

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

WEB EXPLANATIONS FOR SEMANTIC HETEROGENEITY
DISCOVERY

Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva
and Deborah L. McGuinness

February 2004

Technical Report # DIT-04-012

Also: In Proceedings of European Semantic Web Conference (ESWC),
LNCS 3532, pp. 303–317, 2005.

.

Web Explanations for

Semantic Heterogeneity Discovery

Pavel Shvaiko1, Fausto Giunchiglia1, Paulo Pinheiro da Silva2, and Deborah L.
McGuinness2

1 University of Trento, Povo, Trento, Italy
{pavel|fausto}@dit.unitn.it

2 Stanford University, Stanford, USA
{dlm|pp}@ksl.stanford.edu

Abstract. Managing semantic heterogeneity is a complex task. One so-
lution involves matching like terms to each other. We view Match as an
operator that takes two graph-like structures (e.g., concept hierarchies
or ontologies) and returns a mapping between the nodes of the graphs
that correspond semantically to each other. While some state of the art
matching systems may produce effective mappings, these mappings may
not be intuitively obvious to human users. In order for users to trust
the mappings, and thus, use them, they need information about them
(e.g., they need access to the sources that were used to determine se-
mantic correspondences between terms). In this paper we describe how a
matching system can explain its answers using the Inference Web (IW)
infrastructure thus making the matching process transparent. The pro-
posed solution is based on the assumption that mappings are computed
by logical reasoning. There, S-Match, a semantic matching system, pro-
duces proofs and explanations for mappings it has discovered.

1 Introduction

The progress of information and communication technologies, and in particular
of the Web, has made available a huge amount of disparate information. The
number of different information resources is growing significantly, and therefore,
the problem of managing semantic heterogeneity is increasing, see, for instance,
[34]. Many solutions to this problem include identifying terms in one information
source that match terms in another information source. The applications can
be viewed to refer to graph-like structures containing terms and their inter-
relationships. These might be database schemas, concept hierarchies, ontologies.

We view Match as one of the key operators for enabling semantic applica-
tions since it takes two graph-like structures and produces a mapping between
the nodes of the graphs that correspond semantically to each other. Matching,
however, requires explanations because mappings between terms are not always
intuitively obvious to human users. In fact, if Semantic Web users are going to
trust the fact that two terms may have the same meaning, then they need to un-
derstand the reasons leading a matching system to produce such a result. Expla-
nations are also useful, when matching applications with hundreds or thousands

of nodes, since in these cases automatic matching solutions will find a num-
ber of plausible mappings, thus some human effort (e.g., database/knowledge
base administrators who need to perform some rationalization of the mapping
suggestions) is inevitable.

We focus on semantic matching as proposed in [11], and implemented within
the S-Match [12] system. This matching solution is based on the assumption that
mappings are computed by logical reasoning. We have extended S-Match to use
the Inference Web infrastructure [22] and its Proof Markup Language (PML)[5].
Thus, with the help of IW tools and exploiting PML properties, meaningful
fragments of the S-Match proofs can be loaded on demand. Users can browse
an entire proof or they can restrict their view and refer only to specific, relevant
parts of proofs. They can ask for provenance information related to proof ele-
ments (e.g., the origin of the terms in the proofs, the authors of the ontologies).
Therefore, they can make informed decisions about the mappings.

The rest of this paper proceeds as follows. In Section 2, via an example,
we discuss semantic matching approach as implemented within the S-Match
system. In Section 3 we describe the Inference Web infrastructure. Using the
example introduced in Section 2, in Section 4, we present how the Inference
Web explanations increase user understanding of the S-Match answers. Section
5 presents an experimental study that addresses the scaling of the explanation
techniques. Section 6 discusses the related work and Section 7 summarizes the
contributions of the paper.

2 Semantic Matching

The semantic matching approach is based on two ideas. The first idea is that we
calculate mappings between schema/ontology elements by computing semantic
relations (e.g., equivalence, more general), instead of computing coefficient rating
match quality in the [0,1] range, as is the case in other approaches, see, for
example, [9, 17, 19]. The second idea is that we determine semantic relations by
analyzing the meaning (concepts, not labels) which is codified in the elements
and the structures of schemas/ontologies. In particular, labels at nodes, written
in natural language, are translated into propositional formulas which explicitly
codify the label’s intended meaning. This allows us to translate the matching
problem into a propositional unsatisfiability problem.

We call the concept of a label the propositional formula which stands for
the set of documents that one would classify under a label it encodes. We call
the concept at a node the propositional formula which represents the set of
documents which one would classify under a node, given that it has a certain
label and that it is in a certain position in a tree.

Possible semantic relations that S-Match can discover between the concepts
of nodes of the two schemas/ontologies are: equivalence (=); more general (�);
less general (�); disjointness (⊥). When none of the relations holds, the special
idk (I dont know) relation is returned. The relations are ordered according to
decreasing binding strength, i.e., from the strongest (=) to the weakest (idk),

Images

2 3

4 5

Europe Computers and
Internet

ItalyGreece

1

2 3

4

Europe

Pictures Cyberspace and
Virtual Reality

Italy

A1 A2
1

Fig. 1. Simple catalog matching problem

with more general and less general relations having equal binding power. The
semantics of the above relations are the obvious set-theoretic semantics.

A mapping element is a 4-tuple 〈IDij , n1i, n2j, R〉, i=1,...,N1; j=1,...,N2;
where IDij is a unique identifier of the given mapping element; n1i is the i-th
node of the first graph, N1 is the number of nodes in the first graph; n2j is
the j-th node of the second graph, N2 is the number of nodes in the second
graph; and R specifies a semantic relation which may hold between the concepts
of nodes n1i and n2j. Semantic matching can then be defined as the following
problem: given two graphs G1, G2 compute the N1 × N2 mapping elements
〈IDij , n1i, n2j, R′〉, with n1i ∈ G1, i=1,...,N1, n2j ∈ G2, j=1,...,N2 and R′

the strongest semantic relation holding between the concepts of nodes n1i, n2j.
The strongest semantic relation always exists since, when holding together, more
general and less general are equivalent to equivalence. S-Match is schema-based,
and therefore, it considers only intentional information, not instance data. In
the current version it is limited to the tree-like structures, e.g., taxonomies, or
simple XML schemas with attributes.

We concentrate on class matching and motivate the problem by the simple
catalog matching example shown in Figure 1. Suppose an agent wants to ex-
change/search for documents with another agent. The documents of both agents
are stored in catalogs according to class hierarchies A1 and A2 respectively. S-
Match takes as input these hierarchies and computes as output a set of mapping
elements in four macro steps. The first two steps represent the pre-processing
phase, while the third and the fourth steps correspond to element level and
structure level matching respectively.

Step 1. For all labels L in the two trees, compute concepts of labels.
We think of labels at nodes as concise descriptions of the data that is stored
under the nodes. We compute the meaning of a label at a node by taking as
input a label, by analyzing its (real world) semantics, and by returning as output
a concept of the label, CL. For example, when we write CPictures we mean the
concept describing all the documents which are (about) pictures. Notice, that by
writing CPictures we move from the natural language ambiguous label Pictures
to the concept CPictures, which the given label denotes. Technically, concepts at
labels are encoded as propositional logical formulas, where atomic formulas are
WordNet [25] senses (possible meanings) of single words, and complex formulas

are obtained by combining atomic concepts using the connectives of set theory
and set-theoretic semantics. For example, CPictures = 〈picture, sensesWN#11〉,
where sensesWN#11 is taken to be disjunction of the eleven senses that WordNet
attaches to pictures. The process of extraction of logical formulas from natural
language labels is described in detail in [20].

Step 2. For all nodes N in the two trees, compute concepts of nodes.
In this step we analyze the meaning of the positions that the labels at nodes have
in a tree. By doing this we extend concepts of labels to concepts of nodes, CN .
This is required to capture the knowledge residing in the structure of a graph,
namely the context in which the given concept at label occurs. For example,
in A2, when we write C2 we mean the concept describing all the documents
which are (about) pictures and which are also about Europe. Thus, in Figure 1,
following the classification link semantics, which is an access criterion [16], the
logical formula for a concept at node is defined as a conjunction of concepts of
labels located above the given node, including the node itself, for example, in
A2, C2 = CEurope � CPictures.

Step 3. For all pairs of labels in the two trees, compute relations
among concepts of labels. Relations between concepts of labels are computed
with the help of a library of element level semantic matchers [13]. These matchers
take as input two concepts of labels and produce as output a semantic relation
between them. For example, in Figure 1, CImages can be found equivalent to
CPictures. In fact, according to WordNet, images and pictures are synonyms.
Notice that in WordNet pictures has 11 senses and images has 8 senses. We
use some sense filtering techniques to discard the irrelevant senses for the given
context, see [20] for details.

Step 4. For all pairs of nodes in the two trees, compute relations
among concepts of nodes. S-Match decomposes the tree matching problem
into the set of node matching problems. Then, each node matching problem,
namely pairs of nodes with possible relations between them, is translated into a
propositional formula. The semantic relations are translated into propositional
connectives as follows: equivalence into equivalence, more general and less general
into implication, and disjointness into negation of the conjunction. As from [11],
we have to prove that the following formula:

Axioms −→ rel(C1i,C2j) (1)

is valid, namely that it is true for all the truth assignments of all the propositional
variables occurring in it. In (1), Axioms is the conjunction of all the relations
between concepts of labels computed in step 3. C1i is the propositional formula
encoding concept at node i in tree 1, C2j is the propositional formula encoding
concept at node j in tree 2, rel is the semantic relation that we want to prove
holding between C1i and C2j.

From the example in Figure 1, trying to prove that Europe in A1 is equivalent
to Pictures in A2, requires constructing formula (2).

((C1Images ↔ C2Pictures) ∧ (C1Europe ↔ C2Europe))
︸ ︷︷ ︸

Axioms

→

((C1Images ∧ C1Europe)
︸ ︷︷ ︸

C12

↔ (C2Europe ∧ C2Pictures)
︸ ︷︷ ︸

C22

)
(2)

The algorithm checks for the validity of formula (2) by proving that its nega-
tion is unsatisfiable. For this purpose, our implementation uses a propositional
satisfiability (SAT) engine, in particular JSAT [2]. In this example, the negated
formula is unsatisfiable, thus the equivalence relation holds between the nodes
under consideration. Since this is the strongest relation, no additional checks
need to be made and the S-Match algorithm terminates and concludes that doc-
uments stored under Pictures in A2 are an appropriate match for documents
stored under Europe in A1, i.e., 〈ID22, C12, C22, = 〉.

3 Inference Web

Inference Web enables applications to generate portable and distributed expla-
nations for any of their answers. In order to explain mappings produced by
S-Match and thereby increase the trust level of its users, we need to provide
information about background theories (for instance, WordNet), and the JSAT
manipulations of propositional formulas.

Figure 2 presents an abstract and partial view of the IW framework as used
by the S-Match system. In order to use IW to provide explanations, question
answering systems need to have their reasoners produce proofs of their answers
in PML, publish those proofs on the web, and provide IW with a pointer to the
last step in the proof. IW also has a registry [23] of meta-information about proof
elements, such as sources (e.g., publications, ontologies), inference engines and
their rules. In the case of S-Match, the IW repository contains meta information
about WordNet and JSAT.

browser

S-Match
inference engine

(SAT)

registrar

explainer

registry

proofs and explanations

Caption

Document
maintenance

Document
usage/
reference

Agent

Web
document

(Engines are registered
on the IW)

Fig. 2. Inference Web framework overview

In the Inference Web, proof and explanation documents are formatted in
PML and are composed of PML node sets. Each node set represents a step in

a proof whose conclusion is justified by any of a set of inference steps associ-
ated with a node set. Also, node sets are subclasses of the W3C’s OWL Class
[33] and they are the building blocks of OWL documents describing proofs and
explanations for application answers published on the Web.

The IW Browser is used to present proofs and explanations. Exploiting PML
properties, meaningful fragments of the S-Match proofs can be loaded on de-
mand. Users can browse an entire proof or they can limit their view and refer
only to specific, relevant parts of proofs since each node set has its own URI that
can be used as an entry point for proofs and proof fragments.

4 Producing Explanations

A default explanation of mappings the S-Match system produces is a short, nat-
ural language, high-level explanation without any technical details. It is designed
to be intuitive and understandable by ordinary users.

Let us recall the catalog matching example. Suppose that agent A2 is in-
terested in knowing why S-Match suggested a set of documents stored under
the node with label Europe in A1 as the result to the query - ”find european
pictures”. A default explanation is presented in Figure 3.

Fig. 3. An explanation in English

From the explanation in Figure 3, users may learn that Images in A1 and
Pictures in A2 are equivalent words, i.e., they can be interchanged, in the context
of the query. Also, users may learn that Europe in A1 denotes the same concept
as Europe (European) in A2. Therefore, they can conclude that Images of Eu-
rope means the same thing as European Pictures. Future work includes optional
pruning of statements containing information that two concepts are identical.

However, users may not be satisfied with this level of explanation. Let us
therefore discuss how they can investigate the details of the matching process
by exploiting more verbose explanations. We have implemented two kinds of
verbose explanations: background knowledge explanations and logical reasoning
explanations. Let us consider them in turn.

4.1 Explaining Background Knowledge

Suppose that the agent wants to see the sources of background knowledge used in
order to determine the mapping. For example, which applications, publications,

other sources, have been used to determine that Images is equivalent to Pictures.
Figure 4 presents the source metadata for the default explanation of Figure 3.

Fig. 4. Source metadata information

In this case, both (all) the ground sentences used in the S-Match proof came
from WordNet. Using WorldNet, S-Match learned that the first sense of the
word pictures is a synonym to the second sense of the word images. Therefore,
S-Match can conclude that these two words are equivalent words in the context
of the answer. The meta information about WordNet from the IW Registry is
also presented in Figure 4 as sources of the ground axioms. Further examples of
explanations include: providing meta information about the S-Match library of
element-level matchers [13], i.e., those which are based not only on WordNet,
the order in which the matchers are used, and so on.

4.2 Explaining Logical Reasoning

A more complex explanation may be required if users are not familiar with or do
not trust inference engine(s) embedded in a matching system. As the Web starts
to rely more on information manipulations (instead of simply information re-
trieval), explanations of embedded manipulation/inference engines become more
important. In the current version of S-Match, a propositional satisfiability en-
gine is used, more precisely, the Davis-Putnam-Longemann-Loveland (DPLL)
procedure [6, 7] as implemented in JSAT [2].

The task of a SAT engine is to find an assignment µ ∈ {�,⊥} to atoms of a
propositional formula ϕ such that ϕ evaluates to true. ϕ is satisfiable iff µ |= ϕ
for some µ. If µ does not exist, ϕ is unsatisfiable. A literal is a propositional
atom, or its negation. A clause is a disjunction of one or more literals. ϕ is said
to be in conjunctive normal form (CNF) iff it is a conjunction of disjunctions of

literals. The basic DPLL procedure recursively implements the three rules: unit
resolution, pure literal and split [6, 7].

Let l be a literal and ϕ a propositional formula in CNF. A clause is called a
unit clause iff it has exactly one unassigned literal. Unit resolution is an appli-
cation of resolution to a unit clause.

unit resolution :
ϕ ∧ {l}
ϕ[l | �]

l is called a pure literal in ϕ iff it occurs in ϕ only positively or negatively.
Pure literal removes all clauses in which pure literals occur.

pure literal :
ϕ

ϕ[l | �]

Split rule performs branching first on truth values of literals then on their
false values, iff the above two rules (deterministic choices) cannot be applied.

split :
ϕ

ϕ[l | �] ϕ[l | ⊥]

Usually performance of SAT engines is not a concern for producing proofs.
Thus, we have modified the JSAT DPLL procedure and enabled it to generate
proofs. Next, we discuss the IW proofs and explanations of the unit resolution
rule in detail. In the current version, the pure literal and split rules are explained
in the same manner as the unit resolution rule.

Unit resolution rule. Let us consider the propositional formula standing for
the problem of testing if the concept at node 2 in A1 is less general than the
concept at node 2 in A2. In the following, to simplify the presentation we use
a label as a placeholder of a concept the given label denotes. The propositional
formula encoding the above stated matching problem is as follows:

((Images ↔ Pictures) ∧ (Europe ↔ Europe)) ∧ ¬
((Europe ∧ Images) → (Pictures ∧ Europe))

(3)

An intuitive reading of (3) is ”is there any situation such that the concept
Images of Europe is less general than the concept European Pictures assuming
that Images and Pictures denote the same concept?”. The IW proof of the fact
that this is not the case is shown in Figure 5. Notice that, since the DPLL
procedure of JSAT handles only CNF formulas, in Figure 5, we show the CNF
equivalent of formula (3).

From the explanation in Figure 5, users may learn that the IW proof of the
fact that the concept at node 2 in A1 is less general than the concept at node 2
in A2 requires 4 steps and at each proof step (excepting the first one, which is
a problem statement) the unit resolution rule is applied. Also, users may learn
the assumptions that are made by JSAT. For example, at the second step the
DPLL procedure of JSAT assigns the truth value to (all instances of) the atom

Fig. 5. A graphical explanation of the unit clause rule

Europe, therefore making an assumption that there is a model, where what an
agent says about Europe is always true. According to the unit resolution rule,
then the atom Europe should be stroked out from the input sentence (and, hence
it does not appear in the sentence of the step 2).

The explanation of Figure 5 represents some technical details (only the less
generality test) of the default explanation in Figure 3. This type of explanations
is the most verbose. It assumes (even if the graphical representation of a decision
tree is quite intuitive) that the matching system users have some background
knowledge in logics and SAT. However, if they do not have it, they have a
possibility to learn it by following the publications mentioned in the source
metadata information of the DPLL unit resolution rule and JSAT (by clicking
the DPLL unit clause elimination and the JSAT-The Java SATisfiability Library
buttons respectively).

Two further notes are to be made with respect to the split rule. The first is
that, it is applied when we need to reason by case distinction, for example, when
matching C13 and C23. The second note is that, in the case of a satisfiable
result, only a path of a decision tree standing for a successful assignment is
represented. In the case of an unsatisfiable result a full decision tree is reported.

5 Experimental Study

The main goal of the experiments being conducted is to obtain a vision of how
the S-Match explanations potentially scale to the requirements of the Semantic
Web, providing meaningful and adjustable answers in real time.

The semantic (node) matching problem is a CO-NP complete problem, since
it is reduced to the validity problem (a formula is valid iff its negation is unsat-

isfiable) for the propositional calculus. Resolving this class of problems requires
exponential time and exponentially long proof logs. However, in all the examples
we have done so far proofs are not too long and seem of length polynomial in the
length of the input clause. As a matter of fact, [14] shows, that when we have
conjunctive concepts at nodes (e.g., Images∧Europe), these matching tasks can
be resolved by the basic DPLL procedure in polynomial time; while when we
have full proposition concepts at nodes (e.g., Images∧(Computers∨Internet)),
the length of the original formula can be exponentially reduced by structure pre-
serving transformations.

In our experiments we have used three test cases: the simple catalog matching
problem, presented in the paper, one example from academic and one example
from business domains. The business example describes two company profiles: a
standard one (mini) and Yahoo Finance (mini). The academic example describes
courses taught at Cornell University (mini) and at the University of Washington
(mini). Table 1 provides some indicators of the complexity of the test cases1.

Table 1. Some indicators of the complexity of the test cases

Images vs. Yahoo(mini) vs. Cornell(mini) vs.
Europe Standard(mini) Washington(mini)

#nodes 4/5 10/16 34/39

max depth 2/2 2/2 3/3

#leaf nodes 2/2 7/13 28/31

We focus on indicators characterizing explanations of mappings. The analysis
of the quality of mappings is beyond scope of this paper2. In the experimental
study we have used the following indicators:

– Number of mapping elements determined by S-Match for a pair of schemas/
ontologies. As follows from the definition of semantic matching, this num-
ber should be N1 × N2, where N1 is the number of nodes in the first
schema/ontology, N2 is the number of nodes in the second schema/ontology.

– Number of steps in a proof of a single mapping element. This indicator
represents the number of PML node sets are to be created in the proof.

– Time needed to produce a proof of a single mapping element. This indicator
estimates how fast the modified JSAT in producing IW proofs for a particular
task.

– Time needed to produce a proof of all mappings determined by S-Match for
a pair of schemas/ontologies.

In order to conduct tests in a real environment, we used the IW web service
of KSL at Stanford University (on a P4-2.8GHz, 1.5Gb of RAM, Linux, Tomcat

1 Source files and description of the test cases can be found at
http://www.dit.unitn.it/∼accord/, experiments section.

2 Analysis of the quality of mappings produced by S-Match and a comparative eval-
uation against state of the art systems, such as COMA [17], Cupid [19], and Rondo
[24] can be found in [12].

Fig. 6. Experimental Results

web server) to generate proofs in PML, while the modified JSAT version was
run at the University of Trento (on a P4-1.7GHz, 256 MB of RAM, Windows
XP). All the tests were performed without any optimizations: for each single task
submitted to JSAT, the IW web service was invoked, no compression methods
were used while transferring files, etc.

Figure 6 reports on the results of the experimental study. In particular, for
each mapping element of the three test cases, it represents the number of proof
steps required and the time needed to generate proofs in PML. Notice, that
the proof time indicator in Figure 6 takes into account the time needed by the
modified version of JSAT to produce proof information, connection time to the
IW web service, time for producing and posting PML documents.

An observation of the spikes starting from the mapping #700 in the time line
of the Cornell vs. Washington test case is an example of how Internet connection
increases the proof time. The average proof length and proof time for a single
mapping element in the test cases of Figure 6 constitute 16 steps and 14 seconds.
Time needed to produce proofs of all mapping elements in each test case is
2.7min. - 20 mappings; 27.7min. - 160 mappings; and 546.2min. - 1326 mappings
respectively. Notice that the modified JSAT version produces proof information
on a single mapping element requiring, in the average, less than 1 millisecond,
therefore producing proof information for all mappings, for instance, in the case
of 1326 mappings, would require less than 1 minute. Moreover, it is hard to
imagine that (ordinary) users will be willing to browse explanations of thousands
and even hundreds of mappings. However, one dozen seems to be a reasonable
number of mappings to be looked through for a short period of time. Also, as
[12] indicates, S-Match mappings quality indicators (e.g., precision, recall), on
average are above 80%, therefore, may be that users will not need explanations
for a large number of mappings.

Results of the experimental study look promising, however there are proof
time issues to be addressed. For example, if a user needs explanations aimed at
proof generation and manipulation need to be added. Future work also includes
further experiments with more complex test cases. However, the experimental
study we have conducted gives a preliminary vision that the explanation tech-
niques proposed potentially scale to requirements of the Semantic Web, providing
meaningful and adjustable answers in real time.

6 Discussion

A line of semi-automated schema/ontology matching systems exists, see for in-
stance [4, 9, 10, 17, 19, 24, 27]. Good surveys are provided in [30–32]. To the best
of our knowledge, only the iMap system [8] generates explanations of its matching
process. However, it substantially differs from S-Match, in the type of the result
it returns and in the matching approach. In particular, iMap returns an affinity
coefficient in the [0,1] range, it does analyze term meaning, and it does not exploit
any inference engines. It is based on a combination of constraint/instance-based
matching techniques, called searchers. Explanations of mappings in the iMap
system are based on the idea of a dependency graph, which traces the searchers
(memorizing relevant slices of the graph) used to determine a particular map-
ping. Finally, exploiting the dependency graph, explanations are presented to
the user in the English format. Although, the meaning of the affinity coefficient
returned remains obscure. Additionally, it becomes more obscure as more oper-
ations (e.g., use of particular thresholds or weights) are made on these affinity
measures.

The DPLL procedure discussed in the paper constitutes a basic (without
heuristics and optimizations) propositional satisfiability search procedure of the
state of the art SAT engines, such as Chaff [26], etc. Thus, our approach for
producing explanations remains valid also for efficient semantic matching.

Recently there has been some work on verifying SAT solvers, in particular
on checking the correctness of unsatisfiability proofs by representing the proof
as a chronologically ordered set of conflict clauses [15] and using independent
resolution-based checking procedures [36]. The major drawback from the IW
perspective is that the above mentioned approaches do not provide proofs as in-
dependent (portable) objects, which can be checked by a trusted theorem prover.
Another problem is that typical traces of DPLL processing are not logical proofs
(e.g., they cannot be translated into natural deduction proofs). One approach
describes ”equivalent” inferences [3, 21] for use in explaining answers as a correct
although potentially alternative deductive path. A direct solution to the above
problem is provided in [1].

Also, an emergent and challenging research direction in the SAT commu-
nity concerns unsatisfiability cores, which is a task of extracting a (optionally
minimal) subset of clauses of the original formula such that the conjunction of
these clauses is still unsatisfiable, see, for example [28, 35]. Typically this sub-
set of clauses is much smaller than the original formula. Although, extracting

unsatisfiable cores requires producing another trace file representing a decision
tree of an unsatisfiable proof. This direction seems promising with respect to the
work on explanations of answers from S-Match, since by using unsatisfiability
cores, proof logs can be significantly reduced. Moreover, minimal unsatisfiability
subformulas should allow for localizing a minimal number of axioms implying
a particular semantic relation between the nodes under consideration. This ap-
proach focuses a user’s attention precisely on a reason why this type of a relation
holds.

As the use of matching systems for managing semantic heterogeneity grows,
it becomes very important to produce explanations of them in order to make the
Semantic Web transparent and trustable. Some technical details of our solution
are:

– We use the Proof Mark-up Language for representing S-Match proofs, thus
facilitating interoperability;

– We use meaningful terms rather than numbers in the DIMACS format, thus
facilitating understandability;

– We use the IW tools, thus facilitating customizable, interactive proof and
explanation presentation and abstraction;

– Our solution is potentially scalable to the Semantic Web requirements.

7 Conclusions

In this paper, by extending S-Match to use the Inference Web infrastructure, we
have demonstrated our approach for explaining answers from matching systems
exploiting background ontological information and reasoning engines. The ex-
planations can be presented in different styles allowing users to understand the
mappings and consequently to make informed decisions about them. The paper
also demonstrates that S-Match users can leverage the Inference Web tools, for
example, for sharing, combining, browsing proofs, and supporting proof meta-
information including background knowledge. We also have presented DPLL-
based IW explanations of the SAT engine used in the context of S-Match tasks.
We have tested our approach of explaining S-Match answers. The results look
promising and demonstrate their potential to scale to the requirements of Se-
mantic Web.

Future work proceeds in at least two directions. Using explanations, a match-
ing system can provide users with meaningful prompts and suggestions on further
steps towards the production of a sound and complete result. Having understood
the mappings returned by a matching system, users can deliberately edit them
manually, therefore providing the feedback to the system. Thus, the first direc-
tion includes developing an environment, which efficiently exploits the IW proofs
and explanations presented in the paper, in order to make the S-Match match-
ing process (fully-fledged) interactive and iterative, involving user in the critical
points where his/her input is maximally useful.

The second direction includes (i) improving the S-Match proofs and expla-
nations by using abstraction techniques more extensively; (ii) conducting a user

satisfaction study of the explanations; and (iii) extending explanations to other
SAT engines as well as to other non-SAT DPLL-based inference engines, e.g.,
DLP, FaCT [18], and Pellet [29].

Acknowledgements: This work has been partly supported by the European
Knowledge Web network of excellence (IST-2004-507482), by the research grant
COFIN 2003 Giunchiglia 40100657, and by research grants from DARPA’s DAML
and PAL programs.

References

1. C. Barrett and S. Berezin. A proof-producing boolean search engine. In Proceedings
of PDPAR, 2003.

2. D. Le Berre. JSAT: The java satisfiability library.
http://cafe.newcastle.edu.au/daniel/JSAT/, 2001.

3. A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. Patel-Schneider.
Explaining ALC subsumption. In Proceedings of Description Logics workshop,
1999.

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach
and an application. In Proceedings of ISWC, pages 130–145, 2003.

5. P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes. A proof markup language
for semantic web services. Technical report, KSL, Stanford University, 2004.

6. M. Davis, G. Longemann, and D. Loveland. A machine program for theorem
proving. Journal of the ACM, (5(7)), 1962.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, (7):201–215, 1960.

8. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
complex semantic matches between database schemas. In Proceedings of SIGMOD,
pages 383 – 394, 2004.

9. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of ISWC,
pages 683–697, 2004.

10. J. Euzenat and P.Valtchev. Similarity-based ontology alignment in OWL-lite. In
Proceedings of ECAI, pages 333–337, 2004.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. KER Journal, (18(3)):265–280,
2003.

12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an
implementation of semantic matching. In Proceedings of ESWS, pages 61–75, 2004.

13. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings
of Meaning Coordination and Negotiation workshop at ISWC, 2004.

14. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.
In Proceedings of ESWC, 2005.

15. E. Goldberg and Y. Novikov. Verication of proofs of unsatisability for CNF for-
mulas. In Proceedings of DATE, 2003.

16. N. Guarino. The role of ontologies for the Semantic Web (and beyond). Techni-
cal report, Laboratory for Applied Ontology, Institute for Cognitive Sciences and
Technology (ISTC-CNR), 2004.

17. H.H.Do and E. Rahm. COMA - a system for flexible combination of schema
matching approaches. In Proceedings of VLDB, pages 610–621, 2001.

18. I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Automated Reasoning
with Analytic Tableaux and Related Methods: Tableaux, pages 27–30, 1998.

19. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of VLDB, pages 49–58, 2001.

20. B. Magnini, L. Serafini, and M. Speranza. Making explicit the semantics hidden
in schema models. In Proceedings of workshop on Human Language Technology for
the Semantic Web and Web Services at ISWC, 2003.

21. D. L. McGuinness and A. Borgida. Explaining subsumption in description logics.
In Proceedings of IJCAI, pages 816–821, 1995.

22. D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations.
In Proceedings of ISWC, pages 113–129, 2003.

23. D. L. McGuinness and Pinheiro da Silva P. Registry-based support for information
integration. In Proceedings of IJCAI Workshop on Information Integration on the
Web, 2003.

24. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proceedings of SIGMOD, pages 193–204, 2003.

25. A.G. Miller. WordNet: A lexical database for english. Communications of the
ACM, (38(11)):39–41, 1995.

26. M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of DAC, 2001.

27. N. Noy and M. A. Musen. Anchor-prompt: Using non-local context for seman-
tic matching. In Procedings of IJCAI workshop on Ontologies and Information
Sharing, pages 63–70, 2001.

28. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. In Proceedings of DAC, pages 518–
523, 2004.

29. B. Parsia, E. Sirin, M. Grove, and R. Alford. Pellet OWL reasoner.
http://www.mindswap.org/2003/pellet/index.shtml.

30. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, (10(4)):334–350, 2001.

31. P. Shvaiko. A classification of schema-based matching approaches. In Proceedings
of Meaning Coordination and Negotiation workshop at ISWC, 2004.

32. P. Shvaiko and J. Euzenat. A survey of schema-based macthing approaches. Tech-
nical report, DIT-04-087, University of Trento, 2004.

33. M.K. Smith, C. Welty, and D.L. McGuinness. OWL web ontology lan-
guage guide. Technical report, World Wide Web Consortium (W3C),
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, February 10 2004.

34. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Huebner. Ontology-based integration of information - a survey of existing
approaches. In Proceedings of IJCAI workshop on Ontologies and Information
Sharing, pages 108–117, 2001.

35. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formulas. In Proceedings of SAT, 2003.

36. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Proceedings
of DATE, 2003.

