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Abstract
In the current Artificial Intelligence (AI) landscape, addressing explainability and interpretability in Machine Learning

(ML) is of critical importance. In fact, the vast majority of works on AI focus on Deep Neural Networks (DNNs), which are

not interpretable, as they are extremely hard to inspect and understand for humans. This is a crucial disadvantage of these

methods, which hinders their trustability in high-stakes scenarios. On the other hand, interpretable models are considerably

easier to inspect, which allows humans to test them exhaustively, and thus trust them. While the fields of eXplainable

Artificial Intelligence (XAI) and Interpretable Artificial Intelligence (IAI) are progressing in supervised settings, the field

of Interpretable Reinforcement Learning (IRL) is falling behind. Several approaches leveraging Decision Trees (DTs) for

IRL have been proposed in recent years. However, all of them use goal-directed optimization methods, which may have

limited exploration capabilities. In this work, we extend a previous study on the applicability of Quality–Diversity (QD)

algorithms to the optimization of DTs for IRL. We test the methods on two well-known Reinforcement Learning (RL)

benchmark tasks from OpenAI Gym, comparing their results in terms of score and ‘‘illumination’’ patterns. We show that

using QD algorithms is an effective way to explore the search space of IRL models. Moreover, we find that, in the context

of DTs for IRL, QD approaches based on MAP-Elites (ME) and its variant Covariance Matrix Adaptation MAP-Elites

(CMA-ME) can significantly improve convergence speed over the goal-directed approaches.

Keywords Quality–diversity optimization � Explainability � Decision trees � Reinforcement learning

1 Introduction

Thanks to the recent developments in Deep Learning (DL),

AI is permeating our daily lives. However, there is a

growing concern about the trustworthiness of DL-based

systems [1]. This is especially evident in high-stakes

applications (e.g., finance, healthcare, and industrial

control systems), where a single unexpected behavior

shown by the AI system can cause catastrophic damages.

These issues led, in recent years, to the growing interest in

XAI approaches [2–5].

However, the developments of the XAI field are seeing

opposing points of view from the research community. On

the one hand, some researchers think that DL is ‘‘hitting a

wall’’ [6, 7]. Other researchers, instead, neglect the

importance of XAI [8]. Regardless this dispute, what is

clear, judging from the interest in this topic from public

institutions (e.g., the EU1 and UNESCO2), is that XAI will

have a dominant role in the future of AI.

To add more fuel to this debate, some researchers are

advocating for a particular subset of XAI, called IAI, which

focuses on the use of transparent models (e.g., DTs and

rule-based systems) [9]. In fact, these researchers point out

that general XAI methods merely provide a posteriori
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explanations of opaque ML models (e.g., DNNs), usually

through simple model approximations, and as such they are

not exact. Not having an exact explanation in high-stakes

scenarios is however not acceptable, as a wrong (and

unexplainable) model behavior can lead to significant

damages. As described in [2], interpretability is instead a

structural property of a model, which means that an

interpretable model can be exactly understood and

inspected by humans, while explainability is, in general, a

behavioral property of a model, meaning that one can give

‘‘explanations’’ about the decisions taken by the model

even without knowing its internal details.3

IRL has been recognized as one of the current grand

challenges in the field of AI [9]. In fact, since RL is an

extremely general methodology, it can be applied to a wide

variety of problems, from the definition of taxation policies

[10] to the control of tokamak plasmas in nuclear fusion

plants [11]. These two application fields are also good

examples of high-stakes domains where AI-based systems

can be highly beneficial but, if controlled poorly, may have

catastrophic effects. In these scenarios, users cannot just

use opaque models in a plug-and-play manner, because

even high-performing policies may be biased or have

unpredictable behavior [9, 12]. Using an inter-

pretable model, instead, would allow a thorough testing

and inspection of the trained policy, to assess potentially

unsafe behaviors.

Despite the importance and the potential application of

IRL, this field is however currently falling behind the more

established field of XAI. As discussed in [9], this is mainly

because, compared to standard supervised settings (where a

posteriori XAI models can be applied), IRL is much more

challenging, mainly because: 1) in RL, the agent does not

receive all the data at once, observations may be partial,

and rewards may be delayed and depend on the long-term

consequences of a series of interdependent state-actions

transitions; 2) the search spaces in RL can be massive, with

uncertain estimates. Yet, interpretability could be particu-

larly valuable in RL, as it might help to reduce the RL

search space, and possibly remove actions that might lead

to harm. For these reasons, the research on IRL is highly

relevant and timely, yet it presents several important

challenges.

To partially address these challenges, recently some

works proposed hybrid approaches for producing IRL

models [13–15]. In these works, the authors combine

Grammatical Evolution (GE) [16], i.e., a variant of Genetic

Programming (GP) [17], and Q-learning [18], to produce

interpretable DTs with RL-optimized behaviors. Another

hybrid AI approach that makes use of DTs is presented in

[19]. There, the authors combine deep RL models with DTs

to obtain learned and instinctive behaviors.

Another direction that has attracted a growing interest in

the recent literature focuses on RL algorithms that are

capable of discovering not just one single policy, but rather

a set of good, diverse policies. RL algorithms that focus on

diversity are indeed able to explore better the policy space,

and discover more complex (and possibly more robust)

behaviors [20]. Examples of applications of RL where

diversification may be needed are in the field of game

playing, where agents capable of producing moves that go

beyond known patterns can be more successful. Another

area of applications may be in the context of intelligent

control systems, such as smart industry or smart buildings,

where a diversity-driven AI-based system could be able to

propose diverse control strategies to produce different

system trajectories with different dynamics, also reacting to

unexpected conditions, such as changes in the task and/or

environment.

In IRL, diversity-driven algorithms could be even more

important, as they would allow the discovery of a set of

solutions that can solve the task at hand not only with good

performance but also using different strategies with dif-

ferent levels of complexity and interpretability. This could

be extremely useful, as it would allow the users of the

system to analyze and interpret the set of solutions and

draw different insights on the problem at hand, and ulti-

mately, improve their general understanding of the problem

and their problem-solving skills.

An early attempt in this direction is presented in [20],

where the authors propose a method called DOMiNO for

discovering behaviorally different policies, without

affecting performance in a significant way. However, it

should be noted that DOMiNO does not focus on inter-

pretability, as it is based on DNNs. Furthermore, it uses

gradient-based optimization, differently from the present

study where instead we use gradient-free optimization.

Concerning DTs-based models, most of the previous works

focus on goal-directed (i.e., not focused on diversity)

optimization, while only limited work has been done aimed

at searching for diversity in the optimization of DTs for

IRL.

One possible way to achieve diversity in this context is

through the use of the so-called QD algorithms [21],

namely, optimization methods driven by an explicit search

for diversity of solutions rather than the minimization of

maximization of a given objective function (as done in

traditional goal-directed approaches). QD methods allow in

fact for a better exploration of the search space, potentially

discovering better-performing policies than goal-directed

optimization [22, 23]. Among the existing QD algorithms,

of particular interest, especially (but not only) in the con-

text of DTs, is ME [23], which as we will see later is one of

3 Note that, in general, interpretability ) explainability, while

explainability ; interpretability.
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the main methods we use in the present study. This algo-

rithm has in fact many desirable properties that can be

particularly useful for IRL. First of all, differently from any

other (either goal-directed or QD) algorithm, ME allows

the user to define specific feature descriptors (as we will

see in Sect. 2.2.3, in our case, these are the tree depth and

the action entropy) and explicitly makes use of these

descriptors to explore the search space. These descriptors

can be either problem-dependent or problem-agnostic (as

the ones chosen in our experiments), to provide different

levels of abstraction and knowledge in the exploration

process (potentially, also in an interactive way). Further-

more, the possibility of defining a user-specified feature

space comes with a simple yet intuitive visualization in the

form of heatmaps (such as the ones that we will show in

Sect. 3), that easily allow the user to identify the most

promising/effective areas of the search space. Another

important advantage of ME is that it does not make use of

gradients (differently from gradient-based, goal-oriented

optimization algorithms, such as DOMiNO [20]), hence it

can be applied also to non-differentiable objective func-

tions. Finally, another important feature of ME is its ease of

implementation and use.

In our previous work [24], we have made a first step

toward QD optimization of DTs for IRL. However, that

work was limited to a single Evolutionary Algorithm (EA),

namely GE, and a single QD scheme, namely ME.

In the present work, we extend the analysis previously

presented in [24] by significantly increasing the scope of

the experimentation. In particular, we address two relevant

research questions in the context of optimization of DTs for

IRL, namely: (1) What are the effects of the introduction of

QD schemes in different EAs? (2) How do different QD

schemes affect the optimization process? To address these

questions, we employ two different EAs, namely, GE [16]

and GP [17], and two different QD schemes, i.e., ME [23]

and its recent variant CMA-ME [25], comparing them with

their corresponding baseline goal-directed (i.e., with no QD

scheme) EAs. We study the performance and the ‘‘illumi-

nation’’ patterns of the methods shown above in two well-

known benchmarks from the OpenAI Gym suite [26]:

CartPole-v1 and MountainCar-v0.

To summarize, the main contributions of the present

work are the following:

• We conduct an experimental study on two RL tasks,

with two different EAs (GE and GP), combined with

two different QD schemes, namely, ME and CMA-ME.

• We compare the QD approaches with vanilla (i.e., goal-

directed) versions of GE and GP, used as baselines, thus

for a total of 6 different algorithms for each task.

• For each task and algorithm, we analyze the fitness

trend and the corresponding ‘‘illumination’’ capability

w.r.t. a feature space described by the trees’ depth and

the entropy of their actions.

The rest of the paper are structured as follows. The next

section describes the methods used in our comparison.

Then, Sect. 3 shows the numerical results. Finally, Sect. 4

concludes this work and suggests possible future works.

Please note that the list of acronyms used throughout the

paper is reported in Table 1.

2 Methods

As mentioned above, our goal is to discover diverse IRL

models for a given task. To do so, we evolve DTs by

combining EAs with QD schemes, and RL (through

Q-learning, see Sect. 2.3). More specifically, we compare

different setups, involving two goal-directed EAs and two

QD schemes. The two EAs we employ are GP [17] and GE

[16]. The two QD schemes, instead, are the following:

• ME [23]: in this scheme, we employ the ME selection

scheme on top of the EA used;

• CMA-ME [25]: in this scheme, the solutions coming

from the ME algorithm are further refined by using

Covariance Matrix Adaptation Evolution Strategies

(CMAES) [27]. Finally, the ME scheme is applied to

the refined solutions.

Table 1 List of acronyms used in the paper

Acronym Definition

AI Artificial intelligence

CMA Covariance matrix adaptation

CMA-ES Covariance matrix adaptation evolution strategies

CMA-ME Covariance matrix adaptation MAP-Elites

DL Deep learning

DNN Deep neural network

DT Decision tree

EA Evolutionary algorithm

GE Grammatical evolution

GP Genetic programming

IAI Interpretable artificial intelligence

IRL Interpretable reinforcement learning

ME MAP-Elites

ML Machine learning

QD Quality–Diversity

RL Reinforcement learning

XAI eXplainable artificial intelligence
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Moreover, we compare the results obtained with the two

QD schemes to two goal-directed EAs (based, respectively,

on vanilla GE and GP), which act as baselines.

2.1 Evolutionary algorithm

Here, we briefly present the EAs used in the

experimentation.

2.1.1 Grammatical evolution

In the GE setup, the genotype of a DT (i.e., its encoding) is

a vector g ¼ ðg0; . . .; gsizeÞ; gi 2 ½0;M�, where M is an

integer whose value must be significantly larger than the

number of productions for each of the rules, to ensure

uniform probabilities for all the productions of all the rules.

As a mutation operator, we use a uniform random

mutation: given a genotype (g), we replace a gene choosing

a new value gnew �Uð0;MÞ, with probability pg, where

Uð�Þ denotes the uniform probability distribution.

As a crossover operator, instead, we use one-point

crossover: given p1 and p2, we choose a random splitting

point and create two new solutions by concatenating the

two split genotypes.

The grammar used for GE in our experiments is shown

in Table 2.

2.1.2 Genetic programming

When using GP, the genotype coincides with the DT. To

enforce the interpretability of the solutions, we set a limit

on the expression length.

The mutation operator works as follows. Initially, it

randomly chooses a node. Then, if the chosen node is a

leaf, it replaces it with a condition. Otherwise, if the chosen

node is a condition, its expression is randomly modified.

To perform crossover between two trees, we randomly

select two nodes, one for each tree, and swap them.

The functional set is composed of the following sym-

bols: if then else, gt, lt, ?, -, �, /.
The terminal set, instead, is composed of leaves, input

variables, and random constants.

2.2 Quality–diversity schemes

In this subsection, we briefly describe the QD schemes

used in combination with the two EAs mentioned above.

2.2.1 MAP-Elites

ME (that stands for ‘‘Multi-dimensional Archive of

Phenotypic Elites’’) [23] is a QD algorithm that tries to

maximize the ‘‘illumination’’ of the search space (i.e., the

balance between exploration and exploitation) by main-

taining a multi-dimensional archive of the best solutions,

which are indexed using the values of their ‘‘feature

descriptors’’ (which are typically based on problem-de-

pendent, user-defined properties of the solutions). To have

meaningful illumination patterns, it is extremely important

to have descriptors that are orthogonal to the solutions’

fitnesses (i.e., the values of the objective function).

A descriptor can be defined as

d 2 D ¼ fðd0; . . .; dnÞ : di 2 ½mini;maxi�; 8i 2 ½0; n�g. A

function F : S ! D is defined to compute the descriptors

associated with any solution s 2 S.

The archive is structured as a multi-dimensional grid,

where each dimension is divided into m equally-spaced

bins.

When a new solution s is generated, its fitness and its

descriptor FðsÞ are computed. Then, if the location of the

archive is empty, the solution is inserted in the corre-

sponding cell of the grid. Otherwise, the fitness of the

solution present in the archive is checked. If it is worse

than that of the current solution, the old solution is replaced

by the new solution. Otherwise, if the fitness of the current

solution is equal to or worse than that of the existing one,

the current solution is discarded.

When using ME, we first initialize the map by randomly

evaluating initpop random solutions. Then, we perform an

iterative phase in which we sample solutions from the

archive to generate new solutions through mutation and

crossover (which depend on the use of GE or GP).

2.2.2 Covariance matrix adaptation MAP-Elites

CMA-ME [25] is a variant of ME that takes the benefit of

the well-known CMA-ES algorithm [27]. The idea is to use

the batchn solutions sampled for the new batch (i.e., the

new set of candidate solutions sampled from ME) as the

initial population for batchn parallel instances of CMA-ES.

If CMA-ES is not able to improve the solution, at the next

step of the algorithm, the new candidate solutions will be

obtained through the mutation operator. This mechanism

allows the algorithm to try escaping local optima.

Table 2 Oblique grammar used in the experiments

Rule Production

Root if

If if Condition then action else action

Condition
Pninputs

i¼0 const � inputi\ const

Action leaf or if

Const ½�1; 1�, with step of 0.001
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Note that CMA-ES works on real-valued vectors, while

ME works with GP or GE, as described before. To solve

this discrepancy, we select from the phenotype (i.e., the

DT) all the real values that are used in the DT, which are

then optimized by CMA-ES.

2.2.3 Feature descriptor

As explained earlier, ME (and its derived algorithms) need

a descriptor function F to map solutions to a location in the

archive.

In the present study, we use a two-dimensional

descriptor. The first dimension uses the entropy H of the

actions taken by the agent:

HðsÞ ¼ �
Pna

j¼0 f ðjÞ � lognaðfðjÞÞ, where f(j) is the fre-

quency of the j-th action in the list of actions taken by the

solution s. Entropy allows us to measure the diversity in

terms of action distribution. Note that we use the number of

actions na as the base for the logarithm, hence

HðsÞ 2 ½0; 1�.
The second dimension of the descriptor, instead, mea-

sures a structural property of a solution: the depth of the

DT. Note that, to make this descriptor more accurate,

before computing the depth, we first execute a pruning on

the DT, as described in [13].

It is important to note that the two features used for the

descriptor are not to be considered as objectives, but as

properties that are interesting for the study. For instance,

one cannot say whether we want to maximize or minimize

entropy, as the corresponding performance depends on the

task at hand. On the other hand, one may need to have

multiple solutions, each one with a different depth, to have

the opportunity to choose the most appropriate model

based on, e.g., hardware constraints.

2.3 Reinforcement learning

During the fitness evaluation phase, we perform RL on the

leaves of the DTs, using e-greedy Q-Learning [18],

meaning that, with a probability of e we take a random

action, otherwise we choose the action with the best value.

More specifically, each leaf of the DT represents a

‘‘macro-state’’ r, and the Q function is updated using the

Bellman equation:

Qðr; aÞ ¼ ð1� aÞQðr; aÞ þ aðr þ c �max0aQðr0; a0ÞÞ

where r is a macro-state (i.e., a group of states that, nav-

igating the DT, end in the same leaf), a is the action taken,

a is a learning rate, r is the reward received by the envi-

ronment, c is the discount factor (that tunes the importance

of future rewards w.r.t. the current ones), and r0 is the next

macro-state, caused by the execution of action a in the

current state.

The parameters used for the Q-Learning algorithm are

shown in Table 3.

2.4 Fitness evaluation

To evaluate the quality of the evolved DTs, we use two

well-known OpenAI Gym [26] environments: CartPole-v1

and MountainCar-v0.

We simulate m episodes for each solution, in order to:

(1) allow the RL algorithm to converge to a well-per-

forming policy, and (2) have a reliable estimate of the

quality of the DT. A simulation ends when either the task is

solved or a predefined time limit is hit. Once the m simu-

lations have been completed, we compute the fitness of the

DT by computing the mean of the scores across the

m simulations.

Please note that, for the MountainCar-v0 environment,

we normalize the values of each variable composing the

observations since they have significantly different ranges

of variation. To do so, we perform a min-max normaliza-

tion (w.r.t. the ranges).

2.4.1 CartPole-v1

In the CartPole-v1 task,4 the goal of the agent is to main-

tain a pole in equilibrium by moving the cart it lies on. The

observations provided to the agent are: (1) x: the position of

the cart, (2) v: the velocity of the cart, (3) h: the angle of the
pole, and (4): x: the angular velocity of the pole. The agent

can perform two actions: push the cart to the left, or push it

to the right. The agent receives a reward of 1 for each

timestep in which the pole is balanced and the cart is inside

the bounds (i.e., j h j \12� ^ jxj\2:4), otherwise it

receives a reward of 0. The simulation is ended whenever

j h j � 12� or 500 timesteps have passed. This task is

considered solved when the mean cumulative reward over

100 episodes is greater than or equal to 475.

Table 3 Parameters used for Q-learning

Parameter CartPole-v1 MountainCar-v0

� 0.05 0.01

Initialization �Uð�1; 1Þ �Uð�1; 1Þ
Learning rate 0.001 0.001

Number of episodes 100 100

4 https://gym.openai.com/envs/CartPole-v1/.
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2.4.2 MountainCar-v0

In the MountainCar-v0 task,5 the goal of the agent is to

drive a car on top of the right hill of a valley. To do so, the

agent has to learn how to exploit the left hill to build

momentum. The observation of the agent is composed of

two variables: (1) x: the position of the car, and (2) v: the

velocity of the car. The actions that the agent can perform

are: (1) accelerate to the left, (2) do not accelerate, and (3)

accelerate to the right. The agent receives a reward of �1

for each step, and it receives a reward of 0 when it reaches

the top of the right hill. This reward function makes this

problem hard to explore since the agent experiences a

reward greater than �1 only when it completes the task.

The simulation is terminated when the agent reaches the

right hill or when the limit of 200 timesteps is reached. The

task is considered solved when the mean cumulative

reward, computed over 100 episodes, is greater than or

equal to �110.

3 Results

In this section, we quantitatively compare the setups

described in Sect. 2.

For each setup (i.e., each combination of an EA and a

QD scheme), we performed 5 independent runs in order to

statistically assess the significance of the results. This

number was chosen to have sufficient statistical evidence

about the comparison between the different setups while

keeping the computational cost of the experiments limited.

The parameters used for all the methods are shown in

Table 4. Note that the bounds for the behavioral feature

(i.e., the entropy) are different across the two tasks. In fact,

while in MountainCar-v0 we use the entire co-domain for

the entropy, in CartPole-v1 we only consider the interval

[0.8, 1]. This is because, in preliminary experiments, we

observed that the region [0.0, 0.8] is scarcely populated

with good solutions. We hypothesize that the reason

underlying this phenomenon is that, being MountainCar-v0

a balancing task, the agent should frequently switch

between the two actions, leading to high entropy.

Regarding the interpretability of the solutions, the

authors in [28] proposed a quantitative metric to measure

the interpretability of a mathematical formula. Here, we

will use this metric to compare the interpretability of the

solutions produced. Note, however, that instead of using

the version of M proposed in [28], we will adopt the

modified version from [13], as it is more general and can be

used with any Machine Learning model. In fact, this ver-

sion of M is essentially a proxy for the model complexity

(meaning that the higherM, the worse the interpretability),

which is a general property of models. Moreover, it is

worth mentioning that, for the schemes based on ME, we

will compute theM value for the best-performing solution.

In the case of ties, we choose the tree with minimum depth.

As for the ‘‘illumination’’ capability, we limit our

analysis to a qualitative observation of how the two EAs fill

the feature space.

3.1 CartPole-v1

As introduced before, we compare the results from both a

performance and a diversity point of view.

For the GE setups, the top row of Fig. 1 shows the fit-

ness trends of the best solutions found during the evolution.

All the setups produce solutions capable of solving the task

in less than 2000 fitness evaluations. Of note, GE?ME and

GE?CMA-ME solve the task faster than GE, in terms of

the number of fitness evaluations needed to converge.

A comparison of the results of our best DT (found across

5 runs) with the state-of-the-art is shown in Table 5. In the

table, we can see that our method achieves the maximum

score allowed by the environment, on par with most of the

other methods (both interpretable and non-interpretable).

Concerning the illumination capability of the three set-

ups, the bottom row of Fig. 1 shows the archives at the end

of the evolution. Note that, in the case of GE, we consider

all the solutions generated during the evolutionary process,

rather than just the last generation, and fill the map a

posteriori. In the case of GE?ME and GE?CMA-ME,

instead, the map is filled during the evolutionary process,

by construction. The results show that, while GE can find

solutions that solve the task, its ability to illuminate the

feature space is limited, as expected: in fact, the algorithm

does not find a satisfactory number of diverse solutions. On

Table 4 Parameters used in the experiments

Parameter CartPole-v1 MountainCar-v0

npop 200 200

initpop 200 200

batchn 20 20

totalpop 10,000 20,0000

Ts 2 2

pcx 0.1 0.0

pmu 1.0 1.0

Gs 100 100

M 40,000 40,000

Bins 10 10

Behavioral bounds [0.8, 1.0] [0.0, 1.0]

Structural bounds [1, 10] [1, 10]

5 https://gym.openai.com/envs/MountainCar-v0/.
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the other hand, GE?ME finds at least one solution for each

possible DT depth and level of entropy.

Regarding the behavioral feature, while GE?ME still

finds more different and high-performing solutions, GE

vanilla and GE?ME seem to produce better results when

the entropy values are in the range 0.9–0.92. This is

probably due to the nature of the task, which requires high

coordination between the two actions (Push Left/Push

Right), leading to a similar frequency for the actions, and

hence, high entropy. Interestingly, GE?CMA-ME found

different solutions w.r.t. GE?ME, finding solutions either

with a very high entropy level (between 0.98 and 1) or with

relatively low entropy (in the interval 0.82–0.84). This

suggests that this problem is multi-modal. Moreover, it

appears that different QD schemes focus on different

regions of the search space. Finally, it is worth noting that

none of the considered QD schemes is able to illuminate

well all the ‘‘promising’’ regions (i.e.,

H 2 f½0:82; 0:84Þ; ½0:9; 0:92Þ; ½0:9; 0:94Þ; ½0:98; 1:00�g

.

The results obtained using GP are different. Regarding

performance, see Fig. 2 (top row), we can observe that

GP?ME converges slower than GP vanilla, while

GP?CMA-ME converges faster than GP vanilla.

Regarding the illumination capabilities, Fig. 2 bottom

row, we can observe that, while the general observation

that GP vanilla explores the search space less effectively

than GP?ME/CMA-ME is still valid, in this case, GP?ME

and GP?CMA-ME are able to find solving solutions in

most of the bins. Figure 3 shows some examples of DTs

that solve the task, one for each GP setup.

3.2 MountainCar-v0

As for the MountainCar-v0 task, the top row of Fig. 4

shows the fitness trend for the GE setups. Similarly to the

previous case, all the algorithms can solve the task.
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Fig. 1 Results on the CartPole-v1 task (GE setups). Top: fitness trends (mean ± std. dev. across 5 runs at each step of the algorithm). Bottom:

maps obtained with the three setups. The results in each bin are averaged over 5 runs

Table 5 Comparison of our results with SOTA methods on CartPole-

v1.

Source Method Score M

Meng et al. [29] Policy discrepancy 500.00 1157.20

Meng et al. [29] Policy discrepancy 500.00 1157.20

Meng et al. [29] Policy discrepancy 500.00 1157.20

Silva et al. [30] Differentiable DTs 388.76 89.20

Custode and Iacca [13] Oblique DT 500.00 24.10

Ours GE vanilla 500.00 24.1

Ours GE?ME 500.00 24.1

Ours GE?CMA-ME 500.00 24.1

Ours GP vanilla 500.00 132.0

Ours GP?ME 500.00 98.0

Ours GP?CMA-ME 500.00 67.0

The boldface indicates the best results in terms of score
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However, GE vanilla and GE?ME solve the task in a

comparable number of evaluations, with the former slightly

faster (11	 104 vs. 13	 104 fitness evaluations). On the

contrary, GE?CMA-ME is the fastest, finding a solution

after only 104 fitness evaluations, probably due to the

exploitation capabilities of the Covariance Matrix Adap-

tation (CMA) component. Note that, while GE?ME

requires 110% of the fitness evaluations to reach the same

performance of GE, GE?CMA-ME only requires 10%,

which means that this scheme may significantly reduce the

time needed to train DTs for IRL.

A comparison of the results of our best DTs (found

across 5 runs) with the state-of-the-art is shown in Table 6.

Here, we observe that both GP?ME and GP?CMA-ME

achieve state-of-the-art performance. Moreover, a two-

tailed Welch T-test (with confidence threshold a ¼ 0:05)

between these two methods confirmed the statistical sig-

nificance w.r.t. the previous state-of-the-art approach [13].

The bottom row of Fig. 4 shows the archive at the end of

the evolution for the three GE setups. Similar to the

CartPole-v1 case, GE?ME and GE?CMA-ME illuminate

the feature space better than GE vanilla, covering 97% of

bins in all 5 runs. On the other hand, GE vanilla concen-

trates on a small portion of the feature space. Overall, we

can observe that the three setups find high-performing

solutions in different areas of the feature space. Regarding

the behavioral feature, while the DTs found by GE present

a high entropy level (as in the CartPole-v1 task), GE?ME

produces also DTs that have lower entropy. Hence, these

DTs present behaviors in which at least one action is less

frequent than the others. GE?CMA-ME pushes the search

toward solutions with even lower entropy (smaller than
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Fig. 2 Results on the CartPole-v1 task (GP setups). Top: fitness trends (mean ± std. dev. across 5 runs at each step of the algorithm). Bottom:

maps obtained with the three setups. The results in each bin are averaged over 5 runs
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(a) Example DT evolved with GP+ME.

x0 ∗ x3 ∗ x2 <
−1.50 + x2
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(b) Example DT evolved with GP+CMA-ME.

0.328/2 ∗ x1 < 0.849
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(c) Example DT evolved with GP vanilla.

Fig. 3 Representation of three DTs that solve the CartPole-v1 task

(after simplification). In this case, all setups (also those that are not

shown in the figure) are able to find solutions that solve the task based

on a single condition
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0.1), finding trees that use, for the majority of the time, just

a single action (accelerate left). For the structural feature,

we can observe that, as for the CartPole-v1 task, GE

focuses only on small DTs (of depth 2 to 4), while GE?ME

and GE?CMA-ME produce solutions that cover the entire

range of tree depths [1, 10].

Of note, GE?ME and GE?CMA-ME produce also DTs

with a depth equal to 1, meaning that the maximum number

of leaves is 2. Hence, the entropy, in these cases, is

bounded to be lower than 0.63, corresponding to the case in

which the two actions have the same frequency (note that

we calculate the entropy using as the base for the logarithm
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Fig. 4 Results on the MountainCar-v0 task (GE setups). Top: fitness trends (mean ± std. dev. across 5 runs at each step of the algorithm).

Bottom: maps obtained with the three setups. The results in each bin are averaged over 5 runs

Table 6 Comparison of our

results with SOTA methods on

MountainCar-v0.

Source Method Score M

Zhiqing Xiaoa Closed-form policy �102.61 54.70

Keavnnb Soft Q networks �104.58 31079.20

Harshit Singhc Deep Q network �108.85 984160.30

Colin Md Double deep Q network �107.83 46681.60

Amite Tabular SARSA �105.99 381.50

Dhebar et al. [31] NLDT (Open-loop) �128.87 66.80

Custode and Iacca [13] Orthogonal DT �101.72 106.80

Ours GE vanilla �102.3 64.4

Ours GE?ME �103.3 13.6

Ours GE?CMA-ME �102.5 11.8

Ours GP vanilla �103.0 54.5

Ours GP?ME �97:6 59.0

Ours GP?CMA-ME �98:0 41.9

The boldface indicates the best results in terms of score
ahttps://github.com/ZhiqingXiao/OpenAIGymSolution
bhttps://github.com/StepNeverStop/RLs
chttps://github.com/harshitandro/Deep-Q-Network
dhttps://github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar
ehttps://github.com/amitkvikram/rl-agent
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the number of actions, see Sect. 2.2.3). Figure 6 shows a

representation of two example DTs.

With the GP setups, we can observe a similar behavior.

However, in this case, both versions based on ME converge

faster than GP vanilla, which slowly increases its perfor-

mance, solving the task only after 12	 104 fitness evalu-

ations, see the first row of Fig. 5. Regarding the

illumination capabilities, shown in the bottom row of

Fig. 5, similar to the GE vanilla case, we have that

GP?ME and GP?CMA-ME achieve a better exploration

of the feature space, finding several high-performing

solutions. However, GP vanilla shows better illumination

performances than GE vanilla, probably due to the different

mutation and crossover operators.

4 Conclusions and future works

In this paper, we have applied two QD schemes, namely,

ME and CMA-ME, to a hybrid approach combining evo-

lutionary optimization and RL for finding a diverse col-

lection of interpretable models. In our experiments, we

combined the two QD schemes with two EAs, namely, GE

and GP. By testing all the combinations between the

schemes and EAs on two tasks from OpenAI Gym, we

draw insights into the capabilities of each setup, in terms of

performance, efficiency, and exploration capabilities. Our

experimental findings mainly suggest that different QD

schemes achieve different illumination patterns, meaning

that each algorithm explores the feature space differently.

In summary, we observed that ME and CMA-ME find

high-performing solutions while ‘‘illuminating’’ the feature

space in a more efficient way w.r.t. the baseline approaches

without QD. We also observed different behaviors, in terms

of illumination capabilities, between GE and GP. This
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Fig. 6 Representation of two DTs that solve the MountainCar-v0 task

(after simplification). GE finds solutions that use all the three actions

(see Sect. 2.4.2). Hence, the depth of the DT is 2, while GE?ME

finds also solutions that do not use the Do Not Accelerate action.

Therefore, it is possible to produce a DT with a depth of 1
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Fig. 5 Results on the MountainCar-v0 task (GP setups). Top: fitness trends (mean ± std. dev. across 5 runs at each step of the algorithm).

Bottom: maps obtained with the three setups. The results in each bin are averaged over 5 runs
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suggests that the encoding and the mutation/crossover

operators highly contribute to the illumination capabilities

of the algorithm, as discussed in other works [32–34]

outside the context of IRL.

In future works, we will extend this study to more recent

variants of ME, such as those proposed in [25, 35], and to

more challenging RL tasks, such as tasks with larger

observation and action spaces, as well as tasks with delayed

rewards and/or partial observations. Our intuition is that,

by leveraging on better exploration, QD algorithms may be

particularly effective in those scenarios. Moreover, we will

investigate the scalability of ME schemes w.r.t. the number

of features used in the descriptor. In fact, while in this

work, we used only one behavioral and one structural

feature, in some specific applications, one may need to

define more than two features, e.g., to describe non-func-

tional requirements of the solutions. Another interesting

research direction would be to introduce interactions with

the user during the search process, as done in [36]. In fact,

incorporating the user feedback during the search may

complement the natural tendency of QD algorithms to

explore the feature space, while also allowing the opti-

mization process to focus on the areas of the search space

that are more interesting from the user perspective.
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morphology encoding influences the learning ability in body-

brain co-optimization. Genetic and evolutionary computation

conference. GECCO ’23. Association for Computing Machinery,

New York, NY, USA, pp 1045–1054

33. Pigozzi F, Medvet E, Bartoli A, Rochelli M (2023) Factors

impacting diversity and effectiveness of evolved modular robots.

ACM Trans Evolut Learn 3(1):1–33

34. Ferigo A, Soros L, Medvet E, Iacca G (2022) On the entangle-

ment between evolvability and fitness: An experimental study on

voxel-based soft robots. In: ALIFE 2022: The 2022 Conference

on artificial life. MIT press

35. Vassiliades V, Chatzilygeroudis K, Mouret J-B (2017) Using

centroidal Voronoi tessellations to scale up the multidimensional

archive of phenotypic elites algorithm. IEEE Trans Evol Comput

22(4):623–630

36. Urquhart N, Guckert M, Powers S (2019) Increasing trust in

meta-heuristics by using MAP-Elites. In: Genetic and evolu-

tionary computation conference companion, pp 1345–1348.

ACM, New York, NY, USA

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/2205.13521
http://arxiv.org/abs/2205.13521
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/2009.09521

	Quality--diversity optimization of decision trees for interpretable reinforcement learning
	Abstract
	Introduction
	Methods
	Evolutionary algorithm
	Grammatical evolution
	Genetic programming

	Quality--diversity schemes
	MAP-Elites
	Covariance matrix adaptation MAP-Elites
	Feature descriptor

	Reinforcement learning
	Fitness evaluation
	CartPole-v1
	MountainCar-v0


	Results
	CartPole-v1
	MountainCar-v0

	Conclusions and future works
	Data availability
	References


