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A B S T R A C T   

Despite wide variation among natural languages, there are linguistic properties thought to be universal to all or 
nearly all languages. Here, we consider universals at the semantic level, in the domain of quantifiers, which are 
given by the properties of monotonicity, quantity, and conservativity, and we investigate whether these universals 
might be explained by differences in complexity. First, we use a minimal pair methodology and compare the 
complexities of individual quantifiers using approximate Kolmogorov complexity. Second, we use a simple yet 
expressive grammar to generate a large collection of quantifiers and we investigate their complexities at an 
aggregate level in terms of both their minimal description lengths and their approximate Kolmogorov com
plexities. For minimal description length we find that quantifiers satisfying semantic universals are simpler: they 
have a shorter minimal description length. For approximate Kolmogorov complexity we find that monotone 
quantifiers have a lower Kolmogorov complexity than non-monotone quantifiers and for quantity and con
servativity we find that approximate Kolmogorov complexity does not scale robustly. These results suggest that 
the simplicity of quantifier meanings, in terms of their minimal description length, partially explains the presence 
of semantic universals in the domain of quantifiers.   

1. Introduction 

If you have ever tried to learn a new language, you will know that 
this can be a challenge. You have to learn a lot of new things that are 
different from the language you are used to. While the world’s languages 
have many differences, at the same time, interestingly, most languages 
also share a striking amount of similarities, called linguistic universals 
(Croft, 1990; Goddard & Wierzbicka, 2002; Greenberg, 1966). Here we 
study such universals at the semantic level, in the domain of quantifiers 
(Barwise & Cooper, 1981; von Fintel & Matthewson, 2008). 

Quantifiers are semantic objects that express quantitative relational 
properties, such as expressed by the words some, most, or all. It has been 
observed that the quantifiers that are lexicalized (as mono-morphemic 
words) in natural language share certain semantic properties, namely 
those of monotonicity, quantity, and conservativity (Barwise & Cooper, 

1981; Keenan & Stavi, 1986; Peters & Westerståhl, 2006). For example, 
the sentence “some bicycles are red” features the monotone, quantita
tive, and conservative quantifier some. It is monotone because its 
meaning does not change when making the sentence more specific, 
e.g., it implies the sentence “some bicycles have a red part.” It is 
quantitative because its meaning does not depend on the order of the 
bicycles: given that there are indeed some red bicycles, the sentence is 
true irrespectively of in which order those bikes are placed. It is con
servative because the truth of the sentence only depends on the bicycles 
and not on other red things that are not bicycles, i.e., to verify whether 
the sentence is true, not everything that is red needs to be checked, only 
the bicycles. Loosely speaking, a quantifier is monotone when its 
meaning does not change when moving from a less specific to a more 
specific meaning (or vice versa), a quantifier is quantitative when its 
meaning only depends on the number of objects, and not on their order, 
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and a quantifier is conservative when its meaning only depends on one 
group of things and everything that falls outside of this group is irrele
vant. When looking at the space of all logically possible quantifiers, 
however, a large majority does not have these properties. 

The question arises why these universals hold. Why do quantifiers in 
natural language have precisely these properties? A possible explanation 
for these universals lies in the interaction between these properties and our 
cognitive apparatus (see, e.g., Gibson et al., 2019; Steinert-Threlkeld & 
Szymanik, 2020). In search of such an explanation in terms of the inter
action between linguistics and the specifics of human cognition, several 
theories have presented some form of a learnability hypothesis: the idea 
that semantic universals hold because meanings with these properties are 
easier to learn (see, e.g., Barwise & Cooper, 1981; Van Benthem, 1986; 
Keenan & Stavi, 1986; Szabolcsi, 2010; Steinert-Threlkeld & Szymanik, 
2020). In this paper, we ask whether these semantic universals could also 
be explained by a bias for simplicity, a concept that is thought to be closely 
related to learnability (Carr, Smith, Culbertson, & Kirby, 2020; Hsu, 
Chater, & Vitányi, 2013), which might be understood from the intuition 
that there is a close relation between how simple or complex the meaning of 
an expression is and how easy or hard it is to learn the meaning of that 
expression. Simplicity as an explanatory concept in cognition has been 
studied in a variety of domains (see Chater & Vitányi, 2003; Feldman, 
2016). Here, we explore the following hypothesis: quantifiers that have 
these semantic properties are simpler. Together with the linking hypothesis 
that the cognitive system favors lexicalizing simple meanings (as mono- 
morphemic words), such differences in complexity could explain the 
presence of these semantic universals. 

While the complexity of quantifiers is a well-studied topic, it remains 
largely unknown how the complexity of quantifiers relates to the pres
ence of semantic universals. Complexity measures that have tradition
ally been applied in the area of quantifiers—such as measures derived 
from logical definability (Szymanik & Zajenkowski, 2010), automata 
theory (Van Benthem, 1984), and computational complexity theory 
(Kontinen & Szymanik, 2008; Ristad, 1993)—unfortunately are un
suited for this task. Although these measures can capture some of the 
cognitive difficulty of quantifier processing (see Szymanik, 2016, for an 
overview) they are too coarse to pick up on potential differences in 
complexity between quantifiers that do and do not satisfy semantic 
universals. 

For example, in the semantic automata literature it has been shown 
that quantifiers that are computable by a finite-state automaton are easier 
to understand in sentence-picture verification experiments than quan
tifiers that require a pushdown automaton (a finite-state automaton 
augmented with a stack for memory) (McMillan, Clark, Moore, Devita, & 
Grossman, 2005; Szymanik & Zajenkowski, 2010). However, the finer- 
grained distinctions that are relevant to the semantic universals under 
discussion here, in general, cannot be picked up by automata-based 
complexity measures. For example, the difference between the autom
aton for the upward monotone quantifier at least three and the non- 
monotone quantifier exactly two consists just in which states are 
marked as final and which not. This means that these automata have the 
same number of states, i.e., they are of the same size. Most measures for 
complexity based on automata rely on the number of states and are not 
sensitive to subtle differences such as which states are marked as final. 

Because of these limitations of the complexity measures that have 
traditionally been applied in the area of quantifiers, we adopt two inno
vative measures of the complexity of quantifiers—approximate Kolmo
gorov complexity and minimal description length in a logical 
grammar—and we investigate their potential to explain the presence of 
semantic universals. It is an open question how these two measures relate 
to each other precisely and whether they capture the same aspect of the 
complexity of quantifiers. We investigate if and how their results differ 
and which measure best captures potential differences in complexity 
between quantifiers with versus without universal properties. 

We perform two simulation studies, which we call Experiment 1 and 
Experiment 2. In Experiment 1, following the work by Hunter and Lidz 

(2013) and Steinert-Threlkeld and Szymanik (2019, 2020), we conduct a 
minimal pair experiment, where we look at the difference in complexity 
between minimally differing quantifier pairs, consisting of one quantifier 
satisfying a universal property and the other not satisfying it. To make 
fine-grained distinctions between the complexity of the individual 
quantifiers in the quantifier pairs, we use a measure from the framework 
of algorithmic information theory—in particular, an approximation to 
Kolmogorov complexity (Li & Vitányi, 2008) based on the Lempel-Ziv 
compression algorithm (Lempel & Ziv, 1976). We show that the mono
tone quantifiers have a lower approximate Kolmogorov complexity and 
that, overall, complexity and learnability pattern together. 

In Experiment 1 we test a handful of quantifier pairs. Unfortunately, 
there is no principled way to systematically scale up this methodology 
and automate the selection of a large collection of minimal quantifier 
pairs. To overcome these limits of scale of the minimal pair methodology 
we perform a second simulation study, Experiment 2, in which we 
generate a large collection of logically possible quantifiers and we use a 
logistic regression model to analyze the relation between the level of 
complexity of a quantifier and the presence of universal properties at an 
aggregate level. We generate these quantifiers based on a simple yet 
expressive grammar, i.e., a language of thought, a framework that has 
been used, e.g., in the domain of concept learning (Feldman, 2000; 
Goodman, Tenenbaum, Feldman, & Griffiths, 2008), language acquisi
tion (Piantadosi, Tenenbaum, & Goodman, 2013), and auditory memory 
(Planton et al., 2021). Following Steinert-Threlkeld (2020, 2021) we 
measure the complexity of these quantifiers in terms of their minimal 
description length in this grammar. In addition, for comparison, we also 
measure their complexities in terms of the approximate Kolmogorov 
complexity that we use in Experiment 1. We show that quantifiers with 
universal properties are simpler: they have a shorter minimal descrip
tion length. We also show that monotone quantifiers have a lower 
approximate Kolmogorov complexity than non-monotone quantifiers. 
We find no effect for quantity and an opposite effect for conservativity, 
which, compared to the results of Experiment 1, raises the question of 
robust scalability of the approximate Kolmogorov complexity of quan
tifiers. These results suggest that the simplicity of quantifier meanings, 
in terms of their minimal description length, partially explains the 
presence of semantic universals in the domain of quantifiers. 

The paper is structured as follows. First, we introduce the framework 
of generalized quantifiers and the properties of monotonicity, quantity, 
and conservativity and the semantic universals in relation to these 
properties. Then, we present the minimal quantifier pair methodology 
and how we measure the approximate Kolmogorov complexity of 
quantifiers that we use in Experiment 1. We report on the descriptive 
statistics of the data for each quantifier pair and we compare these to the 
learnability results by Steinert-Threlkeld and Szymanik (2019). Next, we 
define the logical grammar that we use to generate a large collection of 
logically possible quantifiers and we describe the method that we use to 
compute their minimal description lengths. We report on both descrip
tive statistics and bootstrapped logistic regression results, by which we 
analyze the relation between quantifiers satisfying universal properties 
and those that do not, and their level of simplicity. Finally, we compare 
the results of Experiments 1 and 2, discuss their implications and 
shortcomings, and make suggestions for future research. 

2. Quantifiers 

Quantifiers are the semantic objects that are expressed by (quanti
fied) determiners,1 such as some, most, or all but one, which describe 
quantity in a noun phrase. Determiners are expressions that can combine 
with common nouns and a verb phrase in simple sentences of the form 

1 Not all determiners express quantifiers. For instance, the demonstrative 
determiners—like those—do not express a quantifier. We refer to determiners 
that express quantifiers as quantified determiners. 
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Det N VP, like “some bicycles are red.” We assume a division between 
simple and complex determiners, where some and most are examples of 
simple determiners and all but one is an example of a complex deter
miner. Roughly speaking, one can think about this as a division between 
quantifiers that are lexicalized (as mono-morphemic words) and those 
that are not (Barwise & Cooper, 1981; Keenan & Stavi, 1986). 

Quantifiers form a suitable domain to study semantic universals, 
both because of the numerous semantic universals that have been 
identified in this area and because quantifiers lend themself to quite 
precise and systematic characterization by logical and mathematical 
tools. Or, as Peters and Westerståhl (2006) eloquently formulate it: 

Quantifiers are one of very few expressive devices of language for 
which it is known how to break out of the circle of language and 
explain what a word means other than essentially in terms of other 
words’ meanings. It is possible to explain the meaning of quantifiers 
in mathematical and other non-linguistic terms. (p. vii). 

2.1. Generalized quantifiers 

We use the framework of generalized quantifiers to represent the 
meaning of quantifiers as a collection of models.2 A model consists of a 
collection of objects and their properties. It can be seen as a snapshot of a 
particular part of the world. For instance, to verify the sentence “some 
bicycles are red,” we look at the collection of bicycles and the collection 
of red things, and when those overlap we know that there are some 
bicycles that are red. 

Formally, a model M = 〈M,A,B, <〉 consists of a domain, the set M, 
two subsets of that domain, sets A, B ⊆ M, where the sets A and B 
possibly overlap, and an ordering < over the domain M. We only 
consider non-empty domains. Functionally, M is called the domain of 
discourse, A is called the restrictor, and B is called the scope. The sen
tence “some bicycles are red” then means that the set A represents the 
collection of bicyles and the set B represents the collection of red things 
and that there are some objects (bicyles) in A that are also in B (red 
things). In addition, we enumerate the objects in the domain, giving us 
an ordering < over M, which allows to model sentences in which the 
order of the objects matter, such as “the first 3 bicycles are red.” See 
Fig. 1 for an illustration of a model of the form M = 〈M,A,B, <〉. 

A quantifier can then be represented and defined by a quantifier 
expression: a formula in a set-theoretic language. The quantifier is the 
collection of all models in which that quantifier expression is true. For 
instance, the meaning of the quantifier all can be represented by the 
expression A ⊆ B, meaning that all objects in A are also in B. Formally, 
we would express the meaning of all by EallF = {〈M,A,B〉 : A ⊆ B }, 
which stands for the collection of all models in which the quantifier 
expression is true. 

2.2. Universal properties of quantifiers 

Using the framework of generalized quantifiers we can define various 
properties. A quantifier is monotone3 when it is either upward or downward 
monotone. Monotonicity expresses that the meaning4 of a quantifier does 
not change when expanding (upward monotone) or contracting (down
ward monotone) its scope, i.e., the set B. In other words, the meaning of a 
quantifiers does not change when moving from a more specific to a less 
specific meaning (upward monotone) or vice versa (downward mono
tone). For example, the quantifier some is upward monotone. To illus
trate, the sentence “some logicians climb mountains” implies the more 
general sentence “some logicians climb.”5 And the quantifier few, for 
example, is downward monotone. To illustrate, the sentence “few logi
cians climb” implies the more restricted sentence “few logicians climb 
mountains.” The quantifier exactly two, on the other hand, is an 
example of a quantifier that is neither upward nor downward monotone 
and therefore non-monotone. To illustrate, the sentence “exactly two lo
gicians climb mountains” does not imply the more general sentence 
“exactly two logicians climb” nor does the sentence “exactly two logicians 
climb” imply the more restricted sentence “exactly two logicians climb 
mountains.” Formally, monotonicity is defined as follows. Let Q be a 
generalized quantifier over ordered models, where Q is defined by some 
quantifier expression q. In other words, Q is the collection of models in 
which quantifier expression q is true and those models are of the form 
〈M,A,B, <〉 ∈ Q.6 Then Q is upward monotone when: if 〈M,A,B, <〉 ∈ Q 
and B ⊆ B′ , then 〈M,A,B′

, <〉 ∈ Q. Analogously, Q is downward 
monotone when: if 〈M,A,B, <〉 ∈ Q and B′

⊆ B, then 〈M,A,B′

, <〉 ∈ Q. 
The following universal has been proposed with respect to 
monotonicity: 

• All simple (quantified) determiners express monotone quantifiers (Bar
wise & Cooper, 1981).7 

The property of quantity8 expresses that the meaning of a quantifier 
only depends on the sizes of the different subareas of the model, i.e., the 
sizes of A ∩ B, A\B, B\A, and M \(A ∪ B), which stand for the overlap 
between A and B, A minus B, B minus A, and the area of M that is outside 
of A and B, respectively. In contrast, its meaning does not depend on the 
order of the objects in the domain or on their individual identities or 

Fig. 1. An example of a model of the form M = 〈M,A,B, <〉. The numbers 
represent the objects in the domain and they correspond to the position of the 
objects in the order <. The sentence “the first 3 bicycles are red” is true in this 
model. When evaluating that sentence, the objects in A (the left circle in the 
figure) represent bicycles and the objects in B (the right circle in the figure) 
represent red things. The sentence is true in M because the first three objects in 
A (the objects with position 1, 3, and 5 in the order < over the whole domain), 
i.e., the first three bicycles, are also in B, i.e., are red. 

2 Specifically, we use the framework of type 〈1,1〉 generalized quantifiers. 
Focussing on quantifiers of type 〈1,1〉 means that we do not consider quantifiers 
of type 〈1〉, such as proper names. For a textbook treatment of generalized 
quantifiers see Peters and Westerståhl (2006). For more details on computa
tional representations of quantifiers, see Szymanik (2016). 

3 We use the general term monotone to refer to what is also called right 
monotone for type 〈1,1〉 quantifiers. In our case (that of type 〈1,1〉 quantifiers) 
this means that a quantifier is monotone in the set B.  

4 Note that the meaning of a quantifier is defined by the collection of models 
in which a quantifier expression is true. 

5 We consider the literal meaning of quantifiers, not including their impli
catures or presuppositions.  

6 Note that the order < over the models plays no role in the definition of 
monotonicity. Neither does it play a role in the definition of conservativity. 
Since it does play a role in the definition of the quantity property, we include it 
for the sake of uniformity of presentation.  

7 In fact, the original claim by Barwise and Cooper (1981) is a bit weaker, 
including not just monotone quantifiers, but also conjunctions of monotone 
quantifiers.  

8 The term quantity was introduced by Van Benthem (1984), it refers to the 
same property that is called logical by Keenan and Stavi (1986) and isomorphism 
closure by Peters and Westerståhl (2006). 
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names. For instance, the quantifier three is quantitative. To illustrate, 
the truth of the sentence “three bikes in the bike shed are red” does not 
depend on who’s bikes they are and in which order they are parked in 
the bike shed, as long as there are three red bikes, the sentence is true. 
The quantifier, the first three, on the other hand, is not quantitative. 
The truth of the sentence “the first three bikes in this bike shed are red” 
depends on the order in which the bikes are parked, knowing only the 
quantity of red bikes is not enough. Formally, we say that quantifier Q is 
quantitative when: if 〈M, A, B, <〉 ∈ Q and for M′

, A′

, B′ with A′

, B′

⊆ M′

it holds that A ∩ B, A\B, B\A, and M \ (A ∪ B) have the same cardinal
ities as A′

∩ B′

, A′

\B′

, B′

\A′ , and M′

\(A′

∪ B′

), and <′ is an order over M′, 
then 〈M′

, A′

, B′

, <
′

〉 ∈ Q. In other words, when a quantifier expression is 
true in some model, it is true in all models that have subareas of the same 
size as the original model. The following universal has been proposed 
with respect to quantity:  

• All simple (quantified) determiners express quantitative quantifiers 
(Keenan & Stavi, 1986). 

The property of conservativity9 expresses that to verify a quantifier, 
the objects in B that are not in A are not relevant, only the objects that 
are in A matter. For example, the quantifier most is conservative. To 
illustrate, the truth of the sentence “most logicians like climbing” de
pends only on logicians and not on climbers who are not logicians. The 
quantifier exactly as many A’s as B’s, on the other hand, is non- 
conservative. For example, to verify the sentence “there are exactly as 
many logicians as there are climbers,” it is not just the logicians that are 
relevant, but also the climbers that are not logicians. Formally, we say 
that Q is conservative when: 〈M,A,B, <〉 ∈ Q if and only if 
〈M,A,A ∩ B, <〉 ∈ Q. The following universal has been proposed with 
respect to conservativity:  

• All simple (quantified) determiners express conservative quantifiers 
(Barwise & Cooper, 1981; Higginbotham & May, 1981; Keenan, 
1981; Keenan & Stavi, 1986).10 

We interpret these universals as constraints on language in the form 
of general tendencies or biases, not as fully strict demarcations. An 
extensive discussion and defense of these universals falls outside of the 
scope of the current study. Instead, we focus on how these properties 
relate to the complexity or simplicity of quantifiers and whether 
simplicity could explain the pervasiveness of these properties in natural 
language. 

3. Experiment 1: minimal pairs 

To investigate the relation between the complexity of quantifiers and 
whether they adhere to universal properties, we first do a small scale 
study in which we adopt the minimal pair methodology used by Steinert- 
Threlkeld and Szymanik (2019). This methodology selects minimally 
differing pairs of quantifiers of which one quantifier satisfies a universal 
property and the other quantifier does not, and compares a given 

parameter—in our case simplicity—between the quantifiers in the 
pair.11 In each case, the pairs of quantifiers are chosen to be as similar as 
possible along as many dimensions as possible, while still differing on 
whether they adhere to the relevant universal. For example, for con
servativity, they compare the quantifier most (∣A ∩ B∣ > ∣A\B∣) with a 
hypothetical quantifier M, meaning, exactly as many A’s as B’s 
(∣A∣ > ∣B∣): these both make the same comparison between the cardi
nalities of two sets, but one is conservative and one is not. 

Steinert-Threlkeld and Szymanik (2019) use this methodology to 
investigate the relation between the learnability of quantifiers and 
whether they adhere to universal properties, using recurrent neural 
networks as a model for learning. It is commonly expected that there is a 
strong relation between learnability and complexity and many theories 
of learning are built around the idea of such a connection (Hsu et al., 
2013; Langley & Stromsten, 2000; Tiede, 1999). At the same time, there 
are few examples of studies that provide evidence for this expectation in 
concrete cognitive tasks and capacities. In particular, it remains open 
which operationalizations of both concepts are most suited to study 
human cognition, and how those might relate to each other. While our 
primary focus in this study is on complexity, to facilitate direct com
parison between our complexity results and the learnability results by 
Steinert-Threlkeld and Szymanik (2019), we use the same minimal 
quantifier pairs as in their study. 

3.1. Methods 

We use the following methods to compute the complexity of quan
tifiers in minimal quantifier pairs, to investigate whether we find dif
ferences in complexities between quantifiers that do and that do not 
adhere to the universal properties. 

3.1.1. Approximate Kolmogorov complexity of quantifiers 
To measure differences in the complexity between individual quan

tifiers in the minimal pair methodology, we need a fine-grained measure 
of complexity that is suited for that task. Therefore, in this experiment 
we use (approximate) Kolmogorov complexity—a measure from the 
framework of algorithmic information theory that can potentially make 
such fine-grained distinction—and we investigate its potential to explain 
semantic universals. This measure has not yet been explored in the 
domain of quantifiers,12 though it has previously been shown useful in 
modeling a cognitive bias towards simplicity in a variety of other 
cognitive domains (see Chater & Vitányi, 2003; Feldman, 2016; Planton 
et al., 2021). For example, Feldman (2000) famously showed that 
boolean concept learning can be predicted by a form of complexity that 
can be seen as analogous to Kolmogorov complexity (Feldman, 2016). 

Roughly speaking, Kolmogorov complexity (K) measures the amount 
of structure in an individual object: it measures how much a sequence of 
symbols can be compressed into a shorter sequence without losing in
formation. The intuition behind this is that when a sequence contains 
regularities, these regularities can be exploited to produce a shorter 
description of that sequence. For example, the sequence consisting of a 
thousand zeroes, i.e., 00000 . . ., has low complexity because it has a lot of 
structure or regularity: it could be represented by a program like “repeat 
0 one thousand times”. By contrast, a truly randomly generated 
sequence of the same length cannot be summarized so succinctly and is 

9 The term conservativity was introduced by Keenan (1981), it refers to the 
same property that is called lives on by Barwise and Cooper (1981), and inter
sectivity by Higginbotham and May (1981).  
10 In fact, the original claim is even stronger, namely that all (quantified) 

determiners express conservative quantifiers, not just the simple ones. Whether 
conservativity is indeed a constraint on the lexicon is an open debate, which we 
briefly discuss in Section 3.3. The stronger claim about conservativity fits well 
with the position that conservativity is not a constraint on the lexicon. See also 
Zuber and Keenan (2019) for an alternative definition of conservativity. 

11 A similar approach was used in an experiment by Hunter and Lidz (2013) to 
study 4- and 5-year-olds’ ability to learn a novel conservative quantifier (not 
attested in natural language) versus a novel non-conservative quantifier.  
12 Besides the non-archival work by Van de Pol et al. (2019) of which this 

paper is a revised and extended version. 
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therefore not as compressible. Such a random sequence will have a 
higher Kolmogorov complexity than the structured sequence 
00000 . . ..13 

More precisely, the Kolmogorov complexity K(x) of a sequence x is 
defined as the length of the shortest program p that outputs the sequence 
x (see Li & Vitányi, 2008).14 A drawback of Kolmogorov complexity is 
that it has been formally proven to be uncomputable. This means that 
there exists no algorithm that outputs for any given sequence x, its 
Kolmogorov complexity K(x) (Li & Vitányi, 2008). Because exact 
computation is impossible, we need a measure that approximates K. 
Gauvrit, Zenil, Delahaye, and Soler-Toscano (2014) use a procedure (the 
“Coding theorem method”) for approximating Kolmogorov complexity 
that gives reliable results for short sequences. Unfortunately, their 
procedure only works for sequences up to length 50, because it is 
computationally too expensive for larger sequences. Given that here we 
look at sequences of length 41 + 42 + ⋅ ⋅ ⋅ + 410 = 1,398,100 (which we 
will explain in the next section), this procedure is not suitable for our 
purposes. For these reasons, we use a well-established and tractable 
approximation to Kolmogorov complexity, that is based on the Lempel- 
Ziv algorithm for lossless data compression (Lempel & Ziv, 1976). 

The Lempel-Ziv compression algorithm measures the number of 
unique subpatterns, when scanning a sequence from left to right. The 
Lempel-Ziv complexity LZ(x) of a sequence x is the number of these 
unique subpatterns of x. For approximate Kolmogorov complexity K̃, we 
use CLZ(x), which is defined as log2(len(x)) ⋅ LZ(x)+LZ(reverse(x))

2 , where 
len(x) stands for the length of the sequence x and reverse(x) stands for 
the sequence that results from putting sequence x in the reverse order. 
We use the same version of CLZ as used by Dingle, Camargo, and Louis 
(2018), which uses the average between LZ(x) and LZ(reverse(x)), 
instead of just LZ(x).15 Ziv and Lempel (1978) show that CLZ(x)
approximates K(x) in the limit; i.e., when len(x) approaches infinity. 
Vitányi (2013) shows that, in practice, lossless compression methods 
give adequate results also for finite sequences. Furthermore, CLZ is 
considered particularly adequate as a measure for K̃ for shorter 
sequences (Lesne, Blanc, & Pezard, 2009). In the remainder of this 
paper, we simply use the term Lempel-Ziv complexity to refer to CLZ. 
This is also what we mean by “approximate Kolmogorov complexity” 
moving forward. 

This framework allows us to compare the complexity of different 
quantifiers in the minimal quantifier pairs. In doing so, we are not 
interested in the absolute complexity values of the quantifiers but in the 
potential difference in complexity between a quantifier that satisfies a 
universal and its minimally differing counterpart that does not satisfy 
that universal. 

3.1.2. Encoding quantifier meanings as binary sequences 
To compute the Lempel-Ziv complexity of quantifiers we first 

generate a binary representations of that quantifier: a sequence of ones 
and zeroes that represents the meaning of the quantifier. This works as 
follows. The meaning of a quantifier is determined by the collection of 
quantifier models in which the quantifier is true. To order these models 

into a sequence, we first encode each quantifier model as a sequence of 
symbols (Mostowski, 1998; Van Benthem, 1986). We give the different 
subareas in a model a label, say A ∩ B ↦ d, A\B ↦ e, B\A ↦ f , and 
M \(A ∪ B) ↦ g, we label the objects in the model by their area, and 
place each label in a sequence, based on the order of the objects in the 
model. For example, the model in Fig. 1 is encoded by dfdfdfee. Then, we 
enumerate all models from small to large, up to a maximum model size s, 
in a fixed order over the encodings of the models. Because of the 
exponentially large size of the space of possible models16 we cannot 
consider all possible orderings thereof. Rather, we rely on an especially 
natural class of orderings, which arises from choosing how to order the 
subareas of a model, in particular, we consider the class of lexico
graphical orderings over the encodings of the models, i.e., the dictionary 
orderings over the labels {d, e, f , g}.17 (In the final paragraph of this 
section we will explain in more detail how we define this class of or
derings.) Due to this exponential blow-up, we limit the maximum model 
size to 10. Finally, for each of the models in the sequence, we put a 1
when the quantifier is true in that model and a 0 otherwise. This results 
in a unique representation for each quantifier meaning, given the fixed 
model ordering and a maximum model size. See Fig. 2 for an example of 
a binary encoding of the quantifier some over models of size 1, i.e., 
models with only one object. 

We can demonstrate how Lempel-Ziv complexity works via this 
example. The algorithm scans a sequence from left to right and records 
the number of unique subsequences encountered along the way. For the 
sequence 1000 from Fig. 2, this will discover the subsequences 1, 0, and 
00 (with decomposition 1∣0∣00), resulting in a complexity of 3 for this 
particular sequence. The quantifier no would generate the sequence 
0111 on these same models and would have complexity 3 as well (with 

Fig. 2. Encoding of the quantifier some over models of size 1.  

13 Strictly speaking, a procedure for generating a random sequence could also 
generate the sequence 00000…, which in that case would be considered a 
randomly generated sequence. However, any procedure for generating random 
sequences will produce such a sequence with an extremely low probability, so 
we do not consider that possibility in our explanation here.  
14 The CLZ measure uses a multiplication by log2(len(x)) because for lossless 

compression, for each subpattern a number needs to be stored that identifies the 
position of a previous subpattern by which the current subpattern can be 
constructed. This position is upper bounded by len(x), which can be encoded by 
a binary sequence of length roughly log2(len(x)). 
15 Formally, Kolmogorov complexity (K) is defined given a particular uni

versal Turing machine (UTM), but, by the Invariance Thesis, K given UTM V or 
given UTM W will not differ more than some constant c. 

16 The number of possible models grows exponentially in the maximum size of 
the models, roughly like |{d, e, f, g}|s, where ∣{d, e, f, g}∣ is the number of model 
areas and s is the maximum model size.  
17 In principle, any fixed ordering of the models can be used for this. However, 

for our purpose a structured ordering is more suited than a random one. First, it 
is expected that when a quantifier with a universal property has a lower 
Lempel-Ziv complexity than its minimally differing counterpart, that is because 
the universal property causes a regularity in the distribution of truth values 
across quantifier models. Such a regularity in the distribution over quantifier 
models might not be visible when those models are placed in a random 
sequence. Second, for random model sequences, the complexity of a quantifier 
is expected to be mostly determined by the uniformity of the quantifier (defined 
by taking the maximum between the ratio of 1’s versus 0’s and the ratio of 0’s 
versus 1’s), which depends only on the number of models in which the quan
tifier is true and says little about the actual meaning of the quantifier. This is 
because any two random binary sequences of length n with equal uniformity are 
likely to have a similarly high Lempel-Ziv complexity. The intuition behind this 
is that most of the sequences of length n with equal uniformity will have a 
complexity value close to the maximum Lempel-Ziv complexity for such se
quences. This is because having a low Lempel-Ziv complexity means that it can 
uniquely be compressed to a shorter sequence and there are exponentially few 
sequences of such short length (i.e., logarithmically many in sequence length n), 
compared to all possible sequences of length at most n. For these reasons, we 
evaluate our quantifiers over the lexicographical orderings of models, which is 
standardly used in the literature on generalized quantifiers. 
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unique subsequences 0, 1, 11 and decomposition 0∣1∣11). As a point of 
contrast, a quantifier that is a falsehood, i.e., ⊥, would generate the 
sequence 0000 on these models, which has a complexity of 2, since the 
only unique subsequences are 0 and 00 (with decomposition 0∣00∣0). 
Because the length of the quantifier encodings increases exponentially in 
the size of the models, we leave longer examples as an exercise to the 
reader. 

Because the four model area labels {d, e, f , g} can be ordered in 
different ways there is not one unique lexicographical ordering of the 
models. In other words, there are different mappings possible between 
the labels and the model areas. More precisely, there are 24 such map
pings because the four model area labels {d, e, f , g} can be ordered in 
4! = 24 ways. Each of these orders can be used as a lexicographical base, 
i.e., as a dictionary base,18 on which to order the quantifier models. This 
result in 24 different sequences of the quantifier models, of which 12 are 
the reverse of one of the other 12. Since the complexity measure CLZ 
takes the average between the complexity of a sequence and the 
complexity of the reverse of that sequence, this leaves 12 uniquely 
different lexicographical model sequences over which we can compute 
this measure. For robustness, we look at all 12 uniquely different lexi
cographical orderings over {d, e, f , g}. For the quantifier pairs that we 
look at in the next section, we compare the complexity of the quantifiers 
in the minimal quantifier pairs for each of these 12 orderings. 

3.2. Results 

With this framework of Lempel-Ziv complexity as approximate Kol
mogorov complexity of quantifiers in place we can now turn to our 
minimal quantifier pair experiment, to test for the three semantic uni
versals whether quantifiers that adhere to the universal property are 
simpler, i.e., have a lower Lempel-Ziv complexity, than those that do 
not. As mentioned, to be able to directly compare our complexity results 
with the learnability results by Steinert-Threlkeld and Szymanik (2019), 
we tested the same pairs of quantifiers as in their study. 

We computed the following complexity values. Let xi,Q be the binary 
representation of quantifier Q, based on a sequence of all models up to 
size i. For each quantifier Q, and for each model size i from 1 to 10, we 
computed CLZ

(
xi,Q

)
. We repeated this for all 12 lexicographical model 

sequences. For each quantifier pair we plotted the mean complexity 
against the maximum model size, with 95% confidence intervals.19 The 
12 individual plots for each of the quantifier pairs can be found in 
Appendix A. For the sake of readability, in the remainder of this section 
we will use the phrase “model size” to denote maximum model size. The 
code that we used for generating these data and the data themselves can 
be found at https://github.com/ivdpol/quantifier-LZ-com 
plexity. 

3.2.1. Monotonicity 
To test the property of monotonicity, we looked at two quantifier 

pairs, one with a downward and one with an upward monotone quan
tifier. First, we compared the downward monotone quantifier at most 
three, meaning ∣A ∩ B∣ ≤ 3, with the non-monotone quantifier at 
least six or at most two, meaning ∣A ∩ B∣ ≥ 6 or ∣A ∩ B∣ ≤ 2. The 
mean complexity values over all 12 lexicographical model sequences 
and a 95% confidence interval are plotted in Fig. 3. The descriptive 
statistics show that for all model sizes larger than 2, monotone at most 
three has a lower complexity than non-monotone at least six or at 
most two. (For model size 1 and 2 the differences are 0, because both 
quantifiers are uniformly true in models of this size.) This holds for each 
of the 12 different model sequences. 

Second, we compared the upward monotone quantifier at least 
four, meaning ∣A ∩ B∣ ≥ 4, with the non-monotone quantifier at 
least six or at most two, meaning ∣A ∩ B∣ ≥ 6 or ∣A ∩ B∣ ≤ 2. The 
mean complexity values over all 12 model sequences and a 95% confi
dence interval are plotted in Fig. 3. Exactly as in the case of the down
ward monotone quantifiers, the descriptive statistics show that that for 
all model sizes larger than 2, monotone at most three has a lower 
complexity than non-monotone at least six or at most two. (For 
model size 1 and 2 the differences are 0, because at least four is 
uniformly false and at least six or at most two is uniformly true in 
models of this size. This results in binary encodings of all 1’s or all 0’s, 
which have the same complexity.) This holds for each of the 12 different 
model sequences. 

These complexity results show a clear pattern of the monotone 
quantifiers being simpler than the non-monotone quantifiers. This is in 
line with the learnability results in the study by Steinert-Threlkeld and 
Szymanik (2019), which found that the monotone quantifiers were 
easier to learn by a recurrent neural network than the non-monotone 
quantifiers. 

3.2.2. Quantity 
To test the property of quantity, we looked at two quantifier pairs 

with a quantitative and a non-quantitative quantifier. First, we 
compared the quantitative quantifier at least three, with the non- 
quantitative quantifier the first three. The mean complexity values 
over all 12 model sequences and a 95% confidence interval are plotted in 
Fig. 4. For model size 1, 2, and 3, the differences are 0, since the 
meanings of these quantifiers are equivalent when evaluated in models 
of this size (uniformly false in models of size 1 and 2, and uniformly true 
in models of size 3). For model sizes 4 to 10 the descriptive statistics 
show that at least three is less complex in 59.5% of the cases, and 
more complex in 33.3% of the cases. 

Second, we compared the quantitative quantifier at least three, 
with the non-quantitative quantifier the last three. The main 
complexity values over all 12 model sequences and a 95% confidence 
interval are plotted in Fig. 4. For model size 1, 2, and 3, the differences 
are 0, since the meanings of these quantifiers are equivalent when 
evaluated in models of this size (uniformly false in models of size 1 and 
2, and uniformly true in models of size 3). For model sizes 4 to 10 the 
descriptive statistics show that at least three is less complex in 
52.4% of the cases and more complex in 42.9% of the cases. 

These complexity results show a tendency towards the quantitative 
quantifiers being simpler than the non-quantitative quantifiers. The di
rection of this pattern is in the same direction as the learnability results 
in the study by Steinert-Threlkeld and Szymanik (2019). However, the 
pattern of the learnability results was more clearly pronounced, the 
quantitative quantifiers were significantly easier to learn than the non- 
quantitative ones. 

3.2.3. Conservativity 
To test the property of conservativity, we looked at two quantifier 

pairs with a conservative and a non-conservative quantifier. First, we 
compared the conservative quantifier most, meaning ∣A ∩ B∣ > ∣A\B∣, 
with the non-conservative quantifier M, meaning ∣A∣ > ∣B∣, i.e., meaning 
that there are more A’s than B’s, which is non-conservative because to 
verify its meaning all objects in B are relevant, also the ones that are not 
in A. The mean complexity values over all 12 model sequences and a 
95% confidence interval are plotted in Fig. 5. The descriptive statistics 
show that that for all model sizes and for all model sequences, conser
vative most has exactly the same complexity as non-conservative M. 

Second, we compared the conservative quantifier not all, meaning 
A⊈B, with the non-conservative quantifier not only, meaning B⊈A. 
The mean complexity values over all 12 model sequences and a 95% 
confidence interval are plotted in Fig. 5. For model size 1 to 10 the 
descriptive statistics show that not all is more complex in 55.9% of the 
cases and less complex in 40.8% of the cases. 

18 Note, this dictionary base does not necessarily follow the order of the Latin 
alphabet.  
19 We report 95% confidence intervals obtained using standard nonparametric 

bootstrap resampling. 

I. van de Pol et al.                                                                                                                                                                                                                              

https://github.com/ivdpol/quantifier-LZ-complexity
https://github.com/ivdpol/quantifier-LZ-complexity


Cognition 232 (2023) 105150

7

These complexity results show a similar level of complexity for the 
conservative and the non-conservative quantifiers. This is in line with 
the learnability results in the study by Steinert-Threlkeld and Szymanik 
(2019), which found that the conservative quantifiers were of similar 
learnability as the non-conservative ones. 

3.3. Discussion of Experiment 1 

We applied tools from algorithmic information theory—in partic
ular, approximate Kolmogorov complexity as measured by Lempel-Ziv 
complexity—to measure the complexity of minimal quantifier pairs, of 
which one quantifier satisfies a semantic universal and the other does 
not. We investigated whether quantifiers that satisfy semantic universals 
are simpler than those that do not and whether complexity could 
thereby explain the presence of semantic universals for quantifiers. We 

also looked at whether the complexity results for these quantifiers show 
similar patterns as existing learnability results. 

We found that monotone quantifiers are robustly less complex than 
non-monotone quantifiers, and that conservative and non-conservative 
quantifiers have equal or similar complexity. For quantitative quanti
fiers we found a slight tendency towards being less complex, but this 
pattern was not robust. The results for monotonicity and conservativity 
agree with the learnability results for these quantifier pairs in the study 
by Steinert-Threlkeld and Szymanik (2019). The results on quantita
tivity are less robust, though they hint to a pattern in the same direction 
as the learnability results. Steinert-Threlkeld and Szymanik (2019) 
explain that for conservativity they did not expect a difference in 
learnability under their framework, because conservativity might rather 
be explained by different factors than learnabiltiy. It is an ongoing 
debate whether conservative quantifiers are indeed easier to learn. 

Fig. 3. Quantifier pairs to test the property of monotonicity. Complexity values for at most three and at least six or at most two, and for at least four 
and at least six or at most two. Mean complexity values with a 95% confidence interval over all 12 lexicographical model sequences. 

Fig. 4. Quantifier pairs to test the property of quantity. Complexity values for at least three and the first three, and for at least three and the last 
three. Mean complexity values with a 95% confidence interval over all 12 lexicographical model sequences. 
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While Hunter and Lidz (2013) found that conservative quantifiers were 
easier to learn for children, this effect was not found in a replication of 
their study by Spenader and de Villiers (2019). There is also work in 
linguistics that suggests that, contrary to the properties of monotonicity 
and quantity, conservativity might not arise from semantic pressures on 
the lexicon (such as simplicity and learnability) but follows, instead, 
from an interaction between syntax and semantics (Fox, 2002; Romoli, 
2015; Sportiche, 2005). On this view, even if a non-conservative quan
tifier existed, the truth-conditions of sentences containing it would 
“appear” conservative. If that holds, one should not expect to find a 
difference in complexity. Future work should continue to explore par
allels and differences between conservativity and the other universals. 

Our results for monotonicity show that Lempel-Ziv complexity can 
indeed capture differences in complexity between quantifiers in the 
minimal pair methodology. Overall, the results of this minimal quanti
fier pair experiment are not decisive. A general drawback of the minimal 
pair methodology is its limited scale and its inability to scale up in a 
principled and automated manner. A limitation of Lempel-Ziv 
complexity is that its outcomes are sensitive to the order in which the 
quantifier models are placed in the (binary) meaning sequence of the 
quantifier. For monotonicity, all 12 lexicographical orders showed 
qualitatively similar results, while for quantity and conservativity, not 
all 12 lexicographical orders showed the same pattern. To overcome 
these limitations, we run a second simulation study, Experiment 2, in 
which we generate a large collection of both natural and artificial 
quantifiers in a principled manner, using a language of quantifier ex
pressions defined by a logical grammar, and compute their complexities 
in terms of their minimal expression lengths in the grammar. 

4. Experiment 2: language of minimal expression length 

To further investigate the relation between the complexity of quan
tifiers and whether they adhere to universal properties, we implement a 
large scale study in which we use a logical grammar to generate a large 
collection of quantifiers, of which we measure both their minimal 
expression lengths and their Lempel-Ziv complexities and whether they 
adhere to the universal properties. Instead of directly comparing the 
complexities between individual quantifiers, such as in Experiment 1, 
here we look at the aggregate differences over the entire collection of 
quantifiers that we consider. 

We generate the collection of quantifiers and determine their mini
mal expression lengths using similar methods as Steinert-Threlkeld 
(2020, 2021) use to study the complexity of quantifiers in the trade-off 
between simplicity and informativeness.20 

4.1. Methods 

We use the following methods to generate a large body of generalized 
quantifiers, in order to study their complexities in relation to the uni
versal properties being present or not. 

4.1.1. Grammar and language 
To study the universal properties of quantifiers we need to look both 

at quantifiers that do and that do not have these properties. We use a 
principled way of generating a large space of generalized quantifiers 
with and without these properties. In particular, we use a logical 
grammar to generate quantifier expressions, over which the meaning of 
a quantifier21 can be computed. 

We define a simple yet expressive grammar that consists of basic 
building blocks and standard rules for how to combine them. In 
particular, the grammar is defined by the collection of operators 
presented in Table 1. These consist of standard set-theoretic operators 
(∪, ∩, \, ∣⋅∣, ⊆), integer operators (=, >), and boolean operators 
(∧,∨,¬). In order to investigate the property of quantity, we need an 
operator that is sensitive to the ordering over objects. In fact, when
ever we say set, we mean a tuple of a set and an ordering < over the 
elements in the set. We include such an index-like operator, namely 
operator iota, ι(⋅, ⋅), that, given a set and an index position, returns a 
singleton with the object at that index position, given the ordering 
over the set. 

Fig. 5. Quantifier pairs to test the property of conservativity. Complexity values for most and M, and for not all and not only. Mean complexity values with 95% 
confidence interval over all 12 lexicographical model sequences. 

20 We note that the concurrent and complementary Katzir, Lan, and Peled 
(2020) applies the Minimum Description Length Principle to learning quantifiers. 
Their representational format, however, is based on semantic automata (Van 
Benthem, 1986) and not on expression length in a logical grammar.  
21 The meaning of a quantifier is defined by the collection of models in which 

a quantifier expression is true. This is also called the extension of a quantifier. 
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In addition to the operators, the grammar has two variables 
{A,B}—where A and B are placeholders for sets (with an 
ordering)—and a collection of constants {0,1,…, s},22 which represent 
integers. This grammar defines a formal language with quantifier ex
pressions, which are the expressions that can be formed by using the 
given variables, constants, and operators, (adhering to the type re
strictions of the operators) and that return a Boolean value. For example 
A ⊆ B and 2 > |A ∩ B| are expressions in this language. 

We call the language defined by the operators in Table 1 language L +ι. 
The number of quantifier expressions in this language grows exponen
tially in the maximum expression length ℓ. To manage this exponential 
blow-up we set the maximum expression length in language L +ι to 5. To 
be able to push the maximum expression length a bit further, in addition, 
we also consider the language that results from excluding the ι operator 
from the operators in Table 1, which we call language L − ι. Excluding the ι 
operator reduces the number of different quantifier expressions per 
expression length, allowing us to generate all expressions up to length 7. 
For language L − ι we can only investigate the properties of monotonicity 
and conservativity, because all of its quantifiers are quantitative by 
definition, due to the exclusion of the index operator ι. 

We note here that our measure of expression length depends on the 
choice of grammar and especially the primitives therein (Feldman, 
2000; Goodman, 1955; Goodman et al., 2008; Piantadosi, Tenenbaum, 
& Goodman, 2016). While this dependence is unavoidable, we note 
several motivations for our particular choice of primitives.23 Piantadosi 
et al. (2016) explicitly studied which choices of primitives best explain 
human concept learning. While no single grammar was best, the basic 
logical operators that we use here (∧, ∨, ¬) were shown there to be 
among the best performing set. Crucially, some logically equivalent 
systems (e.g., those with a single connective like NAND or NOR) were 
shown to perform worse at predicting human learning curves. We take 
this to show that the choice of logical connectives in our grammar is a 
particularly natural and motivated one. While less work studies explic
itly set-theoretic concepts in the framework of a logical grammar, the 
tight formal connection between the set-theoretic operators union, 
intersection, and complement (∪, ∩, \) and the included logical con
nectives conjunction, disjunction, and negation (∧, ∨, ¬) makes these a 
natural choice for set-theoretic primitives. That being said, future work 
should (a) verify the robustness of our results to various choices of 
primitives and (b) study human quantifier learning as a basis for 
choosing such primitives, by analogy with the work by Piantadosi et al. 
(2016). 

4.1.2. Minimal expression length 
Quantifier expressions in these languages are not unique. The 

quantifier at most one can, for instance, be defined both by 

(2 > |A ∩ B|) and by ¬(|A ∩ B| > 1). The meanings of these expressions 
are equivalent: they are true in exactly the same models. We define the 
length of an expression by the number of operators in it. So the length of 
expression (2 > |A ∩ B|) is 3 and the length of expression ¬(|A ∩ B|> 1)
is 4. The minimal expression length of a quantifier in this language is the 
length of the shortest expression for this quantifier. 

We generate the collection of quantifier expressions of minimal 
expression length by the following procedure. We first generate all ex
pressions of length 1, one by one, by going through the list of operators. 
For each expression we compute its meaning for all models from size 1 to 
size s. We compare this meaning to the meanings of expressions that we 
stored so far. If the meaning is not yet present, we add this expression 
and its meaning to our collection. If the meaning was already present, 
this means we already included an equivalent expression of equal or 
shorter length. Then we do not add it and continue with the next 
quantifier expression in line. When finished with all possible quantifiers 
of length 1, we continue with quantifiers of length 2 and repeat the 
procedure up to length ℓ. This way, we generated all 24,632 semanti
cally unique quantifiers expressions, up to and including length 5, for 
language L +ι, and all 22,287 semantically unique quantifier expres
sions, up to and including length 7, for language L − ι. By virtue of this 
procedure, we know that all quantifier expressions in our collection are 
of minimal expression length: their meanings cannot be expressed by a 
shorter combination of operators in our grammar. Moving forward, we 
use the names language L +ι and language L − ι to denote only the col
lections of quantifier expressions of minimal expression length. 

Due to the fact that we can only compute the meaning of quantifier 
expressions over a finite sequence of quantifier models, i.e., up to a 
maximum model size s, not all quantifier expressions of minimal 
expression length will be included in these languages. Some of the 
quantifier expressions that have an equivalent meaning to a shorter 
quantifier expression when evaluated in models up to size s, might not 
be equivalent when considering all possible models of arbitrarily large 
size. This means that there might be some model of size s′ > s for which 
the meaning of that quantifier expression is not equivalent to the 
meaning of the shorter expression. So while all quantifier expressions 
included in our collection are guaranteed to be of minimal expression 
length, irrespective of the maximum model size s that is considered, it is 
not guaranteed to include all quantifier expressions of minimal expres
sion length when considering all possible models (of arbitrarily large 
size). 

4.1.3. Encoding quantifier meanings as binary sequences 
To compute and compare the meanings of the quantifier expressions, 

we generate binary representations of those meanings. We use the same 
procedure for this as described in Section 3.1.2: we first encode each 
model as a sequence of symbols and enumerate the models in the lexi
cographical order over their symbol representations. Then, given a 
quantifier expression, we put a 1 in the place of each model when the 
quantifier expression is true in that model, and a 0 when the quantifier 
expression is false in that model. 

For these encodings we are assuming the property of extensionality 
(universe independence), i.e., that the subarea M \(A ∪ B) does not 
matter for the meaning of a quantifier (Peters and Westerståhl, 2006). 
This means that instead of looking at the four subareas of a quantifier 
model, we now only need to look at three subareas and give them a label, 
say A ∩ B ↦ d, A\B ↦ e, and B\A ↦ f . This reduces the number of 
different quantifier models that are relevant for the meaning of a 
quantifier, and thereby reduces the length of the binary encoding of the 
quantifier meaning, which is now of length |(d, e, f) |s (instead of length 
|(d, e, f , g) |s in Section 3.1.2) for a given model size s. 

In addition to minimal expression length, we also compute the 
Lempel-Ziv complexity of each quantifier, for comparison to the mini
mal expression length results in the current experiment and to the 
Lempel-Ziv complexity results in Experiment 1. As we explain in Section 

Table 1 
The collection of operators used to generate quantifier expressions. Note that the 
sets are accompanied by an ordering, which is of relevance for operator ι.  

operator type gloss 

∪ SET × SET → SET Union 
∩ SET × SET → SET Intersection 
\ SET × SET → SET Setminus 
ι(⋅, ⋅) INT × SET → SINGLETON SET “Object at index” 
∣⋅∣ SET → INT Cardinality 
⊆ SET × SET → BOOL Subset equal 
= INT × INT → BOOL Integer equality 
> INT × INT → BOOL Integer larger than 
¬ BOOL → BOOL Negation 
∧ BOOL × BOOL → BOOL And 
∨ BOOL × BOOL → BOOL Or  

22 Where s is the maximum model size that is considered, which, to limit 
computational blow-up, we set to 8.  
23 Thanks to an anonymous referee for pushing us to clarify here. 
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3.1.2, there is not one unique lexicographical ordering of the models. In 
the case of three model areas, there are six such orderings, because the 
three model area labels {d, e, f} can be ordered in 3! = 6 ways 
(in contrast to the 4! = 24 mappings in the case of four model areas, such 
as in Experiment 1). This result in six different sequences of the quan
tifier models, of which three are unique for our purposes.24 For 
robustness, we look at all three uniquely different lexicographical or
derings over {d, e, f} and we report the mean Lempel-Ziv complexity 
over these three orderings in Section 4.2.2 and we report the complex
ities for each individual ordering in Appendix B.25 

4.2. Results 

Using the described procedures we generated a collection of 24,632 
quantifiers for language L +ι and 22,287 quantifiers for language L − ι. 
For each quantifier we computed whether they have the property of 
monotonicity, quantity, and conservativity, and we computed their 
complexity scores, both for minimal expression length (ML) and Lempel- 
Ziv complexity (LZ). To facilitate the comparison of the results for ML 
and LZ, we standardized the complexity data by computing their 
z-scores.26 The code that we used for generating these data and the data 
themselves can be found at https://github.com/ivdpol/Quant 
ifierComplexity. 

We report two measures of descriptive statistics: (1) the average 
complexity of quantifiers with versus quantifiers without the universal 
property, and (2) the percentage of quantifiers with the universal 
property per minimal expression length.27 In addition to considering the 
descriptive statistics, we performed logistic regressions for each uni
versal property individually and for all properties taken together, with 
the universal property as dependent variable and complexity as the in
dependent variable. The logistic regression model quantifies the relation 
between complexity and universal property, by estimating the proba
bility that a quantifier satisfies a universal given the complexity of the 
quantifier. In the case of minimal expression length this means that the 
logistic regression model quantifies the relation between minimal 
expression length and universal property that is apparent from Fig. 6. 
The regression coefficient β of the (standardized) complexity indicates 
that a change of 1 standard deviation in complexity is associated with a 
change of β in log odds of a quantifier satisfying a universal. 

We compared the coefficient value of complexity to the coefficient 
value of a random baseline, which we generated by randomly shuffling 
the actual complexity values over the different quantifiers and doing 
logistic regression over those randomly shuffled values. The coefficient 
value of the random baseline can be seen as quantifying the relation 
between a random property of the quantifiers and whether a quantifier 
satisfies a semantic universal. We compared the coefficient of the 
random baseline with the coefficient of complexity to see if complexity 
indeed has a different relation to the universal than a random property. 

We used bootstrap resampling to compute a distribution over the 
regression coefficient of complexity and of the random baseline.28 Note 

that we are not performing a significance test of a sample here, but 
rather aim to quantify the uncertainty of a difference in a whole popu
lation of simulated results. To achieve this, bootstrapping samples from 
that population and comparing that to randomly labeled bootstrap 
samples (the random baseline) yields an estimate of the uncertainty 
around the regression coefficient and whether this distribution of co
efficients exceeds the distribution of coefficients observed by chance 
alone. We generated the distribution over the coefficient of the random 
baseline by randomly shuffling the actual complexity values over the 
different quantifiers, each time before taking a sample. We computed 
the coefficient of the original complexity data and of the random base
line in pairs, over the same random samples of quantifiers. To compare 
the coefficient of complexity to the coefficient of the random baseline, 
we plotted the distribution of the difference, per sample, between the 
coefficient of complexity and the coefficient of the random baseline. We 
report the mean of this distribution of the coefficient difference as a 
measure for the relation between complexity and universal property: if 
the mean is negative, that indicates that quantifiers satisfying the uni
versal are indeed simpler. 

4.2.1. Minimal expression length (ML) 
First, we present the results for the minimal expression length (ML) 

scores. Next, in Section 4.2.2, we present the results for the Lempel-Ziv 
complexities (LZ scores). 

4.2.1.1. Language L +ι(ML). Here we present the results for the collec
tion of quantifiers generated by the grammar defined by the operators in 
Table 1, which we call language L +ι. This collection contains 24,632 
semantically unique quantifier expressions, with an expression length 
(i.e., the number of operators in a quantifier) ranging from 1 to 5. 
Because this grammar contains the index-sensitive operator ι, the 
collection contains quantifiers that are order dependent, like the quan
tifier the first three. This allows for investigating the property of 
quantity because the collection contains both quantifiers that do and 
that do not satisfy this property. 

Descriptive Statistics (ML,L +ι). The descriptive statistics show a 
negative relation between minimal expression length (ML) and universal 
property. Quantifiers that have all three properties have a lower average 
ML, i.e., they are less complex, than quantifiers that do not have all three 
properties (that have either two, one, or none of the properties). In 
addition, also for each individual universal property the average ML of 
quantifiers with that property is consistently lower than the average ML 

Fig. 6. Percentage of universal property per minimal expression length. For 
language L +ι. 

24 Of these six sequences three are the reverse of one of the other three. Since 
the Lempel-Ziv complexity measure CLZ takes the average between the 
complexity of a sequence and the complexity of the reverse of that sequence 
(see Section 3.1.1), this leaves three uniquely different lexicographical model 
sequences over which we can compute this measure.  
25 Note that these orderings are relevant only for the Lempel-Ziv complexity 

and that they do not influence the minimal expression length.  
26 A z-score is obtained by subtracting the mean and dividing by the standard 

deviation for each value of the variable. This results in a standardized variable, 
which is a variable rescaled to have a mean of 0 and a standard deviation of 1.  
27 We only report this percentage for ML and not for LZ because the latter is 

not a discrete measure and can therefore not be used to make a meaningful 
contingency table by which this percentage can be computed.  
28 We use a sample size of 5000 quantifiers and we repeat the process for 

20,000 random samples. 
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of quantifiers without that property. See Table 2 for an overview of 
average (standardized) ML scores L +ι. 

Furthermore, both for quantifiers with all three properties and for 
each universal property individually, the percentage of quantifiers with 
the universal property (per a given ML score) shows a negative relation 
to ML: the lower the minimal expression length, the higher the pro
portion of quantifiers with a universal property. See Fig. 6 for an over
view of the percentage of universal property per minimal expression 
length for language L +ι. 

Logistic Regression (ML, L +ι). In line with the descriptive statistics, 
the regression results for language L +ι show a negative relation between 
ML complexity and universal property, i.e., a positive relation between 
simplicity and universal property, both when looking at all three prop
erties combined and for each property individually. For each of the four 
cases (monotionicity, quantity, conservativity, and all properties com
bined) the mean of the coefficient of the original (standardized) ML data 
has a negative sign, while the mean of the baseline (the randomly 
shuffled, standardized ML scores) is around zero. See the top panels of 
Fig. 7 for density plots of the coefficient value of the regressions over all 
20,000 samples. The distribution of the difference (computed per sam
ple) between the coefficient of the original (standardized) ML data and 
the randomly shuffled (standardized) ML scores has a 95% confidence 
interval that is entirely below zero (Fig. 7, bottom panels). The values of 
the mean and the 95% confidence interval of the coefficient difference 
between original and randomly shuffled data are as follows. All three 
properties: -0.43 (95% CI [− 0.72, − 0.19]); monotonicity: -0.15 (95% CI 
[− 0.24, − 0.06]); quantity: -0.15 (95% CI [− 0.26, − 0.04]); con
servativity: -0.15 (95% CI [− 0.28, − 0.03]). 

4.2.1.2. LanguageL − ι(ML). To push the maximum expression length 
of the language a bit further,29 we generated a collection of quanti
fiers by a slightly altered grammar, namely the grammar that results 
from excluding the ι operator from the operators in Table 1. Excluding 
the ι operator substantially limits the number of semantically unique 
expressions that the grammar produces, which results in a collection 
of quantifier expressions (computationally feasible to generate) with a 
larger maximal expression length, namely 7, instead of 5. This 
collection contains 22,287 semantically unique quantifier expressions, 
which we call language L − ι. Because this grammar does not contain 
any index-sensitive operator, all of the quantifiers in this collection 
are order independent. This means that we can only investigate the 
properties of monotonicity and conservativity for this language, and 
not the property of quantity, because all of the quantifiers in this 
collection satisfy the property of quantity by definition. 

Descriptive Statistics (ML,L − ι). The descriptive statistics for ML in 
language L − ι show a similar qualitative result as for language L +ι. They 
show a negative relation between minimal expression length (ML) and 
universal property. The quantifiers that have both properties have a 
lower average ML, i.e., they are less complex, than the quantifiers that 

do not have both properties (that have either one or none of the prop
erties). In addition, also for each individual universal property the 
average ML of quantifiers with that property is consistently lower, i.e., 
less complex, than the average ML of quantifiers without that property. 
In fact, for the individual properties the average differences in 
complexity show a stronger result then for language L +ι: the differences 
between quantifiers with versus without monotonicity or conservativity 
are larger. See Table 3 for an overview of average ML scores for language 
L − ι. 

The percentage of quantifiers with the universal property (per a 
given ML score) shows the same general trend in relation to ML as for 
language L +ι. It shows a negative trend in the relation between the 
percentage of universal property and ML: the lower the minimal 
expression length, the higher the proportion of quantifiers with a uni
versal property. Compared to language L +ι this downward pattern is 
less clearly pronounced, especially when looking at the properties 
individually, but note that the differences in average complexity for the 
individual properties are actually larger than for language L +ι. When 
looking at quantifiers that have both properties, the pattern is very 
similar to that for language L +ι. See Fig. 8 for an overview of the per
centage of universal property per minimal expression length for lan
guage L − ι. 

Logistic Regression (ML,L − ι). The regression results for ML in 
language L − ι show the same qualitative pattern as for language L +ι. 
They show a negative relation between ML complexity and universal 
property, i.e., a positive relation between simplicity and universal 
property, both when looking at both properties combined and for each 
individual property. See the top panels of Fig. 9 for density plots of the 
coefficient value of the regressions over all 20,000 samples. For each of 
the three cases (monotionicity, conservativity, and both properties 
combined) the mean of the coefficient of the original (standardized) ML 
data has a negative sign, while the mean of the baseline (the randomly 
shuffled, standardized ML scores) is around zero. The regression results 
for language L − ι show a stronger effect than for language L +ι. For 
language L − ι the distribution of the difference (computed per sample) 
between the coefficient of the original (standardized) ML data and the 
randomly shuffled (standardized) ML scores is entirely below zero for all 
of the samples (Fig. 9, bottom panels). The values of the mean and the 
95% confidence interval of the coefficient difference between original 
and randomly shuffled data are as follows. Both properties: -0.47 (95% 
CI [− 0.61, − 0.33]); monotonicity: -0.41 (95% CI [− 0.50, − 0.32]); 
conservativity: -0.27 (95% CI [− 0.38, − 0.16]). 

4.2.1.3. Summary Minimal Expression Length (ML). For all three se
mantic universals, these results show that, in general, quantifiers satis
fying the universal properties have a lower minimal expression length, 
i.e., are simpler, than those that do not. 

4.2.2. Lempel-Ziv complexity (LZ) 
In addition to minimal description length, we also measured the 

Lempel-Ziv complexity (LZ) of the quantifiers, similarly as in Experi
ment 1. As explained in Section 4.1.3, we compute the LZ scores of the 
quantifiers over the three different lexicographical orderings of the 
quantifier models, which we refer to as LZ0, LZ1, and LZ2 scores. The LZ 
results for each of the orderings are very similar. In this section we 
report the mean values over LZ0, LZ1, and LZ2. For the sake of read
ability we refer to these mean LZ scores simply by LZ. The individual 
results for the LZ0, LZ1, and LZ2 scores can be found in Appendix B. 

4.2.2.1. LanguageL +ι(LZ). First, we present the LZ results for language 
L +ι, which is a collection of 24,632 quantifier expressions with an 
expression length ranging from 1 to 5. Next, in Section 4.2.2.2, we 
present the LZ results for language L +ι, containing quantifier expres
sions with an expression length ranging from 1 to 7. 

Descriptive Statistics (LZ,L +ι). The descriptive results for LZ in 

Table 2 
Average (standardized) ML scores of quantifiers with (YES) versus without (NO) 
universal property and the proportion (%) of quantifiers with that universal 
property. All stands for quantifiers that have all three properties. The category 
“all, NO” stands for quantifiers that lack at least one property, i.e., quantifiers 
that do not have all three properties. For language L +ι.   

YES NO % 

monotonicity − 0.12 0.05 0.28 
quantity − 0.15 0.03 0.15 
conservativity − 0.16 0.02 0.12 
all − 0.79 0.02 0.02  

29 This is the maximum value of the minimal expression lengths of the 
quantifiers in the language. 
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language L +ι show a different pattern than those for the ML scores. The 
relation between Lempel-Ziv complexity and universal property differs 
greatly per individual property. Similar to the ML scores, the LZ scores 
show a negative relation between LZ and monotonicity. Monotone 
quantifiers have a lower average LZ complexity, i.e., they are less 
complex, than quantifiers that are non-monotone. Conservative quan
tifiers, on the other hand, show the opposite relation, they have a higher 
average LZ complexity than non-conservative quantifiers. The LZ scores 
show no relation between quantity and LZ complexity: quantitative 
quantifiers have a similar average LZ complexity than non-quantitative 

quantifiers. Finally, quantifiers that have all three properties have a 
higher average LZ complexity than quantifiers that do not have all three 
properties (that have either two, one, or none of the properties). See 
Table 4 for an overview of average LZ scores for language L +ι. 

Logistic Regression (LZ,L +ι). The regression results for LZ in lan
guage L +ι show a similar mixed pattern as the descriptive statistics. Like 
for the ML scores, the regression results for LZ show a negative relation 
between LZ complexity and monotonicity. The regression results for 
conservativity, on the other hand, show a positive relation between LZ 
complexity and monotonicity. The regression results for quantity show 
no relation between complexity and quantity. The regression results for 
all three properties taken together shows a weakly positive relation. See 
the top panels of Fig. 10 for density plots of the coefficient value of the 
regressions over all 20,000 samples. The values of the mean and the 95% 
confidence interval of the coefficient difference (computed per sample) 
between original and randomly shuffled data are as follows (Fig. 10, 
bottom panels). All three properties: 0.16 (95% CI [− 0.12, 0.45]); 
monotonicity: -0.32 (95% CI [− 0.41, − 0.22]); quantity: 0.02 (95% CI 
[− 0.10, 0.14]); conservativity: 0.18 (95% CI [0.06, 0.31]). 

4.2.2.2. LanguageL − ι (LZ). Here we present the results for language 
L − ι, which is a collection of 22,287 quantifiers with an expression length 
ranging from 1 to 7. Note that this is the language defined by the grammar 
that results from excluding the ι operator from the operators in Table 1. 

Descriptive Statistics (LZ,L − ι). The descriptive statistics for LZ in 
language L − ι partly show a similar pattern to those for language L +ι. 
The LZ scores show no relation between LZ and monotonicity, instead of 
the negative relation between LZ and monotonicity for language L +ι. In 
language L − ι, monotone quantifiers have a very similar LZ complexity, 
than quantifiers that are non-monotone. Conservative quantifiers, on the 
other hand, have a higher average LZ complexity than non-conservative 
quantifiers, even more strongly so than for language L +ι. The average LZ 
complexity of quantifiers that have both properties is higher than that of 
quantifiers that do not have both properties (that have either one or 
none of the properties). See Table 5 for an overview of average LZ scores 
for language L − ι. 

Logistic Regression (LZ,L − ι). The logistic regression results for 
language L − ι show a similar qualitative pattern as the descriptive sta
tistics. They show a weakly negative relation between LZ and mono
tonicity, and a positive relation for conservativity and for both 
properties taken together. See the top panels of Fig. 11 for density plots 
of the coefficient value of the regressions over all 20,000 samples. The 
values of the mean and the 95% confidence interval of the coefficient 
difference (computed per sample) between original and randomly 

Fig. 7. Bootstrapped logistic regression results for standardized ML scores for language L +ι.  

Table 3 
Average standardized ML scores of quantifiers with (YES) versus without (NO) 
universal property and the proportion (%) of quantifiers with that universal 
property. Both stands for quantifiers that have both properties. The category 
“both, NO” stands for quantifiers that lack at least one property (i.e., that do not 
have both properties). For language L − ι.   

YES NO % 

monotonicity − 0.28 0.14 0.33 
conservativity − 0.27 0.05 0.14 
both − 0.60 0.05 0.08  

Fig. 8. Percentage of universal property per minimal expression length. For 
language L − ι. 
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shuffled data are as follows (Fig. 11, bottom panels). Both properties: 
0.23 (95% CI [0.08, 0.38]); monotonicity: -0.08 (95% CI [− 0.16, 0.01]); 
conservativity: 0.41 (95% CI [0.29, 0.52]). 

4.2.2.3. Summary Lempel-Ziv Complexity (LZ). The results for Lempel- 
Ziv complexity show a different picture for each universal property. In 
general, they show a negative relation between LZ and monotonicity, a 

positive relation between LZ and conservativity, and no relationship 
between LZ and quantity. 

4.3. Discussion of Experiment 2 

We used a simple yet expressive logical grammar to generate two 
large collections of logically possible quantifiers, we measured their 

Fig. 9. Bootstrapped logistic regression results for standardized ML scores for language L − ι.  

Table 4 
Average standardized LZ scores of quantifiers with (YES) versus without (NO) 
universal property and the proportion (%) of quantifiers with that universal 
property. All stands for quantifiers that have all three properties. The category 
“all, NO” stands for quantifiers that lack at least one property (i.e. which do not 
have all three). For language L +ι.   

YES NO % 

monotonicity − 0.22 0.08 0.28 
quantity 0.02 0.00 0.15 
conservativity 0.16 − 0.02 0.12 
all 0.16 0.00 0.02  

Fig. 10. Bootstrapped logistic regression results for standardized LZ scores for language L +ι.  

Table 5 
Average standardized LZ scores of quantifiers with (YES) versus without (NO) 
universal property and the proportion (%) of quantifiers with that universal 
property. Both stands for quantifiers that have both properties. The category 
“both, NO” stands for quantifiers that lack at least one property (i.e., that do not 
have both properties). For language L − ι.   

YES NO % 

monotonicity − 0.05 0.03 0.33 
conservativity 0.34 − 0.06 0.14 
both 0.22 − 0.02 0.08  

I. van de Pol et al.                                                                                                                                                                                                                              



Cognition 232 (2023) 105150

14

complexities both in terms of their minimal expression lengths and their 
Lempel-Ziv complexities, and identified whether they have the proper
ties of monotonicity, quantity, and conservativity. We investigated 
whether quantifiers that satisfy semantic universals are simpler than 
those that do not. With respect to minimal expression length we found 
for each of these universal properties that quantifier expressions that 
satisfy them are simpler: they have a shorter minimal expression length. 
This suggests the following explanation for semantic universals in the 
domain of quantifiers: meanings satisfying semantic universals are 
simpler. 

With respect to Lempel-Ziv complexity we found diverging results. 
Similar to minimal expression length, we found that monotone quanti
fiers are simpler than non-monotone quantifiers: they have a lower 
Lempel-Ziv complexity. Conservative quantifiers, on the other hand, 
were found to have a higher Lempel-Ziv complexity than non- 
conservative quantifiers and we found no difference in Lempel-Ziv 
complexity between quantitative and non-quantitative quantifiers. 

These results are somewhat explainable in terms of the nature of the 
two measures. At a high level, Lempel-Ziv complexity searches for reg
ularity in the distribution of truth values across the ordered list of 
models, i.e., a regularity in the distribution of in which models a given 
quantifier is true or false, given an enumeration of the models. Mono
tonicity provides such regularity, since models that stand in the super- or 
submodel relation will be enumerated in a predictable way.30 By 
contrast, quantity says that the same truth value gets assigned to all 
models which arise via shuffling the underlying ordering of objects in a 
model; these will occupy myriad different positions in the overall 
ordering of the model sequence, and so this constraint does not intro
duce much regularity. Conservativity says that particular pairs of models 
must agree on the truth value; this “smaller-scale” constraint (on pairs of 
models instead of on the whole sequence of models) will also not induce 
much regularity in the overall ordering of the model sequence. 

While both Lempel-Ziv complexity and minimal expression length 
can be motivated by intuitions about compression, the two measures are 

searching for structure in different places. Both measures can be seen as 
capturing regularities or structure in the meaning of quantifiers, i.e., in 
the mapping between the space of possible models and the truth values 
of a quantifier in those models. While Lempel-Ziv complexity looks at a 
binary representation of this mapping, minimal expression length uses a 
language to represent the mapping from models to truth values directly, 
instead of first turning this mapping into a binary sequence. Conceptu
ally, one can think of Kolmogorov complexity—and thus its approxi
mation by Lempel-Ziv complexity—as measuring the length of the 
shortest program to generate the binary sequence representing the 
mapping from models to truth values, in comparison, one could think of 
minimal expression length as measuring the length of the shortest pro
gram to generate the mapping from models to truth values directly 
(without first encoding that mapping into a binary sequence). Because 
these two approaches take different inputs, they also have different 
primitives in their respective “programming languages”.31 

Finally, the results of our experiment are not a priori obvious, given 
that the grammar can generate quantifiers that have a relatively low 
expression length while they do not satisfy one or more of the universal 
properties (see Fig. 6 and Fig. 8). So while not every quantifier with a 
short minimal expression length satisfies the universal properties, our 
results show that quantifiers that satisfy semantic universals do, overall, 
have a shorter minimal expression length. 

5. Discussion 

We performed two simulation studies to investigate the relation 
between the complexity of quantifiers and whether they adhere to 
universal properties. In Experiment 1, we measured the Lempel-Ziv 
complexity of quantifiers in a small-scale study using a minimal pair 
methodology. In Experiment 2, we used a logical grammar to perform a 
large-scale study in which we measured both the minimal expression 
length and the Lempel-Ziv complexity of quantifiers. Using Lempel-Ziv 
complexity to measure the complexity of quantifiers and using the 
minimal expression lengths of quantifiers to investigate semantic uni
versals are, to our knowledge, novel applications of these frameworks. 

Fig. 11. Bootstrapped logistic regression results for standardized LZ scores for language L − ι.  

30 For instance, in models of size 3, the model with A = {0,1} and B = {2} gets 
assigned sequence eef, and the model with A = {0,1} and B = {0,2} (a super
model of the former) gets sequence def, according to the model encoding 
described in Section 3.1.2 and Section 4.1.3. The position of the latter sequence 
in the lexicographical order of models is predictable from the former. 

31 See Grünwald, Myung, and Pitt (2005) for more on the relationship between 
description length and Kolmogorov complexity. We thank an anonymous 
reviewer for helpful discussion here. 
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How these two complexity measures relate to each other in this setting 
and whether they measure the same aspects of the complexity of 
quantifiers is an open question that has not been studied before (see 
Section 4.3 for more discussion of their relation in this context). 

While Lempel-Ziv complexity and minimal expression length both 
measure a form of the complexity of the meaning, i.e., the semantics, of 
quantifiers, interestingly we found diverging results between them. The 
Lempel-Ziv results in Experiment 2 (partly) diverge from the Lempel-Ziv 
results in Experiment 1 and from the minimal expression length results 
in Experiment 2. The results for monotonicity show the same pattern 
between Experiment 1 and 2, and between the different measures and 
the different languages within Experiment 2. For conservativity, in 
Experiment 2 we found that conservative quantifiers were more complex 
in terms of Lempel-Ziv complexity, while we found no difference in 
Lempel-Ziv complexity for conservativity in Experiment 1, and we found 
that conservative quantifiers were simpler in terms of minimal expres
sion length in Experiment 2. For quantitative quantifiers we found no 
difference in Lempel-Ziv complexity in Experiment 2, while we found a 
non-robust tendency towards being more simple in terms of Lempel-Ziv 
complexity in Experiment 1, and we found that quantitative quantifiers 
were robustly simpler in terms of minimal expression length in 
Experiment 2. 

The fact that we found differences between Experiment 1 and 2 is 
relatively unsurprising, given that both the experimental setup and the 
scale on which they operate are entirely different. What is more sur
prising, however, is the differences between the two different 
complexity measures within Experiment 2 itself, since they both operate 
on exactly the same quantifiers in the same experimental setup. When 
we look at the differences between the results for the two languages that 
we considered, the complexity results for minimal expression length for 
language L − ι—which is the collection of quantifiers with a higher 
maximum value of the expression length—are of the same pattern and 
with a larger effect size (larger differences in complexity between 
quantifiers with versus without universal properties) than for language 
L +ι. This indicates that the distribution of minimal expression length 
(with respect to universal property) scales robustly over larger expres
sions. Interestingly, for Lempel-Ziv complexity the effect sizes (for 
monotonicity) were actually smaller and less clear for the language L − ι, 
indicating a less robust scaling of the results over larger expressions. 

It is hard to say why exactly we find these differences between the two 
different complexity measures. The fact that we found different result for 
Lempel-Ziv complexity between Experiment 1 and Experiment 2 suggests 
that Lempel-Ziv complexity might not scale robustly. In principle, it 
could be the case that Lempel-Ziv complexity gives different results for 
smaller quantifier expressions than for larger quantifier expressions, and 
that when significantly scaling the length of the quantifiers—which is 
quite challenging due to exponential increase in the required computa
tional resources—its results move closer to those of minimal expression 
length. Our measure of minimal expression length stems from the lan
guage of thought framework, which has a long history of providing 
robust explanations for human concept learning (Feldman, 2000; 
Goodman et al., 2008; Piantadosi et al., 2016), and in the current study it 
provided robust results in the explanation of semantic universals. While 
Lempel-Ziv complexity and other forms of approximate Kolmogorov 
complexity have also proven to be useful in several domains of cognitive 
science (Chater and Vitányi, 2003; Feldman, 2016; Planton et al., 2021), 
the Lempel-Ziv complexity of quantifiers shows diverging results over 
different experimental scales and settings. While future work should 
investigate whether Lempel-Ziv complexity could provide more robust 
results when further scaling up our experimental setting, these results are 
also broadly consistent with those of Planton et al. (2021), who found 
that a measure of complexity based on the language of thought approach 
out-performed Lempel-Ziv complexity in predicting behavior in a 
sequential memory task. 

Two factors of interest for such an investigation are the following. 
First, as mentioned in Section 3.3, a limitation of Lempel-Ziv complexity 

as a complexity measure for quantifiers is that it is sensitive to the order 
in which the quantifier models are placed in the (binary) meaning 
sequence of the quantifier expression. To keep the computations of the 
quantifier meanings feasible for such a large collection of quantifiers, in 
Experiment 2 we looked at three subareas of the model instead of four 
(assuming the property of extensionality, i.e., excluding the subarea 
M \ (A ∪ B) from our model representations). Ideally, future work in
cludes pushing our computations in Experiment 2 further to look at 
models with four subareas instead of three and compare those to the 
current results. Second, as mentioned in Section 4.1.2, our procedure 
guarantees that all quantifier expressions in the collections are of min
imal expression length, but they are not the complete collections of all 
quantifier expressions of minimal expression length (up to length ℓ) 
when considering all possible models of arbitrarily large size. It is 
infeasible to guarantee the completeness of any collection of quantifier 
expressions of minimal expression length. Instead, future work could 
include pushing the maximum model size a bit further and comparing 
results over series of different model sizes, to investigate whether the 
results scale robustly over larger model sizes. 

To arbitrate which of these measures is cognitively the most relevant 
one in the explanation of semantic universals of quantifiers, ideally they 
should be related to human performance on processing quantifiers with 
versus without universal properties. A challenge here is that, due to the 
ubiquity of these properties in natural language quantifiers, such 
empirical investigations are only possible in artificial learning experi
ments in which subjects need to learn novel words (see, e.g., Hunter & 
Lidz, 2013; Maldonado & Culbertson, 2021). Existing work has shown 
that children are sensitive to the syntactic environment or category of 
novel words when learning superlatives, using determinerhood versus 
adjectivehood to distinguish between quantity-based meanings and 
quality-based meanings of the novel superlative (Wellwood, Gagliardi, 
& Lidz, 2016). Our measures of complexity are not sensitive to the 
syntactic distribution of natural language expressions but are defined 
solely in terms of their meaning; future work should build models which 
incorporates both. On the other end of the spectrum, Chemla, Buccola, 
and Dautriche (2019) has shown that monotone quantifiers are easier to 
learn than connected (roughly: the conjunction of monotone) quanti
fiers, both of which are easier than entirely non-monotone quantifiers. 
To the extent that these learning results pattern with our complexity 
results, this provides further support for the cognitive reality of our 
measures. One further complication that needs to be taken into account 
when analyzing artificial word learning studies is that the results of such 
experiments might be influenced by the subjects’ bias towards the 
properties that are prevalent in their native language. When the novel 
quantifiers are more difficult to process for subjects, this could be simply 
due to such a bias towards what subjects are used to, instead of to the 
properties themselves being cognitively simpler or more complex to 
process. 

The descriptive statistics showed that there are quite a few ex
pressions in language L +ι with the relatively short expression length of 
2, that do not satisfy one or more universal properties (see Fig. 6 and 
Fig. 8). The majority of these expressions include the ι operator—which 
takes as input and integer i and a set P and returns a singleton with the 
i-th object in P—and all but one of these expressions include an integer 
constant. For example, for i ∈ {1,…,8} the expression A ⊆ ι(i,B) is an 
expression in language L +ι that has length 2 and that does not satisfy 
monotonicity, quantity, or conservativity. To our knowledge, there is 
no quantifier attested in natural language that expresses this meaning, 
which could be described by “either there is no A or there is exactly one 
A, which is the i-th B.” The prevalence of the ι operator in these ex
pressions suggests that the ι operator might be a less basic operator. 
Future work could include refining the definition of expression length 
by assigning different weights to the operators, and possibly assigning 
extra weight to the ι operator. 

We used the framework of generalized quantifiers because it is a 
well-defined and well-studied framework for representing the (literal) 
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meaning of quantifiers. Our aim in defining the grammar that we used to 
build a large collection of quantifier expressions, was to keep it as basic 
as possible, while at the same time capturing a significant part of natural 
language quantifiers and in addition also going beyond natural language 
(see also the discussion in Section 4.1.1). Where possible, we avoided 
complex operators that are combinations of more basic operators, 
thereby not including single operators for, i.e., “is an empty set” or “is of 
an even number.” Since there are multiple collections of basic set- 
theoretical and logical operators that are definable in terms of each 
other—i.e., that in the infinite case define the same collection of 
expressions—there is not just one unique grammar that satisfies these 
objectives. Future work includes investigating such alternative gram
mars and comparing the results. 

Relatedly, one may object that a certain circularity appears here: 
perhaps our set-theoretic formalisms for expressing the meanings of 
quantifiers look the way that they do because the relations denoted by 
quantifiers require them.32 There are minimally three things to say in 
response. First, this further motivates work on vindicating the choice of 
primitives in the grammar (see Section 4.1.1 for discussion). Second, 
Kemp (2012) found that a grammar built on set-theoretical oper
ators—more specifically, a grammar based on predicate logic—can ac
count for concept learning across a variety of different conceptual 
domains. Their results indicate that grammars without set-theoretic 
operators—namely, grammars based on propositional logic—are not 
suited to account for learning across the same breadth of conceptual 
domains. This suggests that the explanatory function of our set-theoretic 
formalisms go beyond the meaning of quantifiers. Third, and more 
fundamentally, we find it much more probable that instead of circularity 
there is a common cause situation. We know that there is a pre-verbal 
representation of sets of objects over and above individual objects 
(Ariely, 2001; Whitney & Yamanashi Leib, 2018). It seems very plau
sible that basic cognitive operations for manipulating set representa
tions were recombined into meanings for quantifiers (this is the idea 
behind the language of thought approach in general; Goodman, Ten
enbaum, & Gerstenberg, 2015) and also were explicitly formalized in set 
theory. 

Our results focus only on the universal properties that have been 
identified in the literature thus far. Another possible, and more general, 
constraint on quantifiers to analyze would be: all (quantified) determiners 
express quantifiers whose meaning depends both on set A and set B (in the 
generalized quantifier model 〈M, A, B, <〉), i.e., that quantifier meanings 
where either set A or set B is irrelevant to the truth value of the quan
tifier are not lexicalised (as mono-morphemic words).33 A counting 
argument can show that such meanings are exceedingly rare: while there 
are 24n quantifiers on models of size n, only 22n of those do not depend on 
set A and another 22n do not depend on set B.34 That being said, future 
work should explore whether the explanations offered in this paper also 

explain this property, or whether its source may differ. 
Both the descriptive statistics and the logistic regression results for 

minimal expression length show a robust difference in complexity be
tween quantifiers with versus without the universal properties. This 
suggests that a bias for simplicity might indeed be an explanatory factor 
for these semantic universals. At the same time, a bias towards simplicity 
is likely not the only force at play in shaping the semantic properties of 
quantifiers. Other likely candidates that could play a role in either 
pushing towards or away from these properties are cultural evolution 
(Carcassi, Steinert-Threlkeld, & Szymanik, 2019) and communicative 
needs (Steinert-Threlkeld, 2020, 2021). On this front, these latter two 
works study quantifier universals in a very similar setting to the present 
one: generating expressions from a grammar and measuring complexity 
via minimal expression length. There are three major differences in that 
work: (i) they analyze sets of quantifiers, while (ii) also measuring 
communicative cost of an entire set of quantifiers, and (iii) use different 
dependent variables. The present paper shows that minimal expression 
length on its own and at the level of individual quantifiers can be correlated 
with the presence of the universals. This shows that many of the other 
pressures (e.g., the need for a set of quantifiers to cover a large space of 
communicative needs) may not be necessary for explaining the semantic 
universals in question. More generally, in what way a simplicity bias 
shapes (the learning of) semantic systems in various domains precisely, 
how it functions within the trade-off between informativeness and 
simplicity at the level of a whole language and how that influences the 
lexicon is an ongoing debate (Carr et al., 2020; Chaabouni, Kharitonov, 
Dupoux, & Baroni, 2021; Denić, Steinert-Threlkeld, & Szymanik, 2022; 
Enguehard & Spector, 2021; Galdo, Sloutsky, & Turner, 2021; Steinert- 
Threlkeld, 2020; Zaslavsky, Maldonado, & Culbertson, 2021). 

6. Summary and conclusions 

We investigated the complexity of quantifiers in relation to semantic 
universals. We studied whether a bias towards simplicity can explain the 
semantic universals of monotonicity, quantity, and conservativity. 

We analyzed the minimal expression length of a large collection of 
quantifiers and found for all three universals that quantifiers satisfying 
them are simpler: they have a shorter minimal expression length. We 
found monotone quantifiers to be consistently simpler than non- 
monotone quantifiers for two different measures of complexity and in 
two different experimental setups. For quantity and conservativity we 
found different results between the small-scale and the large-scale 
setting, and between the two measures of complexity: minimal expres
sion length and approximate Kolmogorov complexity, as measured by 
Lempel-Ziv complexity. These differences motivate future work on 
independently validating these measures of complexity: to the extent 
that minimal expression length as a measure of the simplicity of quan
tifiers can be validated on independent grounds (by, e.g., the kinds of 
learning results discussed in Section 5), these results would provide 
support for the notion that universals arise partially due to simplicity. 

We also found preliminary evidence showing that the complexity 
and learnability of quantifiers pattern together. A natural follow-up 
experiment would involve investigating the learnability over a large 
collection of quantifiers for further comparison between the simplicity 
and learnability of quantifiers in the context of semantic universals. 
Similar methods as used by Steinert-Threlkeld and Szymanik (2020) 
could be used to investigate the learnability of the collection of quan
tifiers that we considered here. 
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Appendix A. Experiment 1 

This appendix contains the individual complexity plots (for all 12 lexicographical model sequences) for all minimal quantifier pairs in 
Experiment 1. 

A.1. Monotonicity

Fig. A.12. Complexity values for at most three and at least six or at most two, for all 12 lexicographical model sequences. 
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Fig. A.13. Complexity values for at least four and at least six or at most two, for all 12 lexicographical model sequences.  
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A.2. Quantity

Fig. A.14. Complexity values for at least three and the first three, for all 12 lexicographical model sequences.   
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Fig. A.15. Complexity values for at least three and the last three, for all 12 lexicographical model sequences. 
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A.3. Conservativity

Fig. A.16. Complexity values for most and M, for all 12 lexicographical model sequences.   
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Fig. A.17. Complexity values for not all and not only, for all 12 lexicographical model sequences.  

Appendix B. Experiment 2 

This appendix contains the descriptive statistics and logistic regression results for the Lempel-Ziv complexities over the three lexicographical model 
sequences in Experiment 2. We refer to these complexity scores over the three lexicographical model sequences by LZ0, LZ1, and LZ2. 

B.1. Descriptive Statistics for Language L +ι 

B.1.1. LZ0 scores, L +ι  Table B.6 
Average standardized LZ0 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. All stands 
for quantifiers that have all three properties. The category “all, NO” stands for quanti
fiers that lack at least one property (i.e., that do not have all three properties). For 
language L +ι.   

YES NO % 

monotonicity − 0.19 0.08 0.28 
quantity 0.03 0.00 0.15 
conservativity 0.18 − 0.02 0.12 
all 0.16 0.00 0.02 
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B.1.2. LZ1 scores, L +ι  Table B.7 
Average standardized LZ1 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. All stands 
for quantifiers that have all three properties. The category “all, NO” stands for quanti
fiers that lack at least one property (i.e., that do not have all three properties). For 
language L +ι.   

YES NO % 

monotonicity − 0.23 0.09 0.28 
quantity 0.00 0.00 0.15 
conservativity 0.19 − 0.02 0.12 
all 0.16 0.00 0.02  

B.1.3. LZ2 scores, L +ι  Table B.8 
Average standardized LZ2 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. All stands 
for quantifiers that have all three properties. The category “all, NO” stands for quanti
fiers that lack at least one property (i.e., that do not have all three properties). For 
language L +ι.   

YES NO % 

monotonicity − 0.23 0.09 0.28 
quantity 0.03 0.00 0.15 
conservativity 0.12 − 0.02 0.12 
all 0.15 0.00 0.02  

B.2. Logistic Regression for Language L +ι 

B.2.1. LZ0 scores, L +ι

Fig. B.18. Bootstrapped logistic regression results for standardized LZ0 scores for language L +ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. All three properties: 0.16 (95% CI [− 0.12, 
0.45]); monotonicity: -0.28 (95% CI [− 0.37, − 0.18]); quantity: 0.03 (95% CI [− 0.09, 0.15]); conservativity: 0.20 (95% CI [0.08, 0.33]). 
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B.2.2. LZ1 scores, L +ι

Fig. B.19. Bootstrapped logistic regression results for standardized LZ1 scores for language L +ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. All three properties: 0.17 (95% CI [− 0.12, 
0.46]); monotonicity: -0.33 (95% CI [− 0.43, − 0.24]); quantity: 0.00 (95% CI [− 0.12, 0.12]); conservativity: 0.21 (95% CI [0.09, 0.34]). 

B.2.3. LZ2 scores, L +ι

Fig. B.20. Bootstrapped logistic regression results for standardized LZ2 scores for language L +ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. All three properties: 0.15 (95% CI [− 0.14, 
0.43]); monotonicity: -0.34 (95% CI [− 0.43, − 0.24]); quantity: 0.03 (95% CI [− 0.09, 0.15]); conservativity: 0.14 (95% CI [0.01, 0.26]). 
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B.3. Descriptive Statistics for Language L − ι 

B.3.1. LZ0 scores, L − ι  Table B.9 
Average standardized LZ0 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. Both stands 
for quantifiers that have both properties. The category “both, NO” stands for quantifiers 
that lack at least one property (i.e., that do not have both properties). For language L − ι.   

YES NO % 

monotonicity − 0.05 0.02 0.33 
conservativity 0.34 − 0.06 0.14 
both 0.22 − 0.02 0.08  

B.3.2. LZ1 scores, L − ι  Table B.10 
Average standardized LZ1 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. Both stands 
for quantifiers that have both properties. The category “both, NO” stands for quantifiers 
that lack at least one property (i.e., that do not have both properties). For language L − ι.   

YES NO % 

monotonicity − 0.05 0.03 0.33 
conservativity 0.37 − 0.06 0.14 
both 0.24 − 0.02 0.08  

B.3.3. LZ2 scores, L − ι  Table B.11 
Average standardized LZ2 scores of quantifiers with (YES) versus without (NO) universal 
property and the proportion (%) of quantifiers with that universal property. Both stands 
for quantifiers that have both properties. The category “both, NO” stands for quantifiers 
that lack at least one property (i.e., that do not have both properties). For language L − ι.   

YES NO % 

monotonicity − 0.05 0.03 0.33 
conservativity 0.33 − 0.06 0.14 
both 0.19 − 0.02 0.08  
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B.4. Logistic Regression for Language L − ι 

B.4.1. LZ0 scores, L − ι

Fig. B.21. Bootstrapped logistic regression results for standardized LZ0 scores for language L − ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. Both properties: 0.23 (95% CI [0.08, 
0.39]); monotonicity: -0.07 (95% CI [− 0.16, 0.02]); conservativity: 0.40 (95% CI [0.28, 0.51]). 
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B.4.2. LZ1 scores, L − ι

Fig. B.22. Bootstrapped logistic regression results for standardized LZ1 scores for language L − ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. Both properties: 0.26 (95% CI [0.10, 
0.41]); monotonicity: -0.08 (95% CI [− 0.17, 0.01]); conservativity: 0.43 (95% CI [0.31, 0.55]). 
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B.4.3. LZ2 scores, L − ι

Fig. B.23. Bootstrapped logistic regression results for standardized LZ2 scores for language L − ι. The values of the mean and the 95% confidence interval of the 
coefficient difference (computed per sample) between original and randomly shuffled data (bottom panels) are as follows. Both properties: 0.21 (95% CI [0.06, 
0.36]); monotonicity: -0.08 (95% CI [− 0.16, 0.01]); conservativity: 0.39 (95% CI [0.27, 0.50]). 

Appendix C. Supplementary Material 

The code that we used for generating the data for Experiment 1 and those data themselves can be found both on GitHub at https://github.com/iv 
dpol/quantifier-LZ-complexity and on the Open Science Framework at https://osf.io/nh9tw/ (Van de Pol, Lodder, Van Maanen, Steinert-Threlkeld, & 
Szymanik, 2022). The code that we used for generating the data for Experiment 2 and those data themselves can be found both on GitHub at https:// 
github.com/ivdpol/QuantifierComplexity and on the Open Science Framework at https://osf.io/nh9tw/ (Van de Pol et al., 2022). 
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