
JSS Journal of Statistical Software
January 2023, Volume 105, Issue 1. doi: 10.18637/jss.v105.i01

cglasso: An R Package for Conditional Graphical
Lasso Inference with Censored and Missing Values

Luigi Augugliaro
University of Palermo

Gianluca Sottile
University of Palermo

Ernst C. Wit
Università della Svizzera italiana

Veronica Vinciotti
University of Trento

Abstract

Sparse graphical models have revolutionized multivariate inference. With the advent
of high-dimensional multivariate data in many applied fields, these methods are able to
detect a much lower-dimensional structure, often represented via a sparse conditional
independence graph. There have been numerous extensions of such methods in the past
decade. Many practical applications have additional covariates or suffer from missing or
censored data. Despite the development of these extensions of sparse inference methods
for graphical models, there have been so far no implementations for, e.g., conditional
graphical models.

Here we present the general-purpose package cglasso for estimating sparse conditional
Gaussian graphical models with potentially missing or censored data. The method em-
ploys an efficient expectation-maximization estimation of an ℓ1-penalized likelihood via a
block-coordinate descent algorithm. The package has a user-friendly data manipulation
interface. It estimates a solution path and includes various automatic selection algorithms
for the two ℓ1 tuning parameters, associated with the sparse precision matrix and sparse
regression coefficients, respectively. The package pays particular attention to the visual-
ization of the results, both by means of marginal tables and figures, and of the inferred
conditional independence graphs.

This package provides a unique and computational efficient implementation of a con-
ditional Gaussian graphical model that is able to deal with the additional complications of
missing and censored data. As such it constitutes an important contribution for empirical
scientists wishing to detect sparse structures in high-dimensional data.

Keywords: cglasso, conditional Gaussian graphical models, glasso, high-dimensionality, spar-
sity, censoring, missing data.

https://doi.org/10.18637/jss.v105.i01
https://orcid.org/0000-0002-4603-7541
https://orcid.org/0000-0001-9347-7251
https://orcid.org/0000-0002-3671-9610
https://orcid.org/0000-0002-2625-7977

2 cglasso: Conditional Graphical Lasso Inference in R

1. Introduction
By being able to include covariates inside graphical models, the applicability of such con-
ditional graphical models to fields such as genomics and information retrieval has increased
substantially. Moreover, the increasing availability of statistical methods for sparse inference
have allowed for efficient approaches in large data settings. For example, in the context of
genomics, Yin and Li (2011) advocate the use of conditional graphical models to account for
the effect of genetic variants as predictors x on the gene expression, i.e., the responses y. The
idea is that the high correlation among gene expression may be explained by the effects of
shared genetic variants.
Many approaches have considered the case of conditional Gaussian graphical models and have
proposed efficient algorithms for inference. Rothman, Levina, and Zhu (2010) independently
proposed the same estimator as Yin and Li (2011), based on an extension of the popular
graphical lasso (glasso) estimator of Friedman, Hastie, and Tibshirani (2008). Wang (2015),
on the other hand, proposed a new algorithm based on the idea of decomposing the initial
problem into a series of simpler conditional problems involving, at each step, the conditional
log-likelihood function of each response variable given all the remaining variables. Recently,
other approaches have proposed two-steps procedures for fitting a sparse conditional Gaus-
sian graphical model. Li, Chun, and Zhao (2012) propose to first use an initial non-sparse
estimator for the conditional covariance matrix Σ using the theory of reproducing kernel
Hilbert spaces, and then, in the second step of the procedure, the resulting estimate is used
to formulate a glasso-type problem for the estimation of the inverse covariance matrix Θ. In
contrast to this, the two-steps procedure proposed in Yin and Li (2013) uses, in the first step,
an ℓ1-penalized multivariate linear regression model with independent errors for estimating
the sparse coefficient regression matrix, whereas, in the second step, the precision matrix is
estimated using the standard glasso estimator. Finally, Chen, Ren, Zhao, and Zhou (2016)
proposed a two-step procedure where the scaled lasso is used in each step to select the amount
of sparsity.
In large data settings, it is not uncommon to encounter various artifacts that violate the fully
observed Gaussian scenario, such as missing data and saturation effects, also known as cen-
soring. Censoring can occur when the measuring device has a limit of detection, either at the
lower or the upper end. This is for example the case of data generated by reverse transcription
quantitative polymerase chain reaction (RT-qPCR), a popular technology for gene expression
profiling (Derveaux, Vandesompele, and Hellemans 2010). Missingness is quite common for
large, automatically retrieved data, where certain entries are deemed unreliable and auto-
matically discarded. Augugliaro, Abbruzzo, and Vinciotti (2020a) have looked closely at
inference of a Gaussian graphical model in the case of censoring, whereas Augugliaro, Sottile,
and Vinciotti (2020b) have extended this to the more general case of a conditional Gaussian
graphical model, as implemented in the R (R Core Team 2022) package cglasso (Augugliaro,
Sottile, Wit, and Vinciotti 2023). Missing-at-random in the context of (conditional) Gaussian
graphical models has been considered by Städler and Bühlmann (2012) and has also been in-
tegrated within this package through the development of a unifying computationally efficient
algorithm.

1.1. Related implementations

Although many packages are available to estimate sparse Gaussian graphical models, none of

Journal of Statistical Software 3

them support the inclusion of covariate information. The R package glasso (Friedman, Hastie,
and Tibshirani 2019) fits the graphical lasso model using the block-coordinate descent algo-
rithm proposed in Friedman et al. (2008). An efficient implementation of this algorithm is also
available in the R package glassoFast (Sustik, Calderhead, and Clavel 2018). In contrast to
this, the package QUIC (Hsieh, Sustik, Dhillon, and Ravikumar 2011) implements the inferen-
tial routines via Newton’s method and coordinate descent, with the package BigQuic (Kunji
2022) providing an implementation specifically built for working with large datasets. The
package huge (Jiang et al. 2021) provides a general framework for high-dimensional undi-
rected graph estimation. It integrates data preprocessing, neighborhood screening via the
method proposed in Meinshausen and Bühlmann (2006), penalized estimation via the graph-
ical lasso model, and model selection techniques into a single pipeline. It also implements
the nonparanormal transformation of Liu, Lafferty, and Wasserman (2009) for relaxing the
normality assumption. Finally, there are packages that perform Bayesian sparse inference for
graphical models. For example, the package BDgraph (Mohammadi and Wit 2019) provides
statistical tools for Bayesian structure learning in undirected graphical models for continuous,
discrete, and mixed data, whereas BayesianGLasso (Trainor and Wang 2017) implements the
block Gibbs sampler for the Bayesian graphical lasso introduced in Wang (2012).
Particularly in the Bayesian inferential setting, there are also packages that can account for
missing data, mostly of the missing-at-random type. The R package bnlearn (Scutari 2017)
supports incomplete data with missing data, while implementing key algorithms covering all
stages of Bayesian network modelling: data pre-processing, structure learning combining data
and expert/prior knowledge, parameter learning, and inference (including causal inference
via do-calculus). The bnstruct package (Franzin, Sambo, and di Camillo 2017) also provides
algorithms for Bayesian network structure learning from data with missing values. Similarly,
BGGM (Williams and Mulder 2020) can be used to fit Bayesian Gaussian graphical models
and can handle datasets with missing data. However, BGGM has been built specifically for
social and behavioral scientists and it does not support high-dimensional data. In contrast
to this, sparsebn (Aragam, Gu, and Zhou 2019) is an R package for learning sparse Bayesian
networks and other graphical models from high-dimensional data via sparse regularization.
In the frequentist, but low-dimensional, setting, the monomvn package (Gramacy, Moler, and
Turlach 2022) implements maximum likelihood estimation of the mean and covariance matrix
of multivariate normal distributed data with a monotone missingness pattern. Moreover, using
shrinkage regressions, the available function can handle an arbitrary amount of missing data.
Our proposed package complements this literature, by providing sparse inference for Gaussian
graphical models, under the presence of additional covariate information and with possibly
missing data, either generated at random or via a censoring process.

1.2. Overview of the paper

The remaining part of the paper is structured as follows. In Section 2 we introduce the con-
ditional Gaussian graphical model and describe a sparse inference procedure for such models
that is able to deal with data with both censored and missing-at-random values. In Section 3,
we present the main routines implemented in the cglasso package through the analysis of a
genomic dataset on multiple myeloma (Section 3.1) and a dataset on megakaryocyte-erythroid
progenitors (Section 3.2). In Section 3.3 we present also a function for simulating data from a
conditional Gaussian graphical model and two plotting method functions designed to evaluate

4 cglasso: Conditional Graphical Lasso Inference in R

the statistical assumptions underlying the proposed method. The remaining sections of the
paper are devoted to the technical description of the implemented functions. In particular,
the functions for data manipulations are described in Section 4; routines for model fitting and
model selection are presented in Section 5 and Section 6, respectively, whereas in Section 7
we discuss how to plot and analyze the fitted graphs. Finally, in Section 8 we draw some
conclusions.

2. Methodological background

2.1. Conditional Gaussian graphical model

Conditional Gaussian graphical models, also known as covariate adjusted Gaussian graphical
models, are a class of conditional probabilistic graphical models used to encode the dependence
structure among the elements of a set of random variables conditional on a second set of
random variables (Lafferty, McCallum, and Pereira 2001). Formally, let y = (y1, . . . , yp)⊤ and
x = (x1, . . . , xq)⊤ be p- and q-dimensional random vectors, respectively, and let G = (V, E)
be an undirected graph with vertex set V = {1, . . . , p}, indexing only the entries in y, and
edge set E ⊆ V × V, where (h, k) ∈ E iff there is a directed edge from the vertex h to k in G.
Suppose that the distribution of y conditional on x is a multivariate Gaussian distribution
with probability density function defined as follows:

ϕ(y | x; B, Θ) = (2π)− p
2 |Θ|

1
2 exp

{
−1

2(y − B⊤x)⊤Θ(y − B⊤x)
}

, (1)

where, with a little abuse of notation, we let x = (1, x⊤)⊤ be the vector of predictors and
B = (β0, β⊤)⊤ the (q + 1) × p regression coefficient matrix, with distinct columns to ensure
model identifiability. The model in (1) assumes that the predictors affect the distribution
of the response variables y only via the p conditional expected values and through a linear
function, that is:

E(y | x) = B⊤x, VAR(y | x) = Σ.

The inverse of the variance matrix, denoted by Θ = (θhk), is called the precision matrix
and its entries have a one-to-one correspondence with the partial correlation coefficients.
Using standard results about the multivariate Gaussian distribution, it is possible to show
that yh and yk are conditionally independent given x and all the remaining variables in y
iff the corresponding partial correlation coefficient is zero (Lauritzen 1996). This remarkable
property of the multivariate Gaussian distribution gives rise in a natural way to the notion of a
conditional Gaussian graphical model, which is based on the idea of relating the factorization
of the density (1) to the topological structure of the associated undirected graph G.

Definition 1 The triplet {y, ϕ(y | x; B, Θ), G} is said to be a conditional Gaussian graphical
model if the density ϕ(y | x; B, Θ) factorizes according to the conditional independence graph
G, whereby θij = 0 iff (i, j) /∈ E.

This definition shows that estimating the edge set of the undirected graph G is formally
equivalent to finding non-zero entries in Θ. In a high-dimensional setting, in order to make
statistical inference possible, we further assume that model (1) has a sparse representation,

Journal of Statistical Software 5

meaning that only a few regression coefficients and partial regression coefficients are different
from zero Fan and Lv (2010). This will motivate the development of a sparse inferential
procedure, which will allow for simultaneous parameter estimation and model selection.
The cglasso package is able to deal with sparse inference of a conditional Gaussian graphi-
cal model under censoring and missing-at-random structures, which occur frequently in real
data. Dealing with these artifacts can be computationally challenging in problems of high-
dimensionality (in y, in x, or in both). In order to address these issues, we propose a doubly
penalized estimator for a conditional Gaussian graphical model by extending Augugliaro et al.
(2020b) to account simultaneously for censoring and missingness-at-random mechanisms.

2.2. Sparse inference of a conditional Gaussian graphical model

Let (yi, xi) with i = 1, . . . , n be a set of n independent observations. We consider a number
of scenarios. For observations i ∈ O, in which the observation vector yi is fully observed, the
contribution to the log-likelihood is

ℓi(B, Θ) = log ϕ(yi | xi; B, Θ).

For observations i ∈ C, in which some entries j of yi are censored, j ∈ ci, either from below
or from above, the contribution to the likelihood is given by the multi-dimensional integral
across the censored variables,

ℓi(B, Θ) = log
∫

Dci

ϕ(yi | xi; B, Θ)dyici ,

where the region Dci = ∏
j∈ci

Dij is the censoring region, with Dij = (−∞, lj) if yij ≤ lj
(censored from below) or Dij = (uj , ∞) if yij ≥ uj (censored from above). Finally, if some
entries yij are missing-at-random, then it is possible to extend the definition of the censoring
region to encompass such missingness in the likelihood. In particular, Dij = R for these cases.
Considering all possible cases, the relevant average observed log-likelihood function is given by

ℓ̄(B, Θ) = 1
n

n∑
i=1

ℓi(B, Θ). (2)

Under a high-dimensional setting, that is min{p, q} > n, inference about B and Θ is carried
out under the assumption that these matrices have a sparse structure. To this end, Augugliaro
et al. (2020b) propose to estimate the parameters of a conditional Gaussian graphical model
by maximizing a new objective function whereby two specific lasso-type penalty functions are
added to the average observed log-likelihood. The resulting estimator is defined as follows:

{B̂, Θ̂} = arg max ℓ̄(B, Θ) − λ
p∑

k=1
θkk||βk||1 − ρ||Θ||−1 (3)

where βk denotes the kth column of β, ||βk||1 = ∑
h,k|βhk| and ||Θ||−1 = ∑

h̸=k|θhk|. Like in the
standard conditional glasso (cglasso) estimator (Yin and Li 2011), the tuning parameter λ is
used to control the amount of sparsity in the estimated regression coefficient matrix whereas
ρ is devoted to control the sparsity in Θ̂ = (θ̂hk) and, consequently, in the corresponding
estimated conditional independence graph Ĝ = {V, Ê}, where Ê = {(h, k) : θ̂hk ̸= 0}. When ρ

6 cglasso: Conditional Graphical Lasso Inference in R

is sufficiently large, some θ̂hk are shrunken to zero resulting in the removal of the corresponding
link in Ĝ; on the other hand, when ρ is equal to zero and the sample size is large enough the
estimator Θ̂ coincides with the maximum likelihood estimator of the precision matrix, which
implies a fully connected conditional independence graph.

2.3. Algorithm for fitting a conditional graphical lasso
We propose a unifying algorithm for inference of a sparse conditional Gaussian graphical model
that can accommodate both the case of censoring (Augugliaro et al. 2020b), missingness-at-
random (Städler and Bühlmann 2012) as well as the high-dimensionality of the data. To this
aim, we propose an expectation-maximization (EM) algorithm for maximizing the penalized
log-likelihood. In general, the EM algorithm is based on the idea of repeating expectation
and maximization steps, until a convergence criterion is met. For the sake of simplicity, in
the remaining part of this section, we use ϑ = {B, Θ} to indicate the full set of parameters
and ϑ̂ to denote their current estimate inside the EM. Moreover, rik indicates whether yik

is observed (rik = 0) or not (rik ̸= 0), with the latter case including both censoring and
missingness.
Since the complete probability density function is a member of the regular exponential family,
the E-step consists in computing two quantities. First, the imputed response matrix Ŷ = (ŷi,k)
is obtained, whose entries are defined as:

ŷi,k =
{

yik if rik = 0
E(yik | yici ∈ Dci , xi; ϑ̂) otherwise,

where E(· | yici ∈ Dci , xi; ϑ̂) denotes the expected value operator computed with respect to
the conditional Gaussian distribution of yici given {xi, yioi} and truncated over the region
Dci . Secondly, it involves the matrix Ĉyy = ∑n

i=1 Ĉi, whose components have entries:

Ĉi,hk =

yihyik if rih = 0 and rik = 0
yihE(yik | yici ∈ Dci , xi; ϑ̂) if rih = 0 and rik ̸= 0
E(yih | yici ∈ Dci , xi; ϑ̂)yik if rih ̸= 0 and rik = 0
E(yihyik | yici ∈ Dci , xi; ϑ̂) if rih ̸= 0 and rik ̸= 0.

From this, the working empirical covariance matrix is given by:

Ŝy|x(B) = n−1{Ĉyy − Ŷ ⊤XB − (XB)⊤Ŷ + X⊤XB}, (4)

where X denotes the design matrix. Given the matrix (4), the M-step involves solving a new
maximization problem obtained by replacing the objective function in definition (3), with the
so-called penalized Q-function:

Q(B, Θ) = log det Θ − tr{ΘŜy|x(B)} − λ
p∑

k=1
θkk||βk||1 − ρ||Θ||−1 . (5)

Since, for a fixed ϑ̂, the penalized Q-function in (5) is a bi-convex function in B and Θ, its
maximization can be obtained by repeating two sub-steps until a convergence criterion is met.
Given the current estimate of the precision matrix Θ̂, the first sub-step consists in estimating
the regression coefficient matrix by solving the following maximization problem:

min
B

tr{Θ̂Ŝy|x(B)} + λ
p∑

k=1
θ̂kk||βk||1, (6)

Journal of Statistical Software 7

Algorithm 1 Pseudo-code of the EM algorithm.
1: Let B̂ and Θ̂ be the initial estimates
2: repeat
3: let ϑ̂ = {B̂, Θ̂}
4: update Ŷ , Ĉyy and compute Ŝy|x(B) ▷ E-Step
5: repeat ▷ M-Step
6: B̂ = arg minB tr{Θ̂Ŝy|x(B)} + λ

∑p
k=1 θ̂kk||βk||1

7: Θ̂ = arg maxΘ≻0 log det Θ − tr{ΘŜy|x(B̂)} − ρ||Θ||−1
8: until convergence criterion is met
9: until convergence criterion is met

whereas, in the second sub-step, given B̂, the precision matrix is estimated by solving the
sub-problem:

max
Θ≻0

log det Θ − tr{ΘŜy|x(B̂)} − ρ||Θ||−1 . (7)

Algorithm 1 reports the pseudo-code of the EM algorithm proposed in Augugliaro et al.
(2020b).
While problem (7) is a standard graphical lasso problem that can be efficiently solved using,
for example, the block-coordinate descent algorithm proposed in Friedman et al. (2008), prob-
lem (6) is similar to that studied by Rothman et al. (2010) and Yin and Li (2011) in the case
of no censoring. However, instead of solving this problem through a cyclic coordinate descent
algorithm, we use a more efficient and easy-to-implement block-coordinate descent algorithm
based on the following identity: let Bk be the kth column of the matrix B and Ŝy|x(Bk) be
the working empirical covariance matrix seen as function of Bk while the remaining columns
are held fixed to the current estimates. Then the minimization problem

min
Bk

tr{Θ̂Ŝy|x(Bk)} + λθ̂kk||βk||1,

is equivalent to
min
Bk

1
n

||Ỹk − XBk||2 + λ||βk||1,

where Ỹk is a vector with ith element ỹi,k = ŷi,k + θ̂−1
kk

∑p
h̸=k θ̂hk{ŷi,h − x⊤

i B̂h}. Algorithm 2
reports the pseudo-code of the method proposed to solve sub-problem (6), which is called the
multi-lasso algorithm. Convergence to a global minimizer follows from the fact that the trace
term in sub-problem (6) is a convex and differentiable function and the penalty function can
be decomposed as a sum of p convex functions (Tseng 2001). Furthermore, we underline that
the computational efficiency of the proposed multi-lasso algorithm can be improved using the
results given in Witten, Friedman, and Simon (2011). Finally, as discussed also in Augugliaro
et al. (2020a), the computational burden needed to compute the mixed moments in Ĉyy can
be significant when the estimated precision matrix is dense. For this reason, we propose
an approximate EM algorithm defined by replacing the matrix Ĉyy with the approximation
suggested in Guo, Levina, Michailidis, and Zhu (2015).
Before closing this section, we discuss the convergence of the coordinate descent algorithm
used to maximize the penalized Q-function (5). As studied by Yin and Li (2011), the algorithm
always converges to a stationarity point. In the classical setting, where the sample size is

8 cglasso: Conditional Graphical Lasso Inference in R

Algorithm 2 Pseudo-code of the multi-lasso algorithm.
1: Let Θ̂ be the current estimate of the precision matrix
2: repeat
3: for k = 1 . . . p do
4: compute: ỹi,k = ŷi,k + θ̂−1

kk

∑p
h̸=k θ̂hk{ŷi,h − x⊤

i B̂h}
5: compute: B̂k = arg minBk

1
n ||Ỹk − XBk||2 + λ||βk||1

6: replace the kth column of the matrix B̂ with B̂k

7: end for
8: until convergence criterion is met

large enough, the global optimality is always assured, while, in a high-dimensional setting,
the convergence properties of the coordinate descent algorithm closely depend on the ratio
between sample size and the number of nonzero estimates or, in other terms, on the values
of the tuning parameters used. When λ and ρ are large enough with respect to the sample
size, the algorithm converges to the unique stationary point, whereas when the two tuning
parameters are too close to zero, there are potentially many stationary points due to the high-
dimensional nature of the parameter space. This behavior is not surprising and shared by
many algorithms developed for inference in the case of high-dimensionality. In that regard,
a key role will be played by the arguments lambda.min.ratio and rho.min.ratio of the
implemented cglasso() function (see Section 5.1), as they are designed to define the smallest
λ and ρ value used throughout the fitting process.

3. Package structure and usage
The package cglasso is available under the general public license (GPL ≥ 2) from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=cglasso,
and can be installed and loaded into the current R section using the following code:

R> install.packages("cglasso")
R> library("cglasso")

The proposed package provides an integrated set of core routines for manipulation, simulation,
visualization and analysis of datasets drawn from a conditional Gaussian graphical model,
possibly featuring censored and/or missing values. According to their role in the analysis,
the implemented functions have been classified into four distinct groups. Figure 1 provides a
graphical representation of the overall structure of the proposed package.
The first group of functions, called data manipulation, contains the main function used to
retrieve the internal representation of a dataset drawn from a conditional Gaussian graphical
model, with possibly censored and missing values, as well as a set of specific method and
accessor functions. The next group, called model fitting, is devoted to the fitting step of the
implemented models and to the analysis of the corresponding results. This part of the package
also contains functions for prediction and imputation of the censored and missing data. The
third group, called model selection, concerns the model fit evaluation. It contains the main
goodness-of-fit functions and a set of functions for evaluating and comparing the fitted models
using graphs and summary statistics. Finally, the last group, called network analysis, is

https://CRAN.R-project.org/package=cglasso

Journal of Statistical Software 9

Data manipulation

datacggm()
is.datacggm()
print.datacggm()
summary.datacggm()
dim.datacggm()
nobs()
nresp()
npred()
dimnames()
rowNames()
colNames()
getMatrix()
event()
lower()
upper()
ColMeans()
ColVars()
rcggm()
hist.datacggm()
qqcnorm()

Model fitting

cglasso()
print.cglasso()
plot.cglasso()
coef.cglasso()
fitted.cglasso()
residuals.cglasso()
predict.cglasso()
impute()
cggm()
print.cggm()
plot.cggm()
predict.cggm()

Model selection

QFun()
print.QFun()
AIC.cglasso()
BIC.cglasso()
print.GoF()
summary.cglasso()
plot.GoF()
select.cglasso()

Network analysis

to_graph()
is.cglasso2igraph()
print.cglasso2igraph()
getGraph()
plot.cglasso2igraph()

Figure 1: Overall structure of the cglasso package: The implemented functions are partitioned
into four disjoint groups, graphically depicted as rectangles.

devoted to the statistical analysis of the fitted graph. To this end, the main function of this
group builds upon existing functions from the R package igraph (Csardi and Nepusz 2006),
augmenting it with a set of specific plotting method functions. We highlight that cglasso
package provides also an utility function, named ShowStructure(), aimed to provide insight
into the package structure. This function returns a graph depicting the proposed package’s
overall structure. Nodes and edges belonging to a specific group of functions are drawn with
a specific color and the main functions are marked using bold text. We refer to the help-page
for further details and examples.

Before going into the technical details of the implemented functions, we summarize the key
features of the proposed package by performing a real data analysis on two datasets, which
we distinguish in the next two sub-sections by the presence or not of covariates, respectively,
followed by a sub-section where we present a function to simulate data from the model and two
plotting functions to evaluate the theoretical assumptions of the implemented methods. The
formal definition of the implemented functions, the technical description of their arguments
as well as further examples are included in the next section.

10 cglasso: Conditional Graphical Lasso Inference in R

3.1. Network inference from multiple myeloma data

Dataset description
We start the description of the main functions implemented in the proposed package using a
subset of the data originally studied in Gutiérrez et al. (2010). The dataset is called MM and
can be loaded inside the current R section by:

R> data("MM", package = "cglasso")

The aim of the study was to investigate the expression level of a set of 49 MicroRNAs (mi-
RNAs), measured on a sample of 64 patients with multiple myeloma (MM). miRNAs are
endogenous small non-coding RNAs, approximately 22 nucleotides in length, that play a reg-
ulatory role in gene expression by mediating mRNA cleavage or translation expression. In this
study, patients were selected to represent the most relevant recurrent genetic abnormalities
in MM.
MM is an object of class ‘list’ with entries named Y and X. Matrix Y contains the measured
cycle-threshold for p = 49 miRNAs, whereas X is a ‘data.frame’ containing the expression
level of 15 endogenous internal reference genes, called housekeeping and typically used in the
normalization of RT-qPCR data, and a categorical variable encoding the genetic abnormalities
considered in the study. RT-qPCR data are typically right-censored (Augugliaro et al. 2020b)
and, in this study, the right censoring value is equal to 40 for each response variable. This
value represents the limit of detection of the measuring device used.

Data manipulation
We start the analysis of the MM dataset using the function datacggm(), which represents the
main function of the group named data manipulation as it has been designed to represent, in
a comprehensive way, a dataset with censored and/or missing values drawn from a conditional
Gaussian graphical model. We refer the reader to Section 4.1 for the formal definition and
description of the arguments of this function.
Below we run datacggm() specifying the response matrix, that is the matrix containing
the cycle-thresholds (argument named Y), the predictor matrix, that is the ‘data.frame’
containing the housekeepings’ expression levels and categorical variable encoding the genetic
abnormalities (argument named X), and the right censoring value (argument named up):

R> MM.datacggm <- datacggm(Y = MM$Y, X = MM$X, up = 40)

As can be confirmed running the check function is.datacggm(), function datacggm() returns
an R object with attribute class set to ‘datacggm’ so that a coherent set of accessor and
method functions can be used to handle all the features of this R object easily (see Section 4.2
and 4.3, for a complete description of these functions). For example, we can extract the two
matrices enclosed in MM.datacggm by the accessor function getMatrix():

R> Y <- getMatrix(MM.datacggm, name = "Y")
R> X <- getMatrix(MM.datacggm, name = "X")

Similarly, we can recover the upper and lower censoring values by the accessor functions
upper() and lower().

Journal of Statistical Software 11

Since an object of class ‘datacggm’ encloses information on two different matrices, we have
extended the standard R method functions typically used to recover or set the attributes of
a single matrix to this case. As a general rule, all the implemented extensions return a list
whose components contain the required attribute of the matrix Y and/or X, respectively. As
an example, below we show the output from the call to the function dim():

R> dim(MM.datacggm)

$Y
[1] 64 49

$X
[1] 64 16

Similarly, one can use the function dimnames(), along with the $ operator, to recover the
dimnames attribute of the matrices Y and X, respectively:

R> dimnames(MM.datacggm)$Y |>
+ lapply(head)

[[1]]
[1] "1" "2" "3" "4" "5" "6"

[[2]]
[1] "miR_193b" "miR_23a" "miR_362" "miR_629" "miR_328" "miR_550"

R> dimnames(MM.datacggm)$X |>
+ lapply(head)

[[1]]
[1] "1" "2" "3" "4" "5" "6"

[[2]]
[1] "RNU44_1" "RNU44_2" "RNU44_3" "RNU44_4" "RNU44_5" "RNU44_6"

then, the functions rowNames() and colNames() can be used to rename rows and columns,
respectively:

R> rowNames(MM.datacggm)$Y <- paste0("u", seq_len(nobs(MM.datacggm)))
R> rowNames(MM.datacggm)$X <- paste0("u", seq_len(nobs(MM.datacggm)))
R> colNames(MM.datacggm)$Y <- paste0("Y", seq_len(nresp(MM.datacggm)))
R> colNames(MM.datacggm)$X <- c(paste0("X", seq_len(15L)), "CyAb")

We point out that the information about the sample size, the number of response variables
and the number of predictors can be recovered also by the accessor functions nobs(), nresp()
and npred(), respectively.
In some applications, such as genomics, the matrices Y and X can be very large, both in terms
of the number of rows and columns. Thus, we have implemented a specific printing method
function to avoid the generation of excessive output on screen:

12 cglasso: Conditional Graphical Lasso Inference in R

R> print(MM.datacggm, n = 5L)

Printing 'datacggm' object

Y: 64 x 49 matrix

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11
u1 39.3 40.0+ 40.0+ 40.0+ 40.0+ 40.0+ 40.0+ 39.3 40.0+ 40.0+ 40.0+
u2 36.2 33.0 40.0+ 36.7 40.0+ 40.0+ 34.6 40.0 36.9 36.0 31.8
u3 40.0+ 35.2 37.5 36.2 36.4 36.2 33.5 37.6 35.7 34.4 34.3
u4 40.0+ 40.0+ 40.0+ 40.0+ 35.8 36.3 36.7 37.3 39.1 35.4 35.6
u5 40.0+ 40.0+ 40.0+ 37.9 36.3 37.5 34.9 36.8 36.0 37.5 34.6
with 59 more rows, and 38 more variables

X: 64 x 16 matrix

X1 X2 X3 X4 X5 X6 X7
u1 -0.1279 -0.15497 -0.3445 -0.12995 -0.15511 0.14165 -0.19687
u2 -0.8331 -0.79277 -0.8505 -1.02452 -0.95223 -0.78481 -0.71611
u3 -0.7322 -0.84625 -0.7744 -1.02427 -0.86677 -1.16685 -0.97674
u4 0.6705 0.68098 0.9550 0.61373 0.63437 1.06343 0.62363
u5 -0.2508 -0.20502 -0.3107 -0.04907 -0.07696 -0.10914 -0.05496
with 59 more rows, and 9 more variables

By default, only the first ten rows are printed but we use the optional argument n to show
only the first five rows. This example also shows how the function print() structures the
printed output into two sections which are referred to as the response and the predictor
matrix, respectively. The readability of the matrix Y is improved by adding the symbol “+”
at the end of each right censored value. In the same way, left censored values are marked
with the symbol “-”.
The same rationale was used to organize the output of the function summary(). For example,
running the summary() function with argument n = 5L, provides the summary statistics for
the first 5 response and predictor variables:

R> summary(MM.datacggm, n = 5L)

Y:
Lower Min. 1st Qu. Median Mean 3rd Qu. Max. Upper NA% LC% RC%

Y1 -Inf 32.8 35.9 36.4 36.6 37.5 39.8 40 0% 0% 35.94%
Y2 -Inf 32.9 35.2 36.2 36.0 36.9 38.8 40 0% 0% 29.69%
Y3 -Inf 32.9 35.2 36.5 36.3 37.6 39.1 40 0% 0% 31.25%
Y4 -Inf 33.5 35.2 36.0 36.1 37.1 39.3 40 0% 0% 31.25%
Y5 -Inf 30.6 34.5 35.5 35.4 36.3 39.4 40 0% 0% 25.00%
with 44 more variables

X-numeric:
Min. 1st Qu. Median Mean 3rd Qu. Max.

Journal of Statistical Software 13

X1 -2.48 -0.558 -0.11133 -5.09e-16 0.533 4.26
X2 -2.38 -0.634 -0.09684 -5.06e-16 0.497 3.94
X3 -2.35 -0.627 -0.10154 -2.93e-16 0.531 4.03
X4 -2.25 -0.577 0.00826 4.57e-16 0.639 3.78
X5 -2.45 -0.607 -0.04684 -5.19e-16 0.479 4.14
with 10 more variables

X-categorical:
CyAb :

Freq Perc
CyAb:0 5 7.81%
CyAb:1 13 20.31%
CyAb:2 14 21.88%
CyAb:3 11 17.19%
CyAb:4 4 6.25%
CyAb:5 17 26.56%

As shown, the printed summary statistics are divided into three sections: The first section,
named Y, reports the summary statistics for the response matrix, whereas the second and third
sections, named X-numeric and X-categorical, are devoted to summarizing the numeric and
categorical predictors, respectively. For each variable reported in the Y section, the function
summary() reports the standard summary statistics computed using only the observed values.
This section reports also the lower and upper censoring values, under the columns named
Lower and Upper, respectively, and the percentage of missing-at-random, left- and right-
censored values, under the columns named NA%, LC% and RC%, respectively.

Model fitting

The function cglasso() represents the main fitting function belonging to the group named
model fitting. As we shall discuss in Section 5.1, this function has been designed to fit a broad
range of cglasso estimators, and the appropriate version is automatically selected using the
auxiliary information enclosed in the object of class ‘datacggm’ that is passed to the function.
Thus, in accordance with Table 4, as the object MM.datacggm encloses auxiliary information
about a set of predictors, that is the matrix X, and the unobserved response values are encoded
as right censored, the cglasso() function will fit a sequence of conditional Gaussian graphical
models under censoring (Augugliaro et al. 2020b).
By default, these models are fitted using a decreasing sequence of ten λ values and a decreasing
sequence of ten ρ values. In order to focus our discussion on the output given by the cglasso()
function, and in order to avoid the generation of excessive output on screen, we will consider
now only two λ values and two ρ values. In the next section, we will show how to conduct
model fitting across a path of solutions, in order to select the optimal λ and ρ value.
The function cglasso() can be run by the following code:

R> mylambda <- c(0.30, 0.20)
R> myrho <- c(0.50, 0.40)
R> MM.mdl <- cglasso(data = MM.datacggm, lambda = mylambda, rho = myrho)

14 cglasso: Conditional Graphical Lasso Inference in R

where the arguments lambda and rho are used to specify the two sequences of tuning pa-
rameters. We refer to Section 5.1 for the description of the full set of arguments. Function
cglasso() returns a list with attribute class set to ‘cglasso’, thus, the user can use a spe-
cific printing method function to print on screen the main summary statistics of the fitted
models:

R> MM.mdl

Call: cglasso(data = MM.datacggm, lambda = mylambda, rho = myrho)

1 :
lambda rho df N. Comp.

0.3 0.5 465 (20.630%) 1
0.3 0.4 482 (21.384%) 1

2 :
lambda rho df N. Comp.

0.2 0.5 490 (21.739%) 1
0.2 0.4 500 (22.183%) 1

model: 'conditional censored glasso'
nObs: 64

nResp: 49
nPred: 16

As shown above, the function print() organizes the output into two different parts. The first
one is structured in sections, where each section refers to the sub-sequence of fitted models ob-
tained while keeping one of the two tuning parameters fixed (λ in our example). Each section
reports information about the complexity of the fitted models and the topological structure of
the corresponding estimated graphs. In detail, for each pair of λ and ρ value used, the output
reports the degrees-of-freedom (df), defined as the number of unique nonzero estimates, and
the number of connected components (N. Comp.), that is, the number of maximal connected
subgraphs in which the estimated graph can be decomposed. For example, let us consider
the results obtained using λ = 0.30 and ρ = 0.40. The fitted model corresponding to these
two values has 482 non-zero estimated parameters (about 21.384% of all model parameters)
and the undirected graph representing the estimated precision matrix can not be decomposed
into subgraphs since it has only one connected component. As expected, reducing the two
tuning parameters will result in an increase in terms of degrees-of-freedom. Finally, the last
part of the printed text reports the name of the fitted model, the sample size, the number of
response variables and the number of predictors, respectively.
The group of functions devoted to the model fitting provides also a rich set of method functions
for extracting the results of the fitting process. For illustration purpose only, in what follows
we will explain these functions using only the default setting and we refer to the Section 5.3
for their description and further examples.
The estimated model coefficients can be extracted using the function coef()

Journal of Statistical Software 15

R> coef(MM.mdl) |>
+ lapply(dim)

$B
[1] 21 49 2 2

$Sigma
[1] 49 49 2 2

$Theta
[1] 49 49 2 2

By default this method function returns a named list containing the estimated regression
coefficient matrix (B), the estimated covariance matrix (Sigma) and, finally, the estimated
precision matrix (Theta). These quantities are stored as ‘array’ where the last two dimensions
are referred to the λ and ρ values used in the fitting process.
Similarly, we can extract from MM.mdl the fitted values, the residuals and the imputed response
values via the functions fitted(), residuals() and impute(), respectively:

R> MM.mdl.fitted <- fitted(MM.mdl)
R> MM.mdl.obsRes <- residuals(MM.mdl)
R> MM.mdl.imputed <- impute(MM.mdl)

By default, residuals() returns the “observed” residuals, defined as the difference between
the observed and the corresponding fitted response values. For missing and censored values,
the observed residuals are set equal to NA. For a given row of the response matrix, missing
values are imputed using the expected values of a multivariate normal distribution conditional
on the observed values, whereas the censored values are imputed using expected values of a
multivariate truncated normal distribution conditional on the observed values.
The output of the cglasso() function can be used also to predict the estimates of the model
parameters corresponding to new λ and ρ values. For example, one can compute the predicted
regression coefficient matrix (default setting) at λ = 0.25 and ρ = 0.45

R> B.pred <- predict(MM.mdl, lambda.new = 0.25, rho.new = 0.45)

As discussed in Section 5.4, this function can be used also to predict the estimate of the
covariance matrix, the estimate of the precision matrix or the fitted values.
Finally, we conclude this section by pointing out that in some applications, the user may prefer
to use the ℓ1-penalty function only as a tool for model selection, but then to estimate and
evaluate the selected sparse model by (constrained) maximum likelihood. For this reason, we
have also included a second model fitting function, called cggm(). This function is specifically
designed to fit a conditional Gaussian graphical model via a maximum likelihood method,
with nonzero parameters identified by the model structure of a given ‘cglasso’ object, and
can be used as follows:

R> MM.mdl.mle <- cggm(MM.mdl)

16 cglasso: Conditional Graphical Lasso Inference in R

We refer to Section 5.5 for the description of this function and further examples of how to
link this function to the group of functions devoted to the model fitting evaluation. As show
below:

R> class(MM.mdl.mle)

[1] "cggm" "cglasso"

the function cggm() returns an object of class ‘cggm’ inheriting the class ‘cglasso’, hence the
method and accessor functions previously described can be used also on this output.

Model selection

In this section we continue the study of the multiple myeloma dataset by fitting a sequence
of conditional censored glasso models using a finer grid of tuning values, chosen after a
preliminary study aimed at improving the quality of the resulting graphs:

R> mylambda <- seq(from = 0.30, to = 0.20, length = 10L)
R> myrho <- seq(from = 0.50, to = 0.40, length = 10L)
R> MM.mdl.path <- cglasso(data = MM.datacggm, lambda = mylambda, rho = myrho)

Upon completion of the fitting algorithm, optimal values of the two penalty parameters λ and
ρ have to be chosen such that the fitted model is sparse enough to highlight the conditional
dependence structure of the response variables, while not unnecessarily suppressing relevant
data signal.
To help the user with the selection of the optimal fitted model, the cglasso package provides
two specific goodness-of-fitting functions, called AIC() and BIC() respectively, that can be
used to compute suitable extensions of the well-known Akaike information criterion (AIC,
Akaike 1973) and Bayesian information criterion (BIC, Schwarz 1978). As we shall discuss
in detail in Section 6, these two functions play an essential role inside the ecosystem of the
functions belonging to the model selection group, as their output, formally an object of class
‘GoF’, can be passed to the other functions for summarizing the fitted models or selecting
the optimal model. We implemented it this way, as, in some contexts, such as genomics, the
computational time needed to evaluate the goodness-of-fit of a sequence of models can be
very expansive. In this way, the results of the information criteria can be easily shared among
functions, without having to be re-calculated.
Coming back to our study, we select the optimal fitted model using the extended BIC crite-
rion (Chen and Chen 2008). This measure of goodness-of-fit extends the classical BIC measure
by adding a hyper parameter γ and using the maximum likelihood estimates to evaluate the
model fitting (see also Section 6.3 for further details). As the authors suggested, we let the
hyper parameter γ = 0.5. Thus, we run the BIC() function by setting the arguments g =
0.5 and mle = TRUE:

R> MM.mdl.path.eBIC <- BIC(MM.mdl.path, g = 0.5, mle = TRUE)

A graphical evaluation of the fitted models in terms of goodness-of-fit can be obtained using
the plotting method function:

Journal of Statistical Software 17

Multiple Myeloma Dataset

extended Bayesian Information Criterion
λ

ρ

 12410

 12420

 12430

 12440

 12440

 12440

 12450
 12450

 12450

 12460

 12460

 12460

 12470

 1
24

70

 12470

 12470

 12480

 12480

 1
24

80

 12490

 12490

 12490

 1
24

90

 12490

0.20 0.22 0.24 0.26 0.28 0.30

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

Figure 2: Contour plot used to identify the optimal values of the tuning parameters.

R> plot(MM.mdl.path.eBIC, main = "Multiple Myeloma Dataset")

Figure 2 shows the output of the call to the method function. As we will explain in Section 6,
since we fitted a set of conditional Gaussian graphical models, the plotting method function
returns a contour plot, where the used λ and ρ values are reported on the x and y axis,
respectively, whereas the values of the measure of goodness-of-fit are reported as contours. In
this figure, the optimal λ and ρ values are identified using vertical and horizontal red dashed
lines, respectively.
Once the optimal values of the two tuning parameters have been identified, we can use the
function select.cglasso() to recover the corresponding fitted model from MM.mdl.path:

R> MM.optmdl <- select.cglasso(MM.mdl.path, GoF = MM.mdl.path.eBIC)

As discussed above, the argument GoF allows to pass the evaluations of the chosen information
criterion, which are enclosed in the MM.mdl.path.eBIC object, to this function.
Finally, as common in R, a complete summary of a fitted model is provided by the summary
method function:

R> summary(MM.optmdl)

Call: cglasso(data = MM.datacggm, lambda = mylambda, rho = myrho)

18 cglasso: Conditional Graphical Lasso Inference in R

lambda rho df.B df.Tht df (df%) eBIC_CC
0.256 0.444 69 411 480 (21.295%) 12408

===

Summary of the Selected Model

model: 'conditional censored glasso'
nObs: 64

nResp: 49
nPred: 16

lambda: 0.2555556
lambda.id: 1

rho: 0.4444444
rho.id: 1

eBIC_CC: 12407.99
df.B: 69

df.Tht: 411
df: 480

===

The output printed on screen is structured into two sections. The first one augments the re-
sults previously printed by the print() function by adding the columns reporting the number
of estimated non-zero regression coefficients (df.B) and the number of estimated non-zero par-
tial correlation coefficients (df.Tht). The last column is inherited from MM.mdl.path.eBIC
and reports the minimum value of the chosen information criterion (the extended BIC in our
example). The second section reports the primary summary statistics of the selected model.

Network analysis
The final group of functions, named network analysis, provides a set of routines with which
the user can plot and analyze an estimated graph. These routines are related to the model
fitting group by the function to_graph(), which is the primary function designed to return
an R object that encloses all the information about the estimated graphs (see Section 7.1 for
further technical details):

R> MM.optmdl.graph <- to_graph(MM.optmdl)

This function returns a named list with class ‘cglasso2igraph’, containing two entries:

R> names(MM.optmdl.graph)

[1] "Gyy" "Gxy"

which are objects of class ‘igraph’. The entry named Gyy encloses the information about the
undirected graph that describes the conditional dependence structure among the p response
variables. In contrast, Gxy is a directed graph used to describe the effects of the predictors
on the expected values of the response variables. These two entries can be extracted from
MM.optmdl.graph using the accessor function getGraph()

Journal of Statistical Software 19

Multiple Myeloma Dataset

Y1

Y2

Y3

Y4

Y5

Y6 Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

Y16
Y17

Y18

Y19

Y20

Y21

Y22

Y23
Y24

Y25
Y26

Y27

Y28

Y29

Y30

Y31

Y32

Y33

Y34

Y35

Y36

Y37

Y38

Y39

Y40

Y41

Y42

Y43

Y44

Y45

Y46
Y47

Y48

Y49

X2

X5

X7

X8

X9

X12

X13

X14

X15

CyAbCyAb:5

(a)

Multiple Myeloma Dataset

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13 Y14

Y15

Y16

Y17

Y18

Y19

Y20

Y21

Y22
Y23

Y24

Y25

Y26

Y27

Y28

Y29

Y30

Y31

Y32

Y33
Y34

Y35

Y36

Y37

Y38

Y39

Y40

Y41

Y42

Y43
Y44

Y45

Y46

Y47

Y48

Y49

(b)

Multiple Myeloma Dataset

Y1

Y2

Y3

Y4

Y7

Y8

Y12

Y14

Y16

Y17

Y18

Y19

Y20

Y21

Y22

Y24

Y35

Y36

Y49 X2

X5

X7

X8

X9

X12

X13

X14

X15

CyAbCyAb:5

(c)

Figure 3: Output of the plotting method function associated to the object of class
‘cglasso2igraph’ and representing the network inferred using multiple myeloma dataset.
Figures (a), (b) and (c) are obtained by changing the argument type in the plot() function.

R> Gyy <- getGraph(MM.optmdl.graph)
R> Gxy <- getGraph(MM.optmdl.graph, type = "Gxy")

By default, the getGraph() function returns only the undirected graph associated with the
estimated precision matrix, but the optional argument type can be used to extract Gxy.
Given an object of class ‘cglasso2igraph’, we can plot the estimated graphs enclosed in
MM.optmdl.graph by the plotting method function described in Section 7.2:

20 cglasso: Conditional Graphical Lasso Inference in R

R> plot(MM.optmdl.graph, xlim = c(-0.85, 0.85), ylim = c(-0.85, 0.85),
+ main = "Multiple Myeloma Dataset", layout = layout_with_kk)

This results in Figure 3(a), where links corresponding to the estimated non-zero partial corre-
lation coefficients are drawn with a gray line whereas the red arrows represent the estimated
non-zero regression coefficients. If needed, the user can further split this graph into two sub-
graphs by the optional arguments type. For example, Figure 3(b) shows the graph produced
by the following code

R> plot(MM.optmdl.graph, xlim = c(-0.85, 0.85), ylim = c(-0.85, 0.85),
+ main = "Multiple Myeloma Dataset", type = "Gyy",
+ layout = layout_with_kk)

which describes only the conditional dependence structure among the response variables (type
= "Gyy"), whereas the Figure 3(c) is produced by the code below

R> plot(MM.optmdl.graph, xlim = c(-0.85, 0.85), ylim = c(-0.85, 0.85),
+ main = "Multiple Myeloma Dataset", type = "Gxy",
+ layout = layout_with_kk)

and describes only the effects of the predictors on the response variables (type = "Gxy").

3.2. Network inference from megakaryocyte-erythroid progenitors data

In this section we study a second dataset, called MKMEP, containing a subset of the data
studied in Psaila et al. (2016). As discussed at the end of Section 3, we aimed to show
how the functions previously presented can adapt their behavior according to the auxiliary
information enclosed in a ‘datacggm’ object, which in this case is in the form of a dataset
without predictors.
As before, we first load the dataset inside the R session:

R> data("MKMEP", package = "cglasso")

The study concerned the process of formation of blood cells, whereby the authors identified
three distinct sub-populations of cells, which are all derived from hematopoietic stem cells
through cell differentiation. One of these sub-populations, denoted by MK-MEP, is a pre-
viously unknown, rare population of bipotent cells that primarily generate megakaryocytic
progeny. In this study, RT-qPCR technology was used to profile a set of genes and a set of
single human MK-MEP cells.
Since the genes were profiled using RT-qPCR technology with an upper limit of detection
equal to 40, we create an object of class ‘datacggm’ using the following code:

R> MKMEP.datacggm <- datacggm(Y = MKMEP, up = 40)

Then, rowNames() and colNames() functions are used to rename the rows and columns of Y:

R> rowNames(MKMEP.datacggm)$Y <- paste0("u", seq_len(nobs(MKMEP.datacggm)))
R> colNames(MKMEP.datacggm)$Y <- paste0("Y", seq_len(nresp(MKMEP.datacggm)))

Journal of Statistical Software 21

When an ‘datacggm’ object does not enclose auxiliary information about the predictors ma-
trix, as in this case, all printing method functions, as well as the functions aimed to set or
retrieve the attributes of a ‘datacggm’ object, will set the corresponding X entry to NULL. As
an example, a call to the printing method function will give the following output:

R> print(MKMEP.datacggm, n = 5L)

Printing 'datacggm' object

Y: 48 x 63 matrix

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
u1 12.54 16.60 19.10 40.00+ 40.00+ 17.04 15.21 40.00+ 14.58 13.07
u2 15.35 40.00+ 19.97 40.00+ 16.86 16.45 15.03 15.15 14.35 12.95
u3 12.00 40.00+ 18.33 16.35 40.00+ 16.68 40.00+ 15.56 14.28 12.37
u4 12.42 15.80 40.00+ 40.00+ 40.00+ 15.28 13.96 40.00+ 14.48 40.00+
u5 11.74 40.00+ 40.00+ 14.69 40.00+ 14.98 40.00+ 14.01 15.37 12.93
with 43 more rows, and 53 more variables

X: NULL

showing that MKMEP.datacggm stores the expression profiles of a set of 63 genes measured on
48 human MK-MEP cells.
Now, we perform a similar analysis to the previous one. In accordance with the categorization
of the available implementations in Table 4, the function cglasso() will now fit a sequence
of censored glasso models (Augugliaro et al. 2020a) across a decreasing sequence of ρ values.
In the code below, the 100 values are chosen after a preliminary study so as to improve the
quality of the resulting graphs:

R> myrho <- seq(from = 6, to = 3, length = 100L)
R> MKMEP.mdl.path <- cglasso(data = MKMEP.datacggm, rho = myrho)

We select the optimal fitted model using the extended BIC measure proposed in Foygel and
Drton (2010) for Gaussian graphical models (see Section 6.3 for more details). Again, we
let the hyper parameter γ equal to 0.5 (g = 0.5) and evaluate the model fitting using the
maximum likelihood estimates (mle = TRUE):

R> MKMEP.mdl.path.eBIC <- BIC(MKMEP.mdl.path, g = 0.5, mle = TRUE)
R> plot(MKMEP.mdl.path.eBIC,
+ main = "Megakaryocyte-Erythroid Progenitors Dataset")

Figure 4(a) shows the result of the plotting method function. Differently to the previous
analysis, in this case, the plot() function returns a plot showing the values of the selected
measure of goodness-of-fit as a function of the unique tuning parameter used to fit the sequence
of models. Again, the optimal value of the tuning parameter is highlighted with a vertical
red dashed line.
Now, given the optimal ρ value, we can compute the maximum likelihood estimates of the
parameters of the selected model by cggm(). Different the previous analysis, we use the

22 cglasso: Conditional Graphical Lasso Inference in R

3.0 3.5 4.0 4.5 5.0 5.5 6.0

15
35

0
15

40
0

15
45

0
15

50
0

15
55

0
15

60
0

15
65

0

Megakaryocyte−Erythroid Progenitors Dataset

extended Bayesian Information Criterion
ρ

V
al

ue
s

(a)

Megakaryocyte−Erythroid Progenitors Dataset

Y2

Y7

Y8

Y10

Y13

Y15

Y17
Y21

Y25

Y31

Y34

Y41

Y46

Y47

Y52

Y54

Y62

Y63

(b)

Figure 4: Left: Plot of the extended BIC criterion versus the values of the tuning parameter
used to fit the model. Right: Output of the plotting method function associated to the object
of class ‘cglasso2igraph’ and representing the network inferred from the megakaryocyte-
erythroid progenitors dataset. Isolated vertices have been removed in order to improve graph
visualization.

argument GoF to attach the results enclosed in MKMEP.mdl.path.eBIC directly to the function
cggm(). In this way, we can carry out selection and model fitting in a single step (see
Section 5.5 and Section 6 for more details):

R> MKMEP.optmdl.mle <- cggm(MKMEP.mdl.path, GoF = MKMEP.mdl.path.eBIC)
R> MKMEP.optmdl.mle

Call: cggm(object = MKMEP.mdl.path, GoF = MKMEP.mdl.path.eBIC)

df N. Comp.
145 (6.975%) 47

The output reveals how the selected fitted model corresponds to an undirected conditional
independence graph among the variables considered, that can be decomposed into 47 con-
nected components. Furthermore, the estimated model contains only 145 non zero estimated
parameters.
Finally, we extract and plot the undirected graph associated to MKMEP.optmdl.mle via the
following code:

R> MKMEP.optmdl.graph <- to_graph(MKMEP.optmdl.mle)
R> plot(MKMEP.optmdl.graph, xlim = c(-0.85, 0.85), ylim = c(-0.85, 0.85),
+ main = "Megakaryocyte-Erythroid Progenitors Dataset",
+ layout = layout_with_kk)

Journal of Statistical Software 23

Figure 4(b) shows the undirected graph representing the network inferred from the mega-
karyocyte-erythroid progenitors dataset, where the isolated vertices have been removed in
order to aid with the visualization.

3.3. Simulating ‘datacggm’ objects and plotting functions

We conclude the first part of the paper, by presenting a simulating function and two plotting
method functions specifically designed to allow the user to evaluate the theoretical properties
and assumptions of the implemented methods.
A dataset with censored and/or missing-at-random values can be drawn from a multivariate
Gaussian distribution using the function rccgm(). We refer to Section 4.4 for the formal
definition and the complete description of the arguments, whereas, in this section we eluci-
date how to use this function by means of an example. Firstly, we simulate one thousand
observations from a multivariate Gaussian distribution with:

E(Yij) = 10 and COV(Yih, Yik) = 0.3|h−k|,

for j = 1, . . . , 4:

R> set.seed(1234)
R> n <- 1000L
R> p <- 4L
R> b0 <- rep(10, time = p)
R> Sigma <- outer(1:p, 1:p, function(i, j) 0.3^abs(i - j))

For each response variable we let the probability of left-censoring, right-censoring and missing-
at-random equal to 0.1:

R> probl <- 0.1
R> probr <- 0.1
R> probna <- 0.1

Finally, the desired dataset can be drawn from the multivariate Gaussian distribution passing
the previous objects to the rcggm() function:

R> Z.sim <- rcggm(n = n, b0 = b0, Sigma = Sigma, probl = probl,
+ probr = probr, probna = probna)

Since rcggm() returns a ‘datacggm’ object, we can summarize it by the summary method
function:

R> summary(Z.sim)

Y:
Lower Min. 1st Qu. Median Mean 3rd Qu. Max. Upper NA% LC% RC%

Y1 8.72 8.73 9.47 9.97 9.98 10.5 11.3 11.3 9.7% 7.5% 10.7%
Y2 8.72 8.72 9.51 10.04 10.00 10.5 11.3 11.3 10.0% 9.9% 10.2%
Y3 8.72 8.72 9.52 10.06 10.04 10.6 11.3 11.3 8.7% 10.6% 9.9%
Y4 8.72 8.73 9.43 9.99 9.99 10.5 11.3 11.3 10.2% 10.4% 11.3%

24 cglasso: Conditional Graphical Lasso Inference in R

Histogram of Y1

Y1

D
en

si
ty

9.0 10.0 11.0

0.
0

0.
1

0.
2

0.
3

0.
4

● ●

●

Proportion of
censored values

Probability of a
censored value

Histogram of Y2

Y2

D
en

si
ty

9.0 10.0 11.0

0.
0

0.
1

0.
2

0.
3

0.
4

● ●

●

Proportion of
censored values

Probability of a
censored value

Histogram of Y3

Y3

D
en

si
ty

9.0 10.0 11.0

0.
0

0.
1

0.
2

0.
3

0.
4

● ●

●

Proportion of
censored values

Probability of a
censored value

Histogram of Y4

Y4

D
en

si
ty

9.0 10.0 11.0

0.
0

0.
1

0.
2

0.
3

● ●

●

Proportion of
censored values

Probability of a
censored value

Figure 5: Output of the function hist() on data with censored values. The plot provides
a histogram for each response variable, together with the area of the Gaussian density func-
tion as background and a comparison between the proportions of left/right censored values
(crosses) and the corresponding Gaussian tail probabilities (circles).

X-numeric: NULL

X-categorical: NULL

The previous output shows that the reported proportions are close to their theoretical values.
As shown later in Section 4.4, the lower and upper censoring values are implicitly computed
using the arguments probl and probr, respectively.
The proposed package contains also two specific plotting functions, named hist() and
qqcnorm(), which can be used to graphically evaluate the probabilistic assumptions on the
distribution of the response variables. Both functions are characterized by a rich set of argu-
ments allowing the user a high degree of personalization of the resulting graphs. We refer to
the Section 4.5 for a complete description.
Function hist() produces a set of histograms:

R> hist(Z.sim, max.hist = 4L, breaks = 5L, save.hist = TRUE)

Journal of Statistical Software 25

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9.0 9.5 10.0 10.5 11.0

9.
0

9.
5

10
.0

11
.0

Censored Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9.0 9.5 10.0 10.5 11.0

9.
0

9.
5

10
.0

11
.0

Censored Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

9.0 9.5 10.0 10.5 11.0

9.
0

9.
5

10
.0

11
.0

Censored Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

9.0 9.5 10.0 10.5 11.0

9.
0

9.
5

10
.0

11
.0

Censored Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6: Output of the function qqcnorm() on data with censored values. Normal Q-Q
plots for comparing the empirical quantiles to the truncated Gaussian quantiles.

Figure 5 assists in the evaluation of the probabilistic assumptions on the response variables,
by highlighting the area of the Gaussian density function as background of each histogram.
Furthermore, the proportions of left/right censored values are graphically compared with the
corresponding Gaussian tail probabilities. If the assumption about the censoring mechanism
is satisfied, then the proportions and tails probabilities should be approximately equal to
each other, as clearly shown in Figure 5. The arguments of the function allow to setup
the maximum number of histograms plotted on a single graphic device (max.hist = 4L),
the number of breakpoints between histogram cells (breaks = 5L) and to save the resulting
histograms on an external file.

The second plotting method function that can be used to graphically evaluate the proba-
bilistic assumption on the response variables is qqcnorm(). This function produces censored
normal Q-Q (quantile-quantile) plots, that is, a graphical method for comparing the empiri-
cal distribution to the censored Gaussian distribution. As usual of Q-Q plots, the graphical
evaluation is done by plotting the empirical quantiles (y coordinate) against the theoretical

26 cglasso: Conditional Graphical Lasso Inference in R

quantiles (x coordinate) of the censored Gaussian distribution, which are defined as follows:

x =

lo if p ≤ Φ{(lo − µ)/σ}
µ + σΦ−1(p) if Φ{(lo − µ)/σ} < p < 1 − Φ{(up − µ)/σ}
up if p ≥ 1 − Φ{(up − µ)/σ}

where p ∈ (0, 1). If the two distributions are similar, the points will approximately lie on the
line y = x. Figure 6 is obtained by the following R code

R> qqcnorm(Z.sim, max.plot = 4L, save.plot = TRUE)

As with the hist() function, points corresponding to the censored values are plotted using a
specific symbol and color (in this example a red triangle) in order to evaluate if the proportions
of left/right-censored values are coherent with the Gaussian tail probabilities.

4. Data manipulation: Technical details and further examples
We start the second part of the paper, by describing in detail the group of functions named
data manipulation. Table 1 reports the full set of functions and their description.
As we shall see in the following sections, all functions belonging to this part of the package
are specifically designed with the aim of working with an R object that represents, in a
comprehensive way, a dataset with censored and/or missing values drawn from a conditional
Gaussian graphical model. The main function of this group is datacggm(), which is the
function devoted to return an R object with attribute class set to ‘datacggm’. As explained
in Chambers (1992), attribute class allows to use the S3 object-oriented system, which makes
it possible to define a coherent set of method functions within a specified environment.

4.1. The objects of class ‘datacggm’

The function dataccgm() collects all information about the observed values in the data, the
pattern of censored/missing values, and all other elements that may be useful during the first
steps of the statistical analysis. It is defined as follows:

datacggm(Y, lo = -Inf, up = +Inf, X = NULL,
control = list(maxit = 1.0E+4, thr = 1.0E-4))

The argument Y is a (n × p)-dimensional response matrix whose rows are independent ob-
servations; left and right censoring values are specified by lo and up, respectively, whereas
missing-at-random response values are encoded, as usual, by NA. By default lo and up are set
equal to -Inf and +Inf, respectively, meaning that censored values are not recorded. The
argument X is optional and, if available, can be used to specify a predictor matrix, that is, a
(n×q)-dimensional matrix by which to model the expected values of the p response variables.
To improve its computational efficiency, the function datacggm() works as a wrapper function
of two specific Fortran subroutines. The first one uses Y, lo and up to identify the patterns of
censored/missing response values and returns additional elements that will be used during the
fitting process of the implemented models. The second one estimates the marginal mean and
variance of the response variables using an EM algorithm, for which the argument control

Journal of Statistical Software 27

Function Description
datacggm() Create a dataset from a conditional Gaussian graphical

model with censored and/or missing values
is.datacggm() Is an object of class ‘datacggm’?
print.datacggm() Print method for a ‘datacggm’ object
summary.datacggm() Summarizing objects of class ‘datacggm’
dim.datacggm() Dimensions of a ‘datacggm’ object
nobs()/nresp()/npred() Extract the number of observations/responses/predictors

from a ‘datacggm’ object
dimnames.datacggm() Dimnames of a ‘datacggm’ object
rowNames()/colNames() Row and column names of a ‘datacggm’ object
getMatrix() Retrieve matrices Y and X from a ‘datacggm’ object
event() Status indicator matrix from a ‘datacggm’ object
lower()/upper() Lower and upper limits from a ‘datacggm’ object
ColMeans()/ColVars() Form column means and variances of a ‘datacggm’ object
rcggm() Simulate from a conditional Gaussian graphical model with

censored and/or missing values
hist.datacggm() Histogram for a ‘datacggm’ object
qqcnorm() Quantile-quantile plots for a ‘datacggm’ object

Table 1: Functions belonging to the group named data manipulation.

is a list used to set the maximum number of steps (maxit) and the convergence threshold
(thr).
To gain an insight into the internal representation of a dataset with censored and/or missing
values drawn from a conditional Gaussian graphical model, we use the two objects created in
Section 3.1 and Section 3.2, respectively, i.e., MM.datacggm and MKMEP.datacggm.
As discussed above, MM.datacggm is an object of class ‘datacggm’, that is a named list with
the following components:

R> names(MM.datacggm)

[1] "Y" "X" "Info"

The first two components enclosed in a ‘datacggm’ object are the (n×p)-dimensional response
matrix and the (n × q)-dimensional predictor matrix, respectively, whereas Info is a named
list collecting additional information used during the fitting processes of the implemented
models:

R> names(MM.datacggm$Info)

[1] "lo" "up" "R" "order" "Pattern" "ym"
[7] "yv" "n" "p" "q"

For example, the component named order is an integer vector of length n used to permute
the rows of the matrix Y in such a way that, after permutation, the data are structured as

28 cglasso: Conditional Graphical Lasso Inference in R

a sequence of patterns of censored/missing values. If X is available, then its rows are also
permuted according to that order. The component Pattern provides information about the
identified patterns, that is, what response variables are observed, censored or missing.
As a second toy example we use the object named MKMEP.datacggm. Since in this example
the predictor matrix in not available, datacggm() returns a list with component named X
equal to NULL and number of predictors set to zero:

R> MKMEP.datacggm$X; MKMEP.datacggm$Info$q

NULL
[1] 0

Since in some applications the matrices Y and X can be very large, we have implemented a
specific printing method function defined as follows:

print(x, digits = 3L, n = 10L, width = getOption("width"), ...)

where digits is used to specify how many significant digits are to be used, n is the number
of rows to be shown and width is the width of the text printed on screen. By default, only
the first ten rows are printed, while the number of printed columns is computed in such a way
that the resulting matrix fits within the available screen. If needed, the entire matrices can
be printed on screen by letting n = Inf and width = Inf. If X is not available, then the last
section is returned as NULL, as can be seen by running the same code on the MKMEP.datacggm
object.
The same rationale was used for the summary() function, which is formally defined as follows:

summary(object, n, quantile.type = 7L, digits = 3L, quote = FALSE, ...)

where object is an object of class ‘datacggm’, n is the number of rows to be printed,
quantile.type is an integer between 1 and 9 used to select one of the nine available quantile
algorithms, digits is an integer used for formatting the text and, finally, quote is a logical
object, indicating whether or not strings should be printed with surrounding quotes. Again,
if the matrix X is not included in a ‘datacggm’ object, then last two sections are returned as
NULL.

4.2. Accessor functions

This group of functions contains also a set of useful functions for extracting specific elements
from a ‘datacggm’ object.
Firstly, the user can recover the matrices Y and X via the accessor function getMatrix():

getMatrix(x, name = c("Y", "X", "both"), ordered = FALSE)

where x is a ‘datacggm’ object, name specifies the required matrix and ordered is a logical
value used to identify if the required matrix should be retrieved with rows ordered according
to the patterns of censored values. Letting name = "both", getMatrix() retrieves a named
list with both matrices. For example, we can extract from MM.datacggm the ordered response
matrix running the code:

Journal of Statistical Software 29

R> Y <- getMatrix(MM.datacggm, name = "Y", ordered = TRUE)

The status indicator matrix associated to Y is defined as the matrix encoding the status of
the response variables. This matrix can be extracted from an object of class ‘datacggm’ by
the accessor function

event(x, ordered = FALSE)

where x and ordered have the same meaning as in getMatrix(). The entries of status
indicator matrix are equal to 0, -1, +1 or +9 depending on whether a response variable is
observed, left-censored (-1), right-censored (+1) or missing-at-random (+9):

R> R <- event(MM.datacggm, ordered = TRUE)
R> cbind(Y = Y[, 1L], R = R[, 1L]) |>
+ tail()

Y R
u39 34.59527 0
u60 40.00000 1
u48 36.35477 0
u62 37.05790 0
u63 40.00000 1
u64 40.00000 1

The accessor functions lower() and upper() can be used to retrieve the lower and upper
censoring values of each response variable and are formally defined in the following way:

lower(x)
upper(x)

where x is an object of class ‘datacggm’.
To extract the column means and column variances of the matrices enclosed in a ‘datacggm’
object, the proposed package provides the following function:

ColMeans(x)
ColVars(x)

Both functions return a named list with three components, the first one referring to the
response matrix and the last two referring to the continuous and categorical predictors. As
a possible example, below we use ColMeans() function to extract from MM.datacggm the
marginal means:

R> ColMeans(MM.datacggm) |>
+ lapply(head, n = 5L)

$Y
Y1 Y2 Y3 Y4 Y5

38.52112 37.68152 38.00302 37.85182 36.94704

30 cglasso: Conditional Graphical Lasso Inference in R

$X.numeric
X1 X2 X3 X4 X5

-5.090329e-16 -5.054889e-16 -2.928701e-16 4.571403e-16 -5.191160e-16

$X.categorical
CyAb

"CyAb:5"

Marginal means and variances of the p response variables are estimated using an EM algorithm
whereas marginal means and variances of the (fully observed) continuous predictor variables
are computed in the usual way. For categorical predictors, the function ColMeans() returns
the statistical mode whereas the function ColVars() returns the Gini-Simpson index.
Before closing this section, we point out that the information about the sample size, the
number of response variables and the number of predictors can be recovered by the accessor
functions nobs(), nresp() and npred(), which are formally defined as follows:

nobs(object, ...)
nresp(object, ...)
npred(object, ...)

where object is a ‘datacggm’ object and ... is used to get compatibility with the standard
generic functions implemented in R.

4.3. Retrieving and setting attributes

The group of functions devoted to the data manipulation provides also a coherent set of
functions to retrieve or set attributes in a specific manner. These functions are formally
defined in the following way:

dim(x)
dimnames(x)
rowNames(x)
colNames(x)

where the argument x is an R object of class ‘datacggm’. Since an object of class ‘datacggm’
has been designed to enclose information on two matrices, the functions above extends their
standard R version by returning a list with components containing the required attribute of
the matrix Y and X, respectively. If the matrix of predictors is not included in the ‘datacggm’
object, then last component is set to NULL. This is done mainly for internal purposes only, so
that the behavior of the implemented functions can be adapted to the specific features of the
dataset studied.
Since these functions return always a list with component named Y and X, the user can retrieve
or set the attribute of a specific matrix by combining their usage with the standard $ operator,
as typically done in R.

4.4. Simulation function

The simulation function rcggm() allows the user to evaluate the theoretical properties of

Journal of Statistical Software 31

Arguments Distribution
n p b0 X B Sigma
✓ ✓ Yi ∼ Np(0; Ip)
✓ ✓ Yi ∼ Np(0; Σ)
✓ ✓ Yi ∼ Np(b0; Ip)
✓ ✓ ✓ Yi ∼ Np(b0; Σ)

✓ ✓ Yi ∼ Np(x⊤
i B; Ip)

✓ ✓ ✓ Yi ∼ Np(x⊤
i B; Σ)

✓ ✓ ✓ Yi ∼ Np(b0 + x⊤
i B; Ip)

✓ ✓ ✓ ✓ Yi ∼ Np(b0 + x⊤
i B; Σ)

Table 2: Relationship between a multivariate Gaussian distribution and arguments of the
simulation function rcggm(). The minimum required arguments needed to specify a certain
multivariate Gaussian distribution are marked by a checkmark.

the methodologies that have been developed and implemented in the cglasso package. This
function is defined as follows:

rcggm(n, p, b0, X, B, Sigma, probl, probr, probna, ...)

The arguments of this function can be partitioned into three groups. Firstly, we have six
arguments for specifying the multivariate Gaussian distribution from which the sample should
be drawn. As shown in Table 2, only a subset of these arguments may be really needed to
specify certain distributions. For example, to draw a sample from a multivariate standard
normal distribution, the user has to specify only the sample size, that is the argument n,
and the number of variables Y , that is the argument p. If the means are different from zero
and/or the covariance matrix is different to the identity matrix, the arguments b0 and Sigma
are used to specify these values. In this case, the argument p can be omitted as it can be
easily recovered from the dimensions of the arguments b0 and Sigma. The arguments X and B
are used to specify the linear model for the expected values of the p response variables. Here,
X is the (n × q)-dimensional predictor matrix whereas B is the (q × p)-dimensional regression
coefficients matrix. Thus, the argument b0 plays the role of the vector of p intercepts, which
differently to the rest of the paper, we keep separately from the matrix B so as to distinguish
the different distributions, which are reported in the last column of Table 2. The next set
of arguments for this function allows to specify the probability of observing a left-censored
response value (probl), a right-censored response value (problr) or a missing-at-random
response value (probna). Each of these arguments accepts either a vector of p values belonging
to the closed interval [0, 1] or a single value, which will be repeated p times to get a vector
with the right length. If one of these three arguments is not specified, it is set equal to
zero by default. Algorithm 3 reports the pseudo-code of the implemented algorithm and
shows that lower and upper censoring values are implicitly computed using the arguments
probl and probr (see Algorithm 3, Step 4). If Y[i, j] is not censored, i.e., Y[i, j] ∈
(lo[j], up[j]), then it is replaced with NA using a Bernoulli random variable with probability
probna/(1 − probl[j] − probr[j]). Finally, the argument ... is used to pass further
arguments to the function mvrnorm() available in the R package MASS (Venables and Ripley
2002, see Algorithm 3, Step 2).

32 cglasso: Conditional Graphical Lasso Inference in R

Algorithm 3 Pseudo-code of the algorithm implemented with function rcggm().
1: compute mu = b0 + X % * % B
2: simulate matrix Y with Y[i,] ∼ N(mu[i,], Sigma)
3: for j = 1, . . . , p do
4: compute lo[j] and up[j] as solutions of the following equations

n−1
n∑

i=1
E{I(Wij ≤ lo[j])} = probl[j],

n−1
n∑

i=1
E{I(Wij ≥ up[j])} = probr[j],

where I(·) is the indicator function and Wij ∼ N(mu[i, j], Sigma[j, j])
5: if Y[i, j] ≤ lo[j] then replace it with lo[j]
6: if Y[i, j] ≥ up[j] then replace it with up[j]
7: if Y[i, j] ∈ (lo[j], up[j]) then replace it with NA using a Bernoulli random variable

with probability probna/(1 − probl[j] − probr[j])
8: end for

4.5. Plotting method functions

The proposed package contains two specific plotting functions to plot an object of class ‘datacggm’,
namely hist() and qqcnorm(). The first one is defined as follows

hist(x, breaks = "Sturges", include.lowest = TRUE, right = TRUE,
nclass = NULL, which, max.hist = 1L, save.hist = FALSE, grdev = pdf,
grdev.arg, polygon.col = adjustcolor("grey", alpha.f = 0.25),
polygon.border = NA, segments.lwd = 4L, segments.lty = 2L,
segments.col = "gray40", points.pch = c(4L, 1L), points.cex = 1.8,
points.col = rep("black", 2L), legend = TRUE, ...)

and produces a set of histograms. As highlighted by the number of arguments, this function
is quite flexible allowing a high degree of personalization of the resulting graphs. For the
sake of brevity, below we describe only the main arguments and we refer the user to the
help page for more details. The first argument, named x, is an object of class ‘datacggm’
whereas the next four arguments, that is breaks, include.lowest, right and nclass, are
passed to hist.default() and used to compute the breakpoints between histogram cells.
The argument which is an integer vector for specifying the response variables for which the
histogram is required, whereas max.hist is an integer specifying the maximum number of
histograms plotted on a single graphic device. The argument save.hist can be used to save
resulting histograms on external files. Letting save.hist = TRUE, histograms are saved on
the current working directory but the user can specify a different directory by passing the
absolute path through this argument. For example, letting save.hist = paste0(getwd(),
"/img"), the figures will be saved in a subdirectory of the current working directory called
img. Finally, the arguments grdev and grdev.arg are the graphics device to be used and the
corresponding parameters.
The second plotting function is defined as follows:

Journal of Statistical Software 33

qqcnorm(x, which, max.plot = 1L, save.plot = FALSE, grdev = pdf,
grdev.arg, main = "Censored Normal Q-Q Plot",
xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, plot.pch = c(2L, 20L), plot.col = c(2L, 1L),
plot.cex = c(2L, 1L), abline = FALSE, line.col = "gray50",
line.lwd = 1L, line.lty = 2L, ...)

The meaning of the main arguments is the same as in hist(), so their description is omitted
here but can be retrieved from the help page.

5. Model fitting: Technical details and further examples
The group of functions named model fitting represents the core group of the cglasso package.
It provides the primary fitting functions, a set of method functions, a set of extractor functions
to retrieve auxiliary results and, finally, the functions devoted to prediction and imputation.
The full set of functions and their description is reported in Table 3.

5.1. Fitting conditional glasso models

cglasso() is the primary fitting function available in this group and it is formally defined as
follows:

cglasso(formula, data, subset, contrasts = NULL, diagonal = FALSE,
weights.B = NULL, weights.Tht = NULL, nlambda, lambda.min.ratio,
lambda, nrho, rho.min.ratio, rho, maxit.em = 1.0E+4, thr.em = 1.0E-3,
maxit.bcd = 1.0E+5, thr.bcd = 1.0E-4, trace = 0L)

In this function, formula is an optional argument by which the user can specify the model
to be fitted by the usual symbolic description. If this argument is missing, cglasso() will
automatically selects the more suitable version of the cglasso estimator using the auxiliary

Function Description
cglasso() Conditional graphical lasso estimator
print.cglasso() Print method for a ‘cglasso’ object
plot.cglasso() Plot method for a ‘cglasso’ object
coef.cglasso() Extract model coefficients
fitted.cglasso() Extract model fitted values
residuals.cglasso() Extract model residuals
predict.cglasso() Predict method for ‘cglasso’ fits
impute() Imputation of missing and censored values
cggm() Post-hoc maximum likelihood refitting of a

conditional graphical lasso
print.cggm() Print method for a ‘cggm’ object
plot.cggm() Plot method for a ‘cggm’ object
predict.cggm() Predict method for ‘cggm’ fits

Table 3: Functions belonging to the group named model fitting.

34 cglasso: Conditional Graphical Lasso Inference in R

Missingness mechanisms
X Fitted modelCensoring MAR

glasso (Friedman et al. 2008)
✓ conditional glasso (Yin and Li 2011)

✓ censored glasso (Augugliaro et al. 2020a)
✓ ✓ conditional censored glasso (Augugliaro et al. 2020b)

✓ missglasso (Städler and Bühlmann 2012)
✓ ✓ conditional missglasso (Städler and Bühlmann 2012)

Table 4: Relationship between the auxiliary information enclosed on a ‘datacggm’ object and
the fitted model. Checkmark means that the auxiliary information is available. The first two
columns refer to the mechanism of missingness for the response variables, that is, censoring
or missing-at-random (MAR), whereas the third column refers to the presence or not of the
predictor matrix. The last column reports the name of the fitted model.

information enclosed in the ‘datacggm’ object, which is passed through the argument data.
Table 4 sums up the different implementations. For example, if the matrix X is not enclosed in
data, then cglasso() fits a censored glasso model (Augugliaro et al. 2020a) or a missglasso
model (Städler and Bühlmann 2012) depending on the information about the missing values
contained in data$Info (see Section 4 for more details on this component). If the matrix
X is included in data, then, starting from the cglasso package version 2.0.4, the function
cglasso() can also fit conditional models with both censored (Augugliaro et al. 2020b) and
missing-at-random (Städler and Bühlmann 2012) response values.
The function cglasso() has been designed in such a way that only the argument data is
needed to fit a model, whereas the other arguments are optional, hence the user can avoid
their specification if needed. Formally, cglasso() is a higher-level function designed only
to test the correctness of the arguments; if the arguments are coherent with their definition,
they are passed on to the function cglasso.fit() which calls the required fitting algorithm
after having analyzed the entries enclosed in data. To ensure high computational efficiency,
those fitting algorithms are written in Fortran.
We now describe the remaining optional arguments assuming that a matrix X is included in
the ‘datacggm’ object. If it is not, then the arguments related to λ and to the regression
coefficient matrix must be left unspecified. The arguments weights.B and weights.Tht are
matrices for specifying non-negative weights for the regression coefficients and the precision
values, respectively. The user can also use the entries of these matrices to specify a set of
unpenalized parameters or a set of structural zeros. For example, letting weights.Tht[h,
k] = 0 then θ̂hk will be unpenalized whereas letting weights.Tht[h, k] = +Inf will set θ̂hk

equal to zero. The next six arguments are used to specify the sequences of λ and ρ values
used to fit the model. By default, cglasso() fits a sequence of models using a decreasing
sequence of ten λ values and a decreasing sequence of ten ρ values. The length of these two
sequences can be changed using nlambda and nrho, respectively. The largest λ and ρ values,
denoted by λmax and ρmax, are computed using Theorem 3 in Augugliaro et al. (2020b).
These values guarantee that only the estimated intercepts and the diagonal entries of the
estimated precision matrix are nonzero. From a computational point of view, these estimates
are computed by the EM algorithm implemented in the datacggm() function and returned by
the extractor functions ColMeans() and ColVars(). The smallest values of the two sequences

Journal of Statistical Software 35

of λ and ρ values, denoted by λmin and ρmin, respectively, are computed as a fraction of λmax
and ρmax, that is, λmin = lambda.min.ratio ×λmax and ρmin = rho.min.ratio ×ρmax.
Hence lambda.min.ratio and rho.min.ratio are the arguments that can be used avoid the
computational problems related with the high-dimensional setting, that is, when the sample
size is small with respect to the number of parameters. The default value of these two
arguments is related to the sample size; if it is large enough these two arguments are set equal
to 1.0E-6 otherwise they are set equal to 1.0E-2. The arguments lambda and rho can be
used to pass a user supplied decreasing sequence of λ and ρ values, respectively, to the fitting
algorithm. However, we suggest their use with care and avoid supplying a single λ or ρ value.
The remaining arguments refer to the setting of the EM algorithm; for the sake of brevity
their description is omitted here and we refer to the help-page of the cglasso() function for
more details.
To elucidate the use of the cglasso() function, we report below an example based on the ob-
ject MKMEP.datacggm, where the response variables are right censored (no missing-at-random
values are recorded) and a predictor matrix is not available. Therefore, in accordance with
Table 4, cglasso() will fit a sequence of censored glasso models using a decreasing sequence
of ten ρ values:

R> MKMEP.mdl1 <- cglasso(data = MKMEP.datacggm)

Upon completion of the fitting algorithm, cglasso() returns a list with attribute class set to
‘cglasso’. The package cglasso provides a rich set of method functions specifically designed
to help the user with the analysis of a ‘cglasso’ object. The first one is the printing method
function, which has been designed to print on screen the main summary statistics of the
sequence of fitted models. Its formal definition is as follows:

print(x, digits = 3L, ...)

where x is an object of class ‘cglasso’, digits is an integer used to specify the number of
printed digits and ... is used to pass further arguments to the standard printing method
function. To get some insight about its behavior, below we show the output printed on screen
after a call to this function:

R> MKMEP.mdl1

Call: cglasso(data = MKMEP.datacggm)

rho df (df%) N. Comp.
8.4697 126 (6.061%) 63
7.5380 128 (6.157%) 61
6.6064 128 (6.157%) 61
5.6747 129 (6.205%) 60
4.7430 139 (6.686%) 51
3.8114 159 (7.648%) 40
2.8797 197 (9.476%) 30
1.9480 275 (13.228%) 17
1.0164 442 (21.260%) 3
0.0847 1539 (74.026%) 1

36 cglasso: Conditional Graphical Lasso Inference in R

model: 'censored glasso'
nObs: 48

nResp: 63
nPred: 0

For a model fitted without a predictor matrix, as in this example, print() organizes the
output into two different parts. The first one reports information about the complexity of the
fitted models and the topological structure of the corresponding estimated graphs. In detail,
for each ρ value used, the output reports the degrees-of-freedom (df), defined as the number
of nonzero estimates, and the number of connected components (N. Comp.), that is, the
number of maximal connected subgraphs in which the estimated graph can be decomposed.
For example, let us consider the results obtained using ρmax = 8.4697. As discussed above,
this value is computed in such a way that the resulting estimated precision matrix is diagonal
then the degrees-of-freedom are equal to the number of expected values plus the number
of diagonal entries of the estimated precision matrix, that is, df = 2 p. Furthermore, the
estimated graph contains only isolated vertices, so the number of connected components
is equal to p. As expected, reducing ρ will result in an increase in terms of degrees-of-
freedom and, at the same time, a reduction in the number of connected components. From
a computational point of view, decomposition of a graph into connected components gives
rise to a reduction in the computational burden of the fitting algorithm as the original fitting
problem can be decomposed into smaller subproblems. For more details about this aspect of
the fitting problem, the interested reader is referred to Witten et al. (2011) and Mazumder and
Hastie (2012). Finally, the last part of the printed text reports the name of the fitted model,
the sample size, the number of response variables and the number of predictors, respectively.
Finally, it is worth noting that the print() function silently returns an object of class
‘data.frame’ containing the summary statistics printed on screen.

5.2. Plotting an object of class ‘cglasso’

To graphically evaluate the behavior of the estimates as the tuning parameters vary, the
model fitting group provides the function plot(), defined as follows:

plot(x, what = c("Theta", "diag(Theta)", "b0", "B"),
penalty = ifelse(x$nrho >= x$nlambda, "rho", "lambda"), given = NULL,
GoF = AIC, add.labels, matplot.arg1, matplot.arg2, labels.arg,
abline.arg, mtext.arg, save.plot, grdev = pdf, grdev.arg, digits = 4L,
...)

The argument x is an object of class ‘cglasso’ that is the output of the fitting function
cglasso(). The remaining arguments allows the user to customize several aspects of the
resulting graph. For the sake of brevity, below we describe only the main arguments and we
refer the user to the help page for more details.
The graphs produced by this method function closely depend on whether one has fitted a
model with or without a set of predictors. For models whose vector of expected values is
modeled by a set of q predictors, such as MM.mdl, the function plot() returns a conditional

Journal of Statistical Software 37

coefficient path, that is a graph showing a set of estimated parameters as a function of a
chosen tuning parameter while the remaining tuning parameter, called “conditional tuning
parameter”, is held fixed to a specific value.
The user can specify a conditional coefficient path in two different ways, either via the three
main arguments what, penalty and given or via a specific model formula. We start by
describing the first method. In this case, the argument what is used to specify the set of
estimated parameters reported on the y axis. By default, the estimated precision values
(what = "Theta") are reported on the y axis, but the user can also plot the diagonal entries of
the estimated precision matrix (what = "diag(Theta)"), the p estimated intercepts (what =
"b0") or, finally, the estimated regression coefficients (what = "B"). The argument penalty
is used to specify the tuning parameter reported on the x axis, that is ρ (penalty = "rho")
or λ (penalty = "lambda") while given is an optional vector of integers used to identify one
or more values of the conditional tuning parameter used during the fitting process. If this
argument is not specified then plot() returns a sequence of graphs, one for each value of the
conditional tuning parameter used to fit the model.
To gain more insight into how these three arguments are used, we report below the R code
needed to get the conditional path of the estimated precision values. For illustration purposes,
we fit the model using a subset of five response variables randomly drawn from the dataset
MM.datacggm. Furthermore, to improve the quality of the resulting graph we use a decreasing
sequence of one hundred ρ values and only two possible λ values:

R> set.seed(1234)
R> sample(nresp(MM.datacggm), 5L) |>
+ sort() -> Y.id
R> colNames(MM.datacggm)$Y[Y.id]

[1] "Y16" "Y22" "Y28" "Y37" "Y44"

R> mylambda <- c(0.2, 0.1)
R> MM.submdl <- cglasso(cbind(Y16, Y22, Y28, Y37, Y44) ~ .,
+ data = MM.datacggm, nrho = 100L, lambda = mylambda)

Given the object MM.submdl, the conditional path of the estimated precision values with
respect to ρ and given the first λ value is obtained by the following R code:

R> plot(MM.submdl, what = "Theta", penalty = "rho", given = 1L,
+ matplot.arg1 = list(ylab = "Precision Values",
+ main = "Multiple Myeloma Dataset"), GoF = AIC)

Figure 7(a) shows the resulting graph, where we used the argument matplot.arg1 to specify
the title of the graph and the y axis label, and the argument GoF for the measure of goodness-
of-fit corresponding to the optimal value of the tuning parameter reported on the x axis.
In our example, we use the AIC (GoF = AIC) to identify the optimal ρ value given the first
λ value used to fit the model. Although model selection is part of the graph returned by
plot(), we postpone the description of how the model fitting evaluation is managed in the
cglasso package to Section 6. Here, we just note that GoF can accept the name of a goodness-
of-fit function, such as AIC or BIC, by which the fitted models are evaluated, or an object

38 cglasso: Conditional Graphical Lasso Inference in R

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

1.
0

−
0.

5
0.

0

Multiple Myeloma Dataset

ρ | { λ ≈ 0.2000 }

P
re

ci
si

on
 V

al
ue

s

θ̂1,2θ̂1,3

θ̂2,3
θ̂1,4

θ̂3,4

θ̂1,5

θ̂2,5

θ̂3,5

θ̂4,5

AIC

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Megakaryocyte−Erythroid Progenitors Dataset

ρ

P
re

ci
si

on
 V

al
ue

s θ̂2,4

θ̂4,5

AIC

(b)

Figure 7: Output of the method function plot(). Vertical red dashed line identifies the
optimal value of the tuning parameter reported on the x axis. By default, paths of the
identified non-zero estimates are drawn using black solid lines whereas dashed gray lines are
used to draw the path of the zero estimates.

of class GoF. If one lets GoF = NULL, then information about the model fitting evaluation is
suppressed from the resulting graph.
As mentioned above, the user can also specify a conditional coefficient path using a model
formula, whose general expression is of the form:

what ~ penalty | given

The following code shows how the argument what can be used to replicate Figure 7(a) using
this second method:

R> plot(MM.submdl, what = Theta ~ rho | 1,
+ matplot.arg1 = list(ylab = "Precision Values",
+ main = "Multiple Myeloma Dataset"), GoF = AIC)

Finally, we discuss how to use plot() in the case of a model fitted without predictors. Since
now the only tuning parameter is ρ, the argument penalty can be omitted while given must
be left unspecified. As a consequence, the proposed plotting method function will return a
standard coefficient path as default. Again, the argument what can be used to specify a set
of estimated parameters or a model formula whose form is as follows:

what ~ rho

Since by default what = "Theta", the function plot() will return as default the path of
the precision values. We show this case without predictors by using the proposed plotting

Journal of Statistical Software 39

method function to graphically evaluate a model fitted using a set of five random variables
randomly drawn from the dataset MKMEP.datacggm. As previously done, we fit the model
using a decreasing sequence of one-hundered ρ values:

R> set.seed(1234)
R> sample(nresp(MKMEP.datacggm), 5L) |>
+ sort() -> Y.id
R> colNames(MKMEP.datacggm)$Y[Y.id]

[1] "Y16" "Y22" "Y28" "Y37" "Y58"

R> MKMEP.submdl <- cglasso(cbind(Y16, Y22, Y28, Y37, Y58) ~ .,
+ data = MKMEP.datacggm, nrho = 100L)

Figure 7(b) shows the path of the estimated precision values and it is obtained by:

R> plot(MKMEP.submdl, matplot.arg1 = list(ylab = "Precision Values",
+ main = "Megakaryocyte-Erythroid Progenitors Dataset"),
+ GoF = AIC)

As discussed above, in this case the argument what can be omitted.

5.3. Further method functions for ‘cglasso’ objects

The group of functions devoted to model fitting provides also a set of method functions for
extracting the results of the fitting process from a ‘cglasso’ object. For illustration purposes,
in what follows we will explain the use of these functions with a model fitted using a set of q
predictors. In the other cases, the functions can be used by setting the arguments related to
λ unspecified.
The estimated model coefficients can be extracted using the function coef(), which is defined
as:

coef(object, type = c("all", "B", "Sigma", "Theta"), lambda.id, rho.id,
drop = TRUE, ...)

where object is an object of class ‘cglasso’ and type is used to specify the required esti-
mates. In particular, the user can extract the regression coefficient matrix (type = "B"), the
covariance matrix (type = "Sigma") or the precision matrix (type = "Theta). Letting type
= "all", a named list enclosing all these estimates is returned. The next two arguments refer
to the number of λ and ρ values used to fit the model, respectively. The user can extract the
estimates corresponding to a specific pair of tuning parameters via the optional arguments
lambda.id and rho.id, which are two vectors of positive integers specifying the position in
the sequence of λ and ρ values used to fit the model.
For example, to extract from MM.submdl the estimated precision matrix corresponding to the
pair:

R> c(lambda = MM.submdl$lambda[1L], rho = MM.submdl$rho[1L])

40 cglasso: Conditional Graphical Lasso Inference in R

lambda rho
0.200000 2.175208

we can use the following code:

R> Theta_hat <- coef(MM.submdl, type = "Theta", lambda.id = 1L,
+ rho.id = 1L)
R> dim(Theta_hat)

[1] 5 5

The output above shows that, by default, the unused dimensions are dropped. This can be
avoided by setting drop = FALSE.
Similarly, the fitted values can be extracted by the following function:

fitted(object, lambda.id, rho.id, drop = TRUE, ...)

whose arguments have the same meaning as in coef(). For example, the code:

R> FittedValues <- fitted(MM.submdl, type = "Theta", lambda.id = 1L,
+ rho.id = 1L)

will extract the fitted values corresponding to the first λ and ρ values used to fit the MM.submdl
model.
Finally, the model residuals can be extracted by the function:

residuals(object, type = c("observed", "working"), lambda.id, rho.id,
drop = TRUE, ...)

Using this function, the user can extract two different types of model residuals. The former,
called “observed” residuals (type = "observed"), is defined as the difference between the
observed and the corresponding fitted response values. For missing and censored values,
these residuals are set to NA. The later is called “working” residuals (type = "working") and
it is obtained as a byproduct of the EM algorithm used to fit the model. Formally, “working”
residuals are defined as the difference between the working response matrix and the matrix
of fitted values. The call of this function is similar to that of the fitted values. For example,
the code:

R> WorkingResiduals <- residuals(MM.submdl, type = "working",
+ lambda.id = 1L, rho.id = 1L)

will extract the “working” residuals corresponding to the first λ and ρ values used to fit the
MM.submdl model.

5.4. Prediction and missing data imputation using a ‘cglasso’ object

Using the results enclosed in a ‘cglasso’ object, the user can make predictions via the function

Journal of Statistical Software 41

predict(object, type = c("B", "mu", "Sigma", "Theta"), X.new, lambda.new,
rho.new, ...)

where object is the output of the cglasso() function. As done for the method functions
described in the previous section, in what follows we shall assume that object is the output
of a model fitted using a predictor matrix. If not, the arguments related to λ must be left
unspecified.
We now describe the remaining arguments. Given a new pair of λ and ρ values, passed by
the arguments lambda.new and rho.new, the user can choose among a number of quantities
for which the prediction can be made. For example, letting type = "B", the implemented
function will use a bilinear interpolation to predict the estimated regression coefficient ma-
trix, whereas letting type = "mu" the predicted fitted values will be returned. These values
are computed as the product between a new predictor matrix, passed by X.new, and the
predicted regression coefficient matrix. If a new predictor matrix is not available, that is
argument X.new is left unspecified, then prediction is made using the matrix enclosed in the
‘datacggm’ object used to fit the model. Finally, the user can also ask for the prediction of the
estimated covariance matrix (type = "Sigma") and of the estimated precision matrix (type
= "Theta"). As done for the regression coefficient matrix, these matrices are computed by
bilinear interpolation.
As a possible example, we use the MM.submdl object to predict fitted values. As new λ and
ρ values we use the average values of the λ and ρ values used to fit the model:

R> lambda.new <- mean(MM.submdl$lambda)
R> rho.new <- mean(MM.submdl$rho)
R> mu_pred <- predict(MM.submdl, type = "mu", lambda.new = lambda.new,
+ rho.new = rho.new)

The output of the cglasso() function can be used also to impute missing and censored data.
This is achieved via the function impute(), whose formal definition is:

impute(object, type = c("mar", "censored", "both"), lambda.new, rho.new)

The arguments object, lambda.new and rho.new have the same meaning as in predict()
whereas type is a description of the required imputation, that is of missing-at-random re-
sponse values (type = "mar"), censored response values (type = "censored") or both (type
= "both"). For a given row of the response matrix, missing values are imputed using the
expected values of a multivariate normal distribution conditional on the observed values
whereas the censored values are imputed using expected values of a multivariate truncated
normal distribution conditional on the observed values.

5.5. Post-hoc maximum likelihood refitting of a model

In some applications, the user may prefer to use the ℓ1-penalty function only as a tool for
model selection, but then to estimate and evaluate the selected model by maximum likelihood.
For this reason, we include in the package a second model fitting function, called cggm().
This function is specifically designed to fit a conditional Gaussian graphical model via a
maximum likelihood method, with nonzero parameters identified by the model structure of a
given ‘cglasso’ object.

42 cglasso: Conditional Graphical Lasso Inference in R

Algorithm 4 Pseudo-code of the algorithm implemented with function cggm().
1: let λini and ρini be two tuning values used to fit a model by cglasso()
2: extract the corresponding estimates: B̂ini = {β̂ini

ij } and Θ̂ini = {θ̂ini
ij }

3: compute the matrices weights.B and weights.Tht with entries:

weights.B[i, j] =
{

+1 if β̂ini
ij ̸= 0

+∞ otherwise
weights.Tht[i, j] =

{
+1 if θ̂ini

ij ̸= 0
+∞ otherwise

4: for k = 1, . . . , ntp do
5: fit a model using the Algorithm 1 with setting:

• ρ = ρini − (k−1)
(ntp−1)(ρini − tp.min) and λ = λini − (k−1)

(ntp−1)(λini − tp.min)
• matrices of weights computed in Step 3
• previous estimates as warm starting values

6: end for
7: return last fitted model

The function cggm() is therefore defined as follows:

cggm(object, GoF = AIC, lambda.id, rho.id, tp.min = 1e-06, ntp = 100L,
maxit.em = 10000, thr.em = 1e-04, maxit.bcd = 1e+05, thr.bcd = 1e-04,
trace = 0L, ...)

where object is an object of class ‘cglasso’.
To gain more insight into the meaning of the remaining arguments, Algorithm 4 reports the
pseudo-code of the algorithm implemented to compute the maximum likelihood estimates for
the case where object is the output of a model fitted using a predictor matrix. In particular,
let λini and ρini be two tuning values used to fit a model by cglasso(). Then cggm() extracts
the corresponding estimates and computes two matrices of weights with entries equal to 1
or +∞, depending on whether the corresponding estimates are different from zero or not
(Algorithm 4, Step 3). Further to this, the algorithm fits a sequence of penalized models
by reducing simultaneously the tuning parameters from λini and ρini to a value close enough
to zero (Algorithm 4, Step 4). The arguments ntp and tp.min are the length and the last
value of the sequences of λ and ρ values used in this step of the algorithm, respectively. The
matrices of weights ensure that the sparse structure of the initial estimates is held fixed during
the computation of the entire sequence of fitted models. By construction, the last fitted model
is unpenalized, i.e. it is fitted by maximum likelihood. To reduce the computational burden,
the estimates obtained at a given point of the sequence are used as warm starting values
for the next fitting problem. The arguments maxit.em, thr.em, maxit.bcd and thr.bcd
have the same meaning as in cglasso() and are used for the implemented EM algorithm.
From a computational point of view, cggm() works as a high-level function used to test the
arguments passed to it, and to then call the function cggm.fit() which is a wrapper of a
Fortran sub-routine implementing the algorithm reported in Algorithm 4.
The user can select λini and ρini in two different ways, either via the arguments lambda.id
and rho.id which are two integers used to identify the λ and ρ values enclosed in object,
respectively, (so for models fitted without a predictor matrix, the argument lambda.id must

Journal of Statistical Software 43

be left unspecified), or via the argument GoF. In this case λini and ρini are selected using the
output of a goodness-of-fit function, such as AIC() or BIC(). Again, we refer to Section 6 for
a complete description of how the model selection step is managed in the cglasso package.
We complete this section by reporting an example on how to use the cggm() function. First,
we use the cglasso() function to fit a sequence of models to MM.datacggm using twenty λ
and ρ values:

R> MM.mdl2 <- cglasso(data = MM.datacggm, nlambda = 20L, nrho = 20L,
+ lambda.min.ratio = 0.2, rho.min.ratio = 0.2)

The arguments lambda.min.ratio and rho.min.ratio are used to reduce the computational
burden of the overall algorithm. Then, we compute the maximum likelihood estimates of the
model selected by BIC:

R> MM.mdl2.mle <- cggm(MM.mdl2, GoF = BIC)
R> MM.mdl2.mle

Call: cggm(object = MM.mdl2, GoF = BIC)

df N. Comp.
448 (19.876%) 1

As shown below

R> class(MM.mdl2.mle)

[1] "cggm" "cglasso"

the function cggm() returns an object of class ‘cggm’ inheriting class ‘cglasso’, hence the
method functions previously described can be used also on this output (see also Table 3). For
example, by the following code:

R> Theta.MM.mdl2.mle <- coef(MM.mdl2.mle, type = "Theta")

we use the function coef() to extract the maximum likelihood estimate of the precision matrix
of the model selected by BIC. In this case, the other arguments of the function coef() can
be omitted since cggm() returns a single fitted model.

6. Model selection
The group of functions devoted to model fitting and model selection are intimately related
to each other. The main link between the two is the object of class ‘GoF’, that is, a named
list encapsulating all the relevant elements to evaluate the goodness-of-fit of the models fitted
by cglasso() or cggm(). A ‘GoF’ object is created through the use of the goodness-of-fit
functions AIC() and BIC(). Inside the overall structure of the proposed cglasso package, the
object of class ‘GoF’ is designated to play the essential role of attaching the results from a
chosen information criterion to the other functions used to evaluate, from different points of

44 cglasso: Conditional Graphical Lasso Inference in R

Function Description
QFun() Extract Q-function
print.QFun() Print method for a ‘QFun’ object
AIC.cglasso()/BIC.cglasso() Goodness-of-fit functions
print.GoF() Print method for a ‘GoF’ object
summary.cglasso() Summarizing ‘cglasso’ and ‘cggm’ fits
plot.GoF() Plot method for a ‘GoF’ object
select.cglasso() Model selection for conditional

graphical lasso estimator

Table 5: Functions belonging to the group named model selection.

view, the fitted models. For example, as seen in Section 5, an object of class ‘GoF’ can be passed
to the function plot() through the argument GoF, to be shown as additional information on
a conditional coefficient path plot, or it can be attached to the fitting function cggm() to
select a specific model that will be refitted by a maximum likelihood method. Table 5 lists
all the functions belonging to the model selection group along with their description.

6.1. Evaluating the goodness-of-fit
As discussed in the previous section, the objects of class ‘GoF’ are key for the evaluation of
the fitted models and are returned by the goodness-of-fit functions. These functions compute
a number of information criteria, of the type:

measure of model fit + an × measure of model complexity, (8)

where an is some positive sequence that depends only on the sample size and that controls
the penalty on model complexity (Fan and Tang 2013). In particular, in our package, the
model complexity is measured by the degrees-of-freedom, that is, the number of unique non-
zero estimated parameters. The rationale of the information criteria for model selection is
that the true model is the one that optimizes the information criterion (8). Clearly, the
well known AIC (Akaike 1973) and BIC (Schwarz 1978) can be seen as special cases of the
definition (8) with appropriate choices of the quantity an and of the measure used to quantify
the complexity of the fitted model.

6.2. Measuring model fit
Traditionally, the log-likelihood is used as the measure of model fit in model selection criteria.
However, the computational burden related to the evaluation of the log-likelihood for data
with censored and missing values can be excessive also for models of moderate size. For this
reason, following the approach originally proposed in Ibrahim, Zhu, and Tang (2008), in the
cglasso package the model fit is measured using the Q-function:

Q(B, Θ) = n/2[log det Θ − tr{ΘŜy|x(B)} − p log(2π)],

where n is the sample size and Ŝy|x(B) is the working empirical covariance matrix (4). The
values of the Q-function are easily obtained as a byproduct of the M-Step of the Algorithm 1.
The user can extract the Q values by the function QFun(), whose formal definition is reported
below:

Journal of Statistical Software 45

QFun(object, mle, verbose = FALSE, ...)

where object is an R object inheriting class ‘cglasso’. Argument mle is a logical value used
to specify if the Q values should be computed using the penalized (mle = FALSE) or the
maximum likelihood estimates (mle = TRUE). In the last case, the function QFun() acts as a
high-level function calling cggm() to compute the maximum likelihood estimates and then to
evaluate the Q-function. In this case, the argument ... can be used to specify the arguments
of the function cggm(). Finally, the argument verbose is a logical value for deciding whether
to print out a progress bar on the R console. As discussed above, the computational burden
related to the evaluation of the log-likelihood for data with censored and missing values can
be excessive. Thus the proposed package does not implement a method function called by
logLik(), but rather replaces this with the more efficient QFun() function.
Below is an example of how to extract the Q values:

R> mylambda <- c(1, 0.5)
R> MM.mdl1 <- cglasso(data = MM.datacggm, lambda = mylambda, nrho = 5L)
R> MM.mdl1.Qvalue <- QFun(MM.mdl1, mle = FALSE)
R> MM.mdl1.Qvalue

Q-values of the fitted 'conditional censored glasso' models

Details:
1 :

lambda rho df Q-Values
1 4.54e+00 117 -6525
1 3.40e+00 133 -6498
1 2.27e+00 201 -5970
1 1.13e+00 438 -5453
1 4.54e-06 1274 -3748

2 :
lambda rho df Q-Values

0.5 4.54e+00 185 -6266
0.5 3.40e+00 193 -6255
0.5 2.27e+00 193 -5968
0.5 1.13e+00 387 -5485
0.5 4.54e-06 1273 -3739

As the function QFun() returns an R object of class ‘QFun’, we have improved the readabil-
ity of the output printed on screen by formatting the text using the same rationale of the
print() function for an object of class ‘cglasso’, i.e., for each pair of tuning values we report
the degrees-of-freedom (df) and the corresponding Q values (Q-Values). For models fitted
without predictors, the printed section named Details contains a single section reporting the
ρ values used.

6.3. The goodness-of-fit functions

Now we describe the two goodness-of-fit functions belonging to this group of functions. Given

46 cglasso: Conditional Graphical Lasso Inference in R

the pair of estimates (B̂, Θ̂), the first function, named AIC(), returns the values of the fol-
lowing AIC:

AIC = −2 Q(B̂, Θ̂) + k df,

where k is the penalty per parameter and df denotes the number of non-zero estimates. The
function AIC() is defined as follows:

AIC(object, k = 2, mle, ...)

where object is an R object inheriting class ‘cglasso’ and k represents the penalty for the
degrees-of-freedom. The argument mle is passed to the QFun() to specify if the Q-function
must be evaluated using the penalized estimates (mle = FALSE) or the maximum likelihood
estimates (mle = TRUE). The default depends on the class of the fitted object. In particular,
mle is FALSE for objects of class ‘cglasso’ whereas it is TRUE for ‘cggm’ objects. Below is an
example where we use the penalized estimates from MM.mdl1 to compute the AIC values:

R> MM.mdl1.AIC <- AIC(MM.mdl1, mle = FALSE)
R> class(MM.mdl1.AIC)

[1] "GoF"

As discussed above, the function AIC() returns an R object of class ‘GoF’, that is a named
list enclosing a number of entries that will be used to evaluate the goodness-of-fit of a fitted
model. In particular, it includes:

R> names(MM.mdl1.AIC)

[1] "value_gof" "df" "dfB" "dfTht" "value"
[6] "n" "p" "q" "lambda" "nlambda"

[11] "rho" "nrho" "type" "model" "call"

Among these elements, one can find the values of the chosen information criterion (value_gof),
the degrees-of freedom (df), the number of estimated non-zero regression coefficients (dfB)
and the number of estimated non-zero partial correlation coefficients (dfTht). To improve
readability, there is a specific method function for printing the output on screen:

R> MM.mdl1.AIC

Sequence of 'AIC' values of the fitted 'conditional censored glasso' models

Details:
1 :

lambda rho df AIC
1 4.54e+00 117 13283
1 3.40e+00 133 13263
1 2.27e+00 201 12342
1 1.13e+00 438 11781
1 4.54e-06 1274 10044

Journal of Statistical Software 47

2 :
lambda rho df AIC

0.5 4.54e+00 185 12901
0.5 3.40e+00 193 12897
0.5 2.27e+00 193 12323
0.5 1.13e+00 387 11744
0.5 4.54e-06 1273 10025

Since the model is fitted with a set of predictors, the output is structured by taking the two
tuning parameters into account.
The second goodness-of-fit function is named BIC() and is defined as follows:

BIC(object, g = 0, type, mle, ...)

where the arguments object and mle have the same meaning as in AIC(), whereas the
argument type allows the user to choose between two possible extensions of the classical BIC.
In particular, letting type = "FD", the default setting for models fitted without predictors,
the BIC() function returns the values of the following extended BIC (Foygel and Drton 2010):

eBICF D = −2 Q(B̂, Θ̂) + (log n + 4γ log p) df,

where γ (argument g) is a tuning parameter belonging to the closed interval [0, 1] (see Foygel
and Drton (2010) for more details). It is easy to see that by letting γ = 0 (default setting for
g), the previous criterion is formally equivalent to the classical BIC. Below is an example where
we compute the extended BIC for the fitted models enclosed in MKMEP.mdl1. As suggested
in Foygel and Drton (2010), we let γ = 0.5 and we use the maximum likelihood estimates to
compute the Q values:

R> MKMEP.mdl1.eBIC <- BIC(MKMEP.mdl1, g = 0.5, type = "FD", mle = TRUE)
R> MKMEP.mdl1.eBIC

Sequence of 'eBIC_FD' values of the fitted 'censored glasso' models

Details:
rho df eBIC_FD

8.4697 126 15419
7.5380 128 15415
6.6064 128 15415
5.6747 129 15416
4.7430 139 15359
3.8114 159 15395
2.8797 197 15708
1.9480 275 16363
1.0164 442 17920
0.0847 1539 29332

48 cglasso: Conditional Graphical Lasso Inference in R

The second type of the BIC is computed by letting type = "CC", which is the default setting
for models fitted using a set of q predictors. In this case, the BIC() function returns the
values of the following extended BIC (Chen and Chen 2008):

eBICCC = −2 Q(B̂, Θ̂) + (log n + 2γ log q) df,

where γ ∈ [0, 1]. Below we use the BIC() function to compute the extended BIC proposed
in Chen and Chen (2008) for the models enclosed in MM.mdl1. Again, we let γ = 0.5 and we
compute the Q values using the maximum likelihood estimates:

R> MM.mdl1.eBIC <- BIC(MM.mdl1, g = 0.5, type = "CC", mle = TRUE)
R> MM.mdl1.eBIC

Sequence of 'eBIC_CC' values of the fitted 'conditional censored glasso'
models

Details:
1 :

lambda rho df eBIC_CC
1 4.54e+00 117 13550
1 3.40e+00 133 13268
1 2.27e+00 201 12327
1 1.13e+00 438 12631
1 4.54e-06 1274 16579

2 :
lambda rho df eBIC_CC

0.5 4.54e+00 185 13546
0.5 3.40e+00 193 13401
0.5 2.27e+00 193 12384
0.5 1.13e+00 387 12349
0.5 4.54e-06 1273 16574

We conclude this section by pointing out that, by default, the BIC() function computes the
BIC values using the penalized estimates. In this case, BIC() works as a high-level function
calling AIC() with argument k equal to log n and mle set to FALSE.

6.4. Summary of the fitted models

As previously advocated, the objects of class ‘GoF’ represent the link joining a number of func-
tions devoted to the evaluation of model fit. In this section we describe how the information
contained in a ‘GoF’ object can be attached to the output of the summary function:

summary(object, GoF = AIC, print.all = TRUE, digits = 3L, ...)

where object is the output of a model fitting function. The argument GoF allows the user to
manage the part of the function summary() devoted to the model fit evaluation and can be
used in two different ways.

Journal of Statistical Software 49

The simplest way is by using an object of class ‘GoF’ created in a previous step. For exam-
ple, below we attach the elements enclosed in MM.mdl1.eBIC to the summary of the object
MM.mdl1:

R> summary(MM.mdl1, GoF = MM.mdl1.eBIC)

Call: cglasso(data = MM.datacggm, lambda = mylambda, nrho = 5L)

1 :
lambda rho df.B df.Tht df (df%) eBIC_CC Rank

1 4.54e+00 68 49 117 (5.191%) 13550 8
1 3.40e+00 66 67 133 (5.901%) 13268 5
1 2.27e+00 53 148 201 (8.917%) 12327 1 <-
1 1.13e+00 49 389 438 (19.432%) 12631 4
1 4.54e-06 49 1225 1274 (56.522%) 16579 10

2 :
lambda rho df.B df.Tht df (df%) eBIC_CC Rank

0.5 4.54e+00 136 49 185 (8.208%) 13546 7
0.5 3.40e+00 136 57 193 (8.563%) 13401 6
0.5 2.27e+00 56 137 193 (8.563%) 12384 3
0.5 1.13e+00 57 330 387 (17.169%) 12349 2
0.5 4.54e-06 49 1224 1273 (56.477%) 16574 9

===

Summary of the Selected Model

model: 'conditional censored glasso'
nObs: 64

nResp: 49
nPred: 16

lambda: 1
lambda.id: 1

rho: 2.269075
rho.id: 3

eBIC_CC: 12327.04
df.B: 53

df.Tht: 148
df: 201

===

As shown above, the output printed on screen is structured into two sections. The first
one augments the results previously printed by print() function by adding the columns
reporting the number of estimated non-zero regression coefficients (df.B) and the number

50 cglasso: Conditional Graphical Lasso Inference in R

of estimated non-zero partial correlation coefficients (df.Tht). The last two columns, that
is eBIC_CC and Rank, are inherited from MM.mdl1.eBIC and report the values of the chosen
information criterion (the extended BIC in our example) and the corresponding ranking of
the fitted models, respectively. Moreover, the fitted model minimizing the extended BIC is
indicated by an arrow. Finally, the second section reports the primary summary statistics of
the selected model.
Instead of using an object of class ‘GoF’, the second way in which the user can use the argument
GoF is by specifying the name of a goodness-of-fit function and by passing further arguments
of this function via the argument For example, the previous summary can be obtained
also by the following code:

R> summary(MM.mdl1, GoF = BIC, g = 0.5, mle = TRUE)

From a computational point of view, with this code, the function summary() creates the
needed ‘GoF’ object by calling BIC() with the arguments passed by ..., thus essentially creat-
ing internally the object MM.mdl1.eBIC. The two approaches are clearly equivalent. However,
from a practical point of view, we suggest to summarize the fitted models using a number of
objects of class ‘GoF’ in a previous step of the analysis, that is following the first example for
different information criteria. In this way, the results about the information criteria can be
easily shared by the other functions without the need for re-calculating them.
Finally, the remaining arguments of the function summary() can be used to format the output
printed on screen. For the sake of brevity, we refer to the help page for mode details.

6.5. Plotting method function
In order to graphically evaluate the results enclosed in a ‘GoF’ object, the model selection
group provides the following plotting function:

plot(x, add.line = TRUE, arg.line = list(lty = 2L, lwd = 2L,
col = "red"), add.text = FALSE, arg.text = list(side = 3L),
arg.points = list(pch = 2L), ...)

where x is the output of a goodness-of-fit function whereas the remaining parameters can be
used to customize the resulting graph. We refer the user to the help-page for more details.
As done with the plot() function implemented for an object of class ‘cglasso’, the shape
of the returned graph closely depends on whether the model has been fitted using a set of
predictors.
For models fitted without predictors, plot() returns a graph showing the values of the chosen
information criterion as a function of the tuning parameter whereas, for models fitted using
a set of predictors, this function returns a contour plot with λ and ρ values reported on
the x and y axis, respectively, whereas the values of the chosen measure of goodness-of-fit
are used to compute the contour lines. Optimal λ and ρ values are identified using vertical
and horizontal red dashed lines, respectively. For an application of this method function,
we refer the reader to the Sections 3.1 and 3.2, where we use this function to evaluate the
goodness-of-fit of the models fitted to the datasets MM and MKMEP, respectively.

6.6. Selection of the optimal fitted model
Once the optimal values of the tuning parameters have been identified by the functions

Journal of Statistical Software 51

summary() and plot(), the user can recover the corresponding fitted model from a ‘cglasso’
object by the following extractor function:

select.cglasso(object, GoF = AIC, ...)

whose arguments have the same meaning as in summary(). This function returns an object
of class ‘cglasso’, thus the user can then analyze the results enclosed in the returned model
using the method functions described in the previous sections. We refer the reader to the
Section 3.1 for an example of how to use this function.

7. Network analysis
The final group of functions of the proposed package, named network analysis, provides a set
of functions to plot the graphs associated to the fitted model parameters. The main function
of this group is to_graph() which returns an object of class ‘cglasso2igraph’, which provides
a link with the R package igraph (Csardi and Nepusz 2006) and its functionalities. Table 6
lists all the implemented functions and their descriptions.

7.1. The objects of class ‘cglasso2igraph’

As discussed in the previous section, the key element enclosing the information about the
estimated graph is the object of class ‘cglasso2igraph’, which is returned by the function
to_graph(). Below we report the formal definition of this function:

to_graph(object, GoF = AIC, lambda.id, rho.id, weighted = FALSE,
simplify = TRUE, ...)

where object is an R object inheriting class ‘cglasso’, whereas the arguments GoF, lambda.id
and rho.id have the same meaning as in cggm(), i.e., they allow the user to select a fitted
model enclosed in object. These arguments can be omitted if object encloses only one fitted
model, such as, when it is the output of the functions cggm() or select.cglasso().
As shown in Section 3.1, to_graph() returns a named list with class ‘cglasso2igraph’,
containing the entries Gyy and Gxy. The first one is an object of class ‘igraph’ enclosing the
information about the undirected graph that describes the conditional dependence structure
among the p response variables. Formally, given an estimate of the precision matrix, say
Θ̂ = (θ̂ij), the edge set enclosed in Gyy is defined as Êyy = {(i, j), such that θ̂ij ̸= 0}. If
object is the output of a model fitted using a set of predictors, then the entry Gxy is a directed
graph used to describe the effects of the predictors on the expected values of the response

Function Description
to_graph() Create graphs from ‘cglasso’ or ‘cggm’ objects
is.cglasso2igraph() Is an object of class ‘cglasso2igraph’?
print.cglasso2igraph() Print method for a ‘cglasso2igraph’ object
getGraph() Retrieve graphs from a ‘cglasso2igraph’ object
plot.cglasso2igraph() Plot method for a ‘cglasso2igraph’ object

Table 6: Functions belonging to the group named network analysis.

52 cglasso: Conditional Graphical Lasso Inference in R

variables. That is, given an estimate of the regression coefficient matrix, say B̂ = (β̂hk), the
edge set enclosed in Gxy is defined as Êxy = {(h, k), such that β̂hk ̸= 0}. For models fitted
without predictors this entry is equal to NULL.
The argument weighted is logical and it is set equal to TRUE if Gyy and Gxy should be
considered as two weighted graphs. In this case θ̂ij is used as a weight for the pair (i, j) ∈ Êyy

and β̂hk as a weight for (h, k) ∈ (i, j) ∈ Êxy. Finally, the argument simplify can be used to
remove isolated vertices from the returned graphs.
The user can test whether a given object is of class ‘cglasso2igraph’ by the function

is.cglasso2igraph(x)

Finally, the user can extract the objects of class ‘igraph’ from the output of the function
to_graph() by the following extract function

getGraph(x, type = c("Gyy", "Gxy", "both"))

where x is an object of class ‘cglasso2igraph’ and type is a string of characters used to
describe the required graph. By letting type = "both", the implemented extractor function
will return a graph defined as a union of the graphs Gyy and Gxy. We refer to Section 3.1 and
Section 3.2 for examples showing how to use the functions discussed in this section.

7.2. Plotting the estimated graph

The user can plot the estimated graph enclosed in an object of class ‘cglasso2igraph’ by
the following plotting function:

plot(x, type, ...)

where x is the output of the function to_graph() and type has the same meaning as in
getGraph(). The argument ... can be used to specify additional graphical parameters.
From a computational point of view, plot() is a high level function calling getGraph()
to recover the appropriate object of class ‘igraph’. Then, the estimated graph is plotted
by calling the plotting method function implemented in the R package igraph. Like with
the other plotting method functions, the graph returned by the proposed method function
depends on whether the model is fitted using a set of predictors or not.
For models fitted using a set of predictors, by default, the function plot() returns a graph
showing both the undirected graph of the p response variables and the directed graph de-
scribing the effects of the q predictors on the p response variables. For models fitted without
predictors, this function returns the estimated undirected network of the p response variables.

8. Summary
In this paper we have presented the cglasso package, an R package providing comprehensive
and user-friendly core routines for manipulation, simulation, visualization and analysis of
multivariate data according to a conditional Gaussian graphical model, possibly featuring
censored and/or missing values. The proposed R package is available from CRAN at https:
//CRAN.R-project.org/package=cglasso.

https://CRAN.R-project.org/package=cglasso
https://CRAN.R-project.org/package=cglasso

Journal of Statistical Software 53

The cglasso package has been designed with the aim of helping the user with the analysis
of multivariate data drawn from a conditional Gaussian graphical model, possibly featuring
censored and/or missing values. This goal was achieved by structuring the proposed package
as a sequence of four specific groups of functions.
The group named data manipulation contains both the main functions used to retrieve the
internal representation of a dataset drawn from a conditional Gaussian graphical model and
a set of specific method functions. The key element of this group is the object of class
‘datacggm’, which collects all information about the observed values in the data, including
the pattern of censored/missing values and all other elements that may be useful for the other
groups of functions of the proposed package. The group named model fitting is devoted to
the fitting step of the implemented models and to the analysis of the corresponding results.
The primary model fitting function, i.e., cglasso(), has been designed to fit a broad range
of cglasso models and the appropriate version is automatically selected using the auxiliary
information enclosed in a ‘datacggm’ object. The model fitting function returns an R object of
class ‘cglasso’, whose results can be plotted and analysed by specific method functions. The
third group, called model selection, concerns model evaluation. The goodness-of-fit functions
AIC() and BIC() compute a number of extensions of the classical AIC and BIC criteria for the
corresponding ‘cglasso’ object. These functions return an object of class ‘GoF’ which contain
the elements needed for evaluating and comparing the fitted models through graphs and
summary statistics. Finally, the group named network analysis is devoted to the statistical
analysis of the fitted conditional independence graph. To this end, the main function of this
group builds upon existing functions from the R package igraph, augmenting it with a set of
specific plotting method functions. To improve the computational efficiency of the proposed
package, all main algorithms are written in Fortran and called by specific wrapper functions.
The cglasso package is being actively maintained and will be developed further to include ad-
ditional features. Possible future developments may consider the implementation of penalized
inference based on a group lasso penalty function (Yuan and Lin 2006) and the incorporation
of more complicated censoring patterns both for response and predictor variables. We hope
that the availability of the proposed package will facilitate the exploration of the implemented
methodologies and their applications by statisticians and the R community.

Computational details
The results in this paper were obtained using R 4.2.1 with the cglasso package version 2.0.6.
Results are based on a iMAC with a 3.3 GHz Intel Core i5 (6 core) processor running with
macOS Monterey version 12.6. Results may be slightly different on other operating systems,
but these differences are qualitatively negligible. R itself and all packages used are available
from CRAN at https://CRAN.R-project.org/.

Acknowledgments
We thank the Editor, and the anonymous reviewer for thoughtful comments on our software
implementation and article. Luigi Augugliaro and Gianluca Sottile gratefully acknowledge
financial support from the University of Palermo (FFR2021). Gianluca Sottile acknowledges
support by the Italian Ministry of University and Research (MUR) through the project POn-

https://CRAN.R-project.org/

54 cglasso: Conditional Graphical Lasso Inference in R

AIM Attraction and International Mobility: AIM1873193-2 activity 1. Ernst C. Wit acknowl-
edges support from the Fondazione Leonardo (514.7.010.098-4) and funding from the Swiss
National Science Foundation (SNSF 188534).

References

Akaike H (1973). “Information Theory As an Extension of the Maximum Likelihood Prin-
ciple.” In BN Petrov, F Czaki (eds.), Second International Symposium on Information
Theory, pp. 267–281. Akademiai Kiado, Budapest.

Aragam B, Gu J, Zhou Q (2019). “Learning Large-Scale Bayesian Networks with the sparsebn
Package.” Journal of Statistical Software, 91(11), 1–38. doi:10.18637/jss.v091.i11.

Augugliaro L, Abbruzzo A, Vinciotti V (2020a). “ℓ1-Penalized Censored Gaussian Graphical
Model.” Biostatistics, 21(2), e1–e16. doi:10.1093/biostatistics/kxy043.

Augugliaro L, Sottile G, Vinciotti V (2020b). “The Conditional Censored Graphical Lasso Es-
timator.” Statistics and Computing, 30, 1273–1289. doi:10.1007/s11222-020-09945-7.

Augugliaro L, Sottile G, Wit EC, Vinciotti V (2023). cglasso: Conditional Graphical LASSO
for Gaussian Graphical Models with Censored and Missing Values. R package version 2.0.6,
URL https://CRAN.R-project.org/package=cglasso.

Chambers JM (1992). Statistical Models in S, chapter Classes and Methods: Object-Oriented
Programming in S, pp. 445–480. Chapman & Hall, London. doi:10.1201/9780203738535.

Chen J, Chen Z (2008). “Extended Bayesian Information Criteria for Model Selection with
Large Model Spaces.” Biometrika, 95(3), 759–771. doi:10.1093/biomet/asn034.

Chen M, Ren Z, Zhao H, Zhou H (2016). “Asymptotically Normal and Efficient Estimation
of Covariate-Adjusted Gaussian Graphical Model.” Journal of the American Statistical
Association, 111(513), 394–406. doi:10.1080/01621459.2015.1010039.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. URL https://igraph.org/.

Derveaux S, Vandesompele J, Hellemans J (2010). “How to Do Successful Gene Expression
Analysis Using Real-Time PCR.” Methods, 50(4), 227–230. doi:10.1016/j.ymeth.2009.
11.001.

Fan J, Lv J (2010). “A Selective Overview of Variable Selection in High Dimensional Feature
Space.” Statistica Sinica, 20(1), 101–148. URL https://www3.stat.sinica.edu.tw/
statistica/j20n1/J20N12/J20N12.html.

Fan Y, Tang CY (2013). “Tuning Parameter Selection in High Dimensional Penalized Like-
lihood.” Journal of the Royal Statistical Society B, 75(3), 531–552. doi:10.1111/rssb.
12001.

https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.1093/biostatistics/kxy043
https://doi.org/10.1007/s11222-020-09945-7
https://CRAN.R-project.org/package=cglasso
https://doi.org/10.1201/9780203738535
https://doi.org/10.1093/biomet/asn034
https://doi.org/10.1080/01621459.2015.1010039
https://igraph.org/
https://doi.org/10.1016/j.ymeth.2009.11.001
https://doi.org/10.1016/j.ymeth.2009.11.001
https://www3.stat.sinica.edu.tw/statistica/j20n1/J20N12/J20N12.html
https://www3.stat.sinica.edu.tw/statistica/j20n1/J20N12/J20N12.html
https://doi.org/10.1111/rssb.12001
https://doi.org/10.1111/rssb.12001

Journal of Statistical Software 55

Foygel R, Drton M (2010). “Extended Bayesian Information Criteria for Gaussian
Graphical Models.” In J Lafferty, C Williams, J Shawe-Taylor, R Zemel, A Cu-
lott (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Vancouver. URL https://proceedings.neurips.cc/paper/2010/file/
072b030ba126b2f4b2374f342be9ed44-Paper.pdf.

Franzin A, Sambo F, di Camillo B (2017). “bnstruct: An R Package for Bayesian Network
Structure Learning in the Presence of Missing Data.” Bioinformatics, 33(8), 1250–1252.
doi:10.1093/bioinformatics/btw807.

Friedman JH, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with
the Graphical Lasso.” Biostatistics, 9(3), 432–441. doi:10.1093/biostatistics/kxm045.

Friedman JH, Hastie T, Tibshirani R (2019). glasso: Estimation of Gaussian Graphical
Models. R package version 1.11, URL https://CRAN.R-project.org/package=glasso.

Gramacy RB, Moler C, Turlach BA (2022). monomvn: Estimation for MVN and Stu-
dent t Data with Monotone Missingness. R package version 1.9-16, URL https://CRAN.
R-project.org/package=monomvn.

Guo J, Levina E, Michailidis G, Zhu J (2015). “Graphical Models for Ordinal Data.” Journal
of Computational and Graphical Statistics, 24(1), 183–204. doi:10.1080/10618600.2014.
889023.

Gutiérrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona
FV, Fermiñán E, Martín-Jiménez P, Chillón C, Risueño A, Hernández JM, García-Sanz R,
González M, San Miguel JF (2010). “Deregulation of microRNA Expression in the Different
Genetic Subtypes of Multiple Myeloma and Correlation with Gene Expression Profiling.”
Leukemia, 24(3), 629–637. doi:10.1038/leu.2009.274.

Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P (2011). “Sparse Inverse Covariance Matrix
Estimation Using Quadratic Approximation.” In J Shawe-Taylor, R Zemel, P Bartlett,
F Pereira, KQ Weinberger (eds.), Advances in Neural Information Processing Systems, vol-
ume 24. Curran Associates. URL https://proceedings.neurips.cc/paper/2011/file/
2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf.

Ibrahim JG, Zhu H, Tang N (2008). “Model Selection Criteria for Missing-Data Problems
Using the EM Algorithm.” Journal of the American Statistical Association, 103(484),
1648–1658. doi:10.1198/016214508000001057.

Jiang H, Fei X, Liu H, Roeder K, Lafferty J, Wasserman L, Li X, Zhao T (2021). huge:
High-Dimensional Undirected Graph Estimation. R package version 1.3.5, URL https:
//CRAN.R-project.org/package=huge.

Kunji KB (2022). BigQuic: Big Quadratic Inverse Covariance Estimation. R package ver-
sion 1.1-11, URL https://CRAN.R-project.org/package=BigQuic.

Lafferty J, McCallum A, Pereira FCN (2001). “Conditional Random Fields: Probabilis-
tic Models for Segmenting and Labeling Sequence Data.” In Proceedings of the 18th
International Conference on Machine Learning 2001 (ICML 2001), pp. 282–289. URL
https://dl.acm.org/doi/10.5555/645530.655813.

https://proceedings.neurips.cc/paper/2010/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://doi.org/10.1093/bioinformatics/btw807
https://doi.org/10.1093/biostatistics/kxm045
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=monomvn
https://CRAN.R-project.org/package=monomvn
https://doi.org/10.1080/10618600.2014.889023
https://doi.org/10.1080/10618600.2014.889023
https://doi.org/10.1038/leu.2009.274
https://proceedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf
https://doi.org/10.1198/016214508000001057
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=BigQuic
https://dl.acm.org/doi/10.5555/645530.655813

56 cglasso: Conditional Graphical Lasso Inference in R

Lauritzen SL (1996). Graphical Models. Oxford University Press, Oxford.

Li B, Chun H, Zhao H (2012). “Sparse Estimation of Conditional Graphical Models with
Application to Gene Networks.” Journal of the American Statistical Association, 107(497),
152–167. doi:10.1080/01621459.2011.644498.

Liu H, Lafferty J, Wasserman L (2009). “The Nonparanormal: Semiparametric Estimation
of High Dimensional Undirected Graphs.” Journal of Machine Learning Research, 10(80),
2295–2328. URL https://jmlr.csail.mit.edu/papers/v10/liu09a.html.

Mazumder R, Hastie T (2012). “Exact Covariance Thresholding into Connected Components
for Large-Scale Graphical Lasso.” Journal of Machine Learning Research, 13, 781–794.
URL https://jmlr.org/papers/v13/mazumder12a.html.

Meinshausen N, Bühlmann P (2006). “High-Dimensional Graphs and Variable Selec-
tion with the Lasso.” The Annals of Statistics, 34(3), 1436–1462. doi:10.1214/
009053606000000281.

Mohammadi R, Wit EC (2019). “BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models.” Journal of Statistical Software, 89(3), 1–30. doi:10.18637/jss.
v089.i03.

Psaila B, Barkas N, Iskander D, Roy A, Anderson S, Ashley N, Caputo VS, Lichtenberg
J, Loaiza S, Bodine DM, Karadimitris A, Mead AJ, Roberts I (2016). “Single-Cell
Profiling of Human Megakaryocyte-Erythroid Progenitors Identifies Distinct Megakary-
ocyte and Erythroid Differentiation Pathways.” Genome Biology, 17, 83–102. doi:
10.1186/s13059-016-0939-7.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rothman AJ, Levina E, Zhu J (2010). “Sparse Multivariate Regression with Covariance
Estimation.” Journal of Computational and Graphical Statistics, 19(4), 947–962. doi:
10.1198/jcgs.2010.09188.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Scutari M (2017). “Bayesian Network Constraint-Based Structure Learning Algorithms: Par-
allel and Optimized Implementations in the bnlearn R Package.” Journal of Statistical
Software, 77(2), 1–20. doi:10.18637/jss.v077.i02.

Städler N, Bühlmann P (2012). “Missing Values: Sparse Inverse Covariance Estimation
and an Extension to Sparse Regression.” Statistics and Computing, 22(1), 219–235. doi:
10.1007/s11222-010-9219-7.

Sustik MA, Calderhead B, Clavel J (2018). glassoFast: Fast Graphical LASSO. R package
version 1.0, URL https://CRAN.R-project.org/package=glassoFast.

Trainor P, Wang H (2017). BayesianGLasso: Bayesian Graphical Lasso. R package ver-
sion 0.2.0, URL https://CRAN.R-project.org/package=BayesianGLasso.

https://doi.org/10.1080/01621459.2011.644498
https://jmlr.csail.mit.edu/papers/v10/liu09a.html
https://jmlr.org/papers/v13/mazumder12a.html
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.18637/jss.v089.i03
https://doi.org/10.18637/jss.v089.i03
https://doi.org/10.1186/s13059-016-0939-7
https://doi.org/10.1186/s13059-016-0939-7
https://www.R-project.org/
https://doi.org/10.1198/jcgs.2010.09188
https://doi.org/10.1198/jcgs.2010.09188
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.18637/jss.v077.i02
https://doi.org/10.1007/s11222-010-9219-7
https://doi.org/10.1007/s11222-010-9219-7
https://CRAN.R-project.org/package=glassoFast
https://CRAN.R-project.org/package=BayesianGLasso

Journal of Statistical Software 57

Tseng P (2001). “Convergence of a Block Coordinate Descent Method for Nondifferentiable
Minimization.” Journal of Optimization Theory and Applications, 109(3), 475–494. doi:
10.1023/a:1017501703105.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. URL http://www.stats.ox.ac.uk/pub/MASS4/.

Wang H (2012). “Bayesian Graphical Lasso Models and Efficient Posterior Computation.”
Bayesian Analysis, 7(4), 867–886. doi:10.1214/12-ba729.

Wang J (2015). “Joint Estimation of Sparse Multivariate Regression and Conditional Graph-
ical Models.” Statistica Sinica, 25(3), 831–851. doi:10.5705/ss.2013.192.

Williams DR, Mulder J (2020). “BGGM: Bayesian Gaussian Graphical Models in R.” Journal
of Open Source Software, 5(51), 2111. doi:10.21105/joss.02111.

Witten DM, Friedman JH, Simon N (2011). “New Insights and Faster Computations for
the Graphical Lasso.” Journal of Computational and Graphical Statistics, 20(4), 892–900.
doi:10.1198/jcgs.2011.11051a.

Yin J, Li H (2011). “A Sparse Conditional Gaussian Graphical Model for Analysis of
Genetical Genomics Data.” The Annals of Applied Statistics, 5(4), 2630–2650. doi:
10.1214/11-aoas494.

Yin J, Li H (2013). “Adjusting for High-Dimensional Covariates in Sparse Precision Matrix
Estimation by ℓ1-Penalization.” Journal of Multivariate Analysis, 116, 365–381. doi:
10.1016/j.jmva.2013.01.005.

Yuan M, Lin Y (2006). “Model Selection and Estimation in Regression with Grouped
Variables.” Journal of the Royal Statistical Society B, 68(1), 49–67. doi:10.1111/j.
1467-9868.2005.00532.x.

Affiliation:
Luigi Augugliaro
Gianluca Sottile
Department of Economics, Business and Statistics
University of Palermo, Building 13
Viale delle Scienze, 90128 Palermo, Italy
E-mail: luigi.augugliaro@unipa.it, gianluca.sottile@unipa.it
URL: https://www.unipa.it/persone/docenti/a/luigi.augugliaro,

https://www.unipa.it/persone/docenti/s/gianluca.sottile

Ernst C. Wit
Università della Svizzera Italiana
Via Buffi 13, 6900 Lugano, Switzerland
E-mail: wite@usi.ch
URL: http://www.math.rug.nl/~ernst

https://doi.org/10.1023/a:1017501703105
https://doi.org/10.1023/a:1017501703105
http://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1214/12-ba729
https://doi.org/10.5705/ss.2013.192
https://doi.org/10.21105/joss.02111
https://doi.org/10.1198/jcgs.2011.11051a
https://doi.org/10.1214/11-aoas494
https://doi.org/10.1214/11-aoas494
https://doi.org/10.1016/j.jmva.2013.01.005
https://doi.org/10.1016/j.jmva.2013.01.005
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
mailto:luigi.augugliaro@unipa.it
mailto:gianluca.sottile@unipa.it
https://www.unipa.it/persone/docenti/a/luigi.augugliaro
https://www.unipa.it/persone/docenti/s/gianluca.sottile
mailto:wite@usi.ch
http://www.math.rug.nl/~ernst

58 cglasso: Conditional Graphical Lasso Inference in R

Veronica Vinciotti
Department of Mathematics
University of Trento
via Sommarive 14, 38123 Povo (Trento), Italy
E-mail: veronica.vinciotti@unitn.it
URL: https://webapps.unitn.it/du/en/Persona/PER0222143/Curriculum

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

January 2023, Volume 105, Issue 1 Submitted: 2021-01-13
doi:10.18637/jss.v105.i01 Accepted: 2022-09-05

mailto:veronica.vinciotti@unitn.it
https://webapps.unitn.it/du/en/Persona/PER0222143/Curriculum
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v105.i01

	Introduction
	Related implementations
	Overview of the paper

	Methodological background
	Conditional Gaussian graphical model
	Sparse inference of a conditional Gaussian graphical model
	Algorithm for fitting a conditional graphical lasso

	Package structure and usage
	Network inference from multiple myeloma data
	Dataset description
	Data manipulation
	Model fitting
	Model selection
	Network analysis

	Network inference from the megakaryocyte-erythroid progenitors data
	Simulating datacggm objects and plotting functions

	Data manipulation: Technical details and further examples
	The objects of class datacggm
	Accessor functions
	Retrieving and setting attributes
	Simulation function
	Plotting method functions

	Model fitting: Technical details and further examples
	Fitting conditional glasso models
	Plotting an object of class cglasso
	Further method functions for cglasso objects
	Prediction and missing data imputation using a cglasso object
	Post-hoc maximum likelihood refitting of a model

	Model selection
	Evaluating the goodness-of-fit
	Measuring model fit
	The goodness-of-fit functions
	Summary of the fitted models
	Plotting method function
	Selection of the optimal fitted model

	Network analysis
	The objects of class cglasso2igraph
	Plotting the estimated graph

	Summary

