
Minimising the Number of Ranging Sensors verifying

Target Positioning Uncertainty

Abstract

Indoor positioning applications are increasingly popular due to the avail-
ability of effective and low cost ranging sensors. Many solutions have been
proposed recently using these type of sensors to estimate the coordinates
(position) of a target within a given target uncertainty. In this paper, we
consider the problem of deploying a large scale infrastructure that solves the
positioning task with guaranteed estimation uncertainty while minimising
the number of ranging sensors. To this end, we adopt a two steps proce-
dure. In the first step, we identify a basic cell structure compounded of a
small number of sensors deployed in symmetric configurations. We study the
problem in general terms and we specifically focus on how to maximise the
area covered by this basic structure using the smallest possible number of
three ranging sensors. In the second step, we use this basic cell as an ele-
mentary tile structure to be used in standard coverage algorithm minimising
the portion of space left uncovered. The approach is validated through a
large number of simulations and experimental results.

Keywords: Optimal sensor placement, Ranging-based positioning,
uncertainty analysis

1. Introduction1

Given an entity (e.g., a person, a robot or a valuable asset of any kind)2

and given an environment, the positioning problem is about the use of some3

external measurements to find its cartesian coordinates at a given time,4

whereas the localisation problem is about using external measurements and5

ego-motion information to reconstruct its pose (cartesian coordinates + ori-6

entation) and to track it over time [1]. Both problems are instrumental to7

a large class of important industrial applications, and their solution is par-8

ticularly difficult in the environments where the satellite-based positioning9

systems are not available or reliable.10
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The increasing availability of low cost accurate sensors has democratised11

the positioning and localisation technology disclosing important opportuni-12

ties for its penetration in large indoor environments, once believed the most13

impervious to its application. An important example of this innovative type14

of sensors are the Ultra-Wide-Band (UWB) communication modules. An15

UWB node can generate a very narrow impulse that is robust to multipath16

fading and interference. Therefore, it is possible to set up a measurement17

system based on time-of-arrival (ToA) information and producing ranging18

measurement with an accuracy of a few centimetres. Even if this new type19

of sensors have made accurate positioning affordable, they require to set up20

an maintain an important infrastructure. This leads us to the sensor place-21

ment problem: finding a deployment that guarantees an assigned maximum22

target uncertainty and that requires the least number of sensors. As we will23

discuss in the paper, the problem is known to be NP-Hard, and in order for24

a solution to scale to environments of realistic size, it has to be necessarily25

sub-optimal. With these considerations in mind, the relevance of a solution26

for optimal sensor placement has to be evaluated on its ability to meet a27

number of practical requirements such as: R1. producing solutions for large28

environments in an acceptable time (scalability), R2. working with environ-29

ments of arbitrary shape (generality), R3. keeping the number of deployed30

sensors close to the minimal and anyway very small (efficiency), R4. guaran-31

teeing specified levels of uncertainty by countering all possible effects (e.g., of32

geometric nature) that could amplify the positioning error (reliability), R5.33

it has to consider physical limitations of the sensors (sensor limitations). As34

regards, the last requirement, we should observe that the ranging uncertainty35

is a function of the distance between the source and the emitter. For exam-36

ple, light based (e.g., LiDAR) or acoustic (e.g., Sonars) ranging systems are37

naturally limited by the maximum sensing distance [2]. Typical RF ranging38

systems suffer the same limitations. This has been observed for RSSI sig-39

nals [3] but also for the ToA based measurements of UWB nodes, both in40

Line of Sight (LoS) [4] and in non-LoS [5] conditions.41

Related Work. The sensor placement problem has been widely investi-42

gated in the past for different types of sensors. For example, [6] proposed a43

visual landmark placement algorithm in order to meet a desired target un-44

certainty. This solution considers the existence of a fixed pattern, equilateral45

triangles with landmarks on the vertices, that has been shown to be optimal46

to reach the minimum uncertainty [7].47

Redondi et al. [8] presented Tabu Search heuristic algorithm for finding48

2



the optimal deployment pattern of sensor nodes for an indoor localisation49

system based on Received Signal Strength (RSS). The approach considers a50

fixed number of sensors and uses the Cramer Rao Lower Bound (CRLB) as51

the optimality index to minimise the overall localisation error. In the same52

line, other papers [9, 10] address the range sensors placement problems, with53

the mean-square localisation error being used as the optimisation index. The54

proposed solutions provide near-optimal deployment patterns on a free plane55

without considering the physical constraints of the environment. Besides, the56

authors do not offer any clue on the actual computational costs of the opti-57

misation algorithm. With respect to these papers, our problem is somewhat58

dual: rather than minimising the uncertainty given the number of nodes, we59

look for the minimal number of nodes guaranteeing a target uncertainty and60

then build the deployment on it.61

Chepuri et al. [11] proposes a solution for selecting the optimal deploy-62

ment pattern of UWB nodes. The problem is modelled as the the design of63

a sparse selection vector and its solution is based on the random selection64

of a sub-set of sensors which are randomly located on a well-shaped grid65

structure. Hence, its application cannot be generalised to environments of66

generic shape.67

Information-theoretic-based approaches [12, 13] are popular methods for68

optimal sensor placements, suitable for selection of heterogeneous sensors69

used for both observation and actuations. In [14], a sensor selection strategy70

for target localisation based on the maximum likelihood estimator is pre-71

sented. The algorithm chooses the sensor observation that reduces the most72

the entropy on the target location, taking into account the prior target po-73

sition pdf. The selection procedure is performed iteratively using a heuristic74

algorithm selecting one sensor per step. [15] investigates a unique scalar75

measure for the spread of the uncertainty in the structural parameter values76

using the Fisher information matrix. By developing a relationship between77

measurement redundancy and information entropy, the optimal set of sensor78

configurations that minimises the entropy measure is obtained. The approach79

has a strong relationship with the determinant of the inverse of Fisher infor-80

mation matrix, which encompasses the information about the values of the81

structural model parameters based on the data from all measured positions.82

Another approach based on [15] takes the knowledge of the prior distribution83

into account within a Bayesian framework for the placement of multi-type84

sensors (measurement and system actuation) of a dynamical system [16].85

Here a heuristic sequential method was used for selecting the optimal loca-86
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tions of different types of sensors based on the overall Information Entropy.87

The downside of the aforementioned entropy-based methodologies is a very88

high computational cost to solve the discrete optimisation and obtain good89

estimates of sensor configurations that correspond to information entropy90

values close to the minimum information entropy.91

The idea of seeking the optimal deployment of range sensors within fixed92

patterns is explored by several authors. In a number of different proposals [6,93

17, 18, 19], the approach is to first fix a grid of “candidate” positions for94

the sensors, and then apply non-convex optimisation to find the optimal95

deployment of sensors limiting the search to the grid. As observed by Chepuri96

et al. [17], the performance of an algorithm of this kind is strongly related97

to the choice of the search grid. A coarse grained grid may prevent the98

algorithm form a deployment guaranteeing the required target uncertainty,99

while a small grid size may easily make the problem intractable.100

As a final and additional important point, none of the papers cited above101

dealing with ranging sensors considers the point that we have generally de-102

fined as sensor limitations (i.e., the limited sensing range). We would like103

also to remark that, in spite of the rich literature on the topic and of the104

constant reduction of the hardware costs over the past years, the sensor de-105

ployment problem remains a very active research area. Much of the scientific106

interest lies in the difficulty of achieving scalable solutions, of deploying an-107

chors to difficult-to reach locations, of keeping in check the maintenance cost108

of the system, and of managing the communication protocol between the109

anchors and with the target.110

Paper Contribution. In this paper, we propose a sensor placement solution111

respecting the five requirements stated above. Our solution builds on a key112

observation from Chen et al. [20]: an optimal ranging sensor deployment113

follows exact symmetrical patterns. For example, the optimal pattern for114

the three sensors case is an equilateral triangle, for four is a square, for six is115

given by two nested equilateral triangles (one triangle inside the other), etc.116

This observation leads us to search for the optimal symmetric configuration117

of a set of n ranging sensors (henceforth referred to as anchors) that covers118

a region Pn respecting some constraints. The constraints are for us of two119

types: 1. each point in the region must fall within the sensing range (which120

is set to a finite and known value r) of an adequate number of anchors, 2.121

the positioning uncertainty within this area should be less than the desired122

target uncertainty. Notice that by “optimal” we mean the configuration123

that respects the constraints with the minimal number of anchors. Once124
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this region has been identified and characterised, it can be used as a basic125

“tile” in a geometric covering algorithm [21]. Our first contribution is a126

characterisation of the geometric properties of the region Pn and an algorithm127

that solves the optimisation problem.128

The minimal number of anchors that solve the problem is n = 3. How-129

ever, we show as our second, and probably most important, contribution130

that the minimal “tile” that we should consider is not necessarily P3, but it131

is possible to find a region P2 with larger coverage and with the same posi-132

tioning uncertainty. The validity of the approach is shown by a large number133

of simulations and experimental evidence.134

The paper is organised as follows. In Section 2, we offer a quick overview135

of the main previous results and ideas the paper builds on. In Section 3,136

we provide a geometric characterisation of the region Pn and we describe an137

algorithm to optimise the anchor configuration to cover Pn with guaranteed138

positioning performance and minimising the number of anchors. In Section 4,139

we focus our attention on the case of the cell covered with the minimum140

possible number of anchors (n = 3). In particular, we show that, for every141

P3 configuration, we can find an equivalent P2 with the same maximum142

uncertainty and with a larger coverage. The approach is validated through143

simulation data in Section 5 and through experiments in Section 6. Finally,144

in Section 7, we state our conclusions and announce future work directions.145

2. Background Material146

We consider the problem of estimating the position of a target within an147

indoor environment. To this end, we will use ranging sensors that, in the148

ideal case, produce a measurement modelled by the measurement function:149

`i = hi(p) =
√

(Xi − x)2 + (Yi − y)2, (1)

with ai = [Xi, Yi]
T being the Cartesian coordinates of the i-th anchor and150

with p = [x, y]T ∈ P being the coordinates of the target position to be151

estimated. The results presented below are totally agnostic both to the152

choice of the sensor module (e.g., based on radio frequency, ultrasonic or153

light signals) and to the measurement technique (e.g., measuring the radio154

signal strength, the echo, the time-stamped values).155

Estimating the coordinates of a target p at a given time by using the156

ranging measurements is known as a positioning problem, and its solution157
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require at least n ≥ 3 measurements from non-collinear anchors [22]. On the158

contrary, if the target moves with known dynamics a localisation problem159

is adopted, whose solution leverages the motion information as well; there-160

fore, under minimal assumptions, the minimum number of anchors required161

reduces to n = 2 [23]. In this paper, we will restrict the focus to the position-162

ing problem. We will make the realistic assumptions that measurements are163

affected by noise, and therefore the estimated position will be uncertain. We164

remark that the uncertainty on the position is amplified when it is used to165

reconstruct the pose for dynamic targets [1, 24], thus making the discussion166

below relevant also for the localisation problem.167

Because of the noise, the measurement function (1) takes the more real-168

istic form:169

¯̀
i = hi(p) + ηi = `i + ηi. (2)

We will assume that the uncertainties ηi are zero mean and uncorrelated.170

Hence, using the expected operator E {·}, we have E {ηiηj} = 0 if i 6= j171

and E {η2i } = σ2
i , which can be expressed more compactly with the vectorial172

form η = [η1, . . . , ηn]T , i.e., Ση = E
{
ηηT

}
= diag(σ2

1, . . . , σ
2
n). Since (1)173

is nonlinear, the problem of finding a suitable estimate p̂ of p can be effec-174

tively solved using the following Nonlinear Weighted Least Squares (NWLS)175

problem176

p̂ = arg min
p

n∑
i=1

(
¯̀− hi(p)

)2
σ2
i

. (3)

An effective solution is given by the iterative Gauss-Newton solution, which,177

solves a point-wise linearised WLS problem178

`≈Hkp̂k+1 + η ⇒ p̂k+1 =(HT
k Σ−1η Hk)

−1HT
k Σ−1η `=H†k`, (4)

where ` = [`1, . . . , `n]T is the vector of measurements (2),179

Hk =
∂h

∂p̂k


λx1(p̂k) λy1(p̂k)
λx2(p̂k) λy2(p̂k)

...
λxn(p̂k) λyn(p̂k)

 , (5)

is the Jacobian of the measurement vector h(p), λxi(p̂k) = x̂k−Xî̀
i,k

,λyi(p̂k) =180

ŷk−Yî̀
i,k

, and ̂̀i,k =
√

(x̂k −Xi)2 + (ŷk − Yi)2. In this expression, p̂k is the es-181

timate of p at the k-th iteration of the NWLS, and is used to derive the182
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updated estimates p̂k+1. The standard approach mandates to iterate the183

gradient descent steps up until ‖p̂k+1 − p̂k‖ ≤ ep, where ep is a user de-184

fined accuracy threshold. However, by exploiting geometric properties, it os185

possible to find an alternative technique, known as the G-WLS [25], which186

requires only two WLS iterations to reach the optimal theoretical bound in187

standard operative conditions. The first step is the solution of a linearised188

multilateration problem using a standard WLS, while the second step cor-189

rects the result by injecting the information on anchor geometry captured by190

the Geometric Dilution of Precision (GDoP) for positioning problems [26].191

The two-steps algorithm leads to a position estimation error p̃ = p− p̂ with192

an uncertainty given by193

Σp̃k
= (HT

k E
{
``

T
}−1

Hk)
−1 = (HT

k Σ−1η Hk)
−1.

As reported in [25], in the case of zero-mean and Gaussian uncertainties194

η = [η1, . . . , ηn]T , the solution of the two-step G-WLS almost surely reaches195

the CRLB [27]196

C(p) =
(
HTΣ−1η H

)−1
, (6)

where H is the value of (5) evaluated in the actual position p. The CRLB is197

a measure of the minimum theoretical estimation uncertainties achievable by198

an estimator, hence this certifies the effectiveness of the two steps approach.199

Moreover, in the assumption of homoscedasticity of the ranging uncer-200

tainties, i.e., Ση = σT` Im, we have201

Σp̃k
= σ2

` (H
T
k Hk)

−1. (7)

This quantity is tightly related to the GDoP g(p) [28, 29]:202

g(p) =
√

Tr ((HT
k Hk)−1) =

√
Tr
(
Σp̃k

)
σ`

, (8)

where Tr (·) is the trace of a matrix and p̃k = p− p̂k. The lower is the GDoP,203

the lower is the uncertainty on p̃k, since (HT
k Hk)

−1 acts as a multidimensional204

gain for the ranging uncertainties.205

2.1. Problem formulation206

Since the CRLB (6) can be attained using the G-WLS [25] and it is207

intrinsically related to the GDoP (8), we will consider the GDoP as the cost208
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index to guide the optimal deployment of the ranging sensors. In particular,209

given the set of all the feasible positions P , we want to minimise the number n210

of ranging anchors deployed in the environment in order to have g(p) ≤ g?,211

∀p ∈ P , where g? is the maximum desired value for the GDoP. We will212

explicitly consider limited sensing range r for the anchors, which will be213

modelled by setting `i = −1 in (2) if `i > r in (1) (e.g., no echo is detected214

in Time-of-Flight ranging sensors).215

3. Geometric Analysis216

One common approach to ranging anchors deployment is to first grid the217

space P with a sequence of m points on a grid, displaced at distance d. Next,218

by regularly sampling ph ∈ P , h = 1, . . . , q, it is possible to compute the219

gradients Hi,h (the rows of (5)) for the i-th grid position, i = 1, . . . ,m, in the220

h-th sampled position ph, h = 1, . . . , q. Assuming homoscedasticity for the221

uncertainties and using the selection vector w = [w1, w2, . . . wm]T ∈ {0, 1}m,222

where wi = 1 if the sensor is placed in the i-th position or zero otherwise, it223

is possible to set the following optimisation problem [17]224

min
w∈{0,1}m

‖w‖0 s.t. σ2
`Tr

( m∑
i=1

wiH
T
i,hHi,h

)−1 ≤ λ,∀h (9)

where the ‖w‖0 is a quasi norm counting the number of non-zero entries of225

w and λ is the desired target uncertainty for the position estimates. Since226

Tr

( m∑
i=1

wiH
T
i,hHi,h

)−1 = Tr
((
HT
hHh

)−1)
,

where Hh is the Jacobian (5) evaluated in position ph and for the anchors in227

grid position i where wi = 1, the minimisation problem (9) is substantially228

equivalent to the GDoP uncertainty gain minimisation in (8) and this further229

corroborates our choice of the GDoP as a cost function. With this approach,230

the performance very much depends on the grid’s choice [17], and it is not231

possible to consider a limited sensing range.232

To overcome these important limitations, we we will consider an approach233

in which the search for the optimal configuration is made in a continuous234

space. Our idea to reduce the complexity is based on two steps. In the first235
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step, we identify a basic ”tile” Pn ⊆ P , in which n anchors are optimally de-236

ployed so that the the GDoP constraint is satisfied, i.e. gn(p) ≤ g?, ∀p ∈ Pn.237

This search is simplified by two facts: 1. the optimal solution can be sought238

between the symmetric configurations of the anchors [20], 2. the behaviour239

of the GDoP is monotone in the number of anchors gn(p) ≥ gn+1(p) (i.e.,240

given a configuration with n anchors, randomly adding an anchor will never241

increase the GDoP). The second fact has an additional benefit: if we consider242

two tiles Pn, any point p in the overlapping region will respect g(p) ≤ g?.243

This leads us to the second step: once the basic tile Pn structure is defined,244

it can be replicated to cover the entire space using standard tile coverage245

algorithms (see Section5.1).246

3.1. Pn region247

In this first part of the discussion, we characterise the most important248

properties of the region Pn. As reported in [20], given a set of n ≥ 3 anchors249

the most convenient configuration for GDoP minimisation is one in which250

the anchors are optimally deployed on a circle. Indeed, the matrix Hk in (5)251

can be expressed as (the subscript k in (4) is not needed in this context)252

H =


cos(γ1) sin(γ1)
cos(γ2) sin(γ2)

...
cos(γn) sin(γn)

 ,
where γi = arctan y−Yi

x−Xi
, with the evaluation point p = [x, y]T and the anchor253

position ai = [Xi, Yi]
T , which leads to [25]254

gn(p) =

√
n∑n−1

i=1

∑n
j=i+1 sin(γj − γi)2

=

√
n

Dn

. (10)

Three important propositions are now stated.255

Proposition 1. Within the Pn region, the GDoP gn(p) is non-increasing256

with n. As an example, in Figure 1, shows the lower bound g = minp gn(p)257

with a dashed line and the upper bound g = maxp gn(p) with a dotted line.258

As it is possible to see both decrease with n.259
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Figure 1: Behaviour of d (solid), g (dashed) and g as a function of the number of anchors
and with a fixed radius δ.

Proposition 2. If we neglect such adverse effects as reflections or multi-path260

(as we do in this context to keep our discussion neutral with respect to the261

adopted technology), the inspection of (10) and the results shown in [25] re-262

veal that the optimal deployment is simply given by a symmetric configuration263

with a distance d among the anchors.264

Proposition 3. Considering again Equation (10), for a symmetric configu-265

ration of the anchors, the lowest GDoP is attained at the centre of the anchors266

configuration, i.e., g = gn(pc).267

Given the centre pc = [xc, yc]
T of the circle of radius δ upon which the268

anchors are deployed, in view of Proposition 2, the anchors will be deployed269

in the following position270

ai = pc + δ[cos θi, sin θi]
T , (11)

where θi = 2iπ/n, i = 1, . . . , n, with the Euclidean distance between two271

adjacent anchors expressed using the 2-norm ‖.‖ being272

d = 2δ sin(π/n) = ‖ai − ai+1‖,∀i ∈ {1, . . . , n}, (12)

with the implicit assumption that ai+1 = a1 for the periodicity of the circular273

deployment. Increasing the number n of anchors, will reduce their mutual274
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distance d (solid blue line in Figure 1), and will reduce the GDoP (Proposi-275

tion 1). Finally, the minimum GDoP will be attained in pc (Proposition 3).276

By making the choice in (11) and considering a limited sensing range r,277

we can choose Pn as a symmetric region having the same centre pc as the278

anchor configuration. If we account for the limited sensing range, the area279

has to fall within the intersection of the circles centred in the anchors with280

radius r. As a result Pn can be defined as281

Pn = {p ∈ P|hi(p) ≤ r ∀i ∈ {1, . . . , n} ∧ gn(p) ≤ g?} , (13)

where n ≥ 3.282

We can now formulate a few constraints stemming from purely geometric283

considerations.284

• If δ > r, it follows that pc 6∈ Pn, which means that pc should be covered285

by additional anchors, hence a minimal deployment cannot be reached.286

If δ = r and gn(pc) ≤ g?, we have pc ≡ Pn, which is of course a non287

minimal configuration. Therefore, we will assume that δ < r.288

• If δ < r and gn(pc) > g?, in view of Proposition 3, we have Pn = ∅.289

In this case, it is possible just to increase the number of anchors n290

deployed on the circle of radius δ up until we reach the condition Pn 6=291

∅. The GDoP equation (10) proves that this condition is achieved for292

a sufficiently large number of anchors (see Figure 1).293

• Given δ < r and gn(pc) ≤ g?, we have from (12) that d < 2r. The294

situation is the one displayed in Figure 2 for an example with n = 3.295

Notice that since the GDoP depends only on the geometry of the deploy-296

ment, the value of the minimum GDoP gn(pc) for a fixed n does not change297

∀δ > 0. However, the region covered respecting the constraint gn(p) ≤ g?298

shrinks when δ decreases due to (10). On the other hand, since Pn in (13) has299

to fall within the sensing range of all anchors, its maximum extension is given300

by the intersection of the n circles centred in the anchors, i.e., constrained by301

r (see the dark-solid shaded area in Figure 2). AS a consequence, the area302

jointly covered by the anchors shrinks when the anchors are pushed farther303

away by increasing δ, thus the anchors will be pushed outside the region Pn.304

This is clearly visible in Figure 3 where we report305

An =

∫
p∈Pn

p dp, (14)
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Figure 2: P3 region (solid fill) and P2 region (line pattern fill) with r = 8 [m] and d = 0.75r.

as a function of the distance d for fixed r; However, since we are looking for306

the tile configuration that facilitates the coverage of the entire work-space by307

means of a set of overlapping tiles, it is convenient to consider configurations308

for which the anchors fall within Pn, which implies d < r. By using (12),309

this choice implies:310

δ ≤ r

2 sin(π/n)
. (15)

A final fact needs to be stated on the point within the region Pn that311

produces the worst (i.e., the maximum) GDoP. Assuming that the configu-312

ration is chosen so that Pn contains all the n anchors (as per the previous313

observations) let314

C(a) = {p ∈ P|p = pc + aδ[cosα, sinα]T , α ∈ [0, 2π)}. (16)

For a > 1 this is a circular region enclosing the circle where the anchors315

are deployed, e.g., it encloses the thick dotted line circle of radius δ in the316

example of Figure 2. By using (10), it is possible to show the following:317
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Figure 3: The coverage area for different number of anchors.

Proposition 4. Let C(a) be the region defined in (16) and let the con-318

figuration of the anchor be symmetric with respect to (15) (i.e., the an-319

chors fall inside Pn). Let pM(a) = arg maxp∈C(a) gn(p), i.e. gn(pM(a)) =320

maxp∈C(a) gn(p). For small enough a and given (16), we have that pM(a) is321

attained exactly by the angles322

α ∈
{

arctan

(
Y1 − yc
X1 − xc

)
, . . . , arctan

(
Yn − yc
Xn − xc

)}
,

i.e., pM(a) is along the direction from the centre pc to each of the anchors ai,323

i = 1, . . . , n. This fact is true for any choice of δ respecting the hypotheses.324

We observe that the result of Proposition 4 is strictly true only for small325

a, since, if a increases, the curves at constant GDoP tends to be circles, hence326

the GDoP has the same value on C(a) for any angle α. However, ∀a > 1327

and due to the anchors symmetric configuration, we have that the following328

holds always true329

pM(a) =

{
p ∈ C(a)|α = arctan

(
Y1 − yc
X1 − xc

)}
. (17)
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Figure 4: GDoP g3(p) surface with colour scale for P3 when r = 8 [m] and d = 0.87r.

3.2. Example: P3 region330

It is known that in order to solve the position problem with ranging331

measurements (2) there should be at least n = 3 anchors in non-collinear332

configuration [23]. So it is very interesting to study the shape of the P3 re-333

gion. As shown in Figure 2 (dark-solid shaded region), if we use exactly three334

ranging measurements to reconstruct the target position, P3 is a circular tri-335

angle. The values of g3(p), i.e., the GDoP for p ∈ P3, is graphically depicted336

in Figure 4 with a colour scale assuming d = 0.87 r. The geometric position337

estimation uncertainty g3(p) increases when the target moves towards the338

vertexes of the circular triangle (the intersection points among the circles339

centred in the three anchors with radius r), which are the locations of pM(a)340

given in Proposition 4.341

3.3. Anchor deployment for Pn region342

After characterising the most important properties of our basic ”tile” Pn,343

we are know in a condition to discuss Algorithm 1, which computes the op-344

timal tile and its anchor configuration. The algorithm takes as input the345

centre of tile pc, the sensing radius r and the target maximum uncertainty346

value expressed with the GDoP g?. It returns the minimum number of an-347

chors needed to achieve the result and the radius δ of the circle they are to348
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Algorithm 1 Optimal anchor configuration

Input: central point pc, sensing radius r, desired g?

Output: deployment radius δ, anchor number n

1: n = 3; δ =<minimum possible value>;
2: flag = true
3: do
4: g = gn(pc)
5: if g ≥ g? then n = n + 1
6: else flag = false

7: while flag
8: flag = true
9: do

10: ai = pc + δ[cos 2iπ/n, sin cos 2iπ/n]T , i = 1 . . . n
11: [pM(a), a] = finda(g

?)
12: if pM(a) == ∅ then n = n+ 1
13: else flag = false

14: while flag
15: if n is even then
16: a = arg maxa∈ai

|a− pM(a)|
17: δ = r/(a+ 1)
18: else
19: a1, 2 = arg maxa∈ai

|a− pM(a)|
20: d = r‖ a1−pM (a)

‖a1−pM (a)‖ −
a2−pM (a)
‖a2−pM (a)‖‖; δ =

‖a?
i−a?

j‖
2 sin(π/n)

return δ, n

15



be deployed on using (11). The algorithm exploits the results on the charac-349

terisation of Pn for symmetric configurations discussed above. The number350

of anchors is initially set to n = 3 (the minimum value). A first do-while351

loop increases n until the minimum value of the GDoP is less than g?, which,352

in view of Proposition 3, is to be found at pc independently of n. This loop353

exploits the monotonicity of GDoP with the number of anchors (Proposi-354

tion 1). The second do-while loop enforces the condition g(pM(a)) ≤ g?. To355

this end, it exploits a function finda which looks for the smallest value of the356

scaling factor a > 1 such that the maximum GDoP g(pM(a)) evaluated on357

C(a) meets the constraints (see Proposition 4). If no point pM(a) respecting358

the property exists, the loops considers a configuration with a greater num-359

ber of anchors (notice that a solution surely exists by Proposition 1 and the360

fact that g(pc) ≤ g?). After the search is completed, we have to increase the361

deployment radius δ until the point pM(a) falls inside the sensing range of362

the anchors (it is worth recalling that the position of pM(a) does not depend363

on δ by Proposition 4). To this end the algorithm finds the anchor a that,364

in the current configuration, is the farthest from pM(a). If n is even there is365

only one a and δ is given by r
a+1

. If n is odd, we have two anchors a1,2 at366

the same distance from pM(a). In this case, it is sufficient to compute the367

base length (which is the distance d) of an isosceles triangle with vertices in368

a1, a2 and pM(a), i.e., d = r‖ a1−pM (a)
‖a2−pM (a)‖ −

a2−pM (a)
‖a2−pM (a)‖‖, and then compute δ369

reverting (12), i.e., δ =
‖a?

1−a?
2‖

2 sin(π/n)
.370

Example of placements using the previous algorithm for g? = 1 and g? =371

0.9 are reported in Figure 5. In the first example, we have an odd number372

of anchors, resulting in d = 0.59r and δ = 0.505r, while in the second more373

stringent case we have an even number of anchors, resulting in d = 0.55r and374

δ = 0.468r,i.e. a more dense deployment, as consequence of the the higher375

performance required in terms of GDoP. Notice that the results are reported376

as a function of r since the graphs will be simply scaled for different values377

of r: Figure 5 reports an exemplifying value of r = 20 m. It is worthwhile378

to note that the cell for P5 and P6 are intersections of circles centred in the379

anchors positions (thick dashed lines in Figure 5). Finally, it is clear that380

with n = 5 we cannot ensure g? = 0.9 (see the value of the level curves of381

g5(p) in Figure 5-a), unless a drastically reduced area (with anchors outside382

the deployment) is obtained. Hence, the minimum value needed is n = 6383

(Figure 5-b).384
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Figure 5: Placement when r = 20 m. The thick dashed line represents the cell contour,
while the GDoP contour values for g5(p) (a) and g6(p) (b) are reported accordingly. The
placement for g? = 1 results in d = 0.6r and δ = 0.5r (a), while for g? = 0.9 with d = 0.55r
and δ = 0.47r (b).

4. Beyond P3: the P2 case385

The need to collect at least three anchor measurements is a geometric386

constraint, which is apparently impossible to surmount. The problem is very387

simple: if we use two anchors the point to localise can generally be in two388

different locations, corresponding to the intersection of two circles. This389

consideration leads us to define P3 as a subset of the intersection of the three390

circles within the sensing set of the three anchors. However, if we look for391

a coverage with minimal number of anchors that meets the target maximum392

uncertainty (maximum GDoP) we can work around this limitation. In the393

following, we first discuss how to define a basic tile out of three anchors,394

dubbed P2, that covers a larger area than P3 (Section 4.1). Indeed, starting395

from P3 (intersection of three circles), P2 is obtained by adding the areas396

where only two circles intersect.As will be discussed in Section 4.2, in the397

areas of P2 we can still exploit our knowledge on the anchor positions to398

solve the ambiguity. Importantly, we will see in Section 4.3 that by using P2399

instead of P3 we can cover a larger area without sacrificing the worst case400

GDoP, i.e., still meeting the target maximum uncertainty requirement.401

4.1. The P2 region402

The region P2 is still defined using n = 3 anchors, but we release the403

assumption on their visibility requiring that at least three of them are simul-404
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(a) (b)

Figure 6: GDoP g2(p) surface with colour scale for P2 when r = 8 [m] and d = 0.87r.

taneously in sight. More formally, by handling (13), we have405

P2 = {p ∈ P|∃i, j ∈ {1, 2, 3}s.t.(hi(p) ≤ r ∧ hj(p) ≤ r)

∧ g2(p) ≤ g?} .

The region P2 thus defined is exemplified in Figure 2, where it is covered wit406

a linear pattern. The area covered by P2 is significantly larger than P3 (see407

Figure 3 or compare Figure 4 and Figure 6 for the same anchor deployment).408

The P2 region forms a three lens-shaped region. As can be observed from409

the corresponding GDoP plot of Figure 6, the target positioning uncertainty410

using two anchors increases at the circle intersections, while it reaches its411

highest value right behind each anchor, exactly as it happens for the P3 cells412

(recall Section 3.1).413

4.2. Positioning with P2414

Clearly, when a point lies at the intersection between the sensing circles415

of the three anchors, its position p̂ can be estimated using standard trilat-416

eration [24]. However, for the particular deployment we described for P2,417

p̂ can be estimated even with two anchors measurements. Considering the418
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Figure 7: The geometry of the worst GDOP.

shaded area with line pattern fill in Figure 2, this condition occurs in the419

three areas not covered by the dark grey solid fill. Importantly, in each of420

these three regions, the pair of anchors in view are different and this infor-421

mation is available. Moreover, from any pair of anchors at distance d, say ai422

and aj, it is possible to express the position p in a reference frame expressed423

in Figure 7 and dubbed p? using the following transformation424

p? =

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
(p− ai) = R(φ) (p− ai) ,

19



where φ = arctan
(
Yj−Yi
Xj−Xi

)
. With respect to this reference frame, the position425

p given two ranging measurements is given by426

p? =

 d2−`2j−`2i
2d

±
√

4d2`2i−(d2−`2j+`2i )2

4d2

 ,
hence expressing the ambiguity along the y direction. As a consequence,427

p = R(φ)Tp? + ai. (18)

It is now evident that there are two locations for p, which are symmetric with428

respect to the segment passing through ai and aj. With respect to Figure 2,429

it follows that either p is in the shaded dark grey area or in the line pattern430

fill, condition that can be easily verified by the presence or not of the third431

ranging measurement. As such, there is no ambiguous location for the P2432

cell. Since the estimated location p̂ is given by the NWLS applied to the P2433

cell, we dubbed this solution algorithm as NLS.434

Remark 1. The possibility of resolving the ambiguity is subject to some geo-435

metric conditions. Indeed, when d ≤ r, the ambiguous location can be always436

uniquely determined by the presence or absence of third anchor measurement437

(see Figure 8 (a)). On the other contrary, if d > r, it is possible to have am-438

biguities (see Figure 8 (b)). Notice that, as discussed in Section 3.1, the fact439

that the anchors fall within Pn, implies d < r, hence no ambiguous locations440

exist.441

Remark 2. The presence or absence of the third measurement, is instru-442

mental to set up the NWLS in (3)-(5). Indeed, since that is a gradient443

descent-like algorithm, if the initial location is set at the centre of the re-444

gion with line pattern fill or in the dark grey shaded area of Figure 2, the445

algorithm will inevitably converge towards the correct location.446

4.3. Positioning uncertainty in P2 and P3 cells447

As discussed in Section 3 (Proposition 1) for a fixed distance d between448

the anchors the GDoP improves with the number n of anchors. Hence, P3449

yields a smaller GDoP value than P2. Nonetheless, we will now show that450

given a generic P3, it is possible to define P2 such that maxp∈P2 g2(p) =451

maxp∈P3 g3(p) with a larger area covered by P2. However, we will have to452

allow for a slightly larger distance between the anchors in P2 than in P3.453
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(a) (b)

Figure 8: The necessary condition for P2 to resolve the ambiguity in position estimation
using two anchors.

Theorem 1. For any P3 cell with d ≤ r, there exists a P2 cell such that454

maxp∈P2 g2(p) = maxp∈P3 g3(p) as defined in (10) and having A2 ≥ A3 as455

defined in (14). The distance between the anchors is βd, with1:456

β =

√
ξ ±

√
ξ2 − 2ξ +

2

3
and ξ =

2r2

d2
. (19)

Proof. Without loss of generality, let us consider the anchors are deployed457

as in (11) and located at458

a1 =

[
0
0

]
, a2 =

[
d
0

]
and a3 =

[
d cos π/3
d sin π/3

]
,

i.e., the vertices of an equilateral triangle, which is the configuration for three459

anchors discussed in Section 3. Consider the point corresponding to the460

maximum GDoP pMi
= [x, y]T ∈ p(a) defined in (17) for the i-th cell Pi, i.e.,461

the locations pM2
and pM3

with maximum GDoP given by the intersection462

of two and three circles, respectively, of radius r (see Figure 7). Considering463

that the anchors for P2 are at distance βd, with d being their distance for464

1Albeit negative solutions for β exists, they have no physical meaning.
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P3. We can compute the explicit GDoP in the two points applying (10):465

g3(pM3
) =

√
3∑i=2

i=1

∑j=3
j=i+1 sin(γi − γj)2

=

√
3r4

y2d2 + 2r2x2
,

g2(pM2
) =

√
2r4

y2β2d2
.

(20)

By imposing g2(p2) = g3(p3) and solving for β, we have the following two466

roots467

β =

√
ξ ±

√
ξ2 − 2ξ +

2

3
and ξ =

2r2

d2
, (21)

yielding non-complex values for r > 0 and d ≤ r, with two positive roots.468

The last step to complete the proof is to show that, by setting the distance469

between the anchors in P2 to βd, we have A2 ≥ A3. A2 is obviously larger470

than A3 when the anchors are deployed at the same distance (see Figures 3).471

When the anchors for P2 are deployed at distance βd, the area covered by472

A2 decreases by increasing β. It can be seen that for any choice of r > 0 and473

d ≤ r, we have A2 > A3, if β ≤ 1.7 (see [30]). It can be seen that for any474

value of ξ in (19), one of the two solutions for β is always smaller than 1.7.475

Therefore, it is possible to find a region A2 greater than A3 and with equal476

worst case GDoP.477

Remark 3. The cell P2 constructed as discussed in Theorem 1 is guaranteed478

to have the same worst case GDoP and a better coverage than the correspond-479

ing P3. The price to pay is that the GDoP (and hence the uncertainty) can480

be worse in the average. Indeed, the uncertainty of the estimates degrades481

when the target lays on the line pattern filled area of Figure 2.482

Remark 4. The value β = 1.7 is actually an upper bound for the ”legal”483

ranges of β, i.e., the ones that guarantee A2 ≥ A3. We know that this484

bound is actually conservative and we are currently looking for the tightest485

possible bound that guarantee this geometric property. In the next section,486

we empirically obtain an approximate value for this bound, which we define487

as the ”approximate optimal bound for positioning uncertainty” in P2.488
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5. Simulation Results489

As a first goal, we aimed for a numeric comparison between P2 and P3490

cell geometry. The comparison was made on the efficiency gain (i.e., number491

of anchors needed) and on the positioning accuracy. Since an experimental492

comparison would have required a massive deployment of anchors, we decided493

to use simulation data. The reader interested in an accurate evaluation of494

the trilateration uncertainty adopting as ranging sensors UWB anchors is495

referred to our previous work [25].496

We considered a simulated map generated by the Robotics System Tool-497

box of Matlab R2020a Software with the total coverage area of 557m2. We498

have considered the maximum sensing range to be r = 8 m and a maxi-499

mum GDOP value of g? = 1.98, which resulted in an anchor distance of500

d = 6 m for the P3 cell. With the same constraints, the anchor distance for501

the P2 obtained with the scaling parameter β in (19) was given by d = 6.2 m502

(β = 1.03).503

For the deployment results, since we have fully characterised the regions504

Pj ⊆ P so that the limited sensing range r is satisfied and gj(p) ≤ g?,505

∀p ∈ Pj, it is sufficient to cover the entire space P with regions Pj to ensure506

g(p) ≤ g?, ∀p ∈ P . The geometric parameters for the deployment of the507

anchors were obtained using Algorithm 1.508

5.1. Ranging anchors deployment509

The anchor deployment problem as defined here with geometric cells (be510

them P2 or P3) is a special case of the general class of covering problems [31,511

32, 21], where a space P is fully covered with cells (or tiles) of a given512

geometry. As shown in [33], the optimal covering of a plane with convex513

polygons is an NP-Complete problem. Unfortunately, this negative result is514

obviously applicable to the cell geometry considered in this paper.515

However, the coverage problem considered in this paper can be approached516

adapting the solutions proposed in the literature. For example, a basic so-517

lution for NP-Complete covering problems (e.g., vertex cover, hitting set,518

general set cover, geometric set cover, etc.) is the greedy heuristic vertex519

covering algorithm proposed by Hochbaum et al. [34]. This approach pro-520

duces an upper bound for the number of tiles (and hence of anchors) needed521

for the coverage and has a logarithmic approximation ratio [35]. As discussed522

next, the covering greedy algorithm in general produces a solution that is not523

in practice too far from the optimal.524
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In our example, an initial set of 6000 random cells in equilateral triangle525

patterns was generated uniformly inside the region of interest. By using the526

greedy approximation algorithm with P3 cells, the result is 12 cells deployed527

with a maximum coverage area of 529 m2 and with a total computation528

time of 682.5 s. On the other hand, by using P2 cells, the coverage area529

was larger, i.e., 552 m2, while the computation time was smaller (416 s) and530

the algorithm used significantly less cells than in the case of P3, i.e., just 5.531

These results were obtained in MathWorks Matlab R2022b software running532

in Microsoft Windows 10, and using a 2.60 GHz Intel(R) Core(TM) i7 micro-533

processor endowed with 16 GB RAM. The two deployment are reported in534

Figure 9 and Figure 10, respectively. By looking at the deployment results,535

it appears that the the final solution does not provide a full coverage for536

the map. This is a common problem when heuristic solutions are applied to537

complex environments. Leaving some parts of the map uncovered is often538

preferable over using an unnecessarily large number of anchors. However,539

this problem is solved by placing anchors strictly were needed at the end of540

the algorithm.541

5.2. Positioning results542

The previous section clearly shows evident advantages in the covering543

performance of using P2 over P3. Our goal is now to show the performance544

of the two tiles in terms of positioning uncertainty. For this test, we assumed545

that the ranging uncertainty ηi in (2) was the same for all anchors and was546

distributed according to a Gaussian, white, zero-mean stochastic process with547

a standard deviation of σ`. The cell geometry for P2 and P3 considered for548

this test are the one shown in Figure 11. For all the tests, we assumed a549

fixed sensing range of r = 10 m was used. For P2, the position estimates are550

found using the algorithm described in Section 4.2 and the NWLS described551

in (3)-(5). The corresponding solution for the P3 is given by the GWLS552

method [25], which is hence adopted. Notice that, as reported in [25], this553

will ensure the attainment of the CRLB: to further verify this fact, we also554

reports the solution for P3 when the simple Least Squares (LS) is adopted.555

For each position in the grid cell, we collected the position estimation
error for m = 1000 Monte Carlo (MC) simulations. This procedure was
repeated with three different measurement standard uncertainties, namely
σ` = [0.05, 0.1, 0.2] m. The results are reported in Figure 12 for all the
estimation algorithms described above. For the positioning estimation un-
certainty, the quantitative results in terms of the Root Mean Square Error
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Figure 9: The final deployed anchors for the P3 cells.

(RMSE) were used, i.e.

RMSEp =

√√√√ 1

mN

N∑
i=1

m∑
j=1

(xi − x̂i,j)2 + (yi − ŷi,j)2
2

where N is the number of grid points in the grid cell, pi = [xi, yi]
T are the i-th556

actual coordinates of the grid cell and p̂i,j = [x̂i,j, ŷi,j]
T are the corresponding557

estimated coordinates of the i-th grid cell point for the j-th MC simulation.558

The results of Figure 12 shows that the GWLS surely provides results that559

are better than LS for the P3 regardless of the distances d among the anchors560
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Figure 10: The final deployed anchors for the P2 cells.

and in all the locations on the plane that are covered by the three anchors (see561

Figure 11-c). We additionally report with a solid line in Figure 12 the RMSE562

for all the points in P2 (say RMSE2) when the distance d2 = r = 10 m (grid of563

Figure 11-a), used as comparison. This RMSE reports the error between the564

true target position and the estimated value using NLS, i.e., the intersection565

point of two ranging measurements in P2 described in Section 4.2. We then566

notice that when d ≥ γd2 = 6.36 m, (vertical line in Figure 12) the RMSE567

for all the points in the region P3 (say RMSE3) is smaller than RMSE2.568

However, from Theorem 1, we know that there exists a value of β ≥ 1.7 such569

that for d2 = βd we have that A2 ≥ A3 with the same maximum GDoP.570
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(a) (b) (c)

Figure 11: Three sample grid cells with r = 10 [m]. (a) P2 with d = r, (b) P3 with d = r,
and (c) P3 with d = 0.3r.

Therefore, we have that if 1 < β < 1/γ = 1.57, then the RMSE3 < RMSE2,571

while if 1/γ ≤ β ≤ 1.7, then RMSE3 ≥ RMSE2, which is our ”approximate572

optimal bound for positioning uncertainty” for P2.573

6. Experimental Results574

The arena considered for the experiment is the IoT laboratory of the575

Department of Information Engineering and Computer Science (DISI), Uni-576

versity of Trento, a 6 × 6 m2 area instrumented with an OptiTrack system577

equipped with 14 cameras that provides the ground truth data (i.e., the578

precise location of the anchors in this experiment). We adopted as ranging579

sensors anchors based on radio frequency technology, namely UWB nodes.580

Hence, the target and the testing area are instrumented with DecaWave581

UWB transceivers (see Figure 13) with DWM1001 module, which includes a582

DWM1000 UWB transceiver (compliant with the IEEE802.15.4 UWB phys-583

ical layer), a Nordic Semiconductor nRF52832 micro-controller unit (MCU)584

with Bluetooth low Energy (BLE) support, and a three-axis accelerometer.585

The module operates on 6 frequency bands with base frequencies ranging586

from 3.5 to 6.5 GHz and a bandwidth of 500 or 900 MHz working with a587

two-way-ranging-TOA (TWR-TOA) protocol for an asynchronous commu-588

nication. In addition to the anchors of the infrastructure, the setup comprises589

one tag as the target, whose position is to be estimated and linked to a laptop,590

and one anchor configured as initiator to configure the DRTLS network. To591

prevent interference, a channel access time division multiple access (TDMA)592

is used to enforce collision-free signal broadcasting from different anchors. In593
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Figure 12: RMSE vs d for the P2 and the along the grid points of Figure 11, for the different
estimation algorithms employed and with different distances between the anchors for P3.

agreement with the IEEE802.15.4 standard, the initiator starts the TDMA594

cycle for a TWR communication and keeps the clocks of the anchors synchro-595

nised. The tag communicates with each anchor within a 25 ms time interval596

that results in a positioning network system with 10 Hz sampling rate (i.e.,597

one 25 ms slot is allotted to the Initiator) for the total communications and598

measurements of the whole positioning network system.599

The UWB measurement results were collected using three anchors pre-600

cisely located in an equilateral triangular pattern using the OptiTrack system601

(having an expanded uncertainty of 1 mm) and placed at 1683 mm off the602

floor (see Figure 13). The anchors are placed under line-of-sight (LOS) condi-603

tions. However, to ensure realistic environmental conditions, the lab was fully604

furnished and equipped with several laboratory instruments. The inevitable605

reflections by the walls, ceiling and different furniture, majorly made of metal606

in the lab, caused undesired signal interference and attenuation, resulting in607

biases in the signal time of arrival. This phenomenon is depicted in the two608

sample measurement error probability mass functions (pmf) obtained from609

two different UWB anchors and in two different locations on the experimen-610

tal environment and depicted in Figure 14. Considering a Type A analysis,611

we collected ranging measurements at the maximum positioning frequency,612

i.e. 40 Hz per anchor. The pmfs represent the ranging measurement errors:613

they were computed by subtracting the actual distance (i.e., the ground truth614
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Figure 13: Experimental setup with DecaWave MDEK UWB positioning system.(a) The
overview of the arena, and (b) the experimental setup.

distance from stationary target to the UWB anchors retrieved from the Op-615

tiTrack system with millimetre accuracy) from the 900 measurement results616

received from the UWB anchor. From the analysis carried out from two617

different anchor locations, we observed that the UWB measurements are su-618

perimposed with an uncertainty that has standard deviation of σ` = 0.1 m619

and a positive/negative maximum bias ranging in the set ±0.28 cm. The620

experiment consists of two different equilateral triangular deployment with621

four sampled locations, all depicted in Figure 15. In the first scenario, Fig-622

ure 15-a, the anchors were located with the same distance d = 2.59 m for P2623

and P3. In the second scenario, the distances between the anchors in P2 was624

extended by choosing β = 1.62, a value close to the optimal bound which625

was empirically obtained in Section 5 and that has a minimal increase in the626

covered area but a large average reduction of GDoP. For each position on627

the map, 900 estimates were made for P2 and P3. The GDoP (calculated628

by the ground truth measurements retrieved by the OptiTrack system) and629

RMSE results (computed as in Section 5) are reported in Table 1 and Ta-630

ble 2, respectively. From Table 1 we can observe how the GDoP in the same631

exact locations decreases when the distance among the anchors increases.632

Moreover, when the distance is the same, P2 conveys a GDoP that is greater633

than P3, thus verifying that β > 1 in light of Theorem 1. Moreover, when634

β increases, we can observe a reduction of the GDoP P2, but at the price635

of a reduced area covered A2 (see Figure 15). From Table 2, we can notice636
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(a) (b)

Figure 14: Two sample measurement error pmfs obtained from two different UWB anchors
and in two different locations on the experimental environment, with (a) positive and (b)
negative bias.

that with the adopted β = 1.62, we have a smaller average positioning error637

for P2 with respect to P3, while still preserving a larger coverage area (see638

Figure 15-b), which is in perfect accordance with the numerical analysis of639

Section 5. Finally, from both the tables, we can notice that the RMSE and640

the GDoP follow the same exact patterns, i.e., when the GDoP of P2 is less641

than P3 so does the RMSE, and vice-versa, which empirically validates once642

our choice of choosing the GDoP to meet the target uncertainty.643

7. Conclusion644

In this paper, we have presented a novel solution for an algorithm that645

produces a large scale deployment for ranging sensors so that a few impor-646

tant requirements are respected. The requirements are of theoretical nature647

and practical nature and include scalability, generality, optimality, reliabil-648

ity and ability to deal with the physical limitations of the sensors (first and649

foremost the limited sensing range). We have proposed a two step algorithm650

in which first a basic cell structure (or tile) is designed and optimised to651

cover a specified area with guaranteed compliance with the desired target652
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(a) (b)

Figure 15: Experimental positioning locations (numbered 1 to 4) and two different anchor
deployments. (a) P2 and P3 with the same d = 2.59 m (b) P2 with d = 4.20 m and P3

with d = 2.59 m.

Table 1: GDoP values for the four different positions and the two configurations of Fig-
ure 15.

Target P3 P2 (d = 2.59) [m] P2 (d = 4.20) [m]
1 2.260 2.338 1.419
2 1.947 2.168 1.419
3 2.126 2.190 1.414
4 1.454 1.596 1.455

uncertainty, and then this structure is replicated in order to cover the entire653

space. The key contributions of the paper have been to show: the geometric654

properties of the cell, an algorithm to design it with a minimal symmetric655

configuration of anchors, and how the covering efficiency can be maximised656

when the number of anchors is chosen as the smallest (i.e., n = 3).657

A large amount of work is still ongoing or is reserved for future investiga-658

tions. One issue we are coping with is the extension of the proposed analysis659

with heterogeneous sensing range and to the three/dimensional case. Another660

direction of work is to study how the proposed results extend to localisation661

problems and how the cells may be modified still verifying the target uncer-662

tainty (this is relevant to adapt the cells to challenging scenarios). Finally,663

we are going to extend the analysis to more complicated uncertainty models664
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Table 2: RMSE values for the four different positions and the two configurations of Fig-
ure 15 with the algorithms described in Section 5.

Target P3(LS) P3(GWLS) P2 (d = 2.59) [m] P2 (d = 4.20) [m]
1 0.179 0.123 0.145 0.096
2 0.179 0.111 0.133 0.095
3 0.218 0.143 0.150 0.111
4 0.090 0.076 0.15 0.096

that considers the effect of the environment generating multipath and biases,665

considering both model-based and data-driven approaches as [36, 37].666
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