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Abstract

We show that vector fields b whose spatial derivative Dxb satisfies a Orlicz summability condition have 
a spatially continuous representative and are well-posed. For the case of sub-exponential summability, their 
flows satisfy a Lusin (N) condition in a quantitative form, too. Furthermore, we prove that if Dxb satisfies 
a suitable exponential summability condition then the flow associated to b has Sobolev regularity, without 
assuming boundedness of divxb. We then apply these results to the representation and Sobolev regularity 
of weak solutions of the Cauchy problem for the transport and continuity equations.
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1. Introduction

In this paper we are concerned with the study of the existence and uniqueness of classical 
solutions of the Cauchy problem for the ODE system{

γ̇ (t) = b(t, γ (t))

γ (s) = x ,
(1)

with x ∈�, an open domain in Rn, s ∈ I , an open interval in R, and b : I ×� →Rn a continu-
ous, possibly non-autonomous vector field Even though we will mostly deal with the case when 
b is continuous, we will point out which proofs can easily be adapted to the case when b is only 
measurable with respect to t . If solutions to (1) exist and are unique for every s and x, we say 
that the vector field b is well-posed in I ×� (or in I ×�, see Definition 3.1 for a more precise 
statement). For every well posed vector field b : I × � → Rn we have a flow, that is, a map 
X : I × I ×� →�, defined as X(t, s, x) := γ (t) where γ is the unique absolutely continuous 
solution of (1). More precisely, for each t, s ∈ I we denote by �(t,s) ⊂ � the open set of all 
x ∈� such that the path starting at x at time s can be extended until time t (see Section 3.2 and 
Remark 3.3). Then X(t, s, ·) is a well defined homeomorphism �(t,s)→�(s,t) (see Remark 3.3).

Di Perna–Lions [17] carried out a pioneering and far-reaching theory by introducing a general-
ized notion of flow for vector fields b ∈ L1 ((0, T ); W 1,1

(Rn, Rn)) with important applications 
loc loc
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to the existence and uniqueness of weak solutions for the Cauchy problem of the transport equa-
tion associated to a weakly differentiable vector field b, that is,{

∂tu+ b ·Dxu= 0 in (0, T )×Rn

u(0, ·)= ū .
(2)

The theory was later remarkably extended by the first author [2] to vector fields b(t, ·) with 
BV regularity. In these works, the regularity of b is paired with the boundedness of its spatial 
divergence, that is

divxb ∈ L1((0, T );L∞(Rn)), (3)

which ensures the existence and uniqueness of the generalized flow of b. If (3) does not hold, 
then uniqueness of the flow may fail, as it was already shown in [17, Section IV.1]. The existence 
and uniqueness of a generalized flow associated to a weakly regular vector field b has been the 
object of an intensive study with applications to the Cauchy problem for the transport equation 
as well as for the continuity equation associated to b, that is,{

∂tρ + divx(bρ)= 0 in (0, T )×Rn

ρ(0, ·)= ρ̄ in Rn .
(4)

Existence, uniqueness and regularity of solutions of these three problems (1), (2) and (4) are 
connected with each other. In particular, the existence of a unique flow X with enough regularity 
implies existence and uniqueness of solutions to both the transport equation and the continuity 
equation. A fairly complete account of the development in this topic can be found in [5] and 
references therein. A sample of the literature on this subject is [4,8–10,13,11,12,14–16,27,29,28].

Our contribution focuses on two problems. First, we want to weaken the boundedness as-
sumption on the divergence (3). We will show in Theorem A that sub-exponential summability 
of ‖Dxb‖ guarantees the existence of a unique classical flow (in the Di Perna–Lions–Ambrosio 
theory, flows have a weaker definition).

Second, we want to find conditions on b for the flow to have Sobolev regularity, instead of 
just Lp integrability. It is well-known that high Lp integrability of matrix Jacobian Dxb, even 
coupled with (3), is not enough in order to provide Sobolev regularity of the flow X (see, for 
instance, [26]). A strategy used in the recent papers [13,8] was to strengthen the hypotheses by 
requiring exponential summability of ‖Dxb‖. We refer in particular to the recent paper [8], where 
it has been shown that b has a unique flow with Sobolev regularity under the condition

sup
t∈R

ˆ

Tn

exp(β‖Dxb(t, x)‖)dx <∞ and divxb ∈ L∞loc(R×Tn), (5)

for some β > 0, where Tn is the n-dimensional torus. We prove analogous results without con-
ditions on the divergence of b in Theorem D, see also Remark 6.3.

Our results are of three types. We first provide integral conditions of sub-exponential type on 
Db that ensure well-posedness. Then, we study the Sobolev regularity of the homeomorphisms 
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X(t, s, ·). Finally, we apply these results to both the transport equation and the continuity equa-
tion.

1.1. Well-posedness

Let us focus, first, on the well-posedness. If ‖Dxb‖ satisfies an exponential summability, that 
is, conditions of the form

ˆ

I

ˆ

�

exp (β‖Dxb(t, x)‖) dx dt <+∞ (6)

for some β > 0, then it is well-known that b is well-posed. Indeed, in this case, the vector field 
b(t, ·) satisfies a so-called Log-Lipschitz condition; see, for instance, [8,32]. However, reformu-
lating the condition of exponential summability in a Orlicz-like form, we extend the result to 
some sub-exponential cases.

Theorem A. Let � : [0, +∞) → (0, +∞) be a non decreasing locally Lipschitz function. As-
sume that

(A.I) if n > 1, there exists α ∈ (1, n
n−1 ) such that �

α−1
α is convex, while, if n = 1, � is convex;

(A.II) there exists C� ≥ 1 such that � : [C�, +∞) →[�(Cθ), +∞) is bijective and

�(s1)�(s2)≤�(C� s1 s2) for all s1, s2 ≥ C� ; (7)

(A.III)

∞̂

1

�′(s)
s�(s)

ds =+∞.

Let b ∈ L1
loc(I ; W 1,1

loc (�; Rn)) and assume that for every o ∈� there exist c > 0, R > 0 such that 
B(o, 2R) ⊂� and the function

t �→ψ(t) :=
ˆ

B(o,2R)

�(c‖Dxb(t, z)‖)dz (8)

belongs to L1
loc(I ). Then b(t, ·) : � → Rn has a continuous representative b̃(t, ·) for a.e. t ∈ I

and b̃ is well-posed in I ×�. Moreover, if there exists m ∈L1(I ) such that

|b(t, x)| ≤ m(t) for a.e. t ∈ I, for a.e. x ∈ B(o,R) , (9)

then b̃ is also well-posed in I ×�.

Notice that a byproduct of the proof of Theorem A is that the Sobolev-Orlicz space W 1L�(�)

embeds in C0(�), with modulus of continuity that depends only on �. See [7, Section 2.6] for 
the definition of W 1L�(�).
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The proof is inspired from [32]. In fact, we shall prove that a continuous representative b̃(t, ·)
of b(t, ·) satisfies the Osgood’s criterion (see [23, Chap. III, Corollary 6.2] or Proposition 3.2
below). The proof of this result is given in Section 4.

We note in Proposition 4.4 that if an increasing function � satisfies condition (A.III) of 
Theorem A, then it does not have polynomial growth. Examples of functions � satisfying the 
properties (A.I)-(A.III) are of the form

Ek,β(s)= exp

⎛
⎜⎜⎜⎝ s

log(s) log log(s) . . . (log . . . log︸ ︷︷ ︸
k-times

s)β

⎞
⎟⎟⎟⎠ for s ≥ s̄, (10)

with Ek,β(s) = Ek,β(s̄) for s < s̄, where s̄ is large enough, k ≥ 1 is an integer and 0 ≤ β ≤ 1, see 
Proposition 4.6. Notice that the asymptotic behavior of Ek,β as s→∞ is almost sharp in order 
that assumption (A.III) holds, see Remark 4.7. If Ek,1(c ‖Dxb‖) ∈ L1

loc(�) for some c > 0, we 
say that ‖Dxb‖ satisfies a subexponential summability of order k. Therefore, Theorem A shows 
that, if ‖Dxb‖ has subexponential summability, then b has a classical unique flow. However, we 
stress that, under the hypothesis of Theorem A, ‖Dxb‖ does not need to be in Lp

loc(I ×�) for 
each p > 1 (see Remark 4.5).

1.2. Regularity

Moving on to the regularity of the flow, we can prove that, if Dxb satisfies a subexponen-
tial summability of order 1, the associated flow X(t, s, ·) satisfies a weak regularity property, 
namely it maps the Lebesgue measure into absolutely continuous measures. Notice that, in this 
case, ‖Dxb(t, ·)‖ does belong to Lp

loc(�) for every p > 1, for almost every t ∈ I . A quantitative 
version, that we obtain adapting [11], is the following.

Theorem B. Let b ∈ L1
loc(I ; W 1,1

loc (Rn; Rn)). Suppose that

|b(t, x)|
1+ |x| log+ |x| ∈ L1(I ;L∞(Rn)) , (11)

and

ˆ

I

ˆ

Rn

exp

( ‖Dxb‖
log+ ‖Dxb‖

)
(t, x) dγn(x)dt < +∞, (12)

where γn is the Gaussian measure on Rn, namely

γn := 1

(2π)n/2 exp

(
−|x|

2

2

)
Ln

with Ln the Lebesgue measure in Rn.
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Then the space continuous representative b̃, granted by the Sobolev embedding, is well-posed 
in I ×� and the associated flow X of b̃ is globally defined, that is, X : I × I ×Rn→Rn. More-
over, for every t, s ∈ I , the image measure X(t, s, ·)#Ln is absolutely continuous with respect to 
Ln and there exists a positive constant α0(t, s) > 0 such that

d

dLn
(X(t, s, ·)#Ln) ∈ L�α

loc (Rn) (13)

for each 0 < α < α0(s, t), where L�α

loc (Rn) is the Orlicz space with

�α : [0,+∞)→[0,+∞), �α(w) :=w exp((log+w)α),

and α0 : I × I →R is continuous with α0(t, t) = 1 for every t ∈ I .

See Section 5 for the proof. By trivial considerations, in the one-dimensional case, we can 
improve Theorem B to absolutely continuity of the flow.

Theorem C. If n = 1 and b satisfies the conditions of Theorem B, then, for every t, s ∈ I , the 
map X(t, s, ·) is an absolutely continuous homeomorphism between intervals of R.

Sobolev regularity stated in Theorem C is sharp, as we show in Example 8.2. We don’t know 
whether Theorem C can be extended to the case of sub-exponential summability of order k > 1.

In higher dimensions, for subexponential summability, we have a partial negative result with 
an example in Section 8.2, or the example constructed in [8], see also Remark 7.2: there are 
vector fields satisfying a subexponential summability of order 1 whose flow is not in W 1,p

loc for any 
p > n. However, it remains open whether vector fields satisfying a subexponential summability 
of order 1 can fail to have the flow in W 1,1

loc .
On the other hand, in higher dimensions, for exponential summability we have a positive 

result:

Theorem D. Let I ⊂R and � ⊂Rn be bounded open sets and let b ∈ L1
loc(I ; W 1,1

loc (�; Rn)) be 
bounded. Assume that for some p > 2n the vector field b satisfies the global geometric condition

p :=
ˆ

�

ˆ

I

max

{
�

n
n−p ,

(dist(x, ∂�))
n

n−p

(sup |b|) n
n−p

}
exp

(
�p2

p− n
‖Dxb(s, x)‖

)
ds dx <+∞, (14)

with � equal to the length of I . Then the space-continuous representative b̃ is well-posed in I ×�

thanks to Theorem A and, in addition, for every t ∈ I and for almost every s ∈ I , one has

for a.e. s ∈ I, X(t, s, ·) ∈W 1,p(�(t,s);Rn) and X(s, t, ·) ∈W 1,p(�(s,t);Rn), (15)

with
ˆ

I

ˆ

�

‖DxX(t, s, x)‖p dx ds ≤ �
n

p−n p. (16)
(t,s)
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With regards to (15), a lower Sobolev regularity for the flow can be proved for all pairs of 
times s, t ∈ I , see Corollary 6.9. For b ∈ C0(I ; C1(�; Rn)), we have a more detailed statement 
in Theorem 6.1. We may also consider the case when b : I ×Rn→Rn and the support of b(t, ·)
is contained in a compact set independent of t . See also Remarks 6.3 and 6.2.

Theorem E. Let I ⊂ R be a bounded open interval and let b ∈ L1
loc(I ; W 1,1

loc (Rn; Rn)) be a 
bounded vector field. Assume that there exist a bounded open set � ⊂Rn and p > n such that

spt(b(t, ·))⊂� for each t ∈ I (17)

and (6) holds with β = �p2/(p− n) and � equal to the length of I .
Then the space-continuous representative b̃, understood as vector field in I ×�, is well-posed 

in I ×� thanks to Theorem A, �(t,s) = � and for every t, s ∈ I one has

X(t, s, ·) ∈W 1,p(�;Rn) with
ˆ

�

‖DxX(t, s, x)‖p dx ≤ 1

�

ˆ

I

ˆ

�

exp

(
�p2

p− n
‖Dxb(v, y)‖

)
dy dv.

(18)

Notice also that, in the previous theorem, we obviously have that the flow map X : I × I ×
Rn→Rn of b is identically equal to the identity on I × I × (Rn \�).

Remark 1.1. (1) Since dist(x, ∂�) is bounded, (14) can be stated in the equivalent form

ˆ

�

ˆ

I

(dist(x, ∂�))n/(n−p) exp

(
�p2

p− n
‖Dxb(s, x)‖

)
ds dx <+∞.

We used that specific form for the purpose of the estimate (15).
(2) If α = n/(p − n) is smaller than 1 (i.e., p > 2n) and ∂� is regular, then the geometric 

condition (14), thanks to the Hölder inequality, is implied by the simpler condition

ˆ

�

ˆ

I

exp (c‖Dxb(s, x)‖) ds dx <+∞ (19)

provided c > (1/α)′p2/(p− n), where (1/α)′ = (1 − α)−1 is the dual exponent. �

We also point out that the Sobolev exponent p, related to the constant in the exponential 
integrability condition in (14), may not be sharp. In other words, we can have p = ∞ but 
X(t, s, ·) ∈W 1,p(�(t,s); Rn), see Example 8.3.

Several regularity properties of X follow from Theorem D, see Corollaries 6.7, 6.8 and 6.10. 
In particular we show that, as in Theorem B, X(t, s, ·)#Ln� Ln, for each t, s ∈ I .

Remark 1.2. Suppose that b ∈ L1
loc(I ; W 1,1

loc (Rn; Rn)) has compact support and (19) holds for 
some c > 0. For every p > 2n, we get (18) on subintervals of I containing s and t of length �

such that �p2 = c. Since p2
> 4n for p > 2n, then � < c . �
p−n p−n 4n
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1.3. Transport and continuity equations

Finally, we apply Theorem B and Theorem D to the transport equation (2) and the continuity 
equation (4), respectively. By standard methods, we provide existence, uniqueness, representa-
tion and regularity of solutions.

In [12, Theorem 1], uniqueness of weak solutions u ∈L∞((0, T ); L∞(Rn)) has been proved, 
provided that the spatial derivatives of b satisfy a sub-exponential summability and ū ∈ L∞(Rn). 
Our next result provides even in this context the classical representation of this unique solution 
in terms of the flow map, granted by Theorem B.

Theorem F (Representation of the solutions for the transport equation). Let b be a vector field 
as in Theorem B, and let X be the flow associated to the continuous representative b. Then, for 
each ū ∈ L∞(Rn), for each t ∈ [0, T ], the function

v(t, x) := ū
(
X(t,0, ·)−1(x)

)
for a.e. x ∈Rn , (20)

is the unique weak solution in L∞((0, T ); L∞(Rn)) of the Cauchy problem for the transport 
equation (2), understood in the sense of distributions.

By means of the theory of maps with finite distortion, see for instance [25], we can also show 
Sobolev regularity of the solution v to the transport equation, see Corollary 7.1.

By applying the well-posedness and representation results proved in [3,14] (see Theorem 7.4
and Remark 7.5), we make more explicit the representation of the weak solutions of (4), under 
the assumptions of Theorem B and Theorem E. It is useful to deal with the case where ρ(t, ·)
belongs to the space of signed Borel measures on Rn with finite total variation, which we will 
denote by M(Rn).

Theorem G (Representation of the solutions for the continuity equation). Let I = (0, T ), let 
b : I ×Rn→Rn be a vector field with b(t, ·) continuous for a.e. t ∈ I .

(i) Suppose that b satisfies the assumptions of Theorem B and let X be the flow associated to b. 
Then, for each signed measure ρ̄ ∈M(Rn),

ρt = ρ(t, ·)= X(t,0, ·)#ρ̄ t ∈ [0, T ] (21)

is the unique weak solution for the Cauchy problem (4) in L∞((0, T ); M(Rn)).
Moreover, if ρ̄ ∈ L1(Rn), ρt can be represented as

ρt := (ρ̄JX,t ) ◦X(0, t, ·) , (22)

where JX,t (y) = dX(t,0,·)#Ln

dLn (X(t, 0, y)). In particular we have ρ ∈ L∞((0, T ); L1(Rn)).
(ii) If b satisfies the stronger hypotheses of Theorem E and ρ̄ ∈ L1(Rn), then the unique weak 

solution for the Cauchy problem (4) can also be represented as

ρt = ρ̄ ◦X(0, t, ·) , (23)

JX(t,0,·)
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where JX(t,0,·) denotes the Jacobian of homeomorphism X(t, 0, ·) : Rn→Rn (see (25)).

Notice that existence and uniqueness of distributional solutions of continuity equation (4) has 
been obtained in [15] by weakening assumption (3). More precisely, the authors showed that if 
ρ̄ ∈ L∞(R) and

divxb ∈ (BMO ∩L1)(Rn), (24)

then there exists a unique distributional solution ρ ∈ L∞((0, T ) ×Rn) of the Cauchy problem 
(4) However, we point out that condition (6) does not imply (24), see Example 8.3.

1.4. Structure of the paper

We start in Sections 2 and 3 by listing known results about homeomorphisms of finite distor-
tion and classical flows of vector fields. In Section 4 we prove Theorem A. Theorems B and C
are proven in Section 5. The proof of Theorem D is given in Section 6. Theorems F and G are 
shown in Section 7. Finally, Section 8 is devoted to the illustration of a few examples.
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2. Preliminaries on homeomorphisms

In this section we present some results about homeomorphisms that we will need later. Most 
of the material comes from the book [25].

2.1. Weak derivatives of homeomorphisms

If � ⊂ Rn is open and � : � → Rn, we denote by D� the weak differential of �. When a 
point-wise analysis is needed, we assume that D�(x) is equal to the classical differential of �
at every x ∈� where � is differentiable.1 The Jacobian of � is

1 Notice that the distributional derivative of a Sobolev function � agrees with the classical derivative at a.e. x where �
is differentiable. If the reader needs an argument, let us point out that the approximate differential of � agrees with the 
distributional derivative almost everywhere by [18, Theorem 6.1.4, page 233], and that the classical derivative is equal to 
the approximate differential wherever it exists.
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J�(x)= det(D�(x)) . (25)

A map � : � → Rn satisfies the Lusin (N) condition if for all E ⊂ � the vanishing of Ln(E)

implies Ln(�(E)) = 0. An embedding is a homeomorphism onto its image.

Lemma 2.1 ([25, Lemma A.29]). Let � ⊂Rn be open and let � :� →Rn be an embedding that 
is differentiable at x. The map �−1 is differentiable at �(x) if and only if det(D�(x)) �= 0. In 
this case, we have

D(�−1)(�(x))= (D�(x))−1.

Lemma 2.2 ([25, Theorem A.35]: Area Formula). If � ⊂ Rn is open, � ∈ W
1,1
loc (�; Rn) and 

η :Rn→[0, +∞] is a Borel function, then

ˆ

�

η(�(x))|J�(x)|dx ≤
ˆ

Rn

η(y)N(�,�,y)dy, (26)

where N(�, �, y) = #(�−1(y) ∩�) is the cardinality of the set �−1(y) ∩�. If � satisfies also 
the Lusin (N) condition then equality holds in (26).

Remark 2.3. Observe that the Lusin (N) condition for a homeomorphism � :� →�′ is equiv-
alent to assume that the push-forward measure (�−1)#(Ln �′) is absolutely continuous with 
respect to Ln. An abstract area-type formula with respect to a general measure μ is also intro-
duced in Lemma 7.6. �

Lemma 2.4 ([25, Theorem 4.2 and Theorem 6.2.1]). If � ⊂Rn is open, � ∈W
1,p

loc (�; Rn) and 
p > n, then the continuous representative �̃ is differentiable at a.e. x ∈ � and �̃ satisfies the 
Lusin (N) condition.

2.2. Mappings of finite distortion

We denote by ‖M‖ the operator norm of a linear map Rn→Rn or m × n-matrix, that is,

‖M‖ := sup
{|Mv| : v ∈Rn, |v| = 1

}
,

where | · | is the Euclidean norm. With this choice of the norm, one can easily show the following 
inequalities (the first one is called Hadamard’s inequality):

|detM| ≤�n
i=1|Mei | ≤ ‖M‖n. (27)

Definition 2.5. A map of finite distortion on an open set � ⊂Rn is a function � ∈W
1,1
loc (�; Rn)

such that there exists K :� →[1, +∞) with

‖D�(x)‖n ≤K(x)J�(x) for a.e. x ∈�. (28)

For q ≥ 1, the q-distortion function of a map of finite distortion � is
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K�
q (x) :=

⎧⎨
⎩
‖D�(x)‖q

J�(x)
if J�(x) �= 0,

1 otherwise .

Our main reference on maps of finite distortion is [25]. Notice that K�
n is the optimal distortion 

function for the inequality (28) to hold.

Lemma 2.6. If � ⊂ Rn is open and � ∈ W
1,1
loc (�; Rn) is an embedding with J� > 0 almost 

everywhere in �, then � has finite distortion.

Proof. The function K�
n is finite almost everywhere and (28) holds whenever J�(x) > 0. Since 

J� > 0 almost everywhere in �, then � has finite distortion. �
Lemma 2.7. Let � : �1 → �2 be a homeomorphism between open subsets of Rn, q > 0 and 
p > n. Suppose that

� ∈W
1,p

loc (�;Rn), �−1 ∈W
1,p

loc (�(�);Rn) and J�(x) > 0 for a.e. x ∈�.

Then � is a homeomorphism of finite distortion and

K�
q ∈ Lr

loc(�)

with r =
(

q
p
+ n

p−n

)−1
, which may be smaller than 1.

Proof. The map � has finite distortion by Lemma 2.6. Let r > 0 and U � �. By Hölder inequal-
ity, we have

ˆ

U

|K�
q |r dx ≤

⎛
⎝ˆ

U

‖D�‖rqα dx

⎞
⎠1/α⎛⎝ˆ

U

|J�|−rβ dx

⎞
⎠1/β

(29)

for α, β ≥ 1 with 1
α
+ 1

β
= 1. If rqα = p, then the first term of the right-hand side is finite.

By Lemma 2.4, both � and �−1 are differentiable almost everywhere. Therefore, using 
Lemma 2.1, it follows that, for almost every x ∈U ,

|J�(x)|−1 = |J�−1(�(x))|.

Using the area inequality (26), we have for all γ > 1

ˆ

U

|J�(x)|−γ dx =
ˆ

U

|J�−1(�(x))|γ+1|J�(x)|dx

≤
ˆ

�(U)

|J�−1(y)|γ+1 dy ≤
ˆ

�(U)

‖D�−1(y)‖n(γ+1) dx,
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where we used (27) in the last step. Now, if γ = rβ , then

ˆ

U

|J�|−rβ dx ≤
ˆ

�(U)

‖D�−1(y)‖n(rβ+1) dx,

which is finite when n(rβ + 1) = p.
Finally, solving the three equations 1

α
+ 1

β
= 1, rqα = p and n(rβ + 1) = p in α, β and r , we 

get

r =
(

q

p
+ n

p− n

)−1

and α = p
rq
= 1 + pn

q(p−n)
> 1, by the assumption p > n. Therefore, we get from (29) that ´

U
|K�|r dx <∞. �

Proposition 2.8 ([25, Theorem 5.13 and equation (5.18)]: Regularity of composition). Let � :
�1 → �2 be a homeomorphism between open subsets of Rn and let 1 ≤ p < q < ∞. Define 
the composition operator T�u = u ◦� for u :�2→R. Suppose that � has finite distortion and

K�
q ∈ L

p
q−p

loc (�1). (30)

Then T� is continuous from W 1,q

loc (�2) to W 1,p

loc (�1) for every 1 ≤ q ≤∞, where the operator 

norm on T� is controlled by ‖K�
q ‖1/q

L
p

q−p
on balls.

3. Preliminaries on flows of vector fields

In this section we present a part of the classical theory of flows of vector fields that we will 
need later.

3.1. Well-posedness of vector fields

We denote by B(x, r) the Euclidean ball of radius r and center x. Recall that a vector field 
b(t, x) is said to be autonomous if it does not depend on t , non-autonomous if it may depend on 
t .

Definition 3.1 (Well posedness). Let � ⊂Rn open, I ⊂R an open interval and b : I ×� →Rn

a function. We say that b is well-posed in I ×� if for every (s, x) ∈ I ×� there exist ε > 0 and, 
in the interval (s− ε, s+ ε) ⊂ I , a unique absolutely continuous solution γ : (s− ε, s+ ε) →�

of (1), that is, γ̇ (t) = b(t, γ (t)) for a.e. t ∈ (s − ε, s + ε) and γ (s) = x. Analogously, we say 
that b is well-posed in I × � if for every (s, x) ∈ I × � there exist ε > 0 and, in the interval 
I ∩ (s − ε, s + ε), a unique absolutely continuous solution γ : I ∩ (s − ε, s + ε) →� of (1).

The following classical result provides a sufficient condition for well-posedness, in local and 
global form with respect to the time variable. The proof is rather classical and well known, see 
for instance [19,23].
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Proposition 3.2 (Well-posedness with Osgood condition). Let ω : [0, +∞) → [0, +∞) be non-
decreasing with ω(0) = 0, ω(t) > 0 for t > 0 and

1ˆ

0

1

ω(t)
dt =+∞. (31)

Let I ⊂ R be an interval, and � ⊂Rn an open set. Let b : I ×� → Rn be a function such 
that:

(a) there exists a positive function φ ∈ L1
loc(I ) such that

|b(t, x)− b(t, y)| ≤ φ(t)ω(|x − y|) (32)

for all t ∈ I and x, y ∈�;
(b) for every x ∈�, the function t �→ b(t, x) is measurable;
(c) there exists m ∈L1

loc(I ) such that |b(t, x)| ≤m(t) for all (t, x) ∈ I ×�.

Then the following hold:

(i) The vector field b is well posed in I ×�. For (s, x) ∈ I ×�, denote by γ(s,x) the maximal 
solution of (1) with γ(s,x)(s) = x and by I(s,x) its maximal domain of existence. Define also 
α(s, t) = inf I(s,x) and β(s, t) = sup I(s,x).

(ii) If β(s, x) �= sup I , then limt→β(s,x) γ(s,x) exists and belongs to ∂�. Similarly for α(s, x) �=
inf I .

(iii) If (sj , xj ) ∈ I × � is a sequence converging to (s∞, x∞) ∈ I × �, with γj = γ(sj ,xj ) :
I(sj ,xj )→� the corresponding maximal solutions, j ∈N∪{∞}, and if s∞ ∈ J � I(s∞,x∞), 
then J ⊂ I(sj ,xj ) for j large enough and γj converge to γ∞ uniformly on J .

In particular, α is upper semicontinuous and β is lower semicontinuous.
(iv) If m ∈ L1(I ), then γ(s,x) is well defined also for (s, x) ∈ ∂I ×� and the limits

lim
t→β(s,x)

γ(s,x)(t) and lim
t→α(s,x)

γ(s,x)(t)

exist in �̄. In particular, b is well posed in I ×�.

3.2. The flow of a well-posed vector field

Fix an open set � ⊂Rn, an open interval I ⊂R and a well-posed vector field b : I×� →Rn. 
For every (s, x) ∈ I × �, let I(s,x) = (α(s, x), β(s, x)) ⊂ I be the maximal open interval of 
existence of a solution γ(s,x) : I(s,x)→� to the Cauchy problem (1) with initial datum γ(s,x)(s) =
x. Define

Db :=
{
(t, s, x) : (s, x) ∈ I ×�, t ∈ I(s,x)

}⊂ I × I ×�,

and the flow X :Db→� of b as X(t, s, x) = γ(s,x)(t). For every (t, s) ∈ I×I , we define �(t,s) =
{x ∈ � : (t, s, x) ∈ Db} = {x ∈ � : t ∈ I(s,x)} (which is possibly empty) and X(t,s) : �(t,s) → �

as X(t,s)(x) =X(t, s, x).
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An analogous notation can be used for the case of vector fields well posed in I × �, just 
allowing s and t to belong also to ∂I .

We recall several well-known facts about flows of vector fields, referring to fix the ideas to 
the weaker case of well posedness in I ×�. See for instance [23] for reference.

Remark 3.3. If b : I ×� →Rn satisfies the hypothesis of Proposition 3.2, then the sets Db and 
�(t,s) are open and X is continuous, thanks to Proposition 3.2(iii).

Uniqueness gives the semigroup-type property

X(t3, t2,X(t2, t1, x))=X(t3, t1, x) , (33)

whenever the expressions make sense. Moreover, the map X(t,s) is a homeomorphism �(t,s)→
�(s,t) with inverse X(s,t). Finally, if k ≥ 1 and b ∈ Ck(I ×�; Rn), then X ∈ Ck+1(Db; �). �

Lemma 3.4 ([23, Theorem 3.1, Chap. V]). Any b ∈ C0(I ; C1(�; Rn)) is well posed in I × �

and the homeomorphisms X(t,s) :�(t,s)→�(s,t) are of class C1.
Fix (s, x) ∈ I ×� and set the following functions defined on I(s,x)

y(t) := DxX(t, s, x),

B(t) := (Dxb)(t,X(t, s, x)),

J (t) := det(DxX(t, s, x)),

β(t) := divx(b)(t,X(t, s, x))= trace(B(t)).

Then y and J are the unique C1 solutions of the following initial value problems:

{
ẏ(t) = B(t)y(t),

y(s) = Id,
and

{
J̇ (t) = β(t)J (t),

J (s) = 1.

When considering smooth approximations of vector fields, we need to control the convergence 
of the corresponding flows, as in Lemma 3.5 below. The following results are fairly well-known, 
but in absence of a reference precisely adapted to our purposes we provide sketch of proofs for the 
reader’s convenience. An analogous statement holds for vector fields well posed in I , considering 
the additional points (s∞, x∞) ∈ ∂I ×� and the stronger convergence in L1(I ; C(�′; Rn)) for 
any �′ � �.

Lemma 3.5. Let {bh}h∈N∪{∞} be well posed vector fields in I and denote by Ih
(s,x) their maximal 

existence times and by Xh their flows. If bh → b∞ in L1
loc(I ; C(�′; Rn)) for any �′ � � and 

(sh, xh) → (s∞, x∞) ∈ I ×� as h →∞, then for any compact interval J ⊂ I∞(s∞,x∞) one has

J ⊂ Ih
(sh,xh) for h large enough

and Xh(·, sh, xh) converge uniformly to X∞(·, s∞, x∞) on J .
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Proof. Let us consider the compact curve � = {(v, X∞(v, s∞, x∞)) : v ∈ J } and let U be the 
open set J ′ ×�′, with J � J ′ � I and �′ � � chosen in such a way that � ⊂U . By assumption, ´
J ′ sup�′ |bh(t, ·) − b(t, ·)| dt is infinitesimal as h →∞. Let us consider the maximal solutions 

γh(v) for the ODE relative to bh, starting from xh at sh and with graph remaining in U (in partic-
ular, restrictions of Xh(·, sh, xh)), and let Jh ⊂ Ih

(sh,xh) their maximal existence intervals. Since 
the curves γh are equicontinuous, it is clear that limit points of the graph of these curves exist, and 
that any limit point is the graph of a solution γ∞ to the ODE relative to b∞, with γ∞(s∞) = x∞, 
defined on an interval J∞ and with the property that, as v tends to one, if any, of the extreme 
points of J∞ different from ∂I , (v, γ∞(v)) tends to ∂U . Since U � I ×�, the well-posedness 
of b∞ yields that the curve γ∞ is not only a restriction of the maximal curve X∞(v, s∞, x∞), 
v ∈ I∞(s∞,x∞), but also contains the curve X∞(v, s∞, x∞), v ∈ J , since this restricted curve does 
not touch the boundary of U . �

The previous lemma grants, in particular, the lower semicontinuity of (s, x) �→ length(I(s,x))

in I ×�. Moreover, a simple contradiction argument gives

for any compact interval J ⊂ I∞(s∞,x∞) and any open set A � �, one has

∃ h̄ such that J ⊂ Ih
(s,x) for each h > h̄ and (s, x) ∈ J ×A ; (34)

A� �∞(t,s) implies A � �h
(t,s) for h large enough (35)

and the uniform convergence of Xh(t, s, ·) to X∞(t, s, ·) on A.

4. Well-posedness with Orlicz condition

In this section we are going to prove Theorem A. We fix some dimensional constants for 
n ≥ 1. Let ωn = |B(0, 1)| be the volume of the unit Euclidean ball in Rn and σn−1 = nωn the 
perimeter of B(0, 1); let τn = |B(0, 1) ∩B(q, 1)| for any q ∈ ∂B(0, 1); finally, Cn is the constant 
from Lemma 4.1 and κn = 2τ−1

n ωnCnσn−1 will appear in Lemma 4.3.

Lemma 4.1. Let b ∈W 1,1(B(x, r); Rn) and assume that x is a Lebesgue point of b. Then, for 
some dimensional constant Cn, one has

−
ˆ

B(x,r)

|b(x)− b(y)|dy ≤ Cn

ˆ

B(x,r)

‖Db(y)‖
|x − y|n−1 dy. (36)

Proof. We assume for simplicity n ≥ 2. From the same argument of [18, Lemma 1, Sec. 4.5.2], 
based on a radial integration, for all x ∈Rn, r > 0, ε ∈ (0, 1) and f ∈ C1(B(x, r)) we have

−
ˆ

B(x,r)\B(x,εr)

|f (x)− f (y)|dy ≤
rˆ

εr

−
ˆ

B(x,s)

|y − x||Df (y)|dy ds

≤
rˆ

εr

s −
ˆ

|Df (y)|dy ds .

(37)
B(x,s)
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Assume now that f ∈ L1
loc(�), x is a Lebesgue point of f , B(x, r) � � and f ∈W 1,1(B(x, r)). 

Let δ := dist(B(x, r), Rn \�), �δ := {x ∈� : dist(x, Rn \�) > δ/2} and (ρh)h be a sequence 
of mollifiers in Rn. Then it is well-defined the sequence of regularized functions fh := f ∗ ρh :
�δ →R if h > 1/δ and it satisfies the following properties: fh ∈ C∞(�δ),

fh(z)→ f (z), for each z ∈�δ Lebegue point of f , as h→∞, (38)

fh→ f in W 1,1(B(x, r)) . (39)

Applying (37) with f ≡ fh and let h →∞, by (38) and (39), we get the same inequality when 
f ∈ W 1,1(B(x, r)) and x is a Lebesgue point of f . Now we can let ε → 0 and use Fubini’s 
theorem in the right hand side to get

−
ˆ

B(x,r)

|f (x)− f (y)|dy ≤ 1

n

ˆ

B(x,r)

|Df (y)|
|x − y|n−1 dy . (40)

Finally, notice that there is a constant cn such that, if M is a n × n matrix with rows Mj , then ∑
j |Mj | ≤ cn‖M‖. Therefore,

−
ˆ

B(x,r)

|b(x)− b(y)|dy ≤
n∑

j=1

−
ˆ

B(x,r)

|bj (x)− bj (y)|dy

≤ 1

n

n∑
j=1

ˆ

B(x,r)

|Dbj (y)|
|x − y|n−1 dy ≤ cn

n

ˆ

B(x,r)

‖Db(y)‖
|x − y|n−1 dy,

which proves (36) with Cn = cn/n. �
Recall Jensen’s inequality

�

⎛
⎝ˆ

X

χ(x)dμ(x)

⎞
⎠≤ ˆ

X

�(χ(x))dμ(x), (41)

where � : [0, +∞) → [0, +∞) is a convex function, μ is a probability measure on X and χ :
X→R is a μ-measurable non-negative function. The following lemma is a direct application of 
Jensen’s inequality.

Lemma 4.2. Let � : [0, +∞) → [0, +∞) be a convex function. If n ≥ 1, x ∈ Rn, r > 0, χ ∈
L1

loc(R
n) is non-negative, then

�

⎛
⎜⎝1

r

ˆ
χ(z)

|z− x|n−1 dz

⎞
⎟⎠≤ 1

rσn−1

ˆ
�(σn−1χ(z))

|x − z|n−1 dz. (42)
B(x,r) B(x,r)
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Proof. Using polar coordinates, one easily checks that

ˆ

B(0,r)

1

|z|n−1 dz= rσn−1.

Therefore, the measure dμ := χB(x,r)(z)

rσn−1

dz
|x−z|n−1 is a probability measure on Rn and Jensen’s 

inequality (41) applies. �
Lemma 4.3. Let � : [0, +∞) → [0, +∞) be a convex non-decreasing function. Let o ∈ Rn, 
R > 0 and b ∈W 1,1(B(o, 2R); Rn). Then, for all α ∈ (1, n

n−1 ), and all x, y ∈ B(o, R) distinct 
Lebesgue points of b, one has

�

( |b(x)− b(y)|
|x − y|

)
≤ 1

σn−1

⎛
⎜⎝ ˆ

B(o,2R)

1

|z|α(n−1)
dz

⎞
⎟⎠

1/α

×

× 1

|x − y|

⎛
⎜⎝ ˆ

B(o,2R)

�(κn‖Db(z)‖) α
α−1 dz

⎞
⎟⎠

α−1
α

.

(43)

In the case n = 1, the estimate (43) is understood to hold for α ∈ (1, +∞) and we also have

�

( |b(x)− b(y)|
|x − y|

)
≤ 1

2|x − y|
ˆ

B(o,2R)

�(κn‖Db(z)‖) dz. (44)

Proof. Set r := |x − y| > 0 and W = B(x, r) ∩B(y, r). Notice that |W | = τnr
n. Then

|b(x)− b(y)| ≤ −
ˆ

W

|b(x)− b(z)|dz+ −
ˆ

W

|b(y)− b(z)|dz

≤ ωn

τn

⎛
⎜⎝ −

ˆ

B(x,r)

|b(x)− b(z)|dz+ −
ˆ

B(y,r)

|b(y)− b(z)|dz

⎞
⎟⎠

≤ 2ωn

τn

sup
w∈B(o,R)

−
ˆ

B(w,r)

|b(w)− b(z)|dz.

Since � is non-decreasing, we have:

�

( |b(x)− b(y)|
|x − y|

)
≤ sup

w∈B(o,R)

�

⎛
⎜⎝2ωn

rτn

−
ˆ

|b(w)− b(z)|dz

⎞
⎟⎠
B(w,r)
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by (36)≤ sup
w∈B(o,R)

�

⎛
⎜⎝2ωnCn

rτn

ˆ

B(w,r)

‖Db(z)‖
|w− z|n−1 dz

⎞
⎟⎠

by (42)≤ 1

rσn−1
sup

w∈B(w,r)

ˆ

B(w,r)

�

(
2ωnCnσn−1

τn

‖Db(z)‖
)

1

|w− z|n−1 dz .

If n = 1, we have already obtained (44). However, if α > 1, we apply the Hölder inequality to 
obtain

ˆ

B(w,r)

�(κn‖Db(z)‖) 1

|w− z|n−1 dz

≤
⎛
⎜⎝ ˆ

B(w,r)

�(κn‖Db(z)‖) α
α−1 dz

⎞
⎟⎠

α−1
α

×
⎛
⎜⎝ ˆ

B(w,r)

1

|w− z|α(n−1)
dz

⎞
⎟⎠

1/α

≤
⎛
⎜⎝ ˆ

B(o,2R)

�(κn‖Db(z)‖) α
α−1 dz

⎞
⎟⎠

α−1
α

×
⎛
⎜⎝ ˆ

B(0,2R)

1

|z|α(n−1)
dz

⎞
⎟⎠

1/α

.

Notice that 
´
B(0,2R)

1
|z|α(n−1) dz <∞ if and only if α(n − 1) < n, i.e., α < n

n−1 when n > 1 or 
α <∞ when n = 1. Applying this estimate to the former inequality, we obtain (43). �
Proof of Theorem A. Notice that assumption (A.I) implies that � is also convex, and condi-
tion (7) is equivalent to

�−1(s1s2)≤ C� �−1(s1)�
−1(s2) ∀s1, s2 ≥�(C�). (45)

Let n > 1, fix α ∈ (1, n
n−1 ) as in the assumption (A.I), so that �(s) := �(s/κn)

α−1
α is convex, 

where κn is the constant defined at the beginning of the section.
Fix o ∈� and the corresponding R > 0 and c > 0 as in (8). We claim that the space continuous 

representative b̃ is well posed in I × B(o, R). Since b : I × B(o, R) → Rn is well posed and 
satisfies (8) if and only if c b does, in the proof of the claim we can assume with no loss of 
generality c = 1. Applying Lemma 4.3 with the above α ∈ (1, n

n−1 ) and �, we have, for almost 
every t and all x, y ∈ B(o, R) distinct Lebegue points of b(t, ·), one has

�

( |b(t, x)− b(t, y)|
κn|x − y|

) α−1
α ≤ C(n,R,α)

1

|x − y|

⎛
⎜⎝ ˆ

B(o,2R)

�(‖Db(t, z)‖) dz

⎞
⎟⎠

α−1
α

.

We write s1 ∨ s2 for max{s1, s2} and s1 ∧ s2 for min{s1, s2}. Then, by applying (45) twice we 
obtain that
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|b(t, x)− b(t, y)|
κn|x − y| ≤ C2

��−1(�(C�)∨C(n,R,α)
α

α−1 )×

×�−1

⎛
⎜⎝�(C�)∨

ˆ

B(o,2R)

�(‖Db(t, z)‖) dz

⎞
⎟⎠×

×�−1

(
�(C�)∨

(
1

|x − y|
) α

α−1
)

.

If we set

ω(δ) := δ�−1

(
�(C�)∨

(
1

δ

) α
α−1
)

(46)

and

ϕ(t) := κnC
2
��−1(�(C�)∨C(n,R,α)

α
α−1 )�−1

⎛
⎜⎝�(C�)∨

ˆ

B(o,2R)

�(‖Db(t, z)‖) dz

⎞
⎟⎠ ,

(47)

we obtain that ω ∈ C0((0, ∞)) and b satisfies

|b(t, x)− b(t, y)| ≤ ϕ(t)ω(|x − y|) (48)

for each x, y ∈ B(o, R) Lebesgue points of b(t, ·). From (48), it follows that b(t, ·) is uniformly 
continuous on the set of Lebesgue points of b(t, ·) contained in B(o, R). Since this set is dense 
in B(o, R), it follows that there exists a unique continuous extension b̃(t, ·) : B(o, R) → Rn

still satisfying (48) on the whole B(o, R). Therefore we can conclude that b̃(t, ·) : Rn →Rn is 
continuous, condition holds (48) on B(o, R) and

b̃= b a.e. on I ×B(o,R) . (49)

Moreover, it is clear that ϕ ∈ L1
loc(I ; R), because �−1 is concave and the function in (8) belongs 

to L1
loc(I ; R) by assumption.

We claim that condition (A.III) implies 
´ 1

0
1

ω(δ)
dδ =∞ and limδ→0 ω(δ) = 0. Indeed, on the 

one hand, using the monotonicity of �−1 and the change of variables s = �−1((1/δ)
α

α−1 ), we 
obtain, if δ̄ :=�(C�)

1−α
α ∧ 1 and s̄ =�−1((1/δ̄)

α
α−1 ),

1ˆ
1

ω(δ)
dδ ≥

δ̄ˆ
1

δ�−1((1/δ)
α

α−1 )
dδ = α− 1

α

∞̂
�′(s)
s�(s)

ds =+∞.
0 0 s̄
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On the other hand, to prove lim
δ→0

ω(δ) = lim
δ→0

δ�−1((1/δ)
α

α−1 ) = 0, we only need to show that the 

function δ �→ δ�−1((1/δ)
α

α−1 ) is monotone for δ small enough, because the above integral is not 
bounded. Again with the change of variables s =�−1((1/δ)

α
α−1 ), we see that this monotonicity 

is equivalent to the monotonicity of the function φ : s �→ s−1�(s)−
α−1
α for s large. Inspecting the 

derivative of φ, we see that

φ′(s)= �(s)− α−1
α

s2

(
−α − 1

α

�′(s)
s�(s)

− 1

)
< 0,

and so φ is monotone for s sufficiently large. We conclude that, for each o ∈� and t such that 
ϕ(t) < +∞ there exists R > 0 such that B(o, R) ⊂ � and b̃(t, ·) : B(o, R) → Rn satisfying 
Osgood’s condition

|b̃(t, x)− b̃(t, y)| ≤ ϕ(t)ω(|x − y|) for each x, y ∈ B(o,R) . (50)

|b̃(t, x)| ≤ |b̃(t, x)− b̃(t, x0)| + |b̃(t, x0)| ≤ ϕ(t)ω(|x − x0|)+ |b̃(t, x0)|
≤ ω(2R)ϕ(t)+ |b̃(t, x0)| for a.e. t ∈ I and for each x, x0 ∈ B(o,R) .

(51)

Now observe that, since b ∈ L1
loc(I × �; Rn), by (49), b̃ ∈ L1

loc(I × B(o, R); Rn). Thus there 
exists x0 ∈ B(o, R) such that |b̃(t, x0)| ∈ L1

loc(I ). By (50), (51) and Proposition 3.2 (i), we obtain 
that b̃ : I ×B(o, R) →Rn is well-posed. As a consequence also the vector field b̃ : I ×� →Rn

is well-posed.
Moreover, if (9) holds, it also follows that

|b̃(t, x)| ≤ m(t) for a.e. t ∈ I, for a.e. x ∈ B(o,R) .

Thus, by applying now Proposition 3.2 (iv), we can conclude that the vector field b̃ : I ×
B(o, R) →Rn is well-posed, which implies that b̃ : I ×� →Rn is well-posed, too.

When n = 1, let �(s) := �(s/κn). Then we can repeat the same arguments of the previous 
case, showing that the space continuous representative of b satisfies Osgood’s condition. �

The next proposition shows why we could not use a standard Sobolev embedding in the proof 
of Theorem A to obtain a stronger Sobolev regularity for b. See also Remark 4.5 below.

Proposition 4.4. Condition (A.III) in Theorem A implies that � cannot have polynomial growth, 
that is,

∀m ∈N lim sup
s→∞

�(s)

sm
=+∞, (52)

but it does not imply that � has more than polynomial growth.
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Proof. On the one hand, we have

∞=
∞̂

1

�′(s)
s�(s)

ds =
∞∑

k=1

k+1ˆ

k

�′(s)
s�(s)

ds

≤
∞∑

k=1

1

k

k+1ˆ

k

�′(s)
�(s)

ds =
∞∑

k=1

1

k
(log(�(k + 1))− log(�(k)))

=− log(�(1))+
∞∑

k=2

1

k2 − k
log(�(k))+ lim sup

k→∞
log(�(k))

k

If the series in the last row is infinite, then for every 0 < α < 1 there exists a sequence kj →∞
such that

1

k2
j − kj

log(�(kj ))≥ 1

k1+α
j

,

that is, for all j with kj ≥ 2,

�(kj )≥ exp

(
1

2
k1−α
j

)
.

If instead the series in the last row is finite, then lim supk→∞
log(�(k))

k
=∞, that is, there exists a 

sequence kj →∞ such that

�(kj )≥ exp
(
kj

)
.

On the other hand, we cannot improve the lim sup in (52) with a lim inf (or a lim). Indeed, 
with a similar estimate as above, we obtain

∞̂

1

�′(s)
s�(s)

ds ≥−1

2
log(�(1))+

∞∑
k=2

1

k2 + k
log(�(k)).

Thus, taking a sequence {kj }j sparse enough, one can construct a piece-wise linear increasing 

convex function � : [0, +∞) → [0, +∞) such that �(kj ) = exp(k2
j + kj ) (thus 

´∞
1

�′(s)
s�(s)

ds =
∞) and �(xj ) = x2

j for some kj < xj < kj+1 (hence lim infs→∞ �(s)

s2 <∞).
Let us give more details about such construction. As a start, define k1 = 1, �(1) = exp(2)

and α1 = exp(2). Then define �(t) = α1t for t ∈ [0, x1], where x1 is so that �(x1) = x2
1 , that 

is, x1 = α1. Iteratively, given xj and αj , and the function � defined in [0, xj ] with �(xj ) = x2
j , 

define
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kj+1 = �2xj �

αj+1 =
exp(k2

j+1 + kj+1)− x2
j

kj+1 − xj

�(t)=�(xj )+ αj+1(t − xj ) for t ∈ [xj , xj+1]
where xj+1 is so that �(xj )+ αj+1(xj+1 − xj )= x2

j+1

By construction, we have �(kj+1) = exp(k2
j+1 + kj+1) and �(xj+1) = x2

j+1. Moreover, since 

exp(x2 + x) > x2 for x ≥ 0, we have αj+1 > αj and thus the resulting function � is convex; in 
fact, � is the sup of the linear functions t �→ �(xj ) + αj+1(t − xj ), j = 1, . . . , and thus it is 
convex. �
Remark 4.5. Using the function � constructed in the previous Proposition 4.4, we can give an 
example of a continuous vector field b :R →R that is well posed, even though b /∈W

1,p

loc (R) for 
all p > 2.

Indeed, define b(t) = ´ t

0 χ(s) ds, where χ ∈ L1(R) is the function

χ(s)=
∞∑

j=1

χIj
(s) · xj where Ij :=

⎛
⎝j−1∑

k=1

1

k2x2
k

,

j∑
k=1

1

k2x2
k

⎞
⎠ .

Notice that, by construction,

exp(4x2
j + xj )≤ exp(k2

j + kj )=�(kj+1) < �(xj+1)= x2
j+1,

and thus xj+1 > exp(2x2
j + xj ) > exp(xj ) > exp(j) for all j ≥ 1. It follows that 

⋃∞
j=1 Ij is 

bounded and that

ˆ

R

χ(s)p ds =
∞∑

j=1

x
p
j

j2x2
j

=
∞∑

j=1

x
p−2
j

j2

is finite if and only if p ≤ 2. �

4.1. A class of subexponential summability types

Examples of functions � satisfying the properties listed in Theorem A are of the form Ek,β(s)

as in (10), as we will show in this section. It is clear that the subexponential summability of type 
Ek,β implies the subexponential summability of type Ek′,β ′ for all β ≤ β ′ ≤ 1 and k′ ≥ k.

If ‖Dxb‖ satisfies an exponential summability, then it is well-known that b is well-posed. 
Indeed, in this case, the vector field b satisfies a so-called Log-Lipschitz condition (see, for 
instance, [8,32]). Theorem A extends the well-posedness to subexponential summability order 
k ≥ 1. We will show in Section 8.2 that the upper bound on β for the subexponential summability 
order 1 is in fact necessary; see also [12, Section 6], [11, p. 1240].
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Let us now show that Ek,β satisfies the assumptions of Theorem A. Let us introduce some no-
tation in order to better represent Ek,β . Let us denote by Ek : R →R the kth-iterated exponential 
function, that is, by induction on k,

E1(s) := exp(s), Ek+1(s) := exp (Ek(s)) if s ∈R, k ≥ 1.

Since lims→−∞E1(s) = 0, notice that lims→−∞Ek(s) = Ek−1(0) =: sk for all k > 1, and that 
limk→∞ sk =∞. Denote by Lk : Ek(R) →R the kth-iterated logarithm function as the inverse 
of Ek , that is

Lk(s) :=E−1
k (s) if s ∈Ek(R)= (sk,+∞) .

Define then Pk(s) :=∏k
j=1 Lj (s), so that one can easily check that

L′k+1(s)=
1

sPk(s)
, so that P ′k(s)=

Pk(s)

s

k∑
j=1

1

Pj (s)
.

With this notation, we have

Ek,β(s)= exp

(
s

Pk−1(s)L
β
k (s)

)
.

A direct computation shows that

E ′k,β = Ek,βHk,β where Hk,β = 1

Pk−1L
β
k

⎛
⎝1−

k−1∑
j=1

1

Pj

− β

Pk

⎞
⎠ , (53)

and that

H ′
k,β =

1

sPk−1L
β
k

(
−
( k−1∑

j=1

1

Pj

+ β

Pk

)(
1−

k−1∑
j=1

1

Pj

− β

Pk

)
+

k−1∑
j=1

1

Pj

( j∑
i=1

1

Pi

+ β

Pk

))
. (54)

Proposition 4.6. The function Ek,β : R → R satisfies the assumptions of Theorem A for each 
integer k ≥ 1 and 0 ≤ β ≤ 1.

Proof. Monotonicity of Ek,β : From (53) it is evident that E ′k,β is positive for s large enough and 
thus Ek,β is strictly increasing in [α, +∞) for α large enough.

Verification of (A.I): If γ > 0, then

d2

ds2 Ek,β(s)γ = γEk,β(s)γ
(
γH 2

k,β +H ′
k,β

)
.

Because of the presence of the factor 1/s in (54), one can see that lims→∞
H ′k,β

H 2
k,β

= 0 and thus 

d2

2 Ek,β(s)γ is positive for s large enough. Thus we obtain that Ek,β(s)γ is convex for s large.

ds
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Verification of (A.II): Firstly, notice that log(st) = log(s) + log(t) ≤ log(s) log(t) for all 
s, t > e. Therefore, by induction on k, we have Lk(st) ≤ Lk(s)Lk(t) for all s, t > En(1). Hence, 
Pk(st) =∏k

j=1 Lj (st) ≤∏k
j=1 Lj(s)Lj (t) = Pk(s)Pk(t), or all s, t > En(1).

Secondly, condition (7), i.e., Ek,β(ts) ≤ Ek,β(s)Ek,β(t) for s, t large enough, is equivalent to

s

Pk−1(s)Lk(s)β
+ t

Pk−1(t)Lk(t)β
≤ st

Pk−1(st)Lk(st)β
,

that is

Pk−1(t)Lk(t)
β

t
+ Pk−1(s)Lk(s)

β

s
≤ Pk−1(s)Lk(s)

βPk−1(t)Lk(t)
β

Pk−1(st)Lk(st)β
. (55)

Thirdly, on the one hand we have limt→∞ Pk−1(t)Lk(t)
β

t
= 0, and thus the left-hand side of (55)

smaller than 1 for s and t large. On the other hand, by the initial observation,

Pk−1(s)Lk(s)
βPk−1(t)Lk(t)

β

Pk−1(st)Lk(st)β
≥ Pk−1(s)Lk(s)

βPk−1(t)Lk(t)
β

Pk−1(s)Pk−1(t)Lk(s)βLk(t)β
= 1.

So, inequality (55) holds true and so condition (7).
Verification of (A.III): Notice that, by (53), for s > Ek(1),

E ′k,β(s)

sEk,β(s)
∼s→∞

1

sPk−1(s)Lk(s)β
.

Thus, since 
´∞
Ek(1)

1
sPk−1(s)Lk(s)

β ds =∞ if and only if β ≤ 1, we also have 
´∞

1
E ′k,β (s)

sEk,β (s)
ds =+∞

if and only if β ≤ 1. �
Remark 4.7. Observe that, if (A.III) holds, then

lim sup
s→∞

Pk−1(s)Lk(s)
1+α�′(s)

�(s)
=∞ for every α > 0 and k ≥ 1 . (56)

�

5. Regularity of the flow with subexponential summability

This section is devoted to the proof of Theorem B and its consequence in dimension 1 as 
written in Theorem C. Let us recall that, if � : [0, +∞) → [0, +∞) is an increasing homeo-
morphism, so that �(0) = 0 and limt→+∞�(t) =+∞, the Orlicz space L�(Rn) is the space of 
measurable functions f :Rn→R for which the Luxembourg norm

‖f ‖L� := inf

⎧⎨
⎩λ > 0 :

ˆ
n

�

(
f (x)

λ

)
dx ≤ 1

⎫⎬
⎭

R
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is finite. L�
loc(R

n) will denote, as usual, the space of measurable functions f such that f χK ∈
L�(Rn) for each compact set K ⊂Rn. If

�(t)= exp

(
t

log+ t

)
− 1, (57)

then we will denote the obtained L�(Rn) (respectively L�
loc(R

n)) by Exp
(
L/logL

)
(respectively 

Exploc
(
L/logL

)
). When changing the reference measure from the Lebegues measure to a Radon 

measure μ on Rn, we will denote L�(Rn, μ) (respectively L�
loc(R

n, μ)) the associated Orlicz 
space and, if � is as in (57), by Expμ

(
L/logL

)
(respectively Expμ,loc

(
L/logL

)
).

Proof of Theorem B. We assume with no loss of generality that b coincides with its space con-
tinuous representative. It is easy to see that, from assumptions (11) and (12), it follows that, for 
a given R > 0 and

m(t) := (1+R log+R) sup
x∈B(0,R)

|b(t, x)|
1+ |x| log+ |x| for a.e. t ∈ I ,

then

m ∈ L1(I ) and |b(t, x)| ≤ m(t) for a.e. t ∈ I, for each x ∈ B(0,R) (58)

and

exp

( ‖Dxb‖
log+ ‖Dxb‖

)
∈ L1(I ;L1

loc(R
n)) . (59)

Thus, by (58) and (59), the vector field b is well-posed in I ×Rn by Theorem A and Proposi-
tion 4.6. Moreover the flow X associated to b is globally defined thanks to the growth condition 
(11), so that X ∈ C0(I × I ×Rn; Rn) (see, for instance, [23, Theorem 5.1, Chap. III]). In partic-
ular, b satisfies the assumptions of [11, Main Theorem]. Therefore the push-forward measure 
X(t, s, ·)#γn is absolutely continuous with respect to the Gaussian measure γn with density 
w(t, s) belonging to L�α(Rn, γn) for each 0 < α < α0(s, t), where

α0(t, s)= exp

⎛
⎝−16 e2

tˆ

s

‖divγnb(v, ·)‖
Expγn

(
L

logL

) dv

⎞
⎠ ,

where

divγnb(v)= divb(v)− v · b(v),

that is, divγn is the adjoint of the gradient operator with respect to the measure γn. Notice that α0
is a continuous function with α0(t, t) = 1 for every t ∈ I .

To complete the proof, it is enough to show that

d
(X(t, s, ·)#Ln)(x)=D(x)w(t, s)(x) for a.e. x ∈Rn , (60)
dLn
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where D(x) = exp
( |X(s,t,x)|2−|x|2

2

)
and d

dLn denotes the Radon-Nikodym derivative with respect 

to Ln. Indeed, since the map D :Rn→[0, ∞) is continuous and since L�α(Rn, μ) ⊂ L�α

loc (Rn), 
we can conclude (13).

In order to prove (60), fix t, s ∈ I and set ψ :=X(s, t, ·). By the differentiation theorem for 
Radon measures (see, for instance, [6]), we have

d

dLn
ψ#Ln = lim

r→0+
Ln(ψ(B(x, r)))

Ln(B(x, r))
,

for almost every x ∈Rn. Notice that

Ln(ψ(B(x, r)))

Ln(B(x, r))
= Ln(ψ(B(x, r)))

γn(ψ(B(x, r)))

γn(ψ(B(x, r)))

γn(B(x, r))

γn(B(x, r)))

Ln(B(x, r))
,

where, again by differentiation theorem for Radon measures,

lim
r→0+

γn(B(x, r)))

Ln(B(x, r))
= 1

(2π)n/2 exp

(
−|x|

2

2

)
,

lim
r→0+

γn(ψ(B(x, r)))

γn(B(x, r))
=w(t, s)(x),

lim
r→0+

γn(ψ(B(x, r)))

Ln(ψ(B(x, r)))
= 1

(2π)n/2 exp

(
−|ψ(x)|2

2

)
.

A short computation leads to (60). �
When the spatial dimension n equals 1, we have stronger results.

Proof of Theorem C. By Theorem B, b is well-posed and both maps X(t,s) :�(t,s)→�(s,t) and 
X−1

(t,s) =X(s,t) :�(s,t)→�(t,s) satisfy the Lusin (N) condition. Thus, by a well-known result of 
real analysis (see, for instance, [20, Theorem 7.45]) they must be locally absolutely continu-
ous. �
Remark 5.1. We do not know whether, if n ≥ 2, there exists a flow X associated to a vector field 
b satisfying (12), but X(t, s, ·) /∈W

1,1
loc (Rn; Rn) for some t, s ∈ R. Recall it has been proven in 

[21] that there exists an almost everywhere approximately differentiable, orientation and measure 
preserving homeomorphism � :Rn→Rn, whose Jacobian is equal to −1 almost everywhere on 
the unit n-dimensional cube Q, �(x) = x if x ∈ Rn \Q and � /∈W 1,1(Q; Rn). In particular it 
holds that

�#Ln� Ln and
d

dLn
(�#Ln)(x)= 1 for a.e. x ∈Rn.

We are not aware whether such a homeomorphism � could be induced by the flow of a suitable 
vector field. �
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Remark 5.2. Sobolev regularity stated in Theorem C is sharp, as we show in Example 8.2 below. 
Moreover it can be compared with the result in [27], which proves existence and uniqueness of a 
unique flow X, with DxX(t, s, ·) ∈A∞(R), provided that Dxb ∈ L1((0, T ); BMO(R)) (see [22, 
Chap. 7] for the definition of the class of functions BMO(Rn)). Notice that a function in BMO

admits exponential summability, as defined in Section 4.1. In particular, (12) holds, too. Whereas 
there are vector fields b with Dxb exponentially summable, but Dxb /∈ L1((0, T ); BMO(R))

(see Example 8.3 below). Notice also that there are flows associated to well-posed vector fields, 
which are not absolutely continuous (see Example 8.1 below). �

6. Regularity of the flow with exponential summability

This section is devoted to the proof of Theorem D. Under the stronger regularity assump-
tion

b ∈ C0(I ;C1(�;Rn)) (61)

we are able to derive a more precise a priori estimate, involving the quantity �(s, x), namely the 
length of the maximal interval I(s,x). Notice that we clearly have �(s, x) ≤ �, with � the length 
of I . Moreover, when b is a well posed vector field, the maximal integral curves of b stop either 
at the boundary of I or of � and thus, for all s ∈ I ,

�(s, x)≥min{�,dist(x, ∂�)/ sup |b|}. (62)

From this follows that, ′p ≤p , where ′p is defined in (66) below and p in (14). In partic-
ular, the finiteness condition (63) implies the finiteness of ′p as stated in (66).

Theorem 6.1. Let I ⊂R and � ⊂Rn be bounded open sets and let b ∈ C0(I ; C1(�; Rn)) be a 
bounded vector field. Assume that for some p > 2n one has

ˆ

I

ˆ

�

dist(x, ∂�)
n

n−p exp

(
�p2

p− n
‖Dxb(s, x)‖

)
dx ds <+∞. (63)

Then b is a well-posed vector field in I ×� thanks to Theorem A.
For all t ∈ I

for almost every s ∈ I , X(t, s, ·) ∈W 1,p(�(t,s);Rn) and X(s, t, ·) ∈W 1,p(�(s,t);Rn).

(64)

Moreover, we have that, for all t ∈ I ,

ˆ

I

ˆ

�(t,s)

‖DxX(t, s, x)‖p dx ds ≤′p, (65)

where
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′p :=
ˆ

I

ˆ

�

(
�

�(s, x)

) n
p−n

exp

(
�p2

p− n
‖Dxb(s, x)‖

)
dx ds <∞. (66)

If we also assume that there exists �̂ > 0 such that

�(t, x)≥ �̂ for all t ∈ I and x ∈�, (67)

then, for every s, t ∈ I ,

ˆ

�(t,s)

‖DxX(t, s, x)‖p dx ≤ 1

�̂

(
�

�̂

) n2
p(p−n)

′′p (68)

where

′′p :=
ˆ

I

ˆ

�

exp

(
�p2

p− n
‖Dxb(v, y)‖

)
dy dv.

Moreover, if there exists an open set �′ � � such that

spt(b(t, ·))⊂�′ for each t ∈ I , (69)

then (63) implies (68) also for p > n.

Remark 6.2. Typical cases where (67) holds are the following. First, as we already observed in 
the statement above, if there exists an open set �′ � � such that (69) holds then it turns out that 
�(t,s) = � and �(t, x) = � for every t, s ∈ I and x ∈�.

Second, if ∂� is smooth and compact and b is tangent to ∂�, then we have again �(t,s) = �

and �(t, x) = � for every t, s ∈ I and x ∈�.
Third, one can easily have �̂ < �: for example, if on the plane R2 with coordinates (x, y), we 

take b(t, (x, y)) = ∂x and � = {(x, y) : −2 + y < x < 2 − y, 0 < y < 1}. In this case we have 
�(t, (x, y)) = 4 − 2y. �

The proof of Theorem 6.1 is based on the well-known estimate (70) below and a bootstrap 
argument in three steps. The proof gives also an intermediate estimate (75) on subdomains A ��

that involves the function �(s, x) in place of dist(x, ∂�).

Remark 6.3. The proof of Sobolev regularity of the map X(t, s, ·) becomes even simpler when 
the spatial domain � is replaced by a compact Riemannian manifold M without boundary, as for 
instance the n-dimensional torus Tn considered in [8] (see also [13,11,12,14,10]). Indeed, in this 
case the quantity �(s, x) equals the length of I . The extension to the case of Sobolev regularity 
with respect to the space variable, along the lines of Theorem D (i.e., dropping assumption (61)), 
simply requires a global approximation of b by more regular vector fields. In the case M = Tn,
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one may argue by convolution with respect to the space variable, viewing the vector field as a 
spatially periodic one defined in I ×Rn. �

The first lemma is one of the many variants of Gronwall’s lemma, whose simple proof is 
omitted.

Lemma 6.4. Let f : [s, t] → [0, +∞) be an absolutely continuous function and β ∈ L1(s, t)
non-negative. If f ′ ≤ βf a.e. in (s, t) and f (s) = 1, then f (t) ≤ exp(

´ t

s
β(v) dv).

Lemma 6.5. Let b ∈ C0(I ; C1(�; Rn)) and let X : Db → � the corresponding flow. Then, for 
every (t, s, x) ∈Db one has

‖DxX(t, s, x)‖ ≤ exp

∣∣∣∣∣∣
tˆ

s

‖Dxb(v,X(v, s, x))‖dv

∣∣∣∣∣∣ . (70)

Proof. Set y(v) =DxX(v, s, x), B(v) = (Dxb)(v, X(v, s, x)) and assume, to fix the ideas, s ≤ t

(the proof in the other case is similar). Since, thanks to Lemma 3.4, y is of class C1, the function 
[s, t] � v �→ |y(v)| is absolutely continuous. Using once more Lemma 3.4, we have

d

dv
|y(v)| = 〈 y(v)

|y(v)| , ẏ(v)〉 = 〈 y(v)

|y(v)| ,B(v)y(v)〉 ≤ ‖B(v)‖|y(v)| for a.e. v ∈ (s, t) .

Lemma 6.4 implies (70), where the absolute value in the argument of the exponential is necessary 
when t < s. �
Proof of Theorem 6.1. Fix t ∈ I and A ⊂ � open; first, we use Lemma 6.5 and Jensen’s in-
equality (41) to get

ˆ

I

ˆ

A(t,s)

‖DxX(t, s, x)‖p dx ds ≤
ˆ

I

ˆ

A(t,s)

exp

⎛
⎝p

∣∣∣∣∣∣
tˆ

s

‖Dxb(v,X(v, s, x))‖dv

∣∣∣∣∣∣
⎞
⎠ dx ds

≤
ˆ

I

ˆ

A

ˆ

I

χA(v,s)(x)

�A(s, x)
exp (�p‖Dxb(v,X(v, s, x))‖) dv dx ds,

(71)

where we write �A(s, x) for the length of the interval of the maximal integral curve of b in A that 
starts from x at time s. Setting J (s, v, ·) = JX(s, v, ·) = detDxX(s, v, ·), we apply the change of 
variable y = X(v, s, x), i.e., X(s, v, y) = x and χA(v,s)(x) dx = J (s, v, y)χA(s,v)(y) dy; notice 
in particular that x ∈ A(v, s) if and only if y =X(v, s, x) ∈ A(s, v). Together with Hadamard’s 
inequality (27) and the Hölder inequality with exponents q = p/n and q ′ = p/(p − n), we 
get
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ˆ

I

ˆ

I

ˆ

A

χA(v,s)(x)

�A(s, x)
exp (�p‖Dxb(v,X(v, s, x))‖) dx dv ds

≤
ˆ

I

ˆ

I

ˆ

A

χA(s,v)(y)

�A(s,X(s, v, y))
exp (�p‖Dxb(v, y)‖)‖DyX(s, v, y)‖n dy dv ds

≤
⎛
⎝ˆ

I

ˆ

I

ˆ

A

χA(s,v)(y)

�A(s,X(s, v, y))q
′ exp

(
�pq ′‖Dxb(v, y)‖) dy dv ds

⎞
⎠1/q ′

×

×
⎛
⎝ˆ

I

ˆ

I

ˆ

A

‖DyX(s, v, y)‖nq dy dv ds

⎞
⎠1/q

.

(72)

The identity �A(s, X(s, v, y)) = �A(v, y) gives us

ˆ

I

χA(s,v)(y)

�A(s,X(s, v, y))q
′ ds = �A(v,y)(y)1−q ′ ,

and we conclude that

ˆ

I

ˆ

A(t,s)

‖DxX(t, s, x)‖p dx ds

≤
⎛
⎝ˆ

I

ˆ

A

�
1−q ′
A (v, y) exp

(
�pq ′‖Dxb(v, y)‖) dy dv

⎞
⎠1/q ′

×

×
⎛
⎝ˆ

I

ˆ

I

ˆ

A

‖DyX(s, v, y)‖nq dy dv ds

⎞
⎠1/q

.

(73)

If we take A � �, the latter triple integral is finite. By integrating this inequality with respect 
to t , and then rearranging the terms, we obtain that

ˆ

I

ˆ

I

ˆ

A(t,s)

‖DxX(t, s, x)‖p dx ds dt ≤ �q ′
ˆ

I

ˆ

A

�
1−q ′
A (v, y) exp

(
�pq ′‖Dxb(v, y)‖) dy dv

(74)

If we plug the estimate (74) into (73), we obtain

ˆ

I

ˆ

A(t,s)

‖DxX(t, s, x)‖p dx ds ≤ �
n

p−n

ˆ

I

ˆ

A

�
n

n−p

A (v, y) exp

(
�p2

p− n
‖Dxb(v, y)‖

)
dy dv.

(75)
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To prove (65), we need to take a limit in (75) along a sequence of sets A �� that fills �. To 
this aim, we define

Aε := {x ∈� : dist(x, ∂�) > ε}

for ε > 0, plug Aε in (75) and take ε→ 0.
For the left-hand side of (75), we observe that Aε1

(t,s) ⊂ A
ε2
(t,s) whenever ε1 > ε2. Thus, we 

have

lim
ε→0

ˆ

I

ˆ

Aε
(t,s)

‖DxX(t, s, x)‖p dx ds =
ˆ

I

ˆ

�(t,s)

‖DxX(t, s, x)‖p dx ds.

The right-hand side of (75) is more tricky. Define f (v, y) := exp
(
�pq ′‖Dxb(v, y)‖), δ(x) :=

dist(x, ∂�), and α = n
n−p

. Notice that, since p ≥ 2n, we have α ∈ (−1, 0).
We claim that

lim inf
ε→0

ˆ

Aε

ˆ

I

�α
Aε (v, y)f (v, y)dv dy ≤

ˆ

�

ˆ

I

�α
�(v, y)f (v, y)dv dy. (76)

If K � �, the monotone convergence theorem implies that

lim
ε→0

ˆ

K

ˆ

I

�α
Aε (v, y)f (v, y)dv dy =

ˆ

K

ˆ

I

�α
�(v, y)f (v, y)dv dy.

Thus, (76) is shown if we can prove that

inf
K��

lim inf
ε→0

ˆ

Aε\K

ˆ

I

�α
Aε (v, y)f (v, y)dv dy = 0. (77)

Indeed, thanks to (66), for every K �� we have

∣∣∣∣∣∣lim inf
ε→0

ˆ

Aε

ˆ

I

�α
Aε (v, y)f (v, y)dv dy −

ˆ

�

ˆ

I

�α
�(v, y)f (v, y)dv dy

∣∣∣∣∣∣
≤ lim inf

ε→0

ˆ

Aε\K

ˆ

I

�α
Aε (v, y)f (v, y)dv dy +

ˆ

�\K

ˆ

I

�α
�(v, y)f (v, y)dv dy.

If there is a sequence Kj � � such that

lim
j→∞ lim inf

ε→0

ˆ

Aε\Kj

ˆ

I

�α
Aε (v, y)f (v, y)dv dy = 0,

then limj→∞ |� \Kj | = 0, and limj→∞
´ ´

�α (v, y)f (v, y) dv dy = 0, and so (76) holds.

�\Kj I �
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To prove (77) we use the inequality (62). If K is large enough, so that dist(y, ∂Aε) < � for all 
y ∈Aε \K , the inequality (62) simplifies to

�Aε (v, y)‖b‖L∞ ≥ dist(y, ∂Aε).

We use the latter inequality to compute the following averaged integral

1

η

ηˆ

0

ˆ

Aε\K

ˆ

I

�α
Aε (v, y)f (v, y)dv dy dε

≤ 1

η

ηˆ

0

ˆ

Aε\K

ˆ

I

dist(y, ∂Aε)α

‖b‖αL∞
f (v, y)dv dy dε

= 1

‖b‖αL∞
ˆ

�\K

ˆ

I

⎛
⎝1

η

ηˆ

0

χAε (y)dist(y, ∂Aε)α dε

⎞
⎠f (v, y)dv dy.

Since δ(y) ≤ dist(y, ∂Aε) + ε, i.e., dist(y, ∂Aε) ≥ δ(y) − ε, we compute

ηˆ

0

χAε (y)dist(y, ∂Aε)α dε ≤
ηˆ

0

χAε (y)(δ(y)− ε)α dε

=
min{η,δ(y)}ˆ

0

(δ(y)− ε)α dε

(∗)≤ min

{
2−α,

2

α + 1

}
ηδ(y)α.

In (∗), we considered two cases: first, when η < δ(y)/2, the integral is bounded by 2−αδ(y)αη; 
second, when η≥ δ(y)/2, using the fact that α >−1, the integral is bounded by 2

α+1ηδ(y)α .
Therefore, there exists η0 > 0 such that for all η ∈ (0, η0), we can estimate the averaged 

integral with

1

η

ηˆ

0

ˆ

Aε\K

ˆ

I

dist(y, ∂Aε)αf (v, y)dv dy dε ≤ 2−α

ˆ

�\K

ˆ

I

δ(y)αf (v, y)dv dy.

It follows that

lim inf
ε→0

ˆ

Aε\K

ˆ

I

dist(y, ∂Aε)αf (v, y)dv dy ≤ 2−α

ˆ

�\K

ˆ

I

δ(y)αf (v, y)dv dy.

Then, since we assumed 
´
�

´
I
δ(y)αf (v, y) dv dy <∞ in (63), we obtain the estimate (77) and 

thus our claim (76).
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We have thus completed the proof of (65), and thus (64). Next we work on the second part of 
the theorem. If (67) holds, i.e., �̂≤ �(t, x) ≤ � for all t ∈ I and x ∈�, then

′′p ≤′p ≤
(

�

�̂

) n
p−n

′′p, (78)

since p ≥ 2n. We can repeat the steps in (71) and (72) without the integral in s, and then ap-
ply (65) and (78) to obtain

ˆ

�(t,s)

‖DxX(t, s, x)‖p dx

≤
⎛
⎝ˆ

I

ˆ

�

χ�(s,v)(y)

��(s,X(s, v, y))q
′ exp

(
�pq ′‖Dxb(v, y)‖) dy dv

⎞
⎠1/q ′

×

×
⎛
⎝ˆ

I

ˆ

�

‖DyX(s, v, y)‖nq dy dv

⎞
⎠1/q

≤ 1

�̂

(
�

�̂

) n2
p(p−n)

′′p,

and this proves (68).
If (69) holds, then the triple integral in (73) is finite also for A =� and p > n. In this case, 

we can obtain directly (75) for A =� without passing through the approximation Aε , where we 
used the stronger hypothesis p > 2n. �

The extension of Theorem 6.1 to the case of Sobolev spatial regularity requires a global 
approximation of b by more regular vector fields that seems to be not trivial, also because of 
the weight function �(s, x) depending on the vector field itself. In addition, the non-doubling 
property of the exponential function is source of extra difficulties, when performing standard 
convolution arguments. In the case of a weight independent of t , we addressed this problem in 
the note [7], from which we extract the following result.

Theorem 6.6 ([7, Theorem 3 and Remark 25]). Let � be a bounded open set and let w : � →
(0, +∞), with w+w−1 ∈ L∞loc(�).

(i) If b ∈ L1(I ; W 1,1
loc (�; Rn)) satisfies

ˆ

I

ˆ

�

w(x) exp(c‖Dxb(s, x)‖)dx ds <+∞, (79)

for some c > 0, then there exist bh ∈ C∞(I ×�; Rn) satisfying, whenever �′ � �,

bh converge to b̃ in L1(I ;C(�′;Rn)) as h→∞ , (80)

where b̃ is the space continuous representative of b,
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Dxbh→Dxb in L1(I ;L1(�′;Rn)), as h→∞ , (81)

and

lim
h→∞

ˆ

I

ˆ

�

w(x) exp(c‖Dxbh(s, x)‖)dx ds =
ˆ

I

ˆ

�

w(x) exp(c‖Dxb(s, x)‖)dx ds. (82)

(ii) If b ∈ L1(I ; W 1,1
loc (Rn; Rn)) and there exists a bounded open set � such that

spt(b(t, ·))⊂� for each t ∈ I , (83)

and b satisfies (79) on �, then there exist bh ∈ C∞(I ×Rn; Rn) still satisfying (80), (81), 
(82) and also

spt(bh(t, ·))⊂� for each t ∈ I and h ∈N . (84)

Proof of Theorem D. Let

w(x) :=max

{
�n/(n−p),

(dist(x, ∂�))n/(n−p)

(sup |b|)n/(n−p)

}
,

so that, with c= �p2/(p− n), one has

ˆ

I

ˆ

�

w(x) exp(c‖Db(s, x)‖)dx ds <+∞

and we may apply Theorem 6.6 (i) to b. Since b is bounded, we can also assume, by a truncation 
argument, that sup |bh| ≤ sup |b|. In addition, the quantity ′p in (66) is finite and satisfies ′p ≤
p , using the inequality (62).

It follows from these considerations that

lim sup
h→∞

′p,h ≤ lim sup
h→∞

p,h ≤p <+∞ ,

where

′p,h :=
ˆ

I

ˆ

�

(�h(s, x))n/(n−p) exp

(
�p2

p− n
‖Dxbh(s, x)‖

)
dx ds , (85)

and similarly p,h is defined with bh.
Now, in order to apply (65) from Theorem 6.1 to bh and the pass to the limit h →∞, it 

suffices by Fatou’s lemma to prove that

ˆ

�(t,s)

‖DxX(t, s, x)‖p dx ≤ lim inf
h→∞

ˆ

�h

‖DxX
h(t, s, x)‖p dx , (86)
(t,s)
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where �h
(t,s) and Xh are relative to the vector fields bh. Now, (35), derived from Lemma 3.5, 

yields that for any open domain A � �(t,s) one has A � �h
(t,s)

for h large enough, and that 
Xh(t, s, ·) converge to X(t, s, ·) uniformly on A. Hence the lower semicontinuity of w �→´
A
|Dxw|p dx yields

ˆ

A

‖DxX(t, s, x)‖p dx ≤ lim inf
h→∞

ˆ

A

‖DxX
h(t, s, x)‖p dx ≤ lim inf

h→∞

ˆ

�h
(t,s)

‖DxX
h(t, s, x)‖p dx .

Letting A ↑�(t,s) we obtain the claimed semicontinuity property (86). �
Proof of Theorem E. First assume that b is understood as vector field b : I × � → Rn. Let 
w ≡ 1 so that, with c= � p2/(p− n), one has

ˆ

I

ˆ

�

exp(c‖Db(s, x)‖)dx ds <+∞ .

From Theorem 6.6 (ii), let bh : I ×� →Rn be the regular sequence of vector fields satisfying 
(80), (81), (82) and (84).

It follows from (83) that �h(t, x) = � and thus

lim sup
h→∞

′p,h ≤
1

�

ˆ

I

ˆ

�

exp(c‖Db(s, x)‖)dx ds <+∞ ,

where ′p,h is the quantity in (85).
Now, in order to apply (68) with p > n from Theorem 6.1 to bh and then pass to the limit 

h →∞, we only need to use (86) again.
Assume now that b is understood as vector field b : I × Rn → Rn. It is clear that the flow 

map X : I × I ×Rn→Rn is identically equal to the identity on I × I × (Rn \�′). Since (18)
holds for any bounded open set � ��′, then X(t, s, ·) ∈W

1,p

loc (Rn). �
Corollary 6.7. Under the assumptions of Theorem D, we have, for every t ∈ I ,

for almost every s ∈ I

X(t, s, ·)#Ln �(t,s) = JX(s, t, ·)Ln �(s,t) = 1

JX(t,s,X(s,t,·))
Ln �(s,t) ,

(87)

where JX(t, s, ·) = det(DxX(t, s, ·)) ∈ Lp/n(�(t,s)) is non-zero almost everywhere. Under the 
assumptions of Theorem E, then (87) holds for every s, t ∈ I replacing both �(t,s) and �(s,t) by 
Rn.

In fact, JX is strictly positive, as we will show in the next corollary.

Proof. Since X(t, s, ·)−1 = X(s, t, ·) is also in W 1,p

loc (�(s,t); Rn) with p > 2n, then both maps 
X(t, s, ·) and X(t, s, ·)−1 are differentiable almost everywhere by Lemma 2.4. Therefore, we 
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have JX(t, s, x) �= 0 by Lemma 2.1. By Lemma 2.4, X(t, s, ·) satisfies Lusin’s (N) condition, 
and thus, by Lemma 2.2, the area formula holds, that is, (87) holds. Moreover, by the Laplace 
expansion of the determinant, one can easily prove, by induction on the order matrix and Hölder 
inequality, that JX(t, s, ·) = det(DxX(t, s, ·)) ∈ Lp/n(�(t,s)). The same argument applies under 
the assumptions of Theorem E. �
Corollary 6.8. Under the assumptions of Theorem D, for every (s, x) ∈ I ×�, if we set

y(t) :=DxX(t, s, x), B(t) := (Dxb)(t,X(t, s, x)),

J (t) := det(DxX(t, s, x)), β(t) := divxb(t,X(t, s, x))= trace(B(t)),

then y and J are absolutely continuous solutions to the initial value problems

{
ẏ(t)= B(t)y(t),

y(s)= Id.
(88)

{
J̇ (t)= β(t)J (t),

J (s)= 1.
(89)

Moreover, for almost every (t, s, x) ∈Db we have

DxX(t, s, x)= exp

⎛
⎝ tˆ

s

Dxb(v,X(v, s, x))dv

⎞
⎠ , (90)

JX(t, s, x)= exp

⎛
⎝ tˆ

s

divxb(v,X(v, s, x))dv

⎞
⎠ . (91)

In particular, JX > 0 almost everywhere.

Proof. First, we claim that, given s, for almost every x the matrix B belongs to L1(I(s,x); Rn2
), 

where I(s,x) is defined in Section 3.2. Indeed, the change of variables z = X(t, s, x) and the 
identity JX(s, t, X(t, s, x)) = 1/JX(t, s, x) give

ˆ

I

ˆ

�(s,t)

‖(Dxb)(t,X(t, s, x))‖dx dt =
ˆ

I

ˆ

�(t,s)

‖(Dxb)(t, z)‖JX(s, t, z)dzdt.

The latter integral is finite because Dxb ∈ Lq for all q and JX ∈ Lp/n. Therefore, the claim is 
true.

Second, using the same approximation of b as in the proof of Theorem D, we know that 
DxX

h→DxX weakly in Lp(Db), since DxX
h are uniformly bounded in Lp(Db).

Third, we see that the distributional derivative ∂tDxX has the following form: for every φ ∈
C∞(Db; Rn),
c
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∂tDxX[φ] = −
ˆ

Db

DxX∂tφ dt ds dx

=− lim
ε→0

ˆ

Db

DxXε∂tφ dt ds dx

= lim
ε→0

ˆ

Db

Dxbε(t,Xε(t, s, x))DxXε(t, s, x)φ dt ds dx.

Now, Xε → X uniformly on compact sets and Dxbε → Dxb in Lq

loc(Db) for all q . So, using 
Hölder inequality and the Lebesgue dominated convergence theorem, we obtain that the limit 
above is

∂tDxX[φ] =
ˆ

R2+n

Dxb(t,X(t, s, x))DxX(t, s, x)φ dt ds dx.

In other words, ∂tDxX = Dxb(t, X(t, s, x))DxX(t, s, x). This shows that y is solution to the 
Cauchy system (88). Since B is integrable, then we get (90) by integrating this Cauchy system.

Finally, the validity of (89) follows in a standard way from (88) and (89) implies (91). �
Corollary 6.9. Under the assumptions of Theorem D, for every 1 < r < p − n and for every 
s, t ∈ I , we have that

X(t, s, ·) ∈W 1,r (�(t,s);Rn). (92)

Proof. The proof is an improvement of (15) through an application of Corollary 6.8, Lemma 2.7

and Proposition 2.8. Indeed, for every 1 < r < p− n there exists 0 < q < p2 − p2

p−n
such that

r = p2(p− n)

q(p− n)+ p2 , that is,
r

p− r
=
(

q

p
+ n

p− n

)−1

.

So, given s, t ∈ I , (15) implies that there exists u ∈ I such that

X(s, t, ·)=X(s,u,X(u, t, ·))

and both maps X(s, u, ·) and X(u, t, ·) belong to W 1,p on their domains, with non-zero Jacobian 
by Corollary 6.8. We then apply Lemma 2.7 and Proposition 2.8 to prove that their composition 
is of class W 1,r on its domain. �
Corollary 6.10. Under the assumptions of Theorem D, we have

X ∈W 1,p(Db;Rn).
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Proof. We know that X is continuous and, from (16), we have that DxX ∈ Lp(Db; Rn2
). More-

over, by the identity X(t, s, x) = x + ´ t

s
b(v, X(v, s, x)) dv, we have

∂tX(t, s, x)= b(t,X(t, s, x)),

and thus ∂tX is continuous. Finally, by differentiating with respect to s the semigroup iden-
tity (33) in the form X(t, v, x) =X(t, s, X(s, v, x)), we get

∂sX(t, s,X(s, v, x))+DxX(t, s,X(s, v, x))b(s,X(s, v, x))= 0,

for all t, s, v ∈ R and x ∈ Rn for which the expression makes sense. Therefore, ∂sX(t, s, y) =
−DxX(t, s, y)b(s, y) and so ∂sX ∈ Lp(Db; Rn). �
Remark 6.11. Corollary 6.10 improves [13, Theorem 4] and [8, Corollary 1.8], by dropping 
assumption (3), that is divxb ∈ L1

loc(R, L∞(Rn)). Notice that, if n = 1, assumption (3) reduces 
to the classical Lipschitz condition of b with respect to x, uniformly in t . Corollary 6.10 also 
applies to a non Lipschitz one-dimensional vector field b (see Example 8.3 below). �

Remark 6.12. Corollary 6.10 looks almost sharp. Indeed, it was proved in [26] that no Sobolev 
regularity can be expected for the flow, when assuming only that b ∈ L1(I ; W 1,p(Rn; Rn)) for 
all finite p ∈ [1, +∞), even when b is compactly supported and divergence-free. See also Re-
mark 5.1. �

7. Applications to PDEs

In this section we apply the Sobolev regularity of flows for getting the representation of weak 
solutions of the Cauchy problems both for the transport and continuity equations.

Proof of Theorem F. By [12, Theorem 1], we can infer the uniqueness of weak solutions u ∈
L∞((0, T ); L∞(Rn)) for (2), provided that the spatial derivative of b satisfies a sub-exponential 
summability and ū ∈ L∞(Rn). Therefore we have only to show that the function v in (20) is a 
weak solution of (2), that is,

T̂

0

ˆ

Rn

v (∂tϕ + div(b ϕ) ) dtdx = −
ˆ

Rn

ū ϕ(0, ·)dx (93)

for each ϕ ∈ C∞c ([0, T ) ×Rn). We divide the proof in two steps.
1st step. Let us assume that ū ∈ C∞(Rn) ∩L∞(Rn). Let bε : I ×Rn→Rn be the family of 

vector fields defined as

bε(t, x) := (b̃ε(t, ·) ∗ ρε)(x) if (t, x) ∈ I ×Rn ,

where

b̃ε(t, x) := (b̃ε,1(t, x), . . . , b̃ε,n(t, x)) ,
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b̃ε,i (t, x) := max{{min{bi(t, x),1/ε},−1/ε} if (t, x) ∈ I ×Rn, i = 1, . . . , n ,

and (ρε)ε denotes a family of mollifiers depending on the space variable x. Then, standard prop-
erties of convolutions yield

|bε(t, x)| ≤
√

n

ε
for each (t, x) ∈ I ×Rn , (94)

bε(t, ·) ∈ C∞(Rn;Rn) and Dxbε(t, x)=
ˆ

Rn

Dxρε(x − y) b̃ε(t, y) dy ∀(t, x) ∈ I ×Rn ,

(95)

bε(t, ·) :Rn→Rn is Lipschitz continuous, uniformly with respect to t ∈ I , (96)

bε → b in L1(I ;L1(�;Rn)) as ε→ 0, whenever � �Rn . (97)

Then, from (96) we get that bε is well-posed and the flow maps Xε associated to bε is globally 
defined, that is, Xε : I ×Rn→Rn and is Lipschitz regular. Define

vε(t, x)= ū(Xε(0, t, x)).

By (97), Lemma 3.5 and the subsequent remark, Xε → X uniformly on compact subsets of 
I ×Rn. Since ū is assumed to be continuous, we obtain that vε → v uniformly on compact sets 
of I ×Rn. Moreover, since ū ∈ L∞(Rn), by the dominated convergence theorem, we can also 
assume that vε → v in L2 on each compact set of I ×Rn.

By the classical Cauchy-Lipschitz theory (see, for instance, [5, Section 2]), it is well-known 
that vε is a classical solution to (2) with bε in place of b and, in particular, a weak solution, i.e.,

T̂

0

ˆ

Rn

vε (∂tϕ + div(bεϕ)) dx dt =−
ˆ

Rn

ū(x)ϕ(0, x)dx ,

for each ϕ ∈ C∞c ([0, T ) ×Rn). Since ϕ has compact support in [0, T ) ×Rn, it is easy to check 
that div(bεϕ) → div(bϕ) in L2. Hence

lim
ε→0+

T̂

0

ˆ

Rn

vε (∂tϕ + div(bεϕ)) dx dt =
T̂

0

ˆ

Rn

v (∂tϕ + div(bϕ)) dx dt,

that is, v is a weak solution to (2).
2nd step. Let ū ∈ L∞(Rn) and, by mollification in Rn, let ūj ∈ L∞(Rn) ∩ C∞(Rn), with 

j ∈N , be a sequence of functions that converges to ū almost everywhere and such that ‖ūj‖L∞ ≤
‖ū‖L∞ for every j .

Define

vj (t, x)= ūj (X(0, t, x)).
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By Theorem B, for every t the homeomorphism X(0, t, ·) satisfies the Lusin (N) condition, and 
therefore vj (t, ·) → v(t, ·) almost everywhere in Rn. Since this is true for every t , we get that 
vj → v almost everywhere in [0, T ] ×Rn. Moreover, it is clear that ‖vj‖L∞ ≤ ‖ū‖L∞ for all j .

By the previous step, we have, for all j ,

T̂

0

ˆ

Rn

vj (∂tϕ + div(bϕ)) dx dt =−
ˆ

Rn

ūj (x)ϕ(0, x)dx ,

for each ϕ ∈ C∞c ([0, T ) × Rn). We can now apply the Dominated Convergence Theorem and 
pass to the limit j →∞ to obtain that v is a weak solution to (2). �
Corollary 7.1 (Sobolev regularity of the solutions of the transport equation). Let b ∈ C0(I ×
Rn; Rn) as in Theorem E and let X be the flow of b. Let p > 2n and 1 ≤ q̃ ≤ q <∞ be such that

q̃

q − q̃
=
(

q

p
+ n

p− n

)−1

, i.e., q̃ = pq(p− n)

q(p− n)+ p2 . (98)

If ū ∈ L∞(Rn) ∩W
1,q

loc (Rn), then the function v in (20) satisfies

v ∈ L∞([0, T ];W 1,q̃

loc (Rn)) .

Proof. By Theorem E, the function � :=X(0, t, ·) and its inverse are in W 1,p

loc with p > 2n. By 

Lemma 2.7 and Corollary 6.8, � is of finite distortion and K�
q ∈ Lr

loc for r =
(

q
p
+ n

p−n

)−1
. By 

Proposition 2.8, the composition operator T� is continuous from W 1,q

loc (�2) to W 1,q̃

loc (�1). Since 
v(t, ·) = T�(ū), the proof is concluded. �
Remark 7.2. Notice that the propagation of regularity, in the spirit of Corollary 7.1, may fail be-
low the exponential summability of Dxb, even though ū ∈ C∞c (Rn). Indeed, in [8, Theorem 2.1], 
the authors constructed a divergence-free vector field b : R × Rn → Rn (n ≥ 2) satisfying the 
subexponential summability condition (12), and a weak bounded, compactly supported solu-
tion u(t, x) of (2) such that ū := u(0, ·) ∈ C∞c (Rn) but u(t, ·) /∈ Ẇ s,p(Rn) for all t > 0, s > 0
and p ≥ 1, where Ẇ s,p(Rn) denotes the so-called homogeneous Sobolev space. The example is 
based on the work [1]. Let us recall that when s = 1 and 1 < p < ∞, then Ẇ 1,p(Rn) ∩Lp(Rn)

coincides with the classical Sobolev space W 1,p(Rn) (see [1, Section 2]).
Let us point out that, although b satisfies the hypothesis of Theorem F, u(t, ·) /∈W 1,p(Rn) for 

each t ∈ (0, ∞) and p ∈ (1, ∞). This implies that the flow of b has not Sobolev regularity W 1,p

for some p > n, otherwise the same proof of Corollary 7.1 could be repeated. Our Example 8.2
shows the same phenomenon. Notice that we don’t know whether u(t, ·) /∈W 1,1(Rn). �

Remark 7.3. Corollary 7.1 shows that the Sobolev regularity of the flow X implies Sobolev 
regularity for solutions of the transport equation in the form (20). We notice that the converse 
implication is almost true. Indeed, suppose that for every 1 ≤ q̃ ≤ q <∞ satisfying (98), and for 
every ū ∈ L∞(Rn) ∩W

1,q
(Rn), the function v in (20) satisfies v ∈ L∞((−T , T ); W 1,q̃

(Rn)). 
loc loc
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Then, if we take ū= φxj , where φ ∈ C∞c (Rn) and xj is the j -th coordinate function, we see that 

xj (X(0, t, ·)) ∈W
1,q̃

loc (Rn) for almost every t and for all q̃ < p. �

Before proving Theorem G, let us introduce some notation and recall some existence and 
uniqueness results as concern as the Cauchy problem (4) for the continuity equation. It is well-
known that the non trivial issue in the well-posedness turns out to be the uniqueness of weak 
solutions. Nonnegative measure-valued solutions of the continuity equation are uniquely deter-
mined by their initial condition if the characteristic ODE associated to the vector field b has a 
unique solution (see [5, Theorem 9]). A partial extension of this result to signed measures was 
given in [3], under a quantitative two-sided Osgood condition on b. For the proof of Theorem G
we will use the following more general result.

Theorem 7.4 ([14, Theorem 3]). Let b : (0, T ) ×Rn→Rn be such that the following two condi-
tions hold: There exists a continuous and nondecreasing function G : [0, ∞) →[0, ∞) satisfying ´∞
r

ds
G(s)

ds =∞ for some r > 0 such that

sup
x∈Rn

|b(t, x)|
G(|x|) ∈ L∞(0, T ), (99)

and there exists a continuous and nondecreasing function ω : [0, ∞) → [0, ∞) satisfying ´ r

0
ds

ω(s)
ds =∞ for some r > 0 such that

sup
x,y∈B(0,R), x �=y

|b(t, x)− b(t, y)|
ω(|x − y|) ∈ L∞(0, T ) , (100)

for any radius R > 0. Then for any ρ0 ∈ M(Rn) there exists a unique solution ρ in 
L1((0, T ); M(Rn)) for the Cauchy problem (4), that is,

T̂

0

ˆ

Rn

(∂tϕ(t, x)+ 〈b(t, x),Dxϕ(t, x)〉) dρt (x)dt = −
ˆ

Rn

ϕ(0, x) dρ0(x) (101)

for each ϕ ∈ C∞c ([0, T ) ×Rn), with ρt := ρ(t, ·). Moreover this solution representable as ρt =
X(t, 0, ·)#ρ0, where X(t, s, ·) denotes the flow of the vector field b.

Remark 7.5. As pointed out in [14, p. 49], by assuming ρ ∈ L∞((0, T ); M(Rn)), the uniqueness 
still holds if one replaces L∞(0, T ) by L1(0, T ) in both (99) and (100). �

We will also use the following abstract area-type formula, which can be proved in a standard 
way.

Lemma 7.6. Let � : Rn → Rn, μ :Mn → [0, ∞] and ρ̄ : Rn → [−∞, ∞] be a homeomor-
phism, a Radon measure on Rn and a function in L1(Rn, μ), respectively. Suppose that �#μ is 
absolutely continuous with respect to μ and denote

w := d�#μ ∈ L1
loc(R

n,μ) .

dμ
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Then

�#(ρ̄μ)= ρ̄(�−1)w μ .

In particular it also follows that

ρ̄(�−1)w ∈ L1(Rn,μ) .

Proof of Theorem G. (i) In view of the use of Remark 7.5, let us begin to show that (99) and 
(100) hold with L1((0, T )) in place of L∞((0, T )). It is immediate that, by choosing

G(s) := s log+ s if s ≥ 0 ,

(99) in the weaker form follows from (11). As for (100), observe that, from (59), it follows that

T̂

0

ˆ

B(0,R)

exp

( ‖Dxb‖
log+ ‖Dxb‖

)
dxdt <+∞ for each R > 0 . (102)

Let θ : [0, ∞) →[0, ∞) be the function defined as

θ(s) :=

⎧⎪⎪⎨
⎪⎪⎩

exp

(
s̄

log s̄

)
if 0≤ s ≤ s̄ ;

exp

(
s

log s

)
if s ≥ s̄ .

Then, by Proposition 4.6, θ satisfies the assumption of Theorem A, for s̄ large enough. In partic-
ular, we can deduce, as in the proof of Theorem A, the estimate

sup
x,y∈B(0,R), x �=y

|b(t, x)− b(t, y)|
ω(|x − y|) ≤ ϕ(t)

where ω and ϕ are the modulus of continuity defined in (46) and the function in (47), respectively. 
From (102), it follows that ϕ ∈ L1(0, T ). Thus (100) in the weaker form follows, too. Hence, the 
uniqueness of weak solutions for (4) in L∞((0, T ); M(Rn)) is granted by Theorem 7.4 and 
Remark 7.5.

The existence of weak solutions for (4) can be proved as in [3,14]. More precisely, if 
X : [0, T ] × [0, T ] × Rn → Rn denotes the flow associated to b and ρ is defined as in (21), 
then one can verbatim repeat the same proof, by showing that ρ is a weak solution of (4) in 
L∞((0, T ); M(Rn)), that is, (101) holds.

If now ρ̄ ∈ L1(Rn), we can apply the previous result with initial value measure ρ̄Ln and we 
get that the unique weak solution for (4) is given by

ρt = X(t,0, ·)#(ρ̄Ln) for each t ∈ [0, T ] .
From Theorem B, ρt = X(t, 0, ·)#Ln is absolutely continuous with respect to Ln. Therefore, by 
Lemma 7.6 with � = X(t, 0, ·) and μ = Ln, (22) follows.
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(ii) Observe that in this case the assumptions of Theorem B are still satisfied. Thus, by applying 
the previous claim (i), it follows that (22) holds. We have only to prove that

JX,t = JX(0,t,·) a.e. in Rn, for each t ∈ [0, T ] (103)

in order to conclude the proof. From Theorem E, the flow X(t, s, ·) ∈W
1,p

loc (Rn; Rn) with p > n, 
for each t, s ∈ [0, T ]. In particular, from Corollary 6.7, we get that

X(t,0, ·)#(Ln)= JX(0,t,·)Ln .

Thus (103) follows. �
8. Examples

Most of the examples we provide are in low dimension. However, notice that we can always 
extend the examples to higher dimensions as follows. If b(t, x) is a vector field on Rn and m > 0, 
then define the vector field h(t, (x, y)) := (b(t, x), 0) on Rn ×Rm. If X(t, s, x) is the flow of b, 
then Z(t, s, (x, y)) := (X(t, s, x), y) is the flow of h. Notice that Z(t, s) ∈W

1,p

loc (Rn × Rm) if 

and only if X(t, s) ∈W
1,p

loc (Rn).

8.1. Well-posedness does not imply absolute continuity of the flow

Here we show that there is a vector field b ∈ C0(R ×R) that is well-posed, but whose flow on 
R is not absolutely continuous. This shows that Theorems B and C are not a direct consequence 
only of the well-posedness.

A first example is given as follows. It is well-known that a quasisymmetric homeomorphism 
� :R →R need not be absolutely continuous (see, for instance, [24, p. 107]). Moreover, by [31, 
p. 250], for each quasisymmetric homeomorphism � :R →R there is a well-posed continuous 
vector field b : R2 → R such that, if X(t, x) denote the (unique) flow X(t, 0, x) associated to 
b, then, for some t > 0, X(t, ·) = �. We conclude that there exists a well-posed vector field b
whose flow is not absolutely continuous at some time.

We provide a second more explicit example from [30, Section 8]. (Be aware that what is 
denoted by t in [30] is actually the spatial variable.) In the plane R ×R with coordinates (t, x), 
consider the family of parabolas of the form x = a(s)t2 + s, where a : R → R is 0 for s ≤ 0, 
1 for s ≥ 1 and coincides with the Cantor Staircase Function on [0, 1]. These parabolas foliate 
the plane and are the integral curves of a vector field of the form (1, b(t, x)). One can show 
that b ∈ W

1,2
loc (R) ∩ C0(R) ∩ Liploc(R \ {0})) and that (1, b) is a well-posed non-autonomous 

vector field on R2.2 However, the flow X of b is not absolutely continuous. Indeed, for t �= 0, 
the function X(t, 0, ·) maps the Cantor set to a set of positive measure: with the notation of [30, 
page 141], if C ⊂R is the Cantor set, then L1(X(t, 0, C)) = L1(Ct ) = t2/2.

2 The uniqueness of integral curves is clear, because b is locally Lipschitz outside the axis R × {0} and its unique 
integral curves are then the parabolas x = a(s)t2 + s.
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8.2. Sub-exponential condition does not imply high Sobolev regularity

Here we show that there is a vector field b ∈ C0(R) that satisfies (12), but the flow of b is 
no better that W 1,1

loc (R). The same example allows us to show that the upper bound on β in 
Proposition 4.6 is necessary for the well-posedness.

Given α ≥ 1, let b :R →R be the autonomous vector field on R given by

b(x)=
{

0 if x ≤ 0 or x ≥ e−e,

βx log 1
x
(log log 1

x
− 1)α if 0 < x < e−e.

We clearly have that b ∈ C0(R) ∩ W
1,p

loc (R) for all p ∈ [1, ∞), and that spt(b) = [0, e−e]. 
Moreover,

Dxb(x)=
{

0 if x < 0 or x > e−e,

β log 1
x
(log log 1

x
)α(1+R(x)) if 0 < x < e−e,

where R is a remainder satisfying limx→0+ R(x) = 0. It is easy to see that

exp

(
|Dxb|(

log+ |Dxb|
)α
)
∈ L1

loc(R). (104)

Let us consider now the case α = 1. Then b satisfies (12) and thus, by Theorem C, b is well-
posed and the unique flow X of b satisfies X(t, s) ∈W

1,1
loc (R) for every t, s ∈R. In fact, one can 

explicitly compute X by separation of variables: for every t, s ∈R,

X(t, s, x)=

⎧⎪⎪⎨
⎪⎪⎩

x if x ≤ 0,

exp
(
−e
( 1

e
log 1

x

)k(t,s)
)

if 0 < x < e−e,

x if x ≥ e−e,

where k(t, s) = exp(s − t). The spatial derivative of X for 0 < x < e−e is

DxX(t, s, x)= exp

(
−e

(
1

e
log

1

x

)k(t,s)
)

k(t, s) exp (−k(t, s)+ 1)

(
log

1

x

)k(t,s)−1 1

x
.

If we now choose s = 0 and t > 0, then it is easy to see that, for every p > 1,

e−eˆ

0

|DxX(t,0, x)|pdx =+∞;

in particular, X(t, 0, ·) /∈W
1,p

loc (R) whenever p > 1. Notice also that X(t, 0, ·) /∈ C
0,γ

loc (Rx) for 
all γ ∈ (0, 1).
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In the other case, when α > 1, the vector field b still satisfies (104) and (8) with � of the form 
as in (10) (but with β > 1). However, b is not well-posed any more. For instance, it is easy to see 
that both functions γ1 ≡ 0 and

γ2(t)=

⎧⎪⎨
⎪⎩

0 if t ≤ 0,

exp

(
− exp

(
−
(

1+ 1

(α − 1)t

) 1
α−1
))

if t > 0,

satisfy γ ′ = b(γ ) and γ (0) = 0.

8.3. Exponential summability does not imply the divergence in BMO and it is only sufficient 
for the Sobolev regularity

Here we show that there is a vector field b satisfying the assumptions of Theorem E such that 
divxb /∈ BMO(R). On the other hand there exist � > 0 and an exponent p ∈ (1, ∞) such that, for 

each t, s ∈ [−�/2, �/2], X(t, s, ·) ∈W
1,p

loc (R), even though exp(β|Dxb|) /∈ L1
loc(R) if β := �p2

p−1 .
Let b :R →R be the autonomous vector field on R given by

b(x)=
{

0 if x ≤ 0 or x ≥ e,

x log
e

x
if 0 < x < e.

It is easy to see that b ∈ C0(R) ∩W
1,p

loc (R) for every p ∈ [1, ∞), and that spt(b) =R × [0, e]. 
Moreover,

Dxb(x)=
{

0 if x < 0 or x > e,

log 1
x

if 0 < x < e.

Let I := (−�/2, �/2) and � := (−1, 3). Observe that, in this case, condition (6) amounts to

β := �p2

p− 1
< 1. (105)

It is also easy to check (see [22, Example 7.1.4]) that

Dxb(·) /∈ BMO(R) .

Using (105) and Theorem E, one easily proves that b : I ×R →R is well-posed. In fact, we can 
integrate b by separation of variables and obtain

X(t, s, x)=

⎧⎪⎨
⎪⎩

x if x ≤ 0,

e
(

x
e

)k(t,s)
if 0 < x < e,

x if x ≥ e,

where k(t, s) = exp(s − t). Moreover
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DxX(t, s, x)=

⎧⎪⎨
⎪⎩

1 if x < 0,

k(t, s)
(

x
e

)k(t,s)−1 if 0 < x < e,

1 if x > e.

It follows that X(t, s, ·) ∈W
1,q

loc (R) if and only if

(exp(s − t)− 1)q >−1, i.e.,

{
q < 1

1−exp(s−t)
if s < t,

q ≥ 1 if s > t.
(106)

This example shows how the Sobolev regularity of X(t, 0, ·) can deteriorate with time. It also 
shows that condition (6) is only sufficient: indeed, if � ≥ 1/4 then (105) is not satisfied by any 
p, but X(t, s, ·) ∈W

1,p

loc (R), for each t, s ∈ [−�/2, �/2], if 1 < p < 1
1−exp(−�)

. Thus Theorem E

does not apply. Notice also that, by (106), if t > 0, X(t, 0, ·) /∈W
1,q

loc (R) for any q ≥ 1
1−exp(−t)

.
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