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ABSTRACT

Sequencing of cell-free DNA (cfDNA) in cancer pa-
tients’ plasma offers a minimally-invasive solution to
detect tumor cell genomic alterations to aid real-time
clinical decision-making. The reliability of copy num-
ber detection decreases at lower cfDNA tumor frac-
tions, limiting utility at earlier stages of the disease.
To test a novel strategy for detection of allelic im-
balance, we developed a prostate cancer bespoke
assay, PCF SELECT, that includes an innovative se-
quencing panel covering ∼25 000 high minor allele
frequency SNPs and tailored analytical solutions to
enable allele-informed evaluation. First, we assessed
it on plasma samples from 50 advanced prostate can-
cer patients. We then confirmed improved detection
of genomic alterations in samples with <10% tumor
fractions when compared against an independent as-
say. Finally, we applied PCF SELECT to serial plasma
samples intensively collected from three patients
previously characterized as harboring alterations in-

volving DNA repair genes and consequently offered
PARP inhibition. We identified more extensive pan-
genome allelic imbalance than previously recognized
in prostate cancer. We confirmed high sensitivity de-
tection of BRCA2 allelic imbalance with decreasing
tumor fractions resultant from treatment and iden-
tified complex ATM genomic states that may be in-
congruent with protein losses. Overall, we present
a framework for sensitive detection of allele-specific
copy number changes in cfDNA.

INTRODUCTION

Prostate cancer is a leading cause of cancer death among
men and in the past few years studies investigating the ge-
nomic landscape of metastatic prostate cancer have led to
the identification of targetable molecular alterations, emerg-
ing resistance mechanisms, and new therapeutic options.
Following the approval of poly (ADP-ribose) polymerase
inhibitors (PARPi) as a therapeutic option in metastatic
castration resistant prostate cancer (mCRPC) patients with

*To whom correspondence should be addressed. Tel: +39 0461 285305; Fax: +39 0461 283937; Email: f.demichelis@unitn.it
Correspondence may also be addressed to Gerhardt Attard. Email: g.attard@ucl.ac.uk
†PEACE consortium members listed in Supplementary Data.
‡The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Senior Authors.

C© The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/narcancer/article/4/2/zcac016/6594019 by guest on 02 April 2024

https://orcid.org/0000-0003-4855-8620
https://orcid.org/0000-0002-0328-8359
https://orcid.org/0000-0003-2777-8587
https://orcid.org/0000-0002-8266-8631


2 NAR Cancer, 2022, Vol. 4, No. 2

an alteration in BRCA and, in some situations, other DNA
repair genes, genomic biomarker-testing is now routinely
performed (1). As fresh biopsies are often impractical or
unsafe to obtain, assessment is usually determined using
archival tissue specimens. However, the sample taken at di-
agnosis and therefore prior to treatment may no longer rep-
resent the current state of advanced disease due to the ac-
quisition of new genomic alterations and/or the clonal ex-
pansion of previously undetectable alterations (2).

Recently, analysis of plasma for circulating tumor DNA
(ctDNA), popularly referred to as liquid biopsy, has proven
to be a valid alternative to using a tissue biopsy for molec-
ular subtypes characterization (3) with the added advan-
tage of enabling serial testing during the course of ther-
apy, through non-invasive blood draws. Liquid biopsies may
also help identify possible resistance mechanisms and detect
minimal residual disease (4,5). Furthermore, liquid biopsies
may provide a more comprehensive characterization of the
patient’s tumor that is neither temporally nor spatially re-
stricted as in the case of tissue biopsies with the added ad-
vantage of capturing tumor heterogeneity (6).

However, biological and technical issues can influence the
ability of ctDNA assays to accurately stratify patients, espe-
cially at low ctDNA fractions, especially relevant for tumor
types such as mCRPC with a high genomic tumor burden
in terms of copy number changes and/or aneuploidy. For
instance, low ctDNA fractions limit the accurate detection
of copy number changes, making it challenging to discrim-
inate between mono- and biallelic gene loss (7). Heterozy-
gous SNPs loci could be exploited to assess a differential
representation of the two alleles in a tumor cell, a feature
referred to as allelic imbalance, and can therefore play a
key role to distinguish mono- and biallelic gene losses (8–
10). Selecting for high minor allele frequency (MAF, i.e. the
frequency at which the second most common allele occurs
in a population) SNPs increases the probability that a SNP
will be heterozygous across diverse individuals. To this end,
we posited that a dedicated platform combining a custom
targeted sequencing panel and tailored computational ap-
proaches exploiting features of allelic imbalance that are
patient and gene-specific would increase the quality of sig-
nal from ctDNA and ultimately improve the implementa-
tion of liquid biopsies in clinical practice for patients with
mCRPC.

MATERIALS AND METHODS

Selection of target and control genes for inclusion in the panel

A consortium was supported by The Prostate Cancer Foun-
dation (PCF) to develop a prostate cancer specific plasma
assay, PCF SELECT (Specific Evaluation in Liquid biop-
sies of Established prostate Cancer Targets). Target genes
were selected for inclusion in the panel based on at least one
of the following criteria: (i) recurrent copy number changes
or point mutation in localized and/or advanced prostate
cancer (PCa) based on N = 278 tumors (11–13), (ii) po-
tential therapeutic relevance; overall leading to the selec-
tion of 70 autosomal genes and four gene on chromosome
X. Further, the genomic region on 21q between TMPRSS2
and ERG that undergoes interstitial deletion as mechanism
of gene rearrangement was also selected (Supplementary

Table S1). To optimize data quality, processing and down-
stream analysis, 39 control genes were also selected across
all chromosomes and having minimal aberration frequency
across the 278 PCa reference dataset. Specifically, for each
of the 39 chromosomal arms with available data, upon ex-
clusion of cytobands adjacent to telomeres or centromeres,
the top three genes ranked for minimal aberration frequency
(abs(log2(T/N)) < 0.5, not altered in >95% of tumors)
were considered and finally genes were selected based on
maximization of high MAF SNPs availability (see below).
In addition, UGT2B17 and ZBTB9 genes, located in com-
plex genomic regions and encompassed by high frequency
germline copy number losses were included as internal con-
trol genes (14). Throughout the manuscript we will refer to
gene-regions rather than to genes, due to the inclusion of
flanking regions on a gene basis for enrichment of informa-
tive SNPs.

Selection of informative SNPs per gene-region

To allow for tumor purity and ploidy estimations and to
improve somatic copy number computation (5,9,15), high
MAF SNPs for each target and control gene-region were
included in the panel. Intronic and intergenic SNPs from
dbSNP v144 with single reference/alternative bases and
MAF ≥20% were considered. For each gene, an iterative
selection strategy was implemented. Specifically, starting
from gene coordinates, the number of high MAF SNPs
in the selected genomic area is counted and, if lower than
a threshold N, the genomic area is iteratively extended
by 10Kbp at both ends to either converge at inclusion of N
SNPs or to a maximum extension of 200 kb per side. The
value of N was set to 400 for 64 target genes on autoso-
mal chromosomes, to 1000 for target genes of special inter-
est BRCA2, ATM, RB1, NKX3-1, TP53 and PTEN and for
the 21q area; to 300 for control/other genes. To optimize
the selection of SNPs presenting high MAF across differ-
ent ethnic groups, genotype data of ∼2,000 samples from
the 1,000 Genome Project data were considered. For each
SNP, the fraction of individuals with heterozygous geno-
type status (HetFrac) in all 1,000 Genome project dataset
and across four different major ethnic groups (Africans,
Europeans, South Asian and East Asian) was computed.
For each gene, a subset of M<N SNPs was selected; K<M
SNPs were selected among the ones with the highest Het-
Frac across the different ethnic groups, while M-K SNPs
were selected among the ones with the highest HetFrac in
the overall dataset. M and K were respectively equal to 200
and 100 for 64 target genes, to 500 and 200 for BRCA2,
ATM, RB1, NKX3-1, TP53 and PTEN and for the 21q area,
and to 150 and 100 for control/other genes. The numbers
of SNPs included by design per gene-region are reported
in Supplementary Table S1. SNPs compatible with the se-
lection criteria were not available for the IDH1 gene-region
that was included in the panel for SNV detection only. Over-
all, a total of 18 723 SNPs for target genes and of 8392
SNPs for control genes were selected. Note that the num-
ber of SNPs included in the panel also allows for ethnicity
inference and annotation (16) and for sample identity check
(17). The final panel covers a total of 116 gene-regions and
spans a total of 3.49 Mb (1.13 Mb on exonic/intronic re-
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gions of targeted genes and 2.36 Mb on flanking regions).
All coordinates in Supplementary Tables refer to the refer-
ence genome hg19.

Clinical cohorts

Patients in the study were enrolled at 3 institutions on IRB-
approved protocols. Patients were eligible for this study
if they had confirmed prostate adenocarcinoma receiving
treatment with androgen deprivation therapy and provided
informed consent to sample collection. Additional crite-
ria were required for specific experiments as detailed in
the manuscript text. Overall, the current study included 66
cfDNA samples from 44 patients at Weill Cornell Medi-
cal College (WCM, IRB: 1305013903), 16 cfDNA samples
from 7 patients at Vancouver Prostate Center (VPC, IRB:
H14-00738 and H18-00944), 45 cfDNA samples from 17
patients at University College of London (UCL; REC ap-
proval: 20/YH/088), including one patient from whom six
tumor samples were harvested post-humously in the Can-
cer Research UK PEACE study (Posthumous Evaluation of
Advanced Cancer Environment; NCT03004755). Plasma
from 4 healthy volunteers, with consent for genomic anal-
ysis, was sourced from Cambridge Bioscience. In total, 15
samples from four healthy volunteers were sequenced at
WCM, UCL, VPC and from three healthy volunteers at
Trento (Supplementary Table S2).

Blood collection, plasma separation and whole blood cells iso-
lation

Blood collection was performed with EDTA tubes, kept at
4◦C and processed within 2 h from collection. Plasma sep-
aration was performed with a double spin protocol––first,
the whole blood was centrifuged at 1600 rcf for 15 min at
4◦C, then the separated plasma was collected and cen-
trifuged again at 3000 rcf for 10 min at 4◦C. The plasma
was then divided into 1.8 ml aliquots and stored at −80◦C.
The buffy coat was collected after the first centrifuge and
divided into 250 �l aliquots and stored at −80◦C.

cfDNA and gDNA extraction

cfDNA was extracted starting from 1.8 ml plasma with QI-
AGEN QIAamp Circulating Nucleic Acid Kit according to
the manufacturer’s protocol and eluted in 30 �l Tris−HCl
10 mM pH 8. The obtained cfDNA was then quantified
using Qubit dsDNA High Sensitivity Assay and the qual-
ity was assessed with Agilent Bioanalyzer High Sensitivity
DNA Kit. gDNA was extracted from 200 �l buffy coat with
QIAGEN QIAamp DNA Mini Blood Kit and eluted in 200
�l Tris−HCl 10 mM pH 8. The extracted gDNA was quan-
tified using NanoDrop.

Libraries preparation

gDNA for library preparation was fragmented with Covaris
M220. Libraries for target sequencing were prepared start-
ing from 25 and 100 ng cfDNA and gDNA respectively
with KAPA HyperPrep Kit (Roche) following the SeqCap
EZ HyperCap v2.3 protocol with a few modifications. For

probes hybridization, up to 8 cfDNA/gDNA samples were
pooled together to obtain a combined mass of 2 �g and in-
cubated for capture at 47◦C for 72 h. The captured DNA
was then amplified for 13 cycles. Pre- and post-captured li-
braries were quantified using Qubit dsDNA High Sensitiv-
ity Assay and the quality was assessed with Agilent Bioan-
alyzer High Sensitivity DNA Kit.

ATM mutation detection and copy number estimation using
Droplet Digital PCR

Droplet Digital PCR was performed on a QX200 Au-
toDG droplet digital PCR system (Bio-Rad). Mutation
detection was performed for the ATM mutation c748t
(p.R250*) using a custom-made SNP genotyping as-
say (Assay ID ANAAPPE, FAM/VIC, Life Technolo-
gies). For copy number estimation the reference genes
NSUN3 (dHsaCP2506682, HEX, Bio-Rad) and AP3B1
(dHsaCP2500348, HEX, Bio-Rad) were used. Multiplex as-
says were set up using the mutation detection assay together
with either of the reference genes. PCR reactions were pre-
pared with 4 ng DNA in a total volume of 22 �l and par-
titioned into ∼20 000 droplets per sample using the Au-
tomated Droplet generator (Bio-Rad). The PCR reaction
was performed on a Mastercycler Nexus GSX1 (Eppen-
dorf) and read on a Bio-Rad QX100 droplet reader using
FAM/HEX settings and analysed with QuantaSoft v1.3.2.0
software (Bio-Rad).

Data generation and pre-processing

Study sample sequencing was performed at institutions fa-
cilities at WCM, VPC, UCL and University of Trento with
the following platforms Illumina HiSeq for WCM, VPC
and, Trento and NovaSeq for UCL, respectively. Detailed
information and sequencing statistics are reported in Sup-
plementary Table S2. Paired-end reads were trimmed to
remove adapters using trimmomatic (18) (version 0.32).
Alignment to the humanG1Kv37 reference genome was
performed using BWA-MEM (19) (version 0.7.17-r1188).
Duplicate reads were marked and removed with Picard
MarkDuplicates (20) (version 1.92). Realignment and recal-
ibration were performed using GATK (20) (version 3.8.0).
MD tags were calculated using samtools calmd (21) (ver-
sion 1.10) and overlapping read pairs clipped using bamUtil
(version 1.0.14). PaCBAM (version 1.5.0) was used to gen-
erate pileup files (22).

Reference Mapping Bias correction

To correct for the Reference Mapping Bias (23) (RMB)
and to ensure proper downstream analysis of allelic frac-
tion (AF) data of informative SNPs (iSNPs), a peak correc-
tion was applied separately to control and cfDNA samples.
Specifically, a Kernel Density Estimation (KDE, performed
on R using the function ‘density’ from ‘stats’ package with
bw = ‘SJ’) was applied on the informative SNPs AF dis-
tribution and peaks extracted by computing the local max-
ima of the smoothed distribution; the closest peak to RMB
(by default 0.47) is extracted and data centered to the 0.5
theoretical value. RMB correction is applied both for the
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generation of reference model and the computation of al-
lelic imbalance (Supplementary Figure S1). This correction
ensures a proper comparison of AF distributions from in-
dependent samples.

Read-depth estimation for wide and focal copy number aber-
rations

Gene-region based read-depth estimation for the detection of
copy number aberrations (CNA). Gene-region based read-
depth estimation is performed similarly to as previously de-
scribed (5). Briefly, mean amplicon depths of coverage are
normalized for both GC content (Supplementary Figure

S2) and sample mean coverage. Then, let
−−→
covT and

−−→
covC the

vectors of normalized amplicon depth of coverage spanning
a gene-region respectively in the tumor and matched con-
trol sample, the copy number (CN) state (in log2 scale) of
the gene region is computed as:

Log2 R = Log2

⎛
⎝median

⎛
⎝

−−→
covT

−−→
covC

⎞
⎠

⎞
⎠

To improve confidence in the assessment of copy-number
(CN) states, we adapted a previously developed procedure
used to assess AR CN state (15). In a nutshell, the procedure
measures the probability that an observed CN is compati-
ble with the presence of aberrations accounting for stochas-
tic noise in CN estimations. By computing control vs. con-
trol segmentation on WCM cohort, we observed that gene-
region are associated with specific noise (Supplementary
Figure S3A, B). Hence, we exploited the procedure to define
gene-region specific cutoffs (thrLog2 ) by integrating such in-
formation. For each gene-region, we defined thrLog2 as the
value such that:

P(cn is gain) ≥ 1 − � or P(cn is loss) ≥ 1 − �,

with � = 0.005 (by default)

The complete list of estimated thrLog2 for each gene-
region obtained at different levels of α (0.01, 0.05, 0.005,
0.0001 and 0.0005) is reported in Supplementary Table S3.

Detection of focal CNA. In order to detect CNAs that
span areas smaller than entire gene-regions, a simple it-
erative process was implemented. Given the set of gene-
regions G within the study panel (including control and tar-
get gene-regions, Gcontrol and Gtarget respectively), the set
of amplicons within each gene-region (am pg) is subdivided
into those spanning exonic/intronic regions (am pgcoding ) and
into those within the flanking regions (am pg f lanking ). For each
gene-region g in G, an iterative procedure is applied to com-
pute values of Log2Ri (Supplementary Figure S4). First,
Log2R1 is computed calculating the median of all am pgcoding ;
next, for each iteration i (for i = 1:(n − 1)), the Log2R1+i is
computed by including right and left side windows of size
wlen (10 kb, by default). The last iteration (n) corresponds
to the inclusion of the entire gene-region.

Gene-regions in Gcontrol are then used to compute per-
gene-regions differences between the Log2Rn and the re-
spective Log2R1 (gene only). The parameters of the ref-
erence normal distribution re f.distr with mean equal to

meancontrol and standard deviation (s.d.) equal to sdcontrol
are defined by taking the mean and the s.d. of the Log2R
differences, respectively. Last, for each target gene-region in
Gtarget, the di f ftarget = |Log2R1 − Log2Rn| is compared
k times (by default 10 000) against simulated distributions
(sim.distri , with i ∈ [1, k]), each built by sampling 10 000
times from re f.distr . The probability of focal lesion for
each target gene is computed as:

P ( f ocal) =
∑k

i=1 successi

k

With successi = 1 if di f ftarget > max(sim.distri ) or
di f ftarget < min(sim.distri ), 0 otherwise. To minimize
noise-induced false positives, we only consider a lesion to
be focal if P ( f ocal) = 1.

For each detected focal event, in order to define the exact
boundaries, we then proceed as follows: (i) identify the low-
est (for losses) and (ii) highest (for gains) Log2Ri within the
corresponding gene-region and expand boundaries if two
adjacent amplicons present monotonic values on both sides.

Reference model generation for allelic imbalance

For a set of N control samples (white blood cells, genomic
DNA from healthy cells), SNPs that are informative (i.e.
heterozygous call; 0.2 < AFSNP < 0.8) in at least two of
the N samples are selected (Supplementary Figure S5A).
Summary statistics for each informative SNP across con-
trol samples are computed. Namely, for the AF distribution,
mean, coefficient of variation, and proportion of samples
out of N harboring the heterozygous genotype (AF SNP,
AF.cvSNP and AF. f reqSNP, respectively); for the local cov-
erage distribution, mean (COVSNP). Further, AF standard
deviations stratified by local coverage quantiles Q (min 0%,
max 100%, step 10%, quantile interval q) are also computed
(σ q

AF ). To exclude noisy/low quality SNPs, the following fil-
ters are applied:

1. 0.35 < AF SNP < 0.65; 2. AF.cvSNP ≤ 0.1;

3. AF. f reqSNP < 0.8.

The collection of the summary statistics for each SNP
is referred to as reference model (Re fx; where x is one of
the statistics). Of note, the reference model needs only to
be computed once and can be applied cross-platform. The
use of control samples with intended sequencing coverage
compared to that of plasma samples is suggested.

Computation of Allelic Imbalance per gene-region

Allelic imbalance is computed independently for each gene-
region and cfDNA sample (Supplementary Figure S5B).
First, the set of informative SNPs spanning a gene-region
(SNPG R) is defined retaining only positions with 0.2 <
AF < 0.8 in the matched control and present in the refer-
ence model. For each SNP i ∈ SNPG R, observed local cov-
erages, corresponding local coverage quantile and mirrored
allele fractions in the cfDNA sample are defined as COVi ,
qi and AFi , respectively.
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The evidence of allelic imbalance for the gene-region is
computed as:

E(AI)T =
∑K

1 wi lcox
(

dT, Dβ

)

K
,

with β = 1 and K = 100 (by default)

where β is the proportion of neutral reads (24), dT is the
observed mirrored AF distribution in cfDNA sample, Dβ

is a simulated AF distribution generated sampling one time
for each i ∈ SNPG R from a Normal distribution with mean
Re fAFi

and standard deviation Re fσ qi
AF

and wi lcox is a func-
tion returning 1 if the difference between dT and Dβ apply-
ing a Wilcoxon signed-rank test with significance cutoff of
1% is statistically significant, 0 otherwise.

Finally, the beta estimate for the gene-region in cfDNA
sample (βT) is computed by comparing dT with simulated
distributions mimicking levels of local admixture searching
for the most similar one. Formally:

βT = min{β|W (
dT > Dβ

)} − (
min{β|W (

dT > Dβ

)}
−max{β|W (

dT < Dβ

)} ∗ P

with

P = median (dT) − min (dT)
max (dT) − min (dT)

and β ε [0, 1]

and where W(dT > Dβ) is the Wilcoxon signed-rank statis-
tic (significance cutoff of 1%) comparing dT and Dβ . Simi-
larly, evidence of allelic imbalance E(AI)G and beta (βG) for
each gene-region in the matched control sample are com-
puted by substituting dT with dG in the equations above
with dG defined as the observed mirrored AF distribution
in matched control sample.

The allelic imbalance estimated is then coupled with
the read-depth estimation to ultimately build the Log2R-β
space (Supplementary Figure S5C) of a cfDNA sample.

Tumor content and ploidy estimation

Tumor content (TC, also referred as ctDNA level) and
ploidy estimations for each sample are performed integrat-
ing the outputs of the ad hoc procedures presented above
within the CLONETv2 framework (24). In case of missing
estimation by CLONETv2, the following procedure is ap-
plied for the estimation of TC:

1. Log2R of each target gene-region is corrected for ploidy;
2. Target gene-regions with E(AI)T 
= 0 and ploidy-

corrected Log2R < −0.05 are retained (i.e. target genes
harboring putative hemizygous losses);

3. Tumor content is computed as: TC = 1 − βmean
T

2−βmean
T

, with
βmean

T equal to the mean beta value of the selected target
gene-regions.

All CLONETv2 ploidy estimates are verified through vi-
sual inspection using the Log2R-beta space (see Figure 1D).

Definition of gene-regions allele-specific copy numbers

In order to define the allele-specific CN status of each gene-
region, we apply the decision tree depicted in Supplemen-
tary Figure S6. Briefly, allele-specific CN is defined by inte-
grating read-depth estimations and allelic imbalance calls.
First, a check for the quality of the control samples is per-
formed. Then, the presence of allelic imbalance is assessed
and Log2R corrected for ploidy and TC/ctDNA level of
the sample (24). Note that ploidy/TC correction is only ap-
plied if uncorrected signal supports the presence of aber-
ration (i.e. uncorrected Log2 R ≥ thrLog2 ). Moreover, to be
conservative if estimated TC ≤ 15% and E(AI)T < 0.2 (i.e.
no allelic imbalance detected), the method reports only the
likely presence of aberration in a gene-region.

To obtain the copy number values of the two alleles, cnA
and cnB (by design cnA ≥ cnB) for each gene-region, the
following original equations are applied (24):

cnA = (2 − βT)
(
βT × 2Log2Rp − G

) + 2G (1 − βT)

(1 − G) βT

cnB = βT × 2Log2Rp − G
1 − G

where Log2Rp is the ploidy-corrected Log2R of the gene-
region and G is the admixture of the sample (i.e. 1 − TC).

Computation of allele-specific ploidy (asP)

In low TC samples, CLONETv2 ploidy estimate does not
recapitulate the actual amount of DNA per cell and, actual
polyploid samples may be classified as diploid. Therefore,
we adapted from a previous work an allele-specific informed
ploidy (asP) measure based on the allele-specific CN profile
of each sample (25), computed as the weighted mean of the
allele-specific CN of each gene-region gr ∈ GR in the panel,
that is:

asP =
∑

gr∈GR(cnA (gr) + cnB (gr)) × wsgr∑
gr∈GR wsgr

where GR is the set of gene-regions covered by the panel
and ws is the genomic size of the gene-region.

Detection of somatic and germline mutations

To detect somatic single nucleotide variants (SNVs) we ap-
plied ABEMUS (26), a recently developed method specif-
ically designed for SNVs detection in plasma samples. We
ran ABEMUS with parameters reported in Supplementary
Table S4. To decrease the impact of false positives, we also
applied the following filters: (i) local coverage in cfDNA
sample >50; (ii) AF in control sample ≤0.01; (iii) exclude
positions annotated as SNPs and with MAF >0.01 in db-
SNP v144. SNVs were further annotated with Oncotator
(27) (version 1.9.6.1) and only non-synonymous SNVs were
retained. Germline variants were identified in control sam-
ples by looking for positions with AF ≥0.15. Only positions
annotated as ‘pathogenic’ in ClinVar were retained (28).
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Figure 1. The PCF SELECT assay. (A) Schematic for selecting gene regions for inclusion in panel. (B) Summary of panel statistics. Genomic sizes and
number of high MAF SNPs are reported for target and control gene-regions. (C) Schematics summarizing the main components of the pipeline. Copy-
number assessment and gene-region allelic imbalance detection are independently performed; results are integrated and corrected by tumor ploidy and
tumor content to generate allele-specific copy number status for each gene-region. (D) Integration of read-depth estimation and allelic imbalance. Top:
distribution of Log2R colored by allele-specific copy-number. Bottom: Log2R-beta space obtained by integration of read-depth estimations and allelic
imbalance. Each point represents a gene-region. Clusters of points are annotated with their expected allele-specific copy numbers.

Allele-specific informed copy number calls without matched
control sample

PCF SELECT can also be engaged to detect allele-specific
CNAs in the absence of a patient’s matched control sample.
Specifically, the following components are needed: a panel
of normal (PON) to be used as read-depth estimation con-
trol, a pre-computed reference model for allelic imbalance
computation and a procedure to infer individual’s informa-
tive SNPs directly from the cfDNA sample. The PON can

be easily computed by pooling together a set of non-tumor
samples with comparable coverages and by computing the
mean coverage of each amplicon across the selected sam-
ples. iSNPs can be inferred directly from the cfDNA. In case
of high ctDNA levels or specifically in gene-regions harbor-
ing loss of heterozygosity (LOH) events, loser thresholds for
iSNPs selection (i.e. 0.05 < AF < 0.95) can be applied, while
preserving a good proportion of iSNPs calls (Supplemen-
tary Figure S7A, B).
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RESULTS

High density polymorphisms for sensitive detection of copy
number alterations

To enhance the quantification of tumor signal and to enable
accurate estimation of copy number changes of prostate
cancer relevant genes, we designed a custom targeted se-
quencing panel named PCF SELECT that aimed to lever-
age the patient’s genetic background across gene-regions of
interest for allelic imbalance estimations. We first used in-
formation from large scale prostate cancer genomic stud-
ies (11–13) to identify a set of target gene-regions that in-
cluded genes recurrently (defined as present in at least 5%
of tumors) aberrant in localized and/or advanced prostate
cancer whole-exome or whole-genome sequencing studies
and/or involved in frequently altered or targetable path-
ways. From the same data sets, we then identified a set of
control genes observed as minimally aberrant in prostate
cancer that would provide the backbone structure (e.g. wild-
type status) for data analysis, including for tumor ploidy
and purity estimations (24) (Figure 1A, see Methods).

Next, as allelic imbalance can only be measured through
inherited heterozygous loci (here referred to as informa-
tive SNPs (iSNPs)) (10,24,29), we used the 1,000 Genome
Project data. Specifically, to enrich the design for high minor
allele frequency (MAF) SNPs that we hypothesized would
maximize the detection sensitivity, we aimed to achieve a
minimum of 100 iSNPs per gene-region of interest (includ-
ing for example TP53, BRCA2, ATM, PTEN) for each pa-
tient. For each gene-region, we therefore populated the as-
say with high MAF SNPs across different ethnic groups in
both exonic and intronic areas and increased the number by
iteratively adding upstream and downstream regions, aim-
ing for a minimum of 400 high MAF SNPs (see Materi-
als and Methods). We then performed quality checks on
individual probes and excluded ones that were predicted
to have poor or non-specific binding. At completion, the
panel included a total of 116 gene-regions spanning 3.49
Mb (1.13 Mb on exonic/intronic regions and 2.36 Mb on
flanking regions) and covering 27 115 high MAF SNPs
(Figure 1B), providing a range of iSNPs per each gene-
region and individual (Supplementary Figure S8 and
S9).

Finally, to accurately assess copy number states of tar-
get genes and to increase the sensitivity in detecting im-
balances also in low and moderate ctDNA level samples
(<15%), we tailored an ad hoc method for allele-specific
copy number (asCN) assessment taking full advantage of
the panel design. The method integrates (i) a read-depth es-
timation approach modeling gene-specific sequencing cov-
erage noise and (ii) a gene-region based allelic imbalance
detection method leveraging iSNPs upon stringent quality
filters, followed by their integration and data correction for
tumor ploidy and tumor content (i.e. ctDNA level) (Fig-
ure 1C). Briefly, the allelic imbalance detection step embeds
the use of a pre-computed reference model that provides lo-
cal (mean AF per informative SNPs) and global (variation
on iSNPs AF by coverage quantiles) statistics of iSNPs and
is generated as a one-time procedure using a set of pooled
high coverage control samples (Supplementary Figure S5A,
see Materials and Methods); for each patient and per each

gene-region, the observed iSNPs AF distribution is com-
pared against simulated AF distributions to quantify the
allelic imbalance (Supplementary Figure S5C). Last, read
depth and allelic imbalance results are passed into a frame-
work for ploidy and purity estimation and adjusted values
are used to estimate asCNs as described previously (24,25)
Figure 1D, see Materials and Method).

Performance of customized prostate cancer assay

False positive rate (FPR). To assess the PCF SELECT
assay performance, we sequenced plasma samples (N =
66, median coverage 560×) and white blood cells (WBCs,
median coverage 779×) from 44 individuals with mCRPC
(‘WCM dataset’, including serial samples) as well as plasma
samples from three healthy male age-matched volunteers
(median coverage 650×). Intra-patient genomic heterogene-
ity and tumor evolution directly affect the signal observed
in circulation hindering tissue biopsies from being the op-
timal ground truth for performance assessment. We there-
fore opted for the use of WBC signal as gold standard proxy
for the assessment of FPR, as no copy number changes or
allelic imbalance events are expected (with minimal excep-
tions due to inherited structural changes); we defined each
allelic imbalance call in control samples as a false positive to
compute the assay FPR. When evaluated in the set of 44 in-
dividuals, the performance of the assay significantly differs
compared to a coverage-based only approach (McNemar’s
test, P < 2.2e−16) with FPR of 0.12% and 8.5%, respec-
tively. We next queried the impact of the reference model
cardinality (i.e. number of control samples used for refer-
ence model generation) on the FPR: we iteratively built a to-
tal of 80 reference models by randomly selecting WBC sam-
ples from 10, 20, 30 and 40 unique individuals in the WCM
dataset at each iteration (20 reference models per each car-
dinality). We observed an overall low number of false pos-
itives (FPR < 0.3%) independently of the reference model
cardinality, supporting the benefit of the gene-region based
approach and better performances at increasing cardinality
with no substantial changes when comparing models built
using 20, 30 or 40 control samples (Supplementary Figure
S10A). Last, we used healthy volunteer plasma data to as-
sess the feasibility of a cross-platform reference model (i.e.
combination of sequencing platform and sequencing site).
We applied reference models built with control samples se-
quenced at three institutions (‘WCM’, ‘UCL’ and ‘VPC’)
on 3 healthy volunteer samples sequenced independently
at four institutions (‘WCM’, ‘UCL’, ‘VPC’, Trento) and
we checked for consistency in gene-region specific informa-
tion. Inconsistencies were observed only for gene-regions
with fewer than 30 iSNPs available (Supplementary Figure
S10B).

Increasing number of iSNPs is associated with improved de-
tection of allelic imbalance. To measure the impact of the
high MAF SNPs-enriched design on allelic imbalance de-
tection, we applied the approach on the WCM dataset by
using for each target gene-region all the available iSNPs
per individual and by considering randomly selected subsets
(i.e. 20, 40, 60 and 80%). Results confirmed that a higher
number of iSNPs was associated with enhanced detection
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of imbalance events in tumor samples (Figure 2A). Of note,
when we applied our strict selection criteria (see Materials
and Method) on SNPs within exonic regions, only few po-
sitions (min. 0, max. 8) met the standards making it impos-
sible to call imbalance and suggesting that this approach
would not be feasible with whole-exome sequencing data
(Figure 2A). When we focused on a set of representative
gene-regions, including both gene-regions of special interest
(selected based on their prevalence and/or potential thera-
peutic relevance) such as PTEN and TP53, and other genes
(e.g. CDK6, CDKN1B and CUL1), this analysis corrobo-
rated the previous results highlighting the impact of the
number of iSNPs on allelic imbalance detection. In particu-
lar, detection performance decreased significantly by lower-
ing the number of SNPs (average 6% and 30% reductions
with 60% and 20% of initial SNPs, Figure 2B and Sup-
plementary Figure S11A; Wilcoxon signed-rank test, P =
3.3 × 10–5 and P = 5.4 × 10–8). Moreover, independently of
the estimated proportion of tumor reads, a higher number
of SNPs led to higher confidence in calling allelic imbalance
(Supplementary Figure S11B).

Allelic imbalance detection as a function of sequencing cover-
age. To evaluate how the sequencing coverage impacts on
allelic imbalance detection, we randomly selected five tumor
samples from the WCM dataset sequenced at a median cov-
erage of at least 500x for each of the following ctDNA level
intervals: (15,25], (25,50], (50,100] for a total of 15 samples.
Starting from the original bam files, we generated a total
of 90 bam files at the following coverages: 500, 250, 100, 50,
25, 10×. We evaluated performances in allelic imbalance de-
tection in terms of FPR and sensitivity using the original
bam files calls. We observed an increase in FPR starting at
25×, but no difference in sensitivity at decreasing sequenc-
ing read depth (Supplementary Figure S12).

Allelic imbalance detection as a function of tumor content
calculated using synthetic dilutions. To evaluate the per-
formances of the method for allelic imbalance detection in
the context of varying ctDNA fractions, we synthetically
admixed tumor reads from five cfDNA samples from the
WCM cohort with reads from the matched control sample.
We generated a total of 100 synthetically diluted samples
spanning ctDNA levels from 20% to 1%. We monitored the
ability of the method to consistently detect allelic imbalance
at diminishing ctDNA levels. Of note, the method was able
to detect a signal of imbalance at a ctDNA level as low as
5% with more than 50% of imbalance calls recovered at 15%
ctDNA level (Supplementary Figure S13). Of note, all the
imbalance calls were observed in gene-regions with imbal-
ance detected also in the undiluted sample. This result was
highly consistent with the low FPR observed in previous
analyses and reconfirmed the high specificity of the method
in detecting allelic imbalance.

We further characterized the ability of the method to de-
tect evidence of imbalance as a function of ctDNA level
by focusing on four highly recurrent aberrant gene-regions
known to be early (i.e. NKX3-1 on chromosome 8p and
chromosome 21q intronic space between TMPRSS2 and
ERG) and late events (i.e. TP53 on chromosome 17 and RB1
on chromosome 13q) in prostate cancer progression (Sup-

plementary Table S1) and previously detected in the circu-
lation of mCRPC patients. The detection of imbalance var-
ied across patients and across gene-regions (Supplementary
Figure S14). This detection variability was also observed
when we stratified allelic imbalance calls by allele-specific
CN states of the gene-regions. For instance, we obtained a
higher sensitivity for detection of copy neutral loss of het-
erozygosity (CNNL, i.e. copies of allele A and B equal to
2 and 0, respectively; down to 5% ctDNA level) when com-
pared with hemizygous deletions (i.e. copies of alleles A and
B equal to 1 and 0, respectively; down to 7% ctDNA level)
(Figure 2C). Together, these results support the presence of
a gene- and patient-specific signal affecting the ability of
the method to detect imbalance. In addition, the number
of available iSNPs together with lesion clonality (associated
with intra-patient heterogeneity), and sequencing coverage
depth are all factors that could affect the ability to detect
aberrations.

Comparison of serial samples using PCF SELECT and an
independent assay

To then assess the sensitivity of PCF SELECT in human
samples with a range of ctDNA fractions, we studied se-
rial samples (N = 9, median coverage 633×) from three pa-
tients starting first-line second-generation hormone treat-
ment (line 1) for mCRPC in a clinical trial (NCT02125357)
and selected based on high ctDNA fraction at the first time-
point, a reduction in fraction at the second timepoint due
to treatment response and a third timepoint characterized
by a rise following clinical progression. Analysis was first
performed using Log2R calls (primarily in exonic regions)
to estimate copy number change, originally reported in An-
nala et al. (30), and hereafter referred to as the standard
assay. We first compared the copy number calls from the
standard assay with the PCF SELECT assay and observed
overall concordant results (105/109 copy number aberra-
tions, 96.33%). However, notably, we also observed some
differences as a result of the PCF SELECT panel specific
design.

Patient #110. PCF SELECT but not the standard assay
detected hemizygous deletions of TP53 and CHD1 at the
earliest time point (Timepoint-1), both potentially clini-
cally relevant calls. Both calls were confirmed by both as-
says at Timepoint-3 when the estimated ctDNA level was
higher (51% versus 34%) (Figure 3A, B). PCF SELECT,
but not the standard assay, detected copy number changes
in NKX3.1, CDK12 and BRCA1 at Timepoints-1 and -3
but not at Timepoint 2 when ctDNA was not detectable.
The PCF SELECT BRCA2 call at Timepoint-2 did not find
support in other timepoints.

Patient #134. PCF SELECT detected copy number
changes in MYC, RB1, and PTEN at all three timepoints
(estimated ctDNA fractions: 28%, 7% and 17% for the
three respective time-points) whilst the standard assay
detected gain of MYC and loss of RB1 only at Timepoint-1
and loss of PTEN only at Timepoint-1 and -3 (Figure
3A). PCF SELECT also detected deletion and a non-
synonymous SNV (p.M237I, VAF = 0.13) at Timepoint-1
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Figure 2. Assessment of allelic imbalance (AI) calls using high density iSNPs achieves increased accuracy and sensitivity. (A) Percentage of AI calls as a
function of number of informative SNPs (iSNPs) available for that gene-region and sequential bars showing detection at decreasing percentage of iSNPs
(80%, 60%, 40%, 20%) and using only iSNPs spanning exonic region simulating whole-exome sequencing (WES) data (ranges of SNPs used are reported).
Values are shown for both control germline and cfDNA samples (green and red boxes at the bottom of each bar, respectively). Reported proportions are
relative to the number of AI calls obtained using all the iSNPs available for each gene in the PCF SELECT panel (i.e. 904). The number of AI calls is shown
on top of each bar. AI calls are stratified for the number of iSNPs used (bar colors). (B) Evidence of allelic imbalance (E(AIT), y-axis) for representative
gene-regions at varying percentages of iSNPs (WCM cohort, N = 66). Lines color shade indicates ctDNA level of the sample. Donuts show proportion of
evidence of imbalance per percentage of iSNPs used. Data for all gene-regions are shown in Supplementary Figure S10A. (C) Proportion of recovered AI
calls in synthetically diluted samples. Tumor fraction levels are reported on x-axis. Calls are stratified by allele-specific CN call as established in the real
cfDNA samples subjected to dilution.

and -3 of TP53, suggesting biallelic loss and consequent
complete loss of protein, whilst the standard assay detected
the SNV but did not detect the copy number loss (Sup-
plementary Figure S15). PCF SELECT also consistently
detected a PTEN homozygous deletion at all time points
whilst the standard assay detected a hemizygous deletion at
Timepoint-1 and -3 but not Timepoint-2. Close inspection
of the Log2R-beta space and of the distribution of iSNPs
allelic fractions supports deletion of both alleles: no signifi-
cant shift was observed in the distribution across neither of
the 3 timepoints when comparing cfDNA samples against
the matched control samples (Figure 3C).

Patient #55. Using PCF SELECT we detected a poly-
ploidy signal in each of the three timepoints (ploidy of
2.78, 2.19 and 2.51 for Timepoints-1, -2 and -3, respec-
tively) (Supplementary Figure S16A–C). Different attribu-
tions of ploidy resulted in discordance of multiple calls
with the standard assay, including hemizygous deletion in
MSH2, MSH6 and FOXP1 in the standard assay that were
not compatible with the PCF SELECT ploidy assumptions.
Detailed visual analysis of the three regions supported the
PCF SELECT copy number neutral call (Supplementary
Figure S16D).
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Figure 3. Comparative overview of somatic copy-number aberrations (SCNA) calls on three serial samples from two CRPC patients using two independent
assays (A). SCNA and SNVs calls detected by the two assays (Standard Log2ratio assay from Annala et al. upper row; PCF SELECT, lower row) are
reported for serial samples with varying ctDNA levels as determined by PCF SELECT. Gene-regions are grouped by pathways and sorted alphabetically.
(B). Log2R-beta spaces for patient #110. CHD1 and TP53 are highlighted in red and blue, respectively. Bottom panels show the mirrored allelic fraction
distribution of the informative SNPs (iSNPs) spanning CHD1 and TP53 for both cfDNA (red) and matched control (green) samples. (C) Log2R-beta
spaces for patient #134. PTEN and RB1 are highlighted in red and blue, respectively. Bottom panels show the mirrored allelic fraction distribution of the
iSNPs spanning PTEN and RB1 for both cfDNA (red) and matched control (green) samples.
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Detection in plasma DNA of allelic imbalance at mutated
DNA repair genes in serial samples with decreasing tumor
fraction

We then applied PCF SELECT to serially-collected sam-
ples (median coverage 960×) from three patients treated
with a PARPi (niraparib 300mg once daily) based on prior
detection of a qualifying alteration in BRCA2 (one patient)
or ATM (2 patients) in a previously reported Phase II clin-
ical trial (31). From the BRCA2-aberrant patient (TR029),
we profiled 8 samples collected over 250 days from prior to
treatment initiation to clinical progression (Figure 4A). In
4/8 (50%) sequenced samples with assessable ctDNA (levels
ranging from 7 to 56%), PCF SELECT identified the pres-
ence of allelic imbalance in the BRCA2 gene-region (Fig-
ure 4C). From these, in 3/4 samples with sufficient ctDNA
for allele-specific analysis PCF SELECT consistently iden-
tified a hemizygous deletion (cnA = 1, cnB = 0) of the
BRCA2 gene-region. The deletion was accompanied by a
pathogenic missense germline mutation (p.E2663V, VAF =
0.47 in the control sample; Figure 4B-D). Through CN-
based correction of VAF, we determined deletion of the
BRCA2 non-mutated allele in the tumor (CN-corrected
VAF = 1; Figure 4D) with predicted loss of function. Clin-
ically, the patient experienced a PSA decline of 20% along
with ctDNA. Treatment was interrupted after 90 days due
to toxicity and the next plasma sample collected after 14
days showed a rebound in ctDNA levels from undetectable
to 20% and a rise in serum PSA. ctDNA levels decreased
to undetectable after treatment re-initiation. The patient
progressed clinically at a central nervous system metas-
tasis after 250 days treatment whilst remaining stable on
whole-body CT and bone scans and ctDNA remained un-
detectable. Our in vivo serial dilution following response to
niraparib confirmed detection of allelic imbalance involv-
ing BRCA2 at tumor fractions as low as 7%. As ctDNA
decreased further, we were unable to consistently confirm
allelic imbalance at this locus.

From the first ATM-aberrant patient (TR067), we pro-
filed 9 plasma samples collected prior to start of and af-
ter progression with docetaxel chemotherapy (six 3-weekly
cycles), repeatedly whilst receiving his next line of treat-
ment with niraparib and then before and after his next
(and last) line of treatment, with dexamethasone (0.5 mg
daily). At death, fresh frozen tissue samples from the
prostate and metastatic sites were harvested in the PEACE
posthumous study. We subjected nine plasma and six tis-
sue samples to high-coverage targeted capture using the
PCF SELECT assay (Figure 5A). Allele-specific analysis
revealed the presence of three ATM copies (two copies of
one allele and one of the other) within aneuploid genomes
(min. asPloidy = 3.17, max. asPloidy = 4.09) accompa-
nied by a non-sense mutation harbored in the non-gained
allele (CN-corrected VAF ≈ 33%) (Figure 5B–D). These
results were consistently confirmed across all assessable
plasma samples (ctDNA level ≥ 15%) and metastatic tis-
sue samples. Of note, the complex ATM CN status was not
confirmed in the prostate sample, that showed wild-type,
non-mutant ATM without allelic imbalance and a diploid
genome (asP = 2.2, Figure 5B–D). In contrast, we observed
the same allelic imbalance breakpoints between ERG and

TMPRSS2, known to be an early event in prostate cancer
(32,33), in both the prostate and metastases. These data sug-
gest that the clone dominant in metastases at death, char-
acterized by a tetraploid genome and an ATM mutation
on the non-gained allele, evolved from the prostate tumor
biopsied posthumously that remained in situ but with no
evidence of distant spread to plasma or sampled metas-
tases (Supplementary Figure S17).

From the second ATM-aberrant patient (TR081), we pro-
filed nine samples collected before and during three sequen-
tial lines of treatments, including PARP inhibition with ni-
raparib (Figure 5E). Allele-specific analysis on each sample
similarly as for TR067 revealed complex ATM status. The
gene region consistently presents three copies (two copies of
one allele and one of the other), within aneuploid genomes
(min. asPloidy = 2.51, max. asPloidy = 3.80; Supplemen-
tary Table S5) and a non-sense mutation (p.R250*) har-
bored on the non-gained allele: the CN-corrected VAF was
consistently ≈ 33% and the mutant allele frequency tracked
changes in ctDNA level (Figure 5F-G). Despite no decrease
in serum PSA, we observed a transient decrease in ctDNA
fraction and ATM mutant VAF after starting niraparib.
We developed bespoke multiplex droplet digital PCR as-
says and confirmed in TR081 plasma samples the decrease
in ATM mutant VAF following treatment initiation (Figure
5H, Supplementary Figure S18A–D). We also confirmed
that at high ctDNA fractions, the sum of ATM wild-type
and mutant copies was equivalent to reference gene copies,
supporting the prediction of ATM copy number made by
the PCF SELECT assay. We also consistently identified
CNNL (2 copies of one allele and 0 of the other) spanning
TP53 and accompanied by a clonal missense mutation on
both allele copies (CN-corrected VAF = 100%), suggest-
ing full-impairment of TP53 (Figure 5F–G). Clinically, nei-
ther ATM-altered patient showed evidence of benefit from
PARPi, with no decline in PSA and the absence of a radio-
logical response. Although the complex ATM copy number
state does not necessarily explain the absence of tumor re-
sponse, it is likely to be incongruent with loss of ATM pro-
tein.

DISCUSSION

By accounting for estimated tumor content and ploidy, well-
established and intertwined confounding factors for the ac-
curate detection of the CN state of a gene (8,9,24), and fur-
ther integrating CN with deleterious SNVs detected, the
combination of the PCF SELECT sequencing panel and
computational method showed enhanced ability to detect
allelic imbalance events, a crucial step to enable accurate es-
timation of asCNAs. This provides a framework to discrim-
inate between complex asCNAs in samples with low ctDNA
level, for example homozygous deletions (no imbalance)
and hemizygous deletion (in which imbalance is present).
Compared to other methods designed to infer CNs, such as
PureCN (34) and CNVkit (35), our approach combines a
specifically designed targeted assay to exploit the high num-
ber of SNPs and tailored computations that exploit the in-
formative SNPs. Using synthetic simulations, serial samples
from responding patients (in vivo dilutions) and compar-
isons with previously reported assays (30), we verified an
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Figure 4. In vivo serial sampling in a BRCA2-mutant CRPC patient (TR029) treated with niraparib confirms enhanced sensitivity of detection of BRCA2
allelic imbalance using PCF SELECT. (A) Changes in serum prostate specific antigen (PSA) and ctDNA levels over 250-day period of niraparib treatment
for mCRPC. – dotted line refers to treatment interruption for toxicity. (B) BRCA2 copy number (CN) status. The allele-specific CN space of plasma samples
with estimated ctDNA level > 15% is shown; BRCA2 gene-region corresponding status is highlighted. (C) Mirrored allelic fractions (AF) distribution of
informative SNPs (iSNPs) within the BRCA2 gene-region. Dashed lines represent the mirrored AF median. Left panel corresponds to germline signal
derived from peripheral blood mononuclear cells (green); subsequent panels show signal in sequential plasma samples and are ordered by time from first
to last. (D) Variant allele frequency (VAF) of BRCA2 p.E2663V germline mutation from plasma samples. Dotted green line represents the VAF observed
in the matched control sample. *Indicates manually imputed CN-corrected VAF.

increased ability to detect lesions at low ctDNA level and
with complex copy number states. We observed more exten-
sive pan-genome allelic imbalance than previously recog-
nized in prostate cancer, in keeping with a recent pan-cancer
study of >4000 tissue samples (25). Previous work suggests
that LOH involving certain tumor suppressor genes is more
likely to result in reduced mRNA expression (25). The func-
tional impact of LOH observed at specific genes in ctDNA
requires more investigation but could prove relevant for im-
proved patient selection for targeted treatments.

The strategy was designed to include multiple genes of
relevance to precision medicine for prostate cancer. By fo-

cusing only on prostate cancer relevant target genes and
with the aim to enrich the assay for high MAF SNPs, we did
not include telomeric regions, albeit they could be of inter-
est in prostate cancer (36). Thus, our assay is not suited for
the investigation of telomeres length. Of note, low complex-
ity regions were excluded at the time of design by the man-
ufacturers’ (Roche) stringency filters. Also noteworthy, we
accounted for racial disparities by optimizing the SNPs se-
lection for the four major ethnicities. By testing serial sam-
ples from a BRCA2 mutant mCRPC patient, we performed
an in vivo serial dilution experiment and established lower
thresholds for detection of allelic imbalance in BRCA2. The
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Figure 5. PCF SELECT design identifies allelic imbalance secondary to gain of ATM wild-type allele in ATM-mutant CRPC patients. (A, E) Changes in
serum prostate specific antigen (PSA) and ctDNA levels over a 550-day period of treatment with docetaxel followed by niraparib (TR067 and TR081) and
radium223 (TR081); black diamond indicates time of death. The inset in A shows the summary of the tissue samples collected after death and profiled
with PCF SELECT from TR067 who participated in the PEACE trial. (B) ATM copy number (CN) status in patient TR067. The allele-specific CN space
of plasma and tissue samples is shown; ATM gene-region corresponding status is highlighted; for plasma samples average CN and standard deviations are
reported. (C) Mirrored allelic fractions (AF) distribution of patient’s ATM gene-region informative SNPs (iSNPs). Dashed lines represent the mirrored
AF median. Allele-specific ploidy and ctDNA level/TC of each sample are reported on top of the plot. TC: tumor content. (D) CN-corrected variant
allele frequency (VAF) of ATM p.R2763* mutation. (F) ATM and TP53 copy number (CN) status in patient TR081. The allele-specific CN space of
plasma samples is shown; ATM and TP53 gene-regions corresponding statuses are highlighted; average CN and standard deviations are reported. (G) CN-
corrected variant allele frequency (VAF) of ATM p.R2763* and TP53 p.R175G mutations. (H) Observed events in TR081 plasma samples using bespoke
droplet digital PCR multiplex assays with probes for ATM p.R250* mutation and wild type and two control genes (AP3B1, top panel or NSUN3, bottom
panel).
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enhanced sensitivity could expand the utility and accuracy
of liquid biopsy for patient selection for PARPi treatment.
The efficacy of PARPi in ATM mutant CRPC is uncer-
tain with limited responses reported (1,37). Most clinical
trials in prostate cancer have selected patients based on the
presence of a pathogenic mutation in ATM with or with-
out CN change. Complex CN changes with intra-patient
inter-tumor differences in ATM status, such as in the two
patients presented in our study, may have led to patient
accrual in the absence of gene loss. Future studies could
evaluate how common this genomic feature is in mCRPC
populations and its impact on ATM protein and PARPi re-
sponse. Moreover, since our method relies on the theoreti-
cal framework proposed by CLONETv2 (24), our approach
is suited for the detection of subclonal events that could
potentially be of interest to better understand patient’s
response to targeted treatment such as PARPi. AKT in-
hibitors are being developed for mCRPC (38) and similarly
our approach could be implemented for improved selection
of patients harbouring genomic loss of PTEN detected in
plasma. This could have several advantages over archived
tissue analysis. Similarly, assessment of RB1 and TP53 CN
status could be implemented for detection of aggressive
variants of prostate cancer that require bespoke treatment
changes (39). As allelic imbalance estimates utilize infor-
mation from large numbers of iSNPs, they are not sub-
ject to bias caused by single base position changes in WBC
clones (clonal haematopoiesis of indeterminate potential,
CHIP).

Despite the specificity achieved in detecting genomic
aberrations, insufficient ctDNA may be observed in patients
responding to systemic therapy or those with low burden of
disease. Given the low false positive rate observed on serial
plasma samples, a tumor-informed approach could be ap-
plied to mitigate the problem by lowering the threshold on
the E(AI)T; this is evident for instance for the confirmation
of aberrations observed at prior time-points as in the case
of BRCA2 (third sample from patient TR029). Moreover,
to either reduce the running cost of patient management or
to comply with guideline indications, PCF SELECT could
in principle be run without a matched control sample upon
previous generation of a panel of normal to be used as con-
trol for read-depth estimation and by determining the in-
formative SNPs directly on the cfDNA sample. However,
since no matched control is available, the integration of CN
and SNVs could be potentially confounded by CHIP mu-
tations leading to misinterpretations of the genomic status
of a gene. The exclusion of genomic positions known to be
recurrently affected by CHIP mutations could represent a
way to partially overcome this problem.

Enhanced sensitivity with our approach for detecting al-
lelic imbalance events is not specific to prostate cancer or
males. Gene regions that are relevant to other cancer types
such as genes involved in DNA repair for breast cancer
could be incorporated in other cancer specific or pan-cancer
panels for testing of liquid biopsies or other material such
as tissue or urine. In summary, our work provides a compre-
hensive assay for prostate cancer patient management suit-
able for diverse purposes from stratification to monitoring
and prognostication. Currently, our approach is specifically
designed for prostate cancer, but it could be generalized to

other cancer types with appropriate tailoring of target se-
lection.
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