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Abstract: The aim of this paper is to consider the indeterminate Stieltjes moment problem together
with all its probability density functions that have the positive real or the entire real axis as support.
As a consequence of the concavity of the entropy function in both cases, there is one such density that
has the largest entropy: we call it fhmax, the largest entropy density. We will prove that the Jaynes
maximum entropy density (MaxEnt), constrained by an increasing number of integer moments,
converges in entropy to the largest entropy density fhmax. Note that this kind of convergence
implies convergence almost everywhere, with remarkable consequences in real applications in terms
of the reliability of the results obtained by the MaxEnt approximation of the underlying unknown
distribution, both for the determinate and the indeterminate case.
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1. Introduction

For an absolutely continuous random variable X with the entire real axis as support
and the associated Hamburger moment problem determinate, [1]—Thm.1 and [2] proved
that the MaxEnt approximation converges in entropy to the unknown density f of X. Well-
known necessary and sufficient conditions for the determinacy of the moment problem,
as well as their geometric implications, were used to prove the above convergence result.
In the present work, our goals consist of the following:

1. improve the proof of convergence in entropy provided by [1], Section 3, when the
Stieltjes moment problem is determinate, listing through the use of the limit parabolic
regions described below all the possible cases that may arise;

2. state and prove an analogous entropy convergence result in the case of the indeter-
minate Stieltjes moment problem. That extension is not immediate and additional
considerations of MaxEnt distribution properties are required.

An enormous amount of material is available in the literature on the topic of the
indeterminate moment problem, which has been extensively treated in the last and present
centuries, employing different techniques of investigation. However, we will address this
topic through a novel approach based on the notion of differential entropy and Jaynes’
MaxEnt techniques ([3]). More specifically, well-known necessary and sufficient condi-
tions for Stieltjes moment problem determinacy/indeterminacy in terms of Hankel matrix
determinants will be employed.

Such necessary and sufficient conditions, formulated through Theorems 3 and 4 below,
have an interesting and enlightening geometric meaning. As a consequence, they will en-
able us to introduce and then exploit the notion of limit parabolic regions as a graphical tool
for an easy and immediate understanding of such determinacy/indeterminacy conditions.
Next, we will use these tools to prove the convergence in entropy of the MaxEnt solution of
the indeterminate Stieltjes moment problem, which is the main result of the present paper.
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There are several motivations to study the convergence in entropy of { fM}∞
M=1 to

fhmax, the density with the largest entropy among those sharing the given integer moment
sequence {µk}∞

k=1, µ0 = 1.
The original contribution of this paper is to exploit one of the characteristic properties

of Shannon entropy; namely, that it is a concave functional.
Let C∞ denote the infinite set of densities f , which are the solutions of the moment

problem. It is noteworthy that in an M-infinite problem, by virtue of its concavity, the Shan-
non entropy induces an ordering principle in terms of entropy for the elements of C∞:
this guarantees the existence of a unique fhmax, distinguishable from all other functions
f ∈ C∞ such that it can be considered the genuine (that is, the most non-committal in Jaynes’
spirit) MaxEnt representative of all densities in C∞. At the same time, it makes fhmax the
candidate limit to which the MaxEnt approximations converge in entropy, analogously
to what happens in the determinate case, where the maximum entropy approximations
converge to the unique density compatible with the information carried by the sequence of
moments {µk}∞

k=0.
Consistent with our purposes, of all the densities, fhmax is the most important be-

cause, when all known information is taken into account, the system with the largest
entropy is the most likely state as it is the system in which the least amount of information
has been defined ([4]).

Moreover, the convergence in entropy is a stronger mode of convergence, which in
turn implies convergence in direct divergence, in L1, in probability and in distribution. This
concatenation of convergence modes has been proved in the work by [5], Section 4.3, for the
case of fractional moments. However, considering that both integer and fractional moments
belong to the so-called Tchebycheff systems, these convergence modes can be extended to the
case of integer moments. Combining the convergence theorem in entropy proved below
with the fact that fhmax has the largest entropy H[ fhmax], one could find reasonable
answers to several questions. Here, we limit ourselves to mentioning the following two.

1. Consider the so-called Stieltjes class SR+( f0, h) ([6], Section 3) with a center at f0 and
perturbation function h defined as follows:

SR+( f0, h) = Sϵ(x) =: { f0(x)[1 + ϵh(x)], x ∈ R+, ϵ ∈ [−1, 1]}. (1)

where f0(x), x ∈ R+ is a continuous probability density function, that is, f0 = F′, where
F is the distribution function of some random variable X and h(x) is a non-identically
zero continuous function, satisfying the condition −1 ≤ h(x) ≤ 1, for all x ∈ R+. Then,
SR+( f0, h) is an infinite family of densities all sharing the same moment sequence as
f0 and obviously requires knowledge of both functions f0 and h. The latter satisfies
the infinite relations

∫
R+ xk f0(x) h(x)dx = 0, con k = 1, 2, . . . . Usually, both f0 and

h are chosen by trial and error to satisfy (1). It is well-known that convergence in
entropy implies convergence almost everywhere. Consequently, it makes sense to
assume f0 ≡ fhmax since it is distinguishable (hence, identifiable) from all densities in
C∞. Recently, h has been obtained with a precise theoretical procedure by [7], Thm.
1.2, starting from f0. Therefore, through the combination of the proposal to assume
f0 ≡ fhmax with the theoretical procedure of López-Garcia for the calculation of h,
a complete theoretical program for the construction of Stieltjes classes solely using the
given moment sequence is outlined.
The originality of our study lies in the fact that, within the class of densities, we
identify a particular one, fhmax, with the highest entropy H[ fhmax]. This density is
the limit of a sequence of MaxEnt densities with an increasing number of moments
coinciding with the given one.

2. In the so-called Method of Moments, [8], Section 6, p. 540–541, proved the following.

Theorem 1 ([9]). Let FM and F be probability distributions supported on R with finite
moments of all orders, which we denote by µ

(M)
k and µk, respectively. If F is the only
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distribution with the moments {µk}∞
k=1 and if limM→∞ µ

(M)
k = µk for k = 1, 2, . . . , then

the sequence {FM}∞
M=1 converges in distribution to F; that is

lim
M→∞

FM(x) = F(x) (2)

at any point of continuity of F(x).

The uniqueness of F(x) is assumed to be not only sufficient for the validity of the
relation (2) (at any point of continuity) but also necessary. Theorem 7 below leads us
to conjecture that the assumed moment problem determinacy condition, designed to
guarantee convergence in distribution, could be sufficient but not necessary. This
topic will be investigated in future research.

The paper is organized follows: Section 2 presents two crucial known results that state
necessary and sufficient conditions for the existence and the determinacy of the Hamburger
and Stieltjes moment problem solution in terms of Hankel matrices and their determinants;
their geometrical meaning is clarified through the relationships between the elements that
characterize the corresponding limit parabolic regions. Section 3 exploits these regions to
reformulate the necessary and sufficient conditions for the indeterminacy of the Hamburger
and Stieltjes moment problem, preparing the theoretical framework for the proof of the
convergence in entropy of the MaxEnt solution in the Stieltjes indeterminate case given in
Section 4. The conclusions follow in Section 5.

2. Moment Problem: Existence and Determinacy Conditions

Suppose Ω is a continuum, (Ω,A) a measurable space and ν a probability measure
defined on A. Let X be a continuous real-valued random variable defined on the probability
space (Ω,A, ν) with UX ⊆ R as support and an absolutely continuous distribution function
F and suppose that all (positive) integer moments of the random variable X

µk = E[Xk] =
∫
UX

xk dF(x), k = 0, 1, 2, . . . , µ0 = 1

exist (or, equivalently, are finite). If F is the unique distribution having the sequence {µk}∞
k=1

as its moment sequence, then F is uniquely determined by its moments; that is, we say that
F is M-determinate (M-det), and the same holds for ν because there is always a (probability)
measure ν behind the sequence {µk}∞

k=1. Otherwise, F is M-indeterminate (M-indet): in
this case, there exists more than one distribution (potentially, an infinite number) sharing
the same moment sequence {µk}∞

k=1 and, consequently, F is not uniquely determined by its
moments and the same conclusion holds for the probability measure ν.

We use standard terminology and notations generally accepted in the moment problem
framework: if UX = R, we say {µk}∞

k=1 is a Hamburger moment sequence, while if UX = R+,
{µk}∞

k=1 is a Stieltjes moment sequence.
Books such as those by [8,10,11] and, more recently, [12] are widely known references

on this topic and contain exhaustive details on the debate over and progress made in the
moment problems for a century.

The following deep analytical and non-trivial result can be obtained (see [13] for
references): for a real moment sequence {µk}∞

k=1, we define the (N + 1)× (N + 1)-Hankel
matrices as follows:

∆N =
[
µi+j

]N
i,j=0 and ∆N,p =

[
µi+j+p

]N
i,j=0, p = 1, 2, 3, 4, N ∈ N (3)

where ∆N is the basic Hankel matrix with ∆0 = [µ0], while ∆N,p, p = 1, 2, 3, 4, are the
shifted Hankel matrices. More precisely, ∆N,1 = (µi+j+1)

N
i,j=0 is based on the shifted

moment sequence {µ1, µ2, . . .} generated by the measure ν1 with d ν1 = x dν, while
∆N,2 = (µi+j+2)

N
i,j=0 is based on the shifted moment sequence {µ2, µ3, . . .} generated
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by the measure ν2 with d ν2 = x2d ν, and similarly for ∆N,3 and ∆N,4. This is similar to the
case of the basic Hankel matrix, ∆0,p = [µp]. Further, let

DN := det ∆N =| ∆N | and DN,p := det ∆N,p =| ∆N,p | (4)

be the determinants of the Hankel matrices, as defined in (3). It is a well-known fact that
the positivity of the determinants (4) of all orders N is a necessary and sufficient condition
for the existence of the moment problem solution. In other words, Hankel matrices (3) must
be positive definite for all N ∈ N.

The following theorem states a well-known result:

Theorem 2 (Fundamental Theorem [14]). Suppose that F is M-indet. Then, there are infinitely
many absolutely continuous distributions and infinitely many purely discrete distributions, all of
them sharing the same moments of F.

In what follows, since we need both to specify some special values of µ0 and µ1 and at
the same time think µ1 as continuously varying, we will denote with µ∗

0 and µ∗
1 the values

of µ0 and µ1 that have been preassigned.
The following Theorems 3 and 4, jointly with the geometric interpretation of the determi-

nacy/indeterminacy conditions as developed by [15], allow us to draw the limit parabolic
regions. They play a fundamental role for the aims of this paper as we will see in Section 4.2,
where different determinate–indeterminate configurations of the Stieltjes moment problem
(jointly with the Hamburger one) will be considered in terms of (µ0, µ1).

Theorem 3 ([8], Thm. 2.18, p. 69). Let ν be a measure associated with the positive definite
Hamburger moment sequence {µk}∞

k=0. Then, ν is determinate if and only if at least one of the
quantities DN

DN−1,2
and DN−1,2

DN−2,4
has a limit of zero as N → ∞.

Theorem 3 has an interesting and enlightening geometric meaning. Consider the finite
moment set {µk}M

k=0 with M = 2N, where µ0 varies continuously whilst the remaining
ones are kept fixed. The relationship

DN
DN−1,2

= µ∗
0 − µ−

0,M (5)

holds, where µ−
0,M comes from the equation DN(µ

−
0,M) = 0, replacing µ∗

0 with µ−
0,M, so that

the sequence {µ−
0,M}∞

M=2 is monotonic non-decreasing and, as M → ∞, converges to a limit;
say, µ−

0,∞ = limM→∞ µ−
0,M ≤ µ∗

0 . From Theorem 3, in the indeterminacy case,

µ∗
0 − µ−

0,∞ > 0. (6)

holds. This inequality will be useful in what follows, when the limit parabolic regions are
obtained. Similarly, consider once more {µk}M

k=0, where µ1 varies continuously whilst the
remaining ones are kept fixed. If DN , the determinant of the Hankel matrix ∆N , is regarded
as a function of µ1, DN = DN(µ1) is a quadratic function with leading term −DN−2,4 < 0,
so that

DN
DN−2,4

= −(µ∗
1 − µ+

1,M)(µ∗
1 − µ−

1,M) (7)

where µ−
1,M and µ+

1,M are solutions of the equation DN(µ
±
1,M) = 0 with µ−

1,M ≤ µ∗
1 ≤ µ+

1,M.
Since ∆N is symmetric and positive definite, as M increases, µ−

1,M is monotonically non-
decreasing whilst µ+

1,M is monotonically non-increasing, so that the intervals [µ−
1,M, µ+

1,M]
for each value of M are nested. Combining Theorem 3 with Equation (7), it follows that

DN
DN−1,2

· DN−1,2

DN−2,4
=

DN
DN−2,4

= −(µ∗
1 − µ+

1,M)(µ∗
1 − µ−

1,M) (8)
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and, as a consequence, the determinacy/indeterminacy convergence conditions can be
drawn. In the H-det case,

lim
n→∞

µ−
1,M = lim

n→∞
µ+

1,M = µ∗
1 (9)

while in the H-indet case,

lim
M→∞

µ−
1,M < µ∗

1 , lim
M→∞

µ+
1,M > µ∗

1 (10)

strictly. Equations (9) and (10) are the distinguishing features of the H-det and H-indet
cases. At the end, they allow us to define the Hamburger moment problem determinacy
or indeterminacy conditions only in terms of the differences µ∗

1 − µ−
1,∞ or µ+

1,∞ − µ∗
1. This

aspect will play an important role in Section 3, in which the Stieltjes moment problem
determinacy/indeterminacy is geometrically interpreted through the limit parabolic regions.

Theorem 4 ([15], Lemma 3). Let ν be a measure associated with the positive definite Stieltjes
moment sequence {µk}∞

k=0. Then, ν is determinate if and only if at least one of the quantities DN
DN−1,2

and DN,1
DN−1,3

has a limit of zero as n → ∞.

Theorem 4, like Theorem 3, has an interesting and enlightening geometric meaning
(note that the quantity DN

DN−1,2
has been previously investigated in the Hamburger mo-

ment problem). As far as DN,1
DN−1,3

is concerned, consider the finite moment set {µk}M
k=1

with M = 2N + 1, where µ1 varies continuously whilst the remaining ones are kept fixed.
The following relationship holds:

DN,1

DN−1,3
= µ∗

1 − µ−
1,M (11)

where the number µ−
1,M is the unique solution of the equation DN,1(µ

−
1,M) = 0 in which µ∗

1
is replaced with µ−

1,M. The numerical sequence {µ−
1,M}∞

M=1 is monotonic non-decreasing
and, as M → ∞, convergent to a limit; say, µ−

1,∞ ≤ µ∗
1 . The indeterminacy condition is

formulated as follows:
µ∗

1 − µ−
1,∞ > 0 (12)

In the end, Equations (6)–(12) allow us to define the Stieltjes moment problem determinacy
or indeterminacy conditions only in terms of the difference µ∗

0 − µ−
0,∞ and µ∗

1 − µ−
1,∞ (the

latter coming from (11) and (12)). This aspect will play an important role in Section 4 where
convergence in entropy of the MaxEnt approximation (14) of f will be discussed in the
S-indet case.

Notice that, in order not to burden the notation in the two Hamburger and Stieltjes cases,
given the first M moments {µk}M

k=1, we denoted with the same symbol µ−
1,M two quantities that

are solutions of two distinct equations: in the Hamburger case, with M = 2N, DN(µ
−
1,M) = 0;

and in the Stieltjes case, with M = 2N or M = 2N + 1, DN,1(µ
−
1,M) = 0. We specify that, in

the subsequent Stieltjes problem investigation, the values of µ∗
1 − µ−

1,M will be drawn from
(11) rather than from (7), in accordance with the next Theorem 6.

3. Limit Parabolic Regions

The limit parabolic regions represent an enlightening device for giving an intuitive
graphical representation of the determinacy or indeterminacy conditions for the Stieltjes or
Hamburger moment problems. In this paper, we are mostly interested in the indetermi-
nacy condition.

1. Hamburger case
Suppose {µk}∞

k=0 is a moment sequence for which the moments {µ2, µ3, . . . } are kept
fixed while the moments µ0 and µ1 are left to be continuously varying. Setting x = µ0
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and y = µ1, the whole moment sequence can be written as {x, y, µ2, µ3, . . . } and the
numbers x and y (i.e., the moments preceding µ2) cannot be arbitrary.
Following [15], we set M = 2N and consider the moments:

(µ0, µ1, µ2, . . . , µM) = (x, y, µ2, . . . , µM)

where, as before, µ2, . . . , µM are fixed and x = µ0 and y = µ1 can vary continuously.
For each M, the relation DN(x, y) ≥ 0 defines a closed convex region as follows:

PM := {(x, y) ∈ R2 : DN(x, y) ≥ 0} (13)

which is bounded by a proper parabola with horizontal axis and vertex in the right-half
plane. Since, for M = 1, 2, . . . , the Hankel matrices ∆N(x, y) are positive semidefinite,
the regions PM are nested (i.e., PM ⊂ PM−1) and the element of interest is their
intersection, P :=

⋂∞
M=1 PM, called a limit parabolic region. One possibility is that

P is a proper closed region in the right-half plane such that P is bounded by a proper
parabola and contains the initially given moments (µ0, µ1). The alternative is that P
degenerates, becoming just a ray.

Theorem 5 ([15], Thm 1). Let {x, y, µk}∞
k=2 be a Hamburger moment sequence for the

measure ν. Then, ν is indeterminate if and only if the point (µ∗
0 , µ∗

1) is an interior point of
the limit parabolic region P .

Theorem 5 is the geometric equivalent to the algebraic formulation of the Hamburger
moment problem indeterminacy given in terms of Equations (6) and (10).

2. Stieltjes case
Suppose that {µk}∞

k=0 is a Stieltjes moment sequence. In this case, we develop a
procedure similar to that in the Hamburger case but with some specific features.
For doing this, we rely essentially on two known results. First, we recall that every
Stieltjes sequence can also be considered a Hamburger sequence; hence, the exis-
tence of the limit parabolic region P is assured and defined by the two relations
DN(x, y) ≥ 0 and DN−1,1(y) ≥ 0, in which we use x = µ0 and y = µ1. Second,
P = {(x, y) : x ≥ µ−

0,∞, y = µ−
1,∞}, a ray, or P is the intersection of proper limit

parabolic regions in the half plain {y ≥ µ−
1,∞}. Taking into account Theorem 5,

the following conclusion can be drawn.

Theorem 6 ([15], Thm 2). The positive definite Stieltjes moment sequence {µk}∞
k=0 generates

an indeterminate measure ν if and only if two conditions are satisfied:

(i) the point (µ∗
0 , µ∗

1) is an interior point of the limit parabolic region P ;
(ii) µ−

1,∞ < µ∗
1 .

Again, Theorem 6 is geometrically equivalent to the algebraic formulation of the Stieltjes
moment problem indeterminacy given in terms of Equations (6), (11) and (12).

4. Stieltjes Moment Problem

The inverse moment problem consists of recovering the unknown PDF f knowing
the sequence of its moments {µk}∞

k=1 ([8]). For practical purposes, only a finite number
M of moments {µk}M

k=1 is considered so that what we have is the so-called reduced (or
truncated) moment problem, and it may have infinitely many solutions. Then, one needs a
criterion for selecting the most appropriate probability density function among the available
solutions. The strategy of selecting the least biased estimate of f can be based on the MaxEnt
method ([3]).

4.1. Maxent Method

Given the first M moments {µk}M
k=1,
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fM(x) = exp
(
−

M

∑
j=0

λjx j
)

(14)

provides the MaxEnt approximation ([16], p. 59) of f , supplemented by the (M + 1)
conditions ∫

R+
xk fM(x) dx = µk, k = 0, . . . , M

and µ0 = 1, (14) being a density function with differential entropy (for short, entropy)

H[ fM] = −
∫
R+

fM(x) ln fM(x) dx =
M

∑
k=0

λkµk,

That is to say that fM has the largest entropy out of all densities sharing the first M mo-
ments with f . Note an important fact: the sequence {H[ fM]}∞

M=1 is monotonic non-increasing.
Let

C∞ =:
{

f ≥ 0 :
∫
R+

xk f (x) dx = µk, k = 1, 2, . . .
}

. (15)

be a convex set of (density) functions that, in the M-indet case, include infinitely many
densities, which are solutions of the moment problem. The class C∞ will play a strategic role
in the proof of the entropy convergence theorem. Since, as is well known, Shannon entropy
possesses many good properties, one of which is to be a concave functional, a unique
density—say, fhmax ∈ C∞—with the largest entropy exists, as shown by the following:

H[ fhmax] = max
f∈C∞

H[ f ].

After a brief revision of the S-det (with H-det) case, previously covered by [1], with
the aim of giving a new and more structured interpretation of the determinacy conditions
in terms of limit parabolic regions, our attention will be devoted to one of the central topics
in this paper: a deep discussion of the S-indet case, the associated MaxEnt solution fM and
the proof of convergence in entropy of fM to the underlying unknown density f .

4.2. Limit Parabolic Regions for S-Det or S-Indet

Let us summarize the known facts: an S-det measure ν may be either H-indet or H-det,
while an S-indet measure ν is H-indet. Suppose that {µk}M

k=1, with M = 2N, for instance, is
a moment set. Thus, we have the following cases.

Case 1: ν is S-det with H-indet (see [15], Corollary, p. 417). Combining Theorems 3 and 4,
it follows that

DN
DN−1,2

→ c0 > 0 and
DN,1

DN−1,3
→ 0

equivalently, and both µ−
0,∞ < µ∗

0 from (6) and µ−
1,∞ = µ∗

1 (see Figure 1).

Figure 1. Limit parabolic region for the case (S-det, H-indet).
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Note that both here and in the following graphs, the shaded area represents
the parabolic region and the red dot indicates the fixed value (µ∗

0 , µ∗
1) of the

point (µ0, µ1). Ref. [17], in a corollary on p. 481, states that if a measure ν is
determinate in the Stieltjes sense and indeterminate in the Hamburger sense, then
ν is a Nevanlinna-extremal measure and, in particular, is discrete with a positive
mass at the origin. As a consequence, the S-det case is disregarded. In contrast,
the H-indet case where infinitely many densities occur, will be investigated in
Lemma (1).

Case 2: ν is S-indet with H-indet.
There are infinitely many densities with support R+ and R. Combining
Theorems 3 and 4, both inequalities µ−

0,∞ < µ∗
0 and µ−

1,∞ < µ∗
1 follow; equivalently,

from Theorem 6, the point (µ∗
0 , µ∗

1) is inside the limit parabolic (see Figure 2).

Figure 2. Limit parabolic region for the case (S-indet, H-indet).

Entropy convergence in both cases S-indet and H-indet will be investigated below.

Case 3. ν is S-det with H-det.
For a given moment sequence, S-det means that there is only one measure with
support [0, ∞) compatible with it. Here, we take the opportunity to review and
refine the proof previously given by [1], Section 3. Combining Theorems 3 and 4
and their geometric meaning, we find that there are four possible limit parabolic
regions, all of which are feasible. More specifically, we have the following:

(a) the two limit parabolic regions degenerate into different rays, both aris-
ing from

DN−1,2

DN−2,4
→ 0 and

DN,1

DN−1,3
→ 0

so that µ−
1,∞ = µ∗

1 and from

DN
DN−1,2

→ 0 or
DN

DN−1,2
→ c0 > 0,

respectively. Hence, µ−
0,∞ = µ∗

0 or µ−
0,∞ < µ∗

0 occur;
(b) a non-degenerate limit parabolic region arising from Case 1. Accordingly, we

have S-det with H-indet after removing the mass at the origin, so that both

DN
DN−1,2

→ 0 and
DN,1

DN−1,3
→ 0

(see Figure 3). In agreement with the results for S-det attained in Case 1,
the measure is once more purely discrete with no mass at the origin and then
it has to be disregarded;
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Figure 3. Limit parabolic region for the case (S-det, H-det) - b).

(c) a non-degenerate limit parabolic region arising from the conditions

DN
DN−1,2

→ 0 and
DN,1

DN−1,3
→ c1

so that the corresponding distribution has zero mass at the origin. As a
consequence µ−

0,∞ = µ∗
0 and µ−

1,∞ < µ∗
1 hold, so that the point (µ∗

0 , µ∗
1) is on

the boundary of the limit parabolic region (see Figure 4).

Figure 4. Limit parabolic region for the case (S-det, H-det) - c).

The nature (probability mass or density) of the unique solution can now be in-
vestigated by adding a mass δ at the origin and renormalizing. The moments
sequence amounts to {1, µk/(1+ δ)}∞

k=1. In such a case, the moment problem
becomes S-indet with H-indet (Figure 2), with maximum mass concentration

δ
1+δ at the origin. As is known, in an indeterminate Hamburger problem the
maximum mass concentration at the origin just coincides with δ

1+δ , so that
the initial solution is transformed into an extremal solution of the S-indet
with H-indet problem. Since there exists only a discrete extremal solution
of the moment problem for which this maximum is attained [8], Thm. 2.13,
p. 60; [11], Corollary 7.17, p. 159), the original determinate Stieltjes solution is
purely discrete with no mass at the origin, in accordance with with [18] p. 94.
Thus, it has to be disregarded.

In conclusion, collecting together the just-above-limit parabolic regions (a), (b) and (c),
it can be concluded that a necessary condition for a density to be associated with the unique
measure S-det with H-det is that the corresponding limit parabolic region is degenerate,
from which µ−

1,∞ = µ∗
1 . Under the latter condition, the entropy convergence had been

proved by [1], Section 3. Note that thanks to the MaxEnt formalism, the proof provided
by the authors was completely analogous to the one used in the determinate Hamburger
problem. Thus, the first goal outlined in the Introduction has been reached.

Regarding the proof of entropy convergence in the two cases S-indet and S-det, com-
paring Case 2 with Case 3, the crucial difference is due to the two distinct conditions
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µ−
1,∞ < µ∗

1 and µ−
1,∞ = µ∗

1 that hold in the two cases, respectively. As a consequence,
the proving procedure adopted for the S-det case (in which the relationship µ−

1,∞ = µ∗
1 plays

a basic role) cannot be simply extended to the S-indet one. For the latter case, the entropy
convergence is investigated below and represents the second main goal of this paper, as
outlined in the Introduction.

4.3. Convergence in Entropy of the Maxent Approximation in the S-Indet Case

In analogy with the S-det case investigated by [1], Section 3, it is reasonable to conjec-
ture that, in the S-indet case, the MaxEnt approximation fM also converges in entropy to
the underlying unknown density fhmax. Indeed, considering two distinct cases concerning
the nature of the support of the density f (that is, R+ and R) and relying in both cases
on the fact that the sequence {H[ fM]} is monotonically non-increasing with a finite lower
bound H[ fhmax], we can prove Theorems 7 and 8, the second two main results of this paper.

However, before presenting and proving these results, we briefly recall some basic
steps of the convergence in entropy proof in the determinate Hamburger problem as given
by [1], Thm. 1, and in the same paper also extended to the S-det case. The determinacy
condition used for the Hamburger moment problem is given by (9). As we will see later,
this procedure is the essential tool for proving entropy convergence in the S-indet case too.

1. Let ν be the unique measure with support R and density f having the given moment
sequence {µk}∞

k=0. Consider the finite set {µk}M
k=1, with M = 2N. If (µ0, µ2, . . . , µM)

are kept fixed while µ1 ∈ (µ−
1,M, µ∗

1 ] varies continuously, the function H[ fM](µ1)
is monotonic increasing and concave (to ensure the monotonicity of H[ fM](µ1),
if needed, the interval µ1 ∈ (µ−

1,M, µ∗
1 ] could be replaced with [µ∗

1 , µ+
1,M), leav-

ing the procedure unchanged). As µ1 → µ−
1,M, DN → 0 so that fM corresponds

to a purely discrete distribution with a finite number of mass points ([8], p. 5,
Thm. 1.2). Then, as the differential entropy of a discrete distribution can be con-
sidered to be −∞ ([4], p 247-9), limµ1→µ−

1,M
H[ fM](µ1) = −∞ holds. On the other

hand, as µ1 = µ∗
1 , H[ fM](µ∗

1) ≥ H[ f ] holds. Then, since H[ fM](µ1) is a continu-
ous function of µ1, there exists a value of µ1 ∈ (µ−

1,M, µ∗
1 ] (say ξM = ξM(M, H[ f ]))

such that H[ fM](ξM) = H[ f ]. As M → ∞, from limM→∞ µ−
1,M = µ∗

1 (and then
limM→∞ ξM = µ∗

1 too) it follows that H[ fM](ξM) = H[ fM](µ∗
1) = H[ f ]. From here,

limM→∞ H[ fM](µ∗
1) = H[ f ], which proves the entropy convergence in the H-det case.

2. From Theorem 6, in the S-indet case, the point (µ∗
0 , µ∗

1) is an interior point of the limit
parabolic region such that µ−

1,∞ < µ∗
1 . In accordance with the above item in this list,

H[ fM](µ1) is monotonic increasing over µ1 ∈ (µ−
1,M, µ∗

1 ] with

lim
µ1→µ−

1,M

H[ fM](µ1) = −∞ and H[ fM](µ∗
1) ≥ H[ fhmax].

As we have µ−
1,∞ < µ∗

1 , both scenarios are admissible as follows:

(i) limM→∞ H[ fM] > H[ fhmax] (strictly);
(ii) limM→∞ H[ fM] = H[ fhmax]

Following the procedure outlined in the first item of this list, no conclusion about
entropy convergence can be drawn, so an alternative approach must be sought.

4.3.1. Densities Supported on R+

Now we are ready to prove the first out the two main results of this paper.

Theorem 7 (Main result I). In the indeterminate Stieltjes problem, the MaxEnt approximate
sequence { fM}∞

M=1 supported on R+ converges in entropy to fhmax; i.e.,

lim
M→∞

H[ fM] = H[ fhmax] (16)
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Proof. We here give the proof of Theorem 7, distinguishing the cases of M finite and
M infinite.

(i) M < ∞
Consider a given moment set {µk}M

k=1, the corresponding MaxEnt density fM having
moments µk, fM :=

∫
R+ xk fM(x) dx, k ≥ 1, where

µk, fM =

{
µk if k ≤ M∫
R+ xk fM(x) dx if k > M

(17)

and the additional new moment set

{µ̃k}M+K
k=1 = {µk}M

k=1 ∪ {µk, fM}K
k=M+1 (18)

Now, let f̃M+K be the MaxEnt density constrained by (18) and let {µ̃k, f̃M+K
}∞

k=1 be
the sequence of its moments in analogy with (17). The following are the reasons for
introducing f̃M+K:

1. the densities fM and f̃M+K coincide, as fM satisfies the first M + K moments
{µ̃k}M+K

k=1 too, so that f̃M+K has its Lagrange multipliers λM+1 = · · · = λM+K = 0;
2. f̃M+K gives rise to a measure ν, which is S-det, since it admits a moment-

generating function (which is a sufficient condition to guarantee moment prob-
lem determinacy, the so-called Cramér criterion) for each M + K. Indeed, from
(14), as x → ∞, f̃M+K(x) ∼ exp(−λM+KxM+K), with λM+K > 0;

3. related to the sequence {µ̃k, f̃M+K
}∞

k=1, there are the numbers µ̃−
1,M+K, which are the

unique solution of the equation DN,1(µ̃
−
1,M+K) = 0, whether M + K = 2N + 1 or

M+K = 2N, where in the matrix ∆N,1, µ∗
1 is replaced with µ̃−

1,M+K, as outlined in
Section 2. Further, µ−

1,M < µ̃−
1,M+K for each K holds. As K increases, the sequence

{µ̃−
1,M+K}∞

K=1 is monotonic increasing since the moment sequence {µ̃k, f̃M+K
}∞

k=1
coincides with the one associated with fM. The latter density, as said previously,
gives rise to a determinate moment problem so that, as K → ∞, µ̃−

1,M+K = µ∗
1, in

accordance with the conclusions drawn above from Case 3. in Section 4.2.

In conclusion, with finite and fixed M and arbitrary K, MaxEnt density f̃M+K con-
strained by {µ̃k}M+K

k=1 fulfils the two following properties:{
H[ f̃M+K] = H[ fM] with K finite
µ̃−

1,M+K = µ∗
1 with K → ∞

(19)

That is, the distribution corresponding to {µ̃k}M+K
k=1 has the same entropy as the

distribution having density fM so that the supplementary K moments do not vary the
entropy but, at the same time, they push µ̃−

1,M+K towards µ∗
1 as K increases, forcing

the moment problem to be determinate. This is a crucial condition for the convergence
in entropy.

(ii) M → ∞
From (19) with arbitrary K, the two sequences {H[ f̃M+K]}∞

M=1 and {H[ fM]}∞
M=1 fulfill

the relationship

{H[ f̃M+K]}∞
M=1 ≡ {H[ fM]}∞

M=1 → inf
M→∞

H[ fM]

since the moment sequence {µk, fM}∞
k=M+1 does not introduce additional information

content. In conclusion, taking into account (19) and using the moment sequence
{µ̃k}∞

k=1, which directly stems from {µk}∞
k=1, we are led to the S-det case. Indeed,

as M → ∞, fM and the unique f (in the S-det case) and fM and the unique fhmax (in
the S-indet case) share the same amount of information provided by the two differ-
ent moment sequences {µk}∞

k=1 and {µ̃k}∞
k=1, respectively. From this it follows that
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µ−
1,∞ = µ∗

1 and µ̃−
1,∞ = µ∗

1 . Accordingly, from here on, the procedure is carried out in a
manner more or less similar to that described by [1], Thm. 1, with the only difference
being that f , {µk}M

k=1, fM, µ−
1,M and M → ∞ are here replaced with fhmax, {µ̃k}M+K

k=1 ,
f̃M+K, µ̃−

1,M+K and M, K → ∞, respectively. Combining the previous arguments, we
can state the following

lim
M,K→∞

H[ f̃M+K] = lim
M→∞

H[ fM] = H[ fhmax]

The introduction of the sequence (17), and therefore of { f̃M+K}∞
K=1 in place of { fM}∞

M=1,
has the twofold aim of (i) not altering the entropy of fM and (ii) permitting the rela-
tionship limM→∞ µ̃−

1,M+K = µ∗
1 , forcing the moment problem to be determinate and

bringing us back to the previously solved case S-det. Foe the previously formulated ad-
missible scenarios limM→∞ H[ fM] > H[ fhmax] (strictly) or limM→∞ H[ fM] = H[ fhmax],
a precise answer is found.

Hence, Theorem 7 is proved.

4.3.2. Densities Supported on R
Thanks to MaxEnt formalism, the above quantities fM and C∞ given by (14) and

(15), respectively, and previously defined on the positive support R+ can likewise be
reformulated for distributions having the entire real line R as support: in this case, M must
be even to guarantee the existence of the MaxEnt approximation fM. We need the following
preliminary result.

Lemma 1. In the S-det with H-indet moment problem, the MaxEnt approximate sequence { fM}∞
M=2

with M = 2N, N ∈ N, supported on R, converges in entropy to fhmax; i.e.,

lim
M→∞

H[ fM] = H[ fhmax]

Proof. Combining Theorems 3 and 4, the relation

lim
N→∞

DN,1

DN−1,3
= 0 or equivalently, µ−

1,∞ = µ∗
1

follows (here, M = 2N). Consequently, thanks to the MaxEnt formalism, the proof for the
H-indet case is similar to that mentioned above for the H-det case ([1], Thm. 1), being in both
cases µ−

1,∞ = µ∗
1 . Again, the proof mimics that of the H-det case, simply replacing both f

with fhmax and H[ f ] with H[ fhmax].

Considering Lemma 1, we are now ready to prove the second of the two main results
of this paper.

Theorem 8 (Main result II). In the S-indet with H-indet moment problem, the MaxEnt approxi-
mate sequence { fM}∞

M=2 supported on R converges in entropy to fhmax; i.e.,

lim
M→∞

H[ fM] = H[ fhmax] (20)

Proof. From Theorem 6, the point (µ∗
0 , µ∗

1) is an interior point of the limit parabolic region
and then µ−

1,∞ < µ∗
1 . Here, there is no way to prove the convergence in entropy of the

MaxEnt approximation fM in the S-indet with H-indet case just by applying the same
technique as in the three previous cases (H-det, S-det with H-det and S-det with H-indet),
and an alternative that allows us to reconnect to the previous case S-det with H-indet must
be thought of. One possibility to construct a measure for S-det with H-indet, starting from
the indeterminate Stieltjes moment sequence {µk}∞

k=1, is outlined by [19], p. 96, Thm. 3.3
and Appendix C3, and [11], Example 8.11, p. 183, and Exercise 6, p. 143, and we borrow
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it. Let {µk}∞
k=1 be the original Stieltjes moment sequence and let {µ̃k(c)}∞

k=1 denote the
sequence shifted by c. From the binomial theorem, we have

µ̃k(c) =
k

∑
j=0

(
k
j

)
cj µk−j, k ≥ 0 (21)

For the Hamburger problem, {µ̃k(c)}∞
k=1 has the following properties (translation of

Hamburger moment sequence):

(a) the solutions associated with {µk}∞
k=1 and those of each {µ̃k(c)}∞

k=1 are in one–one correspon-
dence;

(b) if the density f (x) solves the {µk}∞
k=1 problem, f (x − c) solves the {µ̃k(c)}∞

k=1 one
and vice versa. Specifically, to the densities fM(x) and fhmax(x) correspond the densi-
ties fM(x − c) and fhmax(x − c), with the obvious equalities H[ fM(x)] = H[ fM(x − c)]
and H[ fhmax(x)] = H[ fhmax(x − c)];

(c) for any indeterminate Stieltjes problem, there is always a unique c0 ≤ 0, so that the
sequence {µ̃k(c)}∞

k=1 can be the following:

(i) an indeterminate Stieltjes moment sequence for each c > c0;
(ii) a determinate Stieltjes moment sequence (but, of course, with the H-indet prob-

lem) for c = c0, giving rise to the so-called Friedrichs’s solution;
(iii) not a Stieltjes moment sequence for c < c0.

As a consequence, from (21) with c = c0, we fall back into the S-det with H-indet case, in-
vestigated above in Lemma (1). Exploiting the results of this latter case, limM→∞ H[ fM(x −
c0)] = H[ fhmax(x − c0)] occurs. Joining together all the above found equalities,

lim
M→∞

H[ fM] = lim
M→∞

H[ fM(x − c0)] = H[ fhmax(x − c0)] = H[ fhmax]

holds, and Theorem (8) is also proved.

5. Conclusions

In every indeterminate Stieltjes moment problem, it follows from Theorems (7) and (8)
that the MaxEnt approximation fM with support R+ or R converges in entropy to fhmax.
Combining the present results with those previously obtained by two of the authors, it can
be concluded that convergence in entropy has been proved in both the Stieltjes and the
Hamburger problems. As far as we know, when reconstructing densities with maxentropic
techniques, it is assumed that the underlying moment problem is determinate; then, the
MaxEnt density fM becomes a reasonable approximation of the unique underlying density
f , with moments that match the given elements of the sequence {µk}∞

k=0. The problem of
determinacy is understandable, although the question of determinacy/indeterminacy is
not really of much practical importance: a complete set of moments will never be attainable,
so for practical purposes, only finite values of M are of interest. For theoretical purposes,
however, Theorem 7 provides a justification in the case where the underlying moment
problem is indeterminate, since it ensures that the MaxEnt approximations will converge in
any case to the one with the largest entropy fhmax. In summary, in a process of probability
density reconstruction using maxentropic techniques, the determinacy/indeterminacy
question for the moment problem does not arise. Nevertheless, fM must be considered a
valuable approximation of fhmax since both fM and fhmax have the same first M moments
and, for finite M, H[ fM] > H[ fhmax], according to the MaxEnt principle.

Recalling the known necessary and sufficient conditions for the determinacy of the
moment problem, as well as their geometric meaning described by limit parabolic regions,
helped us to provide the following:

1. an improvement of an earlier proof of convergence in entropy provided by the authors
when the Stieltjes moment problem is determinate;

2. the statement and proof of an analogous entropy convergence result in the case of an
indeterminate Stieltjes moment problem.
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In terms of future research directions, it is easy to see that the entropy convergence
results in the case of the indeterminate Stieltjes problem can be exploited to provide
the following:

1. criteria for the determinacy/indeterminacy of the Stieltjes moment problem with
entropic techniques;

2. an analogous entropy convergence criterion concerning the case of the indeterminate
Hamburger problem;

3. a criterion for the determinacy/indeterminacy of the Hamburger moment problem
involving entropic techniques.
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