aspect of the evaluation of
machine learning models at a time. The experiments in each chapter
will be focused on one research question mostly, but overall, the answer
to a question might come from different sections, and one single section
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might help answer more than one question.

Chapter 2 introduces a series of background concepts that are impor-
tant for the contextualization and understanding of of this work,
including a summarization of previous work on abusive language,
data augmentation and creation of synthetic data using large lan-
guage models.

Chapter 3 provides an overview of the datasets we will use in our ex-
periments in the following chapters.

Chapter 4 presents an analysis of the impact of data augmentation for
abusive language detection with regards to the robustness of mod-
els, intended as their ability to generalize to out-of-distribution con-
texts, by training and testing models on four abusive language de-
tection datasets.

Chapter 5 focuses on the impact of synthetic data on fairness, with an
exploration of the representation of target identity groups and the
possibility of including identity information during the synthetic
data creation step.

Chapter 6 addresses synthetic data for abusive language detection from
a privacy standpoint, investigating the possibility of entirely substi-
tuting abusive language detection datasets with synthetic data for
privacy reasons, without having to share real user-generated data.

Chapter 7 examines synthetic data for the task of abusive language de-
tection from the point of view of realism and quality, with an in-
depth manual analysis of synthetic texts, discussing (and challeng-
ing) common assumptions regarding synthetic data.

Chapter 8 concludes this work by summarizing its contributions, dis-
cussing its limitations and potential future directions.
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Chapter 2

Background

In this chapter, we examine a series of background concepts that are nec-
essary for contextualizing this thesis. First, we discuss some preliminary
concepts pertaining to abusive language and hate speech in Section 2.1,
including terminological issues (Section 2.1.1), widely used methods for
detecting abusive content (Section 2.1.2), and issues that can arise both in
datasets and in models used for this task (Section 2.1.3). We then move
on to the topic of synthetic data in Section 2.2, examining how synthetic
data is typically created in NLP (Section 2.2.1), discussing some fun-
damentals about large language models (Section 2.2.2), and finally re-
viewing previous work on synthetic data for hate speech and abusive
language detection (Section 2.2.3).

2.1 Abusive Language

As communication over the Internet has become for our society as fre-
quent as face-to-face, in-person communication, both the good and the
ugly aspects of the spectrum of human interaction have entered online
spaces. In particular, as the amount of hateful, harmful, or offensive
content posted online has increased dramatically over the last decades,
methods to automatically detect, measure and deal with problematic
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content in some form have been developed and widely employed.
The terms abusive language, offensive language, hate speech, and toxic

content have all been used in NLP research work to refer to similar phe-
nomena common on social media (Schmidt and Wiegand, 2017). How-
ever, none of these terms has collectively agreed-on definitions, resulting
in variety across works and corpora in terms of definitions and annota-
tion guidelines. Similarly, scholars in disciplines such as philosophy and
psychology have also struggled to find unified definitions and terminol-
ogy on the matter (Waqas et al., 2019; Anderson and Barnes, 2023). We
will therefore start by discussing the way in which these terms will be
used in the present work.

2.1.1 Terminology

Most NLP works dealing with abusive language and hate speech pro-
vide a definition for the term they use, but even with clear definitions
there can be differences with regards to what is considered offensive,
toxic, hateful, or abusive. For instance, some might include non-insulting
profanities in their definition of offensiveness (Zampieri et al., 2019a),
while others might not. In addition to this, in some cases research work
aimed at abusive language detection in general actually addresses more
specific forms of abusive behavior, such as misogyny or racism (Vidgen
et al., 2019).

The main issue with defining abusive language lies in the fact that
any set of criteria used to define it cannot be objectively “correct”, since
the phenomenon is subjective in nature (Vidgen et al., 2019; Basile, 2020;
Vidgen and Derczynski, 2020). The problem of subjectivity, moreover,
cannot and arguably should not be ‘circumvented’ by using more seem-
ingly universally accepted definitions, such as laws or terms of service.
In fact, according to Vidgen et al. (2019), the definition of what makes
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a message abusive cannot be reduced to legal definitions or platform
guidelines, as the latter is often potentially influenced by financial inter-
ests, and both can often be overly generic due to the ways in which these
are typically formulated.

A form of abusive language that has received much attention in schol-
arly work from a number of disciplines is hate speech, in part due to its
potential legal consequences (Anderson and Barnes, 2023). According
to Post (2009), hate speech can be defined on the basis of four elements,
out of which more than one can co-occur in a single definition:

• The harms it will cause, such as discrimination, psychological or
physical harms;

• Its content, i.e. what it conveys from a semantic point of view;

• Its intrinsic properties, i.e. the words it uses, by which account, for in-
stance, all utterances containing slurs would automatically be hate
speech (Parvaresh (2023) refers to this as lexical approach);

• Its connection to principles of dignity, e.g. the potential to under-
mine the dignity and social standing of its targets.

In this work, we choose to focus on the broader phenomenon of abu-
sive content, for which we employ a mixed definition, based on both
harms and content: the definition of abusive language provided by Caselli
et al. (2020).

Hurtful language that a speaker uses to insult or offend another in-
dividual or a group of individuals based on their personal qualities,
appearance, social status, opinions, statements, or actions.

This definition, as stated by its authors, can include hate speech, deroga-
tory language, profanity, and more. In this work we will therefore refer to
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abusive language as a form of language that possesses these characteris-
tics, sometimes switching between dealing with abusive language in gen-
eral and with more specific forms of abuse, such as hate speech (Caselli
et al., 2020), depending on the specific analysis of each chapter.1

A Note on Profanities and Obfuscation

There are a multitude of ways in which one can present profanities in
scientific publications (Kirk et al., 2022a; Nozza and Hovy, 2023). In an
attempt to make the examples featured in this work as clearly under-
standable and accessible as possible, while avoiding unnecessary poten-
tial psychological discomfort to any readers, we choose to only obfus-
cate terms that are in and of themselves derogatory towards individuals
or groups based on some characteristics (i.e., slurs), in accordance with
the definition above. Therefore, profanities that by themselves do not
necessarily refer to people, such as ‘fuck’, will be unobfuscated, while
derogatory terms such as ‘b*tch’ will be obfuscated by substituting the
first vowel with a star symbol, as seen in Nozza and Hovy (2023).

2.1.2 Detecting Abuse

Most works on automatic abusive language identification employ su-
pervised machine learning models. Support Vector Machines (Cortes
and Vapnik, 2004) were very popular for the task until 2017 (Schmidt
and Wiegand, 2017), while from 2018 on deep-learning models have
been the most widely used. More specifically, Transformer-based mod-
els (Vaswani et al., 2017) have become the standard for detecting abu-

1Hate speech is defined by the UN Strategy and Plan of Action on Hate Speech as ‘Any kind of commu-
nication in speech, writing or behaviour, that attacks or uses pejorative or discriminatory language with reference
to a person or a group on the basis of who they are, in other words, based on their religion, ethnicity, nationality,
race, colour, descent, gender or other identity factor. This is often rooted in, and generates, intolerance and hatred,
and in certain contexts can be demeaning and divisive’.
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sive messages online, with encoder-only classifiers such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019) fine-tuned on annotated
data being still a widely popular choice to date (Zampieri et al., 2020;
Caselli et al., 2021a; Kirk et al., 2022b). More recently, with the increased
zero-shot performances of models, researchers have experimented with
zero-shot setups using LLMs (Nozza, 2021; Plaza-del arco et al., 2023),
which still appear to perform worse than smaller models fine-tuned on
labeled data (Edwards and Camacho-Collados, 2024).

Datasets

Most labeled datasets for abusive language detection are created starting
from Twitter (now X) data, mostly because Twitter data collection APIs
were the more easily accessible for a long time compared to other plat-
forms (Vidgen and Derczynski, 2020). Other less widely used sources for
data include Facebook (Del Vigna et al., 2017; Kumar et al., 2018), Insta-
gram (Vargas et al., 2021; Parvaresh, 2023), Wikipedia comments (Rawat
et al., 2019), Reddit (Sachdeva et al., 2022), Youtube (Ashraf et al., 2021),
StormFront (Sap et al., 2020) and Gab (Kennedy et al., 2022).

The most common ways of annotating datasets are crowdsourcing,
in which large amounts of workers annotate examples via dedicated
platforms, and expert annotation. Although the definition of an ex-
pert in relation to abusive language is fuzzy, expert annotations are re-
ported to produce higher quality data (Vidgen and Derczynski, 2020).
On the other hand, however, crowdsourcing makes annotation more
convenient and allows the creation of larger datasets, even though the
quality of the annotations might suffer in some cases.

The biggest problem in gathering data to annotate for abusive lan-
guage is that it is simply (and fortunately, from a societal point of view)
rarer than non-abusive language. Founta et al. (2018) estimate the pres-

13



CHAPTER 2. BACKGROUND

ence of messages containing abuse overall at a maximum of 3% of all
posts on Twitter. Since machine learning models work best when trained
on large amounts of data, even the minority class (in this case, the hate-
ful one) should be represented through a significant number of samples
in a dataset. For instance, starting from a normal distribution of tweets,
it would take over 33,000 posts to be annotated for a system to be trained
on only 1,000 hateful posts. In addition to this, with one class composing
3% of the total data and the other the remaining 97%, the class imbalance
would make it very difficult for the model to reliably classify the minor-
ity class without risking overfitting.

In order to increase the number of potentially abusive tweets in the
data sampling stage and make the classes more balanced, researchers
in previous works have proposed different methods. The most popu-
lar method is keyword sampling, in which a list of words potentially
linked to abuse is used to filter the posts before beginning the anno-
tation process (Founta et al., 2018; Zampieri et al., 2019a; Waseem and
Hovy, 2016). This sampling method, however, tends to inject biases into
the data, which can cause models to associate surface patterns or spuri-
ous artifacts with labels (Nozza et al., 2019; Zhou et al., 2021; Ramponi
and Tonelli, 2022). For example, a model can learn to associate the mere
presence of a specific term or topic with a message being abusive, even
in cases in which it should not.

Another method consists in selecting specific pages or social networks
which are expected to contain more abusive language than normal. For
instance, Del Vigna et al. (2017) and Kumar et al. (2018) select a number
of Facebook pages about news, politics, and various topics which are ex-
pected to generate discussions among users. Although in principle this
form of sampling is seemingly more neutral, it still has the potential to
inject bias into models, similarly to keyword sampling (Wiegand et al.,
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2019).
To mitigate data sampling bias problems, Founta et al. (2018) instead

use a method they name boosted random sampling, in which potentially
abusive messages are pre-selected using different kinds of heuristics, ex-
ploiting sentiment analysis and lexical features. While technically less
biased, though, this kind of sampling can still lead to biased models
(Zhou et al., 2021).

Besides using various forms of sampling, classes in datasets are of-
ten artificially balanced in order to increase the number of abusive or
offensive examples. Hateful or abusive messages in published datasets
can range between 1% and 100% of all data. With highly imbalanced
classes, the risk with machine learning is that the model will overfit the
majority class, and metrics like accuracy, precision or recall become less
informative because of the imbalance. Because of this, having balanced
classes is usually preferred in machine learning. However, in the case of
abusive language detection, perfectly balanced classes can imply having
models learn that abusive messages are just as frequent as non-abusive
ones, leading to a high number of false positives. The compromise most
dataset creators have found between the extremely low 1-3% of real dis-
tributions and the non-ideal 50% is to have between 20% and 40% of
abusive examples in a dataset, with the average of most existing offen-
sive language detection datasets being around 36% (Vidgen and Der-
czynski, 2020).

2.1.3 Issues

A number of challenges and issues with how abusive language detec-
tion datasets are created and maintained, as well as with the outputs of
abusive language detection models, have arisen over time. In this sec-
tion, we mention some of the most relevant ones.
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Negative Impact on Annotators

Annotating abusive language can take a toll on content moderators and
annotators of abusive content, potentially causing triggering effects, psy-
chological and emotional harm, burnout, desensitization, and more due
to the nature of their work (Roberts, 2019; Steiger et al., 2021). While
the effects of this are more clear on commercial content moderators, it is
still the case for annotators of research-related abusive content datasets
(Vidgen and Derczynski, 2020). Synthetic data has been proposed as a
potential method to reduce the amount of human-annotated data, and
therefore the impact of the task on annotators (Vidgen and Derczynski,
2020; Madukwe et al., 2022), in addition to other methods such as psy-
chologically supporting annotators (Vidgen and Derczynski, 2020).

Privacy

As previously discussed, most data for abusive language detection comes
from user-generated social media data, which can contain personal or
sensitive information. Due to this, a large number of datasets are shared
as a list of post ID numbers, without the actual text contained in the
original post. This means that for most Twitter datasets, which are the
majority of all abusive language detection datasets, one needs to retrieve
and download each tweet directly from the platform, starting from the
tweet ID, which can often be difficult.2

In general, synthetic data is deemed easier to share, as its privacy
concerns are more limited (Vidgen and Derczynski, 2020; Bayer et al.,
2022). In fact, privacy concerns are the main historical motivator behind
the use of synthetic data in a variety of disciplines (Jordon et al., 2022;
Whitney and Norman, 2024).

2This process was further complicated by the 2023 changes in the Twitter/X APIs, showing that even
changes of ownership of private platforms can impact research on this topic.
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Dataset Decay and Obsolescence

Since social media networks typically have internal moderation systems
devoted to identifying and removing content that violates platform guide-
lines, it is fairly frequent that posts annotated as abusive in research
datasets are removed from the platform, making them irretrievable af-
ter a certain amount of time if they are shared as post IDs as discussed
above. Because of this, many datasets tend to decrease in size over time
(Vidgen et al., 2019).

Besides being subject to decay, datasets can also become obsolete over
time with regards to their content. Online conversation topics and lin-
guistic patterns change rapidly, and it has been shown that annotated
datasets used to train models that are then tested on diachronically dis-
tant examples lead to worse performance (Florio et al., 2020). In other
words, the performance of classifiers trained on data from a specific pe-
riod of time tends to decrease as time passes.

Representation Bias

Another major issue is related to the representation of minority groups
considered as targets, which is rather unbalanced, potentially affect-
ing the robustness and fairness of hate speech detection systems. For
example, misogyny and racism have been covered in several datasets
(Bhattacharya et al., 2020; Zeinert et al., 2021; Guest et al., 2021; Bosco
et al., 2023), while other phenomena and targets have received much
less attention in past work, such as religious hate (Ramponi et al., 2022)
or hate against LGBTQIA+ people (Chakravarthi et al., 2021; Locatelli
et al., 2023), which have only recently started to receive more attention.
Furthermore, phenomena such as ageism and ableism have been only
marginally addressed, and no specific dataset representing these types
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of offenses has been created. This disparity affects in turn system fair-
ness, because offenses against less-represented targets will typically be
classified with a lower accuracy, further impacting communities that are
already marginalized (Talat et al., 2021).

2.2 Synthetic Data

Whitney and Norman (2024) categorize synthetic data into two separate
categories, based on how derivative the data is with respect to a real-
world dataset. Generated data refers to an ideally ‘novel’ output3 that is
produced by a generative model, while augmented data refers to any real-
world data instance that was modified in some way, for instance via per-
turbations such as synonym replacement or random word deletion (Wei
and Zou, 2019).

The two terms have also been used interchangeably in the past in
some computational linguistics work. Data augmentation as a method
started to be employed much earlier than generation-based synthetic
data, and in general it refers to a family of approaches aimed at increas-
ing the diversity of existing real-word manually annotated data (which
we refer to as gold data) without collecting new samples (Feng et al.,
2021). On the other hand, synthetic data created through generation typ-
ically relies on very large language models that can produce new texts
based on their inner representations of the data they were trained on,
without needing task-specific labeled data, for example through prompt-
ing. Synthetic data is, in NLP, often used to refer to scenarios in which
classifiers are trained only on artificially created data, while data augmen-
tation (DA) typically entails using both gold and synthetic data, in order

3Synthetic data can hardly ever be entirely novel, as it is always based on representations of real
data (Whitney and Norman, 2024). As aptly put by Seaver (2018), ‘if you cannot see a human in the loop,
you just need to look for a bigger loop’.
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to improve the performance or generalization of models, although the
usage of the two terms is not consistent across works. In the present
work, we consider data generation to refer to any process that creates new
data without relying on previously available labeled data (aside from
the generative model’s representation of the data it was trained on), and
data augmentation any process that, starting from existing data, creates
new data that is derived from it.

While DA is widely used to make models more robust across many
machine learning applications, especially in computer vision (Perez and
Wang, 2017), it has not been as frequently adopted or researched in NLP
(Bayer et al., 2022; Pellicer et al., 2023) until recently, with generative
LLMs being capable of generating realistic text. Indeed, models trained
on synthetic data have in some cases been reported to achieve similar
or, in some cases, better performance than models trained on gold data
on a variety of NLP applications (Feng et al., 2021; Chen et al., 2023),
although with mixed results with regards to subjective tasks (Li et al.,
2023).

2.2.1 Data Augmentation and Generation

Data augmentation (DA), as previously mentioned, is a process in which
the diversity of training data is artificially increased without directly
collecting more examples, which can often be helpful to mitigate data
scarcity issues in machine learning applications (Chen et al., 2023). There
are different methods that can be used for data augmentation, which
generally fall into three types (Feng et al., 2021):

• Rule-based techniques, based on predetermined transformations,
which are easy and quick to implement. However, they often offer
only marginal benefits in terms of performance and variety com-
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pared with other methods;

• Interpolation techniques, based on the interpolation of inputs and
labels of multiple real examples. This method, also referred to as
Mixed Sample Data Augmentation (MSDA), is inspired by existing
techniques in computer vision, and is usually employed when deal-
ing with multi-modal data;

• Model-based techniques, which are now widely used and reported
to produce higher-quality data, although they are more computa-
tionally expensive. Some examples of model-based techniques in-
clude backtranslation (in which a sequence is translated from lan-
guage A to language B and then translated back from language B
to language A (Sennrich et al., 2016)), and model-based token re-
placement using token embeddings. This category also includes
DA approaches that are based on generative LLMs, which we refer
to as Generative DA (Kumar et al., 2020; Hartvigsen et al., 2022).

More recently, following works that found generation-based DA to
be promising, a series of studies have also investigated the possibility of
generating new data in a ‘zero-shot’, scenario, in which no gold data is
used to either further train a generative model or as an example to follow
(Li et al., 2023), simply relying on the inner representations of the model
to create new data. This zero-shot generation setup has, however, been
found to be associated with significantly worse performances of models
for subjective NLP tasks (Li et al., 2023).

2.2.2 Large Language Models

In this work, we employ large language models both for generating text
and for classifying it. Since 2017, the most widely used and state of
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the art models in NLP have been based on the Transformer architecture
(Vaswani et al., 2017). This architecture uses Multi-Head Self-Attention,
an attention mechanism that made it possible to reduce training times
and costs compared to its predecessors, as well as allowed models to
handle dependencies in longer sequences compared to previously state-
of-the-art models in NLP.

The Transformer is based on an encode-decoder model architecture,
intended initially for sequence-to-sequence tasks (Sutskever et al., 2014).
However, it is now commonly used also in a single Transformer layer
stack configuration, with different forms of self-attention based on the
intended use, such as classification (e.g. BERT (Devlin et al., 2019) and
its derivatives), for which only the encoder stack is typically employed,
or text generation (e.g. GPT (Radford et al., 2018) and its successors), for
which only the decoder stack can be implemented.

Text Generation

The decoder components of Transformers models are usually built for
auto-regressive generation, in which the probability of each token to
be generated is conditioned on the previous tokens occurring in a text
sequence. The probability of a given sequence of tokens of length n,
W0:n = {w0, w1, ..., wn}, is calculated as

P (W0:n) =
n∏

i=1

P (wi|w0:i−1) (2.1)

where w0 is the initial context token, which typically is a model-specific
beginning-of-sequence token.

The probability of a sequence is used to generate the output text token
by token. In order to choose what token to generate at each time step,
several decoding strategies can be used.
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Greedy algorithms are based on selecting the token or the sequence
with the highest probability, in a deterministic fashion. Meanwhile,
beam search consists in saving the top-n candidate tokens for generation
at each time step, in which n is defined as beam size or width (Vijayaku-
mar et al., 2016).

Since the distribution of word probabilities in text written by humans
has a much higher variance than that of text generated using greedy de-
coding, sampling from the next token probability distribution has been
proposed as a solution to increase variety, making generated texts sup-
posedly more natural. However, pure sampling has been shown to pro-
duce incoherent text in some cases (Holtzman et al., 2020).

In order to allow for more realistic generated text while preserving
coherence, Fan et al. (2018) propose top-k sampling, in which a token is
sampled from the k tokens with the highest probability at a given time
step instead of from the entire distribution. Using this method, very
unlikely tokens are pruned out, and the generated text is less repeti-
tive than text generated using beam search decoding. Similarly, Holtz-
man et al. (2020) propose nucleus sampling, also called top-p sampling,
in which the head of the distribution is truncated, but instead of sam-
pling from the top k tokens, the sampling is done over the smallest set
of tokens whose probabilities sum up to the parameter p.

2.2.3 Synthetic Data for Abusive Language Detection

The generation of synthetic labeled data, as previously discussed, has
also been proposed as a potential solution for some of the issues with
abusive language detection, as well as to improve performance. In-
deed, synthetic data, although inherently non-authentic, can potentially
mimic real behavior and represent many types of abuse if properly cre-
ated, ideally mitigating many of the issues with current abusive lan-
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guage datasets (Vidgen and Derczynski, 2020).

Juuti et al. (2020), for example, perform data augmentation for toxic
language classification using different methods, from the simpler over-
sampling and word replacement approaches to more complex ones ex-
ploiting the GPT-2 (Radford et al., 2019) generative model. They fine-
tune GPT-2 on data labeled for toxicity, in order to create a model that
will generate toxic text used for data augmentation of existing labeled
data. However, since their focus is augmenting existing data, they cre-
ate synthetic data for the minority class only, so as to ‘fix’ the natural
class imbalance of the toxicity detection data. They find that, in very
low-resource scenarios, models trained on data augmented using GPT-2
perform better than models trained on the original data alone.

Similarly, Liu et al. (2020) use a conditional variant of GPT-2 based
on reinforcement learning, where lexical features for each class are ex-
tracted from the entire dataset and then used for generation.

Wullach et al. (2021) and D’Sa et al. (2021) also use GPT-2 to augment
synthetic hate speech data, showing that the addition of large amounts
of synthetic data helps classification performance when starting from
datasets containing thousands of labeled instances.

Fanton et al. (2021), on the other hand, combine GPT-2 and human
validation to create counter-narratives covering multiple hate targets,
while Nouri (2022) uses GPT-2 to generate training samples containing
offensive text for the task of offensive task detection.

More recently, Ocampo et al. (2023) have applied data augmenta-
tion to increase the number of instances for the minority class in im-
plicit and subtle examples of hate speech. De la Peña Sarracén et al.
(2023) propose a variant of vicinal risk minimization (Chapelle et al.,
2000) to generate synthetic samples in the vicinity of the gold exam-
ples in a multilingual setting using a multilingual GPT model. Further-
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more, Hartvigsen et al. (2022) use manually curated (through a human-
in-the-loop process) prompts to generate implicitly hateful sequences
with GPT-3 (Brown et al., 2020).

Overall, there does not appear to be a consensus with regards to
the approaches that work best when dealing with sythetic data for this
task, with different works coming to different conclusions. In particular,
there have been very few attempts to explore synthetic data for abu-
sive language detection beyond classification performance on bench-
mark datasets, which is one of the main aims of this work.
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Datasets

In this section, we introduce the datasets we will use in the experiments
and analyses of the following chapters, explaining our reasons for using
each of them, as well as their main characteristics. Overall, we employ a
total of 6 English language datasets annotated for various forms of abu-
sive language, coming from different sources and focusing on different
facets of the phenomenon of abusive language online.

3.1 Founta et al.

The Founta et al. (2018) dataset1 is among the most widely used abusive
language datasets in the literature, and it has been already employed for
generative data augmentation (Wullach et al., 2021; D’Sa et al., 2021). It
contains around 100k Twitter posts annotated by crowdsourced workers
using four labels: hateful (7.5%), abusive (11%), normal (59%), and spam
(22.5%). In this schema, the abusive class encompasses a series of dif-
ferent phenomena, which the authors decide to merge after two prelimi-
nary annotation studies: abusiveness, offensiveness and aggressiveness,
due to the fact that both offensiveness and aggressiveness are found to
be heavily correlated with abusiveness.

1https://zenodo.org/record/3678559
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The definitions provided to the annotators of this dataset are:

• Abusive language: Any strongly impolite, rude or hurtful language us-
ing profanity, that can show a debasement of someone or something, or
show intense emotion;

• Hate speech: Language used to express hatred towards a targeted indi-
vidual or group, or is intended to be derogatory, to humiliate, or to insult
the members of the group, on the basis of attributes such as race, religion,
ethnic origin, sexual orientation, disability, or gender.

In order to keep a binary classification setup that is consistent with
the other datasets we use in our experiments, in all of our experimental
setups we discard the messages annotated as spam, and we group the
hateful and abusive classes together into one single abusive class, follow-
ing Leonardelli et al. (2021).

3.2 Offensive Language Identification Dataset

The Offensive Language Identification Dataset, OLID (Zampieri et al.,
2019a),2 consists of 14,200 Twitter posts annotated for offensive language,
with two more fine-grained levels of annotation regarding the target of
the offense. In our experiments, we only consider the broader binary
level of annotation, for which 33% of the dataset is labeled as offensive.
The definition of offensiveness provided by the creators of this dataset is:

Posts containing any form of non-acceptable language (profanity) or
a targeted offense, which can be veiled or direct. This includes insults,
threats, and posts containing profane language or swear words.

2https://sites.google.com/site/offensevalsharedtask/olid
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The test set we pair with this dataset is SOLID (Rosenthal et al., 2021),
which was used in the OffensEval 2020 shared task, so the results on this
test set are directly comparable with those of models used in the shared
task. The SOLID test set follows the same annotation guidelines and
process as OLID.

3.3 Social Bias Inference Corpus

The Social Bias Inference Corpus, SBIC3 (Sap et al., 2020), contains 40k
posts from Twitter, Reddit, and Stormfront, of which 44.8% are anno-
tated as offensive. The Twitter portion of this dataset partially overlaps
with the Founta et al. (2018) dataset.

Offensiveness, as stated by the authors, denotes the overall rudeness,
disrespect, or toxicity of a post. We consider whether a post could be considered
“offensive to anyone. While this dataset provides fine-grained annotations
on social biases, we only consider the categorical offensiveness labels in
our experiments, in order to compare it with the other datasets we ex-
periment with. Given that this label can take on three values (yes, no,
and maybe), we only keep the binary yes/no labels in order to facilitate
comparisons with the other datasets, discarding examples annotated as
maybe.

3.4 Measuring Hate Speech Corpus

Measuring Hate Speech (MHS) Corpus (Kennedy et al., 2020; Sachdeva
et al., 2022) is a dataset consisting of social media posts in English from
Reddit, Twitter, and YouTube. The MHS corpus is annotated according
to different levels of hatefulness, from supportive to genocidal speech,

3homes.cs.washington.edu/˜msap/social-bias-frames/
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offering insight into different aspects of hate speech. In particular, the
authors exploit Rasch Measurement Theory to map each example in the
dataset to a hate speech score rather than a binary hateful/non-hateful la-
bel. However, Kennedy et al. (2020) also include a binary “hate speech”
label in the questionnaires to be assigned by annotators. They addition-
ally conduct a comparison between the continuous score and the binary
hate speech score, finding that while the continuous measure can better
capture the extremity of hate speech, the two are moderately correlated.
Given the scope of our work, we use the binary labels instead of the con-
tinuous hate speech scores in our experiments, in order to frame the task
as classification rather than regression and to be able to test our models
on out-of-distribution data (see Section 5.5.2).

Given that the MHS dataset, following data perspectivism (Cabitza
et al., 2023), is released with disaggregated annotations, we perform
some aggregation operations in order to use it for our experiments, re-
sulting in each example having a unique label and set of targets. First,
we consider each example to be about or targeting all the identity groups
identified by at least half of the annotators who annotated it. For exam-
ple, if out of 5 annotators 3 annotated the target identity group ‘gender’,
we will consider this identity group to be the gold target annotation for
that example. Additionally, instead of the hate speech continuous score
that is present in the dataset, we use the hatespeech label, which can
only take three values (0: non hateful, 1: unclear, 2: hateful). We do this in
order to frame the task as classification rather than regression for bench-
marking purposes, in line with most of the previous work on hate speech
detection, in which the task is treated as a classification task. We binarize
the three classes by averaging all the annotations for a given post, map-
ping it to hateful if the average score is higher than 1 and to non hateful if
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it is lower.4 After this process, we are left with 35,243 annotated posts,
of which 9,046 are annotated as containing hate speech.

3.5 Multi-Domain Agreement

The Multi-Domain Agreement (MDA) dataset by Leonardelli et al. (2021)5

is annotated for both offensive language and agreement level among 5
annotators with regards to the offensiveness of a post. It contains 10,753
tweets dealing with three widely discussed topics on Twitter in 2019
and 2020: the Black Lives Matter movement, the 2020 US elections, and
Covid-19. Offensive tweets constitute 31% of the dataset, and offensive-
ness is defined to annotators as:

Profanity, strongly impolite, rude, violent or vulgar language ex-
pressed with angry, fighting or hurtful words in order to insult or
debase a targeted individual or group. This language can be deroga-
tory on the basis of attributes such as race, religion, ethnic origin,
sexual orientation, disability, or gender. Also sarcastic or humorous
expressions, if they are meant to offend or hurt one or more persons,
are included in this category.

For this dataset, we again use the binary offensive/not offensive la-
bel, and we always preserve the default data splits provided by the au-
thors. In particular, we use a specific dataset configuration that was
also used by the authors for their experiments, with 2,160 class-balanced
training examples, 540 development examples, and 3,057 test examples.

4While we are aware this does not exploit the most novel and interesting features of the MHS dataset,
the exploration of annotator (dis)agreement with regards to data augmentation is beyond the scope of
this work, and is left for future research.

5https://github.com/dhfbk/annotators-agreement-dataset
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3.6 HateCheck

In order to both test the out-of-distribution generalization of models and
to explore their weaknesses, we also employ the HateCheck test suite
(Röttger et al., 2021), consisting of 3,727 adversarial examples tailored at
finding weaknesses of hate speech detection models. This dataset is cre-
ated starting from a series o pre-defined templates aimed at testing dif-
ferent capabilities of hate speech detection models. The HateCheck test
examples are divided into 29 functionalities, including various groups
of targets of hate speech for each of the tests.

More specifically, the 29 tests fall into 11 classes:

• Derogation: 1. Expression of strong negative emotions, 2. Descrip-
tion using very negative attributes, 3. Dehumanization, 4. Implicit
derogation;

• Threatening language: 5. Direct threat, 6. Threat as a normative state-
ment;

• Slur usage: 7. Hate expressed using slur, 8. Non-hateful homonyms
of slurs, 9. Reclaimed slurs;

• Profanity usage: 10. Hate expressed using profanity, 11. Non-hateful
use of profanity;

• Pronoun reference: 12. Hate expressed through reference in subse-
quent clauses, 13. Hate expressed through reference in subsequent
sentences;

• Negation: 14. Hate expressed using negated positive statement, 15.
Non-hate expressed using negated hateful statement;

• Phrasing: 16. Hate phrased as a question, 17. Hate phrased as an
opinion;
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• Non-hateful group identifiers: 18. Neutral statements using protected
group identifiers, 19. Positive statements using protected group
identifiers;

• Counter speech: 20. Denouncements of hate that quote it, 21. De-
nouncements of hate that make direct reference to it;

• Abuse against non-protected targets: 22. Abuse targeted at objects, 23.
Abuse targeted at individuals, 24. Abuse targeted at non protected
groups;

• Spelling variations: 25. Swaps of adjacent characters, 26. Missing
characters, 27. Missing word boundaries, 28. Added spaces be-
tween characters, 29. Leet speak.

3.7 Data Splits and Preprocessing

We use the default train/test splits of each dataset, where available and
unless otherwise stated. For Founta et al. (2018), which has no default
splits, we randomly partition the data into train and test using an 80/20
split. We also remove the substring “RT:” from the beginning of se-
quences in the Founta et al. (2018) dataset, since it is extremely common
and it could be a confounder for the model. In addition to this, it has
been found to be associated with hate speech in this dataset (Ramponi
and Tonelli, 2022). For all datasets, we replace URLs and user mentions
with URL and @USER respectively. We then remove all duplicates.

Since there is a partial overlap between SBIC and Founta et al. (2018),
we remove instances that are present in the test set of either dataset from
the training data of the other, to ensure fair cross-dataset evaluation.
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Robustness

While generative data augmentation (Section 2.2.1) has been shown to
be potentially useful for the task of detecting offensive and abusive lan-
guage online, several aspects and implications of it remain underex-
plored, especially with regards to the impact of data augmentation on
model robustness, intended as the ability to generalize to out-of-distribution
scenarios (Ramponi et al., 2022). Generative DA has, in fact, mostly been
shown to work for offensive language detection when starting with a
single specific dataset and using a specific generation setup, with no in-
vestigation of the impact of different generation configurations on the
quality of the augmented data, as well as little exploration of cross-
dataset or cross-domain performance.

In this chapter, we perform a series of experiments with the aim of ex-
ploring research questions RQ1.1, examining the performance of models
trained on data augmented with synthetic texts, and more importantly
RQ1.2, investigating the robustness implication of a generative data aug-
mentation setup. In order to study different aspects and axes of variation
across setups, we follow previous work on data augmentation, starting
with a small set of gold data and augmenting it with synthetic data.

We proceed as follows for our experiments:
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i) we train and test our models using four English offensive lan-
guage datasets, testing both within dataset and cross-dataset per-
formance;

ii) we simulate two low-resource scenarios, in which we start with
different quantities of gold examples (500 or 2,000 texts);

iii) we compare four different generation prompting setups, of which
two were used in previous work and two are novel;

iv) we experiment with different thresholds for filtering the gener-
ated data prior to using it for training.

Furthermore, we conduct a qualitative analysis on the generated data,
with a focus on lexical bias. In order to do this, we compute the corre-
lation between tokens in offensive texts using a PMI-based metric1, and
we test the models trained on augmented data on the HateCheck suite
(Röttger et al., 2021, Sec. 3.6), which includes a series of functional tests
aimed at finding model weaknesses.

We use four English datasets annotated for offensive or abusive lan-
guage for training and testing our models:

• The Founta et al. (2018) dataset (Sec. 3.1);

• The OLID dataset (Sec. 3.2);

• The Multi-Domain Agreement (MDA) dataset (Sec. 3.5);

• The Social Bias Inference Corpus (SBIC) (Sec. 3.3).

The choice of datasets was dictated by the fact that we aimed to rep-
resent different types of resources. The first two (Founta and OLID)

1For this, we use the Variationist tool (Appendix A).
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are widely used in related work, and we deem them as more straight-
forward to classify, since standard BERT-based approaches trained and
tested on these datasets yield results above 0.90 macro-F1 (Zhou et al.,
2021; Zampieri et al., 2020). In contrast, the MDA dataset was explicitly
created to study disagreement among annotators focusing on different
topics, so it contains more challenging instances. On this dataset, the
best performance reported by the authors is ∼0.75 macro-F1 (Leonardelli
et al., 2021). Finally, the SBIC dataset includes data from different sources,
with annotations for diverse targets of hate. The best classification re-
sult reported by the authors is ∼0.80 F1 (Sap et al., 2020). Intuitively, the
different characteristics of these datasets should allow us to assess the
out-of-domain behavior of models when doing cross-dataset testing.

4.1 Methods

In order to compare the performance of different data augmentation se-
tups, both novel and already employed in previous work, we implement
the process displayed in Figure 4.1, which is composed of the following
steps:

1. We randomly undersample the training data, obtaining the data
subset X consisting of n examples (with n ∈ {500; 2000}) (Sec. 4.2.1).

2. We fine-tune the pre-trained classification model C on X , obtaining
CX , which is used as a baseline and filtering classifier.

3. Depending on the type of generation input (Sec. 4.2.2) the pre-
trained generation model G is fine-tuned on the available training
data X , obtaining GX .

4. The generative model GX is used to generate synthetic examples.

35



CHAPTER 4. ROBUSTNESS

5. The examples generated by GX are pre-processed and then filtered
based on the probability assigned to them by the classification model
CX (Sec. 4.2.3).

6. The generated data is merged with the gold data X to create the
augmented dataset Xaug.

7. The classifier C is fine-tuned on the augmented dataset Xaug to cre-
ate CXaug

.

Figure 4.1: The generative DA pipeline we follow in our robustness experiments, from
gold data to filtered syntetic data.

Model choice We generate synthetic data using GPT-2 large (Radford
et al., 2019, 774M parameters).2 Some recent works exploit the gener-
ative capabilities of newer models for the creation of new datasets, ei-
ther in human-in-the-loop setups (Liu et al., 2022) or in very resource-

2We performed preliminary experiments using GPT-2 small (117M parameters) as well, finding that
overall the generated data had a similar impact on classification performance.
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intensive scenarios (Hartvigsen et al., 2022). However, we choose to
experiment with GPT-2 for this set of experiments because it is freely
accessible and it can be easily fine-tuned, and we aim for our results to
be comparable with those of previous work where this DA method was
found effective for this task, which used GPT-2 as well (e.g. Juuti et al.
(2020) and Wullach et al. (2021)).

Model Details For classification, we run our experiments with the BERT
base uncased model (110M parameters) (Devlin et al., 2019) and with
RoBERTa base (125M parameters) (Liu et al., 2019). We use the Hug-
gingface implementation (Wolf et al., 2020) for all models. In both cases
we use the default Huggingface TrainingArguments class hyperparam-
eters, with batch size set to 32. Classifiers and generative models are
trained for 3 epochs.

Before generation, we fine-tune GPT-2 large using the default Hug-
gingface hyperparameters, setting the batch size to 2, adding learning
rate warm-up with a ratio of 0.02 and weight decay of 0.01. For fine-
tuning GPT-2, the input texts are grouped into documents of maximum
length 512 tokens and separated using end-of-sequence tokens.

After fine-tuning, the generation step is similar for all models. We
use top p decoding (Holtzman et al., 2020) with p = 0.9 and we set the
minimum and maximum lengths of generated sequences to 5 and 100
tokens respectively. We also blacklist the sequence “@USER” so that it
will not be generated, since it is very frequent in the normalized training
data.

In all setups, we aim at augmenting the gold data with 2,000 synthetic
examples. This number is chosen to at least double the available training
data in all setups, and it is kept constant for easier model comparison.
We generate 6,000 sequences for each setup, to increase the chances that
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enough acceptable sequences will be generated. This estimate is based
on the approach of Wullach et al. (2021), who preserve roughly 1/3 of
the generated texts after filtering.

All experiments were run on a NVIDIA Quadro RTX 5000 GPU in
∼80 hours total, including both training and inference for all setups.

4.2 Experimental Setting

We structure our experiments along three axes of variation, with the aim
of assessing their impact on model performance. The explored dimen-
sions are further detailed in the following subsections.

• Number of training instances. In order to simulate two low-resource
scenarios where different amounts of gold data are available, we
train both classification and generative models with different amounts
of labeled instances. Our aim is that of assessing how much the
usefulness of generative DA changes when starting with datasets
of different sizes (Sec. 4.2.1).

• Prompting. Different methods can be used for steering the gener-
ation towards one label or the other. We use two methods found
in previous works, as well as two novel methods, to assess whether
certain prompting methods lead to differences in synthetic data qual-
ity (Sec. 4.2.2).

• Classifier filtering thresholds. Since prompting methods are not
always enough to steer the model into generating correct sequence-
label pairs (Kumar et al., 2020), classifiers can be used to confirm or
discard the label assignments made by the generative model (Anaby-
Tavor et al., 2020; Wullach et al., 2021). In our experiments, we feed
the generated sequences to a classifier (our baseline) and use the
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probability given by the classifier to each generated sequence to ei-
ther accept the label assigned by the generator or discard the se-
quence entirely. We experiment with two probability thresholds, in
order to assess whether the confidence of the classifier is associated
with generated data quality (Sec. 4.2.3).

Each model is tested on its own test data (within-dataset) and on the test
data for the other datasets (cross-dataset).

4.2.1 Number of Training Instances

Each experiment is performed on varying amounts of training data, ran-
domly sampling n = 500 or 2,000 examples from each dataset, equally
split between the two labels. We use 500 examples as the smallest sam-
ple size for our experiments since the smallest dataset size for this task
found by Vidgen and Derczynski (2020) is 469 examples. We use 2,000
examples as the larger sample size given that it is still a relatively small
dataset size for deep learning approaches and it reflects the size of many
offensive language detection datasets.

We balance the sampling by class to avoid imbalance between gold
and augmented data, consistently keeping this proportion even across
all experiments. For the MDA dataset, sampling is stratified by agree-
ment level as well. Balancing the classes might make our setup less “re-
alistic”, given that it does not reflect the actual label distribution of each
dataset. However, it is a way for us to control the impact of class bal-
ance differences between datasets on cross-dataset performance. It also
helps to avoid differences in class balance between the gold data and the
generated data, which could cause differences in model performance be-
tween setups regardless of the actual quality of the generated data.

Out of the available data, 1/5 (n = 500) or 1/10 (n = 2, 000) is held
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Figure 4.2: Summary of the types of prompts we use for training models in our robust-
ness experiments. In this example, the label is not offensive, and the text is You go girl!.

out for validation purposes. For instance, in the data with 500 examples,
400 are used for training the models and 100 are kept for validation.

4.2.2 Prompting

We fine-tune GPT-2 using four data formatting setups. Two of the setups
have been employed in previous works, while two are novel and aim at
exploring the ability of the model to leverage natural language task de-
scriptions for label assignment. A visual summary of the four prompts
is shown in Figure 4.2.

Label tag prompting [tag-prompt]

Following the prompting type in Anaby-Tavor et al. (2020), we fine-tune
the generator G by pre-pending the label y to each training sequence x,
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dividing the two with the separator “[SEP]”. In this setup, the inputs are
concatenated into documents as follows:

“y1 [SEP] x1 [EOS] y2 [SEP] ...”

At generation time, the model is prompted with the desired label y
followed by the separation token, and it is expected to generate a se-
quence belonging to the y class.

Label in natural language prompting [nl-prompt].

This is the first input setup we propose. It is inspired by the findings
of Schick and Schütze (2021), in which natural language descriptions of
tasks are found to be helpful for few-shot classification tasks. In this
setup, the generator G is trained on sequences so that the label y is con-
textualized within the text using natural language. The training docu-
ments for fine-tuning the generators are structured as:

“This message is y1. x1 [EOS] This ...”

Where y corresponds to offensive or not offensive depending on the la-
bel. At generation time, the model is prompted with “This message is
y”, where y is the desired label. The sequence produced after the prompt
is expected to belong to the y class.

Cloze question prompting [cloze-prompt]

Again inspired by the findings in Schick and Schütze (2021), we propose
another setup that exploits the capability of large language models of
learning from patterns in natural language. In this case, however, the
prompt relies on the auto-regressive nature of GPT-2, in which the prob-
ability of each token is modeled on the previous tokens. The main aim
behind this setup is assessing whether placing the label information at
the beginning or at the end of the sequence affects the quality of the
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generated data. In this setup, each sequence x is followed by the cloze
question “Is that offensive?” and the label is placed at the end of the
sequence, in the form of a Yes/No answer.

“x1. Is that offensive? {Y/N} [EOS] ...”

At generation time, the model receives no prompting, and it is ex-
pected to generate both the sequence and the cloze question / answer
pair in the correct format. This type of prompting is more prone than the
previously listed ones to generating sequences that will eventually be
discarded, since it is expected to not only correctly generate sequences
and assign them to a label, but also to produce a cloze question that
follows a specific format.

One model per label [1/label]

This setup requires no actual prompting to steer the generation, since
it involves one model for each label rather than one model for all la-
bels. Following Juuti et al. (2020) and Wullach et al. (2021), the training
dataset X is divided into Xo and Xn based on the offensive or non-offensive
labels. The generative model G is then fine-tuned on Xo and Xn sepa-
rately, producing two models for the generation of new data: Go and Gn.
In this setup, the messages are simply concatenated into documents and
separated by end of sequence ([EOS]) tokens:

“x1 [EOS] x2 [EOS] x3 ...”

At generation time, each model is expected to generate sequences be-
longing to the class it was fine-tuned on.

4.2.3 Classifier Filtering Thresholds

After generation, the synthetic sequences are stripped of any prompting
and automatically assigned the label that emerged during generation.
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We discard any sequence that is ≤ 5 characters long, and normalize the
generated data by removing user mentions and URLs, as well as dupli-
cates (as described in Section 3.7).

We then feed the sequences into the baseline classifier trained on the
same gold data as the generative model that produced them. Depend-
ing on the label probability assigned by the classifier to the generated
sequences, these are accepted considering the following thresholds:

• The label predicted by the classifier matches the label assigned dur-
ing the generation phase (label probability p > 0.5)

• The classifier predicts the same label assigned during generation
with p > 0.7 3

After filtering, we randomly select 2,000 generated examples from the
accepted ones in each setup. In some rare cases, the number of accepted
sequences after filtering can be lower than 2,000. In that case, we sample
with replacement so that we can still use 2,000 synthetic examples and
have similar training sizes across experiments, albeit sometimes with
repeated sequences.

4.2.4 Baselines

As baselines, we employ a BERT-base-uncased and a RoBERTa-base clas-
sifier trained on the same gold data used to fine-tune GPT-2 in each
setup. We also report in our experimental results the performance of
classifiers trained using simple random oversampling as a DA strategy,
in which a number of randomly selected training examples appear mul-
tiple times during training. We match the number of oversampled in-
stances with the number of synthetic examples we use for augmenting

3This is the same threshold used by Wullach et al. (2021).
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the training data in each setup, split evenly across labels. Using over-
sampling as a baseline allows us to compare more resource-intensive
DA methods such as the ones we are evaluating with a simpler strategy.

4.3 Results

In this section we report the results of our experiments. Each experiment
is run 10 times, with different random seeds. We report in our tables
the average of these results. The metrics we use to evaluate models are
macro-F1 score and minority class F1 score.

In order to reliably compare the distributions of results across runs,
we use Almost Stochastic Order (ASO) (Dror et al., 2019; Del Barrio et al.,
2018) in its implementation by Ulmer et al. (2022). Following their find-
ings, we use τ = 0.2 as a threshold for statistical significance.4

Table 4.1 and Table 4.2 show the results obtained by RoBERTa base
models fine-tuned on augmented data when starting with 500 and 2,000
gold examples, respectively. BERT base results are reported in Tables
4.3 and 4.4. While for the setup in which we start with 2,000 annotated
examples (Table 4.2) we use both filtering thresholds (p > 0.5 and p >

0.7), for the setup in which we start with 500 examples we report the
results for models trained on generated data filtered with the p > 0.5

threshold only. The reason for this is that with less data, the confidence
of the model is much lower, and not all 10 runs can generate enough
examples that are classified with a confidence score higher than 0.7.

Impact of number of training instances Overall, it appears that data aug-
mentation is more effective in very low-resource scenarios, such as the

4This threshold has a Type I error rate comparable to that of a p-value threshold of 0.05 (Ulmer et al.,
2022).
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Gold data: 500 examples Test

Train: MDA MDA Founta SBIC SOLID

No augmentation .655 (.603) .805 (.743) .543 (.537) .807 (.734)
Oversampling .725 (.662)∗ .882 (.846) .554 (.522) .825 (.757)∗

tag-prompt .700 (.638)∗ .859 (.810)∗ .547 (.524) .862 (.804)∗

nl-prompt .694 (.638)∗ .863 (.820)∗ .560 (.546) .863 (.806)∗

cloze-prompt .692 (.634)∗ .860 (.815)∗ .545 (.524) .859 (.803)∗
Filtering:
p > 0.5

1/label .716 (.656)∗ .872 (.834)∗ .572 (.567) .874 (.823)∗

Train: Founta MDA Founta SBIC SOLID

No augmentation .683 (.622) .904 (.874) .540 (.504) .888 (.844)
Oversampling .637 (.609) .900 (.871) .589 (.582)∗ .896 (.856)

tag-prompt .679 (.620) .909 (.881) .567 (.542) .897 (.857)
nl-prompt .660 (.611) .909 (.882) .589 (.575)∗ .895 (.854)
cloze-prompt .688 (.626) .913 (.884)∗ .559 (.527) .891 (.850)

Filtering:
p > 0.5

1/label .683 (.624) .910 (.882) .579 (.563)∗ .893 (.851)

Train: SBIC MDA Founta SBIC SOLID

No augmentation .556 (.413) .646 (.472) .746 (.780) .714 (.570)
Oversampling .591 (.506)∗ .700 (.564)∗ .780 (.814)∗ .766 (.653)∗

tag-prompt .561 (.447) .679 (.531) .765 (.805)∗ .744 (.618)
nl-prompt .578 (.449) .687 (.540) .763 (.803)∗ .746 (.622)
cloze-prompt .574 (.438) .663 (.497) .762 (.799)∗ .737 (.604)

Filtering:
p > 0.5

1/label .584 (.477)∗ .676 (.524) .771 (.805)∗ .757 (.636)∗

Train: OLID MDA Founta SBIC SOLID

No augmentation .568 (.515) .766 (.676) .585 (.588) .797 (.707)
Oversampling .584 (.591) .838 (.799)∗ .637 (.687)∗ .865 (.819)∗

tag-prompt .578 (.567) .812 (.755) .610 (.644) .845 (.786)
nl-prompt .581 (.564) .811 (.763) .615 (.652) .838 (.781)
cloze-prompt .586 (.565) .816 (.763) .618 (.656) .843 (.783)

Filtering:
p > 0.5

1/label .575 (.584) .831 (.791) .631 (.697) .855 (.810)

Table 4.1: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-
tuned on augmented data, starting with 500 gold examples. F1 scores for the minority
class are in parentheses. Grey cells contain within-dataset results, while the others con-
tain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.

45



CHAPTER 4. ROBUSTNESS

Gold data: 2,000 examples Test

Train: MDA MDA Founta SBIC SOLID

No augmentation .770 (.708) .900 (.861) .568 (.580) .895 (.840)
Oversampling .761 (.699) .894 (.860) .592 (.575)∗ .877 (.823)

tag-prompt .773 (.714) .900 (.868) .582 (.563)∗ .890 (.840)
nl-prompt .771 (.712) .900 (.867) .576 (.555) .895 (.850)
cloze-prompt .771 (.713) .900 (.868) .576 (.555) .896 (.850)

Filtering:
p > 0.5

1/label .769 (.712) .893 (.861) .594 (.585)∗ .885 (.837)

tag-prompt .766 (.708) .895 (.861) .590 (.580)∗ .887 (.840)
nl-prompt .771 (.714) .898 (.866) .586 (.572)∗ .892 (.847)
cloze-prompt .769 (.712) .897 (.864) .586 (.570)∗ .891 (.846)

Filtering:
p > 0.7

1/label .768 (.713) .894 (.862) .596 (.586)∗ .886 (.838)

Train: Founta MDA Founta SBIC SOLID

No augmentation .635 (.619) .910 (.883) .611 (.612) .904 (.866)
Oversampling .628 (.610) .907 (.880) .615 (.618) .901 (.862)

tag-prompt .645 (.620) .911 (.883) .614 (.618) .901 (.863)
nl-prompt .635 (.616) .911 (.885) .625 (.633) .905 (.868)
cloze-prompt .644 (.619) .915 (.888) .607 (.607) .906 (.870)

Filtering:
p > 0.5

1/label .633 (.613) .910 (.881) .612 (.615) .902 (.864)

tag-prompt .650 (.623) .913 (.885) .619 (.624) .903 (.865)
nl-prompt .645 (.619) .914 (.887) .615 (.617) .908 (.872)
cloze-prompt .640 (.619) .913 (.885) .621 (.625) .904 (.866)

Filtering:
p > 0.7

1/label .647 (.619) .914 (.886) .612 (.614) .907 (.871)

Train: SBIC MDA Founta SBIC SOLID

No augmentation .608 (.555) .737 (.618) .813 (.844) .804 (.712)
Oversampling .591 (.544) .722 (.601) .810 (.842) .789 (.691)

tag-prompt .603 (.550) .725 (.597) .812 (.840) .803 (.708)
nl-prompt .604 (.547) .730 (.605) .814 (.844) .802 (.708)
cloze-prompt .608 (.552) .729 (.607) .814 (.844) .806 (.714)

Filtering:
p > 0.5

1/label .606 (.548) .725 (.598) .811 (.840) .800 (.704)

tag-prompt .608 (.560) .733 (.611) .811 (.841) .807 (.716)
nl-prompt .618 (.546) .724 (.593) .814 (.842) .801 (.703)
cloze-prompt .611 (.555) .735 (.615) .813 (.844) .807 (.714)

Filtering:
p > 0.7

1/label .609 (.558) .733 (.612) .814 (.844) .804 (.709)

Train: OLID MDA Founta SBIC SOLID

No augmentation .584 (.599) .874 (.841) .633 (.668) .897 (.859)
Oversampling .576 (.593) .858 (.824) .637 (.678) .887 (.847)

tag-prompt .570 (.593) .867 (.832) .636 (.681) .891 (.852)
nl-prompt .586 (.598) .875 (.841) .641 (.681) .895 (.856)
cloze-prompt .592 (.603) .878 (.845) .638 (.672) .897 (.861)

Filtering:
p > 0.5

1/label .573 (.594) .871 (.839) .644 (.687) .892 (.855)

tag-prompt .578 (.597) .864 (.831) .634 (.675) .892 (.853)
nl-prompt .581 (.597) .873 (.841) .642 (.681) .896 (.858)
cloze-prompt .582 (.597) .871 (.839) .638 (.676) .895 (.857)

Filtering:
p > 0.7

1/label .579 (.597) .872 (.839) .643 (.684) .895 (.858)

Table 4.2: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-
tuned on augmented data, starting with 2,000 gold examples. F1 scores for the minority
class are in parentheses. Grey cells contain within-dataset results, while the others con-
tain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.
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Gold data: 500 examples Test

Train: MDA MDA Founta SBIC SOLID

No augmentation .630 (.551) .716 (.620) .550 (.583) .700 (.635)
Oversampling .696 (.623)∗ .823 (.768)∗ .573 (.566) .825 (.757)∗

tag-prompt .663 (.583) .775 (.698)∗ .562 (.578) .774 (.704)
nl-prompt .654 (.574) .752 (.664) .584 (.610) .767 (.698)
cloze-prompt .665 (.589)∗ .773 (.693)∗ .554 (.562) .780 (.709)∗

Filtering:
p > 0.5

1/label .688 (.617)∗ .798 (.744)∗ .575 (.604) .797 (.728)∗

Train: FOUNTA MDA Founta SBIC SOLID

No augmentation .619 (.549) .890 (.856) .613 (.622) .847 (.790)
Oversampling .638 (.585) .906 (.876)∗ .598 (.591) .885 (.841)∗

tag-prompt .636 (.564) .904 (.874) .600 (.597) .876 (.826)∗

nl-prompt .614 (.567) .900 (.869) .641 (.665) .874 (.828)∗

cloze-prompt .632 (.564) .900 (.869) .606 (.611) .857 (.807)
Filtering:
p > 0.5

1/label .629 (.574) .899 (.870) .633 (.654) .878 (.834)∗

Train: SBIC MDA Founta SBIC SOLID

No augmentation .566 (.425) .629 (.438) .747 (.787) .727 (.600)
Oversampling .579 (.481)∗ .682 (.540) .766 (.801)∗ .756 (.643)

tag-prompt .575 (.426) .679 (.530) .754 (.796) .755 (.640)
nl-prompt .576 (.451) .677 (.523) .757 (.797) .754 (.640)
cloze-prompt .566 (.426) .656 (.487) .754 (.796) .738 (.614)

Filtering:
p > 0.5

1/label .574 (.447) .664 (.500) .762 (.799)∗ .743 (.619)

Train: OLID MDA Founta SBIC SOLID

No augmentation .555 (.538) .757 (.691) .635 (.712) .770 (.704)
Oversampling .555 (.570) .832 (.792)∗ .653 (.717) .852 (.804)∗

tag-prompt .554 (.550) .795 (.743) .641 (.723) .813 (.754)
nl-prompt .559 (.559) .810 (.762)∗ .658 (.728)∗ .832 (.778)∗

cloze-prompt .562 (.553) .803 (.750)∗ .648 (.720) .823 (.766)
Filtering:
p > 0.5

1/label .537 (.557) .805 (.764)∗ .648 (.750) .821 (.769)∗

Table 4.3: Average macro-F1 scores (over 10 runs) obtained by BERT-base-uncased fine-
tuned on augmented data, starting with 500 gold examples. F1 scores for the minority
class are in parentheses. Grey cells contain within-dataset results, while the others con-
tain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.
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Gold data: 2,000 examples Test

Train: MDA MDA Founta SBIC SOLID

No augmentation .756 (.694) .894 (.860) .573 (.550) .891 (.844)
Oversampling .746 (.684) .884 (.848) .592 (.580) .880 (.830)

tag-prompt .759 (.694) .900 (.867) .567 (.535) .893 (.846)
nl-prompt .761 (.697) .901 (.869)∗ .567 (.538) .900 (.860)∗
cloze-prompt .756 (.697) .901 (.869)∗ .572 (.544) .899 (.855)∗

Filtering:
p > 0.5

1/label .749 (.689) .892 (.859) .584 (.571) .891 (.843)

tag-prompt .760 (.695) .899 (.867) .578 (.554) .893 (.844)
nl-prompt .760 (.698) .899 (.867) .572 (.545) .897 (.853)∗
cloze-prompt .762 (.699) .902 (.870)∗ .572 (.548) .898 (.855)∗

Filtering:
p > 0.7

1/label .753 (.690) .897 (.863) .593 (.579)∗ .893 (.848)

Train: FOUNTA MDA Founta SBIC SOLID

No augmentation .616 (.601) .913 (.887) .628 (.635) .905 (.868)
Oversampling .635 (.604)∗ .911 (.883) .617 (.618) .899 (.859)

tag-prompt .634 (.605)∗ .914 (.888) .621 (.625) .905 (.867)
nl-prompt .632 (.607) .914 (.887) .627 (.632) .905 (.868)
cloze-prompt .617 (.599) .914 (.887) .630 (.641) .903 (.867)

Filtering:
p > 0.5

1/label .629 (.604) .914 (.888) .628 (.637) .904 (.866)

tag-prompt .636 (.609)∗ .913 (.887) .624 (.629) .905 (.868)
nl-prompt .634 (.605) .915 (.888) .629 (.636) .904 (.867)
cloze-prompt .633 (.608) .914 (.888) .630 (.636) .907 (.871)

Filtering:
p > 0.7

1/label .629 (.605) .913 (.884) .627 (.635) .903 (.864)

Train: SBIC MDA Founta SBIC SOLID

No augmentation .589 (.539) .743 (.632) .806 (.838) .807 (.718)
Oversampling .588 (.526) .716 (.590) .799 (.829) .786 (.683)

tag-prompt .584 (.538) .742 (.626) .806 (.839) .809 (.717)
nl-prompt .594 (.526) .734 (.590) .807 (.829) .802 (.683)
cloze-prompt .593 (.532) .735 (.617) .806 (.838) .802 (.705)

Filtering:
p > 0.5

1/label .586 (.532) .739 (.628) .804 (.835) .800 (.705)

tag-prompt .582 (.536) .743 (.629) .809 (.842) .806 (.714)
nl-prompt .588 (.538) .734 (.616) .806 (.840) .803 (.712)
cloze-prompt .598 (.539) .742 (.628) .807 (.837) .807 (.716)

Filtering:
p > 0.7

1/label .591 (.533) .732 (.614) .806 (.835) .803 (.709)

Train: OLID MDA Founta SBIC SOLID

No augmentation .562 (.588) .874 (.843) .653 (.693) .897 (.861)
Oversampling .549 (.580) .859 (.824) .661 (.709) .885 (.845)

tag-prompt .555 (.583) .862 (.829) .662 (.713) .890 (.852)
nl-prompt .553 (.582) .868 (.834) .668 (.717)∗ .893 (.855)
cloze-prompt .568 (.588) .875 (.845) .659 (.700) .897 (.861)

Filtering:
p > 0.5

1/label .541 (.578) .858 (.824) .669 (.728)∗ .885 (.844)

tag-prompt .555 (.583) .862 (.826) .663 (.712) .892 (.853)
nl-prompt .561 (.586) .873 (.841) .665 (.712)∗ .896 (.859)
cloze-prompt .575 (.591) .879 (.846) .658 (.698) .898 (.862)

Filtering:
p > 0.7

1/label .548 (.581) .863 (.829) .671 (.725) .889 (.851)

Table 4.4: Average macro-F1 scores (over 10 runs) obtained by BERT-base-uncased fine-
tuned on augmented data, starting with 2,000 gold examples. F1 scores for the minority
class are in parentheses. Grey cells contain within-dataset results, while the others con-
tain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.
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setting with 500 examples. The fact that DA is more useful as the amount
of available data lowers is in line with what has been observed for other
tasks, as well as in multiclass setups, albeit with a much lower number
of examples per class (Anaby-Tavor et al., 2020; Kumar et al., 2020). In
the setup in which 2,000 gold examples are available, there are very few
significant improvements in performance when using generative data
augmentation.

Impact of prompting and filtering Interestingly, no prompting type seems
to clearly outperform the others across setups. For instance, augmenting
the MDA dataset starting with 500 gold examples has a positive effect
on performance across all prompting types both when tested on the in-
domain test data and when tested on Founta and SOLID, while when
tested on SBIC none of the setups lead to significant improvements in
performance. This seems to indicate that dataset characteristics have
a greater impact than the prompting setup on whether generative DA
can be effective in this kind of scenario. However, looking at Table 4.2,
the situation is reversed: the RoBERTa model trained on MDA only sig-
nificantly benefits from data augmentation when tested on SBIC across
most setups. A filtering threshold of 0.7 does seem to help improve per-
formance at least marginally, but only on this dataset combination out
of all the ones we tested. Overall, it appears that whether DA will have
a positive impact on classification might not depend much on the gen-
eration setup in our case.

Overall findings The most important pattern that emerges from our re-
sults is that generative DA using GPT-2 does not appear to reliably im-
prove model performance across setups, both in and out of domain. It
apparently can significantly improve model performance, especially for
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some dataset combinations and with very low amounts of data. How-
ever, this improvement is not consistent, so based on our results we
would consider this type of DA unreliable as a method for improving
offensive language classifiers in similar setups.

Another important aspect that emerges from our results is that over-
sampling is a very strong baseline, especially for the setup with 500
available annotated examples, even though it is often overlooked. To
our knowledge, it was used as a baseline only in Juuti et al. (2020) for
generative DA on this task, while most other works report the perfor-
mance on augmented data only. Interestingly, oversampling does not
only improve within-dataset performance, but it also has a significant
positive impact on cross-dataset performance, even though intuitively
it would be expected to lead to overfitting of the training data. Since
it requires a fraction of the computational resources needed for genera-
tive DA, it may be preferable when ∼500 gold examples are available.
We hypothesize that one of the reasons why oversampling can perform
well is that at least a subset of the datasets share superficial features that
might be amplified in the oversampling process, such as specific terms
that are associated with offensiveness across datasets. We will explore
lexical aspects in Section 4.4.2.

The results for BERT models are in general in line with those for
RoBERTa models, although BERT models tend to perform worse re-
gardless of setup. Again, with BERT models, oversampling seems to
be just as reliable to improve both within-dataset and cross-dataset per-
formance. In general, although it does not reliably improve model per-
formance, generative DA does not seem to significantly decrease per-
formance either. Wullach et al. (2021) believe that generative DA could
improve lexical diversity, leading to better generalization. In Section 4.4,
we examine the generated data from a qualitative point of view, to as-
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sess whether it could lead to benefits with regards to lexical variety, or
changes in performance on the HateCheck tests.

4.4 Qualitative Analysis

In this section, we examine the generated texts from a qualitative point
of view, first through a manual analysis of a small subset of generated
texts (Sec. 4.4.1), then through a lexical analysis of the synthetic texts
(Sec. 4.4.2), and finally we discuss the results obtained by models trained
on augmented data on HateCheck, investigating any changes in per-
formance across both specific adversarial tests and targets of hate (Sec.
4.4.3).

4.4.1 Examples of Generated Texts

In order to estimate the quality of the generated examples and the im-
pact of the prompting method, we randomly select a small subset of
10 generated examples for every dataset, setup, and data size combi-
nation for manual analysis, for a total of 320 examples. We find that
there are some clear differences between the prompting setups, and that
the methods that exploit prompting in natural language, i.e. nl-prompt
(Sec. 4.2.2) and cloze-prompt (Sec. 4.2.2), tend to generate the most re-
alistic examples. Tag-prompt tends to often generate strings of random
special characters, resulting in very low quality data, while the 1/label
setup often results in sequences that appear out of domain. Some exam-
ples of the generated texts are shown in Table 4.5 for models trained on
500 examples and Table 4.6 for models trained on 2,000 annotated texts.
Some texts have been truncated (signaled by “[...]”) due to space con-
straints. The labels reported in Tables 4.5 and 4.6 are those assigned by
the RoBERTa baseline.
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prompting dataset generated text label

tag-prompt

MDA #SEP #BlackLivesMatter #BIDEN #MAGA URL 0
Founta ∼∼∼@USER 0
SBIC ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ [...] 0
OLID ***********@USER You’re fucking awesome 0

nl-prompt

MDA @USER It is time to end this corrupt criminal republic
#DemocRATting #BlackLivesMatter URL

0

Founta ?????????????????????????????????? 1
SBIC I hate all of you who call yourself patriots. You are useless. 1
OLID @USER @USER you are not a Christian..you are a hypocrite 1

cloze-prompt

MDA ”I love how the media is pushing the idea that the protesters
are racist

0

Founta USER: hey, u should really try and figure out what is going
on in the world of 4chan

0

SBIC If you can’t get a girl to like you, you’re a loser... 1
OLID @USER @USER He is the worst 0

1/label

MDA

Coronavirus was first identified in 1984 in the U.S. as a con-
taminant of the popular oral flu vaccine.
Because of the severity of this illness, the CDC in the early
90s ordered the removal of all Coronaviruses from vaccines
and in 1998 [...]

0

Founta

#6a8a2a color RGB value is (135,18 ,225).
#6b98f6 color hex is (13 ,180,.25).
the number is on its way to being determined so I don’t need
to change it [...]

0

SBIC

”The best way to get ahead in life is to keep learning” - Steve
Jobs
”As a scientist, the thing I am most excited about is the pos-
sibility that we will be able to engineer a cure for cancer - by
using a synthetic biology-based approach” - Dr. Aubrey de
Grey, M.D.[...]

0

OLID EVERYBODY, EVERYBODY is talking about the fact that
President Trump is being sued by the media. Yes, you
read that correctly. Media. Lawsuit. #MAGA #Trump #To-
riesOut #ToryOut’sOut#POTUSOut #MAGADump #MAG-
AMAG #MAGAZINEAU’S MAGA NEWSLETTER @USER
@USER The way he [...]

0

Table 4.5: Examples of sequences generated by GPT-2 large models trained on 500 gold
examples for every combination of prompting and dataset.
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prompting dataset generated text label

tag-prompt

MDA URL #Elections2020 0
Founta !!!! &#128580;&#127907;&amp;&gt; I fucking hate you URL 1
SBIC phone 7, apple iphones 8, iphONES 8, android ips 8, blackberry

ips, ixp8 iph, [...]
0

OLID URL You guys are pathetic 1

nl-prompt

MDA @USER Because the Democrats lie, cheat, steal and intentionally
create the chaos in our country. They are beyond evil!

0

Founta ????????? @USER We are listening..if you have any ideas please
send us a tweet at URL

0

SBIC You’re never too young to dream, you just gotta work it. 0

OLID You and your friends are fucking delusional. There are far worse
far right wing nut jobs out there than antifa. Try to keep your
stupid comment to yourself

1

cloze-prompt

MDA The most disgusting thing about this is that the person spreading
this filth is a member of the media. They are enabling the filth.

0

Founta @USER @USER Yeah, that would be a pretty crazy idea! I’m sure
that would cause an uproar and a few angry people would object

1

SBIC Do you think these fake news articles on vaccines and autism are
getting too much play on social media?

0

OLID @USER @USER @USER @USER He is just one more nut job in
Congress.

1

1/label

MDA
The family of a missing teen has filed a $5 million lawsuit against
the city of Madison, alleging that officials didn’t do enough to
find their son when he went missing in September 2010. [...]

0

Founta

$4.99
Featuring all the fan favorites including:
• Exclusive and classic illustrations from some of comics’ most
beloved artists [..]

0

SBIC

Beef and broccoli are the perfect meal for when you are hungry
and not hungry. But I think they would probably turn to dust
in an instant if you tried to eat them.Blessings are spread in the
name of the Lord, and His name is exalted. [...]

0

OLID WWF @USER We are all outraged that this clown is using his ac-
cess to the office to threaten &amp; bully. You &amp#Array; you
&amp”#Array”; yourself should be ashamed of yourself.@USER
you are so right on this issue but I have to agree that we conser-
vatives are becoming too emotional. [...]

1

Table 4.6: Examples of sequences generated by GPT-2 large models trained on 2,000
gold examples for every combination of prompting and dataset.
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4.4.2 Lexical Analysis

To investigate the lexical variation between the gold data and the gen-
erated data, we use the Variationist tool (Appendix A). In particular,
we calculate a normalized weighted relevance metric based on point-
wise mutual information (PMI), following Ramponi and Tonelli (2022).
We analyze the most informative tokens for the offensive class in each
dataset, looking at how certain tokens become less or more informa-
tive in the generated data. For this analysis, we choose to use the same
sub-word tokens used by the models rather than whitespace-separated
tokens, in order to get a better glimpse at the informativeness of tokens
for the classifiers we use.

In this section, we present the lists of top-11 informative tokens for
the offensive class, both on gold and on generated data. Lists for data in
the setup where we start with 500 annotated instances can be found in
Table 4.7, and those for the setup with 2,000 gold instances are in Table
4.8.

The first tendency that can be noticed when looking at how the rank-
ing of tokens’ informativeness changes between gold and synthetic data
is that for some of the datasets the changes are more evident (i.e. for
MDA and SBIC). For example, in the gold SBIC data, the word fucking
is ranked as the 1,203rd most informative word for the offensive class.
In data augmented using the tag-prompt type on the generative model
trained on 2,000 instances, however, the same word is ranked 4th. This
means that the model has generated a very large amount of offensive
messages containing this word, while it was not prominent in the gold
data it was fine-tuned on. This happens for both the setup starting with
500 gold examples and the one with 2,000.

While the prominence of a potentially predictive word for offensive
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MDA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 fuck 0 fuck 2 fucking 2 fucking 0 fuck
1 shit 2 fucking 0 fuck 1 shit 2 fucking
2 fucking 1 shit 1 shit 0 fuck 1 shit
3 ass 31 racist 5 dumb 6 stupid 6 stupid
4 idiot 5 dumb 6 stupid 31 racist 3 ass
5 dumb 6 stupid 31 racist 5 dumb 7 ##s
6 stupid 3 ass 7 ##s 3 ass 11 guy
7 ##s 25 mor 3 ass 302 disgusting 17 piece
8 b*tch 13 trump 4 idiot 4 idiot 5 dumb
9 ##er 4 idiot 302 disgusting 18 user 4 idiot
10 bullshit 423 people 17 piece 25 mor 31 racist

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 4 fuck 3 b*tch 4 fuck 4 fuck
2 user 2 user 4 fuck 2 user 6 hate
3 b*tch 6 hate 6 hate 6 hate 11 shit
4 fuck 3 b*tch 11 shit 3 b*tch 1 fucked
5 ass 5 ass 10 stupid 5 ass 10 stupid
6 hate 1 fucked 8 idiot 1 fucked 3 b*tch
7 128 11 shit 5 ass 10 stupid 5 ass
8 idiot 10 stupid 1 fucked 11 shit 8 idiot
9 ##gga 8 idiot 43 sick 8 idiot 43 sick
10 stupid 43 sick 41 ##tar 43 sick 34 kill

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 black 0 black 0 black 0 black 0 black
1 b*tch 4 white 4 white 3 difference 29 woman
2 ##es 9264 [SEP] 38 people 12 girl 5 sex
3 difference 38 people 3 difference 4 white 8 women
4 white 11 ##s 12 girl 29 woman 38 people
5 sex 3 difference 31 person 5 sex 4 white
6 ho 5382 fucking 29 woman 80 guy 12 girl
7 ##gga 31 person 17 ##gger 31 person 57 racist
8 women 29 woman 5382 fucking 38 people 14 gay
9 jew 8 women 7 ##gga 8 women 80 guy
10 fuck 10 fuck 8 women 5382 fucking 44 kill

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 shit 0 shit 0 shit 19 disgusting 0 shit
1 fuck 16 people 6 liberals 6 liberals 7 stupid
2 ass 19 disgusting 1 fuck 16 people 1 fuck
3 fucking 6 liberals 19 disgusting 0 shit 3 fucking
4 ##s 28 hate 52 sick 7 stupid 16 people
5 b*tch 18 racist 7 stupid 9 idiot 52 sick
6 liberals 7 stupid 3 fucking 28 hate 19 disgusting
7 stupid 52 sick 16 people 22 liar 99 wrong
8 control 22 liar 28 hate 1 fuck 29 disgrace
9 idiot 1 fuck 9 idiot 18 racist 31 bad
10 dumb 10 dumb 22 liar 10 dumb 97 women

Table 4.7: Top tokens for the offensive class in the gold data and in the generated data
when starting with 500 examples, computed using the PMI implementation of Ram-
poni and Tonelli (2022). The indices refer to the ranking of importance of the tokens in
the gold data, while the order of the tokens reflect their informativeness for the offen-
sive class in the generated data.
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MDA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 fuck 0 fuck 18 ##ass 2 fucking 0 fuck
1 shit 2 fucking 52 ##est 0 fuck 1 shit
2 fucking 1 shit 16 ##on 1 shit 2 fucking
3 ass 23 racist 418 ##path 950 user 14 mag
4 ##s 7 dumb 4 ##s 6 idiot 23 racist
5 stupid 6 idiot 3 ass 5 stupid 6 idiot
6 idiot 89 liar 10 asshole 23 racist 22 ##a
7 dumb 5 stupid 12 b*tch 7 dumb 5 stupid
8 piece 135 ##trum 9 bullshit 89 liar 7 dumb
9 bullshit 14 mag 105 bunch 8 piece 8 piece
10 asshole 1284 ##p 1049 complete 3 ass 13 guy

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 6 hate 1 fucked 1 fucked 4 fuck
2 user 1 fucked 4 fuck 2 user 1 fucked
3 b*tch 4 fuck 3 b*tch 6 hate 6 hate
4 fuck 3 b*tch 9 shit 4 fuck 3 b*tch
5 ass 16339 [SEP] 6 hate 3 b*tch 5 ass
6 hate 5 ass 5 ass 5 ass 9 shit
7 ##gga 8 shit 11 stupid 10 idiot 11 stupid
8 128 7 ##gga 20 sick 11 stupid 10 idiot
9 shit 2 user 7 ##gga 9 shit 20 sick
10 idiot 11 stupid 19 mad 7 ##gga 8 128

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 black 0 black 0 black 0 black 0 black
1 b*tch 15008 [SEP] 3 white 3 white 3 white
2 difference 10 ##s 1 b*tch 2 difference 5 sex
3 white 10203 fucking 14 ##gger 15 woman 2 difference
4 ##es 1 b*tch 12 jews 8 women 8 women
5 sex 763 offensive 7 ##gga 12 jews 15 woman
6 ho 3 white 2 difference 5 sex 9 fuck
7 ##gga 5 sex 10 ##s 11 jew 43 racist
8 women 9 fuck 11 jew 19 girl 16 ##ist
9 fuck 43 racist 15 woman 1 b*tch 1 b*tch
10 ##s 4 ##es 8 women 14 ##gger 11 jew

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token

0 shit 11 liberals 11 liberals 11 liberals 0 shit
1 fuck 12 disgusting 1 fuck 0 shit 12 disgusting
2 ass 7 people 0 shit 12 disgusting 6 stupid
3 fucking 0 shit 12 disgusting 6 stupid 7 people
4 b*tch 13 racist 53 disgrace 18 liar 1 fuck
5 ##s 6 stupid 6 stupid 53 disgrace 14 sick
6 stupid 53 disgrace 14 sick 26 ##yp 13 racist
7 people 26 ##yp 18 liar 14 sick 18 liar
8 idiot 29 ##oc 3 fucking 29 ##oc 3 fucking
9 dumb 14 sick 7 people 32 lying 26 ##yp
10 user 16 fake 5 ##s 1 fuck 29 ##oc

Table 4.8: Top tokens for the offensive class in the gold data and in the generated data
when starting with 2,000 examples, computed using the PMI implementation of Ram-
poni and Tonelli (2022). The indices refer to the ranking of importance of the tokens in
the gold data, while the order of the tokens reflect their informativeness for the offen-
sive class in the generated data.
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language, like fucking, is potentially a good sign of the quality of the
generated data, since it means that the generation process can usefully
augment existing data, this happens also with tokens that should not be
predictive for this task, defined by Ramponi and Tonelli (2022) as spu-
rious lexical artifacts. For example, across several generation setups, we
can notice the increased importance for the offensive label of identity
terms, such as girl, gay, woman, jews, but also words that hold no inher-
ent association with abusive language, such as people or difference. The
higher importance of some identity terms could be associated with bi-
ases that were already present in the pre-trained generative model, and
which were amplified during the generation process. In order to better
understand the impact of these differences in token informativeness, we
turn to the HateCheck functional tests in Section 4.4.3.

4.4.3 HateCheck Analysis

In this section, we explore some of the weaknesses of classifiers trained
on gold and augmented data through the HateCheck suite (Sec. 3.6).
Since our models in this section are more generally aimed at detecting
offensive language and HateCheck is focused on hate speech, i.e. a nar-
rower phenomenon, not all tests are entirely informative in our case,
such as test number 11, testing the performance on non-hateful profanities,
as these are considered offensive in the Founta and OLID datasets, while
they are not hate speech. In general, however, the labels of HateCheck
tests are aligned with our task, so these tests can still be informative.

Table 4.9 and Table 4.10 present the results on HateCheck tests and
targets for models in the 500 gold examples setup. Table 4.11 and Table
4.12, on the other hand, present the results on the functional tests and
targets for models in the setup in which we start with 2,000 annotated
examples.
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Overall, data augmentation has little impact on the performance of
models on HateCheck, especially on models trained starting with 2,000
gold instances. Similarly to the results reported in Section 4.3, oversam-
pling tends to lead to similar or better improvements than generative
DA, again depending on the starting dataset. However, this improve-
ment is focused only on some functional tests, leading to worse perfor-
mance on other tests. For instance, two interesting tests are those on
non-hateful slurs, including test 8, non-hateful homonyms of slurs (e.g.
“Female canines are called bitches”), and test 9, reclaimed slurs (e.g. “The
Q in LGBTQ stands for queer”). For models trained on 500 gold in-
stances, the performance consistently drops on these two tests for all
augmentation setups and oversampling across all datasets. This sug-
gests that models trained using oversampling or generative data aug-
mentation may start overfitting and relying on the presence of specific
terms such as slurs for the classification of offensive language. For mod-
els trained on 2,000 gold instances, the performance on these two tests is
somewhat stable, with no improvements or decreases in performance.

Another interesting test for examining whether generative DA in-
creases the reliance of classifiers on specific words is test 15, negated hate-
ful statement, e.g. “I would never hurt any woman”. The performance
for this test when using augmented data tends to be overall stable or
lower than the baseline, mostly decreasing with oversampling and in
the setup starting from 500 annotated instances. This again indicates
that models trained on augmented data in the setups we used show po-
tentially harmful weaknesses, since they tend to misclassify sequences
based on simple patterns such as the presence of specific words.

While models trained on augmented data tend to perform worse on
non-hateful sequences containing identity terms and slurs, they do show
improvements for those tests that benefit from being able to find these
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CHAPTER 4. ROBUSTNESS

terms, such as test 7, hate expressed using slur, or test 10, hate expressed
using profanity, further confirming that this type of augmentation tends
to steer models into overfitting identity terms and slurs.
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CHAPTER 4. ROBUSTNESS

4.5 Conclusions on Robustness

In this chapter, we presented an evaluation of both existing and novel
data augmentation setups based on generative large language models
for offensive language detection. We investigated the robustness of such
models, testing them in within-dataset and cross-dataset scenarios, and
performed a qualitative analysis on the augmented data.

Relative to research question RQ1.1, we found that while generative
DA can positively impact model performance in some cases, especially
when low amounts of gold data are available, this positive effect is not
consistent across setups, making generative DA unreliable in the se-
tups we tested, with no clear improvements with regards to robustness
(RQ1.2). In addition to this, we found that generative DA can poten-
tially introduce lexical bias from the pre-trained generative model into
the augmented data, as well as increase the reliance of models on iden-
tity terms and slurs, which could have unintended effects on classifica-
tion.

Overall, although it might improve classification performance in some
cases, using generative DA for this task using the setups we experi-
mented with would be inadvisable, as it is computationally intensive
and it does not appear to consistently make models perform better or be
more robust.
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Chapter 5

Fairness

In this chapter, we aim at investigating the effect of data augmentation
on fairness (research question RQ1.3). More specifically, we explore the
representation of target identity groups in synthetic data, as well as the
possibility of exploiting synthetic data to make the identity groups that
are represented in the data more evenly distributed, under the assump-
tion that this might make systems trained on such data fairer. Indeed, no
in-depth analysis of the effects of data augmentation for less-represented
hate speech targets has been carried out in previous work, while it could
potentially be beneficial not only to make systems more accurate and ro-
bust, but also fairer.

In order to conduct this analysis, we carry out a comparison between
recent generative language models and more traditional approaches to
data augmentation, such as synonym replacement or token deletion.
Such a comparison has, in fact, not been carried out before to our knowl-
edge, although increasing the amount of training data with synthetic
examples has been successfully exploited well before the advent of gen-
erative large language models (Chen et al., 2023).

More specifically, we address the following research questions related
to fairness (RQ1.3):

63



CHAPTER 5. FAIRNESS

• (RQ1.3.1) Does data augmentation impact the performance of hate
speech detection classifiers differently depending on specific target
identities?

• (RQ1.3.2) Can information about identity groups in the data aug-
mentation process help the creation of better and more representa-
tive synthetic examples?

• (RQ1.3.3) Do different data augmentation setups and approaches
have distinct effects on the performance of models on underrepre-
sented targets?

We answer the above questions through a set of experiments in which
we focus on the performance of models by target identity group. In ad-
dition, we introduce two novel elements compared to previous work on
generative DA: (i) we experiment with setups in which we exploit tar-
get identity information during generation, attempting to increase the
relative representation of scarcely represented targets, and (ii) we exper-
iment with instruction-finetuned LLMs, which have been shown to be
able to improve downstream task performances (Wei et al., 2022). We
carry out generation-based data augmentation using 4 different gener-
ative models, both with and without access to target identity informa-
tion. We also further investigate potential fairness-related weaknesses
of models using the HateCheck test suite (Sec. 3.6) combined with a
manual analysis of generated examples.

5.1 Fairness Experiments Data

For our experiments, we use the MHS corpus (Sec. 3.4). The main char-
acteristic of the MHS dataset that makes it ideal for our study is that it
includes labels signaling the presence of identity groups and sub-groups

64



CHAPTER 5. FAIRNESS

Figure 5.1: Identity group distribution in the MHS corpus.

in texts. Importantly, this annotation is present regardless of hatefulness,
resulting in target annotations even for posts containing supportive or
counter-speech.

In the entire corpus, only 48 examples are not associated with any
target identity group. Two examples of texts and their annotations from
the processed corpus we use are shown in Table 5.1.1

In the freely available version of the MHS dataset2 we find annota-
tions for seven target identity groups: race, religion, origin, gender, sexual-
ity, age, and disability. Their distribution in the data can be seen in Figure
5.1, which shows how the most widely studied targets of hate speech,
race and gender, are also the most widely represented in the MHS corpus,
while some targets such as age, disability, or religion are less frequent.

1The original messages from the dataset were changed slightly to avoid using user content. Addi-
tionally, slurs are manually obfuscated by us, following the guidelines by Nozza and Hovy (2023).

2https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
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CHAPTER 5. FAIRNESS

Text Hate speech Target identity groups

I think it was a joke, no black girls eveer dream of such things. 0 Gender, Race
no one gives a shit f*g 1 Sexuality
People would rather stand up on the bus than sit next to me, hijabi life is awesome 0 Religion

Table 5.1: Examples from the dataset after our aggregation operations, with a hate
speech label and a list of target identity groups mentioned or referred to in the text.

5.2 Methodology

In our experiments, we implement a data augmentation pipeline in-
spired by Anaby-Tavor et al. (2020), which has also been used in other
work (Wullach et al., 2021), similarly to that of Section 4.1. The pipeline
is displayed in Figure 5.2. Starting from a small set of Gold data from
the MHS corpus, a Generator is employed to augment them by gener-
ating synthetic examples with the corresponding label (hateful or not)
using either finetuning or few-shot prompting (see Section 5.2.2). Since
the labels associated with the Generated data may not be accurate, given
that generative models cannot always preserve the desired labels (Ku-
mar et al., 2020), a subsequent filtering step is used in order to maximize
the chances of label correctness, similarly to that of Section 4.2.3. In or-
der to create a model for filtering generated texts, the same gold data is
used also to fine-tune a binary classifier that assigns a hateful/non hate-
ful label to the generated data. However, differently from the filtering
step of Section 4.2.3, in this case we preserve the synthetic examples for
which there is a match between the label assigned during generation and
by the Classification model, with no specific classifier confidence thresh-
old, as our results of Chapter 4 showed small differences between the
filtering thresholds. The Filtered synthetic data is then used to train a hate
speech classifier that we evaluate for the task performance in general
and then on specific hate targets. We detail below the variants we test
for each step of the pipeline.
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CHAPTER 5. FAIRNESS

Figure 5.2: The generative DA pipeline, from gold data to filtered syntetic data.

5.2.1 Generative Models

For the Generator step, we experiment with four different transformer
models: OPT (Zhang et al., 2022) and T5 (Raffel et al., 2020) and their
instruction-finetuned counterparts: OPT-IML (Iyer et al., 2022) and Flan-
T5 (Chung et al., 2024). We choose to only use openly available models
for our experiments to favor reproducibility. The selected models al-
low us also to compare a decoder-only model (OPT) with an encoder-
decoder model (T5), which to our knowledge has not been done in pre-
vious studies on this type of data augmentation (Azam et al., 2022). An-
other aspect we want to investigate is the performance of instruction-
finetuned models compared to their standard version, since recent works
showed that instruction-tuning can improve generalization to unseen
tasks (Chung et al., 2024). For this reason, we include OPT-IML and
Flan-T5 beside OPT and T5. We use the 1.3B parameter version of OPT
and OPT-IML and the Large version of T5 and Flan-T5 (770M).3

3While this means there is a disparity between the decoder-only and the encoder-decoder model
sizes we use, 1.3B is the smallest available model size for OPT-IML, and finetuning Flan-T5 3B, the next
model size available for the encoder-decoder architecture, was beyond our computing capacity at the
time the experiments were carried out.
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CHAPTER 5. FAIRNESS

5.2.2 Finetuning, Few-Shot Prompting, and Identity Group Informa-
tion

A large number of works on data augmentation based on generative
models rely on finetuning a model on a small set of gold data, and then
generating new data with the finetuned model, encoding the label in-
formation within the text sequences in some form (e.g. Anaby-Tavor
et al. (2020); Kumar et al. (2020)), as seen in Section 2.1.2. Other works
use few-shot demonstration-based prompting, in which the pre-trained
model is prompted with one or more sequences similar to what the
model is expected to generate, with no finetuning (e.g. Hartvigsen et al.
(2022); Azam et al. (2022); Ashida and Komachi (2022)). We experiment
with both strategies for each transformer model.

Since our research questions revolve around the impact that infor-
mation regarding target identity groups can have on data augmenta-
tion, finetuning and few-shot demonstration-based prompting are fur-
ther tested in two variants: with and without mentioning the target
identity group information. Our hypothesis is that the inclusion of this
kind of information might help in generating more varied data with re-
gards to identity group mentions for both hateful and non-hateful mes-
sages. By generating target-specific examples also for the non-hateful
class, we ideally aim at implicitly contrasting identity term bias (Zhou
et al., 2021). In order to do this, we encode target identity information
into the prompts given to the models using different methods, as shown
below.

Finetuning (FT)

For finetuning, we follow an approach similar to that of Anaby-Tavor
et al. (2020), in which a generative LLM is fine-tuned on annotated se-
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quences that are concatenated with labels. At generation time, the de-
sired label information is fed into the model, and the model is expected
to generate a sequence belonging to the specified class. We discuss the
details of the formatting of the label information in Section 5.2.2.

This method has the upside of theoretically being more likely to gen-
erate examples that are closer to the original distribution of the data to be
augmented. However, this can also be a downside, if the desired effect
is increasing the variety of the data. In addition, finetuning is more com-
putationally expensive than few-shot prompting. For models fine-tuned
with target identity information, given that each sequence can be associ-
ated with more than one target (in cases of intersectional hate speech for
instance), the label-encoding sequence will include the list of all targets
mentioned or referred to in that post.

Few-shot prompting (FS)

Following the large amount of works focusing on few-shot demonstration-
based instructions, especially with instruction-finetuned models (Iyer
et al., 2022; Chung et al., 2024), we also experiment with demonstration-
based prompting, in which the models are shown 3 examples belonging
to the desired label (and target identity, if available to that particular
model), and then asked to produce a new one.

With models exploiting target identity information for few-shot prompt-
ing, we associate the desired label and target with 3 sequences. For in-
stance, if the model is expected to generate a non-hateful post about the
identity group gender, we select 3 sequences that are annotated in the
gold data as non-hateful and about gender (although they might be an-
notated as being also about other identity groups).
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Formatting

As regards prompt formatting, we aim at using the same type of prompt-
ing layout across experiments. We choose to use prompting sequences
in natural language, given that we found them to lead to generally more
realistic generated examples in Chapter 4. In order to find prompts in
natural language that could be leveraged by our models, we consulted
the FLAN corpus (Wei et al., 2022), which is part of the finetuning data
of both FLAN-T5 and OPT-IML. Among the instruction templates, we
find one of the CommonGen templates (Lin et al., 2020) to fit with our
aims:

‘Write a sentence about the following things: [concepts], [target]’.

We reformulate it to obtain a prompting sequence that reflects our ap-
plication, and can be exploited by instruction-finetuned models:

‘Write a [∅/ hateful] social media post [∅/ about t]’,

where t is one of the 7 target identity groups in the MHS corpus.
Table 5.2 presents the sequences and prompts used for training and

prompting our models. For the encoder-decoder models, the prompting
sequence is the input and the desired text is the output at finetuning
time.

Target Write a [∅ — hateful] social media post about {t}: {text}

No target Write a [∅ — hateful] social media post: {text}

Table 5.2: Templates used for fine-tuning and prompting generative models during the
generation step.

To summarize, four transformer models (OPT, OPT-IML, T5 and Flan-
T5) generate synthetic data using finetuning or few-shot prompting, ei-
ther having access to target information or not, for a total of sixteen dif-
ferent strategies for generative DA that we evaluate in our experiments.
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5.3 Experimental Setup

For all experiments, following previous work on DA, we simulate a
setup in which we have a small amount of gold data available prior
to augmentation, similarly to the experiments in Chapter 4 (see Figure
5.2 for an overview of the data augmentation pipeline for our fairness
experiments). We randomly select 1,000 gold examples from the MHS
corpus, as we deem it a realistically small dataset size for a hate speech
detection corpus based on Vidgen and Derczynski (2020). Our goal is to
create a larger dataset out of the starting 1,000 examples. Given that the
‘natural’ size of the Measuring HS dataset is around 35k examples, we
aim for 30k new annotated examples to use in augmentation, which will
result in a 31k example dataset for each setup.

Wullach et al. (2021), using a similar DA approach, preserve around
1/3 of the generated examples after filtering. We therefore generate
around 3 times as many examples as we need, similarly to the setup
presented in Section 4.1, setting the total number of generated examples
for each setup to 100,000, equally divided into hateful and not hateful. For
each setup, we thus prompt models to generate 50k examples for each
class.

Given that our focus is on different targets of hate, we aim at inves-
tigating the impact of their representation in the data on model perfor-
mance. Specifically, since their distribution in the MHS corpus is highly
imbalanced, as seen in Figure 5.1, we hypothesize that their represen-
tation might influence the performance of models. Because of this, we
choose to equally augment each target identity category (gender, race,
origin, sexuality, religion, disability, and age). Indeed, for models that
rely on target identity information, out of the 50k generated instances
for each class, we generate 1/7 for each target identity category (7,140
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newly generated sequences for each target identity group).
Once we generate 100,000 examples, we filter them by predicting

their hate speech label using a DeBERTa-v3 Large (He et al., 2023) clas-
sifier, finetuned on the initial 1,000 gold examples. We only preserve the
examples for which the classifier label assignment matches the desired
label that was in the model input at generation time, in line with pre-
vious work that used this kind of filtering for synthetic sequences. If
less than 15k generated sequences per class pass filtering, we preserve
the examples that did pass filtering for that class, and proceed with the
rest of the pipeline. In some setups, this means that we end up with
fewer synthetic examples than initially expected. We discuss this more
in depth in Section 5.4. We then test the quality of the synthetic data
extrinsically, by using it in addition to the initial available gold data for
training classifiers aimed at detecting the presence of hate speech for
specific targets.

5.3.1 Implementation details with Generative DA

For all of our experiments, we employ the HuggingFace library (Wolf
et al., 2020). All the hyperparameters we use that are not specified in
this section are the default ones from their TrainingArguments class.

We fine-tune T5 Flan-T5, OPT and OPT-IML with batch 16 and LR =

1e − 3. For generation, we use top-p=0.9 decoding and set min and max
lengths of generated sequences to 5 and 150 tokens, respectively. The
DeBERTa classifiers we use as baselines and for filtering are trained for 5
epochs. All the classifiers that are trained on augmented data are trained
for 3 epochs (given that they are trained on more data, they require less
epochs to converge) with batch size 16 and LR=5e−6. In this case, at the
end of training, we preserve the model from the epoch with the lowest
evaluation cross-entropy loss.
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The random seeds we used for shuffling, subsampling the gold data,
and initializing both generative and classification models are 522, 97,
709, 16, and 42. Finetuning of all classifiers and generative models, in-
cluding baselines and models trained on augmented data, took 50 hours,
of which 45 on a Nvidia V100 GPU and 5 on a Nvidia A40. Inference
time for generating all of the sequences (a total of 8 million generated
texts) took ∼500 hours total.

5.3.2 System comparison

We compare all of our models with Easy Data Augmentation (EDA)
(Wei and Zou, 2019) in its implementation by Marivate and Sefara (2020).
EDA consists of four operations: synonym replacement using WordNet
(Miller, 1992), random insertion, random swap, and random deletion of
tokens. Similarly to our other setups, we produce 30k new sequences
with EDA, of which 7,500 with each operation, on the initial 1,000 ex-
amples in each fold. We then also experiment with the mixture of EDA
and generative DA, in which instead of augmenting the initial gold data
with 30k synthetic sequences obtained with EDA or generative DA, we
randomly select 15k examples of LLM-generated texts and 15k examples
of EDA-perturbed examples and concatenate them.

We also implement two baselines using DeBERTa: i) the classifier
finetuned on the starting 1k gold examples, and ii) the same classifier
finetuned on an oversampled version of the training data (repeating
the initial 1k sequences until we get to 31k, the size of the augmented
setups), which we already found to be a competitive baseline even in
cross-dataset scenarios in Chapter 4.
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M-F1 Hate-F1
Hate-F1 n(h)Gender Race Origin Sexuality Religion Disability Age

No augmentation .773.02 .652.03 .635.02 .696.04 .497.05 .756.03 .485.12 .698.03 .545.04

Oversampling .773.02 .653.04 .652.05 .740.02⋆ .568.05⋆ .787.02⋆ .571.03⋆ .732.04⋄ .555.06

EDA .799.01⋆ .714.01⋆ .687.01⋆ .771.02⋆ .582.03⋆ .806.01⋆ .601.02⋆ .799.02⋆ .589.06⋆ 15k

Model Target

OPT
FT Y .783.00⋆ .683.01⋆ .653.03⋄ .740.02⋆ .556.05⋆ .779.02⋄ .535.07 .777.02⋆ .587.06⋄ 0.5k

N .774.04 .652.07 .634.05 .707.06 .505.06 .738.10 .461.07 .690.11 .590.10⋄ 15k

FS Y .782.01⋄ .691.02⋆ .667.02⋆ .750.02⋆ .553.04⋆ .790.01⋆ .546.05⋄ .791.02⋄ .582.07⋄ 11k
N .791.01⋆ .700.01⋆ .675.02⋆ .758.02⋆ .561.02⋆ .791.02⋆ .555.07⋄ .776.03⋆ .597.05⋆ 15k

OPT
IML

FT Y .789.01⋆ .681.02⋆ .661.02⋆ .720.05 .516.09 .789.01⋆ .493.05 .735.04⋄ .579.06⋄ 15k
N .796.01⋆ .690.02⋆ .674.03⋆ .738.02⋆ .500.07 .791.02⋆ .488.10 .723.09 .593.10⋄ 15k

FS Y .789.01⋄ .698.01⋆ .672.02⋆ .757.02⋆ .563.03⋆ .798.02⋆ .552.07⋄ .780.03⋆ .577.07 11k
N .792.01⋆ .699.01⋆ .673.02⋆ .755.02⋆ .564.03⋆ .795.01⋆ .558.06⋄ .772.04⋆ .604.05⋆ 15k

T5
FT Y .792.01⋆ .696.02⋆ .667.02⋆ .753.02⋆ .567.04⋆ .795.02⋆ .566.05⋄ .771.03⋆ .584.09 12k

N .789.01⋆ .684.01⋆ .660.02⋆ .731.03⋄ .536.02⋆ .784.01⋆ .523.08 .748.04⋆ .592.07⋄ 10k

FS Y .786.01⋄ .682.02⋆ .674.03⋆ .738.02⋆ .500.07 .791.02⋆ .488.10 .723.09 .593.10⋆ 11k
N .798.01⋆ .700.02⋆ .666.02⋆ .756.02⋆ .559.07⋄ .793.01⋆ .573.05⋄ .774.03⋆ .596.04⋆ 15k

FLAN
T5

FT Y .792.01⋆ .696.01⋆ .669.01⋆ .752.01⋆ .559.03⋆ .792.02⋆ .574.05⋄ .767.03⋆ .600.07⋄ 14k
N .793.01⋆ .691.01⋆ .672.02⋆ .737.03⋆ .544.05 .790.01⋆ .520.08 .750.04⋆ .597.08 10k

FS Y .786.00⋆ .684.01⋆ .651.02 .743.02⋆ .558.04⋆ .778.01⋆ .536.04 .744.04⋆ .590.10 0.3k
N .774.02 .662.04 .637.04 .709.06 .509.09 .765.03 .490.09 .724.06 .583.09 0.3k

Table 5.3: DeBERTa results (macro-F1 and hate-class F1) with generative DA, aver-
aged over 5 runs ±stdev, overall and by target (Gender, Race, Origin, Sexuality, Religion,
Disability, and Age). Statistical significance is calculated against the no augmentation
baseline. ⋆: highly statistically significant (τ = 0.2), ⋄: statistically significant (τ = 0.5).
n(h) = number of hateful synthetic examples preserved after filtering.

5.4 Results and Discussion

In this section we report the results of our experiments averaged across
5 data folds. We test statistical significance using Almost Stochastic Or-
der (ASO) (Dror et al., 2019; Del Barrio et al., 2018), as implemented by
Ulmer et al. (2022).

5.4.1 Generative DA

We report in Table 5.3 the results of our experiments using generative
DA compared with EDA and the two baselines described above. The
classification performance is evaluated globally in terms of macro-F1
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and minority (hate) class F1 and for each target identity category as hate
class F1, so that the impact of synthetic data can be examined on a per-
target basis.

Even from the no augmentation baseline, it is clear that performance
can vary greatly across targets, with up to 27% hate-F1 differences be-
tween them. In particular, the model appears to struggle with posts
about origin, religion, and age, while, although underrepresented, posts
about disability tend to be classified more accurately. This suggests that
performance might also be influenced by factors other than the repre-
sentation of targets in the dataset, such as how broad a target category is
in terms of sub-groups. For instance, origin can include any type of dis-
crimination based on geographical origin, including specific countries,
and religion can encompass any type of religious discourse, although re-
ligions have been found to often be targeted through specific offense
types (Ramponi et al., 2022). This makes classification challenging, es-
pecially for systems mostly relying on lexicon. This shows also how
relevant it is to assess performance on targets separately, as examples
referring to different target identity groups might pose different chal-
lenges for classification.

Most of the models trained on generation-augmented data outper-
form the no augmentation baseline across targets, with different improve-
ments based on target identity group (origin, religion, and age in particu-
lar). Strikingly, however, EDA performs better than all generation-based
DA configurations, regardless of prompting type or access to target in-
formation, for all targets but age. While performance gains are simi-
lar between EDA and the best generation-based setup compared to the
baseline (+.026 and +.025 M-F1 respectively), EDA appears to lead to
slightly better performance in terms of minority class F1 (+.062 against
+.048), at a small fraction of the computational cost of the generation-
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based approaches. This is reflected on the performance per target iden-
tity, in which EDA outperforms generative DA across all but one target,
age, the least represented one in the data. We hypothesize EDA is ef-
fective because small perturbations can make models more robust, es-
pecially with regards to the hateful class, while generative models might
increase performance, but they might also be more likely to inject noise.

The impact of finetuning compared to few-shot prompting appears
to be model-dependent, with differences across models also regarding
the impact of target information. For all but OPT-IML, finetuning ap-
proaches tend to favor the inclusion of target information, albeit with
relatively minor differences. Interestingly, the amount of synthetic ex-
amples labeled as hateful (reported in Table 5.3 as n(h)) that pass filtering
does not appear to strongly impact the performance of models trained
on synthetic data, indicating that potentially even just a few hundred
synthetic examples can positively impact generalization. This could also
indicate that even just the addition of non-hateful synthetic examples
might help models to generalize.

5.4.2 Mixture of Generative DA and EDA

Since models trained on EDA-augmented data outperform models trained
only on generation-augmented sequences, we also experiment with the
mixture of the two methods, with 15k synthetic examples created using
each of them. In Table 5.4 we report the results of these experiments.

Overall, it appears that the combination of EDA and generative DA
can outperform each of the two methods separately, with some differ-
ences across models, augmentation setups, and target groups. The setup
with EDA and the T5 model finetuned with target information leads to
statistically significant hate-F1 gains over EDA both overall and on the
gender, sexuality, and religion targets. In addition, the classification of ori-
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gin, religion, and disability improves by around or over 10% M-F1 over the
no augmentation baseline, showing the potential of this DA setup. How-
ever, the impact of finetuning vs. few-shot prompting still appears to be
model-dependent, similarly to the impact of target identity information
in the prompts.

In general, the high computational cost of generative approaches might
not always justify their use against simpler yet effective DA approaches
such as EDA in low-resource scenarios. Nevertheless, the combination
of the two methods can outperform each method alone, and we hypoth-
esize that it may be due to the fact that the gains are complementary:
while EDA can make models robust to small perturbations such as word
order changes, generative DA could be better at increasing lexical vari-
ety.

5.5 Qualitative Analysis

In this section, we look into the synthetically generated texts and the
models trained on them from a qualitative point of view. First, we carry
out a manual annotation on the generated texts to compare the different
settings in terms of realism, target identity group assignment correct-
ness and label consistency. Our goal is to assess whether these three
dimensions in the generated data correlate with classifier performance.
Then, we turn to the HateCheck tests (Sec. 3.6). Given the focus of
our work, we analyse the out-of-distribution performance by target with
HateCheck. More specifically, HateCheck targets do not exactly overlap
with the target identity categories of the MHS dataset, thus providing a
complementary view on our models’ performance.
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M-F1 Hate-F1
Hate-F1

Gender Race Origin Sexuality Religion Disability Age

No augmentation .773.02 .652.03 .635.02 .696.04 .497.05 .756.03 .485.12 .698.03 .545.04

EDA .799.01 .714.01 .687.01 .771.02 .582.03 .806.01 .601.02 .799.02 .589.06

Model Tar

OPT
+

EDA

FT Y .777.02 .698.02 .679.02 .759.01 .567.05 .795.01 .593.03 .801.03 .578.07

N .792.02 .711.02 .687.02 .768.02 .586.06 .806.01 .599.03 .812.02⋄ .588.06

FS Y .788.02 .707.01 .684.01 .767.01 .579.04 .803.01 .588.03 .803.02 .588.06

N .795.03 .715.03 .689.03 .774.02 .595.04 .808.03 .617.03⋄ .802.04 .631.07⋄

OPT-IML
+

EDA

FT Y .788.01 .709.01 .687.02 .767.01 .577.04 .808.02 .611.01⋄ .797.03 .584.04

N .791.01 .710.01 .687.01 .766.01 .580.05 .805.02 .597.03 .800.01 .597.05

FS Y .789.02 .709.02 .685.02 .769.01 .584.05 .805.02 .615.03⋄ .795.04 .597.06

N .791.01 .711.01 .689.02 .766.01 .588.04 .809.01 .601.02 .807.02 .596.06

T5
+

EDA

FT Y .805.01 .722.01⋄ .695.01⋄ .778.01 .596.03 .815.01⋄ .628.03⋄ .808.03 .588.08

N .799.00 .716.01 .696.01⋄ .772.01 .589.03 .810.02 .610.03 .800.02 .617.07

FS Y .796.01 .715.01 .689.02 .776.01 .582.04 .807.02 .611.03 .809.02⋄ .618.06

N .793.01 .712.01 .691.02 .771.01 .586.04 .809.01 .602.01 .803.02 .619.03⋄

Flan-T5
+

EDA

FT Y .803.01 .718.01 .690.01 .774.02 .586.04 .813.01⋄ .609.04 .801.03 .597.07

N .794.01 .712.01 .690.02 .766.01 .585.04 .811.01 .600.02 .794.03 .582.06

FS Y .788.02 .707.02 .685.03 .767.02 .574.05 .807.01 .598.03 .797.03 .590.06

N .799.02 .718.02 .691.03 .777.02 .582.03 .816.02⋄ .619.03⋄ .810.03 .615.08

Table 5.4: DeBERTa results of generative DA + EDA overall and by target, averaged
over 5 runs ±stdev. Statistical significance is calculated against the results obtained with
EDA. ⋄: statistically significant against EDA alone (τ = 0.5).
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5.5.1 Manual Annotation

A total of 1,120 generated texts filtered with DeBERTa were annotated by
two annotators with a background in linguistics and experience in hate
speech research. For each combination of finetuning/prompting/tar-
get presence (16 setups), they annotated 70 examples, evenly distributed
across labels and, in the experiments that used them, targets.

In particular, for each setting for generative DA with target information,
annotators were asked to annotate synthetic examples by specifying the
following dimensions:

• Label: whether the content of the text is hateful or not,

• Target correctness: whether the target mentioned in the text matches
with the target identity category given in input to the generative
model,

• Realism: whether the message appears realistic and could have been
plausibly written by a human.

For the examples generated without access to target information, the Tar-
get correctness was not annotated.

Consider for example the following sentence, generated giving ‘age’
as target information:

‘Fuckin white men are trashy like a muthafucker’.

In this case, Label would be ‘hateful’, Realism would be ‘Yes’ but Tar-
get correctness would be ‘No’, because the target identity category of
the generated example should arguably be ‘race’ and not ‘age’. Inter-
annotator agreement was calculated using Krippendorff’s alpha on 10%
of the manually analyzed data. The annotators showed moderate agree-
ment with regards to label correctness (α = 0.76), while the scores were
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higher for target identity group matches (α = 0.83) and realism (α = 0.82).

Model Target Label Target Match Realism M-F1 Hate F1

OPT FT Y 93% 63% 66% .783 .683
N N/A / 0% .774 .652

FS Y 90% 39% 83% .782 .691
N 81% / 70% .791 .700

OPT-IML FT Y 96% 53% 66% .789 .681
N N/A / 0% .796 .690

FS Y 90% 57% 79% .789 .698
N 81% / 73% .792 .699

T5 FT Y 83% 59% 80% .792 .696
N 74% / 30% .789 .684

FS Y N/A N/A 0% .786 .682
N N/A / 0% .798 .700

Flan-T5 FT Y 94% 66% 81% .792 .696
N 74% / 41% .793 .691

FS Y 89% 36% 84% .786 .684
N 87% / 86% .774 .662

Table 5.5: Generated texts labeled as correct by human annotators in terms of labels,
target categories, and realism. N/A refers to cases in which all of the generated texts
were nonsensical (0% realistic), with impossible assignment of labels or categories. We
also report the model performance from Table 5.3 in terms of Macro-F1 and Hate F1,
in order to make comparisons between model performance and manual annotation
results easier.

An overview of the manual annotations is reported in Table 5.5. In
most cases, the addition of target information results in more realistic
texts and, in general, more accurate label assignment by the generation
model. However, this is not directly associated with the augmented data
improving model performance when used for training. For instance, the
setting that yields the best results with data generated by T5 (0.798 M-
F1 and 0.700 Hate-F1, see Table 5.3) is the one with few-shot prompting
without target information. The texts generated by this model are, in
fact, deemed as never realistic by the human annotators. On the other
hand, the worst classification setting performance-wise is obtained with
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examples generated by OPT using finetuning and no target information
(0.774 M-F1 and 0.652 Hate-F1), which led the model to generate nonsen-
sical texts.

If we compare the behavior of the different generative models, we
observe that Flan-T5 is the most consistent in terms of realistic gener-
ated text, being able to produce some realistic sentences in every setting,
and obtaining the highest Realism score overall. OPT and OPT-IML, on
the other hand, generate nonsensical texts when finetuned without tar-
get information, while T5 does not generate any realistic sentence when
few-short prompting is used, both with and without target information.

Overall, the rate of realistic texts and the accuracy of the identity
categories are still somewhat low compared to the correctness of label
assignment, showing that the generative models we tested might have
difficulties dealing with more than one type of constraint/instruction.
Indeed, while few-shot (FS) approaches tend to lead to more realistic
generated sequences (aside from T5), this typically entails lower label
correctness or target match, and vice-versa.

5.5.2 HateCheck Analysis

We perform a second qualitative analysis using the HateCheck test suite
(Sec 3.6). We focus on the models trained with augmented data using
generative DA + EDA for this analysis (Table 5.4), since they yield the
best classification performance. Again, each generative model + EDA is
used in four settings to generate new data: with finetuning or few-shot
prompting, each one with or without target information.

All HateCheck test cases mention a specific target identity, to allow
the exploration of unintended biases against different target groups. How-
ever, the target groups used in HateCheck do not fully overlap with the
target identity groups in the MHS corpus (Figure 5.1). The target iden-
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Women Trans p. Gay p. Black p. Disabled p. Muslims Immigrants

No Augmentation .142.05 .101.03 .252.06 .216.07 .113.04 .147.04 .109.01

EDA .400.04 .485.09 .590.06 .643.09 .463.11 .546.13 .420.06

Model Target

OPT
+

EDA

FT Y .458.12 .526.12 .646.10⋄ .671.09 .533.13⋄ .608.16 .529.18⋄
N .354.10 .394.13 .537.14 .581.15 .372.10 .538.17 .402.13

FS Y .384.15 .412.15 .552.10 .605.10 .408.15 .511.19 .411.21

N .313.10 .316.10 .464.16 .497.13 .324.10 .456.16 .350.14

OPT- IML
+

EDA

FT Y .409.11 .468.18 .583.16 .612.14 .493.15 .572.19 .488.19

N .337.09 .369.14 .517.16 .531.19 .355.14 .525.20 .370.16

FS Y .396.14 .415.12 .565.06 .632.06 .403.14 .545.15 .452.18

N .324.05 .315.06 .436.12 .527.12 .321.11 .415.14 .308.09

T5
+

EDA

FT Y .305.05 .299.12 .470.13 .472.11 .323.11 .412.06 .318.08

N .273.07 .273.07 .502.08 .518.10 .309.06 .417.12 .303.08

FS Y .357.08 .382.13 .518.16 .547.16 .341.11 .527.18 .388.15

N .402.13 .457.16 .594.14 .620.14 .436.18 .580.18 .478.18

Flan-T5
+

EDA

FT Y .287.06 .257.08 .447.12 .454.10 .254.08 .436.11 .294.09

N .300.05 .301.08 .449.13 .456.12 .307.09 .475.16 .337.11

FS Y .371.13 .428.09 .576.10 .613.11 .404.10 .567.15 .441.13

N .388.13 .411.16 .556.14 .593.15 .399.16 .543.20 .422.17

Table 5.6: DeBERTa results on HateCheck (hate-F1) by target identity, averaged across
5 runs. p. is an abbreviation for people. Statistical significance is calculated against the
results obtained with EDA. ⋄: statistically significant (τ = 0.5).

tities that are present in HateCheck are: women (which would fall un-
der gender in MHS), trans people (gender in MHS), gay people (sexuality in
MHS), black people (race in MHS), disabled people (disability in MHS), Mus-
lims (religion in MHS) and immigrants (origin in MHS). The age category
is present in MHS corpus and entirely missing in HateCheck.

We test the models trained on generation and EDA-augmented data
(see setup in Section 5.4.2) on HateCheck targets, reporting the perfor-
mance on a per-target basis in terms of hateful-class F1. The results are
reported in Table 5.6, divided by the target identity categories used in
HateCheck. We also report, as baselines, the results of the classification
model using no augmentation and EDA alone.

Overall, we notice significant improvements over the no augmenta-
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tion baseline across setups and target identities, although these improve-
ments are variable. Indeed, EDA + OPT finetuned (FT) with target in-
formation lead to performance increases of up to .109 hate-F1 over EDA
alone, also resulting in more evenly distributed scores across targets,
potentially showing less fairness-related weaknesses, paired with an im-
provement in performance across all targets. Interestingly, however, even
overlapping targets between the MHS dataset and HateCheck show dif-
ferent improvements across generative DA setups. For instance, the
HateCheck target disabled people apparently benefits from target infor-
mation inclusion more than the disability category in the MHS corpus,
suggesting that the inclusion of identity group information could affect
performances differently in and out of domain.

Furthermore, HateCheck test instances are manually created starting
from templates that include specific mentions of identity-group terms,
which could lead to sentences that are very different from ‘real’ exam-
ples. For instance, one of the hateful templates used in HateCheck is ‘I
hate [IDENTITY]’, in which [IDENTITY] is substituted with women, dis-
abled people, and so on for all of the targets reported above. This can
result in somewhat stereotypical examples, while hateful posts in the
MHS corpus often contain slurs and offensive terms instead of neutral
names to refer to people belonging to a certain group.

From the distribution of HateCheck scores, it appears that the OPT
models tend to benefit from both finetuning and the addition of target
identity group information, while T5 and Flan-T5 tend to produce texts
that lead to the best gains when prompted few-shot. The influence of
target information insertion has different effects on distinct target iden-
tity groups. The effect of finetuning, prompting, and target informa-
tion therefore seems to depend more on the type or architecture of the
generative model rather than whether it is instruction-tuned or not, as
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OPT-IML and Flan-T5, which are both instruction-tuned, exhibit differ-
ent trends.

Looking specifically at the HateCheck counterparts of the targets that
are least represented in the MHS corpus (disabled people for disability and
Muslims for religion), it is clear that data augmentation with target infor-
mation tends to lead to consistently better results than the non-target-
aware data augmentation approach with OPT and OPT-IML, while for
both T5 models this is not always the case. This might indicate that, as
previously discussed, models might struggle with multiple constraints
when generating new examples.

Finally, in terms of fairness, it appears that data augmentation using
generative models and EDA can work towards improving the perfor-
mance of models on all targets included in HateCheck, even if there
is no 1:1 mapping with the original targets. This indicates that this
approach can potentially be effective in improving the performance of
models across different targets of hate.

5.6 Conclusions on Fairness

In this chapter, we have investigated the impact of data augmentation
with generative models on specific targets of hate, experimenting with
instruction-finetuned models and the addition of target information when
generating new sequences, with the goal of exploring the fairness impli-
cations of data augmentation approaches for hate speech detection.

It appears that DA methods have different types of impact on differ-
ent targets, but they can improve performance for scarcely represented
identity categories (RQ1.3.1). We observed that generative data aug-
mentation alone is not as strong as simpler methods such as EDA, both
globally and on a per-target basis, especially given that generative DA
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is highly computationally expensive. However, their combination can
lead to models that are more robust, especially for more scarcely rep-
resented target identities, highlighting the potential of this type of ap-
proach (RQ1.3.3). Through a qualitative analysis, we also emphasized
the fact that including target information when generating synthetic ex-
amples can facilitate the creation of examples that are more realistic and
exhibit more correct label assignments (RQ1.3.2), although these char-
acteristics do not directly correlate with downstream task performance.
One hypothesis to explain this is that the generation process could pro-
duce sequences that are so different from the distributions of the datasets
we test our models on, that the test-set performance of models is nega-
tively affected in spite of the examples being more realistic and correct.

Overall, our analysis shows that there is potential in data augmenta-
tion with regards to fairness, intended as group fairness, implying inde-
pendence between model classification output and sensitive attributes
(Anthis et al., 2024). However, although potentially useful, this type of
DA can still lead to unpredictable results, and it is not guaranteed to al-
ways improve the performance of models across all identity groups with
regards to hate speech.
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Chapter 6

Privacy

While in Chapters 4 and 5 we experimented with synthetic data setups
in which we started with small amounts of gold data and augmented
it in order to obtain more data for various reasons, in this Chapter we
move onto a setup in which generative data augmentation is desirable
and potentially useful for privacy reasons, with the goal of substituting
the gold data entirely (RQ2.1). Privacy, as a matter of fact, is one of the
main reasons why synthetic data is used in a variety of sensitive applica-
tions of machine learning, such as healthcare and law (Jordon et al., 2022;
Whitney and Norman, 2024). Datasets created to train abusive language
detection systems deserve particular attention with regards to privacy,
as they could be maliciously employed to profile users and target them.
As discussed in Jahan and Oussalah (2023), even when such datasets do
not contain user information, a search engine could be straightforwardly
used to trace back the person who posted a certain message, nullifying
traditional anonymization efforts such as the removal of user mentions.

More and more restrictions now being set that limit resharing of social
media data even for research purposes (e.g. the 2023 changes in X/Twit-
ter terms of use). For instance, in several jurisdictions around the world,
social media users should be granted the so-called ‘right to be forgotten’
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This dude needs a	tall glass	
of	STFU

He’s in	dire	need of	a	nice,	
big	dose	of	‘shut the	hell up’

Figure 6.1: Original example and its corresponding synthetic rewriting.

or ‘right to erasure’.1

In the light of these restrictions, the availability of data to pursue re-
search on abusive language detection and content moderation might
represent an issue in the future. We therefore address the following
question in this chapter: would it be possible to replace existing datasets for
abusive language detection with synthetic ones by maintaining the same clas-
sification performance? Performing this task with a good accuracy would
present several advantages. For example, it would potentially be pos-
sible to freely share datasets without the risk of disclosing user infor-
mation or infringing terms of use and regulations if the synthetic data is
created carefully in order to guarantee privacy.2 Furthermore, being able
to share datasets that do not directly contain user-created content could
mitigate the problem of data degradation, which makes social media
datasets unusable after few years from release, since hateful content is
frequently deleted, as we discussed in Section 2.1.3. However, as it is not
guaranteed that the synthetic data cannot actually be traced to the orig-
inal posts that were used to create it, it is also important to investigate

1https://gdpr.eu/right-to-be-forgotten/
2As noted by Jordon et al. (2022), synthetic data is not necessarily inherently private. While the focus

of this chapter is not on how models can leak personal data from their pretraining into the synthetic
data, that is a scenario that can actually occur in similar setups. In this respect, it would be interesting to
investigate in the future a possible integration between our approach and differentially private models
(Yu et al., 2022; Matzken et al., 2023) to mitigate this kind of risk.
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potential failures of this type of approach.
In this chapter, we present a first set of experiments in this direction

by using a generative large language model to rewrite two different abu-
sive language datasets, comparing two prompt types. An example of a
rewriting is shown in Figure 6.1. We then evaluate the quality of the
generated data by using it for training abusive language detection clas-
sifiers, as well as by manually inspecting it and trying to reverse-search
the original social media posts our synthetic data derives from.

6.1 Methods

As seen in Section 2.2.3, previous works experimenting with generative
LLMs to augment abusive language datasets mostly exploit approaches
such as fine-tuning of generative models on existing gold data (Anaby-
Tavor et al., 2020; Kumar et al., 2020), trainable components for task-
specific decoding (Hartvigsen et al., 2022), or humans in the loop to
evaluate generated sequences (Fanton et al., 2021; Chung et al., 2023).
However, with the growing size of generative LLMs, making them more
expensive to fine-tune, and their zero-shot capabilities thanks to instruc-
tion tuning, these models can often carry out numerous tasks without re-
quiring any further fine-tuning (Wei et al., 2022). Because of this, for the
experiments of this chapter we use a freely available instruction-tuned
model, Llama-2 chat 7B (Touvron et al., 2023), through the HuggingFace
library (Wolf et al., 2020).3

The now widespread use of instruction-tuned generative large lan-
guage models has also led to numerous efforts towards alignment, ide-
ally in order to minimize inappropriate, offensive or unethical uses (Rao
et al., 2023). While this is often preferable for many applications, it can

3https://huggingface.co/meta-llama/Llama-2-7b-hf
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make the creation of synthetic abusive language detection datasets com-
plex, as these models are tuned to avoid producing abusive content due
to its potentially harmful uses. Because of this, we frame the task not as
the generation of new, unseen data, but rather as the rewriting of existing
gold sequences, so that i) the synthetic sequences are semantically close
to existing data, inspired by the simple changes applied by Easy Data
Augmentation (Wei and Zou, 2019), and ii) the synthetic sequences can-
not in principle be traced back to any existing social media posts or their
original posters.

In this chapter, we experiment with the creation of synthetic data
starting from two different English datasets: the MDA dataset (Sec. 3.5)
and the MHS corpus (Sec. 3.4). We then test models on both datasets to
evaluate cross-dataset robustness (RQ1.2). Furthermore, we again test
our models with the HateCheck test suite (Sec. 3.6).

We use the default train-dev-test splits of the MDA dataset. We in-
stead use a subset of the MHS dataset, in order to have a comparable size
with the other dataset we use, selecting 10% of the dataset as the test set
(3,524), 5% of the remaining examples as development data (1,586 exam-
ples) and finally 10% of the remaining texts as the training data (3,013
posts). The random seed we use for splitting4 and shuffling the data for
all datasets is 2023.

6.1.1 Rewriting Original Examples

We frame our rewriting task as two established NLP tasks: paraphras-
ing and formality style transfer, with the aim of forcing rewriting to be
informal, so that we counteract the tendency of aligned models to use
language that is as neutral as possible.

4With the train test split function from sklearn.model selection.
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In order to maximize our chances of producing at least one ‘valid’
sequence corresponding to each gold example, we produce multiple
synthetic sequences. In particular, starting from each original text, we
prompt Llama-2 with three different prompts for each task type, giving
the model the original text and instructing it to reword it.

For the paraphrasing task framing, we use the following prompting
templates:

1. Paraphrase this text: “text”
Paraphrased text: “

2. Reword this text, preserving meaning and tone: “text”
Reworded text: “

3. Rewrite this message keeping the same meaning: “text”
Reworded text: “

For the formality style transfer task framing we use the following tem-
plates for prompting:

1. Paraphrase this text in a more informal way: “text”
Paraphrased text: “

2. Reword this text, preserving meaning and tone but using more informal
language: “text”
Reworded text: “

3. Rewrite this message more informally, keeping the same meaning: “text”
Reworded text: “

In addition to using 3 different prompts for each task framing, we
run each prompt 3 times for each corresponding gold example, resulting
in at least 9 synthetic texts for each source text for each prompt type.5

5In some cases the model will continue producing paraphrases until it hits our maximum length,
often resulting in more than 9 synthetic sequences being produced.
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For generation, we use top-p = 0.9, a temperature of 1.0, and we set the
minimum and maximum lengths of the generated sequences to 3 and
500, respectively.6

6.1.2 Filtering

Since we aim at obtaining synthetic data that i) cannot be reconnected to
its source text but ii) preserves the original labels of the source data, we
perform two filtering steps. First, we discard the synthetic sequences
that are verbatim or extremely similar repetitions of the original gold
texts using the TheFuzz library7, a Levenshtein distance-based tool to cal-
culate string similarity. Then, we further filter the synthetic sequences
using a classifier, similarly to the filtering step shown in Section 5.3, to
minimize issues with data preservation (Kumar et al., 2020). In partic-
ular, we train a Roberta large classifier (Liu et al., 2019) on the original
gold data, and then use this classifier to infer the class of the synthetic
instances. We discard all sequences for which the predicted label of the
synthetic text does not match the label of the original text used to create
it. Finally, out of all the remaining sequences, we pick a random one to
use as the synthetic equivalent of the original text. If for a given origi-
nal example no synthetic texts pass the filtering stage, we move onto the
next example, de facto discarding that text sequence. As a result, the size
of the synthetic dataset tends to be smaller than the original gold one.
The total number of synthetic texts that pass filtering for each prompting
type is reported in Table 6.1, in the n(train) column.

Out of the synthetic texts that do not pass the filtering step, an over-
whelming majority of them (between 95 and 98% across both datasets

6The remaining hyperparameters we use are the default ones of the GenerationConfig HuggingFace
class.

7https://github.com/seatgeek/thefuzz. We discard all sequences scoring over 75 in terms of simi-
larity with their original counterparts.
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and prompting strategies) does not make it due to inconsistent label as-
signment, i.e. the classifier predicted a different label for the synthetic
text than the label of the original. The remaining texts that are discarded
during filtering are mostly almost-exact matches with the original data,
and instances that do not pass either filter are extremely rare.

6.2 Evaluation

Since our main focus in this chapter is on the possibility to replace abu-
sive language datasets with synthetic data by maintaining the same per-
formance level, we train classifiers on synthetic data derived from MDA
and MHS, and evaluate them on the gold test sets of both, including
cross-dataset testing to assess model robustness. Additionally, we test
our models with the HateCheck test suite and perform a manual analy-
sis. For our classification experiments, we fine-tune a Roberta large clas-
sifier (355M parameters) (Liu et al., 2019) on the original and synthetic
data for both gold datasets and for both prompting types. We select this
model because it was the best performing one on the MHS dataset, as re-
ported in Kennedy et al. (2020), and it was reported to outperform BERT
on the MDA dataset (Leonardelli et al., 2021). Furthermore, in Chapter
4, we found no relevant differences among BERT-like models with re-
spect to the impact of synthetic data on model performance for abusive
language detection.

Similarly to the previous chapters, we use the HuggingFace library
for all model implementations. For the RoBERTa classifiers, we use the
default hyperparameters of the TrainingArgs class, setting batch size
to 16, the maximum sequence length to 150, and the learning rate to
5e-6. For the models trained on the original data, we run training for
10 epochs, selecting the epoch with the lowest validation loss. After a
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manual analysis of the best epochs in most of the runs with the original
data, we pick 3 epochs for training the models on synthetic data, as using
synthetic development data would be misleading, and we aimed at not
using any gold data during the training phase. Generation took about
180 hours and training of classifiers took about 10 hours on a Nvidia A40
GPU.

6.2.1 Classification Results

The classification results of models trained on synthetic data are reported
in Table 6.1. We report the mean macro-F1 and abusive-class F1 across 5
runs with different data shuffles and different model initializations, as
well as the standard deviation across runs.

We observe that models trained on synthetic data tend to perform sim-
ilarly to the models trained on the original gold data, in some cases even with
mild improvements. This is in contrast with previous findings showing
that synthetic data are generally not very helpful for subjective tasks
such as this one (Li et al., 2023). The difference with Li et al. (2023) might
be due to the fact that they frame the creation of synthetic data as gen-
eration, not rewriting of existing examples, and they do not carry out
any filtering on the artificial texts. Furthermore, our models based on
synthetic data perform surprisingly well even if the training set size is
smaller than the gold one. In addition, we observe improvements with
regards to cross-dataset performance, especially in the case of the syn-
thetic data produced starting from the MHS corpus. Indeed, the model
trained on data rewritten starting from MHS data yields an improve-
ment over training using gold data when tested both on MDA and Hat-
eCheck, with up to 16 abusive-class F1 points on the former.

These results suggest that synthetic data can potentially improve ro-
bustness in out-of-distribution scenarios (RQ2.1), probably because lex-
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Test data → MDA MHS HateCheck

Training data ↓ n(train) M-F1 Ab-F1 M-F1 Ab-F1 M-F1 Ab-F1

MDA
Original gold 2,161 0.779±.009 0.720±.008 0.661±.011 0.595±.007 0.519±.021 0.573±.033

Synth: Paraphrase 1,444 0.779±.013 0.706±.022 0.680±.005 0.607±.004 0.508±.009 0.552±.016

Synth: Formality 1,557 0.783±.003 0.713±.004 0.684±.007 0.611±.005 0.470±.015 0.490±.029

MHS
Original gold 3,013 0.540±.034 0.260±.063 0.791±.006 0.688±.010 0.338±.029 0.206±.049

Synth: Paraphrase 2,435 0.629±.014 0.423±.025 0.787±.005 0.694±.008 0.351±.025 0.236±.051

Synth: Formality 2,587 0.606±.019 0.381±.035 0.793±.003 0.697±.003 0.359±.008 0.255±.017

Table 6.1: Average results over 5 runs in terms of Macro-F1 (M-F1) and Abusive-class F1

(Ab-F1) ± stdev. Grey cells denote out of distribution / cross-dataset performance. The
n(train) column indicates the number of initial examples for gold data and the number
of synthetic instances that passed filtering and are therefore used for training.

ical cues specific to the training data may be removed through rewrit-
ing, allowing models to achieve better generalization capabilities. This
would explain why cross-dataset improvement is particularly evident
when testing on the MDA dataset, which deals with three specific topics,
while MHS has a broader coverage in terms of domains and hate targets.
Similarly, with regards to Hatecheck, we observe improvements for the
MHS-derived synthetic data over the original data, while the synthetic
data derived from MDA appears to not generalize as well. Overall, nei-
ther prompting type appears to clearly outperform the other.

6.2.2 Qualitative Analysis

In this section, we examine the generated data from a qualitative point
of view. First, we carry out an analysis focused on lexicon. Then, we
manually inspect the synthetic texts to check if they can be traced back
to the original posts they derive from.

To analyze differences between original and synthetic data, we com-
pare their lexical diversity using Type Token Ratio (TTR) and Measure
of Textual Lexical Diversity (MTLD) (McCarthy, 2005), which are cal-
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TTR MTLD

MDA
Original Gold 0.86 52.37
Synth: Paraphrase 0.88 59.86
Synth: Formality 0.88 69.70

MHS
Original Gold 0.88 52.08
Synth: Paraphrase 0.87 65.18
Synth: Formality 0.87 66.46

Table 6.2: Lexical diversity measures on the original and synthetic data for both
datasets.

culated using Variationist (TTR; Appendix A) and the TAALED library8

(MTLD) on texts tokenized with Spacy.9 Results are reported in Table
6.2. While TTR is comparable on all datasets, generally indicating high
lexical variability, MTLD shows a difference between gold and synthetic
data. Indeed, synthetic data exhibits a higher degree of lexical diver-
sity, especially if generated with the formality prompt type. The different
output between TTR and MTLD may be due to the fact that the latter
is more robust with regards to text length variations (Fergadiotis et al.,
2015).

In addition to quantitatively measuring lexical diversity, we also in-
spect the data for any lexical cues that might influence generalization.
Using the Variationist tool, we calculate npw relevance, a normalized
class relevance metric based on PMI as seen in Ramponi and Tonelli
(2022). The 10 most relevant tokens for the abusive class in gold data
and in the synthetic data created using both prompt formats is shown in
Table 6.3.

The first aspect that emerges from the analysis of Table 6.3 is that
original gold data for both datasets contains more profanities, while syn-
thetic data overall appears to contain less swear words, with terms such

8https://pypi.org/project/taaled/
9https://spacy.io/
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Top 10 most relevant tokens for the abusive class

MHS MDA

Original
Gold

Synth:
Paraphrase

Synth:
Formality

Original
Gold

Synth:
Paraphrase

Synth:
Formality

b*tch people dude CHEATER people Hey
fucking f*ggot Ugh shit Trump Yo
ass ass b*tch Fuck COVID
fuck individual Hey ass individual Dude
f*ggot term total Trump person dude
cock worthless gonna people 19 people
n*gga individuals Dude covid individuals Trump
cum language dudes fucking Biden total
black time Yo stupid Joe gonna
shit person real piece actions Covid

Table 6.3: Top 10 most relevant tokens for the abusive class in the original gold data and
in the synthetic data for both datasets, as calculated using the npw relevance metric in
Variationist.

as individuals or people being highly relevant for the abusive class instead.
This seems to support the hypothesis that synthetic data might change
the level of reliance of models on certain lexical cues, decreasing the rel-
evance of some terms and increasing the relevance of others. However,
strikingly, some slurs, such as f*ggot and b*tch still remain relevant for
the abusive class even in the synthetic data for the MHS corpus. A possi-
ble explanation for this is that the alignment process of models can inter-
fere with the rewriting process, possibly because models are fine-tuned
to avoid using certain terms. For instance, the very common swear word
fucking stops being one of the most relevant ones for the abusive class in
the synthetic data, as well as any references to skin color. Our hypoth-
esis regarding this is that the alignment of models was focused on the
most common profanities and targets of hate. We will discuss qualita-
tive aspects regarding the presence of certain terms and identity groups
more in depth in Chapter 7.
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We finally perform a manual inspection of the generated data, to as-
sess whether the synthetic data can be traced back to the original post
through online search. We provide an annotator with 200 synthetic ex-
amples created starting from data from the MDA dataset, divided equally
between the prompting types.10 Out of the original posts that are still
online (around 50%), 60% were found by the annotator through a search
engine by typing the text of the message into a search engine. In this
percentage, we consider as found all posts for which the annotator was
unambiguously able to find the original post. In some cases, for exam-
ple with very generic posts such as ‘Wear A Freakin’ Mask!!’, they would
find too many results and not be able to tell which one was the original
post. Strikingly, however, none of the original posts could be found start-
ing from their synthetic counterparts, showing the potential of this type of
approach for data anonymization.

6.3 Conclusions on Privacy

In this chapter, we carried out an exploration of abusive language detec-
tion using synthetic data generated through rewriting, with the goal of
investigating whether classification models fine-tuned entirely on syn-
thetic data can be effective for the task of abusive language detection
when datasets cannot be freely shared due to privacy reasons (RQ2.1).
We show that this is a promising research direction, since models trained
on synthetic data can achieve classification performance on par with
models based on gold data, and even show better robustness in some
cross-dataset settings. Furthermore, it was not possible to trace back the
original data starting from the synthetic examples, even through a man-

10We only manually analize MDA-derived data since we have the original Tweet IDs of the messages,
to effectively check whether the original messages still exist online.
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ual search online. Rewriting of original texts seems to be a promising
strategy both through paraphrasing and formality style transfer. We be-
lieve this approach to be a step forward for the development of datasets
and systems for subjective tasks that are more privacy-aware and com-
pliant with existing regulations on personal data sharing, anonymiza-
tion, and right to be forgotten, although further work should be carried
out on the topic, to understand the role of large language models in po-
tentially mitigating privacy issues. In the next Chapter, we will move on
to a more qualitative exploration of whether synthetic data can actually
emulate the characteristics of real data.
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Chapter 7

Realism and Quality

In this chapter, we move on to a more qualitative look at LLM-augmented
data, focusing on how realistic and representative of real gold data syn-
thetic texts can be (RQ2.2), considering also the hidden risks it may
present (RQ2.3). Indeed, beside extrinsic evaluations, little attention has
been paid in previous work to the risks and qualitative implications of
employing synthetic data in sensitive tasks like hate speech detection,
which as we have seen in the previous chapters can lead to mixed re-
sults.

In our realism experiments of this chapter, we address a scenario in
which one may need to perform hate speech detection on unseen data, and
they would like to exploit the potential of generative LLMs and existing hate
speech datasets. What potential advantages can synthetic data offer in
this respect? What are the risks associated with using LLMs for the task?
Could generated data amplify bias or harm? As a first exploration in this
direction, similarly to the experimental setup of Chapter 6, we focus on
hate speech detection assuming enough several LLMs and hate speech
datasets are already available (Poletto et al., 2021).

In particular, we aim at evaluating whether training on synthetic data
created through paraphrasing can lead to better performance than using
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existing hate speech data on out of distribution setups, similarly to the
experiments of Chapter 6. However, in this chapter, we experiment with
different generative models rather than with different types of prompts,
as we saw in the previous chapter that there were no stark differences
between prompting layouts.

The computational experiments are then paired with the main con-
tribution of this chapter: a thorough manual analysis of the generated
data, assessing fluency, grammaticality and ‘artificiality’. Given that bi-
ases may affect specific targets of hate differently (Sap et al., 2019, 2020),
we devote particular attention to a per-target analysis, showing the ef-
fects of the usage of LLMs to produce synthetic data on target identity
distribution, and subsequently its impact on fairness (Q1.3), further in-
vestigating the aspects we already discussed in Section 5 related to this
topic from a qualitative point of view.

Since generated data is increasingly being used even for extremely
sensitive applications (Ghanadian et al., 2024, for instance), it is impor-
tant that the NLP community critically addresses the impact of synthetic
data including ethical risks, along the line of similar discussions in other
research communities (Whitney and Norman, 2024). In this chapter we
propose an initial contribution in this direction.

7.1 Synthetic Data Generation

To be able to analyze the extrinsic impact on performance and the intrin-
sic characteristics of synthetic data for hate speech detection, as with the
previous chapters, we first artificially create training data. For this, we
use a similar generation approach to to the experiments of Chapter 6,
since in this case our focus is more on the analysis of the synthetic data
rather than on devising a better generation method. We therefore again
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use an experimental setup in which we leverage existing hate speech
resources by casting data augmentation as paraphrasing rather than as
zero–shot generation, which allows us also to potentially mitigate ef-
fects related to model alignment, with LLMs often being programmati-
cally blocked in generating hateful messages.

For investigating the effects that synthetic data can have on hate speech
detection, we choose the Measuring Hate Speech (MHS, Sec. 3.4) corpus
as the starting point for the augmentation, since it covers different target
identity categories. We then test models on the Multi-Domain Agree-
ment dataset (MDA, Sec. 3.5) and on HateCheck (Sec. 3.6). We expect
the output text to i) be similar to the original social media post, ii) reflect
the same hate speech label, and iii) preserve roughly the same meaning
and topic. We analyze these aspects in our human evaluation in Sec-
tion 7.3.

Our synthetic data creation pipeline consists of two steps. First, we
prompt the models (Sec. 7.1.1) to obtain synthetic versions of the real
data in the MHS corpus, creating one artificial counterpart for each ex-
ample in the dataset, similarly to the experiments of Chapter 6. After
extracting the paraphrased text from the model output, we perform two
additional filtering steps on the synthetic sequences (Sec. 7.1.2).

We use three freely available and widely used generative models for
our experiments, to favor comparability and reproducibility, through the
HuggingFace library (Wolf et al., 2020): Llama-2 Chat 7B1, Mistral 7B

Instruct v0.22, and Mixtral 8x7B Instruct v0.1.3 We load all the
models in 4 bits, and as hyperparameters for generation we use top-p
decoding = 0.9 and we set the minimum and maximum lengths of the

1huggingface.co/meta-llama/Llama-2-7b-chat-hf
2huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
3huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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generated sequences to 5 and 300, respectively.4

7.1.1 Prompting

We frame synthetic data creation as paraphrasing, similarly to one of the
prompts we experimented with in Chapter 6, as it is a common task in
instruction tuning datasets that are widely used for training LLMs (Wang
et al., 2022; Wei et al., 2022) and thus it does not necessarily require fine-
tuning or detailed prompting. Given a text, we prompt the models with
the following template:

Paraphrase this text: ‘‘{text}’’

Paraphrased text: ‘‘

For Mistral and Mixtral, the template is preceded and followed by
the [INST] and [/INST] tags. We then extract, using a regular expression,
the first text sequence after ‘Paraphrased text:’ that is between inverted
commas in the model output.

7.1.2 Filtering

As we have already observed in Chapter 6, in a limited number of cases
synthetic examples are almost identical to the original text they (should)
paraphrase. We thus carry out fuzzy matching using the thefuzz li-
brary5 to discard sequences that are verbatim copies of the original gold
data. After some manual checks, following the same process as Section
6.1.2, we again set the similarity threshold for discarding sequences that
are too similar to 75.

4The remaining hyperparameters we use are the default ones of the GenerationConfig HuggingFace
class.

5pypi.org/project/thefuzz
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In addition, as we have already seen and experimented with in the
previous chapters, in previous work a further filtering step is typically
employed, in which the generated sequences are re-labeled using a clas-
sifier to increase the chance that the label assignment of the synthetic
texts is correct.

We aim at exploring the actual impact of this step, so we divide our
experimental setups into:

• No classifier filtering, in which we preserve all synthetically cre-
ated texts that passed the fuzzy matching step;

• Classifier filtering, in which we discard all the synthetic examples
for which a classifier trained on gold data predicts a different label
from the one that was assigned to the gold example the synthetic
text derives from.

7.2 Extrinsic Evaluation

Before moving on to the qualitative analysis, we analyze the extrinsic
impact of synthetic data by fine-tuning classifiers on both artificial and
original data. This analysis contextualizes the main contribution of this
chapter, namely the intrinsic evaluation of synthetic data (Section 7.3).
Following the same thread as the previous chapters but with multiple
state-of-the-art generative models, this analysis is aimed at addressing
the following question: What is the usefulness of synthetic data for the down-
stream task of hate speech detection with regards to performance?

For the classification experiments, we use three pre-trained classifiers:
RoBERTa Large6 (355M parameters), RoBERTa Base7 (125M parameters),

6huggingface.co/FacebookAI/roberta-large
7huggingface.co/FacebookAI/roberta-base
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and DeBERTa Base8 (140M parameters), for which we use the default
hyperparameters of the TrainingArgs class, setting batch size to 64, the
maximum sequence length to 150, and the learning rate to 5e-6. We train
models for 3 epochs, similarly to the experiments of Chapter 6.

We again compare the performance of a model trained on original
gold data with the performance of the same model trained on synthetic
data only, in order to assess how effectively the synthetic data can mimic
the gold training data.

In addition, we also test models trained only on data augmented us-
ing EDA (Wei and Zou, 2019), since we found it to be a competitive DA
technique in Chapter 5, as well as to facilitate comparisons of the results
shown in this chapter with those of Chapter 5. However, EDA is used
in these experiments only for comparison purposes, as the fundamental
assumption behind the perturbations used by EDA is that they do not
alter the original text enough to be considered fully different examples.
Hence, the usefulness of EDA-based approaches is heavily reduced in
privacy-focused applications of synthetic data, in which it is important
that the original sequences cannot be retrieved. The EDA setup reported
in this section consists of perturbing each of the original examples from
the MHS corpus with one of synonym replacement , random insertion, ran-
dom swap, or random deletion, chosen randomly for each example. We
do not perform any filtering on the EDA-generated sequences, as they
would not pass our fuzzy match filter due to their extreme similarity to
the original sequences.

While the classifiers are always trained on data (original or synthetic)
from MHS, they are tested on the test splits of all datasets (MHS, MDA,
and HateCheck), in order to assess both their in-distribution and their
out-of-distribution performance. The metrics we use for evaluating clas-

8huggingface.co/microsoft/deberta-v3-base
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sifiers are macro-F1 and minority class (hate) F1.
Table 7.1 reports our experimental results with the Roberta Large

model, averaged across 5 runs with different data shuffles and model
initializations. The results of RoBERTa Base models are reported in Table
7.2 and those of DeBERTa Base in Table 7.3. Overall, the three models do
not show remarkable differences among them in terms of performance,
so we will mostly comment on the Roberta Large results for brevity.

Test data

MHS MDA HateCheck

n(train) % hateful M-F1 Hate F1 M-F1 M-F1

Original gold data (MHS) 30,132 26% .811 ±.004 .718 ±.008 .507 ±.027 .386 ±.026

EDA 30,132 26% .813 ±.003 .723 ±.005 .531 ±.010 .405 ±.027

Gen. Model Filter

Llama-2 Chat 7B
No 28,289 26% .769 ±.004 .680 ±.003 .675 ±.009 .603 ±.021

Yes 20,187 2% .805 ±.002 .715 ±.002 .539 ±.008 .346 ±.009

Mistral 7B Instruct
No 29,344 26% .772 ±.004 .686 ±.003 .684 ±.007 .665 ±.017

Yes 22,483 4% .808 ±.003 .716 ±.004 .526 ±.011 .371 ±.012

Mixtral 8x7B Instruct
No 29,351 26% .754 ±.004 .670 ±.003 .687 ±.005 .665 ±.005

Yes 22,370 3% .802 ±.002 .706 ±.003 .525 ±.016 .364 ±.012

Table 7.1: Results of Roberta Large models trained on synthetic data only (average of
5 runs ± stdev). Grey cells indicate out-of-distribution performance. Filter:No means
that only paraphrased sequences too similar to the original ones and ill-formatted texts
were discarded. Filter:Yes means that classifier filtering was applied.

The amount of training data for synthetic setups is lower than the
amount of gold data due to the filtering step being applied to all syn-
thetic sequences (Sec. 7.1.2). Specifically, in the ‘no classifier filtering’ se-
tups (Filter: No in Tables 7.1, 7.2, and 7.3), we discard texts for which
the output of the model was ill-formatted (i.e., no sequence between in-
verted commas was in the model output) or sequences were too similar
to the original text. The number of training texts further decreases in the
‘classifier filtering’ setups (Filter: Yes in Tables 7.1, 7.2, and 7.3), in which
we also discard the sequences that did not pass classifier filtering (Sec-
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Test data

MHS MDA HateCheck

n(train) M-F1 Hate F1 M-F1 M-F1

Original gold data (MHS) 30,132 .805 ±.003 .708 ±.006 .546 ±.022 .314 ±.012

EDA 30,132 .807 ±.003 .714 ±.005 .566 ±.012 .315 ±.012

Gen. Model Filter

Llama-2 Chat 7B
No 28,289 .742 ±.004 .643 ±.004 .661 ±.007 .490 ±.016

Yes 21,132 .786 ±.004 .686 ±.005 .595 ±.012 .326 ±.007

Mistral 7B Instruct
No 29,344 .743 ±.007 .654 ±.005 .686 ±.003 .551 ±.009

Yes 22,453 .784 ±.005 .684 ±.007 .595 ±.013 .337 ±.009

Mixtral 8x7B Instruct
No 29,351 .718 ±.007 .632 ±.006 .696 ±.005 .541 ±.008

Yes 22,325 .783 ±.003 .687 ±.004 .619 ±.007 .328 ±.004

Table 7.2: Results of Roberta Base models trained on synthetic data only (average of
5 runs ± stdev). Grey cells indicate out-of-distribution performance. Filter:No means
that only paraphrased sequences too similar to the original ones and ill-formatted texts
were discarded. Filter:Yes means that classifier filtering was applied.

Test data

MHS MDA HateCheck

n(train) M-F1 Hate F1 M-F1 M-F1

Original gold data (MHS) 30,132 .809 ±.002 .717 ±.005 .522 ±.018 .347 ±.008

EDA 30,132 .809 ±.004 .718 ±.005 .537 ±.005 .354 ±.012

Gen. Model Filter

Llama-2 Chat 7B
No 28,289 .736 ±.004 .642 ±.005 .670 ±.014 .597 ±.019

Yes 21,116 .785 ±.0066 .684 ±.012 .569 ±.019 .332 ±.016

Mistral 7B Instruct
No 29,344 .732 ±.010 .643 ±.007 .672 ±.006 .636 ±.017

Yes 22,445 .782 ±.005 .678 ±.006 .564 ±.020 .387 ±.008

Mixtral 8x7B Instruct
No 29,351 .710 ±.007 .626 ±.004 .697 ±.007 .638 ±.014

Yes 22,292 .781 ±.007 .679 ±.013 .579 ±.028 .390 ±.021

Table 7.3: Results of DeBERTa Base models trained on synthetic data only (average of
5 runs ± stdev). Grey cells indicate out-of-distribution performance. Filter:No means
that only paraphrased sequences too similar to the original ones and ill-formatted texts
were discarded. Filter:Yes means that classifier filtering was applied.
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tion 7.1.2). For these setups, models are on average trained on around
two thirds of the amount of data available to the other models, with a
different class balance: a large majority of examples that are discarded
during this phase are hateful, so in the classifier filtering setups the syn-
thetic data is composed of very few hateful examples. Surprisingly, how-
ever, these setups achieve comparable performance with models trained
on the original gold data.

Our experimental results show that synthetic data can get close to the
performance of classifiers trained on gold data, indicating the potential
utility of the approach and confirming the preliminary findings of Chap-
ter 6. However, there is a clear difference between the setups in which
classifier filtering is employed and those in which it is not. In particu-
lar, filtering leads to better performance on the same data distribution
(i.e., when testing on the MHS dataset), which could be attributed to
the classifier overfitting the original data and misclassifying texts that
drift too far from it. Conversely, not filtering typically leads to losses
of around .04 F1 over using actual gold data in in-distribution scenar-
ios, but it can heavily boost performance in out-of-distribution scenar-
ios, with improvements of up to .18 F1 for the MDA dataset and up to .30
F1 on HateCheck. This might be due to potential injection of more lexical
variety by the LLMs during the paraphrasing process, positively affect-
ing models trained on synthetic data to generalize out-of-distribution.

While EDA can lead to some mild improvements in performance, es-
pecially in out-of-distribution scenarios, this impact appears to be re-
duced compared with that of LLM-paraphrased examples in the no clas-
sifier filtering setups, which clearly outperform EDA when tested cross-
dataset. While in Chapter 5 we found EDA to be stronger than gener-
ative LLM-based DA (generative DA) in a scenario in which we aimed
at augmenting existing gold data to increase the amount and variety of
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existing training data, EDA might not be an equally competitive choice
when i) it is necessary to use synthetic data only and ii) cross-distribution
generalization is deemed important.

7.3 Intrinsic Evaluation

Our experiments suggest that synthetic data can be useful in making
models more robust to out-of-distribution scenarios (cf. Tables 7.1, 7.2,
and 7.3). This would ideally make them advisable for use cases in which
hate speech detection has to be performed on target data from a differ-
ent domain (e.g., genre, topic), as they appear to be more robust from a
performance standpoint. However, no in-depth investigation has been
carried out so far to highlight what would be the qualitative differences
between synthetic and gold data for this task. We therefore conduct a
qualitative analysis in order to understand what aspects actually play a
role in this shift in model performance, to discover what this data con-
tains, if it is realistic enough to mimic real training data and, ultimately,
if it is truly advisable to use it in real application scenarios.

The qualitative analysis was carried out by two annotators, one male
and one female, both with expertise in online language use, hate speech,
and LLM-generated text.

The human evaluation focuses on three aspects:

• The realism of the synthetic data, i.e., whether a specific message
could realistically be found as a social media post;

• To what extent synthetic data creation ensures hateful content preser-
vation, i.e., if after paraphrasing the hateful messages remain hateful
(and vice versa for non hateful ones);
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• Whether the representation of target identities is different in the syn-
thetic data compared with the gold data (e.g., if, after paraphrasing,
a text that was originally about black women is still about black
women, or whether the identity representation was erased).

These aspects can, in fact, have a number of implications on real-
world usage of synthetic data for hate speech detection. For instance, if
synthetic data is not realistic, it may introduce spurious correlations be-
tween certain tokens and labels, making models overfit to lexical items
that rarely occur in real-world data (Ramponi and Tonelli, 2022). On
the other hand, label preservation is important because the data aug-
mentation process assumes that the label of the original text will be
preserved. Indeed, data augmentation gives the opportunity to mod-
ify existing data in order to obtain more training samples without further
manual annotation. However, if a large fraction of the labels changes after
augmentation, it might not always be worth it, as classifiers trained on
wrongly-labeled synthetic data could have unpredictable performance.
Finally, in the frequent cases in which the targets of hate represented in
a dataset have been carefully balanced to ensure a fair representation of
different groups, changing this distribution through the augmentation
process may not be desirable. Moreover, training a classifier on syn-
thetic data in which specific targets of hate have been neglected would
potentially affect classifier fairness, hurting already marginalized com-
munities (Xu et al., 2021).

We conduct the human annotation in two steps:

• Annotators are provided with a sample of 500 texts (both gold and
synthetic) and asked whether each example appears to be written
by a human or an LLM, to estimate how easy it is to spot LLM-
written text;
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• Annotators are provided with an additional sample of 3,000 synthetic-
only examples, i.e., 1,000 texts created by each of the three genera-
tive models we employ in our experiments, equally split between
the labels. These examples are annotated along a variety of axes,
including grammaticality, presence of hate speech, and presence of
identity mentions.

Annotation details are reported in the sections below, and the full anno-
tation guidelines are reported in Appendix B.

7.3.1 Realism of Synthetic Texts

The first aspect we investigate is how easy it is to spot synthetic data
for a human annotator, as a proxy for how realistic the synthetic texts
are (RQ2.2). While realism is not fundamental for models to recognize
hate speech, the ability (or lack thereof) of a human to recognize a text
as produced by an LLM might indicate that synthetic texts do exhibit
characteristics that cannot fully mimic those of human-written texts.
This might, in turn, result in models learning spurious correlations from
LLM-written texts, i.e., relying on some expressions or unusual words
as shortcuts for classifying posts as hateful.

Human or LLM? In order to assess how real-passing the synthetic texts
are, we provide annotators with 500 examples that are a mix of gold
texts and texts generated using the three different LLMs that we use in
our experiments. To avoid biasing the responses, annotators were not
aware of the ratio of real and synthetic examples during the annotation,
which is 25% gold and 75% synthetic (i.e., 125 gold examples and 125
synthetic examples for each of the 3 models, for a total of 375 synthetic
examples).
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The annotators had an accuracy of 88% in correctly identifying LLM-
authored texts, with a precision of 0.83 and a recall of 0.90. The differ-
ences across models were small: they achieved 87%, 90%, and 92% accu-
racy in correctly identifying synthetic texts generated with Llama-2 Chat,
Mistral, and Mixtral, respectively.

Inter-annotator agreement was calculated on 20% of the annotated
examples, selected randomly. The annotators agreed 89% of the time,
with a Krippendorff’s alpha coefficient of 0.73. We believe that the high
accuracy might be due to the annotators’ expertise and familiarity with
LLM-generated text. However, this shows that, to an expert eye, syn-
thetic texts might not be quite as realistic as expected. For instance, texts
with convoluted constructions and unusual (but polite) lexical choices
were often easily recognized as synthetic, such as ‘kindly halt this conduct
characterized by the blending of unconventional gender identities and feminist
ideologies’ (paraphrase of: ‘please stop this queer feminist bullshit’).

Prompt Failures and Grammar Annotators were asked to label 3,000 syn-
thetic examples (1,000 per model) and report whether a) the output did
not correctly fulfill the prompt (e.g., the model refused to answer or it an-
swered with a description of the gold text), which we deem a prompt fail-
ure, b) the grammar was deemed correct / realistic, c) the ‘world knowl-
edge’ exhibited by the model was considered acceptable.

Table 7.4 reports the percentage of synthetic texts created with each
model and annotated according to these three aspects. Overall, there are
no large differences across models: all the models produce sequences
that are acceptable with regards to grammar and world knowledge in
most cases. Prompt failures are more common with Llama-2 Chat, while
they are much less common with Mixtral 8x7B. For prompt failures, the
IAA among our annotators was fairly high, with a Krippendorff’s alpha
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Llama Mistral Mixtral

Prompt failure 14% 11% 5%
Grammar incorrect 1% 2% 1%
World knowledge incorrect 4% 5% 4%

Table 7.4: Synthetic text realism annotations.

of 0.76. While Llama is more prone to prompt failures (14% of produced
texts), it actually produces texts that appear slightly more realistic to
human eyes when they are not prompt failures. This hypothesis is sup-
ported by the lower accuracy of humans in identifying Llama authored
texts compared with the other models, as we have observed.

Overall, while this is often taken for granted, we find that synthetic
texts are not necessarily human-like, even when they appear grammat-
ically correct and plausible, as expert eyes can still tell them apart from
human-written texts.

7.3.2 Redistribution of Hateful Texts

The second aspect we investigate in our intrinsic analysis is whether
models maintain hatefulness during the synthetic data creation process.
Ideally, paraphrasing a text classified as hateful should output another
text of the same class. We therefore ask annotators to label the same 3,000
synthetic examples following the guidelines for hate speech annotation
that were adopted for building the MHS corpus, and then compare the
labels with those originally assigned to the gold texts. The difficulty
of preserving labels in LLM-based data augmentation has already been
attested in the past (e.g., Kumar et al. (2020)), as we have seen in the
previous chapters, but to our knowledge it has never been qualitatively
assessed for subjective tasks such as hate speech detection.

While our aggregation process for the hate speech label in the MHS
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corpus (Sec. 3.4) removed the unclear label, our annotators could label
texts as hateful, non hateful, and unclear, since they were asked to follow
the original guidelines used for creating the corpus, which we report
in detail in Appendix B. For the hate speech label, the inter-annotator
agreement between our annotators was moderately high, with a Krip-
pendorff’s alpha of 0.70.

Figures 7.1, 7.2, and 7.3 show the redistribution of hateful content for
the Llama-2 Chat model, the Mistral 7B Instruct model, and the Mixtral
8x7B Instruct model, respectively.

Figure 7.1: Distribution of hateful and non hateful texts in the subset of gold and syn-
thetic data created using the Llama 2 Chat 7B model.

Figure 7.2: Distribution of hateful and non hateful texts in the subset of gold and syn-
thetic data created using the Mistral 7B Instruct model.
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Figure 7.3: Distribution of hateful and non hateful texts in the manually labeled subset
of gold and synthetic data created using the Mixtral 8x7B Instruct model.

Overall, tendencies to produce synthetic examples with a different
hate speech label than their original version are similar across models.
For all models, almost half of the examples go through a change of la-
bel, with most of these changes regarding texts that are originally hateful,
which are rendered non hateful through the LLM paraphrasing process.
We hypothesize this change in label distribution is in part due to the
alignment of models, which tends to avoid generating toxic language as
they are trained to minimize inappropriate, offensive or unethical uses
(Rao et al., 2023). Another small portion of these includes prompt failures.
Interestingly, there also are a number of examples that transition from
being non hateful to being hateful. In particular, through manually look-
ing at these examples, we note that there are several potential reasons
for these changes. Many are cases of clearly sarcastic texts that, through
the paraphrasing process, are turned into texts that might sound serious
(e.g. I like that brown people defending their home is ’barbaric’ being turned
into It’s savage, in my view, when brown people resist invaders and protect
their homes). Others can be attributed to genuine disagreements between
annotators or annotation errors.

Globally, we find that changes in hateful content are quite common,
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showing that synthetic data should not always be trusted to maintain
the same class distribution as the original gold data when used for hate
speech or abusive language detection.

7.3.3 Redistribution of Target Identities

Given that the representation of different target identities can lead to
discrepancies in classification performance across identity groups, as we
have already discussed in Chapter 5, we also analyze the redistribution
of identity categories in the synthetic data. Since the findings of our
analysis generalize across models, in this section we mostly discuss the
statistics for Mixtral 8x7B Instruct, while we do report results across all
three generative models.

Annotators are provided the same guidelines as the annotators of the
MHS corpus, with 7 categories of identity groups to annotate for both
hateful and non hateful examples: age, disability, gender, origin, race, re-
ligion, and sexuality. The redistribution of identity group mentions is
shown in Figure 7.6. For this, our annotators are again provided the
same guidelines as the annotators of the MHS corpus, with 7 different
identity groups to annotate for both hateful and non hateful examples: age,
disability, gender, origin, race, religion, and sexuality. The redistribution of
the presence of identity group mentions is shown in Figure 7.4 for Llama
Chat 7b, Figure 7.5 for Mistral 7b Instruct, and Figure 7.6 for Mixtral
8x7B Instruct.

The analysis shows that over one third of the examples lose the refer-
ence to the original identity group(s) when paraphrased (cf. Figure 7.6;
from any category on the left to no target on the right). In particular,
the representation of the gender, race, and sexuality categories is heav-
ily reduced, while this reduction is less noticeable for other categories
such as religion or disability. We hypothesize this may also be due to the

117



CHAPTER 7. REALISM AND QUALITY

Figure 7.4: Target identity redistribution in synthetic texts created with Llama 2 Chat 7B.
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Figure 7.5: Target identity redistribution in synthetic texts created with
Mistral 7B Instruct.
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Figure 7.6: Target identity redistribution with the Mixtral 8x7B Instruct model.
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Target Subset Top-k tokens

AGE

ORIGINAL
LLAMA-2
MISTRAL
MIXTRAL

fuck, ass, b*tch, fucking, , shit, pussy, racist, cunt, kids
person, language, individuals, people, offensive, individual, sexual, children, mother, life
female, woman, children, individuals, anus, person, mother, tiny, outdated, life
individuals, individual, woman, children, mother, person, people, sexual, child, women

DISABILITY

GOLD
LLAMA-2
MISTRAL
MIXTRAL

r*tarded, r*tard, fucking, fuck, shit, ass, b*tch, r*tards, people, kill
language, person, offensive, individuals, people, derogatory, respectful, disabilities, respect, intellectual
person, individuals, individual, woman, foolish, intellectual, girl, intellectually, anonymous, intelligence
individuals, person, foolish, individual, intellectually, impaired, intelligence, mentally, lack, ignorant

GENDER

GOLD
LLAMA-2
MISTRAL
MIXTRAL

b*tch, fuck, ass, fucking, cunt, b*tches, shit, pussy, wh*re, sl*t
person, language, offensive, sexual, individuals, people, derogatory, respectful, respect, women
woman, women, female, person, females, individual, individuals, penis, behavior, foolish
woman, women, person, individuals, individual, promiscuous, ignorant, sex, foolish, sexual

ORIGIN

GOLD
LLAMA-2
MISTRAL
MIXTRAL

fuck, fucking, country, shit, people, america, ass, white, american, b*tch
individuals, people, country, language, person, derogatory, offensive, america, immigrants, beliefs
individuals, america, country, people, return, americans, iran, person, white, american
individuals, country, people, america, person, individual, return, american, nation, immigrants

RACE

GOLD
LLAMA-2
MISTRAL
MIXTRAL

n*gga, n*ggas, fuck, ass, fucking, white, shit, b*tch, n*gger,
people, individuals, language, person, offensive, derogatory, respectful, respect, race, white
individuals, person, people, white, individual, woman, black, racist, behavior, despicable
individuals, people, person, white, individual, racist, black, african, woman, women

RELIGION

GOLD
LLAMA-2
MISTRAL
MIXTRAL

fuck, jews, fucking, shit, people, muslim, jew, muslims, white, god
people, individuals, beliefs, language, offensive, person, respect, including, religion, action
individuals, jews, jewish, muslim, person, individual, despicable, muslims, white, islam
individuals, people, jewish, individual, jews, muslim, muslims, person, islam, white

SEXUALITY

GOLD
LLAMA-2
MISTRAL
MIXTRAL

f*ggot, fuck, fucking, ass, f*g, shit, f*ggots, gay, b*tch, dick
language, offensive, sexual, derogatory, person, individuals, people, respect, respectful, lgbtq
person, effeminate, homosexual, gay, individual, woman, individuals, penis, derogatory, term
homosexual, person, individuals, gay, individual, term, behavior, derogatory, effeminate, people

Table 7.5: Top-k = 10 most informative tokens for the hateful class, according to the
PMI metric across targets of hate in GOLD and SYNTHETIC posts paraphrased using
Llama-2 Chat 7B, Mistral 7B Instruct, and Mixtral 8x7B Instruct.

alignment process for these models, which is likely to prevent models
from generating hateful messages against the most common targets of
hate. Instead, for other categories such as religion, origin or disability, the
model may not have been exposed to them during training, as they are
more scarcely represented in widely-used hate speech datasets. Further-
more, creating synthetic paraphrases of texts also appears to reduce the
representation of intersectionality, with over half of the gold texts that
represent multiple identity categories being either turned into synthetic
texts that mention one single identity category or none at all.

To investigate this further, we extract the most informative tokens for
the hateful class from both the original gold data and the synthetic data
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by computing npw relevance, a normalized class relevance metric based
on PMI, using the Variationist tool (Appendix A). We report the statistics
regarding the most informative tokens in Table 7.5.9

From this analysis, it is clear that LLMs tend to turn any potentially
harmful input into its ‘safer’ counterpart, with all slurs completely dis-
appearing from the list of the most informative tokens for the hateful
class for each target category. While the synthetic data we analyze ac-
tually is still useful as training data for classifiers, as we saw in Section
7.2, it is clear from this analysis that the content of this data is largely dif-
ferent from that of the original gold dataset. This might lead to models
learning ‘shortcuts’ for classification, and wrongly assuming that certain
commonly used words, such as woman or homosexual, are to be associ-
ated with hateful texts. This could have unpredictable consequences if
models trained on synthetic data are actually deployed for the identifi-
cation of hate speech.

7.4 Conclusions on Realism and Quality

In this chapter, we have carried out an assessment of synthetic data be-
yond the mainstream classifier performance evaluation, with the goal
of linking classifier performance with an intrinsic qualitative analysis
focused on realism (RQ2.2). In addition, we aimed to understand the
potential risks and drawbacks of using synthetic data for a delicate task
such as hate speech detection (RQ2.3). While from a classifier perfor-
mance and robustness standpoint (Q1.1 and Q1.2), synthetic data shows
to be helpful in out-of-distribution scenarios, our qualitative analysis
proves that we should not take for granted the preservation of key fea-
tures of gold data in synthetic data. First, synthetic data might introduce

9Given the large number of slurs in these lists, we obfuscate profanities as discussed in Section 2.1.1.
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spurious correlations due to the language used by models, as it is easily
spotted by expert humans. In addition, we show that the preservation
of hate speech labels during the augmentation process should not be au-
tomatically assumed, even when the data still appears to be useful for
training a classifier. Finally, LLM-generated paraphrases of gold data
show a drastically different identity group distribution compared with
the original data, making synthetic data unreliable with regards to iden-
tity representation.

Overall, our analysis shows that while classifier performance might
show synthetic data to be potentially useful, it can actually hide poten-
tial risks we may often be unaware of, hidden behind our assumptions
regarding realism, label, and identity preservation.
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Conclusions

Synthetic data has been proposed in past research work as a way to
mitigate many of the issues with existing abusive language detection
datasets and models, especially thanks to the supposedly human-like
capabilities of LLMs (Brown et al., 2020). In theory, the use of synthetic
data – both as a way to artificially increase the amount of available train-
ing data for abusive language classifiers and as a way to substitute exist-
ing datasets containing user-written posts – could reduce the impact of
problems such as negative impact on annotators, privacy issues, dataset
decay, and representation biases (Chapter 2). However, the use of syn-
thetic data for abusive language detection has not been explored much
beyond sheer model performance in previous work.

In this dissertation, we have investigated the role of synthetic data for
training abusive language detection models, paying attention to both its
potential and its risks. More specifically, in contrast with a large body of
previous research on this topic, we focused on aspects that are often ne-
glected in machine learning research (Birhane et al., 2022), in addition to
performance (RQ1.1). In particular, we started with an analysis focused
on robustness, with the goal of understanding whether synthetic data can
help models generalize to out-of-distribution scenarios (RQ1.2), finding
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that this is actually possible, although not always guaranteed to work
well (Chapter 4). Subsequently, we carried out an evaluation of the in-
fluence of synthetic data on fairness, with the aim of exploring the dif-
ferent impact of data augmentation on specific target identities (RQ1.3),
finding that synthetic data created using LLMs can improve the perfor-
mance of models on scarcely represented targets of abuse, although this
improvement can be inconsistent. In fact, we found that sometimes syn-
thetic data created using generative LLMs works best when paired with
less computationally expensive and more traditional DA methods, such
as word substitution or deletion. We also observed that including iden-
tity group information in the prompts to the generative models led to
more realistic examples (Chapter 5). We then moved on to a more quali-
tative look at synthetic data, first investigating setups in which it can be
used to substitute real-world training data for privacy reasons (RQ2.1),
finding that models trained on fully synthetic data can achieve classifi-
cation performance on par with models trained on gold data, in some
cases showing better cross-dataset robustness as well. In addition, the
synthetic data could not be traced back to the original social media posts
it derived from, showing the potential of this kind of application (Chap-
ter 6). Finally, we carried out a manual validation on synthetic data for
abusive language detection, with the aim of assessing its realism and in-
vestigating potential risks related to it (RQ2.2 and RQ2.3). We found
that, while synthetic data is very promising from a quantitative stand-
point, a more qualitative look shows that synthetic data can hide some
pitfalls and risks: above all, synthetic data created through rewriting is
not guaranteed to mirror the characteristics of the data it is supposed to
emulate (Chapter 7).

Aside from the work we carried out in this thesis, there still are a mul-
titude of aspects of synthetic data usage in NLP that would be worth
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exploring, as our findings can only be generalizable to a certain extent.
First of all, while we have focused only on abusive language detection,
it would be interesting to explore if our qualitative insights could gener-
alize to other NLP tasks, especially in light of how widespread the use
of synthetic data has become recently in the field. Furthermore, we dealt
only with English data in this work, mostly because of how accessible
data and models are for this language, and comparisons across mod-
els, as well as cross-dataset testing, were important for our experiments.
Arguably, however, the real potential benefits of synthetic data would
emerge when used in scenarios in which there is actual data scarcity,
as is the case for under-resourced languages. An initial exploration of
similar approaches for Italian was carried out in Leonardelli and Casula
(2023), which we plan to expand on in the future.

Future work on this topic could also include more detailed studies
of some of the dimensions we focused on: for instance, privacy impli-
cations of synthetic data could be explored further by combining our
proposed approach with differential privacy methods, typically used to
prevent models from leaking private information into their outputs (Yu
et al., 2022). Furthermore, fairness aspects could be investigated through
the point of view of real targets of hate through participatory methods
rather than through target identity categories defined a-priori, which are
limited in their representativeness (Caselli et al., 2021b). Another po-
tential research direction that could follow-up on the present work is a
more in-depth linguistic exploration of synthetic data beyond lexicon,
for instance by focusing on syntax, or more thorough explorations of
the impact of model alignment on the synthetic data. Finally, exploring
the creation of synthetic data in a ‘zero-shot’ setup, not starting from
any task-specific data in an augmentation setup, could complement our
findings, and offer a more comprehensive view of the benefits and pit-
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falls of the usage of synthetic data.
While practically useful for getting a small glimpse at how Internet

mega-corporations ‘automatically’ decide what constitutes abuse and
what does not, a large portion of research work on the topic of abu-
sive language detection - including this thesis - is somewhat sheltered
from the complexities of real-life content moderation online, up in the
ivory towers of readily-available benchmark datasets and high F1 scores.
However, we believe in the importance of research work that is aware
of its limits and that is deliberate in shedding light on even tiny corners
of knowledge, regardless.

Although the present work is far from exhaustive with respect to the
potential and risks of using synthetic data for abusive language detec-
tion, we have offered an exploration of its advantages and drawbacks
that we hope will be useful as a stepping stone for future work on the
topic, as well as to serve as a reminder that quantitative metrics alone
might not always allow us to see the full picture with regards to what
works and what does not.
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Röttger, P., Vidgen, B., Nguyen, D., Waseem, Z., Margetts, H., and Pier-
rehumbert, J. (2021). HateCheck: Functional tests for hate speech de-
tection models. In Zong, C., Xia, F., Li, W., and Navigli, R., editors,
Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 41–58, Online. As-
sociation for Computational Linguistics.

145



BIBLIOGRAPHY BIBLIOGRAPHY

Sachdeva, P., Barreto, R., Bacon, G., Sahn, A., von Vacano, C., and
Kennedy, C. (2022). The measuring hate speech corpus: Leveraging
rasch measurement theory for data perspectivism. In Abercrombie,
G., Basile, V., Tonelli, S., Rieser, V., and Uma, A., editors, Proceedings of
the 1st Workshop on Perspectivist Approaches to NLP @LREC2022, pages
83–94, Marseille, France. European Language Resources Association.

Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith, N. A. (2019). The
Risk of Racial Bias in Hate Speech Detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages
1668–1678, Florence, Italy. Association for Computational Linguistics.

Sap, M., Gabriel, S., Qin, L., Jurafsky, D., Smith, N. A., and Choi, Y.
(2020). Social Bias Frames: Reasoning about Social and Power Impli-
cations of Language. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 5477–5490, Online. As-
sociation for Computational Linguistics.

Sarti, G., Feldhus, N., Sickert, L., and van der Wal, O. (2023). Inseq: An
interpretability toolkit for sequence generation models. In Bollegala,
D., Huang, R., and Ritter, A., editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 3: Sys-
tem Demonstrations), pages 421–435, Toronto, Canada. Association for
Computational Linguistics.

Schick, T. and Schütze, H. (2021). Exploiting cloze-questions for few-
shot text classification and natural language inference. In Merlo, P.,
Tiedemann, J., and Tsarfaty, R., editors, Proceedings of the 16th Confer-
ence of the European Chapter of the Association for Computational Linguis-
tics: Main Volume, pages 255–269, Online. Association for Computa-
tional Linguistics.

146



BIBLIOGRAPHY BIBLIOGRAPHY

Schmidt, A. and Wiegand, M. (2017). A Survey on Hate Speech De-
tection using Natural Language Processing. In Proceedings of the Fifth
International Workshop on Natural Language Processing for Social Media,
pages 1–10, Valencia, Spain. Association for Computational Linguis-
tics.

Seaver, N. (2018). What Should an Anthropology of Algorithms Do?
Cultural Anthropology 33 (3), pages 375—-385.

Sennrich, R., Haddow, B., and Birch, A. (2016). Improving neural ma-
chine translation models with monolingual data. In Erk, K. and Smith,
N. A., editors, Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Linguistics.

Steiger, M., Bharucha, T. J., Venkatagiri, S., Riedl, M. J., and Lease, M.
(2021). The psychological well-being of content moderators: The emo-
tional labor of commercial moderation and avenues for improving
support. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, CHI ’21, New York, NY, USA. Association for
Computing Machinery.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence
learning with neural networks. Advances in neural information process-
ing systems, 27.

Talat, Z., Bingel, J., and Augenstein, I. (2021). Disembodied machine
learning: On the illusion of objectivity in nlp. ArXiv, abs/2101.11974.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y.,
Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher,
L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,

147



BIBLIOGRAPHY BIBLIOGRAPHY

J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A.,
Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M.,
Kloumann, I., Korenev, A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee,
J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra,
P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R., Tan, X. E.,
Tang, B., Taylor, R., Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I.,
Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. (2023). Llama 2: Open foundation and
fine-tuned chat models.

Ulmer, D., Hardmeier, C., and Frellsen, J. (2022). deep-significance-easy
and meaningful statistical significance testing in the age of neural net-
works. arXiv preprint arXiv:2204.06815.

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K.,
Satyanarayan, A., Lees, E., Timofeev, I., Welsh, B., and Sievert, S.
(2018). Altair: Interactive statistical visualizations for python. Jour-
nal of Open Source Software, 3(32):1057.
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Appendix A

Variationist

Language data is at the core of a large body of work in many research
fields and at their intersections. Language data is used to train large lan-
guage models (LLMs) by natural language processing (NLP) practition-
ers, but also by linguists and social scientists to analyze human language
and behavior. With a tendency in the NLP community to overlook what
actually is in the training data of models (Bender et al., 2021), especially
at the level of textual information, and how different characteristics of
the data can be intertwined, we propose a tool that can help in inspecting
language data in a straightforward and highly customizable manner.

While some language data exploration tools already exist, especially
English-centric corpus linguistics tools (Anthony, 2013), these cannot
typically handle different types of textual units (e.g., tokens, bigrams,
characters, and more) and multiple variables or combinations thereof,
only offering surface-level metrics that are not easily customizable, and
providing low-dimensional visualization. On the other hand, modern
analysis tools in NLP mainly focus on interpreting model outputs (Sarti
et al., 2023; Attanasio et al., 2023, inter alia) rather than exploring the
language data in itself.

VARIATIONIST1 aims to fill this gap, offering the chance to researchers
1
§ : https://github.com/dhfbk/variationist.

155

https://github.com/dhfbk/variationist


APPENDIX A. VARIATIONIST

from diverse disciplines to easily explore the intersections between vari-
ables in textual corpora in a plethora of different configurations in a uni-
fied manner. Additionally, VARIATIONIST allows users to plug in their
own custom tokenization functions and metrics in a seamless way, open-
ing up an unlimited number of analysis configurations in just a few lines
of code, and going beyond English-centric assumptions on what the def-
inition of a unit in language actually is. In this work, we used VARIA-
TIONIST to carry out lexical analyses in Chapters 4, 6, and 7 in order to
compare the most informative tokens for the abusive class in gold and
synthetic data, which allowed us to study lexical aspects of the usage of
synthetic data more in depth in our experiments.

A.1 Tool Design

In this section, we present the overall design and aim of VARIATIONIST.
In Section A.1.1 we detail the guiding design principles, whereas in Sec-
tion A.1.2 we summarize the core elements and functionalities around
which VARIATIONIST is designed.

A.1.1 Design Principles

The guiding design principles of VARIATIONIST are summarized in the
following:

• Ease of use: VARIATIONIST is crafted to be as accessible and cus-
tomizable as possible, to serve researchers from a wide range of
fields who are interested in exploring textual data;

• Modularity: VARIATIONIST is built out of small building blocks,
allowing users to pick and choose their desired features and metrics
without running unnecessary calculations;
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• Extensibility: VARIATIONIST is designed to be easily extended. By
virtue of its intrinsic modularity, it is conceived to let users select
their preferred features, and import their own custom tokenizers
and metrics into the tool.

A.1.2 Core Elements and Functionalities

VARIATIONIST is designed around a set of core elements useful for com-
putation and visualization. We provide details on each of them in the
following.

DATASETS The main input for the analysis. Datasets can be provided in
the form of i) tab-separated (tsv) or ii) comma-separated (csv) files, or
iii) pre-computed pandas dataframes. Moreover, iv) any dataset from the

Hugging Face Datasets (Lhoest et al., 2021) repository can be directly
imported for analysis and visualization, too.

TEXTS The subset of the input data, in the form of column names or in-
dices, containing textual data. While in most scenarios only a single text
column is needed, VARIATIONIST handles up to two columns at once in
the analysis. This is especially useful for exploring similarities and dif-
ferences between texts associated to the same labels and/or metadata.

UNITS The language unit of interest, which can be anything from
characters to “words” (whatever their definition may be) and longer
sequences. VARIATIONIST seamlessly supports n-grams (i.e., n con-
tiguous language units) and co-occurrences of n units (not necessarily
contiguous) that fall within a user-defined window size, with optional
duplicate handling. For creating units, we rely on either built-in,
publicly available, or user-defined tokenizers (see below). Units may
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optionally undergo preprocessing with lowercasing and stopword re-
moval. In the latter case, the user can rely on off-the-shelf stopword lists
across multiple languages from the stopwords-iso2 package, provide
their own lists directly or as files, or combine them.

TOKENIZERS Since the driver for the computation is a language unit,
we need ways to segment texts into desired units. VARIATIONIST al-
lows the user to leverage i) a default whitespace tokenizer that goes
beyond Latin characters, ii) any tokenizer from Hugging Face Tok-
enizers (Wolf et al., 2020), or iii) a custom tokenizer. This way we avoid
any assumptions on what actually is a language unit, also broaden the
applicability of VARIATIONIST to a wide range of language varieties.

In this thesis, we used both whitespace tokenization with single word
units, in order for the results of our analysis to be more easily inter-
pretable, and sub-word tokenization using Hugging Face Tokenizers
to reflect the token representations of the models we studied. However,
it would be interesting to also study lexical with regards to n-grams or
co-occurrences, which could offer more insights into the language used
by language models and how it differs from actual human uses of lan-
guage.

VARIABLES Variables are essential components for computing associ-
ation metrics with language units. While variables in NLP typically
translate to human-annotated “labels”, those may be naturally gener-
alized to any kind of meta-information associated to textual data (e.g.,
genres, dates, spatial information, sociodemographic characteristics of
annotators or authors). VARIATIONIST natively supports a potentially

2https://github.com/stopwords-iso.
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unlimited number of variable combinations during analysis. Due to the
variety of data types and semantic meanings that variables may take,
each variable (i.e., column name) is defined through the following two
attributes:

• Variable types: the type of the variable for representation purposes.
It can be either nominal (i.e., categorical variable without an intrinsic
ordering/ranking), ordinal (variable that can be ordered/ranked),
quantitative (numerical variable – either discrete or continuous –
which may take any value), or coordinate (position of a point on the
Earth’s surface, i.e., latitude or longitude);

• Variable semantics: how the variable must be interpreted for visu-
alization purposes. It may be either temporal (e.g., variables such as
date or time), spatial (e.g., coordinate variables or nominal variables
with spatial semantics such as countries, states, or provinces), or
general (any variable that does not fall in the aforementioned cate-
gories).

METRICS The methods used for measuring associations between lan-
guage units and a potentially unlimited combination of variables.
VARIATIONIST includes metrics such as pointwise mutual informa-
tion (PMI; Fano, 1961), its positive, normalized, and weighted variants,
as well as their combinations, for a total of 8 different PMI flavors. It also
includes a normalized class relevance metric based on Ramponi and
Tonelli (2022) in its positive, weighted, and positive weighted versions.
Besides unit–variables association metrics, VARIATIONIST also includes
lexical diversity measures such as type-token ratio (TTR; Johnson,
1944), root TTR (Guiraud, 1960), log TTR (Herdan, 1960), and Maas’
index (Maas, 1972). Basic statistics such as frequencies, number of texts,
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number of language units, duplicate instances, average text length,
and vocabulary size are also provided. Finally, custom metrics can be
easily defined by the user and used for subsequent analysis, therefore
extending VARIATIONIST’s capabilities to specific use cases.

For example, in this work, we have used VARIATIONIST to compare
gold and synthetic data with regards to abusive language detection from
a lexical point of view. In practice, using our tool, this was done by
selecting the abuse/hate speech label as the variable, which was treated
as a nominal variable with general semantics. The main metrics that
are built into VARIATIONIST that were used in the previous chapters
are npw relevance (one of the PMI-based metrics), and type token ratio
(TTR).

CHARTS The visual components of the tool. VARIATIONIST orchestrates
the automatic creation of interactive charts for each metric based on the
combination of variable types and semantics from a previous analysis.
It defines the optimal dimension or channel (e.g., x, y, color, size, lat,
lon, or a dropdown component) for each variable, creating charts with
up to five dimensions (of which one is reserved for the quantitative metric
score, and the other to the nominal language unit). Possible charts cur-
rently include temporal line charts, choropleth maps, geographic and
standard scatter plots, heatmaps, binned maps, and bar charts. For each
metric, one or more charts are created (e.g., in the case of nominal vari-
able types with spatial semantics, both a bar chart and a geographic scat-
ter plot are created). Charts can be interactively filtered by language unit
through a search input field supporting regular expressions or a drop-
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from variationist import Inspector , InspectorArgs , Visualizer ,
VisualizerArgs

# 1) Define the inspector arguments
ins_args = InspectorArgs(text_names =["text"], var_names =["label"],

metrics =["npw_pmi"], n_tokens=1, language="en", stopwords=True,
lowercase=True)

# 2) Run the inspector and get the results
res = Inspector(dataset="data.tsv", args=ins_args).inspect ()

# 3) Define the visualizer arguments
vis_args = VisualizerArgs(output_folder="charts", output_formats =["html"])

# 4) Create interactive charts for all metrics
charts = Visualizer(input_json=res , args=vis_args).create ()

Figure A.1: Example showcasing the four steps for inspecting data and visualizing
results using VARIATIONIST.

down menu3 to smoothly explore associations between units and the
variables of interest.

A.2 Implementation and Usage

In this section, we present implementation details (Section A.2.1
and Section A.2.2) and an example usage of our Python library (Sec-
tion A.2.3).

A.2.1 User-facing Classes

There are two main elements a typical user interacts with: Inspector

and Visualizer, as well as their respective InspectorArgs and VisualizerArgs,
which store all of the parameters they work with.

Inspector The Inspector class takes care of orchestrating the analysis,
from importing and tokenizing the data to handling variable combina-

3The choice depends on the chart type and its number of dimensions, with the goal of keeping the
overall user experience and filtering time as smooth as possible.
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tions and importing and calculating the metrics. It returns a dictionary
(or a .json file, cf. Section A.2.2) with all the calculated metrics for each
unit of language, variable, and combination thereof, according to a set
of parameters that are set by the user through the InspectorArgs.

InspectorArgs Through the InspectorArgs class we tell Inspector how
to carry out the analysis. While we refer the reader to our library and
related resources for the full documentation, some of the analysis details
that can be set using InspectorArgs include what texts and variable(s)
of the data to focus on, whether to use n-grams or n co-occurrences (and
if so, for what values of n), what tokenizer to use, including any custom
ones, the selection of metrics we want to calculate, whether and how
to bin the variables, and more. In short, any preference regarding the
analysis will have to go through InspectorArgs.

Visualizer The Visualizer class takes care of orchestrating the creation
of a variety of interactive charts for each metric and variable combina-
tion associated to the language units of interest. It leverages the results
and metadata from the dictionary (or .json file) resulting from a prior
analysis using Inspector, creating charts up to five dimensions using
the altair library (VanderPlas et al., 2018).4 It relies on VisualizerArgs,
a class storing specific user-defined arguments for visualization.

VisualizerArgs The VisualizerArgs class provides ways to customize
the creation of charts and their serialization. In particular, it allows
the user to specify whether to pre-filter the visualization based on se-
lected language units (provided as lists) or top-scoring ones (by speci-
fying a maximum per-variable amount), provide a shapefile for setting

4Due to the modular design of VARIATIONIST, we aim to integrate additional visualization libraries
in future releases.
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the background of spatial charts, and decide whether the charts have to
be saved as files and in which format, among others.

A.2.2 Data Interchange

The results of an Inspector analysis are either i) stored in a variable as
a dictionary, or ii) serialized in a .json file. While the first case comes
handy for direct use by the Visualizer in most cases, the second option
is especially useful when dealing with large datasets and a high num-
ber of variable combinations (and possible values). Indeed, serialization
will enable the results to be easily used for visualization in a later stage.
Details on the structure of the interchange file are in our repository.

A.2.3 Example Usage

Figure A.1 shows a basic usage example of VARIATIONIST, which
consists of four steps: i) defining the InspectorArgs, ii) instantiat-
ing and running the computation with Inspector, iii) defining the
VisualizerArgs, and finally iv) creating interactive charts for the previ-
ously specified metrics through the Visualizer. For details on all the
available parameters and hands-on tutorials, we refer the reader to our
resources.

A.3 Conclusion

We introduced VARIATIONIST, a modular, customizable, and easy-to-use
analysis and visualization tool that aims at helping researchers in under-
standing language variation and unveiling potential biases in written
language corpora across many dimensions. Our tool has the potential
to help researchers in answering a variety of questions across many dis-
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ciplines, as well as to make it easier for research and practitioners to
examine their data before using it for training models or carrying out
experiments, potentially raising awareness with regards to the pivotal
importance of data exploration for machine learning applications.

VARIATIONIST was a key component of the qualitative analyses of
Chapters 4, 6, and 7, as it allowed us to investigate lexical aspects of syn-
thetic data and uncovering potential issues and biases in LLM-generated
texts. We believe such a tool could be useful for future research aiming
at exploring textual data from a qualitative point of view and uncover-
ing potentially hidden spurious associations that could be exploited by
models.
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Annotation Guidelines (Chapter 7)

In this section we report the annotation guidelines for the human evalu-
ation of Chapter 7.

Hate Speech This is the definition of hate speech used for the Measuring
Hate Speech Corpus (Kennedy et al., 2020):

Does this comment contain hate speech, defined as “bias-motivated, hos-
tile and malicious language targeted at a person/group because of their actual
or perceived innate characteristics, especially when the group is unnecessar-
ily labeled (e.g., “jew bankers”).” The comment contains hate speech if slurs or
derogatory language are used toward any person or group regardless of whether
or not the target is a member of the slur-target group. (e.g. a comment calling
Trump a faggot or a n***** still contains hate speech).

Possible choices are yes, no, unclear.

Prompt Failure Examples that should be labeled as prompt failures fall
under two categories:

1. The model was not able to rewrite the message. Examples:

(a) “Sorry, I cannot do this. I am just an AI.”
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(b) “This is a hateful message. Let’s try being respectful of every-
one.”

2. Description of original gold, in which the model is not rewriting the
text, but is describing it. Examples:

(a) “Here [USER] said something racist.”

Grammar This should assess the general morpho-syntactic grammati-
cality of the message. The register is informal, so attested language
use that - although not book-correct - is common in informal scenar-
ios should be considered correct. Code mixing and dialect use should
also not be considered ungrammatical. If essential components of the
utterance are missing, hindering the understanding of the message, we
tend towards no. If they are missing but the message is understandable,
we tend towards correctness.

Examples: “y’all, he don’t understand” would be correct. “She done
did it” would be correct. “the was here” would be incorrect.

World knowledge / plausibility This should assess whether, regardless of
morphosyntactic grammaticality, the message makes sense and is real-
istic/plausible from a semantic standpoint given our knowledge of the
world.

Examples: “I will climb a tree with a whiteboard” would not make
sense. “I got a paper cut with a steel knife” would not make sense.

Target identity categories If you find a message to be directed at or about
a group category, regardless of hate speech presence, select all identity
categories that apply.
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Original question for the annotators of the MHS corpus: Is the com-
ment above directed at or about any individual or groups based on: Race or
ethnicity, religion, national origin or citizenship status, gender, sexual orienta-
tion, age, disability status.
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