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Abstract—Relation Based Access Control (RelBAC) is an access
control model that places permissions as first class concepts.
Under this model, we discuss in this paper how to formalize
typical access control policies with Description Logics. Important
security properties, i.e., Separation of Duties (SoD) and Chinese
Wall are studied and formally represented in Rel/BAC. To meet
the needs of automated tools for administrators, we show that
RelBAC can formalize and answer queries about access control
requests and administrative checks resorting to the reasoning
services of the underlying Description Logic.
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I. INTRODUCTION

A key aspect of any information system is access con-
trol. Access control allows organizations to discipline which
resources can be used, by whom and how they must be
used. Traditionally, the error-free specification of rules and
conditions that regulate accesses to resources, referred with the
term access control policies, has been difficult. Furthermore,
the increasing complexity of modern information systems
combined with some new paradigms like SOA stressing on
aspects such as re-usability and sharing, exacerbates the task
of writing access control policies. Since context, domain and
entities of the system keep changing and evolving so do
the policies. In particular, the problem of supporting security
administrators in their task is of paramount importance. While
the organizational textbooks describe very clean organizational
models with well defined responsibilities, the real world is
quite different. Many organizations find it difficult, if not
impossible, to identify a single point of coordination for policy
changes and control of their consistency. Furthermore, for non-
trivial information systems with thousands of policies, policy
management requires automated tools to lower the incidence
of human errors.

To address such new challenges, security researchers have
recently proposed new approaches [1], [2] with the aim of
offering richer expressivity in terms of supported policies and
at the same time easing the management of such policies with
the help of automated tools. One such approach is RelBAC [3].
By modeling permissions as binary relations between (set

of) subjects and (set of) objects, RelBAC allows to express
a richer set of policies compared to existing models (e.g.
cardinality is a basic feature of the model). An aspect that
however has not yet been fully investigated is the ability of
RelBAC to offer a set of powerful services (e.g., Separation
of Duty) to help administrators in doing their job. This paper
fills this gap by describing RelBAC’s reasoning abilities due
to its formalization in description logic (DL).

In general the use of well established reasoners has two
important advantages. First, it eases the policy management
so that while the policies change, inconsistencies are not
introduced or general properties are not violated. Such a
reasoning service is typically used for checking the correctness
of the policies during the system design phase and thus it
runs off line. Second and more importantly, it allows to rig-
orously verify dynamic conditions at run-time (e.g., dynamic
separation of duties or Chinese Wall constraints). The paper
defines the reasoning services available in Re/BAC and the
different types of policy management problems for which they
can be used. It also provides a complexity classification for
such services to evaluate how feasible is their practical use.

The contributions of this paper are thus as follows: 7) it
completes the characterization of policies and properties that
can be expressed using RelBAC; ii) it specifies the class of
queries supported by a Re/BAC system and its reasoning ability
in term of access control policy management; i) it provides
an analysis on the complexity of such reasoning services.

The rest of the paper is organized as follows. Section II
specifies the RelBAC model while Section III introduces the
Description Logic ALCQZBO. Section IV presents in detail
the formalization of policies, properties and queries using
the DL ALCQZBO. Section V summarizes the complexity
results for the corresponding expressiveness of the adopted
representation language. We discuss the related works in
Section VII and conclude in Section VIII with final remarks.

II. THE RelBAC APPROACH TO ACCESS CONTROL

Relation-based Access Control (RelBAC) is an access con-
trol model introduced in [3]. As shown in the ER Diagram of



Figure 1, what distinguishes Re/BAC from other access control
models is the way it models permissions. A PERMISSION is
modeled as an operation that users (SUBJECTSs) can perform
on certain resources (OBJECTs). To capture this intuition, a
PERMISSION is named with the name of the operation it
refers to, e.g., Write, and Read operationl. The generalization

SUBJECT —
h

Fig. 1. The ER Diagram of the Re/BAC Model.

(loops) on each component represents IS-A relations. Not
only SUBJECT and OBJECT are organized along IS-A
hierarchies but also PERMISSION. Thus, by imposing the
constraint that ‘Update is more powerful than Read’ RelBAC
allows those people with the permission Update to have the
permission Read, too.

A. Why RelBAC?

Role Based Access Control (RBAC) has been the dominant
access control model [4] in many applications. It has been
standardized and integrated into major software products. On
the other hand, it has been frequently criticized [5] in terms
of expressivity and support of core security principles.

RelBAC addresses the above limitations by allowing to
express access control policies and the related properties (e.g.,
separation of duty) in a simple way. It uses its underlying logic
to reason about such properties. In particular

e RelBAC supports strong cardinality features. Quantifiers
have been very successfully used in databases, but in
access control often policies are implicitly universally
quantified. By using quantifiers we can express an access
control rule which states that students should be able to
use at least one PC. In principle, the rule allows any
student to use all PCs. However, what really matters
here is that she has access to at least one. The above
policy could be made stronger. For example, by using
cardinalities we can state, e.g., that a student can have
access to exactly one PC. On the other hand, by using
the universal quantifier, we can state, e.g., that a student
can only use PCs forbidding the use of other means (e.g.,
they cannot use personal assistants). A similar behavior
can be obtained in the existing models, e.g., RBAC, by
checking these constraints at run-time.

« Using cardinalities, important properties such as Separa-
tion of Duty (SoD, as defined by Li et al. [6]) can be
easily expressed with access control rules. In RelBAC,
these properties sit on top of the model rather than being
part of the model as in RBAC. Any change in the rule
or the high level policy that enforce the property can be
addressed without modifying the core model. As a result,
we can reason on them (as shown in Section IV-C) in
isolation.

'In RelBAC we adopt the convention that PERMISSTION names are
capitalized verbal forms.

« RelBAC splits subjects from objects by defining permis-
sions as relations between them. The role of users and
objects is completely symmetric and one can seamlessly
define user-centric (e.g., all senior managers can write the
file F) or object-centric policies (e.g., the file F can be
read only by senior managers).

While these are main benefits of Re/lBAC, further motiva-

tions are provided in Section VI

III. THE DESCRIPTION LoGIic ALCQZBO

The logic ALCOTIBO extends the description logic
ALC [7] with qualified cardinalities, inverse roles, nominals
and Boolean for roles (see [8], [9], [10] for extensions of
DLs with Booleans between roles). We define the syntax of
ALCQOTBO as follows.

Definition 1 (ALCQZBO Syntax): Let Nc, Ng and N; be
pairwise disjoint and countably infinite sets of concept names,
role names and individual names. Then concept expressions
and role expressions are defined as follows:

C,D == A | -C | CnD | >nRC | {a;}
R,S == P | R~ | R | RNS

where A € N¢, P € Ng, a; € Ny and n € N.

A Knowledge Base (KB) is a pair K = (7, .A) where 7, called
TBox, is a finite set of general concept inclusions (GCls) of the
form C' C D and a finite set of general role inclusions (GRIs)
of the form R C S, while A, called ABox, is a finite set of
concept and role assertions of the form C(a;) and R(a;, a;),
with a;,a; € N.

An ALCQIBO-interpretation, T, is a pair (A, 1) where A
is a non-empty set called the domain of Z and -Z is a function
mapping each A € N¢ to a subset AZ C A and each P € Ng
to a relation PZ C A x A. Furthermore, -Z applies also to
individuals by mapping each individual name a; € N, into an
element aiI € A such that aiI #* aJI- ,forall i # 7, i.e., we adopt
the so called unique name assumption (UNA). We extend the
mapping -~ to complex roles and concepts as follows:

(R :={(y,z) € Ax A (2,y) € R},
(-R)*:=Ax A\ R, (-C)* := A\CF,

(RN S)T:=R*ns*, (cnD)* .= ¢c*fnD?,
>nROY:={zecA|t{yc Al (z,y) € RT and
y € CT}y >n},

{ai} = {ai}.

An ALCQIBO-interpretation T = (A,-T) is said to be a
model of a KB, K, iff it satisfies CT C DT, forall CC D €
K,RT C 8%, forall RC S € K, af € C7, forall C(a;) € A,
and (af ,af) € R%, for all R(a;,a;) € A. In this case we say
that K is satisfiable and write Z = KC. A concept C' (role R)
is satisfiable w.r.t. IC if there exists a model Z of K such that
CT £0 (RT #£0).

Concerning the complexity of ALCQTZBO, KB satisfia-
bility can be reduced to reason over the two-variable first-
order fragment with counting quantifiers which is NExpTime-
complete [11]. On the other hand, Boolean modal logic is



a proper sub-language of ALCQOZBO and it is NExpTime-
complete [10]. Summing up, reasoning in ALCQZBO is
NExpTime-complete.

IV. THE RelBAC LOGIC

In RelBAC we distinguish 5 different kinds of specifications
that, altogether, constitute an access control system: the hier-
archy information, the general assignment, the ground level
assignment, the properties of a hierarchy and the queries.
RelBAC uses the description logic ALCQZBO to express each
specification by associating a concept name to each SUBJECT
and OBJECT while permissions are described by means of role
names.

1) Hierarchy: In the access control domain, SUBJECT,
OBJECT and PERMISSION are organized in a taxon-
omy along the IS-A relation [12]. An IS-A relation
is represented as a concept or role inclusion axiom in
RelBAC:

CCD or PCQ

where C, D are either SUBJECTs or OBJECTSs and P, )
are both PERMISSTIONS.

2) General Assignments: They specify the permissions
existing between a SUBJECT and an OBJECT expressing
different forms of constraints that we will describe in
Section IV-A. Policies can also be specified from the
OBJECT perspective by using the inverse role construct.

3) Ground Assignments: Access policies can also be ex-
pressed at the instance level as we will describe in
Section IV-B. At this level, constraints on access control
are expressed at the level of single domain instances.

4) Properties: They specify general constraints and condi-
tions over a given hierarchy. Some of the most recurrent
and useful properties are:

a) Separation of Duties: They regulate the mutual ex-
clusiveness of permissions. Section I'V-C investigates
different cases of this property.

b) Chinese Wall: The Chinese Wall property regulates
conflict of interest when accessing different objects.
This is discussed in Section IV-D.

5) Query: Queries related to subjects, permissions and ob-
jects are distinguished as access control queries and ad-
ministrative queries that we will describe in Section IV-E.
RelBAC uses the reasoning facilities of the underling DL
formalization to answer queries.

In the next sections we will investigate in more details
the different kinds of specifications that can be expressed in
RelBAC. In particular, we will present how Re/BAC formally
expresses the general assignments, the ground assignments
and the properties. Finally, we briefly discuss how RelBAC
can enforce the policies at run-time. Together hierarchies,
properties, ground and general assignments form what are
called access control policies, the set of rules that regulate
the access control in an information system.

A. General Assignments

In RelBAC, a generic permission P (e.g., Write) is modeled
as a binary relation between a class of subjects U (e.g., SW-
Developer) and a class of objects O (e.g., Java-Code). The
following general constraints can be captured in Rel/BAC using
the DL ALCQZBO.

1) ‘The permission P applies only between users U and
objects O’.
This is a form of domain and range constraint for the
binary relation P and can be modeled in ALCQTBO
with the following axioms:
JP.T CU
P~ T CO
2) ‘Users in U can access only the objects in O with P’
‘Objects in O can be accessed only from users in U with
P.
We can represent these constraints using universal restric-

Domain Restriction
Range Restriction

tions as:
U CVPO Universal Restriction
O CVP .U Universal Restriction

3) ‘Users in U are allowed to access (with P) at most n
objects in O’
‘At most n users in U are allowed to access any given
object in O with P’.
We can represent these constraints using cardinality con-
straints as:
U C(<nPO)
O C(«nPU)
4) ‘Users in U have access to at least m objects in O with
P
‘At least m users in U have access to any object in O
with P’.
We can represent these constraints using cardinality con-
straints as:
U C(=mPO)
O C(zmP-.U)

Cardinality Restriction
Cardinality Restriction

Cardinality Restriction
Cardinality Restriction

5) ‘All users in U have access to all objects in O with P’
‘All objects in O are accessed by all users in U with P’.
This rule defines a so called Total Access Control rule
(TAC) and can be captured using the negation of roles
constructor in cardinality restriction:

U CV-P-0 TAC Rule
O CV-P -U TAC Rule

B. Ground Assignments

Using the ABox mechanism of ALCQTZBO we can assert
particular facts associated to given individuals of the domain.
The following is a list of the most common assignments con-
cerning single individuals that can be captured in ALC QZBO
(in the following w and o are individuals in N;, P is a role in
Ng, U and O are concepts in Nc¢).

1) ‘The user u is allowed to access the object o with P’.
This is represented as: P(u, o).
For example, Update(david, mb903ll/a) says
‘David is allowed to update the entry MBOO3LL/A’.

that



2) ‘The user u is allowed to access maximum n objects in
O with P’.
This is represented as: (< n P.O)(u).
For example, (< 5 Update.Digital)(David) says that
‘David is allowed to update maximum 5 entries of Digi-
tal’.

3) ‘The user u is allowed to access minimum n objects in
O with P’.
This is represented as: (= n P.O)(u).
For example, (> 5 Update.Digital)(David) says that
‘David is allowed to update minimum 5 entries of Digi-
tal’.

4) ‘Minimum n users in U are allowed to access the object
o with P’.
This is represented as: (= nP~.U)(0).
For example, (> 3 Update™.Apple)(mb903il/a) says
that ‘At least 3 friends from Apple are allowed to update
the entry MBO03LL/A’.

5) ‘The user u is allowed to access all objects in O with
P.
This is represented as: (V—=P.—O)(u).
For example, (V-Update.—Digital)(David) says that
‘David is allowed to update all entries in Digital’.

6) ‘All users in U are allowed to access the object o with
P.
This is represented as: U C 3P.{o}.
For example, Apple C FUpdate.{mb903ll/a} says that
‘All friends from Apple are allowed to update the entry
MBO03LL/A’.

Besides the traditional access control rules which can
specify only ‘one-to-one’ and ‘one-to-many’ mappings about
individuals, we see that the ABox of ALCQZBO provides
many ways to write a ground access control rule in Re/BAC.
Altogether, RelBAC can specify diverse access control rules
with a single DL axiom. These rules show, both the power of
RelBAC as an access control model and the expressiveness of
the logic to be able to capture this scenario. The cardinality
restriction rules are important especially in those scenarios
where a specific number limit is a key factor for access control.

C. Property 1: Separation of Duties

Separation of Duties (SoD) is an important security property
for modern access control systems. It enforces, independently
of the underlying access control model, a mutual exclusiveness
constraint on either subjects or permissions. In this section,
we will formalize different types of SoDs used in the security
literature.

Definition 2 (Separation of Duties SoD):

SoD1. Mutually Exclusive Positions’> (MEP): A ‘position’
is an organizational role denoting a group of subjects
such as employees, managers, CEOs, etc. Given a set of
positions P = {Py,..., P,}, where each P; is a concept
name:

2We do not use the term ‘Role’ to avoid confusion with the notion of a DL
role.

1) To enforce that a subject can be assigned to at most
one position among the MEP, we write:
PNP,C L, fori=1,...,n—=1, j>i
2) To enforce that a subject can not be assigned to all
the positions among the MEP, we write:

=1

3) To enforce that a subject can not be assigned more
than m positions among the MEP (m < n), we

write:
C:Ln+1 m+1
|_| ( |—| P)c L
i=1 j=1

where C*1 is the binomial coefficient of ‘n choose
m+ 1.

SoD2. Mutually Exclusive Operations (MEO): An ‘operation’
is a kind of permission that subjects may be allowed to
perform some ‘act’ on objects, such as Read, Download,
etc. Given a set of operations giving rise to a MEO,
OP = Opy,...,0p, (Where each Op; is a DL role
name), then, we distinguish two different kinds of MEO:

1) To enforce that a subject cannot perform two oper-
ations in the MEQO, we write:

A0p;. TNA0p;. T C L, fori=1,...,n=1, j>i

2) To enforce that a subject cannot perform two oper-
ations in the MEO on the same object, we write:

Op;,MNOp; C L, fori=1,....n—1, j>1i

Note that, in this case, we can further distinguish the
three sub-cases as for the MEP case using similar
axioms.
SoD3. Functional Access (FA).
If each user in U, has an FA, P, to an object in O, then:

ULC(<1PO)

SoD4. Inverse Functional Access (IFA).
If each object in O, has an IFA, P~, from an user in U,
then:
OC (1P .U)

We now discuss the above defined SoDs. Considering the
mutually exclusive positions (MEP), a position is defined
together with some permissions that the subjects belonging
to the position may perform, e.g.:

Customer T 3Sign.Check
Clerk C dCashout.Check
Manager & M onitor.Check
To enforce that the three positions are mutually exclusive (as

in SoD1.1) we write Customer M Clerk T 1, Customer M
Manager © 1 and Manager M Clerk T 1, meaning that



every subject in the domain can be assigned at most one of the
three positions. For the SoD1.2 case, by writing Customer N
Clerk M Manager = 1, we enforce that subjects can not be
assigned to all positions. Finally, according to the SoD1.3 case,
by writing (CustomerMClerk)U (Customer Manager) LU
(Manager M Clerk) C L, we enforce that subjects can not
be assigned to more than 2 positions (in this example, such
constraint is equivalent to the SoD1.] constraint).

Defining a set of operations as mutually exclusive (MEO),
as in the Sod2.1, forbids a given user to use any combination
of them. For example, if we want to enforce that a user
cannot read and update at the same time, then, OP =
{Read, Update}, and thus, JRead. T MIUpdate. T C L. We
can restrict this constraint to be applied only to users belonging
to a certain class. For example, let us assume that Secretary,
Manager, Administrator are classes of users that can either
Read or Update while the MEO rule applies only on users
which are either secretaries or managers (and not on admin-
istrators), then, we change the MEO rule as: (Secretary U
Manager) M (3Read. T M AUpdate. T) C L. In contrast, the
MEO as in SoD2.2 forbids a given user to use all the MEO
operations on the same object. For example, suppose in a sce-
nario of Sales Force Automation® (SFA), we want to enforce
the MEO rule that initiate, process, check and archive a given
purchase order should not be completed by only one user.
Assuming that OP = {Initiate, Process, Check, Archive},
then, the policy Initiate N Process M Check M Archive C L
restricts any pair (u,0) from belonging to all four operations
Initiate, Process, Check and Archive.

The last two SoDs are special cases of cardinality restric-
tions as described in Section IV-A. An example of a functional
access is the case where employees have the right to access
a single printer, expressed by the following FA, Employee C
(<1 Access.Printer). On the other hand, an example of an
inverse functional access is the case of a version file that can
be updated-by a single user, expressed by the following IFA
rule: Version-File C (< 1 Update™.User), thus a version
file is a classical example of a mutually exclusive accessible
resource.

Remark 1: The SoD1.3 (and the similar one in the MEO
case) can require a more refined form as mentioned in [6]. Let
n the cardinality of the MEP (MEO) set, then we may require
at least k (k < n) users to be involved. Suppose now that we
further specify that any of the k£ users can fulfill at-most m
positions (operations). If everyone can fulfill an equal number
of positions (operations), then the number m in SoD1.3 must
satisfy the following inequation: (k — 1) x m < n, ie., m <
[n/(k — 1)] — 1. This means intuitively that any m + 1 of
these positions (operations) should not be assigned to one user.
Then, the SoD1.3 (and the corresponding one for SoD2) can
be refined as:

It/ =T [ /(k—1)]

L] ¢ [] Pyct (1)
j=1

=1

3http://www.salesforce.com

In the MEO example above, given the 4 duties in the SFA
scenario, an MEO SoD requiring that at least 3 users should
4
4

be involved (i.e. on/k=D1 _ ol4/21 C% = 6) can be enforced
as follows:

(Initiate N Process) U (Check M Initiate)U

(Process M Archive) U (Process M Check)U

(Archive M Initiate) U (Check N Archive) C L

High Level Security Policies on SoDs: Some application
domains may require further constraints on SoDs, e.g., to
constrain that users participating in a sensitive task are from
certain classes and that precise cardinality constraints are
necessary for the task to be accomplished.

Li and Wang [1] studied the requirements for specific
attributes of the users in addition to cardinality constraints of
each kind of users. An algebra, Separation of Duty Algebra
(SoDA), has been proposed to specify complex SoD policies
based on these extra constraints, called high-level security
policies. In addition to SoD?2.2, the following further high-
level policies can be enforced with Re/BAC:

1) At least one customer has to initiate orders and at least

one sales manager has to check orders.

2) At least one sales manager and at least one customer
and maybe some other sales manager or customer are
involved, but no others than those two kinds of users.

3) Exactly two users, one sales manager and one customer,
are involved in the operations.

RelBAC can achieve these kind of constraints with object-
centric rules with the cardinality restriction constructor. For
example, the three constraints expressed above for the SFA
domain can be formalized as follows, respectively:

1. Order T (=1 Initiate” .Customer) I

(=1 Check™ .Manager),

2. Order T VInvolve.(Customer U Manager) M
(= 1 Initiate™ .Customer) 1
(> 1 Check™ .Manager),

3. Order C (=2 Involve.T) N

V Involve.(Customer U Manager) 1
(=1 Initiate” .Customer)
(=1 Check™ .Manager)

where Involve is an operation that is more general than any
of the 4 operations composing the SFA task, i.e., Initiate™ U
Process™ U Check™ U Archive~ T Inwolve.

D. Property 2: Chinese Wall

The Chinese Wall property refers to policies that deal with
Conflict of Interest (Col). An example of Col in the financial
world is that of a market analyst working for a financial insti-
tution providing corporate business services. A market analyst
must keep the certain financial information confidential: she
cannot advise a corporation if she has knowledge of plans, sta-
tus and standing of a competitor corporation. The motivation
is to avoid sensitive information to be disclosed to competitor



companies through the work of financial consultants. Thus,
suppose that there are three companies competing with each
other. A consultant may offer advice to any company before
she commits with a specific customer. But once a choice is
made, she cannot offer advice to the other two competitors.

RelBAC can enforce this property as follows, given a set
of resources forming a Col, R = {A;,...,A,}, accessible
via the permissions P, ..., P, then:

AP, A;N3AP, A; T L fork=1,...,m, i=1,...,n—1, j>1.

E. Queries as Reasoning Services

Access control policies constitute the body of knowledge
against which queries need to be answered. The queries
mainly fall into two categories: access control requests and
administrative checks. We will show how the DL formalization
is able to capture common queries in the access control domain
resorting to the well known DL reasoning services.

1) Access Control Request: These requests take the form
of queries such as ‘whether someone is allowed to access
something with some permission’ during the system operation.
Queries are expressed as logical implications starting from a
set, 3, of RelBAC specifications. For example, the following
queries

1) ‘Is a SUBJECT u allowed to access an OBJECT o with
PERMISSION P?’,

2) ‘Is a SUBJECT u allowed to access more than n
OBJECTs in O with PERMISSION P?’,

3) ‘Is a SUBJECT u allowed to access all the OBJECTSs in
O with PERMISSION P?’,

correspond to the, so called, instance checking reasoning
service:

S P(u,0), Sk (>n+1PO0)u), ¥k (V-P=0)(u).

2) Administrative Check.: From the administration point of
view, some queries are so called intensional, i.e., whether a
particular access control policy holds. This kind of queries
check whether an axiom expressing a particular policy is
logically implied by the current set 3 of specifications. For
example, the following queries

1) ‘List the SUBJECTs allowed to access a given OBJECT
o with PERMISSION P’

2) ‘List the OBJECTs that a SUBJECT u is allowed to
access with PERMISSION P’

3) ‘Before adding a policy Pol check if it is already implied
by the current policy.

4) “Check if the addition of a policy Pol is contradictory
w.r.t. the current policy.’

5) ‘Does the addition of a policy Pol violate some security
properties Pro?’

correspond to the following well known DL reasoning ser-
vices:

1&2. Instance Retrieval: Retrieve all the individuals u and

o st. ¥ E (BP{o})(u) and ¥ E (IP~{u})(0),

respectively.

b

Logical Implication: ¥ |= Pol.

Satisfiability Check: ¥ U {Pol} = L.

5. If XU{Pol} |= L, then, VPro € ¥ check whether
Y\{Pro} U {Pol} }~ L.

&

V. EXPRESSIVITY OF RelBAC VS. COMPLEXITY

In this section we investigate the trade-off between ex-
pressive power and computational complexity. In particular,
we will describe the complexity boundaries of the reasoning
services in RelBAC depending on the kinds of constraints
that we want to impose on the domain of application. In
the following, the constraints are grouped according to their
complexity class with the assumption that the grouping with
higher complexity contains all the constraints from the lower
complexity groups.

NP-Complete. The description logic DL-Lite),,, [13], [14] al-
lows to express axioms (C7 C C3) where concept expressions
have the following syntax:

C,D == A | -C | CnD | >nR

where the concept expression > n R is the so called unre-
stricted cardinality restriction and it is equivalent to > n R.T4,
while roles can also be inverse. Furthermore, we can express
disjointness between two role names (i.e., 1 1 Ry T L).

Since DL-Liteﬁgfol cannot express hierarchical constraints
between roles, then we can just express hierarchical con-
straints only at the level of SUBJECT and OBJECT but not at
the level of PERMISSION. Concerning general assignments,
we can capture both Domain and Range Restrictions
(3P C U and 3P~ C O, respectively). We can express
a weaker form of minimum and maximum Cardinality
Restrictions. For example, assuming that, by a range
restriction, we define the range of a permission P to be the
objects in C'p then with the axiom U C< n P we say that
‘users in U are allowed to access (with P) at most n objects in
Cp’ but we cannot express in DL—Litejb\gol different cardinality
constraints for different subclasses of Cp.

As for SoDs, we can fully capture MEP and MEO (even
though, in the latter case, we can represent just simple mutual
disjointness between two ‘operations’ for the SoDZ2.2 case).
Concerning functionality SoDs, as for the case of cardinality
restrictions, we can represent the weaker unrestricted case
(e.g., the FA case reduces to axioms of the form U C< 1 P).

ExpTime-Complete. The description logic ALCQOT is the
sub-language of ALCQZBO without nominals (i.e., the con-
cept expression {a;}) and where roles are just atomic or
inverse roles. Using ALCQZ we regain hierarchies over
permissions, full cardinality restrictions and Universal
Restrictions. As for SoDs, we can now fully capture
both FA and IFA. Furthermore, the Chinese Wall can now
be represented using ALCQZ.

NExpTime-Complete. To fully capture all the constraints in
RelBAC we need the full power of the description logics

4We will denote with IR the concept expression > 1 R



ALCQOTIBO. In particular, w.rt. ALCQZ, we add the pos-
sibility to capture the TAC rule and what we called High
Level Security Policies, in particular, the ones concerning the
complex axioms over DL roles (i.e., the more involved cases in
the SoD2.2 case). Furthermore, the availability of ‘nominals’
allow us to fully capture ground assignments and to pose
queries involving named individuals.

VI. DISCUSSION

The strength of RelBAC lies in the rich support of security
property specification. Recently, [6] showed that RBAC’s core
mechanism, statically mutually exclusive role (SMER)’, in
supporting SoD is insufficient. They showed that the enforce-
ment of SoD is intractable (coNP-complete) while RBAC’s
SoD approach (i.e., SMER constraints) can be enforced in
PTime. Li et al. modeled the problem of an SoD policy that
consists of n duties among k users with a first order logic
formula as

k—1
Yui..up—1 € U((U auth_permsy[u;]) 2 {pi..pn}) ()

=1

with universal quantifier on arbitrary & — 1 users in the space
of overall users U. Formula (2) specifies that the collection of
all the permissions explicitly/implicitly assigned to this k — 1
users should not be a superset of all the n steps of duties. Their
approach has the complexity of (|[U|*~! x n) which explodes
to the cardinality of the subject space. In Re/lBAC, as shown in
Formula 1, our solution enforces a sufficient but not necessary
condition of the SoD because the ‘ceiling’ operator ([ - 1)
is an approximation of the exact value for n/(k — 1). For
example, in the schema above, the representation is the same
for £k = 3 and k = 4. However the computational complexity
is only (n™/*). Considering that the number of steps which is
n, is far less than the number of users in the system (|U|), our
method is more efficient than [6].

In a further paper, the authors proposed SoDA for the
specification of SoD constraints in which each term (e.g.,
Manager) refers to a user set (e.g., {Alice, Bob}) from UA
relations of RBAC (U, UR). A high level policy putting SoD
constraints on a payment transaction with two operations
(Create, Sign) can be specified as follows: (Employee U
Manager) ® Manager. This policy enforces that the two
steps on both sides of the operator ® must be completed by
different users. However, SoDA provides only a user-based
SoD and it does not allow the specification of properties based
on actions or objects. On the other hand, Re/BAC allows to
specify SoDs based on different perspectives. As an example,
a RelBAC expression on the disjointness of actions can be
specified as follows:

Transaction C

ACreate™ .(Employee LI Manager)rl
3Sign~—.Manager
Createn Sign C L

SThere is also a dynamic version, dynamically mutually exclusive roles
(DMER), but it does not enforce SoD[6].

VII. RELATED WORKS

Description Logics [7] arouse the interests in the Al commu-
nity for their expressiveness and decidability of the reasoning
services. Various papers describe the use of DL to formalize
access control models and use state of the art DL reasoners to
formalize security properties and check their consistency (see,
e.g., [15], [16], [3], [17], [18], [19]).

Giunchiglia et al. introduced in [3] the RelBAC model
together with a domain specific Description Logic as the
underlying formalism. RelBAC captures, with inclusion ax-
ioms, the dynamic hierarchies of the subjects, objects and per-
missions and provides, with cardinality restrictions, powerful
cardinality related specifications of access control rules. The
theory of Lightweight Ontology [12] can be used to model
the social community into ontologies as discussed in [17] and
can facilitate the management of knowledge hierarchies and
access control rules.

In [19] an early attempt was made by Zhao et al. to
apply DLs to the representation of policies in the RBAC
model. In their proposal, users, roles, sessions and permissions
are formalized as DL concepts but objects are regarded as
encapsulated inside permissions together with operations. This
results in an explosion in the number of permissions and
the corresponding difficulty to specify policies about objects.
Moreover, they proposed to use only the existential restriction
constructor for permission assignments.

Another formalization of RBAC in DLs was proposed by
Chae and Shiri [15] where an operation is represented by a DL
role. Their system has several drawbacks, and in particular:

e Misuse of existential quantifier. In the semantics of
their formalization, the assignment with the formula
‘Admin € 3ACanRead.Log’ assigns to all administrators
the read access to all log files. But the DL semantics
of this formula enforces only the existence of some
connections between administrators and log files. In our
case, the TAC rules are introduced to cover precisely this
case (see Sect. IV-A).

o The formalization of ‘assign’ and ‘classify’ into DL roles
seems redundant. These DL roles are supposed to connect
users to RBAC roles or object to object classes. We
explicitly use an ABox mechanism to better deal with
individuals.

However, their work is relevant for our approach since:

o They inspired us in the way they formalized operation,
i.e., by introducing a binary relation from a subject to an
object.

o They extended RBAC with the object hierarchy similar
to the user hierarchy which facilitates the permission
propagation.

Recently, Finin et al. proposed to use OWLS language as
the underlying formalization of the RBAC model in [16]. They
provide two ways to formalize an RBAC role, either as a
class or as an attribute. N3Logic is used together with DL

Shttp://www.w3.org/TR/owl-guide/



subsumption reasoning. Authorization decision queries can be
answered using DL reasoners in their system.

An existing industry standard is XACML [20] which is an
XML based access control policy language without a formal
semantics (such as the logic-based formalization proposed
here). Kolovski et al. used DLs to provide formal semantics
for XACML in [21]. RelBAC, in contrast, is not only a new
access control model, but it comes with a well defined syntax
and semantics to express access control policies together with
the additional facility to use logic-based reasoning services to
help management and concrete use of such policies.

VIII. CONCLUSIONS

In this paper, we showed the formal perspective of a novel
access control model, RelBAC. A domain specific Description
Logic, i.e., ALCQZBO, has been proposed to formalize ac-
cess control policies about knowledge hierarchies, permission
assignments, security properties and queries. While reasoning
in ALCQTBO is NExpTime-complete we provided useful
scenarios where sub-languages of the full ALCQZBO can
be used giving rise to lower complexity results.

We studied the different semantics of an important se-
curity property, i.e., SoDs and provided a formalization for
different aspects of SoDs. The Chinese Wall property, already
introduced in the original RelBAC proposal, has also been
formalized here using ALCQZBO. Last but not least, from
the administration point of view, we showed how to formalize
access control requests and administrative checks resorting to
the well known reasoning services of ALCOZBO.

As a further work we intend to use off-the-shelf DL rea-
soners to reason over RelBAC specification. The preliminary
results of our experiments using general purpose DL reasoners
such as Pellet and FaCT++ showed that Re/BAC has a reason-
able performance. The next steps of this experimental work
aim to investigate the efficiency issues along two directions.
On the one hand,we should consider complete algorithms
for interesting subsets of RelBAC with nicer computational
complexities along the lines presented in Section V. On
the other hand, we are interested in investigating incomplete
algorithms that nicely approximate the complete reasoning but
with a lower complexity.
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